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Modeling the Overproduction of Ribosomes when Antibacterial Drugs Act
on Cells
Arijit Maitra1,* and Ken A. Dill1
1Laufer Center for Physical and Quantitative Biology and Departments of Chemistry and Physics, Stony Brook University, Stony Brook,
New York
ABSTRACT Bacteria that are subjected to ribosome-inhibiting antibiotic drugs show an interesting behavior: Although the drug
slows down cell growth, it also paradoxically increases the cell’s concentration of ribosomes. We combine our earlier nonlinear
model of the energy-biomass balance in undrugged Escherichia coli cells with Michaelis-Menten binding of drugs that inactivate
ribosomes. Predictions are in good agreement with experiments on ribosomal concentrations and synthesis rates versus drug
concentrations and growth rates. The model indicates that the added drug drives the cell to overproduce ribosomes, keeping
roughly constant the level of ribosomes producing ribosomal proteins, an important quantity for cell growth. The model also pre-
dicts that ribosomal production rates should increase and then decrease with added drug. This model gives insights into the
driving forces in cells and suggests new experiments.
INTRODUCTION
Drugs such as chloramphenicol act to reduce bacterial cell
growth rates by inhibiting bacterial ribosomes and thereby
reducing the cell’s production of proteins. What actions
does the cell invoke to counter the effects of the drug? On
the one hand, there is often a good understanding of how
the drug binds at its ribosomal site (1–3), and it is sometimes
known how that binding interferes with protein elongation
(4–7). It is also sometimes known how drugs sensitize local
networks to evoke adaptive responses (8–11). On the other
hand, there is usually less understanding of what global
stresses the drug triggers, how it shifts the balances of en-
ergy and biomass, or what homeostatic condition the cell
might be trying to preserve.

There are various approaches to cell-level modeling. One
approach models the dynamics of the cell’s networks of
biochemical reactions (12–14). Even in an organismas simple
as a bacterium, there are very many interconnected reactions,
making it complicated to model. Another approach has been
flux-balance analysis (15,16),which gives solutions by linear-
izing the forces around some given homeostasis point. Here,
however, we are interested in how those homeostasis points
themselves are shifted by the drug. Homeostasis is a funda-
mentally nonlinear phenomenon, describing the cell’s return
to a stable state after a perturbation. Like the Le Chatelier
principle in physics (17), homeostasis describes a process
resembling a marble rolling back to the bottom of a well after
being pushed,with the stable state acting as thewell bottomof
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an energy function. Here, we address the nonlinearities and
feedback that are needed to explore how the homeostasis bal-
ance is tipped by the drug, but to do this in a way that can give
simple insights, we use a reduced (minimalist) description of
the bacterial cell (18).We use thismodel to study the response
of Escherichia coli to chloramphenicol.

Our goal here is a quantitative description of the energy-
limited cell in the absence and presence of varying amounts
of drug, in terms of the physicochemical processes of the
undrugged cell developed recently (18). (By energy-limited
cells, we mean cells whose growth is limited by a sugar
source, such as glucose, rather than by amino acids, for
example). Our minimal model expresses the dynamical con-
centrations and fluxes of three internal cell components—ri-
bosomal protein, nonribosomal protein, and internal energy
(lumped into a single category we call ATP)—as a function
of external sugar, such as glucose. We previously found that
healthy E. coli under good growth conditions (speeds up to
one duplication per hour) have achieved an evolutionary
balance (18). On the one hand, the cell invests energy and
biomass in increasing its ribosome concentration, because
that increases the cell’s growth speed. On the other hand,
too much energy and biomass devoted to producing ribo-
somes leads to starving the cell’s ability to take in food
and convert it to ATP. In this article, we ask how drugging
the cell affects its balance of energy and biomass.
MATERIALS AND METHODS

A minimal model of E. coli in the presence of
drugs

We model the energy-limited growth of E. coli using three rate equations

to characterize energy (ATP concentration (A)), ribosomal (Ract) and
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mailto:arijitmaitra1@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.bpj.2015.12.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2015.12.016&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2015.12.016
http://dx.doi.org/10.1016/j.bpj.2015.12.016
http://dx.doi.org/10.1016/j.bpj.2015.12.016
http://dx.doi.org/10.1016/j.bpj.2015.12.016


