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ABSTRACT OF THE DISSERTATION

On the Spectral Bias of Neural Networks in the Neural

Tangent Kernel Regime

by

Benjamin Bowman

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Guido Francisco Montúfar Cuartas, Chair

Understanding the training dynamics of neural networks is quite difficult in general due to

the highly nonlinear nature of the parameterization. A breakthrough in the theory of deep

learning was the finding that in the infinite-width limit the gradient descent dynamics are

characterized by a fixed kernel, coined the “Neural Tangent Kernel” (NTK). In this limiting

regime the network is biased to learn the eigenvectors/eigenfunctions of the NTK at rates

corresponding to their eigenvalues, a phenomenon known as “spectral bias”. Considerable

work has been done comparing the training dynamics of finite-width networks to the idealized

infinite-width dynamics. These works typically compare the dynamics of a finite-width

network to the dynamics of an infinite-width network where both networks are optimized

via the empirical risk. In this work we compare a finite-width network trained on the

empirical risk to an infinite-width network trained on the population risk. Consequentially,

we are able to demonstrate that the finite-width network is biased towards learning the

top eigenfunctions of the NTK over the entire input domain, as opposed to describing the

dynamics merely on the training set. Furthermore we can demonstrate that this holds in a

ii



regime where the network width is on the same order as the number of training samples, in

contrast with prior works that require the unrealistic assumption that the network width is

polynomially large in the number of samples. In a separate line of analysis, we characterize

the spectrum of the NTK by expressing the NTK as a power series. We demonstrate that the

NTK has a small number of large outlier eigenvalues and that the number of such eigenvalues

is largely inherited from the structure of the input data. As a result we shed further insight

into why the network places a preference on learning a small number of components quicker.

In total, our results help classify the properties networks are biased towards in a variety of

settings, which we hope will lead to more interpretable artificial intelligence in the long term.
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Montúfar. “Implicit Bias of MSE Gradient Optimization in Underparameterized Neu-

xiii



ral Networks.” In International Conference on Learning Representations, 2022. Guido
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OVERVIEW

In the following chapters we provide insight into the phenomenon that neural networks

exhibit a preference to learn certain properties of the target function more quickly throughout

training. Our analysis centers around the Neural Tangent Kernel (NTK). Specifically, we

compare the optimization dynamics of finite-width networks to their corresponding infinite-

width limit. We bound the difference between the trajectory of a finite-width network

trained on the empirical risk to the trajectory of an infinite-width network trained on the

population risk. Consequentially, we are able to demonstrate that finite-width networks

exhibit a spectral bias to learn the eigenfunctions of the NTK corresponding to the large

eigenvalues more quickly. In a separate line of analysis, we derive a power series expansion

for the Neural Tangent Kernel to establish numerous spectral properties. Most notably, we

are able to demonstrate that the NTK has a small number of outlier eigenvalues and that the

structure of its spectrum is largely inherited from the input data. The fact that the NTK has

a small number of outlier eigenvalues, by way of spectral bias, provides further explanation

into why networks exhibit a preference to learn a small number of attributes more quickly. In

total, we are able to demonstrate spectral bias holds in several distinct settings, and provide

insight into the spectral bias phenomenon through various properties of the NTK spectrum.

Consequentially, we make steps towards cataloging the inductive bias’s of neural networks,

which we hope will lead to making neural networks more intelligible in the future. Below,

we provide an outline of the results contained in the following chapters.

• In Chapter 1 we introduce the Neural Tangent Kernel and describe how it arises nat-

urally when studying the convergence of gradient descent. We introduce the spectral

bias phenomenon as well as the strengths and limitations of NTK analysis.

• In Chapter 2 we introduce the “damped deviations” equation (see Lemma 2.2.3) which

compares the gradient flow trajectory of a finite-width network trained on the empir-

1



ical loss to the corresponding infinite-width network trained on the population loss.

Using this equation we can provide bounds on the trajectory whenever the network

is underparameterized that are sufficient to obtain bounds on the population loss (see

Theorem 2.3.5 and Corollary 2.3.6). A key element of the proof is an NTK deviation

bound that holds uniformly over all inputs (see theorems 2.5.19, 2.5.25, 2.5.26), which

may be of independent interest. Using a simplified version of the damped deviation

equation that restricts to the training set, we can provide corresponding statements

for the empirical risk that are applicable in the overparameterized regime (see Theo-

rem 2.3.7, Theorem 2.3.8, and Corollary 2.3.9). The contents of Chapter 2 are derived

from the manuscript “Implicit bias of MSE gradient optimization in underparame-

terized neural networks” which appeared in The Tenth International Conference on

Learning Representations, 2022. This was joint work with Guido Montúfar.

• In Chapter 3 we expand the results in Chapter 2 to include more realistic sample com-

plexities and deep architectures. In Corollary 3.3.7 we provide a variation of Theorem

2.3.5 without the underparameterization requirement which applies to deep networks

with any combination of convolutional, residual, or fully-connected layers. Most no-

tably, the number of samples and the width of the network can scale at the same rate

to obtain vanishing bounds up to finite stopping times. Consequently, as demonstrated

in Corollary 3.3.10 we can obtain bounds on the population loss in a scaling regime

where the width of the network and number of samples scale at the same rate. Conse-

quently, we are able to demonstrate that spectral bias holds for realistic scaling limits

and diverse architectures. The contents of Chapter 3 correspond to the manuscript

“Spectral bias outside the training set for deep networks in the kernel regime” which

appeared in Advances in Neural Information Processing Systems, 2022. This was joint

work with Guido Montúfar.

• In Chapter 4 we express the NTK as a power series to establish a number of spectral

properties. Theorem 4.3.2 provides the power series coefficients for the NTK which

2



depend on the Hermite coefficients of the activation function as well as the depth

of the network. In Theorem 4.4.1 we demonstrate that the NTK has a dominant

outlier eigenvalue and that there are O(1) eigenvalues on the same order of magnitude

as this outlier. In Theorem 4.4.3 we demonstrate that after subtracting a rank one

component, the effective rank of the NTK is upper bounded by a constant multiple

of the effective rank of the input data gram. Since real world data tends to have

low effective rank, the NTK also exhibits this property. In Theorem 4.4.5 we also

demonstrate that this same property holds for finite-width shallow ReLU networks with

high probability at initialization. In Corollary 4.4.7 and Theorem 4.4.8 we demonstrate

that the asymptotic decay of the spectrum depends on the decay of the power series

coefficients, with faster coefficient decay corresponding to faster eigenvalue decay. The

contents of Chapter 4 are based on the manuscript “Characterizing the Spectrum of the

NTK via a Power Series Expansion” which appeared in The Eleventh International

Conference on Learning Representations, 2023. This was joint work with Michael

Murray, Hui Jin, and Guido Montúfar.
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CHAPTER 1

Introduction

1.1 A Brief History of the Neural Tangent Kernel

The typical operating regime in deep learning is to optimize an overparameterized net-

work via gradient-based optimization. This has been phenomenally successful in practice

but leads to a number of theoretical challenges. The first is that neural networks have a

highly nonlinear parameterization which leads to optimization objectives that are noncon-

vex [SS89, SS91]. The nonconvexity of the optimization makes proving theoretical guarantees

for gradient optimization a tall task. Furthermore overparameterized networks are able to

interpolate arbitrary labels [ZBH17], and the VC-dimension of typical networks grows at

least linearly with the number of parameters [BHL19, KS95]. As a consequence, classical

complexity based measures from statistical learning theory such as Rademacher complexity

or VC-dimension lead to vacuous generalization bounds [AB02]. Thus understanding mod-

ern deep learning will require innovations beyond the classical theories of both optimization

and generalization.

The aforementioned challenges at first make the prospect of establishing a theoretical

understanding of deep learning seem dismal. However, there was evidence as far back

as the 1990s that overparameterized networks may be amenable to theoretical analysis.

[Nea96, Wil96] demonstrated that the network outputs converge to a Gaussian process as

the number of hidden units approaches infinity. This led to a line of research studying the
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connection between Gaussian processes, kernel methods, neural network representations,

and deep learning [CS09, DFS16, LBN18]. In a similar vein [NTS15] exhibited decreasing

generalization error while increasing the network width, suggesting that overparameterized

networks may have a more subtle form of capacity control.

While progress was made towards understanding neural network representations via the

infinite-width limit, an understanding of the optimization dynamics was still lacking. A

breakthrough emerged in 2018 when [JGH18] demonstrated that the optimization dynamics

are governed via a time-dependent kernel coined the “Neural Tangent Kernel (NTK)”, which

in the infinite-width limit becomes constant throughout training. In this limiting setting

the network parameterization becomes approximately linear [LXS19], and bounding the

smallest eigenvalue of the NTK throughout training is sufficient to prove global convergence

of gradient descent. In fact, almost concurrently with [JGH18] the authors in [DZP19]

had used this technique to prove the first global convergence guarantee for gradient descent

applied to a network trained on general data. The NTK had been studied earlier by the

work [XLS17] which demonstrated that the squared loss satisfies a Polyak-Lojasiewicz (PL)

inequality in any region where the smallest eigenvalue of the NTK is bounded below. This

analysis ties back to a well known technique in nonconvex optimization that establishing

a PL-inequality is sufficient for proving convergence of gradient descent provided that the

gradient is Lipschitz [Pol63]. The innovation in [DZP19] was to prove that the gradient

descent trajectory remains in a region where a PL-inequality holds, as well as an innovative

technique of bounding the number of activation patterns that change for a ReLU network

as a substitute for the Lipschitz property.
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1.2 Global Convergence Guarantees via the NTK

1.2.1 The Neural Tangent Kernel and PL-inequalities

In this section we will briefly display how the NTK naturally emerges when studying the

dynamics of gradient descent. We will focus on the regression problem. Let

D = {(x1, y1), . . . , (xn, yn)}

denote our training data where xi ∈ Rd and yi ∈ R. We will let f(x; θ) denote our neural

network taking inputs x ∈ Rd with parameters θ ∈ Rp. The specific architecture will not

matter for the purpose of this section. Let ℓ(z, y) be a loss function, e.g. ℓ(z, y) = 1
2
(z− y)2,

and let

L(θ) =
n∑
i=1

ℓ(f(xi, θ), yi)

denote our empirical risk induced by the training data D. We note that it is not at all

obvious a priori that gradient descent will solve

min
θ
L(θ),

because in general the loss L is nonconvex as a function of θ. Even in the case of a deep

linear network, the parameterization θ 7→ f(•; θ) is nonlinear, making this problem highly

nontrivial even for the simplest networks. Furthermore for the popular ReLU activation

function σ(x) = max{0, x} the gradient ∇θL is non-Lipschitz, which further complicates

the analysis. These difficulties together make proving convergence guarantees for neural

networks highly difficult in general.

To make things concrete, we will for now assume ℓ(z, y) = 1
2
(z − y)2 is the squared loss.

Furthermore we will optimize the loss via gradient flow

∂tθt = −∂θL(θt),

which is the continuous-time analog of gradient descent. Speaking loosely, one can view

gradient flow as gradient descent in the limit of vanishing step sizes. A key insight of
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[JGH18, DZP19] was to analyze the gradient descent dynamics in function space (i.e. the

evolution of the neural network predictions) as opposed to parameter space. In this vein we

will let uθ, y ∈ Rn be defined by

uθ = [f(x1; θ), f(x2; θ), . . . , f(xn; θ)]
T ,

y = [y1, y2, . . . , yn]
T .

uθ denotes the neural network predictions on the training set D and y denotes the desired

target values. To denote the predictions at time t, we will write ut := uθt for short. Fur-

thermore we will let r̂t := ut − y denote the residual vector, i.e. the difference between the

neural network predictions at time t and the desired labels y. Under this notation, we can

write the loss at time t as

L(θ(t)) =
1

2

n∑
i=1

(f(xi; θt)− yi)
2 =

1

2
∥r̂t∥2 .

We will let

(Jt)i,j := ∂θjf(xi; θt)

be the Jacobian of ut, i.e. ∂θut = Jt ∈ Rn×p. We note that by the chain rule

∂θL = [∂θut]
T∂utL = JTt r̂t,

∂tr̂t = ∂θut · ∂tθt = −JtJTt r̂t.

We define

Ht := JtJ
T
t .

The positive-semidefinite matrix Ht is called the NTK Gram matrix. It can be viewed as

the Gram matrix induced by the following kernel

Kt(x, x
′) := ⟨∇θf(x; θt),∇θf(x

′; θt)⟩,

where (Ht)i,j = Kt(xi, xj). The kernel Kt is known as the time-dependent NTK. By our

previous result

∂tr̂t = −JtJTt r̂t = −Htr̂t.
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Therefore

∂tL(θ(t)) = ∂t
1

2
∥r̂t∥2 = [∂tr̂t]

T · ∂r̂t
1

2
∥r̂t∥2 = −r̂Tt Htr̂t.

We now note that

∂tL(θ(t)) = −r̂Tt Htr̂t ≤ −λmin (Ht) ∥r̂t∥2 = −2λmin (Ht)L(t).

Then by Grönwall’s inequality [Gro19]

L(t) ≤ L(0) exp

(
−2

∫ t

0

λmin (Hs) ds

)
.

Now assume that

2λmin (Ht) ≥ c > 0 ∀t > 0.

Then we have that

L(t) ≤ L(0) exp(−ct). (1.1)

Thus we have just shown that lower bounding λmin (Ht) uniformly in time is sufficient for

establishing convergence of gradient flow to a global minimum when optimizing the squared

loss. The quantity c provides an estimate for the convergence rate. The bound (1.1) is

analagous to linear convergence in discrete time.

Let us now consider more general loss functions ℓ(z, y). In general by the same calcula-

tions as before we have that

∂tL = − [∂uL]
T Ht∂uL.

Suppose

λmin (Ht) ≥ c > 0 ∀t > 0.

Then similar to before

∂tL ≤ −c ∥∂uL∥22 .

Assuming L is bounded below it follows that

lim inf
t>0

∥∂uL∥22 = 0.
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Suppose L is strongly convex as a function of u, i.e.

⟨u− u′,∇uL(u)−∇uL(u
′)⟩ ≥ α ∥u− u′∥22 .

Then any global minimum is unique. Assume a global minimum u∗ exists, then

⟨ut − u∗,∇uL(ut)⟩ = ⟨ut − u∗,∇uL(ut)−∇uL(u
∗)⟩ ≥ α ∥ut − u∗∥22 .

Thus by the Cauchy-Schwarz inequality we have

∥∇uL(ut)∥2 ≥ α ∥ut − u∗∥2 .

Thus if

lim inf
t>0

∥∂uL∥22 = 0,

then lim inft>0 ∥ut − u∗∥2 = 0. For gradient flow we have that

∂tL = −∥∂θL∥22 ≤ 0,

and thus L is nonincreasing. It follows that lim inft>0 ∥ut − u∗∥2 = 0 implies that

lim
t→∞

L(ut) = L(u∗).

We have just showed that if λmin (Ht) ≥ c > 0 for all t > 0 and u 7→ L(u) is strongly convex,

then gradient flow converges to a global minimum. Another sufficient condition is that L

satisfies the following PL-inequality in function space

α|L(u)− L(u∗)|β ≤ ∥∇uL(u)∥2 (1.2)

for some α, β > 0. Let σmin(Jt) denote the smallest singular value of Jt. Then (1.2) implies

∥∂θL∥ =
∥∥JTt ∂uL∥∥ ≥ σmin(Jt) ∥∂uL∥ ≥ ασmin(Jt)|L(u)− L(u∗)|β.

Thus if σmin(Jt) = λmin (Ht)
1/2 ≥ c1/2 > 0 then we have a separate PL-inequality in param-

eter space

∥∂θL∥2 ≥ αc1/2|L(uθ)− L(u∗)|β.
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Since

∂tL(t) = −∥∂θL∥22 ,

assuming L is bounded below we have that

lim inf
t>0

∥∂θL∥22 = 0.

Thus by the same reasoning as before we have that limt→∞ |L(ut) − L(u∗)| = 0. One can

reason similarly for gradient descent (as opposed to gradient flow). Specifically, if ∇θL(θ) is

Lipschitz and L satisfies the PL-inequality

µ(L(θ)− L(θ∗)) ≤ ∥∇θL∥22

where θ∗ is a parameter corresponding to a global minimum, then gradient descent with

constant step size converges to a global minimum [Pol63].

1.2.2 Bounding the Smallest Eigenvalue of the NTK Gram Matrix

In the previous section we demonstrated that

λmin (Ht) ≥ c > 0 ∀t > 0

is a sufficient condition for proving convergence to a global minimum. We note that proving

such a bound is equivalent to bounding the smallest singular value of the network Jacobian

Jt. Let us now assume again that we are dealing with the squared loss ℓ(z, y) = 1
2
(z − y)2.

For a particular parameter θ, if we let Jθ and r̂θ denote the network Jacobian and residual

respectively, then recall by the chain rule

∂θL = JTθ r̂θ.

Thus if σmin(Jθ) > 0, we have that

∥∂θL∥ ≥ σmin(Jθ) ∥r̂θ∥ = σmin(Jθ)
√
2L(θ).
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Consequently, wherever σmin(Jθ) > 0 we have that each critical point of the loss is a global

minimum. However neural networks are known to have spurious critical points, with saddle

points being particularly prevalent [DPG14, Kaw16, FA00, SGJ21]. Thus the challenge

for proving convergence is to demonstrate that the gradient descent trajectory remains in

a region where the smallest singular value of the Jacobian, or equivalently the smallest

eigenvalue of the NTK Gram matrix, is bounded below. This was the key difficulty that was

overcome in the proof in [DZP19].

It was shown in [JGH18, DZP19] that under a suitable parameterization, in the infinite-

width limit the matrix Ht converges to a fixed positive-definite matrix H∞ uniformly in

time. The parameterization introduced in these works has since been called the “NTK

parameterization”, which we introduce below. For a fully-connected network with D hidden

layers, we parameterize the network as follows. Let θ = vec({W (l), b(l)}D+1
l=1 ) where W (l) ∈

Rnl×nl−1 and b(l) ∈ Rnl . We can then define the network output f(x; θ) via the following

relations:

x(0) = x

x(l) = σ

(
1

√
nl
W (l)x(l−1) + βb(l)

)
l = 1, . . . , D

x(D+1) =
1

√
nD+1

W (D+1)x(D) + βb(D+1)

f(x; θ) = x(D+1).

Under this parameterization we initialize the parameters W
(l)
i,j ∼ N(0, 1) and b

(l)
i ∼ N(0, 1)

independently. This is in contrast with the standard parameterization:

x(0) = x

x(l) = σ(W (l)x(l−1) + b(l)) l = 1, . . . , D

x(D+1) = W (D+1)x(D) + b(D+1)

f(x; θ) = x(D+1),
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where the parameters are initialized W
(l)
i,j ∼ N(0, 1/nl) and b

(l)
i ∼ N(0, β2) independently.

The two parameterizations can realize the same functions and are identical in distribution

at initialization, however the gradients are different. For gradient descent, the standard

parameterization and NTK parameterization are equivalent up to a parameter-dependent

rescaling of the step-size [LXS19]. We also note that other parameterizations have been

studied, such as the “mean-field” parameterization [SS20]. Under the NTK parameterization

under fairly general assumptions

Ht → H∞

in probability uniformly on [0, T ] where H∞ is a fixed positive-semidefinite matrix [JGH18].

Given weak assumptions on the training data inputs x1, . . . , xn (e.g. no two inputs are

parallel [DZP19] or they are “δ-separable” [OS20]), we have that

λmin (H
∞) > 0.

Consequentially, we expect that convergence of gradient flow can be guaranteed in the

infinite-width limit. For the finite-width setting, the analysis is more complicated. One

strategy is to bound the deviations of the NTK Gram matrix at initialization and through-

out training. For example, suppose that

∥H0 −H∞∥op , ∥Ht −H0∥op ≤
λmin(H

∞)

4
.

Then we have

|λmin (Ht)− λmin (H
∞) | ≤ ∥Ht −H∞∥op ≤ ∥H0 −H∞∥op + ∥Ht −H0∥op ≤

λmin(H
∞)

2
,

which implies that λmin(Ht) ≥ λmin(H
∞)

2
. For simplicity, assume all layers have the same

width m. At initialization it was shown in [HY20] that whenever the activation function is

suitably smooth

∥H0 −H∞∥op = Õ(n/
√
m) (1.3)
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Figure 1.1: A Seemingly Circular Argument A sketch of the argument for proving

convergence of gradient flow to a global minimum.

with high probability. Furthermore by the results in [LZB20b, LZB22] it was shown that for

any R > 0 with high probability over the initialization that

∥Ht −H0∥op = Õ(nR3D/
√
m) (1.4)

for any t such that θt ∈ B(0, R). Thus if we can show that θt remains in B(θ0, R) for some

fixed R > 0, then for m large enough

λmin(Ht) ≳ λmin(H
∞).

Thus we need to show that there is an R > 0 independent of m such that θt ∈ B(θ0, R) for

all t > 0.

1.2.3 Proving Global Convergence for Gradient Flow

We will sketch the following argument for convergence of gradient flow to a global minimum,

which has appeared in many different variations (e.g. [DZP19, HY20, LZB22]). The proof

revolves around a seemingly circular argument depicted in Figure 1.1, which can be resolved

via a continuous induction argument. By (1.3) if m ≳ n2λmin (H
∞)−2 we can assume
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∥H0 −H∞∥ ≤ λmin (H
∞) /4.

Fix some value K > 0 and let

T = sup{t ≥ 0 : λmin (Ht) ≥ λmin (H
∞) /2, ∥Jt∥ ≤ K}.

We will see later that by setting K sufficiently large we can ensure that the set the supremum

is taken over above is nonempty with high probability. If we can demonstrate that T = ∞,

then we have that the smallest eigenvalue λmin (Ht) is bounded below uniformly in time and

thus we will have shown that gradient flow converges to a global minimum. Thus for the

sake of contradiction assume T < ∞. Recall that by the results in Section 1.2.1 the bound

λmin (Ht) ≥ λmin (H
∞) /2 implies that for t ≤ T

∥r̂t∥22 ≤ exp(−λmin (H
∞) t) ∥r̂0∥22 .

It follows that for t ≤ T ,

∥∂tθt∥2 =
∥∥JTt r̂t∥∥2 ≤ K ∥r̂t∥2 ≤ K exp

(
−1

2
λmin (H

∞) t

)
∥r̂0∥2 .

Well then

∥θT − θ0∥2 ≤
∫ T

0

∥∂sθs∥2 ds ≤
∫ T

0

K exp

(
−1

2
λmin (H

∞) s

)
∥r̂0∥2 ds

≤ 2K

λmin (H∞)
∥r̂0∥2 =: R′.

It is not hard to show that the network outputs are bounded with high probability at

initialization, thus assuming ∥y∥ = O(
√
n) we have that ∥r̂0∥ = O(

√
n). It follows then that

there exists a quantity Rmax = O
(

K
√
n

λmin(H∞)

)
such that R′ ≤ Rmax with high probability.

Well by Eq. (1.4) we can say with high probability for θt ∈ B(θ0, Rmax)

∥Ht −H0∥op = O(nR3L
max/

√
m).

So if m ≳ [nR3D
maxλmin (H

∞)−1]2 we can assume

∥HT −H0∥2 ≤ λmin (H
∞) /8.
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However then

∥H0 −H∞∥ ≤ λmin (H
∞) /4, ∥H0 −HT∥ ≤ λmin (H

∞) /8,

so that

∥HT −H∞∥ ≤ 3

8
λmin (H

∞) .

Well then

λmin (HT ) ≥ λmin (H
∞)− ∥HT −H∞∥ ≥ 5

8
λmin (H

∞) >
1

2
λmin (H

∞) . (1.5)

Recall the definition of T ,

T := sup{t ≥ 0 : λmin (Ht) ≥ λmin (H
∞) /2, ∥Jt∥ ≤ K}.

By continuity and the maximality of T we must have that either λmin (HT ) =
1
2
λmin (H

∞)

or ∥JT∥ = K, however by (1.5) λmin (HT ) >
1
2
λmin (H

∞), thus it follows that ∥Jt∥ = K.

However as we will see in Chapter 3 (see Lemma 3.6.12) for any R ≥ 1 if
√
m ≥ R then with

high probability

sup
x

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥ = O(1).

Well then applying this result for R = Rmax we have that with high probability

∥Jt∥ ≤
√
nmax

i
∥∇θf(xi; θt)∥ = O(

√
n)

for t ≤ T . Thus by setting K = Θ(
√
n) we can ensure that with high probability ∥Jt∥ < K

for all t ≤ T , which contradicts our previous result. Thus by contradiction we conclude that

T = ∞, and consequently we have that

λmin (Ht) ≥
1

2
λmin (H

∞) ∀t.

As we saw before this implies that

L(t) ≤ exp(−λmin (H
∞) t)L(0) ∀t > 0,
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and thus we have convergence to a global minimum. The eigenvalue λmin (H
∞) serves as an

estimate for the convergence rate. Our requirements were that

m ≳ n2λmin (H
∞)−2 ,

and

m ≳ n2(Rmax)
6Dλmin (H

∞)−2 ,

where

Rmax = O

(
K
√
n

λmin (H∞)

)
= O

(
n

λmin (H∞)

)
.

It turns out that for general inputs x1, . . . , xn we have that λmin (H
∞) = Ω(1) [NMM21].

Thus we conclude that m ≳ nO(D) suffices to prove global convergence of gradient flow.

1.3 Spectral Bias

In the previous section we demonstrated that bounding the smallest eigenvalue of the NTK

Gram matrix is sufficient for establishing convergence, and that the bound for the eigenvalue

provides an estimate for the convergence rate of gradient descent. However, in general this is

a pessimistic estimate and the convergence rate along different components will vary. From

the results in Section 1.2.1 that we have for the squared loss

∂tr̂t = −Htr̂t.

Recall that for large width networks that Ht ≈ H∞, and thus the gradient descent dynamics

can be approximated by the evolution

∂tr̂t = −H∞r̂t,

which has the explicit solution

exp(−H∞t)r̂0. (1.6)
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Let u1, . . . , un denote the eigenvectors of H∞ with corresponding eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λn. Then we can analyze the convergence along the direction of ui:

⟨ui, exp(−H∞t)r̂0⟩ = exp(−λit)⟨ui, r̂0⟩.

We thus see that the convergence rate along the direction ui is given by the eigenvalue λi,

and consequently the directions corresponding to large eigenvalues will be learned much more

quickly. As we will see in the later chapters (see e.g. Fig. 3.1), the NTK Gram matrix tends

to have a small number of outlier eigenvalues and a long tail of small eigenvalues. In fact, in

Chapter 4 we prove that there are O(1) eigenvalues on the same order of magnitude as the

largest eigenvalue λ1 (see Theorem 4.4.1 and Observation 4.4.2). Consequently, there are a

small number of directions that are learned much more quickly than others.

The phenomenon that eigenvectors of the NTK corresponding to large eigenvalues are

learned quicker can be described as a type of “spectral bias” [CFW21]. Classically, “spectral

bias” was the title given to the phenomenon that neural networks tend to learn the low

Fourier frequencies quicker during training1 [RBA19, XZX19, YAA22]. However, in special

cases these two notions coincide. Specifically, if we let m denote the width of the network

we can define

K∞(x, x′) := lim
m→∞

⟨∇θf(x; θ),∇θf(x
′; θ)⟩

where the convergence is in probability over the parameter initialization [JGH18]. K∞

is called the analytical Neural Tangent Kernel (NTK), and the matrix H∞ introduced in

Section 1.2.1 is the Gram matrix induced by this kernel and the training data, i.e.

H∞
i,j := K∞(xi, xj).

Let X denote the input domain and let ρ denote the distribution for the training data inputs,

i.e. xi ∼ ρ. Then the kernel K∞ induces an integral operator TK∞ : L2
ρ(X) → L2

ρ(X)

TK∞g(x) :=

∫
X

K∞(x, s)g(s)dρ(s).

1This has also been called the “Frequency Principle” [XZX19].
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By Mercer’s theorem [Mer09] we have the decomposition

K∞(x, x′) =
∞∑
i=1

σiϕi(x)ϕi(x
′)

where {ϕi}∞i=1 is an orthonormal basis of L2
ρ(X) and each ϕi is an eigenfunction of TK∞ with

eigenvalue σi ≥ 0. Whenever ρ is the uniform distribution on the sphere X = Sd−1, the

eigenfunctions ϕi can be taken to be the spherical harmonics, which in d = 2 corresponds

to the Fourier basis. In the work [RJK19] it was demonstrated that in the d = 2 case

for shallow ReLU networks the large eigenvalues of TK∞ correspond to the low Fourier

frequencies. We note that we can consider the eigenvectors ui ofH
∞ to be empirical estimates

of the eigenfunctions of TK∞ . In this case “spectral bias” in the sense of learning the low

Fourier frequencies faster coincides with “spectral bias” in the sense of learning the dominant

eigenvectors of the NTK Gram matrix faster.

[ADH19a] had quantified the extent in which finite-width networks approximate the

idealized infinite-width dynamics that are given by the evolution described in (1.6). However,

this equation only describes the network on the training set x1, . . . , xn. Let f
∗ be our target

function so that yi = f ∗(xi). We are interested in describing the behavior of the residual

rt(x) := f(x; θt)−f ∗(x) for an arbitrary input x. Informally speaking, in the limit of infinite

data the matrix H∞ converges to the integral operator TK∞ and the empirical residual r̂t

converges to the full residual rt. In this idealized setting the evolution described in (1.6)

becomes

rt = exp(−TK∞t)r0. (1.7)

Assuming (1.7) holds we have

⟨rt, ϕi⟩L2
ρ
= ⟨exp(−TK∞t)r0, ϕi⟩L2

ρ
= exp(−σit)⟨r0, ϕi⟩L2

ρ
. (1.8)

Thus under the evolution described in (1.7) we have that the eigenfunctions ϕi are learned at

rates corresponding to their eigenvalues σi. In contrast to (1.6), (1.7) and (1.8) describe the

dynamics of the residual over the entire input domain and not just the training set. Thus
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in this limiting setting the network exhibits a stronger form of spectral bias that determines

the behavior of the network over the entire input domain. In Chapters 2 and 3 we will

quantify to what extent the finite-width network trained on finitely many samples exhibits

the behavior of the idealized limit of infinite width and infinite data described in (1.7).

1.4 Limitations and Challenges of NTK Analysis

The paper that introduced the Neural Tangent Kernel [JGH18] has become one of the most

highly cited works in deep learning theory, with the NTK having attracted both fanaticism

and criticism [Ana21]. While the NTK has greatly enhanced the understanding of the

optimization dynamics of wide networks [DZP19, DLL19, OS20, ALS19a, NM20, Ngu21,

ZCZ20, ZG19, LXS19], this analysis breaks down whenever the depth of the network scales

in tandem with the width [HN20], which is known to achieve better performance in practice

[TL19, RKH21]. Furthermore NTK analysis is only applicable when training with small

learning rates, with more moderate learning rates leading to distinct behavior [LBD20]. It

is also known that in practice the NTK deviates to adapt to the target function [BGL21,

ABP22, BES22], which stands in contrast to the infinite-width behavior where the NTK is

constant. Establishing a theoretical framework that can handle more realistic scalings for

the depth and learning rate which also makes allowances for feature learning remains an

active challenge. Nevertheless, infinite-width networks achieve compelling performance and

serve well as a first approximation of the average behavior of finite-width models [LSP20],

suggesting that the Neural Tangent Kernel will remain a fundamental tool in deep learning

theory.
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CHAPTER 2

Implicit Bias of MSE Gradient Optimization in

Underparameterized Neural Networks

2.1 Introduction

A surprising but well established empirical fact is that neural networks optimized by gradient

descent can find solutions to the empirical risk minimization (ERM) problem that generalize.

This is surprising from an optimization point-of-view because the ERM problem induced by

neural networks is nonconvex [SS89, SS91] and can even be NP-Complete in certain cases

[BR93]. Perhaps even more surprising is that the discovered solution can generalize even

when the network is able to fit arbitrary labels [ZBH17], rendering traditional complexity

measures such as Rademacher complexity inadequate. How does deep learning succeed in

the face of pathological behavior by the standards of classical optimization and statistical

learning theory?

Towards addressing generalization, a modern line of thought that has emerged is that

gradient descent performs implicit regularization, limiting the solutions one encounters in

practice to a favorable subset of the model’s full capacity (see e.g. [NTS15, NTS17, GWB17,

WZE17]). An empirical observation is that neural networks optimized by gradient descent

tend to fit the low frequencies of the target function first, and only pick up the higher

frequencies later in training [RBA19, RJK19, BGG20, XZX19]. A closely related theme is

gradient descent’s bias towards smoothness for regression problems [WTP19, JM21]. For
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classification problems, in suitable settings gradient descent provably selects max-margin

solutions [SHN18, JT19]. Gradient descent is not impartial, thus understanding its bias is

an important program in modern deep learning.

Generalization concerns aside, the fact that gradient descent can succeed in a nonconvex

optimization landscape warrants attention on its own. A brilliant insight made by [JGH18]

is that in function space the neural network follows a kernel gradient descent with respect to

the “Neural Tangent Kernel” (NTK). This kernel captures how the parameterization biases

the trajectory in function space, an abstraction that allows one to largely ignore parameter

space and its complications. This is a profitable point-of-view, but there is a caveat. The

NTK still depends on the evolution of the network parameters throughout time, and thus is

in general time-dependent and complicated to analyze. However, under appropriate scaling

of the parameters in the infinite-width limit it remains constant [JGH18]. Once the NTK

matrix has small enough deviations to remain strictly positive definite throughout training,

the optimization dynamics start to become comparable to that of a linear model [LXS19].

For wide networks (quadratic or higher polynomial dependence on the number of training

data samples n and other parameters) this property holds and this has been used by a

variety of works to prove global convergence guarantees for the optimization [DZP19, OS20,

DLL19, ALS19a, ALS19b, ZCZ20, ZG19, SY20, DGM20]1 and to characterize the solution

throughout time [ADH19a, BGG20]. The NTK has been so heavily exploited in this setting

that it has become synonymous with polynomially wide networks where the NTK is strictly

positive definite throughout training. This begs the question, to what extent is the NTK

informative outside this regime?

While the NTK has hitherto been associated with the heavily overparameterized regime,

in this Chapter we will demonstrate that refined analysis is possible in the underparameter-

ized setting. Our theorems primarily concern a one-hidden layer network, however unlike

1Not all these works explicitly use that the NTK is positive definite. However, they all operate in the
regime where the weights do not vary much and thus are typically associated with the NTK regime.
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many NTK results appearing in the literature our network has biases and both layers are

trained. In fact, the machinery we build is strong enough to extend some existing results in

the overparameterized regime appearing in the literature to the case of training both layers.

2.1.1 Related Work

There has been a deluge of works on the Neural Tangent Kernel since it was introduced by

[JGH18], and thus we do our best to provide a partial list. Global convergence guarantees

for the optimization, and to a lesser extent generalization, for networks polynomially wide

in the number of training samples n and other parameters has been addressed in several

works [DZP19, OS20, DLL19, ALS19a, ALS19b, ZCZ20, ZG19, SY20, ADH19a]. To our

knowledge, for the regression problem with arbitrary labels, quadratic overparameterization

m ≳ n2 is state-of-the art [OS20, SY20, NM20]. [EMW20] gave a fairly comprehensive

study of optimization and generalization of shallow networks trained under the standard

parameterization. Under the standard parameterization, changes in the outer layer weights

are more significant, whereas under the NTK parameterization both layers have roughly

equal effect. Since we study the NTK parameterization in our results, we view the analysis

as complementary.

The results in this chapter are perhaps most closely connected with [ADH19a]. In Theo-

rem 4.1 in that work they showed that for a shallow network in the polynomially overparam-

eterized regime m ≳ n7, the training error along eigendirections of the NTK matrix decay

linearly at rates that correspond to their eigenvalues. Our main Theorem 2.3.5 can be viewed

as an analogous statement for the actual risk (not the empirical risk) in the underparame-

terized regime: eigenfunctions of the NTK integral operator TK∞ are approximately learned

linearly at rates that correspond to their eigenvalues. In contrast with [ADH19a], we have

that the requirements on width m and number of samples n required to learn eigenfunctions

with large eigenvalues are smaller compared to those with small eigenvalues. Surprisingly

the machinery we build is also strong enough to prove in our setting the direct analog of
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Theorem 4.1. Note that [ADH19a] train the hidden layer of a ReLU network via gradient

descent, whereas we are training both layers with biases for a network with smooth activa-

tions via gradient flow. Due to the different settings, the results are not directly comparable.

This important detail notwithstanding, our overparameterization requirement ignoring log-

arithmic factors is smaller by a factor of n2

dδ4
where n is the number of input samples, d is

the input dimension, and δ is the failure probability. [BGG20] extended Theorem 4.1 in

[ADH19a] to deep ReLU networks without bias where the first and last layer are fixed, with

a higher overparameterization requirement than the original [ADH19a]. Since the first and

last layers are fixed this cannot be specialized to get a guarantee for training both layers of

a shallow network even with ReLU activations.

Although it was not our focus, the tools to prove Theorem 2.3.5 are enough to prove

analogs of Theorem 4 and Corollary 2 in the work of [SY19]. Theorem 4 and Corollary 2

of [SY19] are empirical risk guarantees that show that for target functions that participate

mostly in the top eigendirections of the NTK integral operator TK∞ , moderate overparame-

terization is possible. Again in this work they train the hidden layer of a ReLU network via

gradient descent, whereas we are training both layers with biases for a network with smooth

activations via gradient flow. Again due to the different settings, we emphasize the results

are not directly comparable. In our results the bounds and requirements are comparable

to [SY19], with neither appearing better. Nevertheless we think it is important to demon-

strate that these results hold for training both layers with biases, and we hope our “Damped

Deviations” approach will simplify the interpretation of the aforementioned works.

Theorem 4.2 in [CFW21] provides an analogous statement to our Theorem 2.3.5 if you

replace our quantities with their empirical counterparts. While our statement concerns

the projections of the test residual onto the eigenfunctions of an operator associated with

the Neural Tangent Kernel, their statement concerns the inner products of the empirical

residual with those eigenfunctions. Their work was a crucial step towards explaining the

spectral bias from gradient descent, however we view the difference between tracking the
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empirical quantities versus the actual quantities to be highly nontrivial. Another difference

is they consider a ReLU network whereas we consider smooth activations; also they consider

gradient descent versus we consider gradient flow. Due to the different settings we would

like to emphasize that the scalings of the different parameters are not directly comparable,

nevertheless the networks they consider are significantly wider. They require at least m ≥

Õ(max{σ−14
k , ϵ−6}), where σk is a cutoff eigenvalue and ϵ is the error tolerance. By contrast

in our result, to have the projection onto the top k eigenvectors be bounded by epsilon in

L2 norm requires m = Ω̃(σ−4
k ϵ−2). Another detail is their network has no bias whereas ours

does.

2.1.2 Our Contributions

The key idea for our results is the concept of “Damped Deviatons”, the fact that for the

squared error deviations of the NTK are softened by a damping factor, with large eigendi-

rections being damped the most. This enables the following results.

• In Theorem 2.3.5 we characterize the bias of the neural network to learn the eigenfunctions

of the integral operator TK∞ associated with the Neural Tangent Kernel (NTK) at rates

proportional to the corresponding eigenvalues.

• In Theorem 2.3.7 we show that in the overparameterized setting the training error along

different directions can be sharply characterized, showing that Theorem 4.1 in [ADH19a]

holds for smooth activations when training both layers with a smaller overparameterization

requirement.

• In Theorem 2.3.8 and Corollary 2.3.9 we show that moderate overparameterization is suffi-

cient for solving the ERM problem when the target function has a compact representation

in terms of eigenfunctions of TK∞ . This extends the results in [SY19] to the setting of

training both layers with smooth activations.
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2.2 Gradient Dynamics and Damped Deviations

2.2.1 Notations

We will use ∥•∥2 and ⟨•, •⟩2 to denote the L2 norm and inner product respectively (for vectors

or for functions depending on context). For a symmetric matrix A ∈ Rk×k, λi(A) denotes

its ith largest eigenvalue, i.e. λ1(A) ≥ λ2(A) ≥ · · · ≥ λk(A). For a matrix A, ∥A∥op :=

sup∥x∥2≤1 ∥Ax∥2 is the operator norm induced by the Euclidean norm. We will let ⟨•, •⟩Rn

denote the standard inner product on Rn normalized by 1
n
, namely ⟨x, y⟩Rn = 1

n
⟨x, y⟩2 =

1
n

∑n
i=1 xiyi. We will let ∥x∥Rn =

√
⟨x, x⟩Rn be the associated norm. This normalized inner

product has the convenient property that if v ∈ Rn such that vi = O(1) for each i then

∥v∥Rn = O(1), where by contrast ∥v∥2 = O(
√
n). This is convenient as we will often

consider what happens when n→ ∞. ∥•∥∞ will denote the supremum norm with associated

space L∞. We will use the standard big O and Ω notation with Õ and Ω̃ hiding logarithmic

terms.

2.2.2 Gradient Dynamics and the NTK Integral Operator

We will let f(x; θ) denote our neural network taking input x ∈ Rd and parameterized by

θ ∈ Rp. The specific architecture of the network does not matter for the purposes of this

section. Our training data consists of n input-label pairs {(x1, y1), . . . , (xn, yn)} where xi ∈

Rd and yi ∈ R. We focus on the setting where the labels are generated from a fixed target

function f ∗, i.e. yi = f ∗(xi). We will concatenate the labels into a label vector y ∈ Rn, i.e.

yi = f ∗(xi). We will let r̂(θ) ∈ Rn be the vector whose ith entry is equal to f(xi; θ)− f ∗(xi).

Hence r̂(θ) is the residual vector that measures the difference between our neural networks

predictions and the labels. We will be concerned with optimizing the squared loss

Φ(θ) =
1

2n
∥r̂(θ)∥22 =

1

2
∥r̂(θ)∥2Rn .
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Optimization will be done by gradient flow

∂tθt = −∂θΦ(θ),

which is the continuous time analog of gradient descent. We will denote the residual at time

t, r̂(θt), as r̂t for the sake of brevity and similarly we will let ft(x) = f(x; θt). We will let

rt(x) := ft(x)− f ∗(x) denote the residual off of the training set for an arbitrary input x.

We quickly recall some facts about the Neural Tangent Kernel and its connection to the

gradient dynamics. For a comprehensive tutorial we suggest [JGH18]. The analytical NTK

is the kernel given by

K∞(x, x′) := E
[〈

∂f(x; θ)

∂θ
,
∂f(x′; θ)

∂θ

〉
2

]
,

where the expectation is taken with respect to the parameter initialization for θ. We associate

K∞ with the integral operator TK∞ : L2
ρ(X) → L2

ρ(X) defined by

TK∞f(x) :=

∫
X

K∞(x, s)f(s)dρ(s),

where X is our input space with probability measure ρ. Our training data xi ∈ X are

distributed according to this measure xi ∼ ρ. By Mercer’s theorem we can decompose

K∞(x, x′) =
∞∑
i=1

σiϕi(x)ϕi(x
′),

where {ϕi}ni=1 is an orthonormal basis of L2, {σi}∞i=1 is a nonincreasing sequence of positive

values, and each ϕi is an eigenfunction of TK∞ with eigenvalue σi > 0. When X = Sd−1 is the

unit sphere, ρ is the uniform distribution, and the weights of the network are from a rotation

invariant distribution (e.g. standard Gaussian), {ϕi}∞i=1 are the spherical harmonics (which

in d = 2 is the Fourier basis) due to K∞ being rotation-invariant (see Theorem 2.2 [BZZ18]).

We will let κ := maxx∈X K
∞(x, x) which will be a relevant quantity in our later theorems.

In our setting κ will always be finite as K∞ will be continuous and X will be bounded.

The training data inputs {x1, . . . , xn} induce a discretization of the integral operator TK∞ ,
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namely

Tnf(x) :=
1

n

n∑
i=1

K∞(x, xi)f(xi) =

∫
X

K∞(x, s)f(s)dρn(s),

where ρn = 1
n

∑n
i=1 δxi is the empirical measure. We recall the definition of the time-

dependent NTK2,

Kt(x, x
′) :=

〈
∂f(x; θt)

∂θ
,
∂f(x′; θt)

∂θ

〉
2

.

We can look at the version of Tn corresponding to Kt, namely

T tnf(x) :=
1

n

n∑
i=1

Kt(x, xi)f(xi) =

∫
X

Kt(x, s)f(s)dρn(s).

We recall that the residual rt(x) := f(x; θ)− f ∗(x) follows the update rule

∂trt(x) = − 1

n

n∑
i=1

Kt(x, xi)rt(xi) = −T tnrt.

We will let (Ht)i,j := Kt(xi, xj) and H
∞
i,j := K∞(xi, xj) denote the Gram matrices induced

by these kernels and we will let Gt :=
1
n
Ht and G

∞ := 1
n
H∞ be their normalized versions3.

Throughout we will let u1, . . . , un denote the eigenvectors of G∞ with corresponding eigen-

values λ1, . . . , λn. The u1, . . . , un are chosen to be orthonormal with respect to the inner

product ⟨•, •⟩Rn . When restricted to the training set we have the update rule

∂tr̂t = − 1

n
Htr̂t = −Gtr̂t.

2.2.3 Damped Deviations

The concept of damped deviations comes from the very simple lemma that follows (the proof

is provided in Section 2.5.4). The lemma compares the dynamics of the residual r̂(t) on the

training set to the dynamics of an arbitrary kernel regression exp(−Gt)r̂(0):

2The NTK is an overloaded term. To help ameliorate the confusion, we will use NTK to describe K∞

and NTK (italic font) to describe the time-dependent version Kt.

3Gt and G∞ are the natural matrices to work with when working with the mean squared error as opposed
to the unnormalized squared error. Also G∞’s spectra concentrates around the spectrum of the associated
integral operator TK∞ and is thus a more convenient choice in our setting.
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Lemma 2.2.1. Let G ∈ Rn×n be an arbitrary positive semidefinite matrix and let Gs be the

time dependent NTK matrix at time s. Then

r̂t = exp(−Gt)r̂0 +
∫ t

0

exp(−G(t− s))(G−Gs)r̂sds.