744 Maitra and Dill
nonribosomal protein concentrations (P) as functions of time, t (18), and a

constraint:

dA

dt
¼ maJa � mrJr � mpJp � lA; (1)

dRact ¼ J � J þ J � lR ; (2)

dt

r þx �x act

dP ¼ J � ðgþ lÞP; (3)

FIGURE 1 Minimal kinetic model of E. coli. The model expresses the

dynamical fluxes (arrows) and concentrations of active ribosomes (Ract),

nonribosomal proteins (P), and a lumped internal energy (ATP). The double
dt
p

r ¼ MrðRact þ RinÞ þMpP; (4)
arrow shows a positive feedback mechanism for ribosomal autosynthesis, a

key controller of growth behavior. Antibiotic inhibitor molecules are repre-
where the fluxes are defined as
sented by X. X binds reversibly with active ribosomes. While in the bound

form, Rin, the ribosomes are inactivated, and they do not translate proteins.

P degrades with rate constant g. The cell grows exponentially, with a spe-

cific growth rate of l.
Jr ¼ kr � Ract � frðAÞ; (5)

Jp ¼ kp � Ract � fpðAÞ; (6)
Ja ¼ kaðGÞ � P: (7)
Here, Ja is the rate of glucose conversion for ATP generation, and Jp and

Jr are the respective rates of synthesis of nonribosomal proteins and

ribosomes. kr, kp, and ka(G) are the respective rate constants for ribo-

somal biogenesis, protein translation, and energy generation. The units

of rates and rate constants are mM/h and per hour, respectively. ma is

the moles of ATP per mole of glucose generated, and mr and mp are

the respective moles of ATP consumed per unit mole of ribosome

(h Mr g ribosomal proteins) and nonribosomal proteins (h Mp g) syn-

thesized. Our work is not the first to model the biomass balance in bac-

teria (see previous studies (19–25)). What is new here, to our knowledge,

is the coupling between the biomass and energy balance (also see Weisse

et al. (26)).

The functional forms in Eqs. 5–7 reflect wild-type regulatory mecha-

nisms that coordinate the syntheses of ribosomal and nonribosomal pro-

teins, which are complex (27,28) and depend on the cell’s energy status.

To capture these dependencies, we adopt the undrugged cell functions (18):

frðAÞ ¼

8><
>:

0; if A<Dr

fNr �
�
1� Dr

A

�
; if ARDr

; (8)

N A

fpðAÞ ¼ fp �

Dp þ Aþ DppA2
; (9)

kaðGÞ ¼ kN � fgðGÞ � faðAÞ; (10)
a

G1:5
fgðGÞ ¼
G1:5 þ D1:5

g

; (11)

Da

faðAÞ ¼

Da þ A
: (12)

See the Supporting Material for values of biophysical constants, capacities

kNa , fNr , and fNp , and parameters Dr, Dp, Dpp, Dg, and Da, which define the

nonlinearities in the respective pathways. In addition, here we consider the

effects of drug X as shown in Fig. 1. X is an antibiotic drug that targets ri-

bosomes. There is a broad class of natural and synthetic bacteriostatic an-
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tibiotics of this type, such as chloramphenicol, that target protein synthesis.

The model presented here is intended as a general description of that class

of drugs (3). We assume that X permeates passively from the extracellular

medium into the cytosol through the cell membrane. We assume that free

drug concentrations outside and inside the cell are equal, a reasonable

approximation for E. coli based on similar values of drug binding kinetics

from in vivo and in vitro measurements (see Harvey and Koch (29) and

Lewinson et al. (30).

The binding of X to the ribosomes, which occurs with rate constant kþx,

halts peptide-chain elongation, as represented by the dynamics

dRin

dt
¼ Jþx � J�x � lRin (13)

Jþx ¼ kþx � x � Ract; J�x ¼ k�x � Rin: (14)
Here, Jþx is the rate at which ribosomes become inactivated due to binding

with the drug and J�x is the rate of unbinding. Rin is the concentration of

ribosomes that have been inactivated by binding to the drug, and Ract, as

noted above, is the intracellular concentration of active ribosomes. Thus,

Ract þ Rin is the total concentration of ribosomes in the cell. x is the extra-

cellular concentration of drugs.