Let’s specialize the lemma to the case where G = G∞. In this case the first term is

exp(−G∞t)r̂0, which is exactly the dynamics of the residual in the exact NTK regime when

Gt = G∞ for all t. The second term is a correction term that weights the NTK deviations

(G∞ − Gs) by the damping factor exp(−G∞(t − s)). We see that damping is largest along

the large eigendirections of G∞. The equation becomes most interpretable when projected

along a specific eigenvector. Fix an eigenvector ui of G
∞ corresponding to eigenvalue λi.

Then the equation along this component becomes

⟨r̂t, ui⟩Rn = exp(−λit)⟨r̂0, ui⟩Rn +

∫ t

0

⟨exp(−λi(t− s))(G∞ −Gs)r̂s, ui⟩Rnds.

The first term above converges to zero at rate λi. The second term is a correction term

that weights the deviatiations of the NTK matrix Gs from G∞ by the damping factor

exp(−λi(t− s)). The second term can be upper bounded by∣∣∣∣∫ t

0

⟨exp(−λi(t− s))(G∞ −Gs)r̂s, ui⟩Rnds

∣∣∣∣ ≤ ∫ t

0

exp(−λi(t− s)) ∥G∞ −Gs∥op ∥r̂s∥Rn ds

≤ [1− exp(−λit)]
λi

sup
s∈[0,t]

∥G∞ −Gs∥op ∥r̂0∥Rn ,

where we have used the property ∥r̂s∥Rn ≤ ∥r̂0∥Rn from gradient flow. When f ∗ = O(1)

we have that ∥r̂0∥Rn = O(1), thus whenever ∥G∞ −Gs∥op is small relative to λi this term

is negligible. It has been identified that the NTK matrices tend to have a small number of

outlier large eigenvalues and exhibit a low rank structure [OFL19, ADH19a]. In light of this,

the dependence of the above bound on the magnitude of λi is particularly interesting. We

reach following important conclusion.

Observation 2.2.2. The dynamics in function space will be similar to the NTK regime

dynamics along eigendirections whose eigenvalues are large relative to the deviations of the

time-dependent NTK matrix from the analytical NTK matrix.
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The equation in Lemma 2.2.1 concerns the residual restricted to the training set, but we

will be interested in the residual for arbitrary inputs. Recall that rt(x) = f(x; θt) − f ∗(x)

denotes the residual at time t for an arbitrary input. Then more generally we have the

following damped deviations lemma for the whole residual (proved in Section 2.5.3.3).

Lemma 2.2.3. Let K(x, x′) be an arbitrary continuous, symmetric, positive-definite ker-

nel. Let [TKh](•) =
∫
X
K(•, s)h(s)dρ(s) be the integral operator associated with K and

let [T snh](•) = 1
n

∑n
i=1Ks(•, xi)h(xi) denote the operator associated with the time-dependent

NTK Ks. Then

rt = exp(−TKt)r0 +
∫ t

0

exp(−TK(t− s))(TK − T sn)rsds,

where the equality is in the L2 sense.

For our main results we will specialize the above lemma to the case whereK = K∞. How-

ever there are other natural kernels to compare against, say K0 or the kernel corresponding

to some subset of parameters. We will elaborate further on this point after we introduce

the main theorem. When specializing Lemma 2.2.3 to the case K = K∞, we have that TK∞

and T sn are the operator analogs of G∞ and Gs respectively. From this statement the same

concepts holds as before, the dynamics of rt will be similar to that of exp(−TK∞t)r0 along

eigendirections whose eigenvalues are large relative to the deviations (TK∞ − T sn). In the

underparameterized regime we can bound the second term and make it negligible (Theorem

2.3.5) and thus demonstrate that the eigenfunctions ϕi of TK∞ with eigenvalues σi will be

learned at rate σi. When the input data are distributed uniformly on the sphere Sd−1 and

the network weights are from a rotation-invariant distribution, the eigenfunctions of TK∞ are

the spherical harmonics (which is the Fourier basis when d = 2). In this case the network

is biased towards learning the spherical harmonics that correspond to large eigenvalues of

TK∞ . It is in this vein that we will demonstrate a spectral bias.
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2.3 Main Results

Our theorems will concern the shallow neural network

f(x; θ) =
1√
m

m∑
ℓ=1

aℓσ(⟨wℓ, x⟩2 + bℓ) + b0 =
1√
m
aTσ(Wx+ b) + b0,

where W ∈ Rm×d, a, b ∈ Rm and b0 ∈ R and wℓ = Wℓ,: denotes the ℓth row of W and

σ : R → R is applied entry-wise. θ = (aT , vec(W )T , bT , b0)
T ∈ Rp where p = md+ 2m+ 1 is

the total number of parameters. Here we are utilizing the NTK parameterization [JGH18].

For a thorough analysis using the standard parameterization we suggest [EMW20]. We will

consider two parameter initialization schemes. The first initializes Wi,j(0) ∼ W , bℓ(0) ∼ B,

aℓ(0) ∼ A, b0 ∼ B′ i.i.d., where W ,B,A,B′ represent zero-mean unit variance subgaussian

distributions. In the second initialization scheme we initialize the parameters according to

the first scheme and then perform the following swaps W (0) →

W (0)

W (0)

, b(0) →

b(0)
b(0)

,
a(0) →

 a(0)

−a(0)

 , b0 → 0 and replace the 1√
m

factor in the parameterization with 1√
2m

. This

is called the “doubling trick” [COB19, ZXL20] and ensures that the network is identically

zero f(x; θ0) ≡ 0 at initialization. We will explicitly state where we use the second scheme

and otherwise will be using the first scheme.

The following assumptions will persist throughout the rest of the paper:

Assumption 2.3.1. σ is a C2 function satisfying ∥σ′∥∞ , ∥σ′′∥∞ <∞.

Assumption 2.3.2. The inputs satisfy ∥x∥2 ≤M .

The following assumptions will be used in most, but not all theorems. We will explicitly

state when they apply.

Assumption 2.3.3. The input domain X is compact with strictly positive Borel measure ρ.

Assumption 2.3.4. TK∞ is strictly positive, i.e., ⟨f, TK∞f⟩2 > 0 for f ̸= 0.
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Most activation functions other than ReLU satisfy Assumption 2.3.1, such as Softplus

σ(x) = ln(1 + ex), Sigmoid σ(x) = 1
1+e−x , and Tanh σ(x) = ex−e−x

ex+e−x . Assumption 2.3.2 is a

mild assumption which is satisfied for instance for RGB images and has been commonly used

[DZP19, DLL19, OS20]. Assumption 2.3.3 is so that Mercer’s decomposition holds, which

is often assumed implicitly. Assumption 2.3.4 is again a mild assumption that is satisfied

for a broad family of parameter initializations (e.g. Gaussian) anytime σ is not a polynomial

function, as we will show in Section 2.5.7. Assumption 2.3.4 is not strictly necessary but it

simplifies the presentation by ensuring TK∞ has no zero eigenvalues.

We will track most constants that depend on parameters of our theorems such as M ,

the activation function σ, and the target function f ∗. However, constants appearing in

concentration inequalities such as Hoeffding’s or Bernstein’s inequality or constants arising

from δ/2 or δ/3 arguments will not be tracked. We will reserve c, C > 0 for untracked

constants whose precise meaning can vary from statement to statement. In the proofs in

Section 3.6 it will be explicit which constants are involved.

2.3.1 Underparameterized Regime

Our main result compares the dynamics of the residual rt(x) = f(x; θt) − f ∗(x) to that

of exp(−TK∞t)r0 in the underparameterized setting. Note that ⟨exp(−TK∞t)r0, ϕi⟩2 =

exp(−σit)⟨r0, ϕi⟩2, thus exp(−TK∞t)r0 learns the eigenfunctions ϕi of TK∞ at rate σi. There-

fore exp(−TK∞t)r0 exhibits a bias to learn the eigenfunctions of TK∞ corresponding to

large eigenvalues more quickly. To our knowledge no one has been able to rigorously re-

late the dynamics in function space of the residual rt to exp(−TK∞t)r0, although that

seems to be what is suggested by [RJK19, BGG20]. The existing works we are aware of

[ADH19a, BGG20, CFW21] characterize the bias of the empirical residual primarily in the

heavily overparameterized regime ([CFW21] stands out as requiring wide but not necessarily

overparameterized networks). By contrast, we characterize the bias of the whole residual in

the underparameterized regime.
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Theorem 2.3.5. Assume that Assumptions 2.3.3 and 2.3.4 hold. Let Pk be the orthogonal

projection in L2 onto span{ϕ1, . . . , ϕk} and let D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}. If we

are doing the doubling trick set S ′ = 0 and otherwise set S ′ = O

(√
Õ(d) + log(c/δ)

)
, S =

∥f ∗∥∞ + S ′. Also let T > 0. Assume m ≥ D2 ∥y∥2Rn T 2, and

m ≥ O(log(c/δ) + Õ(d))max
{
T 2, 1

}
.

Then with probability at least 1− δ we have that for all t ≤ T and k ∈ N

∥Pk(rt − exp(−TK∞t)r0)∥2 ≤
1− exp(−σkt)

σk
Õ

(
S [1 + tS]

√
d√
m

+ S(1 + T )

√
p

√
n

)
,

and

∥rt − exp(−TK∞t)r0∥2 ≤ tÕ

(
S [1 + tS]

√
d√
m

+ S(1 + T )

√
p

√
n

)
.

Theorem 2.3.5 will be proved in Section 2.5.3. The proof uses the uniform deviation

bounds for the NTK to bound Tn − T sn and tools from empirical process theory to show

convergence of Tn to TK∞ uniformly over a class of functions corresponding to networks with

bounded parameter norms.

To interpret the results, we observe that to track the dynamics for eigenfunctions corre-

sponding to eigenvalue σk and above, the expression under the Õ needs to be small relative to

1
σk
. Thus the bias towards learning the eigenfunctions corresponding to large eigenvalues ap-

pears more pronounced. When t = log(∥r0∥2 /ϵ)/σk, we have that ∥Pk exp(−TK∞t)r0∥2 ≤ ϵ.

Thus by applying this stopping time we get that to learn the eigenfunctions corresponding

to eigenvalue σk and above up to ϵ accuracy we need t2√
m

≲ ϵ and
t2
√
p√
n

≲ ϵ which translates

to m ≳ σ−4
k ϵ−2 and n ≳ pσ−4

k ϵ−2. In typical NTK works the width m needs to be polyno-

mially large relative to the number of samples n, where by contrast here the width depends

on the inverse of the eigenvalues for the relevant components of the target function. From

an approximation point-of-view this makes sense; the more complicated the target function

the more expressive the model must be. We believe future works can adopt more precise

requirements on the width m that do not require growth relative to the number of samples
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n. To further illustrate the scaling of the parameters required by Theorem 2.3.5, we can

apply Theorem 2.3.5 for an appropriate stopping time to get a bound on the test error.

Corollary 2.3.6. Assume Assumptions 2.3.3 and 2.3.4 hold. Suppose that f ∗ = O(1) and

assume we are performing the doubling trick where f0 ≡ 0 so that r0 = −f ∗. Let k ∈ N and

let Pk be the orthogonal projection onto span{ϕ1, . . . , ϕk}. Set t = log(
√
2∥Pkf

∗∥2/ϵ1/2)
σk

Then we

have that m = Ω̃( d
ϵσ4

k
) and n = Ω̃

(
p
σ4
kϵ

)
suffices to ensure with probability at least 1− δ

1

2
∥rt∥22 ≤ 2ϵ+ 2 ∥(I − Pk)f

∗∥22 .

If one specialized to the case where f ∗ is a finite sum of eigenfunctions of TK∞ (when the

data is uniformly distributed on the sphere Sd−1 and the network weights are from a rota-

tion invariant distribution this corresponds to a finite sum of spherical harmonics, which in

d = 2 is equivalently a bandlimited function) one can choose k such that ∥(I − Pk)f
∗∥22 = 0.

It is interesting to note that in this special case gradient flow with early stopping achieves

essentially the same rates with respect to m and n (up to constants and logarithms) as the

estimated network in the classical approximation theory paper by [Bar94]. It is also inter-

esting to note that the approximation results by [Bar94] depend on the decay in frequency

domain of the target function f ∗ via their constant Cf∗ , and similarly for us the constant

1/σ4
k grows with the bandwidth of the target function in the case of uniform distribution on

the sphere S1 which we mentioned parenthetically above.

While in Theorem 2.3.5 we compared the dynamics of rt against that of exp(−TK∞t)r0,

the damped deviations equation given by Lemma 2.2.3 enables you to compare against

exp(−TKt)r0 for an arbitrary kernel K. There are other natural choices for K besides

K = K∞, the most obvious being K = K0. In Section 2.5.3.8 we prove a version of Theorem

2.3.5 where K = K0 and θ0 is an arbitrary deterministic parameter initialization. This could

be interesting in scenarios where the parameters are initialized from a pretrained network or

one has a priori knowledge that informs the selection of θ0. One could let K be the kernel

corresponding to some subset of parameters, such as the random feature kernel [RR08a]
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corresponding to the outer layer. This would compare the dynamics of training all layers to

that of training a subset of the parameters. If one wanted to account for adaptations of the

kernel Kt one could try to set K = Kt0 for some t0 > 0. However since θt0 depends on the

training data it is not obvious how one could produce a bound for T sn −Kt0 . Nevertheless

we leave the suggestion open as a possibility for future work.

2.3.2 Overparameterized Regime

Once one has deviation bounds for the NTK so that the quantity ∥G∞ −Gs∥op is controlled,

the damped deviations equation (Lemma 2.2.1) allows one to control the dynamics of the

empirical risk. In this section we will demonstrate three such results that follow from this

approach. The following is our analog of Theorem 4.1 from [ADH19a] in our setting, proved in

Section 2.5.5. The result demonstrates that when the network is heavily overparameterized,

the dynamics of the residual r̂t follow the NTK regime dynamics exp(−G∞t)r̂0.

Theorem 2.3.7. Assume m = Ω̃(dn5ϵ−2λn(H
∞)−4) and m ≥ O(log(c/δ) + Õ(d)) and f ∗ =

O(1). Assume we are performing the doubling trick so that r̂0 = −y. Let v1, . . . , vn denote

the eigenvectors of G∞ normalized to have unit L2 norm ∥vi∥2 = 1. Then with probability

at least 1− δ

r̂t = exp(−G∞t)(−y) + δ(t),

where supt≥0 ∥δ(t)∥2 ≤ ϵ. In particular

∥r̂t∥2 =

√√√√ n∑
i=1

exp(−2λit)|⟨y, vi⟩2|2 ± ϵ.

In the work of [ADH19a] the requirement is m = Ω( n7

λn(H∞)4κ2δ4ϵ2
) and κ = O( ϵδ√

n
) where

wℓ ∼ N(0, κ2I) (not to be confused with our definition of κ := maxxK
∞(x, x)). By contrast

our weights have unit variance, which for Gaussian initialization corresponds to wℓ ∼ N(0, I).

They require κ to be small to ensure the neural network is small in magnitude at initial-

izeation. To achieve the same effect we can perform antisymmetric initializeation to ensure
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the network is equivalently 0 at initializeation. Our overparameterization requirement ig-

noring logarithmic factors is smaller by a factor of n2

dδ4
. Again due to the different settings

we do not claim superiority over this work.

The following is our analog of Theorem 4 in [SY19] proved in Section 2.5.6. This shows

that when the target function has a compact representation in terms of eigenfunctions of

TK∞ , a more moderate overparameterization is sufficient to approximately solve the ERM

problem.

Theorem 2.3.8. Assume Assumptions 2.3.3 and 2.3.4 hold. Furthermore assume m =

Ω̃
(
ϵ−2dT 2 ∥f ∗∥2∞ (1 + T ∥f ∗∥∞)2

)
where T > 0 is a time parameter and m ≥ O(log(c/δ) +

Õ(d)) and n ≥ 128κ2 log(2/δ)
(σk−σk+1)2

. Also assume f ∗ ∈ L∞(X) ⊂ L2(X) and let P TK∞ be the or-

thogonal projection onto the eigenspaces of TK∞ corresponding to the eigenvalue α ∈ σ(TK∞)

and higher. Assume that
∥∥(I − P TK∞ )f ∗

∥∥
∞ ≤ ϵ′ for some ϵ′ ≥ 0. Pick k so that σk = α and

σk+1 < α, i.e. k is the index of the last repeated eigenvalue corresponding to α in the ordered

sequence {σi}i. Also assume we are performing the doubling trick so that r̂(0) = −y. Then

we have with probability at least 1− 3δ over the sampling of x1, . . . , xn and θ0 that for t ≤ T

∥r̂t∥Rn ≤ exp(−λkt) ∥y∥Rn +
4κ ∥f ∗∥2

√
10 log(2/δ)

(σk − σk+1)
√
n

+ 2ϵ′ + ϵ.

[SY19] have ∥f ∗∥2 ≤ ∥f ∗∥∞ ≤ 1, κ ≤ 1
2
and they treat d as a constant. Taking these

into account we do not see the overparameterization requirements or bounds of either work

being superior to the other. From Theorem 2.3.8, setting ϵ =
4κ∥f∗∥2

√
10 log(2/δ)

(σk−σk+1)
√
n

and ϵ′ = 0

we immediately get the analog of Corollary 2 in the work of [SY19]. This explains how in

the special case that the target function is a finite sum of eigenfunctions of TK∞ , the width

m and the number of samples n can grow at the same rate, up to logarithms, and still solve

the ERM problem. This is an ERM guarantee for m = Ω̃(n) and thus attains moderate

overparameterization.

Corollary 2.3.9. Assume Assumptions 2.3.3 and 2.3.4 hold. Furhtermore assume m =

Ω̃
(
n(σk−σk+1)

2d∥f∗∥2∞(1+λ−1
k ∥f∗∥∞)2

κ2∥f∗∥22λ2k

)
m ≥ O(log(c/δ)+ Õ(d)) n ≥ 128κ2 log(2/δ)

(σk−σk+1)2
. Let f ∗, P TK∞ ,
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and k be the same as in the hypothesis of Theorem 2.3.8. Furthermore assume that

∥∥(I − P TK∞ )f ∗∥∥
∞ = 0.

Also assume we are performing the doubling trick so that r̂(0) = −y. Set

T = log(
√
n ∥r̂(0)∥Rn)/λk.

Then we have with probability at least 1− 3δ over the sampling of x1, . . . , xn and θ0 that for

t ≤ T

∥r̂t∥Rn ≤ exp(−λkt) ∥y∥Rn +
8κ ∥f ∗∥2

√
10 log(2/δ)

(σk − σk+1)
√
n

.

Note [SY19] are training only the hidden layer of a ReLU network by gradient descent,

by contrast we are training both layers with biases of a network with smooth activations

by gradient flow. For Corollary 2 in [SY19] they have the overparameterization requirement

m ≳ n log n
(

1
λ4k

+ log4 n log2(1/δ)

(λk−λk+1)2n2λ4k

)
. Thus both bounds scale like n

λ4k
. Our bound has the extra

factor (σk − σk+1)
2 in front which could make it appear smaller at first glance but their

Theorem 4 is strong enough to include this factor in the corollary they just chose not to.

Thus we view both overparameterization requirements as comparable with neither superior

to the other.

2.4 Conclusion and Future Directions

The damped deviations equation allows one to compare the dynamics when optimizing the

squared error to that of an arbitrary kernel regression. We showed how this simple equation

can be used to track the dynamics of the test residual in the underparameterized regime and

extend existing results in the overparameterized setting. In the underparameterized setting

the neural network learns eigenfunctions of the integral operator TK∞ determined by the

Neural Tangent Kernel at rates corresponding to their eigenvalues. In the overparameterized

setting the damped deviations equation combined with NTK deviation bounds allows one
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to track the dynamics of the empirical risk. In this fashion we extended existing work to

the setting of a network with smooth activations where all parameters are trained as in

practice. We hope damped deviations offers a simple interpretation of the MSE dynamics

and encourages others to compare against other kernels in future work.

2.5 Appendix

2.5.1 Additional Notations

We let [k] := {1, 2, 3, . . . , k}. For a set A we let |A| denote its cardinality. ∥•∥F denotes

the Frobenius norm for matrices, and for two matrices A,B ∈ Rn×m we will let ⟨A,B⟩ =

Tr(ATB) =
∑n

i=1

∑m
j=1Ai,jBi,j denote the Frobenius or entry-wise inner product. We will

let BR := {x : ∥x∥2 ≤ R} to be the Euclidean ball of radius R > 0.

2.5.2 NTK Deviation and Parameter Norm Bounds

Let Γ > 1. At the end of this section we will prove a high probability bound of the form

sup
(x,x′)∈BM×BM

|Kt(x, x
′)−K∞(x, x′)| = Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
.

Ideally we would like to use the results in [HY20] where they prove for a deep feedforward

network without biases:

sup
1≤i,j≤n

|Kt(xi, xj)−K∞(xi, xj)| = Õ

(
t2

m
+

1√
m

)
.

However there are three problems that prevent this. The first is that the have a constant

under the Õ above that depends on the training data. Specifically their Assumption 2.2

requires that the smallest singular value of the data matrix [xα1 , . . . , xαr ] is greater than

cr > 0 where 1 ≤ α1, . . . , αr ≤ n are arbitrary distinct indices. As you send the number of

samples to infinity you will have cr → 0, thus it is not clear how the bound will scale in the

large sample regime. The second is that their bound only holds on the training data, whereas
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we need a bound that is uniform over all inputs. The final one is their network does not have

biases. In the following section we will overcome these issues. The main difference between

our argument and theirs is how we prove convergence at initialization. In their argument

for convergence at initialization they make repeated use of a Gaussian conditioning lemma

as they pass through the layers, and this relies on their Assumption 2.2. By contrast we

will use Lipschitzness of the NTK and convergence over an ϵ net to prove convergence at

initialization. As we see it, our deviation bounds for the time derivative ∂tKt are proved in

a very similar fashion and the rest of the argument is very much inspired by their approach.

At the time of submission of this manuscript, we were made aware of the work by

[LZB20b] that provides an alternative uniform NTK deviation bound by providing a uniform

bound on the operator norm of the Hessian. Their work is very nice, and it opens the door

to extending the results of this paper to the other architectures they consider. Nevertheless,

we proceed with our original analysis below.

This section is conceptually simple but technical. We will take care to outline the high

level structure of each section to prevent the technicalities from obfuscating the overall

simplicity of the approach. Our argument runs through the following steps:

• Control parameter norms throughout training.

• Bound the Lipschitz constant of the NTK with respect to spatial inputs.

• Use concentration of subexponential random variables (Bernstein’s inequality) to show

that |K∞(z′)−K0(z
′)| = Õ(1/

√
m) (roughly) for all z′ in an ϵ net of the spatial domain.

Combine with the Lipschitz property of the NTK to show convergence over all inputs,

namely supz∈BM
|K∞(z)−K0(z)| = Õ(1/

√
m) (roughly).

• Produce the bound supz∈BM×BM
|∂tKt(z)| = Õ(1/

√
m) (roughly).

• Conclude that supz∈BM×BM
|Kt(z)−K0(z)| = Õ(t/

√
m) (roughly).
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2.5.2.1 Important Equations

The following list contains the equations that are relevant for this section. We found it easier

to read the following proofs by keeping these equations on a separate piece of paper or in a

separate tab. We write a⊗ x = axT . Also throughout this section the training data will be

considered fixed and thus the randomness of the inputs is not relevant to this section. The

randomness will come entirely from the parameter initialization θ0.

f(x; θ) =
1√
m
aTσ(Wx+ b) + b0

x(1) :=
1√
m
σ(Wx+ b)

σ′
1(x) := diag(σ′(Wx+ b))

σ′′
1(x) := diag(σ′′(Wx+ b))

∂af(x; θ) =
1√
m
σ(Wx+ b) = x(1)

∂Wf(x; θ) =
1√
m
σ′
1(x)a⊗ x

∂bf(x; θ) =
1√
m
σ′
1(x)a

∂b0f(x; θ) = 1

∂ta = − 1

n

n∑
i=1

r̂ix
(1)
i

∂tW = − 1

n

n∑
i=1

r̂i
1√
m
σ′
1(xi)a⊗ xi

∂tb = − 1

n

n∑
i=1

r̂i
1√
m
σ′
1(xi)a

∂tb0 = − 1

n

n∑
i=1

r̂i
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∂tx
(1) = ∂t

1√
m
σ(Wx+ b) =

1√
m
σ′
1(x)[∂tWx+ ∂tb]

= − 1

n

n∑
i=1

r̂i

[
1√
m
σ′
1(x)σ

′
1(xi)

a√
m

]
[⟨x, xi⟩2 + 1]

∂tσ
′
1(x) = ∂tσ

′(Wx+ b) = σ′′
1(x)diag(∂tWx+ ∂tb)

= − 1

n

n∑
i=1

r̂i
1√
m
σ′′
1(x)σ

′
1(xi)diag(a)[⟨x, xi⟩2 + 1]

2.5.2.2 A Priori Parameter Norm Bounds

In this section we will provide bounds for the following quantities:

ξ(t) = max{ 1√
m

∥W (t)∥op ,
1√
m

∥b(t)∥2 ,
1√
m

∥a(t)∥2 , 1},

ξ̃(t) = max{max
ℓ∈[m]

∥wℓ(t)∥2 , ∥a(t)∥∞ , ∥b(t)∥∞ , 1}.

Here wℓ = Wℓ,: ∈ Rd is the vector of input weights to the ℓth unit. These quantities appear

repeatedly throughout the rest of the proofs of this section and thus need to be controlled.

The parameter norm bounds will also be useful for the purpose of the covering number

argument in Section 2.5.3.6. This section is broken down as follows:

• Prove Lemma 2.5.1

• Bound ξ(t)

• Bound ξ̃(t)

The time derivatives throughout will repeatedly be of the form 1
n

∑n
i=1 r̂i(t)vi. Lemma 2.5.1

provides a simple bound that we will use over and over again.

Lemma 2.5.1. Let ∥•∥ be any norm over a vector space V . Then for any v1, . . . , vn ∈ V

we have ∥∥∥∥∥ 1n
n∑
i=1

r̂i(t)vi

∥∥∥∥∥ ≤ max
i∈[n]

∥vi∥ ∥r̂(t)∥Rn ≤ max
i∈[n]

∥vi∥ ∥r̂(0)∥Rn .
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Proof. Note that∥∥∥∥∥ 1n
n∑
i=1

r̂i(t)vi

∥∥∥∥∥ ≤ 1

n

n∑
i=1

|r̂i(t)| ∥vi∥ ≤ max
i∈[n]

∥vi∥
1

n

n∑
i=1

|r̂i(t)|

≤ max
i∈[n]

∥vi∥
1√
n
∥r̂(t)∥2 = max

i∈[n]
∥vi∥ ∥r̂(t)∥Rn ≤ max

i∈[n]
∥vi∥ ∥r̂(0)∥Rn ,

where the last inequality follows from ∥r̂(t)∥Rn ≤ ∥r̂(0)∥Rn from gradient flow.

We now proceed to bound ξ(t).

Lemma 2.5.2. Let ξ(t) = max{ 1√
m
∥W (t)∥op ,

1√
m
∥b(t)∥2 ,

1√
m
∥a(t)∥2 , 1} and

D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}.

Then for any initial conditions W (0), b(0), a(0) we have for all t

ξ(t) ≤ exp

(
D√
m

∫ t

0

∥r̂(s)∥Rn ds

)
ξ(0) ≤ exp

(
D√
m

∥r̂(0)∥Rn t

)
ξ(0).

Proof. Recall that

∂ta = − 1

n

n∑
i=1

r̂ix
(1)
i

∂tW = − 1

n

n∑
i=1

r̂i
1√
m
σ′
1(xi)a⊗ xi

∂tb = − 1

n

n∑
i=1

r̂i
1√
m
σ′
1(xi)a.

We will show that each of the above derivatives is ≲ ∥r̂(t)∥Rn ξ(t) then apply Grönwall’s

inequality. By Lemma 2.5.1 it suffices to show that the terms multiplied by r̂i in the above

sums are ≲ ξ(t). First we note that∥∥∥x(1)i ∥∥∥
2
=

∥∥∥∥ 1√
m
σ(Wxi + b)

∥∥∥∥
2

≤ |σ(0)|+ 1√
m

∥σ′∥∞ ∥Wxi + b∥2

≤ |σ(0)|+ 1√
m

∥σ′∥∞
[
∥W∥op ∥xi∥2 + ∥b∥2

]
≤ |σ(0)|+ 1√

m
∥σ′∥∞

[
∥W∥opM + ∥b∥2

]
≤ Dξ.
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Second we have that∥∥∥∥ 1√
m
σ′
1(xi)a⊗ xi

∥∥∥∥
op

=

∥∥∥∥ 1√
m
σ′
1(xi)a

∥∥∥∥
2

∥xi∥2 ≤M ∥σ′∥∞
1√
m

∥a∥2 ≤ Dξ.

Finally we have that ∥∥∥∥ 1√
m
σ′
1(xi)a

∥∥∥∥ ≤ ∥σ′∥∞
1√
m

∥a∥2 ≤ Dξ.

Thus by Lemma 2.5.1 and the above bounds we have

∥∂tW (t)∥op , ∥∂ta(t)∥2 , ∥∂tb(t)∥2 ≤ D ∥r̂(t)∥Rn ξ(t).

Let v(t) be a placeholder for one of the functions 1√
m
a(t), 1√

m
W (t), 1√

m
b(t) with corre-

sponding norm ∥•∥. Then we have that

∥v(t)∥ ≤ ∥v(0)∥+ ∥v(t)− v(0)∥ = ∥v(0)∥+
∥∥∥∥∫ t

0

∂sv(s)ds

∥∥∥∥
≤ ∥v(0)∥+

∫ t

0

∥∂sv(s)∥ ds ≤ ξ(0) +

∫ t

0

∥r̂(s)∥Rn√
m

Dξ(s)ds.

This inequality holds for any of the three choices of v thus we get that

ξ(t) ≤ ξ(0) +

∫ t

0

∥r̂(s)∥Rn√
m

Dξ(s)ds.

Therefore by Grönwall’s inequality we get that

ξ(t) ≤ exp

(
D√
m

∫ t

0

∥r̂(s)∥Rn ds

)
ξ(0) ≤ exp

(
D√
m

∥r̂(0)∥Rn t

)
ξ(0).

We will now bound ˜ξ(t) using essentially the same argument as in the previous lemma.

Lemma 2.5.3. Let ξ̃(t) = max{maxℓ∈[m] ∥wℓ(t)∥2 , ∥a(t)∥∞ , ∥b(t)∥∞ , 1} and

D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}.

Then for any initial conditions W (0), b(0), a(0) we have for all t

ξ̃(t) ≤ exp

(
D√
m

∫ t

0

∥r̂(s)∥Rn ds

)
ξ̃(0) ≤ exp

(
D√
m

∥r̂(0)∥Rn t

)
ξ̃(0).
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Proof. The proof is basically the same as Lemma 2.5.2. We have that

∂twℓ = − 1

n

n∑
i=1

r̂i
aℓ√
m
σ′(⟨wℓ, xi⟩2 + bℓ)xi.

Now note ∥∥∥∥ aℓ√
m
σ′(⟨wℓ, xi⟩2 + bℓ)xi

∥∥∥∥
2

≤ 1√
m

∥a∥∞ ∥σ′∥∞M ≤ D√
m
ξ̃.

Thus by Lemma 2.5.1 we have that

∥∂twℓ(t)∥2 ≤
D√
m

∥r̂(t)∥Rn ξ̃(t).

On the other hand

∂ta = − 1

n

n∑
i=1

r̂ix
(1)
i ,

with ∥∥∥x(1)i ∥∥∥∞ =

∥∥∥∥ 1√
m
σ(Wxi + b)

∥∥∥∥
∞

≤ 1√
m

[|σ(0)|+ ∥σ′∥∞ ∥Wxi + b∥∞]

≤ 1√
m

[
|σ(0)|+ ∥σ′∥∞ (M max

ℓ
∥wℓ∥2 + ∥b∥∞)

]
≤ D√

m
ξ̃.

Thus again by Lemma 2.5.1 we have

∥∂ta(t)∥∞ ≤ D√
m

∥r̂(t)∥Rn ξ̃(t).

Finally we have

∂tb = − 1

n

n∑
i=1

r̂i
1√
m
σ′
1(xi)a,

with ∥∥∥∥ 1√
m
σ′
1(xi)a

∥∥∥∥
∞

≤ 1√
m

∥σ′∥∞ ∥a∥∞ ≤ D√
m
ξ̃.

Again applying Lemma 2.5.1 one last time we get

∥∂tb(t)∥∞ ≤ D√
m

∥r̂(t)∥Rn ξ̃(t).

Therefore by the same argument as in Lemma 2.5.2 using Grönwall’s inequality we get that

ξ̃(t) ≤ exp

(
D√
m

∫ t

0

∥r̂(s)∥Rn ds

)
ξ̃(0) ≤ exp

(
D√
m

∥r̂(0)∥Rn t

)
ξ̃(0).
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2.5.2.3 NTK is Lipschitz with Respect to Spatial Inputs

The NTK being Lipschitz with respect to spatial inputs is essential to our proof. The

Lipschitz property means that to show convergence uniformly for all inputs it suffices to

show convergence on an ϵ net of the spatial domain. Since the parameters are changing

throughout time, the Lipschitz constant of the NTK will change throughout time. We will

see that the Lipschitz constant depends on the quantities ξ(t) and ξ̃(t) from the previous

Section 2.5.2.2.

The NTK Kt(x, x
′) is a sum of terms of the form g(x)Tg(x′) where g is one of the

derivatives ∂af(x; θt), ∂bf(x; θt), ∂Wf(x; θt), ∂b0f(x; θt). Since ∂b0f(x; θt) ≡ 1 this term can be

ignored for the rest of the section. The upcomming Lemma 2.5.4 shows that if g is Lipschitz

and bounded then (x, x′) 7→ g(x)Tg(x′) is Lipschitz. This lemma guides the structure of this

section:

• Prove Lemma 2.5.4

• Show that ∂af(x; θ), ∂bf(x; θ), ∂Wf(x; θ) are bounded and Lipschitz

• Conclude the NTK is Lipschitz

Lemma 2.5.4. Let g : Rk → Rl be L-Lipschitz with respect to the 2-norm, i.e.

∥g(x)− g(z)∥2 ≤ L ∥x− z∥2

and satisfy ∥g(x)∥2 ≤M for all x in some set X . Then Kg : X × X → R

Kg(x, x
′) := g(x)Tg(x′)

is ML-Lipschitz with respect to the norm

∥(x, x′)∥ := ∥x∥2 + ∥x′∥2 .
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Proof. We have

|Kg(x, x
′)−Kg(z, z

′)| = |g(x)Tg(x′)− g(z)Tg(z′)|

= |g(x)T (g(x′)− g(z′))|+ |(g(x)− g(z))Tg(z′)|

≤ ∥g(x)∥2 ∥g(x
′)− g(z′)∥2 + ∥g(x)− g(z)∥2 ∥g(z

′)∥2

≤ML ∥x′ − z′∥2 +ML ∥x− z∥2 ≤ML ∥(x, x′)− (z, z′)∥ .

By the previous Lemma 2.5.4, to show that the NTK is Lipschitz it suffices to show that

∂af(x; θ), ∂bf(x; θ), ∂Wf(x; θ), ∂b0f(x; θ) are bounded and Lipschitz. The following lemma

bounds the norms of the derivatives ∂af(x; θ), ∂Wf(x; θ), ∂bf(x; θ).

Lemma 2.5.5. Let D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1} and

ξ = max{ 1√
m

∥W∥op ,
1√
m

∥b∥2 ,
1√
m

∥a∥2 , 1}.

Then

∥∂af(x; θ)∥2 , ∥∂Wf(x; θ)∥F , ∥∂bf(x; θ)∥2 ≤ Dξ.

Proof. We have

∥∂af(x; θ)∥2 =
∥∥∥∥ 1√

m
σ(Wx+ b)

∥∥∥∥
2

≤ |σ(0)|+ 1√
m

∥σ′∥∞ ∥Wx+ b∥2

≤ |σ(0)|+ 1√
m

∥σ′∥∞
[
∥W∥op ∥x∥2 + ∥b∥2

]
≤ |σ(0)|+ 1√

m
∥σ′∥∞

[
∥W∥opM + ∥b∥2

]
≤ Dξ,

∥∂Wf(x; θ)∥F =

∥∥∥∥ 1√
m
σ′
1(x)a⊗ x

∥∥∥∥
F

=

∥∥∥∥ 1√
m
σ′
1(x)a

∥∥∥∥
2

∥x∥2 ≤
M√
m

∥σ′∥∞ ∥a∥2 ≤ Dξ,

∥∂bf(x; θ)∥2 =
∥∥∥∥ 1√

m
σ′
1(x)a

∥∥∥∥
2

≤ 1√
m

∥σ′∥∞ ∥a∥2 ≤ Dξ.
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The following lemma demonstrates that ∂af(x; θ), ∂Wf(x; θ), and ∂bf(x; θ) are Lipschitz

as functions of the input x.

Lemma 2.5.6. Let

ξ = max{ 1√
m

∥W∥op ,
1√
m

∥b∥2 ,
1√
m

∥a∥2 , 1},

ξ̃ = max{max
ℓ∈[m]

∥wℓ∥2 , ∥a∥∞ , ∥b∥∞ , 1},

D′ = max{∥σ′∥∞ ,M ∥σ′′∥∞ , ∥σ′′∥∞},

L = 2ξξ̃D′.

Then ∂af(x; θ), ∂bf(x; θ), ∂Wf(x; θ) are all L-Lipschitz with respect to the Euclidean norm

∥•∥2. In symbols:

∥∂af(x; θ)− ∂af(y; θ)∥2 ≤ L ∥x− y∥2 ,

∥∂Wf(x; θ)− ∂Wf(y; θ)∥F ≤ L ∥x− y∥2 ,

∥∂bf(x; θ)− ∂bf(y; θ)∥2 ≤ L ∥x− y∥2 .

Proof. We have

∥∂af(x; θ)− ∂af(y; θ)∥2 =
∥∥∥∥ 1√

m
(σ(Wx+ b)− σ(Wy + b))

∥∥∥∥
2

≤ 1√
m

∥σ′∥∞ ∥W (x− y)∥2 ≤
1√
m

∥σ′∥∞ ∥W∥op ∥x− y∥2 ≤ L ∥x− y∥2 ,
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∥∂Wf(x; θ)− ∂Wf(y; θ)∥F =

∥∥∥∥ 1√
m
σ′
1(x)a⊗ x− 1√

m
σ′
1(y)a⊗ y

∥∥∥∥
F

≤
∥∥∥∥ 1√

m
σ′
1(x)a⊗ [x− y]

∥∥∥∥
F

+

∥∥∥∥ 1√
m
[σ′

1(x)a− σ′
1(y)a]⊗ y

∥∥∥∥
F

≤ 1√
m

∥σ′
1(x)a∥2 ∥x− y∥2 +

1√
m

∥[σ′
1(x)− σ′

1(y)]a∥2 ∥y∥2

≤ 1√
m

∥σ′∥∞ ∥a∥2 ∥x− y∥2 +
1√
m

∥σ′(Wx+ b)− σ′(Wy + b)∥∞ ∥a∥2M

≤ 1√
m

∥σ′∥∞ ∥a∥2 ∥x− y∥2 +
1√
m

∥σ′′∥∞ ∥W (x− y)∥∞ ∥a∥2M

≤ 1√
m

∥σ′∥∞ ∥a∥2 ∥x− y∥2 +
1√
m

∥σ′′∥∞ max
ℓ∈[m]

∥wℓ∥2 ∥x− y∥2 ∥a∥2M

≤ L ∥x− y∥2 ,

∥∂bf(x; θ)− ∂bf(y; θ)∥2 =
∥∥∥∥ 1√

m
σ′
1(x)a−

1√
m
σ′
1(y)a

∥∥∥∥
2

≤ 1√
m

∥σ′(Wx+ b)− σ′(Wy + b)∥∞ ∥a∥2

≤ 1√
m

∥σ′′∥∞ ∥W (x− y)∥∞ ∥a∥2

≤ 1√
m

∥σ′′∥∞ max
ℓ∈[m]

∥wℓ∥2 ∥x− y∥2 ∥a∥2 ≤ L ∥x− y∥2 .

Finally we can prove that the Neural Tangent Kernel is Lipschitz.

Theorem 2.5.7. Consider the Neural Tangent Kernel

K(x, y) = ⟨∂af(x; θ), ∂af(y; θ)⟩2 + ⟨∂bf(x; θ), ∂bf(y; θ)⟩2 + ⟨∂Wf(x; θ), ∂Wf(y; θ)⟩+ 1

and let

ξ = max{ 1√
m

∥W∥op ,
1√
m

∥b∥2 ,
1√
m

∥a∥2 , 1},
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ξ̃ = max{max
ℓ∈[m]

∥wℓ∥2 , ∥a∥∞ , ∥b∥∞ , 1},

D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

D′ = max{∥σ′∥∞ ,M ∥σ′′∥∞ , ∥σ′′∥∞}.

Then the Neural Tangent Kernel is Lipschitz with respect to the norm

∥(x, y)∥ := ∥x∥2 + ∥y∥2

with Lipschitz constant L := 6DD′ξ2ξ̃. In symbols:

|K(x, y)−K(x′, y′)| ≤ L ∥(x, y)− (x′, y′)∥ .

Proof. By Lemma 2.5.5, we have that the gradients are bounded

∥∂af(x; θ)∥2 , ∥∂Wf(x; θ)∥F , ∥∂bf(x; θ)∥2 ≤ Dξ.

Also by Lemma 2.5.6 the gradients are Lipschitz with Lipschitz constant 2ξξ̃D′. Thus

these two facts combined with Lemma 2.5.4 tell us that each of the three terms ⟨∂af(x; θ),

∂af(y; θ)⟩, ⟨∂bf(x; θ), ∂bf(y; θ)⟩, and ⟨∂Wf(x; θ), ∂Wf(y; θ)⟩ are individually Lipschitz with

constant (Dξ) · (2ξξ̃D′). Thus the Lipschitz constant of the NTK itself is bounded by the

sum of the 3 Lipschitz constants, for a total of 6DD′ξ2ξ̃.

Using that the NTK at time zero K0(x, y) is Lipschitz we can prove that the analytical

NTK K∞ = E[K0(x, y)] is Lipschitz. We will use this primarily as a qualitative statement,

meaning that the estimate that we derive for the Lipschitz constant will not be used as it is

not very explicit. Rather, in theorems where we use the fact that K∞ is Lipschitz we will

simply take the Lipschitz constant of K∞ as an external parameter.

Theorem 2.5.8. Assume that Wi,j(0) ∼ W, bℓ(0) ∼ B, aℓ(0) ∼ A are all i.i.d. zero-mean,

unit variance subgaussian random variables. Let

ξ(0) = max{ 1√
m

∥W (0)∥op ,
1√
m

∥b(0)∥2 ,
1√
m

∥a(0)∥2 , 1},
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ξ̃(0) = max{max
ℓ∈[m]

∥wℓ(0)∥2 , ∥a(0)∥∞ , ∥b(0)∥∞ , 1},

D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

D′ = max{∥σ′∥∞ ,M ∥σ′′∥∞ , ∥σ′′∥∞}.

Then the analytical Neural Tangent Kernel K∞(x, y) = E[K0(x, y)] is Lipschitz with respect

to the norm

∥(x, y)∥ := ∥x∥2 + ∥y∥2

with Lipschitz constant ≤ 6DD′E[ξ2ξ̃] < ∞. If one instead does the doubling trick then the

same conclusion holds.

Proof. First assume we are not doing the doubling trick. We note that

|K∞(x, y)−K∞(x′, y′)| = |E[K0(x, y)]− E[K0(x
′, y′)]|

≤ E |K0(x, y)−K0(x
′, y′)| ≤ 6DD′E[ξ2ξ̃] ∥(x, y)− (x′, y′)∥

where the last line follows from the Lipschitzness of K0 provided by Theorem 2.5.7. Using

that ∥W (0)∥op ≤ ∥W (0)∥F and the fact that the Euclidean norm of a vector with i.i.d.

subgaussian entries is subgaussian (Theorem 3.1.1 [Ver18]), we have that ξ(0) and ξ̃(0)

are maximums of subgaussian random variables. Since a maximum of subgaussian random

variables is subgaussian, we have that ξ(0) and ξ̃(0) are subgaussian. From the inequality

ab ≤ 1
2
(a2 + b2) we get E[ξ2ξ̃] ≤ 1

2
E[ξ4] + 1

2
E[ξ̃2] <∞ since moments of subgaussian random

variables are all finite. Since the doubling trick does not change the distribution of K0, the

same conclusion holds under that initialization scheme.

2.5.2.4 NTK Convergence at Initialization

In this section we prove that supz∈BM×BM
|K0(z) − K∞(z)| = Õ(1/

√
m). Our argument

traces the following steps:

• Show that K0 is sum of averages of m independent subexponential random variables
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• Use subexponential concentration to show that supz′∈∆ |K0(z
′)−K∞(z′)| = Õ(1/

√
m)

for all z′ in an ϵ net ∆ of BM ×BM

• Use that K0 is Lipschitz and convergence over the epsilon net ∆ to show that

sup
z∈BM×BM

|K0(z)−K∞(z)| = Õ(1/
√
m) (roughly)

We recall the following definitions 2.5.6 and 2.7.5 from [Ver18].

Definition 2.5.9. ([Ver18]) Let Y be a random variable. Then we define the subgaussian

norm of Y to be

∥Y ∥ψ2
= inf{t > 0 : E exp(Y 2/t2) ≤ 2}.

If ∥Y ∥ψ2
<∞, then we say Y is subgaussian.

Definition 2.5.10. ([Ver18]) Let Y be a random variable. Then we define the subexponential

norm of Y to be

∥Y ∥ψ1
= inf{t > 0 : E exp(|Y |/t) ≤ 2}.

If ∥Y ∥ψ1
<∞, then we say Y is subexponential.

We also recall the following useful lemma (Lemma 2.7.7 [Ver18]).

Lemma 2.5.11. ([Ver18]) Let X and Y be subgaussian random variables. Then XY is

subexponential. Moreover

∥XY ∥ψ1
≤ ∥X∥ψ2

∥Y ∥ψ2
.

We recall one last definition (Definition 3.4.1 [Ver18])

Definition 2.5.12. ([Ver18]) A random vector Y ∈ Rk is called subgaussian if the one di-

mensional marginals ⟨Y, x⟩ are subgaussian random variables for all x ∈ Rk. The subgaussian

norm of Y is defined as

∥Y ∥ψ2
= sup

x∈Sk−1

∥⟨Y, x⟩∥ψ2
.
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The typical example of a subgaussian random vector is a random vector with independent

subgaussian coordinates. The following lemma demonstrates that the NTK at initializeation

is a sum of terms that are averages of independent subexponential random variables, which

will enable us to use concentration arguments later.

Theorem 2.5.13. Let wℓ, bℓ, aℓ all be independent subgaussian random variables with sub-

gaussian norms satisfying ∥•∥ψ2
≤ K. Furthermore assume ∥1∥ψ2

≤ K. Also let

D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}.

Then for fixed x, y, each of the following

⟨∂af(x; θ), ∂af(y; θ)⟩, ⟨∂bf(x; θ), ∂bf(y; θ)⟩, ⟨∂Wf(x; θ), ∂Wf(y; θ)⟩

is an average of m independent subexponential random variables with subexponential norms

bounded by D2K2.

Proof. We first observe that

⟨∂af(x; θ), ∂af(y; θ)⟩2 =
1

m
⟨σ(Wx+ b), σ(Wy + b)⟩2

=
1

m

m∑
ℓ=1

σ(⟨wℓ, x⟩2 + bℓ)σ(⟨wℓ, y⟩2 + bℓ),

⟨∂bf(x; θ), ∂bf(y; θ)⟩2 = ⟨ 1√
m
σ′
1(x)a,

1√
m
σ′
1(y)a⟩2

=
1

m

m∑
ℓ=1

a2ℓσ
′(⟨wℓ, x⟩2 + bℓ)σ

′(⟨wℓ, y⟩2 + bℓ),

⟨∂Wf(x; θ), ∂Wf(y; θ)⟩ = ⟨ 1√
m
σ′
1(x)a⊗ x,

1√
m
σ′
1(y)a⊗ y⟩2

=
1

m
⟨σ′

1(x)a, σ
′
1(y)a⟩2⟨x, y⟩2 =

⟨x, y⟩2
m

m∑
ℓ=1

a2ℓσ
′(⟨wℓ, x⟩2 + bℓ)σ

′(⟨wℓ, y⟩2 + bℓ).
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Note that

|σ(⟨wℓ, x⟩2 + bℓ)| ≤ |σ(0)|+ ∥σ′∥∞ [|⟨wℓ, x⟩|+ |bℓ|].

Thus

∥σ(⟨wℓ, x⟩2 + bℓ)∥ψ2
≤ |σ(0)| ∥1∥ψ2

+ ∥σ′∥∞ [∥|⟨wℓ, x⟩|∥ψ2
+ ∥|bℓ|∥ψ2

]

≤ |σ(0)| ∥1∥ψ2
+ ∥σ′∥∞ [M ∥wℓ∥ψ2

+ ∥|bℓ|∥ψ2
]

≤ 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞}K ≤ DK.

Also

|aℓσ′(⟨wℓ, x⟩2 + bℓ)| ≤ |aℓ| ∥σ′∥∞ ≤ D|aℓ|,

therefore

∥aℓσ′(⟨wℓ, x⟩2 + bℓ)∥ψ2
≤ D ∥aℓ∥ψ2

≤ DK.

Finally ∥∥|⟨x, y⟩2|1/2aℓσ′(⟨wℓ, x⟩2 + bℓ)
∥∥
ψ2

≤M ∥σ′∥∞ ∥aℓ∥ψ2
≤ DK.

It follows by Lemma 2.5.11 that each of ⟨∂af(x; θ), ∂af(y; θ)⟩, ⟨∂Wf(x; θ), ∂Wf(y; θ)⟩, and

⟨∂bf(x; θ), ∂bf(y; θ)⟩ is an average of m independent subexponential random variables with

subexponential norm ∥•∥ψ1
≤ D2K2.

We now recall the following Theorem from (Theorem 5.39 [Ver12]) which will be useful.

Lemma 2.5.14 ([Ver12]). Let A be an N × n matrix whose rows Ai are independent sub-

gaussian isotropic random vectors in Rn. Then for every t ≥ 0, with probability at least

1− 2 exp(−ct2) one has the following bounds on the singular values

√
N − C

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N + C

√
n+ t.

Here C = CK > 0 depends only on the subgaussian norms K = maxi ∥Ai∥ψ2
of the rows.

Also the following special case of (Lemma 5.5 [Ver12]) will be useful for us.
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Lemma 2.5.15 ([Ver12]). Let Y be subgaussian. Then

P (|Y | > t) ≤ C exp(−ct2/ ∥Y ∥2ψ2
).

It will be useful to remind the reader that C, c > 0 denote absolute constants whose

meaning will vary from statement-to-statement, as this abuse of notation becomes especially

prevalent during the concentration of measure arguments of the rest of the section. The

following lemma provides a concentration inequality for the maximum of subgaussian random

variables which will be useful for bounding ξ and ξ̃ later which is necessary for bounding the

Lipschitz constant of K0.

Lemma 2.5.16. Let Y1, . . . , Yn be subgaussian random variables with ∥Yi∥ψ2
≤ K for i ∈ [n].

Then there exists absolute constants c, c′, C > 0 such that

P
(
max
i∈[n]

|Yi| > t+K
√
c′ log n

)
≤ C exp(−ct2/K2).

Proof. Since each Yi is subgaussian we have for any t ≥ 0 (Lemma 2.5.15)

P (|Yi| > t) ≤ C exp
(
−ct2/ ∥Yi∥2ψ2

)
.

By the union bound,

P
(
max
i∈[n]

|Yi| > t+K
√
c−1 log n

)
≤

n∑
i=1

P
(
|Yi| > t+K

√
c−1 log n

)
≤ nC exp

(
−c
[
t+K

√
c−1 log n

]2
/K2

)
= C exp(−ct2/K2).

Thus by setting c′ := c−1 we get the desired result.

We now introduce a high probability bound for ξ.

Lemma 2.5.17. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaussian

random variables with unit variance. Furthermore assume ∥wℓ∥ψ2
, ∥aℓ∥ψ2

, ∥bℓ∥ψ2
≤ K for

each ℓ ∈ [m] where K ≥ 1. Let

ξ = max{ 1√
m

∥W∥op ,
1√
m

∥b∥2 ,
1√
m

∥a∥2}.
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Then with probability at least 1− δ

ξ ≤ 1 + C

√
d+K2

√
log(c/δ)√

m
.

Proof. Note that by setting t =
√
c−1 log(2/δ) in Lemma 2.5.14 we have that with probability

at least 1− δ
1√
m

∥W∥op ≤ 1 +
C
√
d√
m

+

√
c−1 log(2/δ)√

m
.

Also by Theorem 3.1.1 in [Ver18]

∥∥∥a∥2 −√
m
∥∥
ψ2

≤ CK2,

∥∥∥b∥2 −√
m
∥∥
ψ2

≤ CK2.

Thus by Lemma 2.5.15 and a union bound we have with probability at least 1− 2δ,

1√
m

∥a∥2 ,
1√
m

∥b∥2 ≤ 1 +
C√
m
K2
√

log(c/δ).

Thus by replacing every δ in the above arguments with δ/3 and using the union bound we

have with probability at least 1− δ

ξ ≤ 1 + C

√
d+K2

√
log(c/δ)√

m
.

Similarly we now introduce a high probability bound for ξ̃.

Lemma 2.5.18. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaussian

random variables with unit variance. Furthermore assume ∥wℓ∥ψ2
, ∥aℓ∥ψ2

, ∥bℓ∥ψ2
≤ K for

each ℓ ∈ [m] where K ≥ 1. Let

ξ̃ = max{max
ℓ∈[m]

∥wℓ∥2 , ∥a∥∞ , ∥b∥∞}.

Then with probability at least 1− δ we have

ξ̃ ≤
√
d+ CK2

[√
log(c/δ) +

√
logm

]
.

54



Proof. By Theorem 3.1.1 in [Ver18] we have∥∥∥∥wℓ∥2 −√
d
∥∥∥
ψ2

≤ CK2.

Well then by Lemma 2.5.16 there is a constant c′ > 0 so that

P
(
max
ℓ∈[m]

∥wℓ∥2 −
√
d > t+ CK2

√
c′ logm

)
≤ P

(
max
ℓ∈[m]

∣∣∣∥wℓ∥2 −√
d
∣∣∣ > t+ CK2

√
c′ logm

)
≤ C exp(−ct2/K4).

Thus by setting t = CK2
√
log(c/δ) we have with probability at least 1− δ

max
ℓ∈[m]

∥wℓ∥2 ≤
√
d+ CK2

√
log(c/δ) + CK2

√
logm,

where we have absorbed the constant
√
c′ into C. Similarly by Lemma 2.5.16 and a union

bound we get with probability at least 1− 2δ that

∥a∥∞ , ∥b∥∞ ≤ CK
√

log(c/δ) + CK
√

logm.

Thus by replacing each δ with δ/3 in the above arguments and using the union bound we

get with probability at least 1− δ

ξ̃ ≤
√
d+ CK2

[√
log(c/δ) +

√
logm

]
.

We are now finally ready to prove the main theorem of this section.

Theorem 2.5.19. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaus-

sian random variables with unit variance. Furthermore assume ∥wℓ∥ψ2
, ∥aℓ∥ψ2

, ∥bℓ∥ψ2
≤ K

for each ℓ ∈ [m] where K ≥ 1. Let

D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

D′ = max{∥σ′∥∞ ,M ∥σ′′∥∞ , ∥σ′′∥∞}.
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Define

ρ(M,σ, d,K, δ,m) :=

CDD′

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2 {√
d+ CK2

[√
log(c/δ) +

√
logm

]}
.

Let L(K∞) denote the Lipschitz constant of K∞. If

m ≥ C[log(c/δ) + 2d log(CM max{ρ, L(K∞)}
√
m)],

then with probability at least 1− δ

sup
z∈BM×BM

|K0(z)−K∞(z)| ≤

1√
m

[
1 + CD2K2

√
log(c/δ) + 2d log(CM max{ρ, L(K∞)}

√
m)

]
.

If one instead does the doubling trick then the same conclusion holds.

Proof. First assume we are not doing the doubling trick. Recall that by Theorem 2.5.7 that

K0 is Lipschitz with constant at most

CDD′ξ(0)2 ˜ξ(0),

where ξ and ξ̃ are defined as in the theorem. Well then by Lemmas 2.5.17, 2.5.18 and a

union bound we have with probability at least 1− 2δ

ξ(0)2ξ̃(0) ≤

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2 {√
d+ CK2

[√
log(c/δ) +

√
logm

]}
.

Let L(K0), L(K
∞) denote the Lipschitz constant of K0 and K

∞ respectively. Then assuming

the above inequality holds we have that

L(K0) ≤ ρ(M,σ, d,K, δ,m). (2.1)

For conciseness from now on we will suppress the arguments of ρ. Now set

γ :=
1

2max{ρ, L(K∞)}
√
m
.
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Let Nγ(BM) be the cardinality of a maximal γ-net of the ball BM = {x : ∥x∥2 ≤ M} with

respect to the L2 norm ∥•∥2. By a standard volume argument we have that

Nγ(BM) ≤
(
CM

γ

)d
.

By taking the product of two γ/2 nets of BM it follows that we can choose a γ net of

BM ×BM , say ∆, with respect to the norm

∥(x, y)∥ = ∥x∥2 + ∥y∥2

such that

|∆| ≤
∣∣Nγ/2(BM)

∣∣2 ≤ (CM
γ

)2d

=: Mγ.

By Theorem 2.5.13 for (x, y) ∈ BM ×BM fixed each of the following

⟨∂af(x; θ), ∂af(y; θ)⟩2, ⟨∂bf(x; θ), ∂bf(y; θ)⟩2, ⟨∂Wf(x; θ), ∂Wf(y; θ)⟩

is an average of m subexponential random variables with subexponential norm at most

D2K2. Therefore separately from the randomness discussed before by Bernstein’s inequality

(Theorem 2.8.1 [Ver18]) and a union bound we have

P(|K0(x, y)−K∞(x, y)| > t) ≤ 3× 2 exp

(
−cmin

{
mt2

D4K4
,
mt

D2K2

})
.

Thus for t ≤ D2K2 we have

P(|K0(x, y)−K∞(x, y)| > t) ≤ 6 exp

(
−c mt2

D4K4

)
.

Then by a union bound and the previous inequality we have that for t ≤ D2K2

P
(
max
z′∈∆

|K0(z
′)−K∞(z′)| > t

)
≤ 6Mγ exp

(
−c mt2

D4K4

)
.

Thus by setting t = CD2K2

√
log(c/δ)+logMγ√

m
(note that the condition on m in the hypothesis

ensures that t ≤ D2K2) we get that with probability 1− δ

max
z′∈∆

|K0(z
′)−K∞(z′)| ≤ t.
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Now fix z ∈ BM ×BM and choose z′ ∈ ∆ such that ∥z − z′∥ ≤ γ. Then

|K0(z)−K∞(z)| ≤ |K0(z)−K0(z
′)|

+ |K0(z
′)−K∞(z′)|+ |K∞(z′)−K∞(z)|

≤ 2max{L(K0), L(K
∞)}γ + t. (2.2)

Note that this argument runs through for any z ∈ BM ×BM therefore

sup
z∈BM×BM

|K0(z)−K∞(z)| ≤ 2max{L(K0), L(K
∞)}γ + t.

Well by replacing δ with δ/3 in the previous arguments by taking a union bound we can

assume that equations (2.1) and (2.2) hold simultaneously. In which case

sup
z∈BM×BM

|K0(z)−K∞(z)| ≤ 2max{L(K0), L(K
∞)}γ + t ≤ 2max{ρ, L(K∞)}γ + t

≤ 1√
m

+ CD2K2

√
log(c/δ) + logMγ√

m
=

1√
m

+ CD2K2

√
log(c/δ) + 2d log(CM/γ)√

m

=
1√
m

[
1 + CD2K2

√
log(c/δ) + 2d log(CM max{ρ, L(K∞)}

√
m)

]
,

where we have used the definition of Mγ in the second-to-last equality and the definition of

γ in the last equality. Since the doubling trick does not change the distribution of K0, the

same conclusion holds under that initialization scheme.

We immediately get the following corollary.

Corollary 2.5.20. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaus-

sian random variables with unit variance. Furthermore assume ∥wℓ∥ψ2
, ∥aℓ∥ψ2

, ∥bℓ∥ψ2
≤ K

for each ℓ ∈ [m] where K ≥ 1. Then

m ≥ C[log(c/δ) + Õ(d)]

suffices to ensure that with probability at least 1− δ

sup
z∈BM×BM

|K0(z)−K∞(z)| = Õ

( √
d√
m

)
.

If one instead does the doubling trick then the same conclusion holds.
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2.5.2.5 Control of Network at Initialization

Many of our previous results depend on the quantity ∥r̂(0)∥Rn which depends on the net-

work at initialization. Before we proceed we must control the infinity norm of the network

at initialization and work out a few consequences of this. The following lemma controls

∥f(•; θ0)∥∞.

Lemma 2.5.21. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A, b0 ∼ B′ are all i.i.d zero-

mean, subgaussian random variables with unit variance. Furthermore assume ∥1∥ψ2
, ∥wℓ∥ψ2

,

∥aℓ∥ψ2
, ∥bℓ∥ψ2

≤ K for each ℓ ∈ [m] where K ≥ 1. Let

D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

L(m,σ, d,K, δ) :=
√
m ∥σ′∥∞

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2

.

Assume that

m ≥ C[log(c/δ) + d log(CML)].

Then with probability at least 1− δ

sup
x∈BM

|f(x; θ0)| ≤ CDK2
√
d log(CML) + log(c/δ) = Õ(

√
d).

Proof. First we note that∣∣∣∣ aT√
m
σ(Wx+ b)− aT√

m
σ(Wy + b)

∣∣∣∣ ≤ ∥a∥2√
m

∥σ(Wx+ b)− σ(Wy + b)∥2

≤ ∥a∥2√
m

∥σ′∥∞ ∥W (x− y)∥2 ≤
∥a∥2√
m

∥σ′∥∞ ∥W∥op ∥x− y∥2 ≤
√
m ∥σ′∥∞ ξ(0)2 ∥x− y∥2 ,

where ξ(0) is defined as in Lemma 2.5.17. Thus f(•; θ0) is Lipschitz with constant L =
√
m ∥σ′∥∞ ξ(0)2. Well then by Lemma 2.5.17 we have with probability at least 1− δ

ξ(0)2 ≤

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2

. (2.3)
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When the above holds we have that f(•; θ0) is Lipschitz with constant

L :=
√
m ∥σ′∥∞

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2

.

On the other hand note that

|σ(⟨wℓ, x⟩2 + bℓ)| ≤ |σ(0)|+ ∥σ′∥∞ [|⟨wℓ, x⟩2|+ |bℓ|].

Thus

∥σ(⟨wℓ, x⟩2 + bℓ)∥ψ2
≤ |σ(0)| ∥1∥ψ2

+ ∥σ′∥∞ [∥|⟨wℓ, x⟩2|∥ψ2
+ ∥|bℓ|∥ψ2

]

≤ |σ(0)| ∥1∥ψ2
+ ∥σ′∥∞ [M ∥wℓ∥ψ2

+ ∥|bℓ|∥ψ2
]

≤ 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞}K ≤ DK.

Therefore by Lemma 2.5.11 we have

∥aℓσ(⟨wℓ, x⟩2 + bℓ)∥ψ1
≤ DK2.

Thus for each x fixed we have by Bernstein’s inequality (Theorem 2.8.1 [Ver18]).

P

(∣∣∣∣∣
m∑
ℓ=1

aℓσ(⟨wℓ, x⟩2 + bℓ)

∣∣∣∣∣ > t
√
m

)
≤ 2 exp

(
−cmin

[
t2

[DK2]2
,
t
√
m

DK2

])
.

Thus for t ≤
√
mDK2 this simplifies to

P

(∣∣∣∣∣
m∑
ℓ=1

aℓσ(⟨wℓ, x⟩2 + bℓ)

∣∣∣∣∣ > t
√
m

)
≤ 2 exp

(
−c t2

D2K4

)
.

Let ∆ be a γ net of the ball BM = {x : ∥x∥2 ≤M} with respect to the Euclidean ∥•∥2 norm.

Then by a standard volume argument we have that

|∆| ≤
(
CM

γ

)d
=: Mγ.

Thus by a union bound we have for t ≤
√
mDK2

P

(
max
x∈∆

∣∣∣∣∣
m∑
ℓ=1

aℓσ(⟨wℓ, x⟩2 + bℓ)

∣∣∣∣∣ > t
√
m

)
≤ 2Mγ exp

(
−c t2

D2K4

)
.
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Thus by setting t = CDK2
√

log(cMγ/δ) assuming t ≤
√
mDK2 we have with probability

at least 1− δ

max
x∈∆

∣∣∣∣∣
m∑
ℓ=1

aℓ√
m
σ(⟨wℓ, x⟩2 + bℓ)

∣∣∣∣∣ ≤ t. (2.4)

On the other hand by Lemma 2.5.15 our prior definition of t is large enough (up to a

redefinition of the constants c, C) to ensure that with probability at least 1− δ

|b0| ≤ t. (2.5)

When (2.4) and (2.5) hold simultaneously we have that maxx′∈∆ |f(x′, θ0)| ≤ 2t. By a union

bound we have with probability at least 1 − 3δ that (2.3), (2.4), (2.5) hold simultaneously.

Well then for any x ∈ BM we may choose x′ ∈ ∆ so that ∥x− x′∥2 ≤ γ. Then

|f(x; θ0)| ≤ |f(x′; θ0)|+ |f(x; θ0)− f(x′; θ0)| ≤ 2t+ Lγ.

Therefore

sup
x∈BM

|f(x; θ0)| ≤ 2t+ Lγ

and this argument runs through for any γ > 0. We will set γ = 1/L. Note that for this

choice of γ the hypothesis on m ensures that t ≤
√
mDK2. Thus the preceding argument

goes through in this case. Thus by replacing δ with δ/3 in the previous argument we get the

desired conclusion up to a redefinition of c, C.

We quickly introduce the following lemma.

Lemma 2.5.22.

∥r̂(0)∥Rn ≤ ∥f(•; θ0)∥∞ + ∥y∥Rn .

Proof. Let ŷ ∈ Rn be the vector whose ith entry is equal to f(xi; θ0). Well then note that

∥ŷ∥Rn ≤ ∥f(•; θ0)∥∞. Therefore

∥r̂(0)∥Rn = ∥ŷ − y∥Rn ≤ ∥ŷ∥Rn + ∥y∥Rn ≤ ∥f(•; θ0)∥∞ + ∥y∥Rn .
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Finally we prove one last lemma that will be useful later.

Lemma 2.5.23. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaussian

random variables with unit variance. Furthermore assume ∥1∥ψ2
, ∥wℓ∥ψ2

, ∥aℓ∥ψ2
, ∥bℓ∥ψ2

≤ K

for each ℓ ∈ [m] where K ≥ 1. Let Γ > 1, D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

L(m,σ, d,K, δ) :=
√
m ∥σ′∥∞

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2

,

ρ := CDK2
√
d log(CML) + log(c/δ) = Õ(

√
d).

Suppose

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2ρ2T 2

[log(Γ)]2
,
( ρ

DK2

)2}
.

Then with probability at least 1− δ

max
t≤T

ξ(t) ≤ Γξ(0) max
t≤T

ξ̃(t) ≤ Γξ̃(0),

where ξ(t) and ξ̃(t) are defined as in Lemmas 2.5.2 and 2.5.3. If one instead does the doubling

trick the second hypothesis on m can be removed and the conclusion holds with probability 1.

Proof. First assume we are not doing the doubling trick. Well from the condition m ≥(
ρ

DK2

)2
we have by Lemma 2.5.21 that with probability at least 1− δ

sup
x∈BM

|f(x; θ0)| ≤ CDK2
√
d log(CML) + log(c/δ) =: ρ.

Also by Lemma 2.5.22 and the above bound we have

∥r̂(0)∥Rn ≤ ∥y∥Rn + ρ.

Well in this case

D ∥r̂(0)∥Rn t√
m

≤ D[∥y∥Rn + ρ]t√
m

≤ 2Dmax{∥y∥Rn , ρ}t√
m

≤ log(Γ),

where we have used the hypothesis on m in the last inequality. Therefore by Lemmas 2.5.2,

2.5.3 we have in this case that

max
t≤T

ξ(t) ≤ Γξ(0), max
t≤T

ξ̃(t) ≤ Γξ̃(0).
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Now assume we are performing the doubling trick so that f(•; θ0) ≡ 0. Then ρ in the

previous argument can simply be replaced with zero and the same argument runs through,

except using Lemma 2.5.21 is no longer necessary (and thus the second hypothesis on m is

not needed). Without using Lemma 2.5.21 the whole argument is deterministic so that the

conclusion holds with probability 1.

2.5.2.6 NTK Time Deviations Bounds

In this section we bound the deviations of the NTK throughout time. This section runs

through the following steps

• Bound sup(x,y)∈BM×BM
|∂tKt(x, y)|

• Bound sup(x,y)∈BM×BM
|Kt(x, y)−K0(x, y)|

In the following lemma we will provide an upper bound on the NTK derivative

sup
x,y∈BM×BM

|∂tKt(x, y)|.

Lemma 2.5.24. Let

ξ(t) = max{ 1√
m

∥W (t)∥op ,
1√
m

∥b(t)∥2 ,
1√
m

∥a(t)∥2 , 1},

ξ̃(t) = max{max
ℓ∈[m]

∥wℓ(t)∥2 , ∥a(t)∥∞ , ∥b(t)∥∞ , 1},

D = 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

D′ :=
[
max{∥σ′∥∞ , ∥σ′′∥∞}2[M2 + 1] +D ∥σ′∥∞

]
max{1,M}.

Then for any initial conditions W (0), b(0), a(0) we have for all t

sup
x,y∈BM×BM

|∂tKt(x, y)| ≤
CDD′
√
m

ξ(t)2ξ̃(t) ∥r̂(t)∥Rn .
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Proof. We need to bound the following time derivatives

∂t∂af(x; θ) = ∂tx
(1) = − 1

n

n∑
i=1

r̂i

[
1√
m
σ′
1(x)σ

′
1(xi)

a√
m

]
[⟨x, xi⟩2 + 1],

∂t∂Wf(x; θ) = ∂t
1√
m
σ′
1(x)a⊗ x

=
1√
m
[(∂tσ

′
1(x))a+ σ′

1(x)(∂ta)]⊗ x,

∂t∂bf(x; θ) = ∂t
1√
m
σ′
1(x)a =

1√
m

([∂tσ
′
1(x)]a+ σ′

1(x)∂ta) .

Note that∥∥∥∥ 1√
m
σ′
1(x)σ

′
1(xi)

a√
m
[⟨x, xi⟩2 + 1]

∥∥∥∥
2

≤ 1√
m

∥σ′∥2∞
1√
m

∥a∥2 [M
2 + 1].

Thus by Lemma 2.5.1

∥∂t∂af(x; θ)∥2 ≤
1√
m

∥σ′∥2∞
1√
m

∥a∥2 [M
2 + 1] ∥r̂(t)∥Rn

≤ ∥σ′∥2∞ [M2 + 1]]√
m

ξ(t) ∥r̂(t)∥Rn .

On the other hand

[∂tσ
′
1(x)]a = − 1

n

n∑
i=1

r̂i
1√
m
σ′′
1(x)σ

′
1(xi)diag(a)a[⟨x, xi⟩2 + 1].

Well

1√
m

∥σ′′
1(x)σ

′
1(xi)diag(a)a[⟨x, xi⟩2 + 1∥ ≤ 1√

m
∥σ′′∥∞ ∥σ′∥∞ ∥a∥∞ ∥a∥2 [M

2 + 1]

≤ ∥σ′′∥∞ ∥σ′∥∞ [M2 + 1]ξ(t)ξ̃(t).

Thus by Lemma 2.5.1 we have that

∥[∂tσ′
1(x)]a∥ ≤ ∥σ′′∥∞ ∥σ′∥∞ [M2 + 1]ξ(t)ξ̃(t) ∥r̂(t)∥Rn .
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Finally we have

σ′
1(x)∂ta = − 1

n

n∑
i=1

r̂iσ
′
1(x)x

(1)
i .

Well ∥∥∥σ′
1(x)x

(1)
i

∥∥∥ ≤ ∥σ′∥∞
∥∥∥x(1)i ∥∥∥

2
= ∥σ′∥∞

1√
m

∥σ(Wxi + b)∥2

≤ ∥σ′∥∞ [|σ(0)|+ 1√
m

∥σ′∥∞ (∥W∥opM + ∥b∥2)]

≤ ∥σ′∥∞ [|σ(0)|+M ∥σ′∥∞ + ∥σ′∥∞] ξ(t) ≤ ∥σ′∥∞Dξ(t).

Thus we finally by Lemma 2.5.1 again we get that

∥σ′
1(x)∂ta∥ ≤ ∥σ′∥∞Dξ(t) ∥r̂(t)∥Rn .

It follows that

∥∂t∂bf(x; θ)∥

≤ 1√
m

[
∥σ′′∥∞ ∥σ′∥∞ [M2 + 1] + ∥σ′∥∞D

]
ξ(t)ξ̃(t) ∥r̂(t)∥Rn ,

and similarly

∥∂t∂Wf(x; θ)∥

≤ M√
m

[
∥σ′′∥∞ ∥σ′∥∞ [M2 + 1] + ∥σ′∥∞D

]
ξ(t)ξ̃(t) ∥r̂(t)∥Rn .

Thus in total we can say

∥∂t∂af(x; θ)∥2 , ∥∂t∂bf(x; θ)∥2 , ∥∂t∂wf(x; θ)∥F ≤ D′
√
m
ξ(t)ξ̃(t) ∥r̂(t)∥Rn .

It thus follows by the chain rule and Lemma 2.5.5 that

sup
(x,y)∈BM×BM

|∂tKt(x, y)| ≤
CDD′
√
m

ξ(t)2ξ̃(t) ∥r̂(t)∥Rn .

Using the previous lemma we can now bound the deviations of the NTK.
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Theorem 2.5.25. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaus-

sian random variables with unit variance. Furthermore assume ∥wℓ∥ψ2
, ∥aℓ∥ψ2

, ∥bℓ∥ψ2
≤ K

for each ℓ ∈ [m] where K ≥ 1. Let Γ > 1 and T > 0 be positive constants,

D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

D′ :=
[
max{∥σ′∥∞ , ∥σ′′∥∞}2[M2 + 1] +D ∥σ′∥∞

]
max{1,M},

and assume

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2
, O(log(c/δ) + Õ(d))

}
.

Then with probability at least 1− δ

sup
(x,y)∈BM×BM

|Kt(x, y)−K0(x, y)| ≤

tΓ3CDD
′

√
m

∥r̂(0)∥Rn

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2 {√
d+ CK2

[√
log(c/δ) +

√
logm

]}
.

If one instead does the doubling trick then the second condition on m can be removed from

the hypothesis and the same conclusion holds.

Proof. First assume we are not doing the doubling trick. By Lemmas 2.5.17, 2.5.18 and a

union bound we have with probability at least 1− δ

ξ(0)2ξ̃(0) ≤

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2 {√
d+ CK2

[√
log(c/δ) +

√
logm

]}
. (2.6)

Note that ρ as defined in Lemma 2.5.23 satisfies ρ2 = O(log(c/δ)+Õ(d)). Thus the hypothesis

on m is strong enough to apply Lemma 2.5.23, therefore by applying this lemma we have

with probability at least 1− δ

max
t≤T

ξ(t) ≤ Γξ(0), max
t≤T

ξ̃(t) ≤ Γξ̃(0). (2.7)
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Thus by replacing δ with δ/2 and taking a union bound we have that with probability at

least 1− δ (2.6) and (2.7) hold simultaneously. Then using Lemma 2.5.24 and the fact that

∥r̂(t)∥Rn ≤ ∥r̂(0)∥Rn we have for t ≤ T

sup
(x,y)∈BM×BM

|∂tKt(x, y)| ≤ Γ3CDD
′

√
m

ξ(0)2ξ̃(0) ∥r̂(0)∥Rn .

Therefore by the fundamental theorem of calculus for t ≤ T

sup
(x,y)∈BM×BM

|Kt(x, y)−K0(x, y)| ≤ tΓ3CDD
′

√
m

ξ(0)2ξ̃(0) ∥r̂(0)∥Rn

≤ tΓ3CDD
′

√
m

∥r̂(0)∥Rn

{
1 + C

√
d+K2

√
log(c/δ)√

m

}2 {√
d+ CK2

[√
log(c/δ) +

√
logm

]}
.

Now consider if one instead does the doubling trick where one does the following swaps

W (0) →

W (0)

W (0)

, b(0) →
b(0)
b(0)

, a(0) →
 a(0)

−a(0)

 and m → 2m where W (0), b(0), and

a(0) are initialized as before. Then ξ(0) and ξ̃(0) do not change. We can then run through

the same exact proof as before except when we apply Lemma 2.5.23 the second hypothesis

on m is no longer needed.

Theorem 2.5.26. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaus-

sian random variables with unit variance. Let Γ > 1 and T > 0 be positive constants and let

D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}. Assume

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2
, O(log(c/δ) + Õ(d))

}
.

Then with probability at least 1− δ we have for t ≤ T

sup
(x,y)∈BM×BM

|Kt(x, y)−K∞(x, y)| = Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
.

If one instead does the doubling trick then one can remove the assumption

m ≥ 4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2

and have the same conclusion hold.
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Proof. The condition m ≥ O(log(c/δ)+ Õ(d)) is sufficient to satisfy the hypothesis of Theo-

rem 2.5.19. The condition on m also immediately satisfies the hypothesis of Theorem 2.5.25.

The desired result then follows from a union bound.

Theorem 2.5.27. Under the same assumptions as Theorem 2.5.26 we have that with prob-

ability at least 1− δ for all t ≤ T

∥H∞ −Ht∥op ≤ nÕ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
,

sup
s≤T

∥G∞ −Gt∥op ≤ Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
.

Proof. Recall that for a matrix A ∈ Rm×n ∥A∥op ≤
√
mnmaxi,j |Ai,j|. Thus by Theorem

2.5.26 with probability at least 1− δ

∥H∞ −Ht∥op ≤ nmax
i,j

|H∞
i,j − (Ht)i,j| ≤ n sup

(x,y)∈BM×BM

|Kt(x, y)−K∞(x, y)|

= nÕ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
.

The second bound follows from Gs =
1
n
Hs and G

∞ = 1
n
H∞.

2.5.2.7 NTK Deviations for ReLU Approximations

The NTK deviation bounds given in the previous subsections assumed ∥σ′′∥∞ < ∞. For

ReLU this assumption is not satisfied. It is natural to ask to what extent we might expect

the results to hold when the activation function is σ(x) = ReLU(x) = max{0, x}. The closest

we can get to ReLU without modifying the proofs is to use the Softmax approximation to

ReLU, namely σ(x) = 1
α
ln(1 + exp(αx)), and consider what happens as α → ∞. For this

choice of σ we have that ∥σ′′∥∞ = O(α). In Subsection 2.5.2.6 where you will pay the

biggest penalty is in Theorem 2.5.25 via the constant D′ = O(∥σ′′∥2∞) = O(α2). Since the

final bound depends on the ratio D′
√
m

you will have that m will grow like O(α4). This is no
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moderate penalty, although we might expect the results to hold for wide ReLU networks if

a finite α provides a reasonable approximation. In particular Softmax ln(1 + exp(x)) leads

to a fixed constant for D′.

2.5.3 Underparameterized Regime

In this section we build the tools to study the implicit bias in the underparameterized case.

Our ultimate goal is prove Theorem 2.3.5.

Outline of this section

• Review operator theory

• Prove damped deviations equation

• Bound ∥(TK∞ − T sn)rt∥2

– Bound ∥(Tn − T sn)rt∥2 using NTK deviation results (comparatively easy)

– Bound ∥(TK∞ − Tn)rt∥2

∗ Derive covering number for a class of functions C

∗ Use covering number to bound supg∈C ∥(TK∞ − Tn)g∥

∗ Show that rt is in class C

• Prove Theorem 2.3.5

2.5.3.1 RKHS and Mercer’s Theorem

We recall some facts about Reproducing Kernel Hilbert Spaces (RKHS) and Mercer’s The-

orem. For additional background we suggest [BT04]. Let X ⊂ Rd be a compact space

equipped with a strictly positive (regular Borel) probability measure ρ. Let K : X×X → R

be a continuous, symmetric, positive definite function. We define the integral operator
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TK : L2
ρ(X) → L2

ρ(X)

TKf(x) :=

∫
X

K(x, s)f(s)dρ(s).

In this setting TK is a compact, positive, self-adjoint operator. By the spectral theorem there

is a countable nonincreasing sequence of nonnegative values {σi}∞i=1 and an orthonormal set

{ϕi}∞i=1 in L2 such that TKϕi = σiϕi. We will assume that TK is strictly positive, i.e.

⟨f, TKf⟩2 > 0 for f ̸= 0, so that we have further that {ϕi}∞i=1 is an orthonormal basis of

L2 and σi > 0 for all i. Moreover since K is continuous we may select the ϕi so that they

are continuous functions, i.e. ϕi ∈ C(X) for each i. Then by Mercer’s theorem we can

decompose

K(x, y) =
∞∑
i=1

σiϕi(x)ϕi(y),

where the convergence is uniform. Furthermore the RKHS H associated with K is given by

the set of functions

H =

{
f ∈ L2 :

∞∑
i=1

|⟨f, ϕi⟩2|2

σi
<∞

}
,

where the inner product on H is given by

⟨f, g⟩H =
∞∑
i=1

⟨f, ϕi⟩2⟨g, ϕi⟩2
σi

.

Note that in this setting {√σiϕi}∞i=1 is an orthonormal basis of H. Define Kx := K(•, x).

Recall the RKHS has the defining properties

Kx ∈ H ∀x ∈ X,

h(x) = ⟨h,Kx⟩H ∀(x, h) ∈ X ×H.

We will let κ := supx∈X K(x, x) < ∞. From this we will have the useful inequality: for

h ∈ H

|h(x)| = |⟨h,Kx⟩H| ≤ ∥h∥H ∥Kx∥H = ∥h∥H
√

⟨Kx, Kx⟩H = ∥h∥H
√
K(x, x)

≤ κ1/2 ∥h∥H .

Furthermore the elements of H are bounded continuous functions and H is seperable.
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2.5.3.2 Hilbert-Schmidt and Trace Class Operators

We will recall some definitions from [RBV10]. A bounded operator on a separable Hilbert

space with associated norm ∥•∥ is called Hilbert-Schmidt if

∞∑
i=1

∥Aei∥2 <∞

for some (any) orthonormal basis {ei}i. For such an operator we define its Hilbert-Schmidt

norm ∥A∥HS to be the square root of the above sum. The Hilbert-Schmidt norm is the

analog of the Frobenius norm for matrices. It is useful to note that every Hilbert-Schmidt

operator is compact. The space of Hilbert-Schmidt operators is a Hilbert space with respect

to the inner product

⟨A,B⟩ =
∑
j

⟨Aej, Bej⟩.

A stronger notion is that of a trace class operator. We say a bounded operator on a

separable Hilbert space is trace class if

∞∑
i=1

⟨
√
A∗Aei, ei⟩ <∞

for some (any) orthonormal bases {ei}i. For such an operator we may define

Tr(A) :=
∞∑
i=1

⟨Aei, ei⟩.

By Lidskii’s theorem the above sum is also equal to the sum of the eigenvalues of A repeated

by multiplicity. The space of trace class operators is a Banach space with the norm ∥A∥TC =

Tr(
√
A∗A). The following inequalities will be useful

∥A∥ ≤ ∥A∥HS ≤ ∥A∥TC .

Furthermore if A is Hilbert-Schmidt and B is bounded we have

∥BA∥HS , ∥AB∥HS ≤ ∥A∥HS ∥B∥ .
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Note that in our setting we have

κ ≥
∫
X

K(x, x)dρ(x) =

∫
X

∞∑
i=1

σi|ϕi(x)|2dρ(x) =
∞∑
i=1

σi

∫
X

|ϕi(x)|2dρ(x)

=
∞∑
i=1

σi = Tr(TK),

where the interchange of integration and summation is justified by the monotone convergence

theorem. Thus TK is a trace class operator and we have the inequality

κ ≥
∞∑
i=1

σi

which will prove useful later.

2.5.3.3 Damped Deviations

Let x 7→ gs(x) ∈ L2 for each s ∈ [0, t] such that s 7→ ⟨ϕi, gs⟩2 is measureable for each i and∫ t
0
∥gs∥22 <∞. Then we define the integral∫ t

0

gsds

coordinatewise, meaning that
∫ t
0
gsds is the L2 function h such that

⟨h, ϕi⟩2 =
∫ t

0

⟨gs, ϕi⟩2ds.

Using this definition, we can now prove the “Damped Deviations” lemma.

Lemma 2.2.3. Let K(x, x′) be an arbitrary continuous, symmetric, positive-definite ker-

nel. Let [TKh](•) =
∫
X
K(•, s)h(s)dρ(s) be the integral operator associated with K and

let [T snh](•) = 1
n

∑n
i=1Ks(•, xi)h(xi) denote the operator associated with the time-dependent

NTK Ks. Then

rt = exp(−TKt)r0 +
∫ t

0

exp(−TK(t− s))(TK − T sn)rsds,

where the equality is in the L2 sense.
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Proof. We have that

∂srs(x) = − 1

n

n∑
i=1

Ks(x, xi)rs(xi) = −[T snrs](x),

where the equality is pointwise over x. ∂srs(x) is a continuous function of x since Ks is

continuous and is thus in L2. Therefore we can consider

⟨∂srs, ϕi⟩2 = ⟨−T snrs, ϕi⟩2.

By the continuity of s 7→ θs we have the parameters are locally bounded in time and

thus by Lemma 2.5.5 we have that ∥Ks∥∞ is also locally bounded therefore for any δ > 0, s0:

sup|s−s0|≤δ ∥Ks∥∞ <∞. Note then that

|∂srs(x)| ≤
1

n

n∑
i=1

|Ks(x, xi)||rs(xi)| ≤ ∥Ks∥∞ ∥r̂s∥Rn ≤ ∥Ks∥∞ ∥r̂0∥Rn .

It follows that ∥∂srs∥∞ is bounded locally uniformly in s. Therefore the following differen-

tiation under the integral sign is justified

d

ds
⟨rs, ϕi⟩2 = ⟨∂srs, ϕi⟩2.

Thus combined with our previous equality we get

d

ds
⟨rs, ϕi⟩2 = ⟨−T snrs, ϕi⟩2 = ⟨−TKrs, ϕi⟩2 + ⟨(TK − T sn)rs, ϕi⟩2

= ⟨rs,−TKϕi⟩2 + ⟨(TK − T sn)rs, ϕi⟩2 = −σi⟨rs, ϕi⟩2 + ⟨(TK − T sn)rs, ϕi⟩2,

where we have used that TK is self-adjoint. Therefore

d

ds
⟨rs, ϕi⟩2 + σi⟨rs, ϕi⟩2 = ⟨(TK − T sn)rs, ϕi⟩2.

Multiplying by the integrating factor exp(σis) we get

d

ds
[exp(σis)⟨rs, ϕi⟩2] = exp(σis)⟨(TK − T sn)rs, ϕi⟩2.
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Therefore applying the fundamental theorem of calculus after rearrangement we get

⟨rt, ϕi⟩2 = exp(−σit)⟨r0, ϕi⟩2 +
∫ t

0

exp(−σi(t− s))⟨(TK − T sn)rs, ϕi⟩2ds,

which is just the coordinatewise version of the desired result.

rt = exp(−TKt)r0 +
∫ t

0

exp(−TK(t− s))(TK − T sn)rsds.

2.5.3.4 Covering Number of Class

We will now estimate the covering number of the class of shallow networks with bounds on

their parameter norms. This lemma is slightly more general than what we will use but we

will particularize it latter as it’s general formulation presents no additional difficulty.

Lemma 2.5.28. Let

C = { aT√
m
σ(Wx+ b) + b0 : ∥a− a′∥2 ≤ ρ1, ∥W −W ′∥F ≤ ρ2,

∥b− b′∥2 ≤ ρ3, |b0 − b′0| ≤ ρ4,

1√
m

∥a∥2 ≤ ρ′1,
1√
m

∥W∥op ≤ ρ′2,
1√
m

∥b∥2 ≤ ρ′3 },

and

γ′ := |σ(0)|+ ∥σ′∥∞ [ρ′2M + ρ′3] .

Then the (proper) covering number of C in the uniform norm satisfies

N (C, ϵ, ∥∥∞) ≤
(
C ′

ϵ

)p
where p = md+ 2m+ 1 is the total number of parameters and C ′ equals

C ′ = Cmax {ρ1γ′, ρ2M ∥σ′∥∞ ρ′1, ρ3 ∥σ′∥∞ ρ′1, ρ4}

where C > 0 is an absolute constant.
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Proof. We will bound the pertubation of the function when changing the weights, specifically

we will bound

sup
x∈BM

∣∣∣∣ aT√
m
σ(Wx+ b)− ãT√

m
σ(W̃x+ b̃)

∣∣∣∣ .
Let x(1) = 1√

m
σ(Wx+ b) and x̃(1) = 1√

m
σ(W̃x+ b̃). Then note that we have∥∥x(1) − x̃(1)

∥∥
2
≤ 1√

m
∥σ′∥∞

∥∥∥(W − W̃ )x+ b− b̃
∥∥∥
2

≤ 1√
m

∥σ′∥∞
[∥∥∥W − W̃

∥∥∥
op
∥x∥2 +

∥∥∥b− b̃
∥∥∥
2

]
≤ 1√

m
∥σ′∥∞

[∥∥∥W − W̃
∥∥∥
F
M +

∥∥∥b− b̃
∥∥∥
2

]
=: γ.

Well then

|aTx(1) − ãT x̃(1)| ≤ |aT (x(1) − x̃(1))|+ |(a− ã)T x̃(1)|

≤ ∥a∥2 γ + ∥a− ã∥2
∥∥x̃(1)∥∥

2
.

Finally ∥∥x̃(1)∥∥
2
=

∥∥∥∥ 1√
m
σ(W̃x+ b̃)

∥∥∥∥
2

≤ |σ(0)|+ 1√
m

∥σ′∥∞
∥∥∥W̃x+ b̃

∥∥∥
2

≤ |σ(0)|+ 1√
m

∥σ′∥∞
[∥∥∥W̃∥∥∥

op
∥x∥2 +

∥∥∥b̃∥∥∥
2

]
≤ |σ(0)|+ 1√

m
∥σ′∥∞

[∥∥∥W̃∥∥∥
op
M +

∥∥∥b̃∥∥∥
2

]
≤ |σ(0)|+ ∥σ′∥∞ [ρ′2M + ρ′3] =: γ′.

Therefore

|aTx(1) − ãT x̃(1)| ≤ ∥a∥2 γ + ∥a− ã∥2 γ
′.

Thus if we have

∥a− ã∥2 ≤
ϵ

4γ′
=: ϵ1,

∥∥∥W − W̃
∥∥∥
F
≤ ϵ

8M ∥σ′∥∞ ρ′1
=: ϵ2,

∥∥∥b− b̃
∥∥∥
2
≤ ϵ

8 ∥σ′∥∞ ρ′1
=: ϵ3,

then

∥a∥2 γ ≤ ϵ ∥a∥2
4ρ′1

√
m

≤ ϵ

4
.
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Therefore

|aTx(1) − ãT x̃(1)| ≤ ϵ/2

and this bound holds for any x ∈ BM . If add biases b0 and b̃0 such that |b0 − b̃0| ≤ ϵ/2 we

simply get by the triangle inequality

|aTx(1) + b0 − (ãT x̃(1) + b̃0)| ≤ ϵ.