A key quantity in this model is the fraction of ribosomes that are active

a(x) for a given drug concentration x. We assume a steady state, so we

set dRin/dt ¼ 0 in Eq. 13. We also assume that the rate constant for drug-

ribosome unbinding is much faster than dilution, k�x [ l. Thus, we get

Ract

Rin

¼ lþ k�x

kþxx
(15)

0aðxÞ ¼ Ract ¼ 1
: (16)
Ract þ Rin 1þ ðkþx=k�xÞx

For the equilibrium dissociation constant of chloramphenicol, we use

(k�x/kþx) h Kd ~3 mM (29). a ¼ 1 represents the situation of no drug.

Increasing drug concentration decreases a toward zero.

The fraction of all proteins (by mass) that are active ribosomes is

facth
MrRact

MrðRact þ RinÞ þMpP
¼ aftot; (17)



FIGURE 3 E. coli ribosomal protein fraction versus growth rates.

Numerical solutions of the ODE model, with increasing glucose concentra-

tions (in mM) G¼ 0.04 (blue), 0.05 (green), 0.08 (red), and 0.125 (purple),

and antibiotic concentrations x ¼ 0 / 25 mM (arrows). Circles represent

the experimental data (10) for E. coli grown on glucose þ M63 at different

dosages of chloramphenicol (in mM). To get f, the rRNA/protein ratio from

Scott et al. (10) is scaled by a factor of 0.46 (20). The black line represents

the prediction from theory (Eq. 18), with fp ¼ fNp ¼ 0:7, k
0
p ¼ 9:65 h�1,

g ¼ 0.1 h�1, and a ¼ 1 (absence of drugs).
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and the fraction of all proteins that are all ribosomes (active plus inactive) is

ftoth
MrðRact þ RinÞ

MrðRact þ RinÞ þMpP
¼ lþ g

lþ gþ akp0fp
: (18)

The last equality in Eq. 18 expresses how the ribosomal content of the cell

depends on its growth rate, l, and other properties. Then, the fraction of

active ribosomes devoted to translating ribosomal proteins is

frr ¼ factftot: (19)

Further, the rate of ribosome synthesis, Jfr h MrJr/r, in units of grams of

ribosomal protein per gram of total protein per hour can be computed as

(see the Supporting Material)

JfrhMrJr
�
r ¼ lftot: (20)

Under growth conditions in the absence of drugs, a¼ 1 and fp ¼ fNp , we use

Eqs. 18 and 20 to obtain the rate of ribosome synthesis as

Jfr ¼ l � lþ g

lþ gþ k0
p f

N
p

: (21)

RESULTS

The drugged cell overproduces total ribosomes
to maintain sufficiently many active ribosomes

Here, we describe the model predictions. We solve ordinary
differential equations (ODEs) 1–14 under steady-state con-
ditions for different concentrations of glucose and antibiotic
drug. Fig. 2 A shows that the model predicts Monod-like
behavior (31) of growth rate versus glucose concentration
under different drug concentrations. As expected, the model
predicts that increasing the drug leads to diminishing
maximum growth rates.

Fig. 3 shows that the model is consistent with experiments
indicating how the added drug stimulates total ribosome
production even as it reduces the cell’s growth rate
(10,32). The black line shows that for undrugged cells, ribo-
somes become upshifted relative to other protein biomass
with increasing cellular growth rate. The red line and data
A B

FIGURE 2 E. coli physiological correlations. (A) Growth rate versus

extracellular glucose concentration from a simulation for antibiotic

(chloramphenicol) concentrations of 0, 2.1, and 6.4 mM. (B) Dependence

of growth rate, l, on antibiotic concentration, x. The line is the numer-

ical solution of the ODE model, with G ¼ 0.08 mM (red line). Red

solid circles represent the experimental data (10) of E. coli grown on

glucose þ M63.
points show that the added drug does two things: it increases
the ribosomal fraction while simultaneously reducing the
growth rate.

Our result reduces to the linear model of Scott et al. (10)
in the limit of zero degradation. To see this, note that (see
Supporting Material)

ftotðl; laÞ ¼ la � gþ l

la � gþ lεrp
; (22)
energy generation and εrp ¼ (εp � εr)/εr. εr h (Mr/mr) and

where la h (maka)/mp is a measure of the specific rate of

εp ¼ (Mp/mp) are constants denoting the respective gram
weights of ribosomal and nonribosomal proteins synthesized
per mole of ATP. Setting εrp ~0 and g ~0 gives ftot ~1� l/la,
which is just the linear relationship of Scott et al. (10).