Thus to get a cover we can simply cover the sets

{a : ∥a− a′∥2 ≤ ρ1}, {W : ∥W −W ′∥F ≤ ρ2},

{b : ∥b− b′∥2 ≤ ρ3}, {b0 : |b0 − b′0| ≤ ρ4},

in the Euclidean norm and multiply the covering numbers. Recall that the ϵ covering number

for a Euclidean ball of radius R in Rs, say Nϵ, using the Euclidean norm satisfies(
cR

ϵ

)s
≤ Nϵ ≤

(
CR

ϵ

)s
for two absolute constants c, C > 0. Therefore we get that

N (C, ϵ, ∥∥∞) ≤
(
Cρ1
ϵ1

)m(
Cρ2
ϵ2

)md(
Cρ3
ϵ3

)m(
2Cρ4
ϵ

)
.

The desired result follows from

max

{
ρ1
ϵ1
,
ρ2
ϵ2
,
ρ3
ϵ3
,
2ρ4
ϵ

}
≤ C

ϵ
max {ρ1γ′, ρ2M ∥σ′∥∞ ρ′1, ρ3 ∥σ′∥∞ ρ′1, ρ4} .

We can now prove the following corollary which is the version of the previous lemma that

we will actually use for our neural network.

Corollary 2.5.29. Let

C = { aT√
m
σ(Wx+ b) + b0 :

1√
m

∥a∥2 ,
1√
m

∥W∥op ,
1√
m

∥b∥2 ≤ A, |b0| ≤ B }
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and

γ′ := |σ(0)|+ ∥σ′∥∞ [AM + A]

and assume m ≥ d. Then the (proper) covering number of C in the uniform norm satisfies

N (C, ϵ, ∥∥∞) ≤
(
Ψ(m, d)

ϵ

)p
,

where

Ψ(m, d) = Cmax{
√
mAγ′,

√
mdA2 ∥σ′∥∞M,

√
mA2 ∥σ′∥∞ , B}

=
√
mdO

(
max

{
A2,

B√
md

})
.

Proof. The idea is to apply Lemma 2.5.28 with a′ = 0, W ′ = 0, b′ = 0, and b′0 = 0. Note that

∥W∥F ≤
√
d ∥W∥op ≤

√
mdA. The result then follows by applying lemma with ρ1 =

√
mA,

ρ2 =
√
mdA, ρ3 =

√
mA and ρ4 = B and ρ′1 = ρ′2 = ρ′3 = A.

2.5.3.5 Uniform Convergence over the Class

We now show that ∥(Tn − TK∞)g∥2 is uniformly small for all g in a suitable class of functions

C ′. Ultimately we will show that rt ∈ C ′ and thus this result is towards proving that

∥(Tn − TK∞)rt∥2 is small.

Lemma 2.5.30. Let K(x, x′) by a continuous, symmetric, positive-definite kernel and

let κ = maxx∈X K(x, x) < ∞. Let TKh(•) =
∫
X
K(•, s)h(s)dρ(s) and Tnh(•) =

1
n

∑n
i=1K(•, xi)h(xi) be the associated operators. Let σ1 denote the largest eigenvalue of

TK. Let C and Ψ(m, d) be defined as in Corollary 2.5.29. We let C ′ = {g− f ∗ : g ∈ C}∩{g :

∥g∥∞ ≤ S} be the set where C is translated by the target function f ∗ then intersected with the

L∞ ball of radius S > 0. Then with probability at least 1− δ over the sampling of x1, . . . , xn

sup
g∈C′

∥(Tn − TK)g∥2 ≤
2S

√
σ1κ
√
2 log(c/δ) + 2p log(∥K∥∞ Ψ(m, d)

√
n)√

n
+

2√
n

=

2

[
1 + S

√
σ1κ
√
2 log(c/δ) + Õ(p)

]
√
n

.
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Proof. Let g ∈ C ′. We introduce the random variables Yi := Kxig(xi)−Ex∼ρ[Kxg(x)] taking

values in the Hilbert space H for i ∈ [n] where H is the RKHS associated with K. Note that

for any x

∥Kxg(x)∥H = |g(x)|
√
⟨Kx, Kx⟩H ≤ S

√
K(x, x) ≤ Sκ1/2.

Thus ∥Yi∥H ≤ 2Sκ1/2 a.s. Thus by Hoeffding’s inequality for random variables taking values

in a separable Hilbert space (see Section 2.4 [RBV10]) we have

P

(∥∥∥∥∥ 1n
n∑
i=1

Zi

∥∥∥∥∥
H

> t

)
≤ 2 exp

(
−nt2/2[2Sκ1/2]2

)
.

Note that by basic properties of the covering number we have that

N (C ′, ϵ, ∥∥∞) ≤ N (C, ϵ/2, ∥∥∞),

thus by Corollary 2.5.29 the covering number of C ′ satisfies (up to a redefinition of C)

N (C ′, ϵ, ∥∥∞) ≤
(
Ψ(m, d)

ϵ

)p
.

Let ∆ be an ϵ net of C ′ in the uniform norm. Note that 1
n

∑n
i=1 Yi = (Tn − TK)g. Thus by

taking a union bound we have

P
(
max
g∈∆

∥(Tn − TK)g∥H ≥ t

)
≤
(
Ψ(m, d)

ϵ

)p
2 exp

(
−nt2/2[2Sκ1/2]2

)
.

Note that for any probability measure ν and h ∈ L∞∣∣∣∣∫
X

K(x, s)h(s)dν(s)

∣∣∣∣ ≤ ∫
X

|K(x, s)||h(s)|dν(s) ≤ ∥K∥∞ ∥h∥∞ .

It follows that for any h ∈ L∞

∥(TK − Tn)h∥∞ ≤ 2 ∥K∥∞ ∥h∥∞ .

Note for any g ∈ C ′ we can pick ĝ in ∆ such that ∥g − ĝ∥∞ ≤ ϵ. Then

∥(Tn − TK)g∥2 ≤ ∥(Tn − TK)ĝ∥2 + ∥(Tn − TK)(g − ĝ)∥2

≤
√
σ1 ∥(Tn − TK)ĝ∥H + ∥(Tn − TK)(g − ĝ)∥∞

≤
√
σ1t+ 2 ∥K∥∞ ∥g − ĝ∥∞

≤
√
σ1t+ 2 ∥K∥∞ ϵ,
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where we have used the fact that ∥•∥2 ≤
√
σ1 ∥•∥H and ∥•∥2 ≤ ∥•∥∞ in the second inequality.

Thus by setting

t =
2Sκ1/2

√
2 log(c/δ) + 2p log(Ψ(m, d)/ϵ)√

n

we have with probability at least 1− δ

sup
g∈C′

∥(Tn − TK)g∥2 ≤

√
σ1

2Sκ1/2
√

2 log(c/δ) + 2p log(Ψ(m, d)/ϵ)√
n

+ 2 ∥K∥∞ ϵ.

This argument runs through for any ϵ > 0. Thus by setting ϵ = 1
∥K∥∞

√
n
we get the desired

result.

2.5.3.6 Neural Network is in the Class

In this section we demonstrate that the neural network in such a class as C as defined in

Lemma 2.5.28. Once we have this we can use Lemma 2.5.30 to show that ∥(TK∞ − Tn)rt∥2 is

uniformly small. The first step is to bound the parameter norms, hence the following lemma.

Lemma 2.5.31. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaussian

random variables with unit variance. Furthermore assume ∥1∥ψ2
, ∥wℓ∥ψ2

, ∥aℓ∥ψ2
, ∥bℓ∥ψ2

≤ K

for each ℓ ∈ [m] where K ≥ 1. Let Γ > 1, T > 0, D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

and

ξ(t) = max{ 1√
m

∥W∥op ,
1√
m

∥b∥2 ,
1√
m

∥a∥2 , 1}.

Furthermore assume

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2
, O(log(c/δ) + Õ(d))

}
.

Then with probability at least 1− δ

max
t∈[0,T ]

ξ(t) ≤ Γ

[
1 + C

√
d+K2

√
log(c/δ)√

m

]
.

If one instead does the doubling trick then the second condition on m can be removed from

the hypothesis and the same conclusion holds.
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Proof. First assume we are not doing the doubling trick. Note that the hypothesis on m is

strong enough to satisfy the hypothesis of Lemma 2.5.23, therefore we have with probability

at least 1− δ

max
t≤T

ξ(t) ≤ Γξ(0).

Well then separately by Lemma 2.5.17 with probability at least 1− δ

ξ(0) ≤ 1 + C

√
d+K2

√
log(c/δ)√

m
.

Thus by replacing δ with δ/2 in the previous statements and taking a union bound we have

with probability at least 1− δ

max
t∈[0,T ]

ξ(t) ≤ Γ

[
1 + C

√
d+K2

√
log(c/δ)√

m

]

which is the desired result. Now suppose instead one does the doubling trick. We recall that

the doubling trick does not change ξ(0). Thus we can run through the exact same argument

as before except when we apply Lemma 2.5.23 we can remove the second condition on m

from the hypothesis.

The following lemma bounds the bias term.

Lemma 2.5.32. For any initial conditions we have

|b0(t)| ≤ |b0(0)|+ t ∥r̂(0)∥Rn .

Proof. Note that

|∂tb0(t)| =

∣∣∣∣∣ 1n
n∑
i=1

r̂(t)i

∣∣∣∣∣ ≤ ∥r̂(t)∥Rn ≤ ∥r̂(0)∥Rn .

Thus by the fundamental theorem of calculus

|b0(t)| ≤ |b0(0)|+ t ∥r̂(0)∥Rn .
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The following lemma demonstrates that the residual rt = ft − f ∗ is bounded.

Lemma 2.5.33. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaussian

random variables with unit variance. Furthermore assume ∥1∥ψ2
, ∥wℓ∥ψ2

, ∥aℓ∥ψ2
, ∥bℓ∥ψ2

≤ K

for each ℓ ∈ [m] where K ≥ 1. Let Γ > 1, T > 0, D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

and assume

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2
, O(log(c/δ) + Õ(d))

}
.

Then with probability at least 1− δ for t ≤ T

∥ft − f ∗∥∞ ≤ ∥f0 − f ∗∥∞ + t ∥r̂(0)∥Rn CD
2Γ2

[
1 + C

√
d+K2

√
log(c/δ)√

m

]2
.

If one instead does the doubling trick then the second condition on m can be removed from

the hypothesis and the same conclusion holds.

Proof. Recall that

∂t(ft(x)− f ∗(x)) = − 1

n

n∑
i=1

Kt(x, xi)(ft(xi)− f ∗(xi)) = − 1

n

n∑
i=1

Kt(x, xi)r̂(t)i.

Thus

|∂t(ft(x)− f ∗(x))| ≤ 1

n

n∑
i=1

|Kt(x, xi)||r̂(t)i| ≤ ∥Kt∥∞ ∥r̂(t)∥Rn ≤ ∥Kt∥∞ ∥r̂(0)∥Rn .

Well by Lemma 2.5.5 we have that ∥Kt∥∞ ≤ CD2ξ2(t) where

ξ(t) = max{ 1√
m

∥W∥op ,
1√
m

∥b∥2 ,
1√
m

∥a∥2 , 1}.

Well by Lemma 2.5.31 we have that with probability at least 1− δ

max
t∈[0,T ]

ξ(t) ≤ Γ

[
1 + C

√
d+K2

√
log(c/δ)√

m

]
.

Thus by the fundamental theorem of calculus for t ≤ T

|ft(x)− f ∗(x)| ≤ |f0(x)− f ∗(x)|+ t ∥r̂(0)∥Rn CD
2Γ2

[
1 + C

√
d+K2

√
log(c/δ)√

m

]2
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Thus by taking the supremum over x we get

∥ft − f ∗∥∞ ≤ ∥f0 − f ∗∥∞ + t ∥r̂(0)∥Rn CD
2Γ2

[
1 + C

√
d+K2

√
log(c/δ)√

m

]2
,

which is the desired conclusion.

We can now finally prove that ∥(TK∞ − Tn)rt∥2 is uniformly small.

Lemma 2.5.34. Let K(x, x′) by a continuous, symmetric, positive-definite kernel and let κ =

maxxK(x, x) < ∞. Let TKh(•) =
∫
X
K(•, s)h(s)dρ(s) and Tnh(•) = 1

n

∑n
i=1K(•, xi)h(xi)

be the associated operators. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean,

subgaussian random variables with unit variance. Furthermore assume

∥1∥ψ2
, ∥wℓ∥ψ2

, ∥aℓ∥ψ2
, ∥bℓ∥ψ2

, ∥b0∥ψ2
≤ K ′

for each ℓ ∈ [m] where K ′ ≥ 1. Let Γ > 1, T > 0, D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

and assume

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2
, O(log(c/δ) + Õ(d))

}
.

If we are doing the doubling trick set S ′ = 0 and otherwise set

S ′ = CD(K ′)2
√
d log(CMÕ(

√
m)) + log(c/δ) = Õ(

√
d).

Then with probability at least 1− δ

sup
t≤T

∥(Tn − TK)rt∥2 = Õ

(
(∥f ∗∥∞ + S ′)(1 + TΓ2)

√
σ1κp√

n

)
and

∥r0∥∞ ≤ ∥f ∗∥∞ + S ′.

If we are performing the doubling trick the second condition on m can be removed and the

same conclusion holds.
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Proof. By Lemma 2.5.31 we have with probability at least 1− δ

max
t∈[0,T ]

ξ(t) ≤ Γ

[
1 + C

√
d+ (K ′)2

√
log(c/δ)√

m

]
=: A. (2.8)

Also by Lemma 2.5.32

|b0(t)| ≤ |b0(0)|+ t ∥r̂(0)∥Rn .

If we are doing the doubling trick then b0(0) = 0. Otherwise by Lemma 2.5.15 we have with

probability at least 1− δ

|b0(0)| ≤ CK ′
√
log(c/δ).

Furthermore by Lemma 2.5.22 we have

∥r̂(0)∥Rn ≤ ∥y∥Rn + ∥f(•; θ0)∥∞ .

Let L be defined as in Lemma 2.5.21, i.e.

L(m,σ, d,K ′, δ) :=
√
m ∥σ′∥∞

{
1 + C

√
d+ (K ′)2

√
log(c/δ)√

m

}2

= Õ(
√
m).

If we are not performing the doubling trick set

S ′ = CD(K ′)2
√
d log(CML) + log(c/δ).

Otherwise if we are performing the doubling trick set S ′ = 0. In either case by Lemma 2.5.21

we have with probability at least 1− δ

∥f(•; θ0)∥∞ ≤ S ′. (2.9)

In particular by Lemma 2.5.22 we have

∥r̂(0)∥Rn ≤ ∥y∥Rn + ∥f(•; θ0)∥∞ ≤ ∥y∥Rn + S ′.

Thus we can say

|b0(t)| ≤ |b0(0)|+ t ∥r̂(0)∥Rn ≤ CK ′
√

log(c/δ) + T (∥y∥Rn + S ′) =: B
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and this holds whether or not we are performing the doubling trick. Thus up until time T

the neural network is in class C as defined in Corollary 2.5.29 with parameters A and B as

defined above. Moreover by Lemma 2.5.33 separate from the randomness before we have

that with probability at least 1− δ

∥rt∥∞ ≤ ∥r0∥∞ + t ∥r̂(0)∥Rn CD
2Γ2

[
1 + C

√
d+ (K ′)2

√
log(c/δ)√

m

]2
.

Well note that when (2.9) holds we have

∥r̂(0)∥Rn ≤ ∥r0∥∞ ≤ ∥f ∗∥∞ + ∥f(•; θ0)∥∞ ≤ ∥f ∗∥∞ + S ′.

Thus

∥rt∥∞ ≤ (∥f ∗∥∞ + S ′)

1 + TCD2Γ2

[
1 + C

√
d+ (K ′)2

√
log(c/δ)√

m

]2 =: S.

Thus by taking a union bound and redefining δ we have by an application of Lemma 2.5.30

with S as defined in the hypothesis of the current theorem that with probability at least

1− δ

sup
t≤T

∥(Tn − TK)rt∥2 ≤
2

[
1 + S

√
σ1κ
√
2 log(c/δ) + Õ(p)

]
√
n

= Õ

(
(∥f ∗∥∞ + S ′)(1 + TΓ2)

√
σ1κp√

n

)
where we have used that S = Õ([∥f ∗∥∞ + S ′][1 + TΓ2]).

2.5.3.7 Proof of Theorem 2.3.5

We are almost ready to prove Theorem 2.3.5. However first we must introduce a couple

lemmas. The following lemma uses the damped deviations equation to bound the difference

between rt and exp(−TKt)r0.
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Lemma 2.5.35. Let K(x, x′) be a continuous, symmetric, positive-definite kernel with as-

sociated operator TKh(•) =
∫
X
K(•, s)h(s)dρ(s). Let T snh(•) = 1

n

∑n
i=1Ks(•, xi)h(xi) denote

the operator associated with the time-dependent NTK. Then

∥Pk(rt − exp(−TKt)r0)∥2 ≤
1− exp(−σkt)

σk
sup
s≤t

∥(TK − T sn)rs∥2 ,

and

∥rt − exp(−TKt)r0∥2 ≤ t · sup
s≤t

∥(TK − T sn)rs∥2 .

Proof. From Lemma 2.2.3 we have

rt = exp(−TKt)r0 +
∫ t

0

exp(−TK(t− s))(TK − T sn)rsds.

Thus for any k ∈ N

Pk(rt − exp(−TKt)r0) = Pk

∫ t

0

exp(−TK(t− s))(TK − T sn)rsds

=

∫ t

0

Pk exp(−TK(t− s))(TK − T sn)rsds.

Therefore

∥Pk(rt − exp(−TKt)r0)∥2 =
∥∥∥∥∫ t

0

Pk exp(−TK(t− s))(TK − T sn)rsds

∥∥∥∥
2

≤
∫ t

0

∥Pk exp(−TK(t− s))(TK − T sn)rs∥2 ds

≤
∫ t

0

∥Pk exp(−TK(t− s))∥ ∥(TK − T sn)rs∥2 ds

≤
∫ t

0

exp(−σk(t− s)) ∥(TK − T sn)rs∥2 ds

≤ 1− exp(−σkt)
σk

sup
s≤t

∥(TK − T sn)rs∥2 .
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Similarly

∥rt − exp(−TKt)r0∥2 =
∥∥∥∥∫ t

0

exp(−TK(t− s))(TK − T sn)rsds

∥∥∥∥
2

≤
∫ t

0

∥exp(−TK(t− s))(TK − T sn)rs∥2 ds

≤
∫ t

0

∥exp(−TK(t− s))∥ ∥(TK − T sn)rs∥2 ds

≤
∫ t

0

∥(TK − T sn)rs∥2 ds ≤ t · sup
s≤t

∥(TK − T sn)rs∥2 .

In light of the previous lemma we would like to have a bound for ∥(TK − T sn)rs∥2. This

is accomplished by the following lemma.

Lemma 2.5.36. Let K(x, x′) by a continuous, symmetric, positive-definite kernel. Let

TKh(•) =
∫
X
K(•, s)h(s)dρ(s) and Tnh(•) = 1

n

∑n
i=1K(•, xi)h(xi) be the associated oper-

ators. Let T snh(•) = 1
n

∑n
i=1Ks(•, xi)h(xi) denote the operator associated with the time-

dependent NTK. Then

sup
s≤T

∥(TK − T sn)rs∥2 ≤ sup
s≤T

∥(TK − Tn)rs∥2 + sup
s≤T

∥K −Ks∥∞ ∥r̂(0)∥Rn .

Proof. We have that

∥(TK − T sn)rs∥2 ≤ ∥(TK − Tn)rs∥2 + ∥(Tn − T sn)rs∥2 .

Now observe that

|(Tn − T sn)rs(x)| =

∣∣∣∣∣ 1n
n∑
i=1

[K(x, xi)−Ks(x, xi)]rs(xi)

∣∣∣∣∣
≤ 1

n

n∑
i=1

|K(x, xi)−Ks(x, xi)||rs(xi)|

≤ ∥K −Ks∥∞ ∥r̂(s)∥Rn ≤ ∥K −Ks∥∞ ∥r̂(0)∥Rn .

Therefore

∥(Tn − T sn)rs∥2 ≤ ∥(Tn − T sn)rs∥∞ ≤ ∥K −Ks∥∞ ∥r̂(0)∥Rn .
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Thus

sup
s≤T

∥(TK − T sn)rs∥2 ≤ sup
s≤T

∥(TK − Tn)rs∥2 + sup
s≤T

∥K −Ks∥∞ ∥r̂(0)∥Rn .

We are almost ready to finally prove Theorem 2.3.5. We must prove one final lemma

that combines Lemma 2.5.34 with the NTK deviation bounds in Theorem 2.5.26 to show

that ∥(TK∞ − T sn)rs∥2 is uniformly small.

Lemma 2.5.37. Assume that Wi,j ∼ W, bℓ ∼ B, aℓ ∼ A are all i.i.d zero-mean, subgaussian

random variables with unit variance. Furthermore assume ∥1∥ψ2
, ∥wℓ∥ψ2

, ∥aℓ∥ψ2
, ∥bℓ∥ψ2

≤ K

for each ℓ ∈ [m] where K ≥ 1. Let Γ > 1, T > 0, D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

and assume

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2
, O(log(c/δ) + Õ(d))

}
.

If we are doing the doubling trick set S ′ = 0 and otherwise set

S ′ = CDK2

√
d log(CMÕ(

√
m)) + log(c/δ) = Õ(

√
d), S = S ′ + ∥f ∗∥∞ .

Then with probability at least 1− δ

sup
s≤t

∥(TK∞ − T sn)rs∥2 = Õ

(
S

√
d√
m

[
1 + tΓ3S

]
+
S(1 + TΓ2)

√
σ1κp√

n

)
.

If we are performing the doubling trick the condition m ≥ 4D2O(log(c/δ)+Õ(d))T 2

[log(Γ)]2
can be removed

and the same conclusion holds.

Proof. Note by Lemma 2.5.36 we have

sup
s≤T

∥(TK∞ − T sn)rs∥2 ≤ sup
s≤T

∥(TK∞ − Tn)rs∥2 + sup
s≤T

∥K∞ −Ks∥∞ ∥r̂(0)∥Rn .

Well then by Theorem 2.5.26 we have with probability at least 1− δ that

sup
t≤T

∥Kt −K∞∥∞ = Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
.
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Separately by Lemma 2.5.34 we have with probability at least 1− δ

sup
s≤T

∥(TK∞ − Tn)rs∥2 = Õ

(
(∥f ∗∥∞ + S ′)(1 + TΓ2)

√
σ1κp√

n

)
= Õ

(
S(1 + TΓ2)

√
σ1κp√

n

)
,

and

∥r̂(0)∥Rn ≤ ∥r0∥∞ ≤ S.

The result follows then from taking a union bound and replacing δ with δ/2.

We now proceed to prove the main theorem of this paper.

Theorem 2.3.5. Assume that Assumptions 2.3.3 and 2.3.4 hold. Let Pk be the orthogonal

projection in L2 onto span{ϕ1, . . . , ϕk} and let D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}. If we

are doing the doubling trick set S ′ = 0 and otherwise set S ′ = O

(√
Õ(d) + log(c/δ)

)
, S =

∥f ∗∥∞ + S ′. Also let T > 0. Assume m ≥ D2 ∥y∥2Rn T 2, and

m ≥ O(log(c/δ) + Õ(d))max
{
T 2, 1

}
.

Then with probability at least 1− δ we have that for all t ≤ T and k ∈ N

∥Pk(rt − exp(−TK∞t)r0)∥2 ≤
1− exp(−σkt)

σk
Õ

(
S [1 + tS]

√
d√
m

+ S(1 + T )

√
p

√
n

)
,

and

∥rt − exp(−TK∞t)r0∥2 ≤ tÕ

(
S [1 + tS]

√
d√
m

+ S(1 + T )

√
p

√
n

)
.

Proof. By Lemma 2.5.35 we have for any k ∈ N

∥Pk(rt − exp(−TK∞t)r0)∥2 ≤
1− exp(−σkt)

σk
sup
s≤t

∥(TK∞ − T sn)rs∥2 ,

and furthermore

∥rt − exp(−TK∞t)r0∥ ≤ t sup
s≤t

∥(TK∞ − T sn)rs∥2 .

Well the conditions on m in the hypothesis suffice to apply Lemma 2.5.37 with Γ = e2 ensure

that with probability at least 1− δ

sup
s≤t

∥(TK∞ − T sn)rs∥2 = Õ

(
S

√
d√
m

[1 + tS] +
S(1 + T )

√
σ1κp√

n

)
.
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Since κ and σ1 only depend onK∞ which is fixed we will treat them as constants for simplicity

of presentation of the main result (note that they were tracked in all previous results for

anyone interested in the specific constants). The desired result follows from plugging in the

above expression into the previous bounds after setting σ1 and κ as constants.

Theorem 2.3.5 is strong enough to get a bound on the test error, which is demonstrated

by the following corollary.

Corollary 2.3.6. Assume Assumptions 2.3.3 and 2.3.4 hold. Suppose that f ∗ = O(1) and

assume we are performing the doubling trick where f0 ≡ 0 so that r0 = −f ∗. Let k ∈ N and

let Pk be the orthogonal projection onto span{ϕ1, . . . , ϕk}. Set t = log(
√
2∥Pkf

∗∥2/ϵ1/2)
σk

Then we

have that m = Ω̃( d
ϵσ4

k
) and n = Ω̃

(
p
σ4
kϵ

)
suffices to ensure with probability at least 1− δ

1

2
∥rt∥22 ≤ 2ϵ+ 2 ∥(I − Pk)f

∗∥22 .

Proof. Set t =
log(

√
2∥Pkf

∗∥2/ϵ1/2)
σk

. Note that

1

2
∥rt∥22 ≤

1

2
[∥exp(−TK∞t)r0∥2 + ∥rt − exp(−TK∞t)r0∥2]

2

≤ 2max{∥exp(−TK∞t)r0∥2 , ∥rt − exp(−TK∞t)r0∥2}
2

≤ 2
[
∥exp(−TK∞t)r0∥22 + ∥rt − exp(−TK∞t)r0∥22

]
.

Note that

∥exp(−TK∞t)r0∥22 = ∥exp(−TK∞t)f ∗∥22 =
∞∑
i=1

exp(−2σit)|⟨f ∗, ϕi⟩2|2

≤ exp(−2σkt)
k∑
i=1

|⟨f ∗, ϕi⟩2|2 +
∞∑

i=k+1

|⟨f ∗, ϕi⟩2|2

=
ϵ

2
+ ∥(I − Pk)f

∗∥22 .

We want to apply Theorem 2.3.5 with T = t. We need

m ≥ D2 ∥y∥2Rn t
2 and m ≥ O(log(c/δ) + Õ(d))max{t2, 1}.
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Note that since f ∗ = O(1) we have that ∥r̂(0)∥Rn = ∥y∥Rn = O(1). Then

D2 ∥y∥2Rn t
2 = Õ

(
t2
)
= Õ

(
1

σ2
k

)
.

thus our condition on m is strong enough to satisfy the first condition. Also O(log(c/δ) +

Õ(d))max{t2, 1} = Õ(dt2) which is satisfied by our condition on m. Thus by an application

of Theorem 2.3.5 with T = t we have with probability at least 1− δ

∥rt − exp(−TK∞t)r0∥2 ≤ tÕ

(
∥f ∗∥∞ [1 + t ∥f ∗∥∞]

√
d√
m

+ ∥f ∗∥∞ (1 + t)

√
p

√
n

)
.

Recall that f ∗ = O(1). Thus the first term above is

Õ

(
t2

√
d√
m

)
= Õ

( √
d

σ2
k

√
m

)
.

Thus settingm = Ω̃( d
ϵσ4

k
) suffices to ensure the first term is bounded by ϵ1/2/(2

√
2). Similarly

the second term is

Õ

(
t2
√
p

√
n

)
= Õ

( √
p

σ2
k

√
n

)
.

Thus setting n = Ω̃
(

p
σ4
kϵ

)
suffices to ensure that the second term bounded by ϵ1/2/(2

√
2).

Thus in this case we have

∥rt − exp(−TK∞t)r0∥2 ≤
ϵ1/2√
2
.

Thus we have

1

2
∥rt∥22 ≤ 2

[
∥exp(−TK∞t)r0∥22 + ∥rt − exp(−TK∞t)r0∥22

]
≤ 2ϵ+ 2 ∥(I − Pk)f

∗∥22 .

2.5.3.8 Deterministic Initialization

In this section we will prove a version of Theorem 2.3.5 where instead of θ0 being chosen

randomly we take θ0 to be some deterministic value. θ0 could represent the parameters

given by the output of some pretraining procedure that is independent of the training data,

or selected with a priori knowledge.
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Lemma 2.5.38. Let θ0 be a fixed parameter initialization. Let Γ > 1, T > 0, D :=

3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

ξ(t) = max{ 1√
m

∥W (t)∥op ,
1√
m

∥b(t)∥2 ,
1√
m

∥a(t)∥2 , 1},

ξ̃(t) = max{max
ℓ∈[m]

∥wℓ(t)∥2 , ∥a(t)∥∞ , ∥b(t)∥∞ , 1}.

Furthermore assume

m ≥ D2 ∥r̂(0)∥2Rn T 2

[log(Γ)]2
.

Then

max
t∈[0,T ]

ξ(t) ≤ Γξ(0), max
t∈[0,T ]

ξ̃(t) ≤ Γξ̃(0).

Proof. By the hypothesis on m we have that for t ≤ T

D ∥r̂(0)∥Rn t√
m

≤ log Γ.

Therefore by Lemmas 2.5.2 and 2.5.3 the desired result holds.

Lemma 2.5.39. Let θ0 be a fixed parameter initialization. Let Γ > 1, T > 0, D :=

3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

ξ(t) = max{ 1√
m

∥W (t)∥op ,
1√
m

∥b(t)∥2 ,
1√
m

∥a(t)∥2 , 1},

and assume

m ≥ D2 ∥r̂(0)∥2Rn T 2

[log(Γ)]2
.

Then for t ≤ T

∥ft − f ∗∥∞ ≤ ∥f0 − f ∗∥∞ + t ∥r̂(0)∥Rn CD
2Γ2ξ(0)2.

Proof. Recall that

∂t(ft(x)− f ∗(x)) = − 1

n

n∑
i=1

Kt(x, xi)(ft(xi)− f ∗(xi)) = − 1

n

n∑
i=1

Kt(x, xi)r̂(t)i.
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Thus

|∂t(ft(x)− f ∗(x))| ≤ 1

n

n∑
i=1

|Kt(x, xi)||r̂(t)i| ≤ ∥Kt∥∞ ∥r̂(t)∥Rn ≤ ∥Kt∥∞ ∥r̂(0)∥Rn .

Well by Lemma 2.5.5 we have that ∥Kt∥∞ ≤ CD2ξ2(t). Also by Lemma 2.5.38 we have that

max
t∈[0,T ]

ξ(t) ≤ Γξ(0).

Thus by the fundamental theorem of calculus for t ≤ T

|ft(x)− f ∗(x)| ≤ |f0(x)− f ∗(x)|+ t ∥r̂(0)∥Rn CD
2Γ2ξ(0)2.

Thus by taking the supremum over x we get

∥ft − f ∗∥∞ ≤ ∥f0 − f ∗∥∞ + t ∥r̂(0)∥Rn CD
2Γ2ξ(0)2

which is the desired conclusion.

Lemma 2.5.40. Let θ0 be a fixed parameter initialization. Let K0 denote the time-dependent

NTK at initialization θ0. Let

TK0h(•) =
∫
X

K0(•, s)h(s)dρ(s)

and

Tnh(•) =
1

n

n∑
i=1

K0(•, xi)h(xi)

be the associated operators. Let κ = maxxK0(x, x) and let σ1 denote the largest eigenvalue

of TK0. Let Γ > 1, T > 0, D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},

ξ(0) = max{ 1√
m

∥W (0)∥op ,
1√
m

∥b(0)∥2 ,
1√
m

∥a(0)∥2 , 1},

and assume

m ≥ D2 [∥f ∗∥∞ + ∥f0∥∞]2 T 2

[log(Γ)]2
.

Then with probability at least 1− δ over the sampling of x1, . . . , xn we have that

sup
t≤T

∥(Tn − TK0)rt∥2 = Õ

(
(∥f ∗∥∞ + ∥f0∥∞)(1 + TΓ2ξ(0)2)

√
σ1κp√

n

)
.
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Proof. First note that

∥r̂(0)∥Rn ≤ ∥r0∥∞ ≤ ∥f ∗∥∞ + ∥f0∥∞ . (2.10)

Thus our hypothesis on m is strong enough to apply Lemma 2.5.38 so that we have

max
t∈[0,T ]

ξ(t) ≤ Γξ(0) =: A. (2.11)

Also by Lemma 2.5.32

|b0(t)| ≤ |b0(0)|+ t ∥r̂(0)∥Rn ,

therefore

max
t≤T

|b0(t)| ≤ |b0(0)|+ T ∥r̂(0)∥Rn := B.

Thus up until time T the neural network is in class C as defined in Corollary 2.5.29 with

parameters A and B as defined above. Furthermore by Lemma 2.5.39 we have

∥ft − f ∗∥∞ ≤ ∥f0 − f ∗∥∞ + t ∥r̂(0)∥Rn CD
2Γ2ξ(0)2.

Well then by (2.10) and the above we have

∥rt∥∞ ≤ (∥f ∗∥∞ + ∥f0∥∞)
{
1 + TCD2Γ2ξ(0)2

}
=: S.

Thus by an application of Lemma 2.5.30 with K = K0 we have with probability at least

1− δ over the sampling of x1, . . . , xn that

sup
t≤T

∥(Tn − TK0)rt∥2 ≤
2

[
1 + S

√
σ1κ
√
2 log(c/δ) + Õ(p)

]
√
n

= Õ

(
(∥f ∗∥∞ + ∥f0∥∞)(1 + TΓ2ξ(0)2)

√
σ1κp√

n

)
where we have used that S = Õ([∥f ∗∥∞ + ∥f0∥∞][1 + TΓ2ξ(0)2]).

Lemma 2.5.41. Let θ0 be a fixed parameter initialization. Let Γ > 1, T > 0,

D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1},
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D′ :=
[
max{∥σ′∥∞ , ∥σ′′∥∞}2[M2 + 1] +D ∥σ′∥∞

]
max{1,M},

ξ(t) = max{ 1√
m

∥W (t)∥op ,
1√
m

∥b(t)∥2 ,
1√
m

∥a(t)∥2 , 1},

ξ̃(t) = max{max
ℓ∈[m]

∥wℓ(t)∥2 , ∥a(t)∥∞ , ∥b(t)∥∞ , 1}.

Furthermore assume

m ≥ D2 ∥r̂(0)∥2Rn T 2

[log(Γ)]2
.

Then for t ≤ T

∥K0 −Kt∥∞ ≤ t
CDD′
√
m

Γ3ξ(0)2ξ̃(0) ∥r̂(0)∥Rn .

Proof. Note by Lemma 2.5.24 we have that

sup
x,y∈BM×BM

|∂tKt(x, y)| ≤
CDD′
√
m

ξ(t)2ξ̃(t) ∥r̂(t)∥Rn .

Now applying Lemma 2.5.38 and the fact that ∥r̂(t)∥Rn ≤ ∥r̂(0)∥Rn from the above we get

that for t ≤ T

sup
x,y∈BM×BM

|∂tKt(x, y)| ≤
CDD′
√
m

Γ3ξ(0)2ξ̃(0) ∥r̂(0)∥Rn .

Thus by the fundamental theorem of calculus we have that for t ≤ T

∥K0 −Kt∥∞ ≤ t
CDD′
√
m

Γ3ξ(0)2ξ̃(0) ∥r̂(0)∥Rn .

Theorem 2.5.42. Let θ0 be a fixed parameter initialization. Assume that Assumption 2.3.3

holds. Let {ϕi}i denote the eigenfunctions of TK0 corresponding to the nonzero eigenval-

ues, which we enumerate σ1 ≥ σ2 ≥ · · · . Let Pk be the orthogonal projection in L2 onto

span{ϕ1, . . . , ϕk} and let D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}. Also let T > 0 and set

ξ(0) = max{ 1√
m

∥W (0)∥op ,
1√
m

∥b(0)∥2 ,
1√
m

∥a(0)∥2 , 1},

ξ̃(0) = max{max
ℓ∈[m]

∥wℓ(0)∥2 , ∥a(0)∥∞ , ∥b(0)∥∞ , 1},
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S := Õ([∥f ∗∥∞ + ∥f0∥∞][1 + Tξ(0)2]).

Assume

m ≥ D2 [∥f ∗∥∞ + ∥f0∥∞]2 T 2.

Then with probability at least 1− δ over the sampling of x1, . . . , xn we have that for all t ≤ T

and k ∈ N

∥Pk(rt − exp(−TK0t)r0)∥2 ≤
1− exp(−σkt)

σk
Õ

(
t√
m
ξ(0)2ξ̃(0) ∥r̂(0)∥2Rn +

S
√
σ1κp√
n

)
,

and

∥rt − exp(−TK0t)r0∥2 ≤ tÕ

(
t√
m
ξ(0)2ξ̃(0) ∥r̂(0)∥2Rn +

S
√
σ1κp√
n

)
.

Proof. By Lemma 2.5.35 we have for any k ∈ N

∥Pk(rt − exp(−TK0t)r0)∥2 ≤
1− exp(−σkt)

σk
sup
s≤t

∥(TK0 − T sn)rs∥2 ,

and furthermore

∥rt − exp(−TK0t)r0∥ ≤ t sup
s≤t

∥(TK0 − T sn)rs∥2 .

Let Tnh(•) = 1
n

∑n
i=1K0(•, xi)h(xi) be the discretization of TK0 . Thus by Lemma 2.5.36 we

have

sup
s≤t

∥(TK0 − T sn)rs∥2 ≤ sup
s≤t

∥(TK0 − Tn)rs∥2 + sup
s≤t

∥K0 −Ks∥∞ ∥r̂(0)∥Rn .

Note from the inequality

∥r̂(0)∥Rn ≤ ∥r0∥∞ ≤ ∥f ∗∥∞ + ∥f0∥∞

the hypothesis on m is strong enough to apply Lemma 2.5.41 with Γ = e. Well then by an

application of Lemma 2.5.41 with Γ = e we have that

sup
s≤t

∥Ks −K0∥∞ = Õ

(
t√
m
ξ(0)2ξ̃(0) ∥r̂(0)∥Rn

)
.

Separately by Lemma 2.5.40 we have with probability at least 1− δ

sup
s≤t

∥(TK0 − Tn)rs∥2 = Õ

(
(∥f ∗∥∞ + ∥f0∥∞)(1 + Tξ(0)2)

√
σ1κp√

n

)
.
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Combining these results we get that

sup
s≤t

∥(TK0 − T sn)rs∥2 ≤ Õ

(
t√
m
ξ(0)2ξ̃(0) ∥r̂(0)∥2Rn +

S
√
σ1κp√
n

)
.

The desired result follows from plugging in the above expression into the previous bounds.

2.5.4 Damped Deviations on the Training Set

The damped deviations lemma for the training set is incredibly simple to prove and yet is

incredibly powerful as we will see later. Here is the proof.

Lemma 2.2.1. Let G ∈ Rn×n be an arbitrary positive semidefinite matrix and let Gs be the

time dependent NTK matrix at time s. Then

r̂t = exp(−Gt)r̂0 +
∫ t

0

exp(−G(t− s))(G−Gs)r̂sds.

Proof. Note that we have the equation

∂tr̂t = −Gtr̂t = −Gr̂t + (G−Gt)r̂t.

Thus by multiplying by the integrating factor exp(Gt) and using the fact that exp(Gt) and

G commute we have that

∂t exp(Gt)r̂t = exp(Gt)(G−Gt)r̂t.

Therefore by the fundamental theorem of calculus

exp(Gt)r̂t − r̂0 =

∫ t

0

exp(Gs)(G−Gs)r̂sds,

which after rearrangement gives

r̂t = exp(−Gt)r̂0 +
∫ t

0

exp(−G(t− s))(G−Gs)r̂sds.
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Throughout we will let u1, . . . , un denote the eigenvectors of G∞ with corresponding

eigenvalues λ1, . . . , λn, normalized to have unit norm in ∥•∥Rn , i.e. ∥ui∥Rn = 1. The following

corollary demonstrates that if one is only interested in approximating the top eigenvectors,

then the deviations of the NTK only need to be small relative to the cutoff eigenvalue λi

that you care about.

Corollary 2.5.43. Let Pk be the orthogonal projection onto span{u1, . . . , uk}. Then for any

k ∈ [n]

∥Pk(r̂t − exp(−G∞t)r̂0)∥Rn ≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn

1− exp(−λkt)
λk

≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn t.

In particular

∥r̂t − exp(−G∞t)r̂0∥Rn ≤ sup
s≤t

∥G∞ −Gs∥Rn ∥r̂0∥Rn

1− exp(−λnt)
λn

≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn t.

Proof. Note by Lemma 2.2.1 we have that

r̂t − exp(−G∞t)r̂0 =

∫ t

0

exp(−G∞(t− s))(G∞ −Gs)r̂sds.

Therefore for any k ∈ [n]

Pk(r̂t − exp(−G∞t)r̂0) = Pk

∫ t

0

exp(−G∞(t− s))(G∞ −Gs)r̂sds

=

∫ t

0

Pk exp(−G∞(t− s))(G∞ −Gs)r̂sds.
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Thus

∥Pk(r̂t − exp(−G∞t)r̂0)∥Rn =

∥∥∥∥∫ t

0

Pk exp(−G∞(t− s))(G∞ −Gs)r̂sds

∥∥∥∥
Rn

≤
∫ t

0

∥Pk exp(−G∞(t− s))(G∞ −Gs)r̂s∥Rn ds

≤
∫ t

0

∥Pk exp(−G∞(t− s))∥op ∥G
∞ −Gs∥op ∥r̂s∥Rn ds

≤
∫ t

0

exp(−λk(t− s)) ∥G∞ −Gs∥op ∥r̂0∥Rn ds

≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn

∫ t

0

exp(−λk(t− s))ds

≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn

1− exp(−λkt)
λk

≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn t

where we have used the inequality 1 + x ≤ exp(x) in the last inequality. By specializing to

the case k = n since span{u1, . . . , un} = Rn we have

∥r̂t − exp(−G∞t)r̂0∥Rn ≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn

1− exp(−λnt)
λn

≤ sup
s≤t

∥G∞ −Gs∥op ∥r̂0∥Rn t.

This completes the proof.

Theorem 2.3.5 uses the concept of damped deviations to compare rt with exp(−TK∞t)r0.

We can also prove the analogous statement on the training set that compares r̂t to

exp(−G∞t)r̂0. The following is the analog of Theorem 2.3.5 on the training set.

Theorem 2.5.44. Let D := 3max{|σ(0)|,M ∥σ′∥∞ , ∥σ′∥∞ , 1}. Also let Γ > 1, T > 0.

Furthermore assume

m ≥ 4D2 ∥y∥2Rn T 2

[log(Γ)]2
and m ≥ max

{
4D2O(log(c/δ) + Õ(d))T 2

[log(Γ)]2
, O(log(c/δ) + Õ(d))

}
.
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Let Pk be the orthogonal projection onto span{u1, . . . , uk}. Then with probability at least 1−δ

we have for any k ∈ [n] and t ≤ T

∥Pk(r̂t − exp(−G∞t)r̂0)∥Rn ≤ 1− exp(−λkt)
λk

∥r̂0∥Rn Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])

≤ t ∥r̂0∥Rn Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
,

in particular

∥r̂t − exp(−G∞t)r̂0∥Rn ≤ 1− exp(−λnt)
λn

∥r̂0∥Rn Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])

≤ t ∥r̂0∥Rn Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
.

If one instead does the doubling trick the term 4D2O(log(c/δ)+Õ(d))T 2

[log(Γ)]2
can be removed from the

hypothesis on m and the same conclusion holds.

Proof. By Corollary 2.5.43 we have

∥Pk(r̂t − exp(−G∞t)r̂0)∥Rn ≤ sup
s≤t

∥G∞ −Gs∥Rn ∥r̂0∥Rn

1− exp(−λkt)
λk

≤ sup
s≤t

∥G∞ −Gs∥Rn ∥r̂0∥Rn t.

Well by Theorem 2.5.27 we have with probability at least 1− δ

sup
s≤t

∥G∞ −Gt∥op ≤ Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])
.

The desired result follows from plugging this in to the previous bounds.

2.5.5 Proof of Theorem 2.3.7

We can now quickly prove our analog of Theorem 4.1 from [ADH19a].

Theorem 2.3.7. Assume m = Ω̃(dn5ϵ−2λn(H
∞)−4) and m ≥ O(log(c/δ) + Õ(d)) and f ∗ =

O(1). Assume we are performing the doubling trick so that r̂0 = −y. Let v1, . . . , vn denote
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the eigenvectors of G∞ normalized to have unit L2 norm ∥vi∥2 = 1. Then with probability

at least 1− δ

r̂t = exp(−G∞t)(−y) + δ(t),

where supt≥0 ∥δ(t)∥2 ≤ ϵ. In particular

∥r̂t∥2 =

√√√√ n∑
i=1

exp(−2λit)|⟨y, vi⟩2|2 ± ϵ.

Proof. Set T = log(∥r̂(0)∥Rn

√
n/ϵ)/λn. Note that since f ∗ = O(1) and we are performing

the doubling trick we have that ∥r̂0∥Rn = ∥y∥Rn = O(1). Recall that λn := 1
n
λn(H

∞)

therefore m = Ω̃(dn5ϵ−2λn(H
∞)−4) = Ω̃(dnϵ−2λ−4

n ) is strong enough to ensure that

m ≥ 4D2 ∥y∥2Rn T 2

[log(2)]2
= Õ(λ−2

n ), m ≥ O(log(c/δ) + Õ(d)) = Õ(d).

Then by an application of Theorem 2.5.44 with Γ = 2 we have with probability at least 1− δ

that for all t ≤ T

∥r̂t − exp(−G∞t)r̂0∥Rn ≤ 1− exp(−λnt)
λn

∥r̂0∥Rn Õ

( √
d√
m

[
1 + tΓ3 ∥r̂(0)∥Rn

])

≤ ∥r̂0∥Rn

λn
Õ

( √
d√
m

[
1 + TΓ3 ∥r̂(0)∥Rn

])
.

Since f ∗ = O(1) we have that ∥r̂0∥Rn = ∥y∥Rn = O(1) therefore the above bound is

Õ

( √
d√
m

T

λn

)
= Õ

( √
d√
m

1

λ2n

)
.

Thus m = Ω̃(dn5ϵ−2λn(H
∞)−4) = Ω̃(dnϵ−2λ−4

n ) suffices to make the above term bounded by

ϵ/
√
n. Thus in this case

sup
t≤T

∥r̂t − exp(−G∞t)r̂0∥Rn ≤ ϵ/
√
n.

Let δ(t) = r̂t − exp(−G∞t)r̂0. We have just shown that supt≤T ∥δ(t)∥Rn ≤ ϵ/
√
n. We will

now bound δ(t) for t ≥ T . Note that for t ≥ T

∥exp(−G∞t)r̂0∥Rn ≤ exp(−λnt) ∥r̂0∥Rn ≤ exp(−λnT ) ∥r̂0∥Rn ≤ ϵ/
√
n.
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Also for t ≥ T

∥r̂t∥Rn ≤ ∥r̂T∥Rn ≤ ∥exp(−G∞T )r̂0∥Rn + ∥δ(T )∥Rn ≤ 2ϵ/
√
n

where we have used that ∥r̂t∥Rn is nonincreasing for gradient flow. Therefore for t ≥ T

∥δ(t)∥Rn ≤ ∥r̂t∥Rn + ∥exp(−G∞t)r̂0∥Rn ≤ 3ϵ/
√
n.

Thus we have shown

sup
t≥0

∥δ(t)∥Rn ≤ 3ϵ/
√
n.

The desired result follows from replacing ϵ with ϵ/3 in the previous argument and using the

fact that ∥•∥2 =
√
n ∥•∥Rn and r̂0 = −y.

2.5.6 Proof of Theorem 2.3.8

Using some lemmas that we leave to the following section, we can prove Theorem 2.3.8 quite

quickly using the damped deviations equation and the NTK deviation bounds.

2.5.6.1 Main Theorem

Theorem 2.3.8. Assume Assumptions 2.3.3 and 2.3.4 hold. Furthermore assume m =

Ω̃
(
ϵ−2dT 2 ∥f ∗∥2∞ (1 + T ∥f ∗∥∞)2

)
where T > 0 is a time parameter and m ≥ O(log(c/δ) +

Õ(d)) and n ≥ 128κ2 log(2/δ)
(σk−σk+1)2

. Also assume f ∗ ∈ L∞(X) ⊂ L2(X) and let P TK∞ be the or-

thogonal projection onto the eigenspaces of TK∞ corresponding to the eigenvalue α ∈ σ(TK∞)

and higher. Assume that
∥∥(I − P TK∞ )f ∗

∥∥
∞ ≤ ϵ′ for some ϵ′ ≥ 0. Pick k so that σk = α and

σk+1 < α, i.e. k is the index of the last repeated eigenvalue corresponding to α in the ordered

sequence {σi}i. Also assume we are performing the doubling trick so that r̂(0) = −y. Then

we have with probability at least 1− 3δ over the sampling of x1, . . . , xn and θ0 that for t ≤ T

∥r̂t∥Rn ≤ exp(−λkt) ∥y∥Rn +
4κ ∥f ∗∥2

√
10 log(2/δ)

(σk − σk+1)
√
n

+ 2ϵ′ + ϵ.
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Proof. Recall that we have ∥r̂(0)∥Rn = ∥−y∥Rn ≤ ∥f ∗∥∞. Note that

m = Ω̃
(
ϵ−2dT 2 ∥f ∗∥2∞ (1 + T ∥f ∗∥∞)2

)
and m ≥ O(log(c/δ) + Õ(d)) are strong enough to ensure the hypothesis of Theorem 2.5.44

is satisfied with Γ = 2. From now on Γ = 2 = O(1) and will be treated as a constant. Then

by Theorem 2.5.44 with probability at least 1− δ we have for t ≤ T

∥r̂t − exp(−G∞t)r̂0∥Rn ≤ T ∥r̂0∥Rn Õ

( √
d√
m

[
1 + TΓ3 ∥r̂(0)∥Rn

])
.

Thus using the fact from the doubling trick that ∥r̂(0)∥Rn = ∥y∥Rn ≤ ∥f ∗∥∞ setting m =

Ω̃
(
ϵ−2dT 2 ∥f ∗∥2∞ (1 + T ∥f ∗∥∞)2

)
suffices to ensure that ∥r̂t − exp(−G∞t)r̂0∥Rn ≤ ϵ for t ≤

T . Let Pk be the orthogonal projection onto span{u1, . . . , uk}. Well then for t ≤ T

∥r̂t∥Rn ≤ ∥exp(−G∞t)r̂0∥Rn + ϵ ≤ ∥Pk exp(−G∞t)r̂0∥Rn + ∥(I − Pk) exp(−G∞t)r̂0∥Rn + ϵ

≤ exp(−λkt) ∥r̂0∥Rn + ∥(I − Pk)r̂0∥Rn + ϵ.

By Theorem 2.5.50 we have with probability at least 1− 2δ over the sampling of x1, . . . , xn

that

∥(I − Pk)y∥Rn ≤ 2ϵ′ +
4κ ∥f ∗∥2

√
10 log(2/δ)

(σk − σk+1)
√
n

.

Since we are using the doubling trick we have r̂0 = −y. Thus we have

∥(I − Pk)r̂0∥Rn ≤ 2ϵ′ +
4κ ∥f ∗∥2

√
10 log(2/δ)

(σk − σk+1)
√
n

.

Thus by taking a union bound we have with probability at least 1− 3δ for all t ≤ T

∥r̂t∥Rn ≤ exp(−λkt) ∥r̂0∥Rn +
4κ ∥f ∗∥2

√
10 log(2/δ)

(σk − σk+1)
√
n

++2ϵ′ + ϵ.

The desired result follows from r̂0 = −y.

2.5.6.2 Control of Initial Residual

We will use some of the notation and operator theory from Section 2.5.3.1 and Section 2.5.3.2

in this section, thus it is recommended to have read those sections first. Let u1, . . . , un denote
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the eigenvectors of G∞ normalized to have unit norm in ∥•∥Rn , i.e. ∥ui∥Rn = 1. Let Pk be

the orthogonal projection onto span{u1, . . . , uk}. The goal of this section is to upper bound

the extent to which the labels y participate in the bottom eigendirections of G∞, i.e. to

show that ∥(I − Pk)y∥Rn is small. Let P TK∞ be some projection onto the top eigenspaces

of TK∞ . The idea is to show that if
∥∥(I − P TK∞ )f ∗

∥∥
2
is small then by picking Pk so that

rank(Pk) = rank(P TK∞ ) then ∥(I − Pk)y∥Rn is also small with high probability. The results

in this section essentially all appear in the proofs in [SY19]. We repeat the arguments here

for completeness and due to differences in notation and constants.

We use some of the same machinery in [RBV10]. We define operators LH : H → H and

Tn : H → H by

THf :=

∫
X

⟨f,Ks⟩HKsdρ(s),

Tnf :=
1

n

n∑
i=1

⟨f,Kxi⟩HKxi .

Note that TH is equal to TK∞ on H and Tn is simply the operator you get if you replace ρ

in the defintion of TH with the empirical measure 1
n

∑n
i=1 δxi . We define the “restriction”

operator Rn : H → Rn by

Rnf = [f(x1), f(x2), . . . , f(xn)]
T .

Note here the domain of Rn is H but in other parts of this paper we will allow Rn to take

more general functions as input. Define R∗
n : Rn → H by

R∗
n(v1, . . . , vn) =

1

n

n∑
i=1

viKxi .

It can be seen that

⟨R∗
nv, f⟩H = ⟨v,Rnf⟩Rn ,

and thus R∗
n is the adjoint of Rn. Using these operators we may write Tn = R∗

nRn and

G∞ = RnR
∗
n. It will follow that Tn and G∞ have the same eigenvalues (up to some zero

eigenvalues) and their eigenvectors are related. We recall the following result from [RBV10]

(Proposition 9):
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Theorem 2.5.45. [RBV10] The following hold

• The operator Tn is finite rank, self-adjoint and positive, and the matrix G∞ is sym-

metric and semi-positive definite. In particular the spectrum σ(Tn) of Tn has finitely

many non-zero elements and they are contained in [0, κ].

• The spectrum of Tn and G∞ are the same up to zero, specifically σ(G∞) \ {0} =

σ(Tn)\{0}. Moreover if λi is a nonzero eigenvalue and ui and vi are the corresponding

eigenvector and eigenfunction for G∞ and Tn respectively (normalized to norm 1 in

∥•∥Rn and ∥•∥H respectively), then

ui =
1

λ
1/2
i

Rnvi,

vi =
1

λ
1/2
i

R∗
nui =

1

λ
1/2
i

1

n

n∑
j=1

Kxj(ui)j,

where (ui)j is the jth component of the vector ui.

• The following decompositions hold

G∞w =
k∑
j=1

λj⟨w, uj⟩Rnuj,

Tnf =
k∑
j=1

λj⟨f, vj⟩Hvj,

where k = rank(G∞) = rank(Tn) and both sums run over the positive eigenvalues.

{ui}ki=1 is an orthonormal basis for ker(G∞)⊥ and {vi}ki=1 is an orthonormal basis for

ker(Tn)
⊥.

We will make use of the following lemma from (Proposition 6 [RBV10]):

Lemma 2.5.46. [RBV10] Let α1 > α2 > . . . > αN > αN+1 be the top N + 1 distinct

eigenvalues of TH. Let P
TH be the orthogonal projection onto the eigenfunctions of TH corre-

sponding to eigenvalues αN and above. Let P Tn be the projection onto the top k eigenvectors
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of Tn so that k = dim(range(Tn)) = dim(range(TH)). Assume further that

∥TH − Tn∥HS ≤ αN − αN+1

4
.

Then ∥∥P TH − P Tn
∥∥
HS

≤ 2

αN − αN+1

∥TH − Tn∥HS .

The following lemma will be useful.

Lemma 2.5.47. Let f ∗ ∈ L2 and let P TH and P Tn be defined as in Lemma 2.5.46. Then

n∑
i=k+1

|⟨RnP
TK∞f ∗), ui⟩Rn|2 ≤ ∥f ∗∥22 λk+1

σk

∥∥P TH − P Tn
∥∥2
HS

.

Proof. We repeat the same proof as in [SY19] for completeness and to remove confusion that

may arise from differences in notation. The proof was originally given in [RBV10] albeit

with a minor error involving missing multiplicative factors. Note that

P TK∞f ∗ =
k∑
j=1

⟨f ∗, ϕj⟩2ϕj.

Therefore

⟨RnP
TK∞f ∗, ui⟩Rn =

k∑
j=1

⟨f ∗, ϕj⟩2⟨Rnϕj, ui⟩Rn .

Applying Cauchy-Schwarz we get

|⟨RnP
TK∞f ∗, ui⟩Rn|2 ≤

[
k∑
j=1

|⟨f ∗, ϕj⟩2|2
][

k∑
j=1

|⟨Rnϕj, ui⟩Rn|2
]

≤ ∥f ∗∥22
k∑
j=1

|⟨Rnϕj, ui⟩Rn|2.

Well then note that

k∑
j=1

|⟨Rnϕj, ui⟩Rn|2 =
k∑
j=1

|⟨ϕj, R∗
nui⟩H|2 =

k∑
j=1

λi|⟨ϕj, vi⟩H|2.
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Therefore

n∑
i=k+1

|⟨RnP
TK∞f ∗), ui⟩Rn|2 ≤ ∥f ∗∥22

n∑
i=k+1

k∑
j=1

λi|⟨ϕj, vi⟩H|2

≤ ∥f ∗∥22 λk+1

n∑
i=k+1

k∑
j=1

|⟨ϕj, vi⟩H|2. (2.12)

On the other hand ∥∥P TH − P Tn
∥∥2
HS

≥
k∑
j=1

∥∥(P TH − P Tn)
√
σjϕj

∥∥2
H

≥
k∑
j=1

n∑
i=k+1

|⟨(P TH − P Tn)
√
σjϕj, vi⟩H|2.

Note that for 1 ≤ j ≤ k and k + 1 ≤ i ≤ n we have

⟨(P TH − P Tn)
√
σjϕj, vi⟩H = ⟨P TH√σjϕj, vi⟩H − ⟨P Tn√σjϕj, vi⟩H

= ⟨√σjϕj, vi⟩H − ⟨√σjϕj, P Tnvi⟩H = ⟨√σjϕj, vi⟩H.

So

k∑
j=1

n∑
i=k+1

|⟨(P TH − P Tn)
√
σjϕj, vi⟩H|2 =

k∑
j=1

n∑
i=k+1

|⟨√σjϕj, vi⟩H|2

≥ σk

k∑
j=1

n∑
i=k+1

|⟨ϕj, vi⟩H|2.

To summarize we have shown

1

σk

∥∥P TH − P Tn
∥∥2
HS

≥
k∑
j=1

n∑
i=k+1

|⟨ϕj, vi⟩H|2.

Combining this with (2.12) we get the final result

n∑
i=k+1

|⟨RnP
TK∞f ∗), ui⟩Rn|2 ≤ ∥f ∗∥22 λk+1

σk

∥∥P TH − P Tn
∥∥2
HS

.

We can use Lemma 2.5.47 to produce the following bound.
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Lemma 2.5.48. Let f ∗ ∈ L2 and let P TH and P Tn be defined as in Lemma 2.5.46. Then

n∑
i=k+1

|⟨Rnf
∗, ui⟩Rn|2 ≤ 2

n

n∑
i=1

|(I − P TK∞ )f ∗(xi)|2 + 2
∥f ∗∥22 λk+1

σk

∥∥P TH − P Tn
∥∥2
HS

.

Proof. We have that

⟨Rnf
∗, ui⟩Rn = ⟨Rn(I − P TK∞ )f ∗, ui⟩Rn + ⟨RnP

TK∞f ∗, ui⟩Rn .

Thus from the inequality (a+ b)2 ≤ 2(a2 + b2) we get

n∑
i=k+1

|⟨Rnf
∗, ui⟩Rn|2 ≤ 2

n∑
i=k+1

|⟨Rn(I − P TK∞ )f ∗, ui⟩Rn|2 + 2
n∑

i=k+1

|⟨RnP
TK∞f ∗, ui⟩Rn|2.

To control the first term we have

n∑
i=k+1

|⟨Rn(I − P TK∞ )f ∗, ui⟩Rn|2 ≤
∥∥(I − P TK∞ )f ∗∥∥2

Rn =
1

n

n∑
i=1

|(I − P TK∞ )f ∗(xi)|2.

Then by applying Lemma 2.5.47 to the second term we get the desired result.

We recall the following lemma from (Theorem 7 [RBV10]):

Lemma 2.5.49. [RBV10] With probability at least 1− δ over the sampling of x1, . . . , xn

∥TH − Tn∥HS ≤
2κ
√

2 log(2/δ)√
n

.

Now finally we can provide a bound on the labels participation in the bottom eigendi-

rections.

Theorem 2.5.50. Assume f ∗ ∈ L2(X) and let P TK∞ be the orthogonal projection onto the

eigenspaces of TK∞ corresponding to the eigenvalue α ∈ σ(TK∞) and higher. Assume that∥∥(I − P TK∞ )f ∗∥∥
∞ ≤ ϵ′

for some ϵ′ ≥ 0. Pick k so that σk = α and σk+1 < α, i.e. k is the index of the last repeated

eigenvalue corresponding to α in the ordered sequence {σi}i. Let Pk denote the orthogonal

projection onto span{u1, . . . , uk}. Finally assume

n ≥ 128κ2 log(2/δ)

(σk − σk+1)2
.
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Then we have with probability at least 1− 2δ over the sampling of x1, . . . , xn that

∥(I − Pk)Rnf
∗∥Rn = ∥(I − Pk)y∥Rn ≤ 2ϵ′ +

4κ ∥f ∗∥2
√

10 log(2/δ)

(σk − σk+1)
√
n

.

Proof. From Lemma 2.5.48 we have

n∑
i=k+1

|⟨Rnf
∗, ui⟩Rn|2 ≤ 2

n

n∑
i=1

|(I − P TK∞ )f ∗(xi)|2 + 2
∥f ∗∥22 λk+1

σk

∥∥P TH − P Tn
∥∥2
HS

.

By assumption we have that the first term is bounded by 2(ϵ′)2. Now we must control the

term

2
∥f ∗∥22 λk+1

σk

∥∥P TH − P Tn
∥∥2
HS

.

By Lemma 2.5.49 we have with probability at least 1− δ

∥TH − Tn∥HS ≤
2κ
√

2 log(2/δ)√
n

.

Then

n ≥ 128κ2 log(2/δ)

(σk − σk+1)2

suffices so that the right hand side above is less than or equal to σk−σk+1

4
. Thus by Lemma

2.5.46 we have that

∥∥P TH − P Tn
∥∥
HS

≤ 2

σk − σk+1

∥TH − Tn∥HS ≤ 2

σk − σk+1

2κ
√

2 log(2/δ)√
n

.

Thus from the above inequality we get that

2
∥f ∗∥22 λk+1

σk

∥∥P TH − P Tn
∥∥2
HS

≤ 64κ2 ∥f ∗∥22 λk+1 log(2/δ)

σk(σk − σk+1)2 · n
.

By Proposition 10 in [RBV10] we have separately with probability at least 1− δ

λk+1 ≤ σk+1 +
2κ
√

2 log(2/δ)√
n

.

Note that

n ≥ 128κ2 log(2/δ)

(σk − σk+1)2
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implies that
1√
n
≤ σk − σk+1

8κ
√

2 log(2/δ)
,

therefore

λk+1 ≤ σk+1 +
2κ
√
2 log(2/δ)√
n

≤ σk +
1

4
(σk − σk+1) ≤

5

4
σk.

Thus

2
∥f ∗∥22 λk+1

σk

∥∥P TH − P Tn
∥∥2
HS

≤ 64κ2 ∥f ∗∥22 λk+1 log(2/δ)

σk(σk − σk+1)2n
≤ 80κ2 ∥f ∗∥22 log(2/δ)

(σk − σk+1)2n
.

Thus combined with our previous results we finally get that

∥(I − Pk)Rnf
∗∥2Rn =

n∑
i=k+1

|⟨Rnf
∗, ui⟩Rn|2 ≤ 2(ϵ′)2 +

80κ2 ∥f ∗∥22 log(2/δ)
(σk − σk+1)2n

.

Thus from the inequality
√
a+ b ≤

√
2(
√
a+

√
b) which holds for all a, b ≥ 0 we have

∥(I − Pk)Rnf
∗∥Rn ≤ 2ϵ′ +

4κ ∥f ∗∥2
√

10 log(2/δ)

(σk − σk+1)
√
n

.

Since y = Rnf
∗ this provides the desired conclusion.

2.5.7 NTK Integral Operator is Strictly Positive

Note that

K∞(x, x′) = E[σ(⟨w, x⟩2+b)σ(⟨w, x′⟩2+b)]+E[a2σ′(⟨w, x⟩2+b)σ′(⟨w, x′⟩2+b)][⟨x, x′⟩2+1]+1

where the expectation is taken with respect to the parameter initialization. It suffices to

show that the kernel corresponding to the first term above

Ka(x, x
′) := E[σ(⟨w, x⟩2 + b)σ(⟨w, x′⟩2 + b)]

induces a strictly positive operator TKaf(x) =
∫
X
Ka(x, s)f(s)dρ(s). From the discussion in

Section 2.5.3.1 it suffices to show that the RKHS corresponding to Ka is dense in L2. In

Proposition 4.1 in [RR08b] they showed that the RKHS associated with Ka has dense subset

F :=

{
x 7→

∫
Θ

a(w, b)σ(⟨w, x⟩2 + b)dµ(w, b) :

∫
Θ

|a(w, b)|2dµ(w, b) <∞
}
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where µ is the measure for the parameter initialization, i.e. (w, b) ∼ µ. Since C(X) is dense

in L2(X) it suffices to show that F is dense in C(X) which is provided by the following

theorem:

Theorem 2.5.51. Let σ be L-Lipschitz and not a polynomial. Assume that µ is a strictly

positive measure supported on all of Rd+1. Also assume that∫
Rd+1

[∥w∥22 + ∥b∥22]dµ(w, b) <∞.

Then F is dense in C(X) under the uniform norm.

Proof. We first show that F ⊂ C(X). Suppose we have f ∈ F and write

f(x) =

∫
Rd+1

a(w, b)σ(⟨w, x⟩2 + b)dµ(w, b).

Well then

|f(x)− f(x′)| =
∣∣∣∣∫

Rd+1

a(w, b)[σ(⟨w, x⟩2 + b)− σ(⟨w, x′⟩2 + b)]dµ(w, b)

∣∣∣∣
≤
∫
Rd+1

|a(w, b)||σ(⟨w, x⟩2 + b)− σ(⟨w, x′⟩2 + b)|dµ(w, b)

≤
∫
Rd+1

|a(w, b)|L|⟨w, x− x′⟩|dµ(w, b) ≤
∫
Rd+1

|a(w, b)|L ∥w∥2 ∥x− x′∥2 dµ(w, b)

≤ L ∥x− x′∥2
[∫

Rd+1

|a(w, b)|2dµ(w, b)
]1/2 [∫

Rd+1

∥w∥22 dµ(w, b)
]1/2

.

Thus f is Lipschitz and thus continuous. Now suppose that F is not dense in C(X).

Then by the Riesz representation theorem there exists a nonzero signed measure ν(x)

with finite total variation such that
∫
X
f(x)dν(x) = 0 for all f ∈ F . Well then writing

f(x) =
∫
Rd+1 a(w, b)σ(⟨w, x⟩2 + b)dµ(w, b) as before we have∫

X

∫
Rd+1

a(w, b)σ(⟨w, x⟩2 + b)dµ(w, b)dν(x) = 0. (2.13)
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Note that ∫
Rd+1

|a(w, b)||σ(⟨w, x⟩2 + b)|dµ(w, b)

≤
∫
Rd+1

|a(w, b)|[|σ(0)|+ L|⟨w, x⟩2 + b|]dµ(w, b)

≤
∫
Rd+1

|a(w, b)|[|σ(0)|+ L(∥w∥2M + ∥b∥2)]dµ(w, b) <∞,

where we have used Cauchy-Schwarz and the hypothesis on the integrability of ∥w∥22 , ∥b∥
2
2

in the last step. Thus the integrand in (2.13) is µ × ν integrable thus by Fubini’s theorem

we may interchange the order of integration. To get that∫
Rd+1

a(w, b)

∫
X

σ(⟨w, x⟩2 + b)dν(x)dµ(w, b)

and the above holds for any a ∈ L2(Rd+1, µ). Thus
∫
X
σ(⟨w, x⟩2 + b)dν(x) = 0 for µ-almost

every w, b. However by essentially the same proof as when we showed F ⊂ C(X) we may

show that
∫
X
σ(⟨w, x⟩2 + b)dν(x) = 0 is a continuous function of (w, b). Thus since µ is

a strictly positive measure on Rd+1 this implies that
∫
X
σ(⟨w, x⟩2 + b)dν(x) = 0 for every

(w, b) ∈ Rd+1. However by Theorem 1 in [LLP93] we have that span{σ(⟨w, x⟩2+ b) : (w, b) ∈

Rd+1} is dense in C(X). However by our previous conclusion and linearity we have that∫
g(x)dν(x) = 0 for any g in span{σ(⟨w, x⟩2 + b) : (w, b) ∈ Rd+1}, which implies then that ν

must equal 0. Thus F is dense in C(X).

Since Gaussians are supported on all of Rd+1 we have the following corollary:

Corollary 2.5.52. If (w, b) ∼ N(0, Id+1) then K
∞ is strictly positive.
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CHAPTER 3

Spectral Bias Outside the Training Set for Deep

Networks in the Kernel Regime

3.1 Introduction

Training heavily overparameterized networks via gradient based optimization has become

standard operating procedure in deep learning. Overparameterized networks are able to in-

terpolate arbitrary labels both in principle and in practice [ZBH17], rendering classical PAC

learning theory insufficient to explain the generalization of networks within this modality.

The high capacity of modern networks ensures that there are both good and bad empir-

ical risk minimizers. Miraculously the network preferentially chooses the good solutions

and sidesteps those that are unfavorable, posing a challenge and opportunity to today’s

researchers.

The success of overparameterized networks has prompted the theoretical community to

search for more subtle forms of capacity control [NTS15, NTS17, GWB17]. The contem-

porary point-of-view is that the data distribution, model parameterization, and optimiza-

tion algorithm are all relevant in limiting complexity. This has led to a variety of efforts

to characterize the properties that networks and related models are biased towards when

optimized via gradient descent. Examples include max-margin bias for classification prob-

lems [SHN18, JT19, NLG19, GLS18], minimum nuclear norm bias for matrix factorization

[GWB17, LMZ18, GLS18], and minimum RKHS norm bias in the kernel regime [ZXL20].
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Empirically it is known that neural networks tend to learn low Fourier frequencies first

and add higher frequencies only later in training [RBA19, XZX19, YAA22], the phenomenon

that has been titled “Spectral Bias” or the “Frequency Principle”. Theoretical justifications

of this have been proposed by studying networks in the kernel regime. For shallow univariate

ReLU networks [RJK19, BGG20] demonstrate that the dominant eigenfunctions of the Neu-

ral Tangent Kernel (NTK) [JGH18] correspond to the low Fourier frequencies for the uniform

distribution and more generally to smoother components for nonuniform distributions. This

echos the results by [WTP19] and [JM21] that show that univariate ReLU networks in the

kernel regime are biased towards smooth interpolants. Abstracting away from Fourier fre-

quencies, “Spectral Bias” can be interpreted more broadly to mean bias towards learning the

top eigenfunctions of the Neural Tangent Kernel. By looking at empirical approximations to

the eigenfunctions, spectral bias was demonstrated to hold on the training set by [ADH19a],

[BGG20], and [CFW21]. A recent work by [BM22a] was able to demonstrate that spectral

bias holds off the training set for shallow feedforward networks when the network is underpa-

rameterized. In the present chapter we exploit the low-effective-rank property of the Fisher

Information Matrix and are able to demonstrate that spectral bias holds outside the training

set without the underparameterization requirement. In fact the number of samples can be

on the same order as the width of the network. Furthermore, by leveraging a recent work

by [LZB20b] bounding the Hessian of wide networks, our result permits deep networks with

fully connected, convolutional, and residual layers. Consequently we are able to conclude

that spectral bias holds for more realistic sample complexities and diverse architectures.

3.1.1 Our Contributions

• We provide quantitative bounds measuring the L2 difference in function space between the

trajectory of a finite-width network trained on finitely many samples from the idealized

kernel dynamics of infinite width and infinite data (see Theorem 3.3.5 and Corollary 3.3.7).
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• As an implication of these bounds, eigenfunctions of the NTK integral operator (not just

their empirical approximations) are learned at rates corresponding to their eigenvalues

(see Corollary 3.3.7 and Observation 3.3.8).

• We demonstrate that the network will inherit the bias of the kernel at the beginning

of training even when the width only grows linearly with the number of samples (see

Observation 3.3.9).

3.1.2 Related Work

NTK Convergence Results The NTK was introduced by [JGH18] while almost con-

currently [DZP19] used it implicitly to prove a global convergence guarantee for gradient

descent applied to a shallow ReLU network. These two highly charismatic works led to

a flurry of subsequent works, of which we can only hope to provide a partial list. Global

convergence for arbitrary labels was addressed in a series of works [DZP19, DLL19, OS20,

ALS19a, NM20, Ngu21, ZCZ20, ZG19]. For arbitrary labels to our knowledge all works

require the network width to either grow polynomially with the number of samples n or the

inverse desired accuracy ϵ−1. If one assumes the target function aligns with the NTK model,

for shallow networks this can be reduced to polylogarithmic width for the logistic loss [JT20]

or linear width for the squared loss [EMW20, SY19, BM22a].

Spectrum of the NTK/Hessian and Generalization The fact that the NTK tends

to have a small number of large outlier eigenvalues has been observed in many works (e.g.

[ADH19a, OFL19, LSO20]). [Pap20] demonstrated that for classification problems the logit

gradients cluster within classes, which produces outliers in the spectra of the NTK and the

Hessian of the loss. There have been a series of works analyzing the NTK/Hessian spectrum

theoretically using random matrix theory and other tools (e.g. [KAA21, PW18, PB17, FW20,

YS19]). Recently the spectrum of the NTK integral operator for ReLU networks has been

shown to asymptotically follow a power law [VY21]. [ADH19a] provided a generalization
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bound that is effective when the labels align with the top eigenvectors of the NTK. [OFL19]

were able to use the low effective rank of the NTK to obtain generalization bounds, and

[LSO20] used the same property to demonstrate robustness to label noise. The low effective

rank of the Hessian has also been incorporated into PAC-Bayes bounds, most recently by

[YMC22]. Interestingly, the notion of the effective dimension they define is essentially the

same quantity we use to bound the model complexity of the network’s linearization.

NTK Eigenvector and Eigenfunction Convergence Rates [LMX22] explicitly tracked

the dynamics of the infinite-width shallow model in the Fourier domain. [ADH19a] demon-

strated that when training the hidden layer of a shallow ReLU network, the residual error

on the training set projected along eigenvectors of the NTK Gram matrix decays linearly

at rates corresponding to the eigenvalues. [CFW21] proved a similar statement for training

both layers, and [BGG20] proved the analogous statement for a deep fully connected ReLU

network where the first and last layer are fixed. Our result can be viewed as the correspond-

ing statement for the test residual instead of the empirical residual: projections of the test

residual along eigenfunctions of the NTK integral operator are learned at rates corresponding

to their eigenvalues. This was shown in a recent work [BM22a] for shallow fully connected

networks that are underparameterized. By contrast our result does not require the network

to be underparameterized, and holds for deep networks with fully connected, convolutional,

and residual layers. We view our fundamental contribution as demonstrating that spectral

bias holds with more realistic sample complexities and in considerable generality with respect

to model architecture.
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3.2 Preliminaries

3.2.1 Notation

Vectors v ∈ Rk will be column vectors by default. We will let ⟨•, •⟩ and ∥•∥2 denote the

Euclidean inner product and norm. We define ⟨•, •⟩Rn = 1
n
⟨•, •⟩ and ∥•∥Rn :=

√
⟨•, •⟩Rn

to be the normalized Euclidean inner product and norm. The notation B(v, r) := {w :

∥w − v∥2 ≤ r} will denote the closed Euclidean ball centered at v of radius r. ∥A∥op :=

sup∥v∥2=1 ∥Av∥2 will denote the operator norm for matrices. For a symmetric matrix A ∈

Rk×k, λi(A) denotes its i-th largest eigenvalue, i.e. λ1(A) ≥ λ2(A) ≥ · · · ≥ λk(A). For

a set A we will let |A| denote its cardinality. For a natural number k ≥ 1, we will let

[k] := {1, . . . , k}. We will let Lp(X, ν) denote the Lp space over domain X with measure

ν. We will denote the inner product associated with L2(X, ν) as ⟨•, •⟩ν . We will use the

standard big O and Ω notation with Õ and Ω̃ hiding logarithmic terms.

3.2.2 NTK Dynamics

Let f(x; θ) be our scalar-valued neural network model taking inputs x ∈ X ⊂ Rd parame-

terized by θ ∈ Rp. For now we will not specify a specific architecture. Our training data

will be n input-label pairs {(x1, y1), . . . , (xn, yn)} ⊂ Rd×R where we assume that the labels

yi are generated from a fixed scalar-valued target function f ∗, namely f ∗(xi) = yi. We will

let y ∈ Rn denote the label vector y = (y1, . . . , yn)
T . Let r̂(θ) ∈ Rn denote the vector that

measures the residual error on the training set, whose i-th entry is r̂(θ)i := f(xi; θ)− yi. We

will optimize the squared loss

Φ(θ) :=
1

2n
∥r̂(θ)∥22 =

1

2
∥r̂(θ)∥2Rn

via gradient flow

∂tθt = −∂θΦ(θ),
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which is the continuous time analog of gradient descent. For conciseness we will denote

r̂(θt) by r̂t and let rt(x) := f(x; θt)− f ∗(x) denote the residual for an arbitrary input x not

necessarily in the training set. We may also write r(x; θ) := f(x; θ)− f ∗(x) for the residual

for an arbitrary θ.

We recall some key definitions and facts about the NTK. For a comprehensive introduc-

tion we refer the reader to [JGH18]. We recall the definition of the analytical NTK

K∞(x, x′) := lim
m→∞

⟨∇θf(x; θ0),∇θf(x
′; θ0)⟩,

where m is the width of the network and the convergence is in probability over the parameter

initialization θ0 ∼ µ. The kernelK∞ induces an integral operator TK∞ : L2(X, ρ) → L2(X, ρ)

TK∞g(x) :=

∫
X

K∞(x, s)g(s)dρ(s), (3.1)

where X is our input space and ρ is the input distribution. We assume our training inputs

x1, . . . , xn are i.i.d. samples from ρ. More generally, for a continuous kernel K(x, x′) we

define TK : L2(X, ρ) → L2(X, ρ)

TKg(x) :=

∫
X

K(x, s)g(s)dρ(s). (3.2)

Returning back to K∞, by Mercer’s theorem we have the decomposition

K∞(x, x′) =
∞∑
i=1

σiϕi(x)ϕi(x
′),

where {ϕi} is an orthonormal basis for L2(X, ρ) and {σi} is a nonincreasing sequence of

positive values. We will see that the bias at the beginning of training within our framework

can be described entirely through the operator TK∞ and its eigenfunctions. We note that

TK∞ depends only on the model architecture, parameter initialization distribution µ, and

input distribution ρ. The training data sample x1, . . . , xn introduces a discretization of the

operator TK∞

Tng(x) :=
1

n

n∑
i=1

K∞(x, xi)g(xi) =

∫
X

K∞(x, s)g(s)dρ̂(s), (3.3)
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where ρ̂ = 1
n

∑n
i=1 δxi is the empirical measure. We now introduce the time-dependent NTK

Kt(x, x
′) := ⟨∇θf(x; θt),∇θf(x

′; θt)⟩

with the associated time-dependent operator T tn

T tng(x) :=
1

n

n∑
i=1

Kt(x, xi)g(xi) =

∫
X

Kt(x, s)g(s)dρ̂(s). (3.4)

The update rule for the residual rt under gradient flow is given by

∂trt(x) = − 1

n

n∑
i=1

Kt(x, xi)rt(xi) = −T tnrt.

Speaking loosely, as the network width tends to infinity the time-dependent NTK Kt(x, x
′)

becomes constant so that Kt(x, x
′) = K∞(x, x′) uniformly in t. If Kt = K∞ then we have

the operator equality T tn = Tn. Similarly, heuristically as n→ ∞ we have Tn → TK∞ . Thus

in the idealized infinite-width, infinite-data limit the update rule becomes

∂trt = −TK∞rt,

which has the solution rt = exp(−TK∞t)r0 which is defined via its projections

⟨rt, ϕi⟩ρ = exp(−σit)⟨r0, ϕi⟩ρ.

Thus in this idealized setting the network learns eigenfunctions ϕi at rates determined by

their eigenvalues σi. The dependence of the convergence rate on the magnitude of σi is

particularly relevant as the NTK tends to have a very skewed spectrum. We can esti-

mate the spectrum of K∞ by randomly initializing a network and computing the Gram

matrix (G0)i,j := K0(xi, xj). In Figure 3.1 we plot the spectrum of the NTK Gram Matrix

(G0)i,j := K0(xi, xj) at initialization. We observe a small number of outlier eigenvalues of

large magnitude followed by a long tail of small eigenvalues. This phenomenon has appeared

in many works (e.g. [ADH19a, OFL19, LSO20]). For ReLU networks the spectrum is known

to asymptotically follow a power law σi ∼ Λi−ν [VY21]. The goal of this chapter is to quan-

tify the extent to which a finite-width network trained on finitely many samples behaves

like the idealized kernel dynamics rt = exp(−TK∞t)r0 corresponding to infinite width and

infinite data.
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Figure 3.1: NTK Spectrum on MNIST and CIFAR10 We plot the NTK spectrum on

MNIST and CIFAR10 for two networks using 10 random parameter initializations and data

batches. In both plots the x-axis represents the eigenvalue index k (linear scale) and the

y-axis the normalized eigenvalue λk/λ1 magnitude (log scale). To avoid numerical issues, we

compute the NTK on a batch of size 2000 and plot the first 1000 eigenvalues. The left plot

computed the NTK corresponding to the logit of class 0 for LeNet-5 on MNIST. The right

plot is for a shallow fully-connected softplus network with 4000 hidden units on CIFAR10.
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3.2.3 Applicable Architectures

We now specify an architecture for our model f(x; θ). We consider deep networks of the

form

α(0) := x,

α(l) := ψl(θ
(l), α(l−1)), l ∈ [L],

f(x; θ) :=
1

√
mL

vTα(L),

where each ψl(θ
(l), •) : Rml−1 → Rml is a vector-valued function parameterized by θ(l) ∈ Rpl

and v ∈ RmL . We define θ(L+1) := v and set θ := ((θ(1))T , . . . , (θ(L+1))T )T to be the collection

of all parameters. We assume each layer mapping ψl has one of the following forms:

Fully Connected : ψl(θ
(l), α(l−1)) = ω

(
1

√
ml−1

W (l)α(l−1)

)
Convolutional : ψl(θ

(l), α(l−1)) = ω

(
1

√
ml−1

W (l) ∗ α(l−1)

)
Residual : ψl(θ

(l), α(l−1)) = ω

(
1

√
ml−1

W (l)α(l−1)

)
+ α(l−1)

Here θ(l) = vec(W (l)) and ω is a twice continuously differentiable function such that ω

and ω′ are Lipschitz. All parameters of the network will be trained as in practice. For

feedforward and residual layers W (l) ∈ Rml×ml−1 is a matrix. For the case of convolutional

layers W (l) ∈ RK×ml×ml−1 is an order-3 tensor with filter size K. The precise definition of

the convolution ∗ is offered in Section 3.6.2.2. We will let m = minlml denote the minimum

width of the network. We will assume that maxl
ml

m
= O(1). The input dimension d := m0,

the depth L, and the filter sizes K of convolutional layers will be treated as constant. The

depth L being constant is essential for NTK convergence; see [HN20] for an explanation of

failure modes whenever depth is nonconstant.

We will now discuss our initialization scheme. We will perform the antisymmetric ini-

tialization trick introduced by [ZXL20] so that the model is identically zero at initialization

f(•; θ0) ≡ 0. Let f(x; θ) be any neural network of the form described above. Then let
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θ̃ =
[
θ
θ′

]
where θ, θ′ ∈ Rp. We then define

fASI(x; θ̃) :=
1√
2
f(x; θ)− 1√

2
f(x; θ′)

which takes the difference of two rescaled copies of our original model f(x; θ) with parameters

θ and θ′ that are optimized freely. The antisymmetric initialization trick initializes θ0 ∼

N(0, I) then sets θ̃0 =
[
θ0
θ0

]
. We then optimize the model fASI starting from the initialization

θ̃0. This trick simultaneously ensures that the model is identically zero at initialization

without changing the NTK at initialization [ZXL20]. For ease of notation we will simply

assume from now on that f(x; θ) = fASI(x; θ) and not write the subscript ASI.

3.3 Main Results

Before stating our main result, we enumerate our key assumptions for the sake of clarity,

assumed to hold throughout. Detailed proofs are deferred to Section 3.6.

Assumption 3.3.1. The activation ω is twice continuously differentiable and ω and ω′ are

Lipschitz.

Assumption 3.3.2. The input domain X is compact with strictly positive Borel measure ρ.

Assumption 3.3.3. The target function f ∗ satisfies ∥f ∗∥L∞(X,ρ) = O(1).

Assumption 3.3.4. We use the antisymmetric initilization trick so that f(•; θ0) ≡ 0.

Most activation functions except for ReLU satisfy Assumption 3.3.1, such as Softplus ω(x) =

ln(1 + ex), Sigmoid ω(x) = 1
1+e−x , and Tanh ω(x) = ex−e−x

ex+e−x . Assumption 3.3.2 is a sufficient

condition for Mercer’s Theorem to hold. While Mercer’s theorem is often assumed to hold

implicitly, we prefer to make this assumption explicit. Assumption 3.3.3 simply means

the target function is bounded. We believe the antisymmetric initialization specified in

Assumption 3.3.4 is not strictly necessary but it greatly simplifies the proofs and associated
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bounds. To sidestep 3.3.4 one would utilize high probability bounds on the magnitude

|f(x; θ0)| at initialization. In the following results f(x; θ) will be any of the architectures

discussed in Section 3.2.3. We are now ready to introduce the main result.

Theorem 3.3.5. Let T ≥ 1, ϵ > 0. Let K(x, x′) be a fixed continuous, symmetric, positive

definite kernel. For k ∈ N let Pk : L2(X, ρ) → L2(X, ρ) denote the orthogonal projection

onto the span of the top k eigenfunctions of the operator TK defined in Equation (3.2). Let

σk > 0 denote the k-th eigenvalue of TK. Then m = Ω̃(T 4/ϵ2) and n = Ω̃(T 2/ϵ2) suffices to

ensure with probability at least 1−O(mn) exp(−Ω(log2(m)) over the parameter initilization

θ0 and the training samples x1, . . . , xn that for all t ≤ T and k ∈ N

∥Pk(rt − exp(−TKt)r0)∥2L2(X,ρ) ≤
[
1− exp(−σkt)

σk

]2
·
[
4 ∥f ∗∥2∞ ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ

]
and

∥rt − exp(−TKt)r0∥2L2(X,ρ) ≤ t2 ·
[
4 ∥f ∗∥2∞ ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ

]
.

3.3.1 Interpretation and Consequences

Theorem 3.3.5 compares the dynamics of the residual rt(x) := f(x; θt)− f ∗(x) of our finite-

width model trained on finitely many samples to the idealized dynamics of a kernel method

exp(−TKt)r0 with infinite data. We recall that if ϕi is an eigenfunction of TK with eigenvalue

σi then ⟨exp(−TKt)r0, ϕi⟩ρ = exp(−σit)⟨r0, ϕi⟩ρ. Thus the term exp(−TKt)r0 learns the pro-

jection along eigenfunction ϕi linearly at rate σi. Whenever the NTK at initializationK0 con-

centrates around K, the residual rt will inherit this bias of the kernel dynamics exp(−TKt)r0.

Furthermore, the bound for the projected difference ∥Pk(rt − exp(−TKt)r0)∥2L2(X,ρ) is smaller

whenever σk is large. Therefore the bias appears more pronounced along eigendirections with

large eigenvalues.

Consequences for the special case K = K∞ In the infinite-width limit, we have that

K0 approaches K
∞ for general architectures [Yan20]. For fixed x, x′, by concentration results
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the typical rate of convergence is |K0(x, x
′)−K∞(x, x′)| = Õ(1/

√
m) with high probability

[DZP19, DLL19, HY20]. Bounds that hold uniformly over x, x′ of the same rate were provided

by [BM22a] and [BGW21]. A more pessimistic estimate of 1/m1/4 is provided by [ADH19b].

Even if the rate is 1/m1/4, we have that m = Ω̃(ϵ−2) is strong enough to ensure that

|K0(x, x
′) − K∞(x, x′)| ≤ ϵ1/2. Given these results, it is reasonable to make the following

assumption for the architectures we consider (see Section 3.6.5).

Assumption 3.3.6. m = Ω̃(ϵ−2) suffices to ensure that ∥K0 −K∞∥2L2(X×X,ρ⊗ρ) ≤ ϵ holds

with high probability 1− δ(m) over the initialization θ0 where δ(m) = o(1).

Under this assumption, by setting K = K∞ in Theorem 3.3.5 we get the following corollary.

Corollary 3.3.7. Let δ(m) be defined as in Assumption 3.3.6 which we assume to hold. Let

T ≥ 1 and ϵ > 0. For k ∈ N let Pk : L2(X, ρ) → L2(X, ρ) denote the orthogonal projection

onto the span of the top k eigenfunctions of the operator TK∞ defined in Equation (3.1). Let

σk > 0 denote the k-th eigenvalue of TK∞. Then m = Ω̃(T 4/ϵ2) and n = Ω̃(T 2/ϵ2) suffices

to ensure with probability at least 1−O(mn) exp(−Ω(log2(m))− δ(m) that for all t ≤ T and

k ∈ N

∥Pk(rt − exp(−TK∞t)r0)∥2L2(X,ρ) ≤
[
1− exp(−σkt)

σk

]2
· ϵ

and

∥rt − exp(−TK∞t)r0∥2L2(X,ρ) ≤ t2 · ϵ.

Informally Corollary 3.3.7 states that up to the stopping time T , we have that

rt ≈ exp(−TK∞t)r0.

As discussed before, the term exp(−TK∞t)r0 projected along the i-th eigenfunction of K∞

decays linearly, ⟨exp(−TK∞t)r0, ϕi⟩ρ = exp(−σit)⟨r0, ϕi⟩ρ. Given that K∞ tends to have

a highly skewed spectrum (see, e.g. Figure 3.1), the effect the magnitude of σi has on the
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convergence rate is particularly relevant. Furthermore the bound on the projected difference

∥Pk(rt − exp(−TK∞t)r0)∥L2(X,ρ) is smaller whenever σk is large due to the dependence of the

bound on the inverse eigenvalue σ−1
k . Thus we have that the bias along the top eigenfunctions

is particularly pronounced. Hence we make the following important observation.

Observation 3.3.8. At the beginning of training the network learns projections along eigen-

functions of the Neural Tangent Kernel integral operator TK∞ at rates corresponding to their

eigenvalues. This is particularly true for the eigenfunctions with large eigenvalues.