What is the cell trying to achieve under the burden of
the drug? As noted above, the effect of the drug is to
decrease substantially the fraction of useful ribosomes,
as depicted by the quantity a in Fig. 4. However, Fig. 4
also shows that there is remarkable relative constancy in
two other quantities, ftot and frr, independent of the con-
centration of drug. Ribosomes make either ribosomal or
nonribosomal proteins. frr is the fraction of active ribo-
somes that are producing other ribosomes (see Fig. 1,
double arrow; see also Figs. S2–S4), and ftot is the frac-
tion of all proteins that are ribosomal. The constancy of
these quantities suggests that the cell senses and regulates
how many of its proteins are ribosomes, or how many are
ribosomes producing other ribosomes. Such processes
may be mediated by ppGpp, the molecule that provides
stringent control of ribogenesis in the presence of antibi-
otic stress (27,33). To our knowledge, frr has not been
measured experimentally.
Biophysical Journal 110(3) 743–748



FIGURE 4 Effect of ribosomal inhibitors on cellular homeostasis. Lines

are scaled numerical solutions of the ODE model, with G ¼ 0.08 mM. The

orange line represents the active ribosomes, [a(x)/a(x¼ 0)], as a function of

drug concentration, x. The red line represents the total ribosomes, [ftot(x)/

ftot(x ¼ 0)]. The black line represents the fraction of active ribosomes

that are producing ribosomal proteins, [frr(x)/frr(x ¼ 0)] (Eq. 19). Also

see Figs. S2–S4.

FIGURE 6 Effect of ribosomal inhibitors on the rate of energy

metabolism. Shown are predictions of the rate of energy metabolism versus

growth rate, l, from the ODE model with glucose varied, G ¼ 0 � 1 mM,

and no drugs (black line), and the prediction at G ¼ 0.04 mM (red line),

with the drug dosage varied according to x ¼ 0 / 15 mM (arrow). An in-

crease in drug concentration reduces both rates of growth and energy

generation.
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The drug shifts the production rate of ribosomes
but has little effect on energy flow from glucose
to ATP

In this section, we get further insights from looking at two
additional properties of the model. First, in Fig. 5, we go
beyond concentrations of ribosomes and consider the rate
of production of ribosomes, Jfr¼ l� ftot(l) (Eq. 20), which
we also call ribosomal flux. We find (see below) that
although high drug concentrations increase the number of ri-
bosomes, they also reduce the rate of ribosome production.
Second, Fig. 6 shows that added drug reduces the growth
FIGURE 5 Effect of ribosomal inhibitors on ribosomal activity. The

symbols show the rate of ribosomal synthesis, Jfr ¼ MrJr/r, versus specific

growth rate of E. coli converted from the experimental f � k data. Chlor-

amphenicol concentrations (in mM) are indicated inside the circles. Nutri-

ents were M63 þ glucose (red) at T ¼ 37 C (10). Gray solid circles

represent experimental data (10) in the absence of drugs. To get f, the

rRNA/protein ratio from Scott et al. (10) is scaled by a factor of 0.46

(20). The blue line represents the ODE model prediction at constant G ¼
0.04 mM with chloromaphenicol varied according to x ¼ 0 / 15 mM (ar-

row). The black line represents the theoretical prediction (Eq. 21) in the

absence of drugs, with fp ¼ fNp ¼ 0:7, g ¼ 0:1 h�1, and kp
0 ¼ 9:65 h�1.

Also see Fig. S1.

Biophysical Journal 110(3) 743–748
rate by reducing the catabolic conversion of glucose to
ATP. Here are the details.

First, focus on the black line in Fig. 5. According to the
model, under the no-drug condition, the ribosomal produc-
tion rate should scale as the square of the growth rate,
Jfr � l� l=ðk0

p f
N
p Þfl2, since ftot f l. Fig. 5 shows a

log-log plot. The black line shows the square-law prediction
for undrugged cells. The data points shown in gray lie along
this black line, indicating that the model predicts well the ri-
bosomal production rates of undrugged cells growing at
different speeds.

Next, focus on the red points in Fig. 5. The data points,
containing circled numbers between 2 and 12 (mM), show
the effects of increasing the amount of drug at fixed nutri-
ents. Following the red line toward the left, which describes
increasing drug concentrations, shows how the drug reduces
the growth rate while also reducing the production rate of ri-
bosomes. The experimental data points are from Scott et al.
(10); also see the Supporting Material.