Scaling with respect to width and number of training data samples Now let us

interpret how the width m and number of training samples n in the theorem scale. We note

that as long as n ≤ mα for some α > 0 the failure probability O(mn) exp(−Ω(log2(m))) goes

to zero as m → ∞. Thus once m and n are sufficiently large relative to the stopping time

T and precision ϵ, they can both tend to infinity at just about any rate to achieve a high

probability bound. We also observe that m and n both have the same scaling with respect to

ϵ, namely m,n = Ω̃(ϵ−2). Thus for a fixed stopping time T we can send m and n to infinity

at the same rate m ∼ n to send the error ϵ→ 0. This is significant as typical NTK analysis

requires m = Ω(poly(n)). We reach following important conclusion.

Observation 3.3.9. The network will inherit the bias of the kernel at the beginning of

training even when the width m only grows linearly with the number of samples n.

Scaling with respect to stopping time We will now address the scaling with respect

to the stopping time T . The relevant question is how quickly the terms Pk exp(−TK∞t)r0

and exp(−TK∞t)r0 converge to zero. We observe that

∥Pk exp(−TK∞t)r0∥L2(X,ρ) ≤ exp(−σkt) ∥r0∥L2(X,ρ) ≤ exp(−σkt) ∥f ∗∥L∞(X,ρ) ,
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where we have used the antisymmetric initialization r0 = f(•; θ0)− f ∗ = 0− f ∗ = −f ∗ and

the basic inequality ∥•∥L2(X,ρ) ≤ ∥•∥L∞(X,ρ). Based on this we have that

t ≥ log(∥f ∗∥L∞(X,ρ) /ϵ)/σk

suffices to ensure ∥Pk exp(−TK∞t)r0∥L2(X,ρ) ≤ ϵ. Using this fact we get the following corol-

lary.

Corollary 3.3.10. Let δ(m) be defined as in Assumption 3.3.6 which is assumed to hold.

Let T = Ω̃(1/σk) and ϵ > 0. For k ∈ N let Pk : L
2(X, ρ) → L2(X, ρ) denote the orthogonal

projection onto the span of the top k eigenfunctions of the operator TK∞ defined in Equa-

tion (3.1). Let σk > 0 denote the k-th eigenvalue of TK∞. Then m = Ω̃(σk
−8/ϵ2) and n =

Ω̃(σ−6
k /ϵ2) suffices to ensure that with probability at least 1−O(mn) exp(−Ω(log2(m))−δ(m)

∥PkrT∥2L2(X,ρ) ≤ ϵ

and in particular
1

2
∥rT∥2L2(X,ρ) ≤ Õ(ϵ) + ∥(I − Pk)r0∥2L2(X,ρ) .

The interpretation of the Corollary 3.3.10 is that the stopping time T = Ω̃(1/σk) is long

enough to ensure that the network has learned the top k eigenfunctions to ϵ accuracy pro-

vided that m = Ω̃(σ−8
k ϵ−2) and n = Ω̃(σ−6

k ϵ−2). We note that the second conclusion of

Corollary 3.3.10 is a bound on the test error 1
2
∥rt∥2L2(X,ρ). From the antisymmetric initial-

ization r0 = −f ∗ so that ∥(I − Pk)r0∥2L2(X,ρ) = ∥(I − Pk)f
∗∥2L2(X,ρ). For a general target f ∗,

this quantity can decay arbitrary slowly with respect to k. Our goal with Theorem 3.3.5

was not to get a learning guarantee, but to describe how the bias of the kernel K∞ is

inherited by the finite-width network at the beginning of training even for general target

functions. Nevertheless we will briefly sketch how it is possible to get a learning guaran-

tee from Corollary 3.3.7 when f ∗ is in the RKHS of K∞. In this case one can show that

∥exp(−TK∞t)r0∥2L2(X,ρ) = O
(

∥f∗∥2H
t

)
where ∥•∥H is the RKHS norm. Then treating ∥f ∗∥H

as a constant one can choose the stopping time T ∼ ϵ−1 to bring the test error to ϵ provided
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that m,n = Ω̃(poly(ϵ−1)). More generally [VY21] derive sufficient conditions for the power

law ∥exp(−TK∞t)r0∥2L2(X,ρ) ∼ Ct−ξ to hold. Using a similar argument in this case one can

choose the stopping time T ∼ ϵ−1/ξ and get a learning guarantee for m,n = Ω̃(poly(ϵ−1)).

3.3.2 Technical Comparison to Prior Work

[LXS19, ADH19b] compared the network f(x; θ) to its linearization

flin(x; θ) := ⟨∇θf(x; θ0), θ − θ0⟩+ f(x; θ0)

in the regime where m = Ω(poly(n)). When m = Ω(poly(n)) one can show the loss con-

verges to zero and the parameter changes ∥θt − θ0∥2 are bounded. By contrast we avoid

the condition m = Ω(poly(n)) by employing a stopping time. [ADH19a, CFW21, BGG20]

proved statements similar to Theorem 3.3.5 and Corollary 3.3.7 that roughly correspond to

replacing TK∞ with its Gram matrix induced by the training data (G∞)i,j = K∞(xi, xj)

and replacing ρ with the empirical measure ρ̂ = 1
n

∑n
i=1 δxi . [ADH19a, BGG20] operate in

the regime where m = Ω(poly(n)) and as a benefit do not need to employ a stopping time.

[CFW21] instead of requiring m = Ω(poly(n)) requires that the width m satisfies at least

m = Ω(max{σ−14
k , ϵ−6}) where σk is the cutoff eigenvalue. The most similar work is [BM22a],

which demonstrated a version of Corollary 3.3.7 for a shallow feedforward network that is

underparameterized. If p is the total number of parameters, they require m = Ω̃(ϵ−1T 2) and

n = Ω̃(ϵ−1pT 2). This requires the network to be greatly underparameterized n ≫ p. Our

result was able to remove the dependence of n on p and demonstrate the result for general

deep architectures at the expense of slightly worse scaling with respect to T and ϵ.

3.4 Proof Sketch

For simplicity we will go through the case where K = K∞. At a high level the proof revolves

around bounding the difference between the operators TK∞ and T tn defined in Equations
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(3.1) and (3.4).

Bounding Operator Deviations [BM22a] demonstrated

rt = exp(−TK∞t)r0 +

∫ t

0

exp(−TK∞(t− s))(TK∞ − T sn)rsds.

This exhibits the residual rt as a sum of exp(−TK∞t)r0 and a correction term. The proof of

Theorem 3.3.5 revolves around bounding the correction term which involves bounding

∥(TK∞ − T sn)rs∥L2(X,ρ) ≤ ∥(TK∞ − Tn)rs∥L2(X,ρ) + ∥(Tn − T sn)rs∥L2(X,ρ) .

At a high level ∥(Tn − T sn)rs∥L2(X,ρ) will be small whenever the kernel deviations K0 − Ks

are small. On the other hand by metric entropy based arguments we have that

∥(TK∞ − Tn)rs∥L2(X,ρ)

will be small whenever n is large enough relative to the complexity of the residual functions

rs.

Comparison with Linearization Let H(x; θ) := ∇2
θf(x; θ) denote the Hessian of our

network with respect to the parameters θ for a fixed input x. It turns out that if ∥H(x, θ)∥op
was uniformly small over x and θ then the kernel deviations K0−Ks would be bounded and

the complexity of our model f(x; θ) would be controlled by the complexity of the linearized

model flin(x; θ) := ⟨∇θf(x; θ0), θ − θ0⟩. The caveat to this approach is we do not in fact

have a way to bound the Hessian H(x, θ) uniformly. However [LZB20b] demonstrated that

for fixed x and R > 0 we have with high probability over the initialization θ0

sup
θ∈B(θ0,R)

∥H(x, θ)∥op = Õ

(
R√
m
poly(R/

√
m)

)
. (3.5)

Using a priori parameter norm deviation bounds we have that ∥θt − θ0∥2 = O(
√
t) and thus

we can set R = O(
√
T ). The difficulty then arises to get bounds that only depend on the

Hessian H(x; θ) evaluated only on finitely many inputs x. We overcome this difficulty by
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showing for fixed θ0 one has high probability bounds over the sampling of the training data

x1, . . . , xn that only require the Hessian evaluated on a finite point set. This requires some

elaborate calculations involving Rademacher complexity. We then use the Fubini-Tonelli

theorem and the Hessian bound (3.5) to get a bound over the simultaneous sampling of θ0

and x1, . . . , xn.

Covering Number of the Linearized Model The complexity of the residual functions

rs up to the stopping time T can be controlled by bounding the complexity of the function

class C = {flin(x; θ) : θ ∈ B(θ0, R)}. In Section 3.6.1 we show that the L2(X, ρ) metric

entropy of the linearized model C = {flin(x; θ) : θ ∈ B(θ0, R)} is determined by the spectrum

of the Fisher Information Matrix

F :=

∫
X

∇θf(x; θ0)∇θf(x; θ0)
Tdρ(x). (3.6)

Let λ
1/2
1 ≥ λ

1/2
2 ≥ · · · ≥ 0 denote the eigenvalues of F 1/2. We define the effective rank of

F 1/2 at scale ϵ as

p̃(F 1/2, ϵ) = |{i : λ1/2i > ϵ}|.

This measures the number of dimensions within the unit ball whose image under F 1/2 can

be larger than ϵ in Euclidean norm. In Section 3.6.1 we demonstrate that the ϵ covering

number of C in L2(X, ρ), denoted N (C, ∥•∥L2(X,ρ) , ϵ), has the bound

logN (C, ∥•∥L2(X,ρ) , ϵ) = Õ(p̃(F 1/2, 0.75ϵ/R)).

It turns out that for ∥(TK∞ − Tn)rs∥L2(X,ρ) to be on the order of ϵ we merely need n to

be large relative to p̃(F 1/2, 0.75ϵ/R). By contrast [BM22a] required that the network was

underparameterized so that n was large relative to the total number of parameters p. Since

p̃≪ p, this is what lets us relax the sample complexity dramatically. In fact for fixed R and

ϵ we have that p̃ = Õ(1) with high probability as the width grows to infinity whereas p→ ∞.

Interestingly, the quantity p̃ for the loss Hessian at convergence was used recently to derive
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analytical PAC-Bayes bounds [YMC22]. Note for the squared loss the (empirical) FIM1

can be taken as an approximation to the Hessian, and at a minimizer this approximation

becomes exact. Thus these two notions are closely related.

3.5 Conclusion and Future Directions

We provided quantitative bounds measuring the L2 difference in function space between a

finite-width network trained on finitely many samples and the corresponding kernel method

with infinite width and infinite data. As a consequence, the network will inherit the bias of

the kernel at the beginning of training even when the width scales linearly with the number of

samples. This bias is not only over the training data but over the entire input space. The key

property that allows this is the low-effective-rank property of the Fisher Information Matrix

(FIM) at initialization which controls the capacity of the model at the beginning of training.

An interesting avenue for future work is to investigate if flat minima manifesting a FIM of

low effective rank at the end of training can be related to the behavior of the network on out-

of-sample data after training. One limitation of the results we present is that our framework

can only characterize the network’s bias up to a stopping time. There is compelling evidence

that the kernel adapts to the target function later in training [BGL21, ABP22], and this falls

outside our framework. Accounting for adaptations in the kernel is an important problem

that is still being addressed by the theoretical community.

3.6 Appendix

The section is organized as follows.

• In Section 3.6.1 we bound the L2(X, ρ) metric entropy of the linearized model. This is

1Note that we define F as an expectation over the true input distribution ρ. To approximate the Hessian
of the empirical loss one must replace ρ with the empirical measure ρ̂.
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necessary to bound the operator deviation TK − Tn.

• In Section 3.6.2 we bound the Hessian of the network and introduce some technical lemmas.

This is necessary in order to relate the network to the linearized model.

• In Section 3.6.3 we bound the quantity ∥(TK − T tn)rt∥L2(X,ρ). This section contains the

bulk of the proof for the main result Theorem 3.3.5.

• In Section 3.6.4 we put the aforementioned results together to prove Theorem 3.3.5.

• In Section 3.6.5 we explain the merit of Assumption 3.3.6.

• In Section 3.6.6 we describe the details of our experiments with a link to the relevant code.

3.6.1 Covering Number for the Linearized Model

Our approach to generalization will be based on metric entropy(see e.g. [Wai19]), a funda-

mental tool in learning theory. We recall some basic definitions.

Definition 3.6.1. Let V be a vector space with seminorm ∥•∥. For a subset A ⊂ V we say

that B is a proper ϵ-covering of A if B ⊂ A and for all a ∈ A there exists b ∈ B such that

∥a− b∥ ≤ ϵ.

Since we will concern ourselves solely with proper coverings we may remove the adjective

“proper” when discussing ϵ-coverings. A closely related notion is the ϵ-covering number.

Definition 3.6.2. Let V be a vector space with seminorm ∥•∥ and let A ⊂ V . For ϵ > 0 we

define the proper ϵ-covering number of A, denoted N (A, ∥•∥ , ϵ), by

N (A, ∥•∥ , ϵ) = min
N : N is proper ϵ-covering of A

|N |.

It is also useful to define the covering number of a set K with respect to another set L.
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Definition 3.6.3. Let K and L be two subsets of a vector space V . We define N (K,L) as

the smallest n ∈ N such that there exists v(1), . . . , v(n) ∈ K satisfying

K ⊂
n⋃
i=1

(v(i) + L).

Now consider a model flin(x; θ) that is potentially nonlinear in x but affine in θ. The

motivating example is the following NTK model

flin(x; θ) = f(x; θ0) + ⟨∇θf(x; θ0), θ − θ0⟩.

We will be interested in deriving covering numbers for such classes of functions. Since

translation by a fixed function does not change the covering number we will for convenience

assume the model is linear in θ. Thus we will consider models of the form

flin(x; θ) = ⟨g(x), θ⟩.

The function g can be nonlinear and thus x 7→ flin(x; θ) is typically nonlinear. For the NTK

model we have g(x) = ∇θf(x; θ0). Let X be our input space and let ν be some measure on

X. We consider L2(X, ν) where

∥h∥2L2(X,ν) =

∫
X

|h(x)|2dν(x).

Throughout we will assume that ∥g∥2 ∈ L2(X, ν) i.e.
∫
X
∥g∥22 dν <∞. We will be interested

in deriving covering numbers for classes of functions

CA := {flin(x; θ) : θ ∈ A}

where A ⊂ Θ is some subset of parameter space Θ. For now we will assume that Θ = Rp.

We observe that

∥flin(•; θ1)− flin(•; θ2)∥2L2(X,ν) =

∫
X

|⟨g(x), θ1 − θ2⟩|2dν(x)

=

∫
X

(θ1 − θ2)
Tg(x)g(x)T (θ1 − θ2)dν(x) = (θ1 − θ2)

T

[∫
X

g(x)g(x)Tdν(x)

]
(θ1 − θ2).
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Thus of primary importance is the symmetric positive semidefinite matrix

M :=

∫
X

g(x)g(x)Tdν.

When ν is a probability measure and flin(x; θ) is the NTK model we have that

M = Ex∼ν
[
∇θf(x; θ0)∇θf(x; θ0)

T
]

is the (uncentered) gradient covariance matrix, which can be interpreted as the Fisher In-

formation Matrix (FIM) for the squared loss. The two most interesting cases are when ν is

the true input distribution or ν = 1
n

∑n
i=1 δxi is the empirical distribution arising from the

training samples. In the former case M is the true (uncentered) gradient covariance matrix

and in the latter case M is the (uncentered) empirical covariance. For neural networks the

FIM tends to have a very skewed spectrum (is approximately low rank), and thus the rela-

tions between the spectrum of M and the covering number will be particularly relevant. We

will define the seminorm ∥•∥M as

∥v∥M :=
√
vTMv.

The following lemma relates the covering number N (CA, ∥•∥L2(X,ν) , ϵ) to N (A, ∥•∥M , ϵ).

Lemma 3.6.4. Let N ⊂ A ⊂ Rp. Then N is a proper ϵ-covering of A with respect to the

seminorm ∥•∥M if and only if CN is a proper ϵ-covering of CA with respect to the L2(X, ν)

norm.

Proof. As we argued before we have that

∥flin(•; θ1)− flin(•; θ2)∥2L2(X,ν) = (θ1 − θ2)
T

[∫
X

g(x)g(x)Tdν(x)

]
(θ1 − θ2)

= (θ1 − θ2)
TM(θ1 − θ2) = ∥θ1 − θ2∥2M .

For each function in h ∈ CA pick a representative parameter θ̂(h) ∈ A so that h = flin(•; θ̂(h))

(if M is strictly positive definite θ̂(h) is unique). We can choose the mapping h 7→ θ̂(h) so
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that the image of CN under this mapping is N . Suppose N is an ϵ-covering for A with

respect to ∥•∥M . Then for each θ ∈ A we can choose θ′ such that ∥θ − θ′∥M ≤ ϵ. Well

then for any h ∈ CA we can consider θ̂(h) and choose θ′ ∈ N such that ϵ ≥
∥∥θ̂(h)− θ′

∥∥
M

=∥∥flin(•; θ̂(h))−flin(•; θ′)∥∥L2(X,ν)
. It follows that CN is an ϵ-covering of CA. Conversely suppose

now that CN is an ϵ-covering of CA with respect to ∥•∥L2(X,ν). Well then for any θ ∈ A we

can consider flin(x; θ) and take h ∈ CN such that ∥flin(•; θ)− h(•)∥L2(X,ν) ≤ ϵ. However

since h(•) = flin(•; θ̂(h)) we have that ϵ ≥
∥∥flin(•; θ)− flin(•; θ̂(h))

∥∥
2
=
∥∥θ − θ̂(h)

∥∥
M
. Thus

θ̂(CN) = N is an ϵ-covering for A.

Thus covering the space CA in L2(X, ν) reduces to covering a subset of Euclidean space

under the seminorm ∥•∥M . By a change of coordinates we will assume without loss of

generality that M is diagonal. Let M1/2 be the square root of M and let σ1 ≥ · · · ≥ σp ≥ 0

be the eigenvalues of M1/2. We note that

{v ∈ Rp : ∥v∥M ≤ 1} =

{
v ∈ Rp :

p∑
i=1

σ2
i v

2
i ≤ 1

}
.

Thus the unit ball in Rp determined by ∥•∥M is the ellipsoid with half-axis lengths σ−1
i (if

σi = 0 we consider the ellipsoid as being infinite along that dimension). For a general vector

a ∈ Rp with nonnegative entries we define the ellipse

Ea :=

{
v ∈ Rp :

p∑
i=1

v2i
a2i

≤ 1

}

where in the sum if ai = 0 we interpret
v2i
a2i

as 0 if vi = 0 and infinity otherwise. Ea is

the ellipse with half-axis lengths a1, a2, . . . , an. We will also let Bk
r ⊂ Rk denote the closed

Euclidean ball in dimension k of radius r, specifically

Bk
r := {v ∈ Rk :

k∑
i=1

v2i ≤ r}.

Our main study will be bounding N (A, ∥•∥M , ϵ) when A = {θ ∈ Rp : ∥θ∥2 ≤ R} = Bp
R. This

amounts to covering a Euclidean ball with ellipsoids determined by ∥•∥M . Fortunately, there
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are well established results for coverings involving ellipsoids. Let σ = (σ1, . . . , σp)
T denote the

spectrum of M1/2 and let M−1/2 denote the pseudo-inverse of M1/2. Let L denote the closed

unit ball in Rp under the seminorm ∥•∥M . In geometric terms N (Bp
R, ∥•∥M , ϵ) = N (Bp

R, ϵL).

We claim that up to an application of M1/2 or M−1/2, covering Bp
R with translates of ϵL is

equivalent to covering ER
ϵ
σ with translates of Bp

1 . This is formalized in the following lemma.

Lemma 3.6.5. Let M ∈ Rp×p be a symmetric positive semidefinite matrix and let σ =

(σ1, . . . , σp)
T ∈ Rp denote the eigenvalues of M1/2. Then N (Bp

R, ∥•∥M , ϵ) = N (ER
ϵ
σ, B

p
1).

Proof. By a change of basis we can assume without loss of generality that M is diagonal.

Let L denote the closed unit ball of Rp under ∥•∥M . We note that in geometric terms

N (Bp
R, ∥•∥M , ϵ) = N (Bp

R, ϵL). Since we can dilate by 1/ϵ we can replace R with R/ϵ and ϵ

with 1. Thus for convenience we will assume for now that ϵ = 1. We note that if v(1), . . . , v(n)

form an L covering of Bp
R as in

Bp
R ⊂

n⋃
i=1

(v(i) + L),

then

ERσ =M1/2(Bp
R) ⊂

n⋃
i=1

(M1/2v(i) +M1/2(L)) ⊂
n⋃
i=1

(M1/2v(i) +Bp
1).

Thus M1/2v(1), . . . ,M1/2v(n) forms a Bp
1 covering of ERσ. Conversely suppose v(1), . . . , v(n)

satisfy

ERσ ⊂
n⋃
i=1

(v(i) +Bp
1)

and let P be the projection onto span{ei : σi ̸= 0} where ei denotes the ith standard basis

vector. Then

P (Bp
R) =M−1/2(ERσ) ⊂

n⋃
i=1

(M−1/2v(i) +M−1/2(Bp
1)) =

n⋃
i=1

(M−1/2v(i) + P (L)).

However L is infinitely long along the dimensions outside im(P ), and thus

Bp
R ⊂

n⋃
i=1

(M−1/2v(i) + L).
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Thus M−1/2v(1), . . . ,M−1/2v(n) form an L covering of Bp
R. We conclude that N (Bp

R, L) =

N (ERσ, B
p
1). Thus for general ϵ > 0 we have that

N (Bp
R, ∥•∥M , ϵ) = N (Bp

R, ϵL) = N (Bp
R/ϵ, L) = N (ER

ϵ
σ, B

p
1).

We will let vol(•) denote volume in the standard Lebesgue sense. If a ∈ Rp is a vector

with positive entries we recall that the volume of an ellipsoid Ea is given by the formula

vol(Ea) = vol(Bp
1)

p∏
i=1

ai.

When most of the ai are very small we have that Ea is very thin and has small volume and

thus we expect the covering number to be small. Coverings for ellipsoids are well established

with roots in geometric functional analysis. The following lemma is phrased the same as

Theorems 1 and 2 in [Dum06]. The result dates back to classic results in geometric functional

analysis. Specifically a similar result for more general convex bodies is sketched at the end

of Chapter 5 in [Pis89] which also appeared in [GKS87, Proposition 1.7]. We don’t need

the additional generality for our purposes. We will offer the simplest proof needed for our

purposes for completeness and clarity.

Lemma 3.6.6 ([Dum06, Pis89, GKS87]). Let a ∈ Rp be a vector with nonnegative entries.

Let J = {i : ai > 1}, K =
∑

i∈J log(ai), γ ∈ (0, 1/2), and µγ = |{i : a2i > (1 − γ)2}|. Then

the proper covering number N (Ea, B
p
1) satisfies

K ≤ logN (Ea, B
p
1) ≤ K + µγ log

(
3

γ

)
.

Proof. We first prove the lower bound. Let J = {i : ai > 1}, m = |J |, and let P be the

orthogonal projection onto span{ei : i ∈ J} where ei denotes the standard basis. Suppose

v(1), . . . , v(n) are the centers of a Bp
1 covering of Ea, specifically

Ea ⊂
n⋃
i=1

(v(i) +Bp
1).
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Well then

P (Ea) ⊂
n⋃
i=1

P (v(i) +Bp
1) =

n⋃
i=1

(Pv(i) +Bm
1 ).

Well then by the standard volume estimate we get that

n · vol(Bm
1 ) ≥ vol

(
n⋃
i=1

(Pv(i) +Bm
1 )

)
≥ vol(P (Ea))

and thus

n ≥ vol(P (Ea))

vol(Bm
1 )

=
∏
i∈J

ai.

Now we prove the upper bound. Let γ ∈ (0, 1/2) and let Jγ = {i : a2i > (1 − γ)2},

µγ = |Jγ|, and let P be the orthogonal projection onto span{ei : i ∈ Jγ}. We first notice

that if v ∈ Ea we have that ∥(I − P )v∥2 ≤ 1− γ, indeed because for v ∈ Ea∑
i/∈Jγ

v2i
(1− γ)2

≤
∑
i/∈Jγ

v2i
a2i

≤ 1.

Thus if v(1), . . . , v(n) are the centers of a proper B
µγ
γ covering of P (Ea) then by the triangle

inequality they also induce a proper Bp
1 covering of Ea. Thus let v

(1), . . . , v(n) be a maximal

subset of P (Ea) such that for i ̸= j
∥∥v(i) − v(j)

∥∥
2
> γ. By maximality v(1), . . . , v(n) form

a B
µγ
γ covering of P (Ea). Well then the balls v(i) + B

µγ
γ/2 are all disjoint and contained in

P (Ea) +B
µγ
γ/2. Thus by the volume estimates

n · vol(Bµγ
γ/2) = vol

(
n⋃
i=1

(v(i) +B
µγ
γ/2)

)
≤ vol

(
P (Ea) +B

µγ
γ/2

)
.

Thus

n ≤
vol
(
P (Ea) +B

µγ
γ/2

)
vol(B

µγ
γ/2)

.

Note that B
µγ
1−γ ⊂ P (Ea) and thus B

µγ
γ/2 ⊂ γ

2(1−γ)P (Ea). Now let ∥•∥P (Ea)
be the norm on

Rµγ such that P (Ea) is the unit ball. Then note for v, w such that v ∈ P (Ea) and w ∈ B
µγ
γ/2

we have that

∥v + w∥P (Ea)
≤ ∥v∥P (Ea)

+ ∥w∥P (Ea)
≤ 1 +

γ

2(1− γ)
.
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We conclude that P (Ea) +B
µγ
γ/2 ⊂

(
1 + γ

2(1−γ)

)
P (Ea). Therefore

n ≤
vol
(
P (Ea) +B

µγ
γ/2

)
vol(B

µγ
γ/2)

≤
vol
[(

1 + γ
2(1−γ)

)
P (Ea)

]
vol(B

µγ
γ/2)

=

(
2

γ
+

1

1− γ

)µγ ∏
i∈Jγ

ai.

Note that since γ < 1/2 we have that 1
1−γ <

1
γ
. Therefore 2

γ
+ 1

1−γ ≤ 3
γ
. Moreover

∏
i∈Jγ ai ≤∏

i∈J ai. Thus

n ≤
(
2

γ
+

1

1− γ

)µγ ∏
i∈Jγ

ai ≤
(
3

γ

)µγ ∏
i∈J

ai.

After taking logarithms we get the desired result.

From the Lemmas 3.6.5 and 3.6.6 we see that the covering number N (Bp
R, ∥•∥M , ϵ) will

depend on how many eigenvalues of M lie above a certain threshold. Let A ∈ Rp be a

symmetric positive semidefinite square matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. We

define the effective rank of A at scale ϵ as

p̃(A, ϵ) = |{i : λi > ϵ}|.

This measures the number of dimensions within B1 whose image under A can be larger than

ϵ in Euclidean norm. We will also define

|A|>c =
∏
i:λi>c

λi,

which can be thought of the determinant of A after removing some eigenvalues. We then

have our main result.

Theorem 3.6.7. Let g : X → Rp such that ∥g∥2 ∈ L2(X, ν). Let C = {x 7→ ⟨g(x), θ⟩ :

∥θ∥2 ≤ R}, γ ∈ (0, 1/2). Define M ∈ Rp×p by

M =

∫
X

g(x)g(x)Tdν(x).

Then the proper covering number N (C, ∥•∥L2(X,ν) , ϵ) satisfies

log

∣∣∣∣Rϵ M1/2

∣∣∣∣
>1

≤ logN (C, ∥•∥L2(X,ν) , ϵ) ≤ log

∣∣∣∣Rϵ M1/2

∣∣∣∣
>1

+ p̃

(
R

ϵ
M1/2, (1− γ)

)
log

(
3

γ

)
.
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Proof. We have by Lemmas 3.6.4 and 3.6.5 that N (C, ∥•∥L2(X,ν) , ϵ) = N (Bp
R, ∥•∥M , ϵ) =

N (ER
ϵ
σ, B

p
1) where σ = (σ1, . . . , σp)

T ∈ Rp is the vector of eigenvalues of M1/2. Well then

by applying Lemma 3.6.6 with a = R
ϵ
σ we have that

log

∣∣∣∣Rϵ M1/2

∣∣∣∣
>1

≤ logN (ER
ϵ
σ, B1) ≤ log

∣∣∣∣Rϵ M1/2

∣∣∣∣
>1

+ p̃

(
R

ϵ
M1/2, (1− γ)

)
log

(
3

γ

)
.

The desired result thus follows.

Corollary 3.6.8. Let g : X → Rp such that ∥g∥2 ∈ L2(X, ν). Let C = {x 7→ ⟨g(x), θ⟩ :

∥θ∥2 ≤ R}, γ ∈ (0, 1/2). Define M ∈ Rp×p by

M =

∫
X

g(x)g(x)Tdν(x).

Then the proper covering number N (C, ∥•∥L2(X,ν) , ϵ) satisfies

logN (C, ∥•∥L2(X,ν) , ϵ) = Õ

(
p̃

(
M1/2,

3ϵ

4R

))
.

Proof. This follows from setting γ = 1/4 and the fact that

log

∣∣∣∣Rϵ M1/2

∣∣∣∣ = log

 ∏
σi>ϵ/R

R

ϵ
σi


≤ p̃(M1/2, ϵ/R) log

(
Rσ1
ϵ

)
≤ p̃

(
M1/2,

3ϵ

4R

)
log

(
Rσ1
ϵ

)
.

3.6.2 Bounding the Network Hessian and other Technical Items

3.6.2.1 Main Hessian Bound

For a fixed input x we will let H(x, θ) := ∇2
θf(x; θ) denote the Hessian of the network with

respect to the parameters. We will use the following result, which follows from the proof of

a result by [LZB20a, Theorem 3.3], which we state here explicitly for reference.
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Theorem 3.6.9 (Reformulation of [LZB20a, Theorem 3.3]). Let f(x; θ) be a general neural

network of the form specified in Section 3.2.3 which can be a fully connected network, CNN,

ResNet or a mixture of these types. Let m be the minimum of the hidden layer widths and

assume maxl
ml

m
= O(1). Given any fixed R ≥ 1 and x ∈ X then with probability at least

1− Cme−c log
2(m)

sup
θ∈B(θ0,R)

∥H(x, θ)∥op = Õ

(
R√
m

[
max

{
1,

R√
m

}]O(L)
)
.

In particular if
√
m ≥ R then

sup
θ∈B(θ0,R)

∥H(x, θ)∥op = Õ

(
R√
m

)
.

The constants c, C > 0 depend on the architecture but are independent of the width.

Discussion of the statement of Theorem 3.6.9 We note that our statement of Theo-

rem 3.6.9 is not exactly the same as the result of [LZB20a, Theorem 3.3]. [LZB20a] do not

explicitly write the failure probability and the dependence of the Hessian bound on R in the

statement of the theorem. In Theorem 3.6.9 we write the failure probability and dependence

on the radius R according to the proof2 provided by the authors [LZB20a]. We also add the

assumption maxl
ml

m
= O(1) to the hypothesis. This assumption is so that the initial weight

matrices satisfy 1√
m

∥∥W (l)
0

∥∥
op

= O(1) with high probability (see Lemma 3.6.10). This condi-

tion on the initial weight matrices appears in the proof by [LZB20a]. The authors [LZB20a]

do not need to explicitly add this assumption because they perform the proof for the case

where all the layers have equal width for simplicity of presentation, while stating that the

proof generalizes to the case where the layers do not have equal width.

Exponential dependence on depth We note that under the Õ notation in Theorem 3.6.9

there are constants that depend exponentially on the network depth L. For this reason it

2We communicated with the authors to better understand the dependence of the bound on the quantity
R. Nevertheless we accept full liability for any misinterpretation of their proof.
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is essential that the depth L be treated as constant. We will now briefly explain how

the term max{1, R/
√
m}O(L) arises in the bound in Theorem 3.6.9. For simplicity assume

the network is fully connected at each layer (the same form of argument holds for the

other cases). Let ξ(θ) = maxl
1√
m

∥∥W (l)
∥∥
op
. With high probability over the initialization we

have that ξ(θ0) = O(1) (see Lemma 3.6.10). Furthermore for θ such that ∥θ − θ0∥2 ≤ R

we have that ξ(θ) ≤ ξ(θ0) +
R√
m

= O(max{1, R/
√
m}). It turns out that the features

α(l) at each layer l satisfy 1√
m

∥∥α(l)
∥∥
2
= O(ξO(L)). Well for θ such that ∥θ − θ0∥2 ≤ R

as stated before we have that ξ(θ) = O(max{1, R/
√
m}). Consequently for such θ we

get that 1√
m

∥∥α(l)
∥∥
2
= O(ξO(L)) = O(max{1, R/

√
m}O(L)). The Hessian bound inherits

dependence on the quantity O(max{1, R/
√
m}O(L)) from its dependence the normalized

feature 1√
m

∥∥α(l)
∥∥
2
norms.

Antisymmetric initialization and the Hessian We will now explain how the antisym-

metric initialization trick will not hinder us from bounding the Hessian via Theorem 3.6.9.

Let f(x; θ) denote any model of the form specified in Section 3.2.3 where θ ∈ Rp. Let

θ̃ =
[
θ
θ′

]
where θ, θ′ ∈ Rp. Recall the antisymmetric initialization trick defines the model

fASI(x; θ̃) :=
1√
2
f(x; θ)− 1√

2
f(x; θ′)

which takes the difference of two rescaled copies of the model f(x; •) with parameters θ and

θ′ that are optimized freely. We then note that the Hessian of fASI has the block diagonal

structure

∇2
θ̃
fASI(x; θ̃) =

1√
2

∇2
θf(x; θ) 0

0 −∇2
θ′f(x; θ

′)

 =
1√
2

H(x, θ) 0

0 −H(x, θ′)

 .
Well then it is not too hard to show that∥∥∥∇2

θ̃
fASI(x; θ̃)

∥∥∥
op

≤ max
[
∥H(x, θ)∥op , ∥H(x, θ′)∥op

]
.

Now recall that the antisymmetric initialization trick initializes θ0 ∼ N(0, I) then sets θ̃0 =[
θ0
θ0

]
. Furthermore note that if

∥∥∥θ̃ − θ̃0

∥∥∥
2
≤ R then ∥θ − θ0∥2 ≤ R and ∥θ′ − θ0∥2 ≤ R. Thus
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if θ0 is an initialization such that the conclusion of Theorem 3.6.9 holds for the model f(x; θ)

then the same conclusion holds for fASI(x; θ̃) with initialization θ̃0.

3.6.2.2 Definition of the Convolution Operation

In this subsection we will formally define the convolution operation ∗ introduced in Sec-

tion 3.2.3. We use the same convention for the convolution operation as [LZB20a]. A

convolutional layer of the network has the form

α(l) = ψl(θ
(l), α(l−1)) = ω

(
1

√
ml−1

W (l) ∗ α(l−1)

)
.

HereW (l) ∈ RK×ml×ml−1 is an order-3 tensor whereK denotes the filter size,ml is the number

of output channels, and ml−1 is the number of input channels. The input α(l−1) ∈ Rml−1×Q

is a matrix with ml−1 rows as channels and Q columns as pixels. The output of the layer ψl

is of size Rml×Q. From now on we will drop the superscripts and just denote W = W (l) and

α = α(l). The convolution operation is defined as

(W ∗ α)i,q =
K∑
k=1

ml−1∑
j=1

Wk,i,jαj,q+k−K+1
2
.

This can be reformulated as follows. For each k ∈ [K] define the matrices W [k] := Wk,i,j and

(α[k])j,q := αj,q+k−K+1
2
. Then the convolution operation can be rewritten as

(W ∗ α) =
K∑
k=1

W [k]α[k].

Under this reformulation the convolutional layer can be rewritten as

ψ(W,α) = ω

(
K∑
k=1

1
√
ml−1

W [k]α[k]

)
.

By treating eachW [k] as if it were a weight matrix in a fully connected layer, the convolutional

layers can be treated similarly to fully connected layers. Thus when we refer to weight

matrices in the context of a convolutional layer we are referring to the matrices W [k].
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3.6.2.3 Technical Lemmas

This section will cover some miscellaneous technical lemmas that will be of significance later.

The following lemma bounds the operator norm of the weight matrices at initialization.

Lemma 3.6.10. Let f(x; θ) be a neural network of the form specified in Section 3.2.3.

Assume m ≥ d and maxl
ml

m
≤ A. Then with probability at least 1 − C exp(−cm) over the

initialization θ0 each weight matrix W0 at initialization satisfies

1√
m

∥W0∥ ≤ 2
√
A+ 1.

The constant C > 0 depends on the architecture but is independent of the width m.

Proof. Fix a weight matrix W ∈ Rml×ml−1 in the model. Following [Ver12, Corollary 5.35]

we have with probability at least 1− 2 exp(−t2/2) over the initialization

∥W0∥op ≤
√
ml +

√
ml−1 + t

and thus
1√
m

∥∥∥W (l)
0

∥∥∥
op

≤
√
ml√
m

+

√
ml−1√
m

+
t√
m

≤ 2
√
A+

t√
m
.

Thus by setting t =
√
m and taking the union bound over all weight matrices in the model

(which depends on the architecture) we get the desired result.

We now state for reference the following lemma which follows from the proof in [LZB20a].

Lemma 3.6.11. Let R ≥ 1 and let f(x; θ) be a neural network of the form specified in

Section 3.2.3. If θ0 is an initialization such that each weight matrixW0 satisfies
1√
m

∥∥W (l)
0

∥∥
2
=

O(1) then

sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥2 = O

(
max

{
1,

R√
m

}O(L)
)
.

In particular if
√
m ≥ R then

sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥2 = O (1) .
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As a consequence of the previous lemma we get the following high probability bound on

the gradients norm ∥∇θf(x; θ)∥2.

Lemma 3.6.12. Let R ≥ 1 and let f(x; θ) be a neural network of the form specified in

Section 3.2.3. Assume that m ≥ d, maxl
ml

m
= O(1), and

√
m ≥ R. Then with probability at

least 1− C exp(−cm) over the initialization θ0 we have that

sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥2 = O(1).

The constant C > 0 depends on the architecture but is independent of the width m

Proof. This follows immediately from Lemma 3.6.10 and Lemma 3.6.11.

The following lemma bounds the kernel deviations Kθ − Kθ0 in terms of the network

Hessian.

Lemma 3.6.13. Let S = {z1, . . . , zk} ⊂ X. Let B = supx∈X supθ∈B(θ0,R) ∥∇θf(x; θ)∥ and

let Hmax = maxz∈S supθ∈B(θ0,R) ∥H(z, θ)∥op. Then for θ ∈ B(θ0, R)

max
i,j∈[k]

|Kθ(zi, zj)−Kθ0(zi, zj)| ≤ 2BHmaxR.

Proof. We have that

|Kθ(zi, zj)−Kθ0(zi, zj)|

≤ ∥∇θf(zi; θ)∥ ∥∇θf(zj; θ)−∇θf(zj; θ0)∥+ ∥∇θf(zi; θ)−∇θf(zi; θ0)∥ ∥∇θf(zj; θ0)∥

≤ 2BHmaxR.

Here we have used the fact that

∥∇θf(zi; θ)−∇θf(zi; θ0)∥2 =
∥∥∥∥∫ 1

0

H(zi, sθ + (1− s)θ0)(θ − θ0)ds

∥∥∥∥
2

≤
∫ 1

0

∥H(zi, sθ + (1− s)θ0)∥op ∥θ − θ0∥2 ≤ HmaxR.

143



The following lemma provides a trivial bound on ∥θt − θ0∥2.

Lemma 3.6.14.

∥θt − θ0∥2 ≤
√
t√
2
∥r̂0∥Rn ≤

√
t√
2
∥f ∗∥L∞(X,ρ) .

Proof.

∥θt − θ0∥2 ≤
∫ t

0

∥∂sθs∥2 ds =
∫ t

0

∥∂θL(θs)∥2 ds ≤
√
t

[∫ t

0

∥∂θL(θs)∥22 ds
]1/2

=
√
t

[∫ t

0

−∂sL(θs)ds
]1/2

=
√
t [L(θ0)− L(θt)]

1/2 ≤
√
t [L(θ0)]

1/2 =

√
t√
2
∥r̂0∥Rn

≤
√
t√
2
∥f ∗∥L∞(X,ρ)

where the second inequality above follows from the Cauchy-Schwarz inequality and the final

inequality follows from the fact that ∥r̂0∥Rn = ∥y∥Rn ≤ ∥f ∗∥L∞(X,ρ) from the antisymmetric

initialization.

3.6.3 Convergence of the Operators

Throughout this section K(x, x′) will be a fixed continuous, symmetric, positive definite

kernel. We will let κ := maxx∈X K(x, x). We note that since K is continuous and X is

compact we have that κ < ∞. We will thus treat κ as a constant. We also note that since

K is a kernel for any x, x′ ∈ X we have the inequality K(x, x′) ≤
√
K(x, x)

√
K(x′, x′) ≤ κ.

We will let Kθ(x, x′) = ⟨∇θf(x; θ),∇θf(x
′; θ)⟩ denote the NTK for a specific parameter

θ. In this section θ0 will be treated as fixed. We will show that for fixed θ0 we have bounds on

∥(TK − T sn)rs∥L2(X,ρ) that hold with high probability over the sampling of S = (x1, . . . , xn).

By the Fubini-Tonelli theorem this suffices to get bounds that hold with high probability

over the parameter initialization θ0 ∼ µ and data sampling S ∼ ρ⊗n as long as one makes

sure that the appropriate events are measureable on the product space. Fortunately, due to

the continuity of Kθ(x, x′) and H(x, θ) with respect to x, x′ and θ we can avoid such issues

and we thus will not address measureability line-by-line.
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In this section we will bound ∥(TK − T sn)rs∥L2(X,ρ) for all s such that ∥θs − θ0∥2 ≤ R.

This will be done by bounding ∥(TK − Tn)rs∥L2(X,ρ) and ∥(Tn − T sn)rs∥L2(X,ρ) separately. At

a high level ∥(Tn − T sn)rs∥L2(X,ρ) will be small whenever K0−Ks is small. On the other hand

∥(TK − Tn)rs∥L2(X,ρ) will be small whenever n is large enough relative to the complexity

of the function class {f(x; θ) : θ ∈ B(θ0, R)}. If supθ∈B(θ0,R) ∥H(x, θ)∥2 was uniformly

small over x then the kernel deviations K0 − Ks would be bounded and the complexity

of {f(x; θ) : θ ∈ B(θ0, R)} would be controlled by the complexity of the linearized model

flin(x; θ) = ⟨∇θf(x; θ0), θ − θ0⟩. However, Theorem 3.6.9 only gives us the ability to bound

∥H(x, θ)∥ for finitely many values of x. For this reason we will need to do somewhat elaborate

gymnastics using Rademacher complexity to form estimates that only require the evaluation

of supθ∈B(θ0,R) ∥H(x, θ)∥ over finitely many values of x.

Let F denote some family of real valued functions and let S = (z1, . . . , zk) be a finite

point set. We define

F|S = {(g(z1), . . . , g(zk)) : g ∈ F}

to be the set of all vectors in Rk formed by restricting a function in F to the point set S.

Now let ϵ ∈ Rk be a vector with entries that are i.i.d. Rademacher random variables, i.e.

ϵi ∼ Unif{+1,−1}. We define the (unnormalized) Rademacher complexity of F|S.

URad(F|S) := Eϵ sup
v∈F|S

⟨v, ϵ⟩ = E sup
g∈F

k∑
i=1

ϵig(xi).

We will use the following classic result, see e.g. [Tel21, Theorem 13.1]

Theorem 3.6.15. Let F be given with g(z) ∈ [a, b] a.s. for all g ∈ F . Then with probability

at least 1− δ over the sampling of z1, . . . , zn

sup
g∈F

[
E[g(Z)]− 1

n

n∑
i=1

g(zi)

]
≤ 2

n
URad(F|S) + 3(b− a)

√
log(2/δ)

2n
.

We will also make use of the following lemma which is also classic, see e.g. [Tel21, Lemma

13.3]
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Lemma 3.6.16. Let ℓ : Rn → Rn be a vector of univariate C-lipschitz functions. Then

URad((ℓ ◦ F)|S) ≤ C · URad(F|S).

Using this we will now prove the following technical lemma. For the purpose of this lemma

x1, . . . , xn will be treated as fixed and the randomness will be over a ghost sample S ′ =

(x′1, . . . , x
′
n).

Lemma 3.6.17. Let R ≥ 1 and B = supx∈X supθ∈B(θ0,R) ∥∇θf(x, θ)∥2 . Consider x1, . . . , xn ∈

X to be fixed. Then let

F = {x 7→ 1

n

n∑
i=1

|Kθ(x, xi)−Kθ0(x, xi)|2 : θ ∈ B(θ0, R)}.

Let x′1, . . . , x
′
n be sampled i.i.d. from ρ. Let S = (x1, . . . , xn) and S ′ = {x′1, . . . , x′n} and

define

Hmax := max
z∈S∪S′

sup
θ∈B(θ0,R)

∥H(z, θ)∥op

Then with probability at least 1− δ over the sampling of x′1, . . . , x
′
n we have that every g ∈ F

satisfies

Ex∼ρ[g(x)] ≤ 12B2H2
maxR

2 + 12B4

√
log(2/δ)

2n
.

Proof. We note that for θ ∈ B(θ0, R)

|Kθ(x, xi)−Kθ0(x, xi)|2 ≤ [|Kθ(x, xi)|+ |Kθ0(x, xi)|]2 ≤ [2B2]2 = 4B4.

Therefore for all g ∈ F we have that g(x) ∈ [0, 4B4] a.s. Then by Theorem 3.6.15 we have

with probability at least 1− δ over the sampling of S ′ = {x′1, . . . , x′n}

sup
g∈F

[
Ex∼ρ[g(x)]−

1

n

n∑
i=1

g(x′i)

]
≤ 2

n
URad(F|S′) + 12B4

√
log(2/δ)

2n
.

Then we note that for any z, z′ ∈ S ∪ S ′ we by Lemma 3.6.13 that θ ∈ B(θ0, R) implies

|Kθ(z, z′)−Kθ0(z, z′)| ≤ 2BHmaxR.
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It follows that for any member of F|S∪S′ is bounded in infinity norm by 4B2H2
maxR

2. Thus

for any g ∈ F we have that
1

n

n∑
i=1

g(x′i) ≤ 4B2H2
maxR

2

and
1

n
URad(F|S′) ≤ 4B2H2

maxR
2.

Therefore for any g ∈ F we have that

Ex∼ρ[g(x)] ≤
1

n

n∑
i=1

g(x′i) +
2

n
URad(F|S′) + 12B4

√
log(2/δ)

2n

≤ 12B2H2
maxR

2 + 12B4

√
log(2/δ)

2n
.

Using the previous lemma we can now bound ∥(Tn − T tn)rt∥L2(X,ρ).

Lemma 3.6.18. Let R ≥ 1 and B = supx∈X supθ∈B(θ0,R) ∥∇θf(x, θ)∥2 . Let S = (x1, . . . , xn)

and S ′ = (x′1, . . . , x
′
n) be two independent sequences of i.i.d. samples from ρ. Define

Hmax := max
z∈S∪S′

sup
θ∈B(θ0,R)

∥H(z, θ)∥op .

Then with probability at least 1 − δ over the sampling of S and S ′ we have that for any θt

such that ∥θt − θ0∥2 ≤ R,

∥∥(Tn − T tn)rt
∥∥2
L2(X,ρ)

≤ 2 ∥f ∗∥2L∞(X,ρ)

[
∥K −K0∥2L2(X2,ρ⊗ρ) + 12B2H2

maxR
2 + Õ

(
B4

√
n

)]
.

Proof. We note that

∣∣(Tn − T tn)rt(x)
∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

[K(x, xi)−Kt(x, xi)]rt(xi)

∣∣∣∣∣
≤ ∥r̂t∥Rn

[
1

n

n∑
i=1

|K(x, xi)−Kt(x, xi)|2
]1/2

≤ ∥r̂0∥Rn

[
1

n

n∑
i=1

|K(x, xi)−Kt(x, xi)|2
]1/2
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where we have used the property ∥r̂t∥Rn ≤ ∥r̂0∥Rn from gradient flow. Well from the inequal-

ity (a+ b)2 ≤ 2(a2 + b2) we have that

1

n

n∑
i=1

|K(x, xi)−Kt(x, xi)|2

≤ 2

n

n∑
i=1

|K(x, xi)−K0(x, xi)|2 +
2

n

n∑
i=1

|K0(x, xi)−Kt(x, xi)|2.

For conciseness let

h1(x) :=
1

n

n∑
i=1

|K(x, xi)−K0(x, xi)|2

ht2(x) :=
1

n

n∑
i=1

|K0(x, xi)−Kt(x, xi)|2.

Then by the above we have that∥∥(Tn − T tn)rt
∥∥2
L2(X,ρ)

≤ 2 ∥r̂0∥2Rn

[
Ex∼ρ[h1(x)] + Ex∼ρ[ht2(x)]

]
.

Well we note that |K(x, x′)| ≤ κ and |K0(x, x
′)| ≤ B2 uniformly over x, x′. Now consider

the random variables Zi := ∥K(•, xi)−K0(•, xi)∥2L2(X,ρ) where the randomness is over the

sampling of xi. Then we have that |Zi| ≤ [κ + B2]2 a.s. Thus by Hoeffding’s inequality we

have that

P

(
1

n

n∑
i=1

Zi − Ex1∼ρ[Z1] > s

)
≤ exp

(
−ns2

2[κ+B2]4

)
.

Thus with probability at least 1− δ over the sampling of x1, . . . , xn

1

n

n∑
i=1

Zi ≤ Ex1∼ρ[Z1] +

√
2[κ+B2]2

√
log(1/δ)√

n
. (3.7)

Now note that

1

n

n∑
i=1

Zi = Ex∼ρ[h1(x)] Ex1∼ρ[Z1] = ∥K −K0∥2L2(X2,ρ⊗ρ) .

Thus whenever (3.7) holds we have that

Ex∼ρ[h1(x)] ≤ ∥K −K0∥2L2(X2,ρ⊗ρ) +

√
2[κ+B2]2

√
log(1/δ)√

n

= ∥K −K0∥2L2(X2,ρ⊗ρ) + Õ

(
B4

√
n

)
.
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On the other hand we have by Lemma 3.6.17 for any fixed x1, . . . , xn that with probability

1− δ over the sampling of x′1, . . . , x
′
n i.i.d. from ρ we have that for all θ ∈ B(θ0, R)

Ex∼ρ

[
1

n

n∑
i=1

|Kθ(x, xi)−Kθ0(x, xi)|2
]
≤ 12B2H2

maxR
2 + 12B4

√
log(2/δ)

2n
. (3.8)

Whenever the above holds we have that for any θt such that ∥θt − θ0∥2 ≤ R we have that

Ex∼ρ[ht2(x)] ≤ 12B2H2
maxR

2 + 12B4

√
log(2/δ)

2n
= 12B2H2

maxR
2 + Õ

(
B4

√
n

)
.

Thus combining these together we have with probability at least (1− δ)2 ≥ 1− 2δ over the

sampling of x1, . . . , xn, x
′
1, . . . , x

′
n that Equations (3.7) and (3.8) hold simultaneously for all

θ ∈ B(θ0, R). In such a case we have that for all θt such that ∥θt − θ0∥2 ≤ R that

Ex∼ρ[h1(x)] + Ex∼ρ[ht2(x)] ≤ ∥K −K0∥2L2(X2,ρ⊗ρ) + 12B2H2
maxR

2 + Õ

(
B4

√
n

)
.

Well then

∥∥(Tn − T tn)rt
∥∥2
L2(X,ρ)

≤ 2 ∥r̂0∥2Rn

[
Ex∼ρ[h1(x)] + Ex∼ρ[ht2(x)]

]
≤ 2 ∥r̂0∥2Rn

[
∥K −K0∥2L2(X2,ρ⊗ρ) + 12B2H2

maxR
2 + Õ

(
B4

√
n

)]
≤ 2 ∥f ∗∥2L∞(X,ρ)

[
∥K −K0∥2L2(X2,ρ⊗ρ) + 12B2H2

maxR
2 + Õ

(
B4

√
n

)]
.

In the last line above we have used the fact that ∥r̂0∥Rn = ∥y∥Rn ≤ ∥f ∗∥L∞(X,ρ) from the

antisymmetric initialization. The desired result follows after replacing δ with δ/2 in the

previous argument.

From Lemma 3.6.18 we get the following corollary.

Corollary 3.6.19. Let R ≥ 1, B = supx∈X supθ∈B(θ0,R) ∥∇θf(x, θ)∥2 . Let S = (x1, . . . , xn)

and S ′ = (x′1, . . . , x
′
n) be two independent sequences of i.i.d. samples from ρ. Define

Hmax := max
z∈S∪S′

sup
θ∈B(θ0,R)

∥H(z, θ)∥op .
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Then with probability at least 1 − δ over the sampling of S and S ′ we have that for any θt

such that ∥θt − θ0∥2 ≤ R∥∥(Tn − T tn)rt
∥∥2
L2(X,ρ)

≤ 2 ∥f ∗∥2L∞(X,ρ) ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ

provided that B = Õ(1), Hmax = Õ(ϵ1/2/R) and n = Ω̃(ϵ−2).

Proof. We have by Lemma 3.6.18 with probability at least 1− δ over the sampling of S, S ′

∥∥(Tn − T tn)rt
∥∥2
L2(X,ρ)

≤ 2 ∥f ∗∥2L∞(X,ρ)

[
∥K −K0∥2L2(X2,ρ⊗ρ) + 12B2H2

maxR
2 + Õ

(
B4

√
n

)]
.

Thus if B = Õ(1) then Hmax = Õ(ϵ1/2/R) and n = Ω̃(ϵ−2) is sufficient to ensure that∥∥(Tn − T tn)rt
∥∥2
L2(X,ρ)

≤ 2 ∥f ∗∥2L∞(X,ρ) ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ.

Now we will begin the work to bound ∥(TK − Tn)rs∥L2(X,ρ). The following technical lemma

bounds the Rademacher complexity of the difference between the network f(x; θ) and the

linearization flin(x; θ) = ⟨∇θf(x; θ0), θ − θ0⟩ in terms of the Hessian norm for finitely many

values z ∈ X.

Lemma 3.6.20. Let R ≥ 1, F = {x 7→ f(x; θ) − flin(x; θ) : θ ∈ B(θ0, R)}, B =

supx∈X supθ∈B(θ0,R) ∥∇θf(x; θ)∥, and let S = (z1. . . . , zn) ⊂ X. Furthermore let

Hmax := max
z∈S

sup
θ∈B(θ0,R)

∥H(z, θ)∥op .

Then

sup
g∈F

∥g∥L∞(X,ρ) ≤ 2BR

and

sup
g∈F

max
z∈S

|g(z)| ≤ 1

2
R2Hmax.

In particular
1

n
URad((F ∪ −F)|S) ≤

1

2
R2Hmax.
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Proof. We note that

|f(x; θ)− flin(x; θ)| ≤ |f(x; θ)|+ |flin(x; θ)|.

Well then using the fact that f(•; θ0) = 0 from the antisymmetric initialization we get

|f(x; θ)| = |f(x; θ)− f(x; θ0)| =
∣∣∣∣∫ 1

0

⟨∇θf(x; θs+ (1− s)θ0), θ − θ0⟩ds
∣∣∣∣

≤
∫ 1

0

|⟨∇θf(x; θs+ (1− s)θ0), θ − θ0⟩| ≤ B ∥θ − θ0∥ ≤ BR.

On the other hand

|flin(x; θ)| = |⟨∇θf(x; θ0), θ − θ0⟩| ≤ ∥∇θf(x; θ0)∥2 ∥θ − θ0∥2 ≤ BR.

Thus

sup
θ∈B(θ0,R)

∥f(•; θ)− flin(•; θ)∥L∞(X,ρ) ≤ 2BR

and the first conclusion follows. Furthermore by the Lagrange form of the remainder in

Taylor’s theorem we have for z ∈ S

|f(z; θ)− flin(z; θ)| =
∣∣∣∣(θ − θ0)

TH(z, ξ)

2
(θ − θ0)

∣∣∣∣ ≤ 1

2
∥θ − θ0∥22 ∥H(z, ξ)∥op

where ξ is some point on the line between θ and θ0. Thus if we set

Hmax := max
z∈S

sup
θ∈B(θ0,R)

∥H(z, θ)∥op

we have that

|f(z; θ)− flin(z; θ)| ≤
1

2
R2Hmax

for all θ ∈ B(θ0, R). Therefore 1
n
URad((F ∪ −F)|S) ≤ 1

2
R2Hmax and the desired result

follows.

We now introduce another technical lemma that provides Rademacher complexity and

L∞ norm bounds for the linear model x 7→ ⟨∇θf(x; θ0), θ⟩.
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Lemma 3.6.21. Let R ≥ 1, F = {x 7→ ⟨∇θf(x; θ0), θ⟩ : ∥θ∥2 ≤ 2R}. Let

B = sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥ .

Then

sup
g∈F

∥g∥L∞(X,ρ) ≤ 2BR

and
1

n
URad(F|S) ≤

2BR√
n
.

Proof. By Cauchy-Schwarz

|⟨∇θf(x; θ0), θ⟩| ≤ 2BR

and thus ∥g∥L∞(X,ρ) ≤ 2BR for all g ∈ F . Now let ϵ ∈ Rn be a vector with i.i.d Rademacher

entries ϵi ∼ Unif{+1,−1}. Then as was shown by [BM03, Lemma 22]

Eϵ

[
sup

θ∈B(θ0,2R)

n∑
i=1

ϵi⟨∇θf(xi, θ0), θ⟩

]
= 2REϵ

∥∥∥∥∥
n∑
i=1

ϵi∇θf(xi; θ0)

∥∥∥∥∥
2

≤ 2R

Eϵ
∥∥∥∥∥

n∑
i=1

ϵi∇θf(xi; θ0)

∥∥∥∥∥
2

2

1/2

= 2R

[
Eϵ

[ ∑
1≤i,j≤n

ϵiϵj⟨∇θf(xi; θ0),∇θf(xj; θ0)⟩

]]1/2

= 2R

√√√√ n∑
i=1

Kθ0(xi, xi)

≤ 2RB
√
n.

where the first inequality above is an application of Jensen’s inequality. The Rademacher

complexity bound then follows from the bound above.

The following lemma compares the L2(X, ρ) norm to that of its empirical counterpart

L2(X, ρ̂) for the function classes discussed in Lemmas 3.6.20 and 3.6.21.
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Lemma 3.6.22. Let R ≥ 1, F1 = {x 7→ f(x; θ) − flin(x; θ) : θ ∈ B(θ0, R)}, F2 = {x 7→

⟨∇θf(x; θ0), θ⟩ : ∥θ∥2 ≤ 2R}, and B = supx∈X supθ∈B(θ0,R) ∥∇θf(x; θ)∥. Then with probabil-

ity at least 1− δ over the sampling of S = (x1, . . . , xn)

sup
g∈F1∪F2

∣∣∣∥g∥2L2(X,ρ) − ∥g∥2L2(X,ρ̂)

∣∣∣ ≤ 4BR3Hmax + Õ

(
B2R2

√
n

)
.

where ρ̂ = 1
n

∑n
i=1 δxi is the empirical measure induced by x1, . . . , xn and

Hmax := max
z∈S

sup
θ∈B(θ0,R)

∥H(z, θ)∥op .

Proof. Let F = {|g|2 : g ∈ F1 ∪ F2}. Note that by Lemmas 3.6.20 and 3.6.21 we have that

for g ∈ F1 ∪ F2 that ∥g∥L∞(X,ρ) ≤ 2BR. Thus every g ∈ F satisfies g(x) ∈ [0, 4B2R2] a.s.

Well then by Theorem 3.6.15 we have with probability at least 1 − δ over the sampling of

S = (x1, . . . , xn) that

sup
g∈F

[
Ex∼ρ[g(x)]−

1

n

n∑
i=1

g(xi)

]
≤ 2

n
URad(F|S) + 12B2R2

√
log(2/δ)

2n
.

Well note that x2 is 4BR Lipschitz on the interval [−2BR, 2BR]. Then by Lemma 3.6.16

we have that

URad(F|S) ≤ 4BR · URad((F1 ∪ F2)|S).

Well then we have that

URad((F1 ∪ F2)|S) ≤ URad((F1 ∪ −F1 ∪ F2)|S) ≤ URad((F1 ∪ −F1)|S) + URad((F2)|S)

where we have used the property that if A,A′ are vector classes such that supu∈A⟨ϵ, u⟩ ≥ 0

and supu∈A′⟨ϵ, u⟩ ≥ 0 for all ϵ ∈ {1,−1}n then URad(A∪A′) ≤ URad(A)+URad(A′). Well

by Lemma 3.6.20 we have that

1

n
URad((F1 ∪ −F1)|S) ≤

1

2
R2Hmax.

On the other hand by Lemma 3.6.21 we have that

1

n
URad((F2)|S) ≤

2BR√
n
.
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Therefore combining these two bounds we get that

1

n
URad((F1 ∪ F2)|S) ≤

1

2
R2Hmax +

2BR√
n

and thus

1

n
URad(F|S) ≤

4BR

n
· URad((F1 ∪ F2)|S) ≤ 4BR

[
1

2
R2Hmax +

2BR√
n

]
.

Therefore by putting everything together we have that

sup
g∈F

[
Ex∼ρ[g(x)]−

1

n

n∑
i=1

g(xi)

]
≤ 8BR

[
1

2
R2Hmax +

2BR√
n

]
+ 12B2R2

√
log(2/δ)

2n

= 4BR3Hmax +
16B2R2

√
n

+ 12B2R2

√
log(2/δ)

2n
.

By repeating the same argument for the class −F and taking a union bound we have with

probability at least 1− 2δ that

sup
g∈F

∣∣∣∣∣Ex∼ρ[g(x)]− 1

n

n∑
i=1

g(xi)

∣∣∣∣∣ ≤ 4BR3Hmax +
16B2R2

√
n

+ 12B2R2

√
log(2/δ)

2n
.

The above can be reinterpreted as

sup
g∈F1∪F2

∣∣∣∥g∥2L2(X,ρ) − ∥g∥2L2(X,ρ̂)

∣∣∣ ≤ 4BR3Hmax +
16B2R2

√
n

+ 12B2R2

√
log(2/δ)

2n

= 4BR3Hmax + Õ

(
B2R2

√
n

)
.

The desired result then follows from replacing δ with δ/2 in the previous argument.

Now we are ready to provide a bound on the quantity ∥(TK − Tn)r(•; θ)∥L2(X,ρ) for θ

satisfying ∥θ − θ0∥2 ≤ R.

Lemma 3.6.23. Let R ≥ 1 and let B and Hmax be defined as in Lemma 3.6.22. Let

C = {x 7→ flin(x; θ)− f ∗(x) : θ ∈ B(θ0, R)}. Then there are quantities Γ and Φ such that

Γ = Õ

(
BR
√

log(N (C, L2(X, ρ), ϵ))√
n

)
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and

Φ = 4BR3Hmax + Õ

(
B2R2

√
n

)
such that with probability at least 1− δ over the sampling of x1, . . . , xn

sup
θ∈B(θ0,R)

∥(TK − Tn)r(•; θ)∥L2(X,ρ) ≤ Γ + κ
[√

R4H2
max + 2Φ +

√
4ϵ2 + 2Φ

]
.

Proof. We will define rlin(x; θ) = flin(x; θ)− f ∗(x). Well then we have that

∥(TK − Tn)r(•; θ)∥L2(X,ρ)

≤ ∥(TK − Tn)rlin(•; θ)∥L2(X,ρ) + ∥(TK − Tn)(f − flin)(•; θ)∥L2(X,ρ) .

Now let E be a proper ϵ-covering of C = {rlin(x; θ) : θ ∈ B(θ0, R)} with respect to L2(X, ρ).

Furthermore assume E is of minimal cardinality so that |E| = N (C, L2(X, ρ), ϵ). Then for

any rlin(•; θ) we can choose θ̂ ∈ B(θ0, R) so that rlin(•; θ̂) ∈ E and∥∥∥rlin(•; θ)− rlin(•; θ̂)
∥∥∥
L2(X,ρ)

≤ ϵ.

Well then

∥(TK − Tn)rlin(•; θ)∥L2(X,ρ)

≤
∥∥∥(TK − Tn)rlin(•; θ̂)

∥∥∥
L2(X,ρ)

+
∥∥∥(TK − Tn)(rlin(•; θ)− rlin(•; θ̂))

∥∥∥
L2(X,ρ)

.

We note that for any rlin(x; θ) ∈ C that

|rlin(x; θ)| ≤ |flin(x; θ)|+ |f ∗(x)| = |⟨∇θf(x; θ0), θ − θ0⟩|+ |f ∗(x)|

≤ BR + ∥f ∗∥L∞(X,ρ) =: S.

To handle the term
∥∥(TK − Tn)rlin(•; θ̂)

∥∥
L2(X,ρ)

, for g ∈ E we define the random variables

Zi := g(xi)Kxi − Ex∼ρ[g(x)Kx] taking values in the separable Hilbert space H where H is

the RKHS associated with K. We note that (Tn − TK)g is equal to 1
n

∑n
i=1 Zi. Well then

note that ∥g(x)Kx∥H = |g(x)| ∥Kx∥H ≤ ∥g∥L∞(X,ρ)

√
K(x, x) ≤ Sκ1/2 a.s. Well then

∥Zi∥H ≤ ∥g(xi)Kxi∥H + ∥Ex∼ρ[g(x)Kx]∥H

≤ Sκ1/2 + Ex∼ρ ∥g(x)Kx∥H ≤ 2Sκ1/2.
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Then using Hoeffding’s inequality for random variables taking values in a separable Hilbert

space (see [RBV10, Section 2.4]) we have

P

(∥∥∥∥∥ 1n
n∑
i=1

Zi

∥∥∥∥∥
H

> s

)
≤ 2 exp

(
−ns2/2[2Sκ1/2]2

)
.

Thus by the union bound and the fact that 1
n

∑n
i=1 Zi = (Tn − TK)g we have that

P
(
max
g∈E

∥(Tn − TK)g∥H > s

)
≤ 2|E| exp

(
−ns2/2[2Sκ1/2]2

)
.

By setting

s =

2
√
2 · Sκ1/2

√
log
(

2|E|
δ

)
√
n

= Õ

(
BR
√
log(N (C, L2(X, ρ), ϵ))√

n

)

we get that with probability at least 1− δ over the sampling of x1, . . . , xn

max
g∈E

∥(Tn − TK)g∥H ≤ s

and thus from the inequality ∥•∥L2(X,ρ) ≤
√
σ1 ∥•∥H we get

max
g∈E

∥(Tn − TK)g∥L2(X,ρ) ≤ s
√
σ1 ≤ s

√
κ. (3.9)

On the other hand we must bound∥∥∥(TK − Tn)(rlin(•; θ)− rlin(•; θ̂))
∥∥∥
L2(X,ρ)

and

∥(TK − Tn)(f − flin)(•; θ)∥L2(X,ρ) .

Well note since K(•, •) ≤ κ pointwise it follows by Cauchy-Schwarz that for any h

|TKh(x)| =
∣∣∣∣∫ K(x, s)h(s)dρ(s)

∣∣∣∣ ≤ κ ∥h∥L2(X,ρ)

and similarly

|Tnh(x)| =
∣∣∣∣∫ K(x, s)h(s)dρ̂(s)

∣∣∣∣ ≤ κ ∥h∥L2(X,ρ̂) .
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Therefore

∥(TK − Tn)h∥L2(X,ρ) ≤ ∥(TK − Tn)h∥L∞(X,ρ) ≤ ∥TKh∥L∞(X,ρ) + ∥Tnh∥L∞(X,ρ)

≤ κ[∥h∥L2(X,ρ) + ∥h∥L2(X,ρ̂)].

Thus we will bound rlin(•; θ)− rlin(•; θ̂) and (f − flin)(•; θ) in L2(X, ρ) and L2(X, ρ̂). Well

since θ ∈ B(θ0, R) we have that (f −flin)(•; θ) ∈ F1 where F1 is defined as in Lemma 3.6.22.

On the other hand we note that rlin(x; θ)− rlin(x; θ̂) = ⟨∇θf(x; θ0), θ − θ̂⟩. Note that since

θ, θ̂ ∈ B(θ0, R) we have that
∥∥θ − θ̂

∥∥
2
≤ 2R. Thus rlin(•; θ) − rlin(•; θ̂) ∈ F2 where F2 is

defined as in Lemma 3.6.22. Thus by Lemma 3.6.22 separate from the randomness before

we have with probability at least 1− δ over the sampling of x1, . . . , xn

sup
g∈F1∪F2

∣∣∣∥g∥2L2(X,ρ) − ∥g∥2L2(X,ρ̂)

∣∣∣ ≤ 4BR3Hmax + Õ

(
B2R2

√
n

)
:= Φ. (3.10)

Well note that by Lemma 3.6.20 we have that for each i ∈ [n]

|f(xi; θ)− flin(xi; θ)| ≤
1

2
R2Hmax

and consequently

∥f(•; θ)− flin(•; θ)∥L2(X,ρ̂) ≤
1

2
R2Hmax.

On the other hand we had by the selection of θ̂ that∥∥∥rlin(•; θ)− rlin(•; θ̂)
∥∥∥
L2(X,ρ)

≤ ϵ.

Now for conciseness let h1 = f(•; θ)−flin(•; θ) and h2 = rlin(•; θ)−rlin(•; θ̂). Then by (3.10)

we have

∥h1∥2L2(X,ρ) ≤ ∥h1∥2L2(X,ρ̂) + Φ ≤ 1

4
R4H2

max + Φ

and

∥h2∥2L2(X,ρ̂) ≤ ∥h2∥2L2(X,ρ) + Φ ≤ ϵ2 + Φ.

This implies

∥h1∥2L2(X,ρ) + ∥h1∥2L2(X,ρ̂) ≤
1

2
R4H2

max + Φ

∥h2∥2L2(X,ρ) + ∥h2∥2L2(X,ρ̂) ≤ 2ϵ2 + Φ.
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Thus using the inequality a + b ≤
√
2(a2 + b2)1/2 for a, b ≥ 0 combined with the previous

estimates we have

∥h1∥L2(X,ρ) + ∥h1∥L2(X,ρ̂) ≤
√
2

√
1

2
R4H2

max + Φ =
√
R4H2

max + 2Φ

and

∥h2∥L2(X,ρ) + ∥h2∥L2(X,ρ̂) ≤
√
2
√
2ϵ2 + Φ =

√
4ϵ2 + 2Φ.

Thus we have just shown that assuming (3.10) holds that

∥(TK − Tn)h1∥L2(X,ρ) ≤ κ[∥h1∥L2(X,ρ) + ∥h1∥L2(X,ρ̂)] ≤ κ
√
R4H2

max + 2Φ

and

∥(TK − Tn)h2∥L2(X,ρ) ≤ κ[∥h2∥L2(X,ρ) + ∥h2∥L2(X,ρ̂)] ≤ κ
√
4ϵ2 + 2Φ.

Then by taking a union bound we can assume with probability at least 1 − 2δ that (3.9)

and (3.10) hold simultaneously. In which case our previous estimates combine to give us the

bound

∥(TK − Tn)r(•; θ)∥L2(X,ρ)

≤
∥∥∥(TK − Tn)rlin(•; θ̂)

∥∥∥
L2(X,ρ)

+ ∥(TK − Tn)h1∥L2(X,ρ) + ∥(TK − Tn)h2∥L2(X,ρ)

≤ s
√
κ+ κ

[√
R4H2

max + 2Φ +
√
4ϵ2 + 2Φ

]
.

We now note that as long as (3.9) and (3.10) hold the same argument runs through for any

θ ∈ B(θ0, R). Thus with probability at least 1− 2δ

sup
θ∈B(θ0,R)

∥(TK − Tn)r(•; θ)∥L2(X,ρ) ≤ s
√
κ+ κ

[√
R4H2

max + 2Φ +
√
4ϵ2 + 2Φ

]
.

The desired conclusion follows by setting Γ = s
√
κ and replacing δ with δ/2 in the previous

argument.

From Lemma 3.6.23 we get the following corollary.
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Corollary 3.6.24. Let R ≥ 1 and

B = sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x, θ)∥2 .

Then with probability at least 1− δ over the sampling of x1, . . . , xn we have that

sup
θ∈B(θ0,R)

∥(TK − Tn)r(•; θ)∥2L2(X,ρ) ≤ ϵ

provided that B = Õ(1), Hmax = Õ(ϵ/R3) and n = Ω̃(R4/ϵ2) where the expressions under

the Õ and Ω̃ notation do not depend on the values x1, . . . , xn.

Proof. After substituting ϵ1/2 for ϵ in Lemma 3.6.23 we have that with probability at least

1− δ over the sampling of x1, . . . , xn

sup
θ∈B(θ0,R)

∥(TK − Tn)r(•; θ)∥L2(X,ρ) ≤ Γ + κ
[√

R4H2
max + 2Φ +

√
4ϵ+ 2Φ

]
where

Γ = Õ

(
BR
√
log(N (C, L2(X, ρ), ϵ1/2))√

n

)
,

Φ = 4BR3Hmax + Õ

(
B2R2

√
n

)
,

and

C = {x 7→ flin(x; θ)− f ∗(x) : θ ∈ B(θ0, R)}.

Now define

F :=

∫
X

∇θf(x; θ0)∇θf(x; θ0)
Tdρ(x).

Since translation by a fixed function does not change the covering number we have by

Corollary 3.6.8 that

logN (C, L2(X, ρ), ϵ1/2) = Õ

(
p̃

(
F 1/2 3ϵ

1/2

4R

))
= Õ

(
p̃

(
F,

9ϵ

16R2

))
.

Well using the fact that p̃(A, ϵ) ≤ Tr(A)
ϵ

we have that

p̃

(
F,

9ϵ

16R2

)
≤ 16R2Tr(F )

9ϵ
.
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Well we note that

Tr(F ) = Tr(Ex∼ρ[∇θf(x; θ0)∇θf(x; θ0)
T ]) = Ex∼ρTr(∇θf(x; θ0)∇θf(x; θ0)

T )

= Ex∼ρ ∥∇θf(x; θ0)∥2 ≤ B2.

Therefore assuming B = Õ(1) we have that

Γ = Õ

(
R
√

logN (C, L2(X, ρ), ϵ1/2)√
n

)
= Õ

(
R2

ϵ1/2
√
n

)
.

Thus n = Ω̃(R4/ϵ2) suffices to ensure that Γ = O(ϵ1/2). Now we must bound

Φ = 4BR3Hmax + Õ

(
B2R2

√
n

)
.

We note that whenever B = Õ(1) we have that Hmax = Õ(ϵ/R3) and n = Ω̃(R4/ϵ2) guaran-

tees that Φ = O(ϵ). Finally we have that Hmax = Õ(ϵ/R3) ⊂ Õ(ϵ1/2/R2) suffices to ensure

that R4H2
max = O(ϵ). Thus given all these conditions are met we have that

Γ + κ
[√

R4H2
max + 2Φ +

√
4ϵ+ 2Φ

]
= O(ϵ1/2).

The desired result then follows from setting the constants under the Õ and Ω̃ notation

appropriately.

The following lemma combines the results in this section to get the ultimate bound on

the operator deviations TK − T tn.

Lemma 3.6.25. Let R ≥ 1 and ϵ ∈ (0, R). Let S = (x1, . . . , xn) and S ′ = (x′1, . . . , x
′
n) be

two separate i.i.d. samples from ρ and denote

Hmax := max
z∈S∪S′

sup
θ∈B(θ0,R)

∥H(z, θ)∥op

B := sup
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x, θ)∥2 .

Then with probability at least 1 − δ over the sampling of S, S ′ we have that for any t such

that ∥θt − θ0∥2 ≤ R that∥∥(TK − T tn)rt
∥∥2
L2(X,ρ)

≤ 4 ∥f ∗∥2L∞(X,ρ) ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ
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provided that B = Õ(1), Hmax = Õ(ϵ/R3) and n = Ω̃(R4/ϵ2) where the expressions under

the Õ and Ω̃ notation do not depend on S and S ′.

Proof. We note that for θt such that ∥θt − θ0∥2 ≤ R that∥∥(TK − T tn)rt
∥∥2
L2(X,ρ)

≤ [∥(TK − Tn)rt∥L2(X,ρ) +
∥∥(Tn − T tn)rt

∥∥
L2(X,ρ)

]2

≤ 2 ∥(TK − Tn)rt∥2L2(X,ρ) + 2
∥∥(Tn − T tn)rt

∥∥2
L2(X,ρ)

≤ 2 sup
θ∈B(θ0,R)

∥(TK − Tn)r(•; θ)∥2L2(X,ρ) + 2
∥∥(Tn − T tn)rt

∥∥2
L2(X,ρ)

.

Well by Corollary 3.6.24 we have with probability at least 1−δ over the sampling of x1, . . . , xn

sup
θ∈B(θ0,R)

∥(TK − Tn)r(•; θ)∥2L2(X,ρ) ≤ ϵ

provided that B = Õ(1), Hmax = Õ(ϵ/R3) and n = Ω̃(R4/ϵ2). This result also does not

depend in any way on S ′. On the other hand by Corollary 3.6.19 separate from the random-

ness before we have with probability at least 1 − δ over the sampling of S and S ′ that for

any θt such that ∥θt − θ0∥2 ≤ R∥∥(Tn − T tn)rt
∥∥2
L2(X,ρ)

≤ 2 ∥f ∗∥2L∞(X,ρ) ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ.

provided that B = Õ(1), Hmax = Õ(ϵ1/2/R) and n = Ω̃(ϵ−2). The desired result then follows

from taking a union bound and replacing δ with δ/2 and ϵ with ϵ/4.

3.6.4 Main Result

3.6.4.1 Damped Deviations

In this subsection we will recall some definitions and results from [BM22a]. The main

theorems in [BM22a] assume that the network architecture is shallow, however the results

we recall in this section do not depend on the architecture. Let K(x, x′) be a continuous,

symmetric, positive-definite kernel. Recall that K defines the integral operator

TKg(x) :=

∫
X

K(x, s)g(s)dρ(s).
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Then by Mercer’s theorem

K(x, x′) =
∞∑
i=1

σiϕi(x)ϕi(x
′)

where {ϕi}i is an orthonormal basis of L2(X, ρ) and {σi}i is a nonincreasing sequence of

positive values. Each ϕi is an eigenfunction of TK with eigenvalue σi, i.e. TKϕi = σiϕi. Let

x 7→ gs(x) be a L
2(X, ρ) function for each s ∈ [0, t]. Assume s 7→ ⟨ϕi, gs⟩ρ is measureable for

each i and
∫ t
0
∥gs∥2L2(X,ρ) ds <∞. Then we write∫ t

0

gsds

to denote the coordinate-wise integral, meaning that
∫ t
0
gsds is the L

2(X, ρ) function h such

that

⟨h, ϕi⟩ρ =
∫ t

0

⟨gs, ϕi⟩ρds.

With this definition in hand we now recall the following “Damped Deviations” lemma given

by [BM22a, Lemma 2.4].

Lemma 3.6.26. Let K(x, x′) be a continuous, symmetric, positive-definite kernel. Let

[TKh](•) =
∫
X
K(•, s)h(s)dρ(s) be the integral operator associated with K and let [T snh](•) =

1
n

∑n
i=1Ks(•, xi)h(xi) denote the operator associated with the time-dependent NTK Ks. Then

rt = exp(−TKt)r0 +
∫ t

0

exp(−TK(t− s))(TK − T sn)rsds,

where the equality is in the L2(X, ρ) sense.

Furthermore we have the following lemma [BM22a, Lemma C.8]

Lemma 3.6.27. Let K(x, x′) be a continuous, symmetric, positive-definite kernel with as-

sociated operator TKh(•) =
∫
X
K(•, s)h(s)dρ(s). Let T snh(•) = 1

n

∑n
i=1Ks(•, xi)h(xi) denote

the operator associated with the time-dependent NTK. Then

∥Pk(rt − exp(−TKt)r0)∥L2(X,ρ) ≤
1− exp(−σkt)

σk
sup
s≤t

∥(TK − T sn)rs∥L2(X,ρ) .

and

∥rt − exp(−TKt)r0∥L2(X,ρ) ≤ t · sup
s≤t

∥(TK − T sn)rs∥L2(X,ρ) .
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3.6.4.2 Proof of Theorem 3.3.5

We are now ready to prove the main result of this paper.

Theorem 3.3.5. Let T ≥ 1, ϵ > 0. Let K(x, x′) be a fixed continuous, symmetric, positive

definite kernel. For k ∈ N let Pk : L2(X, ρ) → L2(X, ρ) denote the orthogonal projection

onto the span of the top k eigenfunctions of the operator TK defined in Equation (3.2). Let

σk > 0 denote the k-th eigenvalue of TK. Then m = Ω̃(T 4/ϵ2) and n = Ω̃(T 2/ϵ2) suffices to

ensure with probability at least 1−O(mn) exp(−Ω(log2(m)) over the parameter initilization

θ0 and the training samples x1, . . . , xn that for all t ≤ T and k ∈ N

∥Pk(rt − exp(−TKt)r0)∥2L2(X,ρ) ≤
[
1− exp(−σkt)

σk

]2
·
[
4 ∥f ∗∥2∞ ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ

]
and

∥rt − exp(−TKt)r0∥2L2(X,ρ) ≤ t2 ·
[
4 ∥f ∗∥2∞ ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ

]
.

Proof. Let θ0 be the parameter initialization and let S = (x1, . . . , xn) and S
′ = (x′1, . . . , x

′
n)

be two i.i.d. samples from ρ. Furthermore let 1 ≤ R ≤
√
m. Let E1 ⊂ Rp ×X2n be the set

of values (θ0, S, S
′) so that the conclusion of Lemma 3.6.25 holds. Similarly let E2 be the set

of values (θ0, S, S
′) satisfying

B := max
x∈X

sup
θ∈B(θ0,R)

∥∇θf(x; θ)∥2 = O(1)

and

Hmax := max
z∈S∪S′

sup
θ∈B(θ0,R)

∥H(z, θ)∥op = Õ(ϵ/R3)

where the expression O(1) above is the bound on B given by Lemma 3.6.12 and the expression

Õ(ϵ/R3) is precisely the condition on Hmax in the conclusion of Lemma 3.6.25. By Lemma

3.6.25 for any fixed θ0 we have that the conclusion holds with probability at least 1− δ over

the sampling of S, S ′. Thus for any θ0 we have that

ES,S′ [I {(θ0, S, S ′) ∈ E1}] ≥ 1− δ.
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It follows then by the Fubini-Tonelli theorem that

P(E1) = Eθ0ES,S′ [I {(θ0, S, S ′) ∈ E1}] ≥ 1− δ.

On the other hand by Theorem 3.6.9 and Lemma 3.6.12 combined with a union bound we

have that for any fixed S, S ′ then with probability at least 1 − 2Cmn exp(−c log2(m)) −

C exp(−cm) that Hmax = Õ(R/
√
m) and B = O(1). Thus if m = Ω̃(R8/ϵ2) we ensure that

Hmax = Õ(ϵ/R3). Then by the same Fubini-Tonelli argument as before we get that

P(E2) = ES,S′Eθ0I {(θ0, S, S ′) ∈ E2} ≥ 1− 2Cmn exp(−c log2(m))− C exp(−cm).

Thus by taking a union bound we have with probability at least

1− δ −O(mn) exp(−Ω(log2(m))

that the events E1 and E2 both hold simultaneously. This holds for any δ so we may as well

set δ = O(mn) exp(−Ω(log2(m))) and absorb it into the other term. Whenever E1 and E2

hold simultaneously we have by Lemma 3.6.25 that for any θt such that ∥θt − θ0∥2 ≤ R

∥∥(TK − T tn)rt
∥∥2
L2(X,ρ)

≤ 4 ∥f ∗∥2L∞(X,ρ) ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ. (3.11)

Well by Lemma 3.6.14 we have that ∥θt − θ0∥ ≤
√
t√
2
∥f ∗∥L∞(X,ρ). Thus for t ≤

2R2

∥f∗∥2L∞(X,ρ)

we

have that ∥θt − θ0∥ ≤ R. Well then by Lemma 3.6.27 and the inequality (3.11) we have that

∥Pk(rt − exp(−TKt)r0)∥2L2(X,ρ)

≤
[
1− exp(−σkt)

σk

]2
·
[
4 ∥f ∗∥2L∞(X,ρ) ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ

]
and

∥rt − exp(−TKt)r0∥2L2(X,ρ) ≤ t2 ·
[
4 ∥f ∗∥2L∞(X,ρ) ∥K −K0∥2L2(X2,ρ⊗ρ) + ϵ

]
.

The desired result then follows by setting T = 2R2

∥f∗∥2L∞(X,ρ)

.
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3.6.5 Discussion of Assumption 3.3.6

We will discuss why it is reasonable to assume that m = Ω̃(ϵ−2) suffices to ensure that

∥K0 −K∞∥2L2(X×X,ρ⊗ρ) ≤ ϵ holds with high probability over the initialization. We note that

for fixed θ0, K0 and K∞ are bounded and thus by Hoeffding’s inequality we have that with

high probability

∥K0 −K∞∥2L2(X×X,ρ⊗ρ)

≤ 1

N

N∑
i=1

|K0(xi, x
′
i)−K∞(xi, x

′
i)|2 + Õ

(
∥K0 −K∞∥2L∞(X×X,ρ×ρ)√

N

)
,

where (x1, x
′
1), . . . , (xN , x

′
N) is an i.i.d. sample from ρ⊗ ρ. Furthermore we have by Lemma

3.6.12 that ∥K0 −K∞∥2L∞(X×X,ρ×ρ) = Õ(1) with high probability over the initialization of

θ0. Thus if we set N = Ω̃(ϵ−2) we have that Assumption 3.3.6 holds provided that

1

N

N∑
i=1

|K0(xi, x
′
i)−K∞(xi, x

′
i)|2 = O(ϵ)

with high probability over the simultaneous sampling of θ0 and (x1, x
′
1), . . . , (xN , x

′
N).

It is been shown in many settings that the pointwise deviations satisfy

|K0(x, x
′)−K∞(x, x′)| = Õ(1/

√
m)

with high probability over θ0. The earliest was [DZP19] who demonstrate that for a shallow

ReLU network for fixed x, x′ we have with probability at least 1− δ over the initialization

|K0(x, x
′)−K∞(x, x′)| ≤ O

(
log(1/δ)√

m

)
.

Analyzing the portion of the Neural Tangent Kernel corresponding to the last hidden layer,

[DLL19] get an analogous bound for deep fully-connected, ResNet, and convolutional net-

works with smooth activations. This is substantiated by the results of [HY20] for deep

fully-connected networks with smooth activations. In their work they demonstrate that for

a fixed training set x1, . . . , xn

max
i,j

|K0(xi, xj)−K∞(xi, xj)| = Õ(1/
√
m)
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with high probability over the initialization. In their result there are constants that depend

on how well dispersed x1, . . . , xn are. [BM22a] demonstrated that for shallow fully-connected

networks with smooth activations

sup
(x,x′)∈X×X

|K0(x, x
′)−K∞(x, x′)| = Õ(1/

√
m)

with high probability over the initialization. For deep fully-connected ReLU networks

[ADH19b] demonstrate that for fixed x, x′ if m = Ω(L6 log(L/δ)/ϵ4) then with probabil-

ity at least 1− δ

|K0(x, x
′)−K∞(x, x′)| ≤ (L+ 1)ϵ.

In terms of the width m this translates to |K0(x, x
′) − K∞(x, x′)| = Õ(1/m1/4) with high

probability. This was improved in a recent work by [BGW21] that demonstrated that if

M is a Riemannian submanifold of the unit sphere then with high probability over the

initialization

sup
x,x′∈M×M

|K0(x, x
′)−K∞(x, x′)| = Õ(1/

√
m).

Furthermore as stated by [BGW21] their analysis should be amenable to other architectures.

Now note that maxi∈[N ] |K0(xi, x
′
i)−K∞(xi, x

′
i)| = O(ϵ1/2) suffices to ensure that

1

N

N∑
i=1

|K0(xi, x
′
i)−K∞(xi, x

′
i)|2 = O(ϵ).

Based on the previous discussion, we expect that with high probability

max
i∈[N ]

|K0(xi, x
′
i)−K∞(xi, x

′
i)| = Õ(1/

√
m).

Thus if m = Ω̃(1/ϵ2) then we would have that maxi∈[N ] |K0(xi, x
′
i) − K∞(xi, x

′
i)| = Õ(ϵ)

which is stronger than what we need. In fact maxi∈[N ] |K0(xi, x
′
i)−K∞(xi, x

′
i)| = Õ(1/m1/4)

is sufficient. For these reasons, we view Assumption 3.3.6 as quite reasonable. Nevertheless,

we are not aware of an out-of-the box result that simultaneously addresses all the cases we

consider and thus we must add this as an external assumption. However, if desired one can

bypass Assumption 3.3.6 by citing the aforementioned results to get statements for the cases

in which they apply to.
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3.6.6 Experimental Details

Architecture and Parameterization The code to produce Figure 3.1 is available at

https://github.com/bbowman223/deepspec The NTK Gram matrix

(G0)i,j := Kθ0(xi, xj) = ⟨∇θf(xi; θ0),∇θf(xj; θ0)⟩

was computed for two separate networks. The first network corresponds to LeNet-5 [LBB98]

where the output is the logit corresponding to class 0. The second network is a feedforward

network with one hidden layer with the Softplus activation ω(x) = log(1 + exp(x)). For

LeNet-5 we compute the NTK using PyTorch [PGM19] using the default PyTorch initializa-

tion and parameterization. For the shallow network we implement the network directly and

use the Neural Tangent Kernel parameterization:

f(x; θ) =
1√
m

m∑
i=1

aiω(⟨wi, x⟩+ bi) + b0,

where there is an explicit 1/
√
m factor. All parameters for the shallow network are initialized

as i.i.d. standard Gaussian random variables N(0, 1).

Details of Computation For each network we compute the NTK Gram matrix G0 for 10

separate pairs of (θ0, S) where θ0 is the parameter initialization and S = (x1, . . . , xn) is the

data batch. Each line in the plots of Figure 3.1 corresponds to a different pair (θ0, S). We

simultaneously sample the parameter initialization θ0 and a random batch of 2000 training

samples x1, . . . , x2000. We load the batches using “DataLoader” in PyTorch with the “shuffle”

parameter set to True. This means the batches will be sampled sequentially from a random

permutation of the training data and thus are sampled without replacement. We then

compute the NTK Gram matrix (G0)i,j := Kθ0(xi, xj) = ⟨∇θf(xi; θ0),∇θf(xj; θ0)⟩. Once

we compute G0 we compute its spectrum and plot the first 1000 eigenvalues. Note that the

number of eigenvalues that we plot is half the batch size. We observe that if one plots all n

eigenvalues (the number of eigenvalues equals the number of samples) one gets a sharp drop
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in log scale magnitude starting near the bottom 5-10% of eigenvalues. We observed this to

occur even as one varies n. We suspect this is due to numerical errors and thus we only plot

the first half of the spectrum.

Data The dataset used for LeNet-5 is MNIST [LBB98] and the dataset for the shallow

model is CIFAR-10 [Kri09]. MNIST is made available through the Creative Commons

Attribution-Share Alike 3.0 license. CIFAR-10 does not specify a license. Neither of these

datasets have personally identifiable information nor offensive content.

Computational Resources and Runtime The experiments were run on a 2016 Mac-

book Pro with a 2.6 Ghz Quad-Core Intel Core i7 processor and 16GB of RAM. The exper-

iment took less than an hour in wall-clock time.