Finally, the blue line in Fig. 5 makes an interesting pre-
diction, for which, to our knowledge, there is no experi-
mental evidence. The blue line represents cell growth
under low nutrients, 0 < l ( 0.8 h�1, and it has curvature.
This shows that although ribosomal flux is increased by
small amounts of added drug, that flux is decreased by larger
amounts of drug due to the reduction of cell growth at high
drug concentrations.

We can draw another inference by comparing the blue and
black lines on Fig. 5. Those two lines intersect around l ¼
0.35 h�1, defining the point of no drug. From this point,
there are two ways to increase the ribosomal flux, Jfr (the
y axis). You can either give the cells more food (leading
to the black line, increasing Jfr to the right) or give them
drugs (leading to the blue line, increasing to the left). It sug-
gests that there are (at least) two signals that increase
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cellular ribosome fluxes: a signal about energy availability
and a signal about numbers of active ribosomes.

Related to that point, Fig. 6 shows the prediction of
la(1 � f), which is a measure of the energy flux in the con-
version of glucose to ATP, maka(G) � P. Fig. 6 shows that
there is a single universal relationship between that energy
flux and growth rate, irrespective of whether growth is
controlled by drugs or food. This indicates the nature of
feedback in the cell. It is not simply the energy inflow
(input) that dictates the growth rate (output). The growth
rate is also a controller of the energy influx. This is inter-
esting in the context of drugs, which can more strongly
affect the growth-rate dependence of the rate of ribosomal
synthesis than energy influx. As far as we know, there are
no experiments that bear out this prediction.
DISCUSSION

This model makes some predictions that have not yet been
tested experimentally. We hope experimentalists will make
such tests, to give deeper insights into these nonlinear be-
haviors that will ultimately lead to improved models. Cur-
rent experiments on drugged and undrugged bacteria are
run on different food sources and in different media. Deeper
tests of our model could come from studies in which the
types of nutrient and the media are fixed and only the
food concentration is varied. In addition, a key variable
here is la, the cell’s conversion efficiency of sugar to inter-
nal energy, such as ATP. It would be valuable to have mea-
surements of glucose and oxygen uptake rates, ATP
production rates (maJa), ATP concentrations, and ribosome
production rates (Jr), as well as key glycolytic, tricarboxylic
acid cycle, and fermentation enzyme concentrations, as a
function of external glucose and antibiotic concentrations.

Somewhat different models are those of Elf et al. (34) and
Deris et al. (35), who consider bistabilities of cells resulting
either from membrane properties or drug resistance. Other
models focus on mechanisms of microscopic control of
ribosome synthesis, such as the stringent response, a nega-
tive feedback mechanism triggered when some of a cell’s
excess usable energetic molecules are converted to unusable
ppGpp in response to endogenous limitations of amino acids
(21,28,36). Because of its simplicity, the treatment
described here could be extended to explore other factors
that are of interest, such as cellular geometry (surface-vol-
ume considerations), multidrug effects (37), or drug-depen-
dent cellular multistabilities that lead to antibiotic resistance
and persistence (34,35).
CONCLUSIONS

Here, we model the balance of energy, ribosomes, and
nonribosomal proteins in E. coli cells in the presence of
chloramphenicol, an antibiotic drug. We suppose that chlor-
amphenicol binds to ribosomes and inactivates them, in a
Michaelis-Menten fashion. We combine this binding-
induced inactivation of ribosomes with a three-component
dynamical model of E. coli’s energy and ribosomal and non-
ribosomal protein biomass as a function of growth rates,
which was previously validated against experiments on un-
drugged bacteria. This model gives quantitative predictions
for how the cell’s growth rate decreases with added drug,
and how the total ribosomal fraction of the protein increases
with drug. Also, it predicts that adding drugs to slow-
growing cells leads to an increase in the rate of ribosomal
synthesis, followed by a decrease as the cell gets sicker.
We show the model agreement with the data. However,
more important are the insights the model gives about
how the cell responds to the drug, what varies and what stays
constant. We find that although drugging the cell reduces the
concentration of active ribosomes, it also stimulates more
total ribosome production, holding relatively constant the ri-
bosomal production of ribosomes, a key quantity the cell
uses to toggle between growth and self-protection.
SUPPORTING MATERIAL

Supporting Materials and Methods, four figures, and three tables are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)

04758-X.
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