Software Licenses and Attribution Our experiments were implemented in Python with

the aid of the following software libraries/tools: PyTorch [PGM19], NumPy [HMW20],

SciPy [VGO20], Matplotlib [Hun07], Jupyter Notebook [KRP16], IPython [PG07], and

autograd-hacks https://github.com/cybertronai/autograd-hacks. PyTorch, Numpy,

and SciPy are available under the BSD license. Jupyter and IPython are available under the

new/modified BSD license. Matplotlib uses only BSD compatible code and is available under

the PSF license. The code for autograd-hacks belongs to the public domain as specified by

the public-domain-equivalent-license “Unlicense” https://unlicense.org/.
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CHAPTER 4

Characterizing the Spectrum of the NTK via a Power

Series Expansion

4.1 Introduction

Neural networks currently dominate modern artificial intelligence, however, despite their

empirical success establishing a principled theoretical foundation for them remains an ac-

tive challenge. The key difficulties are that neural networks induce nonconvex optimization

objectives [SS89] and typically operate in an overparameterized regime which precludes clas-

sical statistical learning theory [AB02]. The persistent success of overparameterized models

tuned via non-convex optimization suggests that the relationship between the parameteriza-

tion, optimization, and generalization is more sophisticated than that which can be addressed

using classical theory.

A recent breakthrough on understanding the success of overparameterized networks was

established through the Neural Tangent Kernel (NTK) [JGH18]. In the infinite-width limit

the optimization dynamics are described entirely by the NTK and the parameterization be-

haves like a linear model [LXS19]. In this regime explicit guarantees for the optimization and

generalization can be obtained [DLL19, DZP19, ADH19a, ALS19a, ZCZ20]. While one must

be judicious when extrapolating insights from the NTK to finite-width networks [LSP20],

the NTK remains one of the most promising avenues for understanding deep learning on a

principled basis.

The spectrum of the NTK is fundamental to both the optimization and generaliza-

169



tion of wide networks. In particular, bounding the smallest eigenvalue of the NTK Gram

matrix is a staple technique for establishing convergence guarantees for the optimization

[DLL19, DZP19, OS20]. Furthermore, the full spectrum of the NTK Gram matrix gov-

erns the dynamics of the empirical risk [ADH19b], and the eigenvalues of the associated

integral operator characterize the dynamics of the generalization error outside the training

set [BM22b, BM22a]. Moreover, the decay rate of the generalization error for Gaussian

process regression using the NTK can be characterized by the decay rate of the spectrum

[CD07, CLK21, JBM22].

The importance of the spectrum of the NTK has led to a variety of efforts to characterize

its structure via random matrix theory and other tools [YS19, FW20]. There is a broader

body of work studying the closely related Conjugate Kernel, Fisher Information Matrix,

and Hessian [PLR16, PW17, PW18, LLC18, KAA20]. These results often require complex

random matrix theory or operate in a regime where the input dimension is sent to infinity.

By contrast, using a just a power series expansion we are able to characterize a variety of

attributes of the spectrum for fixed input dimension and recover key results from prior work.

4.1.1 Contributions

In Theorem 4.3.2 we derive coefficients for the power series expansion of the NTK under unit

variance initialization, see Assumption 4.3.1. Consequently we are able to derive insights

into the NTK spectrum, notably concerning the outlier eigenvalues as well as the asymptotic

decay.

• In Theorem 4.4.1 and Observation 4.4.2 we demonstrate that the largest eigenvalue λ1(K)

of the NTK takes up an Ω(1) proportion of the trace and that there are O(1) outlier

eigenvalues of the same order as λ1(K).

• In Theorem 4.4.3 and Theorem 4.4.5 we show that the effective rank Tr(K)/λ1(K) of the

NTK is upper bounded by a constant multiple of the effective rank Tr(XXT )/λ1(XXT )
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of the input data Gram matrix for both infinite and finite-width networks.

• In Theorem 4.4.6 and Theorem 4.4.8 we characterize the asymptotic behavior of the NTK

spectrum for both uniform and nonuniform data distributions on the sphere.

4.1.2 Related Work

Neural Tangent Kernel (NTK): the NTK was introduced by [JGH18], who demonstrated

that in the infinite-width limit neural network optimization is described via a kernel gradient

descent. As a consequence, when the network is polynomially wide in the number of samples,

global convergence guarantees for gradient descent can be obtained [DLL19, DZP19, ALS19a,

ZG19, LXS19, ZCZ20, OS20, NM20, Ngu21]. Furthermore, the connection between infinite-

width networks and Gaussian processes, which traces back to [Nea96], has been reinvigorated

in light of the NTK. Recent investigations include [LBN18, dHR18, NXB19].

Analysis of NTK Spectrum: theoretical analysis of the NTK spectrum via random

matrix theory was investigated by [YS19, FW20] in the high dimensional limit. [VY21]

demonstrated that for ReLU networks the spectrum of the NTK integral operator asymp-

totically follows a power law, which is consistent with our results for the uniform data distri-

bution. [BJK19] calculated the NTK spectrum for shallow ReLU networks under the uniform

distribution, which was then expanded to the nonuniform case by [BGG20]. [GGJ22] ana-

lyzed the spectrum of the conjugate kernel and NTK for convolutional networks with ReLU

activations whose pixels are uniformly distributed on the sphere. [GYK20, BB21, CX21] an-

alyzed the reproducing kernel Hilbert spaces of the NTK for ReLU networks and the Laplace

kernel via the decay rate of the spectrum of the kernel. In contrast to previous works, we are

able to address the spectrum in the finite dimensional setting and characterize the impact

of different activation functions on it.

Hermite Expansion: [DFS16] used Hermite expansion to the study the expressivity

of the Conjugate Kernel. [SAD22] used this technique to demonstrate that any dot product
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kernel can be realized by the NTK or Conjugate Kernel of a shallow, zero bias network.

[OS20] use Hermite expansion to study the NTK and establish a quantitative bound on the

smallest eigenvalue for shallow networks. This approach was incorporated by [NM20] to han-

dle convergence for deep networks, with sharp bounds on the smallest NTK eigenvalue for

deep ReLU networks provided by [NMM21]. The Hermite approach was utilized by [PSG20]

to analyze the smallest NTK eigenvalue of shallow networks under various activations. Fi-

nally, in a concurrent work [HZL22] use Hermite expansions to develop a principled and

efficient polynomial based approximation algorithm for the NTK and CNTK. In contrast to

the aforementioned works, here we employ the Hermite expansion to characterize both the

outlier and asymptotic portions of the spectrum for both shallow and deep networks under

general activations.

4.2 Preliminaries

For our notation, lower case letters, e.g., x, y, denote scalars, lower case bold characters,

e.g., x,y are for vectors, and upper case bold characters, e.g., X,Y, are for matrices. For

natural numbers k1, k2 ∈ N we let [k1] = {1, . . . , k1} and [k2, k1] = {k2, . . . , k1}. If k2 > k1

then [k2, k1] is the empty set. We use ∥·∥p to denote the p-norm of the matrix or vector in

question and as default use ∥·∥ as the operator or 2-norm respectively. We use 1m×n ∈ Rm×n

to denote the matrix with all entries equal to one. We define δp=c to take the value 1 if p = c

and be zero otherwise. We will frequently overload scalar functions ϕ : R → R by applying

them elementwise to vectors and matrices. The entry in the ith row and jth column of

a matrix we access using the notation [X]ij. The Hadamard or entrywise product of two

matrices X,Y ∈ Rm×n we denote X⊙Y as is standard. The pth Hadamard power we denote

X⊙p and define it as the Hadamard product of X with itself p times,

X⊙p := X⊙X⊙ · · · ⊙X.
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Given a Hermitian or symmetric matrix X ∈ Rn×n, we adopt the convention that λi(X)

denotes the ith largest eigenvalue,

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

Finally, for a square matrix X ∈ Rn×n we let Tr(X) =
∑n

i=1[X]ii denote the trace.

4.2.1 Hermite Expansion

We say that a function f : R → R is square integrable with respect to the standard Gaussian

measure γ(z) = 1√
2π
e−z

2/2 if EX∼N (0,1)[f(X)2] < ∞. We denote by L2(R, γ) the space of all

such functions. The normalized probabilist’s Hermite polynomials are defined as

hk(x) =
(−1)kex

2/2

√
k!

dk

dxk
e−x

2/2, k = 0, 1, . . .

and form a complete orthonormal basis in L2(R, γ) [OD14, §11]. The Hermite expan-

sion of a function ϕ ∈ L2(R, γ) is given by ϕ(x) =
∑∞

k=0 µk(ϕ)hk(x), where µk(ϕ) =

EX∼N (0,1)[ϕ(X)hk(X)] is the kth normalized probabilist’s Hermite coefficient of ϕ.

4.2.2 NTK Parameterization

In what follows, for n, d ∈ N let X ∈ Rn×d denote a matrix which stores n points in Rd row-

wise. Unless otherwise stated, we assume d ≤ n and denote the ith row of Xn as xi. In this

work we consider fully-connected neural networks of the form f (L+1) : Rd → R with L ∈ N

hidden layers and a linear output layer. For a given input vector x ∈ Rd, the activation

f (l) and preactivation g(l) at each layer l ∈ [L + 1] are defined via the following recurrence

relations,

g(1)(x) = γwW
(1)x+ γbb

(1), f (1)(x) = ϕ
(
g(1)(x)

)
,

g(l)(x) =
σw√
ml−1

W(l)f (l−1)(x) + σbb
(l), f (l)(x) = ϕ

(
g(l)(x)

)
, ∀l ∈ [2, L],

g(L+1)(x) =
σw√
mL

W(L+1)f (L)(x), f (L+1)(x) = g(L+1)(x).

(4.1)
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The parameters W(l) ∈ Rml×ml−1 and b(l) ∈ Rml are the weight matrix and bias vector at

the lth layer respectively, m0 = d, mL+1 = 1, and ϕ : R → R is the activation function

applied elementwise. The variables γw, σw ∈ R>0 and γb, σb ∈ R≥0 correspond to weight

and bias hyperparameters respectively. Let θl ∈ Rp denote a vector storing the network

parameters (W(h),b(h))lh=1 up to and including the lth layer. The Neural Tangent Kernel

[JGH18] Θ̃(l) : Rd × Rd → R associated with f (l) at layer l ∈ [L+ 1] is defined as

Θ̃(l)(x,y) := ⟨∇θlf
(l)(x),∇θlf

(l)(y)⟩. (4.2)

We will mostly study the NTK under the following standard assumptions.

Assumption 4.2.1. NTK initialization.

1. At initialization all network parameters are distributed as N (0, 1) and are mutually inde-

pendent.

2. The activation function satisfies ϕ ∈ L2(R, γ), is differentiable almost everywhere and its

derivative, which we denote ϕ′, also satisfies ϕ′ ∈ L2(R, γ).

3. The widths are sent to infinity in sequence, m1 → ∞,m2 → ∞, . . . ,mL → ∞. We refer

to this regime as the sequential infinite-width limit.

Under Assumption 4.2.1, for any l ∈ [L + 1], Θ̃(l)(x,y) converges in probability to a

deterministic limit Θ(l) : Rd × Rd → R [JGH18] and the network behaves like a kernelized

linear predictor during training; see, e.g., [ADH19b, LXS19, WGL20]. Given access to the

rows (xi)
n
i=1 of X the NTK matrix at layer l ∈ [L + 1], which we denote Kl, is the n × n

matrix with entries defined as

[Kl]ij =
1

n
Θ(l)(xi,xj), ∀(i, j) ∈ [n]× [n]. (4.3)
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4.3 Expressing the NTK as a Power Series

The following assumption allows us to study a power series for the NTK of deep network

and with general activation functions. We remark that power series for the NTK of deep

networks with positive homogeneous activation functions, namely ReLU, have been studied

in prior works [HZL22, CX21, BB21, GGJ22]. We further remark that while these works

focus on the asymptotics of the NTK spectrum we also study the large eigenvalues.

Assumption 4.3.1. The hyperparameters of the network satisfy

γ2w + γ2b = 1, σ2
wEZ∼N (0,1)[ϕ(Z)

2] ≤ 1, σ2
b = 1− σ2

wEZ∼N (0,1)[ϕ(Z)
2].

Furthermore, the data is normalized so that ∥xi∥ = 1 for all i ∈ [n].

Recall under Assumption 4.2.1 that the preactivations of the network are centered Gaus-

sian processes [Nea96, LBN18]. Assumption 4.3.1 ensures the preactivation of each neuron

has unit variance and thus is reminiscent of the [LBO12], [GB10] and [HZR15] initializa-

tions, which are designed to avoid vanishing and exploding gradients. We refer the reader

to Section 4.6.1.3 for a thorough discussion. Under Assumption 4.3.1 we will show it is

possible to write the NTK not only as a dot-product kernel but also as an analytic power

series on [−1, 1] and derive expressions for the coefficients. In order to state this result recall,

given a function f ∈ L2(R, γ), that the pth normalized probabilist’s Hermite coefficient of

f is denoted µp(f), we refer the reader to Section 4.6.1.4 for an overview of the Hermite

polynomials and their properties. Furthermore, letting ā = (aj)
∞
j=0 denote a sequence of real

numbers, then for any p, k ∈ Z≥0 we define

F (p, k, ā) =


1, k = 0 and p = 0,

0, k = 0 and p ≥ 1,∑
(ji)∈J (p,k)

∏k
i=1 aji , k ≥ 1 and p ≥ 0,

(4.4)
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where

J (p, k) :=
{
(ji)i∈[k] : ji ≥ 0 ∀i ∈ [k],

k∑
i=1

ji = p
}

for all p ∈ Z≥0, k ∈ N.

Here J (p, k) is the set of all k-tuples of nonnegative integers which sum to p and F (p, k, ā)

is therefore the sum of all ordered products of k elements of ā whose indices sum to p. We

are now ready to state the key result of this section, Theorem 4.3.2, whose proof is provided

in Section 4.6.2.1.

Theorem 4.3.2. Under Assumptions 4.2.1 and 4.3.1, for all l ∈ [L+ 1]

nKl =
∞∑
p=0

κp,l
(
XXT

)⊙p
. (4.5)

The series for each entry n[Kl]ij converges absolutely and the coefficients κp,l are nonnegative

and can be evaluated using the recurrence relationships

κp,l =


δp=0γ

2
b + δp=1γ

2
w, l = 1,

αp,l +
∑p

q=0 κq,l−1υp−q,l, l ∈ [2, L+ 1],

(4.6)

where

αp,l =


σ2
wµ

2
p(ϕ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3,

(4.7)

and

υp,l =


σ2
wµ

2
p(ϕ

′), l = 2,∑∞
k=0 υk,2F (p, k, ᾱl−1), l ≥ 3,

(4.8)

are likewise nonnegative for all p ∈ Z≥0 and l ∈ [2, L+ 1].

As already remarked, power series for the NTK have been studied in previous works,

however, to the best of our knowledge Theorem 4.3.2 is the first to explicitly express the co-

efficients at a layer in terms of the coefficients of previous layers. To compute the coefficients

of the NTK as per Theorem 4.3.2, the Hermite coefficients of both ϕ and ϕ′ are required.
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Under Assumption 4.3.3 below, which has minimal impact on the generality of our results,

this calculation can be simplified. In short, under Assumption 4.3.3 υp,2 = (p+1)αp+1,2 and

therefore only the Hermite coefficients of ϕ are required. We refer the reader to Lemma 4.6.7

in Section 4.6.2.2 for further details.

Assumption 4.3.3. The activation function ϕ : R → R is absolutely continuous on [−a, a]

for all a > 0, differentiable almost everywhere, and is polynomially bounded, i.e., |ϕ(x)| =

O(|x|β) for some β > 0. Further, the derivative ϕ′ : R → R satisfies ϕ′ ∈ L2(R, γ).

We remark that ReLU, Tanh, Sigmoid, Softplus and many other commonly used acti-

vation functions satisfy Assumption 4.3.3. In order to understand the relationship between

the Hermite coefficients of the activation function and the coefficients of the NTK, we first

consider the simple two-layer case with L = 1 hidden layers. From Theorem 4.3.2

κp,2 = σ2
w(1 + γ2wp)µ

2
p(ϕ) + σ2

wγ
2
b (1 + p)µ2

p+1(ϕ) + δp=0σ
2
b . (4.9)

As per Table 4.1, a general trend we observe across all activation functions is that the first

few coefficients account for the large majority of the total NTK coefficient series.

Table 4.1: Dominance of the Early Coefficients Percentage of
∑∞

p=0 κp,2 accounted for

by the first T +1 NTK coefficients assuming γ2w = 1, γ2b = 0, σ2
w = 1 and σ2

b = 1−E[ϕ(Z)2].

T = 0 1 2 3 4 5

ReLU 43.944 77.277 93.192 93.192 95.403 95.403

Tanh 41.362 91.468 91.468 97.487 97.487 99.090

Sigmoid 91.557 99.729 99.729 99.977 99.977 99.997

Gaussian 95.834 95.834 98.729 98.729 99.634 99.634

However, the asymptotic rate of decay of the NTK coefficients varies significantly by

activation function, due to the varying behavior of their tails. In Lemma 4.3.4 we choose

ReLU, Tanh and Gaussian as prototypical examples of activations functions with growing,
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constant, and decaying tails respectively, and analyze the corresponding NTK coefficients

in the two layer setting. For typographical ease we denote the zero mean Gaussian density

function with variance σ2 as ωσ(z) := (1/
√
2πσ2) exp (−z2/(2σ2)).

Lemma 4.3.4. Under Assumptions 4.2.1 and 4.3.1,

1. if ϕ(z) = ReLU(z), then κp,2 = δ(γb>0)∪(p even)Θ(p−3/2),

2. if ϕ(z) = Tanh(z), then κp,2 = O
(
exp

(
−π

√
p−1
2

))
,

3. if ϕ(z) = ωσ(z), then κp,2 = δ(γb>0)∪(p even)Θ(p1/2(σ2 + 1)−p).

The trend we observe from Lemma 4.3.4 is that activation functions whose Hermite coef-

ficients decay quickly, such as ωσ, result in a faster decay of the NTK coefficients. We remark

that analyzing the rates of decay in the deep setting is challenging due to the calculation of

F (p, k, ᾱl−1) (4.4) and therefore leave this study to future work.

Finally, we briefly pause here to highlight the potential for using a truncation of (4.5) in

order to perform efficient numerical approximation of the infinite-width NTK. We remark

that this idea is also addressed in a concurrent work by [HZL22], albeit under a somewhat

different set of assumptions 1. As per our observations thus far that the coefficients of the

NTK power series (4.5) typically decay quite rapidly, one might consider approximating

Θ(l) by computing just the first few terms in each series of (4.5). Furthermore Figure 4.2 in

Section 4.6.2.3 shows the absolute error between the truncated ReLU NTK and the analytical

expression for the ReLU NTK, which is also defined in Section 4.6.2.3. Let ρ denote the input

correlation. The key takeaway is that while for |ρ| close to one the approximation is poor,

for |ρ| < 0.5, which is arguably more realistic for real-world data, with just 50 coefficients

machine level precision can be achieved. We refer the interested reader to Section 4.6.2.3 for

a proper discussion.

1In particular, in [HZL22] the authors focus on homogeneous activation functions and allow the data to
lie off the sphere. By contrast, we require the data to lie on the sphere but can handle non-homogeneous
activation functions in the deep setting.
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4.4 Analyzing the Spectrum of the NTK via its Power Series

In this section, we consider a general kernel matrix power series of the form

nK =
∞∑
p=0

cp(XXT )⊙p

where {cp}∞p=0 are coefficients and X is the data matrix. According to Theorem 4.3.2, the

coefficients of the NTK power series (4.5) are always nonnegative, thus we only consider the

case where cp are nonnegative. We will also consider the kernel function power series, which

we denote as K(x1, x2) =
∑∞

p=0 cp⟨x1, x2⟩p. Later on we will analyze the spectrum of kernel

matrix K and kernel function K.

4.4.1 Analysis of the Upper Spectrum and Effective Rank

In this section we analyze the upper part of the spectrum of the NTK, corresponding to the

large eigenvalues, using the power series given in Theorem 4.3.2. Our first result concerns

the effective rank [HHV22] of the NTK. Given a positive semidefinite matrix A ∈ Rn×n we

define the effective rank of A to be

eff(A) =
Tr(A)

λ1(A)
.

The effective rank quantifies how many eigenvalues are on the order of the largest eigenvalue.

This follows from the Markov-like inequality

|{p : λp(A) ≥ cλ1(A)}| ≤ c−1eff(A) (4.10)

and the eigenvalue bound
λp(A)

λ1(A)
≤ eff(A)

p
.

Our first result is that the effective rank of the NTK can be bounded in terms of a ratio

involving the power series coefficients. As we are assuming the data is normalized so that
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∥xi∥ = 1 for all i ∈ [n], then observe by the linearity of the trace

Tr(nK) =
∞∑
p=0

cpTr((XXT )⊙p) = n

∞∑
p=0

cp,

where we have used the fact that Tr((XXT )⊙p) = n for all p ∈ N. On the other hand,

λ1(nK) ≥ λ1(c0(XXT )0) = λ1(c01n×n) = nc0.

Combining these two results we get the following theorem.

Theorem 4.4.1. Assume that we have a kernel Gram matrix K of the form

nK =
∞∑
p=0

cp(XXT )⊙p

where c0 ̸= 0. Furthermore, assume the input data xi are normalized so that ∥xi∥ = 1 for

all i ∈ [n]. Then

eff(K) ≤
∑∞

p=0 cp

c0
.

By Theorem 4.3.2 c0 ̸= 0 provided the network has biases or the activation function

has nonzero Gaussian expectation (i.e., µ0(ϕ) ̸= 0). Thus we have that the effective rank

of K is bounded by an O(1) quantity. In the case of ReLU for example, as evidenced by

Table 4.1, the effective rank will be roughly 2.3 for a shallow network. By contrast, a well-

conditioned matrix would have an effective rank that is Ω(n). Combining Theorem 4.4.1

and the Markov-type bound (4.10) we make the following important observation.

Observation 4.4.2. The largest eigenvalue λ1(K) of the NTK takes up an Ω(1) fraction of

the entire trace and there are O(1) eigenvalues on the same order of magnitude as λ1(K),

where the O(1) and Ω(1) notation are with respect to the parameter n.

While the constant term c01n×n in the kernel leads to a significant outlier in the spectrum

of K, it is rather uninformative beyond this. What interests us is how the structure of the

data X manifests in the spectrum of the kernel matrix K. For this reason we will examine

the centered kernel matrix K̃ := K − c0
n
1n×n. By a very similar argument as before we get

the following result.
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Theorem 4.4.3. Assume that we have a kernel Gram matrix K of the form

nK =
∞∑
p=0

cp(XXT )⊙p

where c1 ̸= 0. Furthermore, assume the input data xi are normalized so that ∥xi∥ = 1 for

all i ∈ [n]. Then the centered kernel K̃ := K− c0
n
1n×n satisfies

eff(K̃) ≤ eff(XXT )

∑∞
p=1 cp

c1
.

Thus we have that the effective rank of the centered kernel K̃ is upper bounded by a

constant multiple of the effective rank of the input data Gram XXT . Furthermore, we can

take the ratio
∑∞

p=1 cp

c1
as a measure of how much the NTK inherits the behavior of the linear

kernel XXT : in particular, if the input data gram has low effective rank and this ratio is

moderate then we may conclude that the centered NTK must also have low effective rank.

Again from Table 4.1, in the shallow setting we see that this ratio tends to be small for many

of the common activations, for example, for ReLU it is roughly 1.3. To summarize then from

Theorem 4.4.3 we make the important observation.

Observation 4.4.4. Whenever the input data are approximately low rank, the centered

kernel matrix K̃ = K− c0
n
1n×n is also approximately low rank.

It turns out that this phenomenon also holds for finite-width networks at initialization.

Consider the shallow model
m∑
ℓ=1

aℓϕ(⟨wℓ,x⟩),

where x ∈ Rd and wℓ ∈ Rd, aℓ ∈ R for all ℓ ∈ [m]. The following theorem demonstrates that

when the width m is linear in the number of samples n then eff(K) is upper bounded by a

constant multiple of eff(XXT ).

Theorem 4.4.5. Assume ϕ(x) = ReLU(x) and n ≥ d. Fix ϵ > 0 small. Suppose that

w1, . . . ,wm ∼ N(0, ν21Id) i.i.d. and a1, . . . , am ∼ N(0, ν22). Set M = maxi∈[n] ∥xi∥2, and let

Σ := Ew∼N(0,ν21I)
[ϕ(Xw)ϕ(wTXT )].
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Then

m = Ω
(
max(λ1(Σ)

−2, 1)max(n, log(1/ϵ))
)
, ν1 = O(1/M

√
m)

suffices to ensure that, with probability at least 1 − ϵ over the sampling of the parameter

initialization,

eff(K) ≤ C · eff(XXT ),

where C > 0 is an absolute constant.

Many works consider the model where the outer layer weights are fixed and have constant

magnitude and only the inner layer weights are trained. This is the setting considered by

[XLS17], [ADH19a], [DZP19], [OFL19], [LSO20], and [OS20]. In this setting we can reduce

the dependence on the width m to only be logarithmic in the number of samples n, and we

have an accompanying lower bound. See Theorem 4.6.13 in the Section 4.6.4.3 for details.

In Figure 4.1 we empirically validate our theory by computing the spectrum of the NTK

on both Caltech101 [LAR22] and isotropic Gaussian data for feedforward networks. We

use the functorch2 module in PyTorch [PGM19] using an algorithmic approach inspired

by [NSS22]. As per Theorem 4.1 and Observation 4.2, we observe all network architectures

exhibit a dominant outlier eigenvalue due to the nonzero constant coefficient in the power

series. Furthermore, this dominant outlier becomes more pronounced with depth, as can be

observed if one carries out the calculations described in Theorem 4.3.2. Additionally, this

outlier is most pronounced for ReLU, as the combination of its Gaussian mean plus bias

term is the largest out of the activations considered here. As predicted by Theorem 4.3,

Observation 4.4 and Theorem 4.5, we observe real-world data, which has a skewed spectrum

and hence a low effective rank, results in the spectrum of the NTK being skewed. By

contrast, isotropic Gaussian data has a flat spectrum, and as a result beyond the outlier the

decay of eigenvalues of the NTK is more gradual. These observations support the claim that

the NTK inherits its spectral structure from the data. We also observe that the spectrum

2https://pytorch.org/functorch/stable/notebooks/neural_tangent_kernels.html
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for Tanh is closer to the linear activation relative to ReLU: intuitively this should not be

surprising as close to the origin Tanh is well approximated by the identity. Our theory

provides a formal explanation for this observation, indeed, the power series coefficients for

Tanh networks decay quickly relative to ReLU. We provide further experimental results in

Section 4.6.5, including for CNNs where we observe the same trends. We note that the

effective rank has implications for the generalization error. The Rademacher complexity of a

kernel method (and hence the NTK model) within a parameter ball is determined by its its

trace [BM03]. Since for the NTK λ1(K) = O(1), lower effective rank implies smaller trace

and hence limited complexity.
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Figure 4.1: Feedforward NTK Spectrum We plot the normalized eigenvalues λp/λ1 of

the NTK Gram matrix K and the data Gram matrix XXT for Caltech101 and isotropic

Gaussian datasets. To compute the NTK we randomly initialize feedforward networks of

depths 2 and 5 with width 500. We use the standard parameterization and Pytorch’s default

Kaiming uniform initialization in order to better connect our results with what is used in

practice. We consider a batch size of n = 200 and plot the first 100 eigenvalues. The

thick part of each curve corresponds to the mean across 10 trials, while the transparent part

corresponds to the 95% confidence interval

4.4.2 Analysis of the Lower Spectrum

In this section, we analyze the lower part of the spectrum using the power series. We first

analyze the kernel function K which we recall is a dot-product kernel of the form K(x1, x2) =∑∞
p=0 cp⟨x1, x2⟩p. Assuming the training data is uniformly distributed on a hypersphere it

was shown by [BJK19, BM19] that the eigenfunctions of K are the spherical harmonics.

[AM15] gave the eigenvalues of the kernel K in terms of the power series coefficients.
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Theorem 4.4.6. [AM15] Suppose that the training data are uniformly sampled from the

unit hypersphere Sd, d ≥ 2. If the dot-product kernel function has the expansion K(x1, x2) =∑∞
p=0 cp⟨x1, x2⟩p where cp ≥ 0, then the eigenvalue of every spherical harmonic of frequency

k is given by

λk =
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
,

where Γ is the gamma function.

A proof of Theorem 4.4.6 is provided in Section 4.6.6 for the reader’s convenience. This

theorem connects the coefficients cp of the kernel power series with the eigenvalues λk of

the kernel. In particular, given a specific decay rate for the coefficients cp one may derive

the decay rate of λk: for example, [SH21] examined the decay rate of λk if cp admits a

polynomial decay or exponential decay. The following Corollary summarizes the decay rates

of λk corresponding to two layer networks with different activations.

Corollary 4.4.7. Under the same setting as in Theorem 4.4.6,

1. if cp = Θ(p−a) where a ≥ 1, then λk = Θ(k−d−2a+2),

2. if cp = δ(p even)Θ(p−a), then λk = δ(k even)Θ(k−d−2a+2),

3. if cp = O
(
exp

(
−a√p

))
, then λk = O

(
k−d+1/2 exp

(
−a

√
k
))

,

4. if cp = Θ(p1/2a−p), then λk = O
(
k−d+1a−k

)
and λk = Ω

(
k−d/2+12−ka−k

)
.

In addition to recovering existing results for ReLU networks [BJK19, VY21, GYK20,

BB21], Corollary 4.4.7 also provides the decay rates for two-layer networks with Tanh and

Gaussian activations. As faster eigenvalue decay implies a smaller RKHS Corollary 4.4.7

shows using ReLU results in a larger RKHS relative to Tanh or Gaussian activations. Nu-

merics for Corollary 4.4.7 are provided in Figure 4.4 in Section 4.6.5. Finally, in Theorem

4.4.8 we relate a kernel’s power series to its spectral decay for arbitrary data distributions.
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Theorem 4.4.8 (Informal). Let the rows of X ∈ Rn×d be arbitrary points on the unit

sphere. Consider the kernel matrix nK =
∑∞

p=0 cp
(
XXT

)⊙p
and let r(n) ≤ d denote the

rank of XXT . Then

1. if cp = O(p−α) with α > r(n) + 1 for all n ∈ Z≥0 then λn(K) = O
(
n−α−1

r(n)

)
,

2. if cp = O(e−α
√
p) then λn(K) = O

(
n

1
2r(n) exp

(
−α′n

1
2r(n)

))
for any α′ < α2−1/2r(n),

3. if cp = O(e−αp) then λn(K) = O
(
exp

(
−α′n

1
r(n)

))
for any α′ < α2−1/2r(n).

Although the presence of the factor 1/r(n) in the exponents of n in these bounds is a

weakness, Theorem 4.4.8 still illustrates how, in a highly general setting, the asymptotic

decay of the coefficients of the power series ensures a certain asymptotic decay in the eigen-

values of the kernel matrix. A formal version of this result is provided in Section 4.6.7 along

with further discussion.

4.5 Conclusion

Using a power series expansion we derived a number of insights into both the outliers as well

as the asymptotic decay of the spectrum of the NTK, in particular highlighting the role of

the activation function. We performed our analysis without recourse to a high dimensional

limit or the use of random matrix theory. Interesting avenues for future work include better

analyzing the role of depth as well as characterizing the outlier eigenvalues and spectrum as

a whole for networks with convolutional, residual or transformer layers.

Reproducibility Statement To ensure reproducibility, we make the code public at https:

//github.com/bbowman223/data_ntk
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4.6 Appendix

This section is organized as follows.

• Section 4.6.1 gives background material on Gaussan kernels, NTK, unit variance intitial-

ization, and Hermite polynomial expansions.

• Section 4.6.2 derives the power series expansion for the NTK.

• Section 4.6.3 analyzes the effective rank of power series kernels.

• Section 4.6.4 analyzes the effective rank of finite-width networks.

• Section 4.6.5 empirically validates the theoretical results on the effective rank of the NTK

and the asymptotic decay of its spectrum.

• Section 4.6.6 analyzes the asymptotic decay of the spectrum for data uniformly distributed

on the sphere.

• Section 4.6.7 analyzes the asymptotic decay of the spectrum for nonuniform distributions.

4.6.1 Background Material

4.6.1.1 Gaussian Kernel

Observe by construction that the flattened collection of preactivations at the first layer

(g(1)(xi))
n
i=1 form a centered Gaussian process, with the covariance between the αth and βth

neuron being described by

Σ(1)
αβ
(xi,xj) := E[g(1)α (xi)g

(1)
β (xj)] = δα=β

(
γ2wx

T
i xj + γ2b

)
.

Under the Assumption 4.2.1, the preactivations at each layer l ∈ [L + 1] converge also in

distribution to centered Gaussian processes [Nea96, LBN18]. We remark that the sequential

width limit condition of Assumption 4.2.1 is not necessary for this behavior, for example the
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same result can be derived in the setting where the widths of the network are sent to infinity

simultaneously under certain conditions on the activation function [dHR18]. However, as

our interests lie in analyzing the limit rather than the conditions for convergence to said

limit, for simplicity we consider only the sequential width limit. As per [LBN18, Eq. 4],

the covariance between the preactivations of the αth and βth neurons at layer l ≥ 2 for any

input pair x,y ∈ R are described by the following kernel,

Σ(l)
αβ
(x,y) := E[g(l)α (x)g

(l)
β (y)]

= δα=β

(
σ2
wEg(l−1)∼GP(0,Σl−1)[ϕ(g

(l−1)
α (x))ϕ(g

(l−1)
β (y))] + σ2

b

)
.

We refer to this kernel as the Gaussian kernel. As each neuron is identically distributed

and the covariance between pairs of neurons is 0 unless α = β, moving forward we drop the

subscript and discuss only the covariance between the preactivations of an arbitrary neuron

given two inputs. As per the discussion by [LBN18, Section 2.3], the expectations involved

in the computation of these Gaussian kernels can be computed with respect to a bivariate

Gaussian distribution, whose covariance matrix has three distinct entries: the variance of

a preactivation of x at the previous layer, Σ(l−1)(x,x), the variance of a preactivation of

y at the previous layer, Σ(l)(y,y), and the covariance between preactivations of x and y,

Σ(l−1)(x,y). Therefore the Gaussian kernel, or covariance function, and its derivative, which

we will require later for our analysis of the NTK, can be computed via the the following

recurrence relations, see for instance [LBN18, JGH18, ADH19b, NMM21],

Σ(1)(x,y) = γ2wx
Tx+ γ2b ,

A(l)(x,y) =

Σ(l−1)(x,x) Σ(l−1)(x,y)

Σ(l−1)(y,x) Σ(l−1)(x,x)

 ,
Σ(l)(x,y) = σ2

wE(B1,B2)∼N (0,A(l)(x,y))[ϕ(B1)ϕ(B2)] + σ2
b ,

Σ̇(l)(x,y) = σ2
wE(B1,B2)∼N (0,A(l)(x,y)) [ϕ

′(B1)ϕ
′(B2)] .

(4.11)
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4.6.1.2 Neural Tangent Kernel (NTK)

As discussed in the Section 4.1, under Assumption 4.2.1 Θ̃(l) converges in probability to a

deterministic limit, which we denote Θ(l). This deterministic limit kernel can be expressed

in terms of the Gaussian kernels and their derivatives from Section 4.6.1.1 via the following

recurrence relationships [JGH18, Theorem 1],

Θ(1)(x,y) = Σ(1)(x,y),

Θ(l)(x,y) = Θ(l−1)(x,y)Σ̇(l)(x,y) + Σ(l)(x,y)

= Σ(l)(x,y) +
l−1∑
h=1

Σ(h)(x,y)

(
l∏

h′=h+1

Σ̇(h′)(x,y)

)
∀l ∈ [2, L+ 1].

(4.12)

A useful expression for the NTK matrix, which is a straightforward extension and gen-

eralization of [NMM21, Lemma 3.1], is provided in Lemma 4.6.1 below.

Lemma 4.6.1. (Based on [NMM21, Lemma 3.1]) Under Assumption 4.2.1, a sequence of

positive semidefinite matrices (Gl)
L+1
l=1 in Rn×n, and the related sequence (Ġl)

L+1
l=2 also in

Rn×n, can be constructed via the following recurrence relationships,

G1 = γ2wXXT + γ2b1n×n,

G2 = σ2
wEw∼N (0,Id)[ϕ(Xw)ϕ(Xw)T ] + σ2

b1n×n,

Ġ2 = σ2
wEw∼N (0,In)[ϕ

′(Xw)ϕ′(Xw)T ],

Gl = σ2
wEw∼N (0,In)[ϕ(

√
Gl−1w)ϕ(

√
Gl−1w)T ] + σ2

b1n×n, l ∈ [3, L+ 1],

Ġl = σ2
wEw∼N (0,In)[ϕ

′(
√

Gl−1w)ϕ′(
√

Gl−1w)T ], l ∈ [3, L+ 1].

(4.13)

The sequence of NTK matrices (Kl)
L+1
l=1 can in turn be written using the following recurrence

relationship,

nK1 = G1,

nKl = Gl + nKl−1 ⊙ Ġl

= Gl +
l−1∑
i=1

(
Gi ⊙

(
⊙l
j=i+1Ġj

))
.

(4.14)
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Proof. For the sequence (Gl)
L+1
l=1 it suffices to prove for any i, j ∈ [n] and l ∈ [L+ 1] that

[Gl]i,j = Σ(l)(xi,xj)

and Gl is positive semi-definite. We proceed by induction, considering the base case l = 1

and comparing (4.13) with (4.11) then it is evident that

[G1]i,j = Σ(1)(xi,xj).

In addition, G1 is also clearly positive semi-definite as for any u ∈ Rn

uTG1u = γ2w
∥∥XTu

∥∥2 + γ2b
∥∥1Tnu∥∥2 ≥ 0.

We now assume the induction hypothesis is true forGl−1. We will need to distinguish slightly

between two cases, l = 2 and l ∈ [3, L+ 1]. The proof of the induction step in either case is

identical. To this end, and for notational ease, let V = X, w ∼ N (0, Id) when l = 2, and

V =
√
Gl−1, w ∼ N (0, In) for l ∈ [3, L + 1]. In either case we let vi denote the ith row of

V. For any i, j ∈ [n]

[Gl]ij = σ2
wEw[ϕ(v

T
i w)ϕ(vTj w)] + σ2

b .

Now let B1 = vTi w, B2 = vTj w and observe for any α1, α2 ∈ R that α1B1 + α2B2 =∑n
k(α1vik+α2vjk)wk ∼ N (0, ∥α1vi + α2vj∥2). Therefore the joint distribution of (B1, B2) is

a mean 0 bivariate normal distribution. Denoting the covariance matrix of this distribution

as Ã ∈ R2×2, then [Gl]ij can be expressed as

[Gl]ij = σ2
wE(B1,B2)∼Ã[ϕ(B1)ϕ(B2)] + σ2

b .

To prove [Gl]i,j = Σ(l) it therefore suffices to show that Ã = A(l) as per (4.11). This follows

by the induction hypothesis as

E[B2
1 ] = vTi vi = [Gl−1]ii = Σ(l−1)(xi,xi),

E[B2
2 ] = vTj vj = [Gl−1]jj = Σ(l−1)(xj,xj),

E[B1B2] = vTi vj = [Gl−1]ij = Σ(l−1)(xi,xj).
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Finally, Gl is positive semi-definite as long as Ew[ϕ(Vw)ϕ(Vw)T ] is positive semi-definite.

Let M(w) = ϕ(Vw) ∈ Rn×n and observe for any w that M(w)M(w)T is positive semi-

definite. Therefore Ew[M(w)M(w)T ] must also be positive semi-definite. Thus the inductive

step is complete and we may conclude for l ∈ [L+ 1] that

[Gl]i,j = Σ(l)(xi,xj). (4.15)

For the proof of the expression for the sequence (Ġl)
L+1
l=2 it suffices to prove for any i, j ∈ [n]

and l ∈ [L+ 1] that

[Ġl]i,j = Σ̇(l)(xi,xj).

By comparing (4.13) with (4.11) this follows immediately from (4.15). Therefore with (4.13)

proven (4.14) follows from (4.12).

4.6.1.3 Unit Variance Initialization

The initialization scheme for a neural network, particularly a deep neural network, needs

to be designed with some care in order to avoid either vanishing or exploding gradients

during training [GB10, HZR15, MM16, LBO12]. Some of the most popular initialization

strategies used in practice today, in particular [LBO12] and [GB10] initialization, first model

the preactivations of the network as Gaussian random variables and then select the network

hyperparameters in order that the variance of these idealized preactivations is fixed at one.

Under Assumption 4.2.1 this idealized model on the preactivations is actually realized and if

we additionally assume the conditions of Assumption 4.3.1 hold then likewise the variance of

the preactivations at every layer will be fixed at one. To this end, and as in [PLR16, MAT22],

consider the function V : R≥0 → R≥0 defined as

V (q) = σ2
wEZ∼N (0,1)

[
ϕ (

√
qZ)2

]
+ σ2

b . (4.16)

Noting that V is another expression for Σ(l)(x,x), derived via a change of variables as per

[PLR16], the sequence of variances (Σ(l)(x,x))Ll=2 can therefore be generated as follows,

Σ(l)(x,x) = V (Σ(l−1)(x,x)). (4.17)
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The linear correlation ρ(l) : Rd × Rd → [−1, 1] between the preactivations of two inputs

x,y ∈ Rd we define as

ρ(l)(x,y) =
Σ(l)(x,y)√

Σ(l)(x,x)Σ(l)(y,y)
. (4.18)

Assuming Σ(l)(x,x) = Σ(l)(y,y) = 1 for all l ∈ [L + 1], then ρ(l)(x,y) = Σ(l)(x,y). Again

as in [MAT22] and analogous to (4.16), with Z1, Z2 ∼ N (0, 1) independent, U1 := Z1,

U2(ρ) := (ρZ1 +
√

1− ρ2Z2)
3 we define the correlation function R : [−1, 1] → [−1, 1] as

R(ρ) = σ2
wE[ϕ(U1)ϕ(U2(ρ))] + σ2

b . (4.19)

Noting under these assumptions that R is equivalent to Σ(l)(x,y), the sequence of correlations

(ρ(l)(x,y))Ll=2 can thus be generated as

ρ(l)(x,y) = R(ρ(l−1)(x,y)).

As observed in [PLR16, SGG17], R(1) = V (1) = 1, hence ρ = 1 is a fixed point of R.

We remark that as all preactivations are distributed as N (0, 1), then a correlation of one

between preactivations implies they are equal. The stability of the fixed point ρ = 1 is of

particular significance in the context of initializing deep neural networks successfully. Under

mild conditions on the activation function one can compute the derivative of R, see e.g.,

[PLR16, SGG17, MAT22], as follows,

R′(ρ) = σ2
wE[ϕ′(U1)ϕ

′(U2(ρ))]. (4.20)

Observe that the expression for Σ̇(l) and R′ are equivalent via a change of variables [PLR16],

and therefore the sequence of correlation derivatives may be computed as

Σ̇(l)(x,y) = R′(ρ(l)(x,y)).

With the relevant background material now in place we are in a position to prove

Lemma 4.6.2.

3We remark that U1, U2 are dependent and identically distributed as U1, U2 ∼ N (0, 1).
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Lemma 4.6.2. Under Assumptions 4.2.1 and 4.3.1 and defining χ = σ2
wEZ∼N (0,1)[ϕ

′(Z)2] ∈

R>0, then for all i, j ∈ [n], l ∈ [L+ 1]

• [Gn,l]ij ∈ [−1, 1] and [Gn,l]ii = 1,

• [Ġn,l]ij ∈ [−χ, χ] and [Ġn,l]ii = χ.

Furthermore, the NTK is a dot product kernel, meaning Θ(xi,xj) can be written as a function

of the inner product between the two inputs, Θ(xTi xj).

Proof. Recall from Lemma 4.6.1 and its proof that for any l ∈ [L + 1], i, j ∈ [n] [Gn,l]ij =

Σ(l)(xi,xj) and [Ġn,l]ij = Σ̇(l)(xi,xj). We first prove by induction Σ(l)(xi,xi) = 1 for all

l ∈ [L+ 1]. The base case l = 1 follows as

Σ(1)(x,x) = γ2wx
Tx+ γ2b = γ2w + γ2b = 1.

Assume the induction hypothesis is true for layer l− 1. With Z ∼ N (0, 1), then from (4.16)

and (4.17)

Σ(l)(x,x) = V (Σ(l−1)(x,x))

= σ2
wE
[
ϕ2

(√
Σ(l−1)(x,x)Z

)]
+ σ2

b

= σ2
wE
[
ϕ2 (Z)

]
+ σ2

b

= 1,

thus the inductive step is complete. As an immediate consequence it follows that [Gl]ii = 1.

Also, for any i, j ∈ [n] and l ∈ [L+ 1],

Σ(l)(xi,xj) = ρ(l)(xi,xj) = R(ρ(l−1)(xi,xj)) = R(...R(R(xTi xj))).

Thus we can consider Σ(l) as a univariate function of the input correlation Σ : [−1, 1] →

[−1, 1] and also conclude that [Gl]ij ∈ [−1, 1]. Furthermore,

Σ̇(l)(xi,xj) = R′(ρ(l)(xi,xj)) = R′(R(...R(R(xTi xj)))),

193



which likewise implies Σ̇ is a dot product kernel. Recall now the random variables introduced

to define R: Z1, Z2 ∼ N (0, 1) are independent and U1 = Z1, U2 = (ρZ1 +
√

1− ρ2Z2).

Observe U1, U2 are dependent but identically distributed as U1, U2 ∼ N (0, 1). For any

ρ ∈ [−1, 1] then applying the Cauchy-Schwarz inequality gives

|R′(ρ)|2 = σ4
w |E[ϕ′(U1)ϕ

′(U2)]|2 ≤ σ4
wE[ϕ′(U1)

2]E[ϕ′(U2)
2] = σ4

wE[ϕ′(U1)
2]2 = |R′(1)|2.

As a result, under the assumptions of the lemma Σ̇(l) : [−1, 1] → [−χ, χ] and Σ̇(l)(xi,xi) = χ.

From this it immediately follows that [Ġl]ij ∈ [−χ, χ] and [Ġl]ii = χ as claimed. Finally,

as Σ : [−1, 1] → [−1, 1] and Σ̇ : [−1, 1] → [−χ, χ] are dot product kernels, then from (4.12)

the NTK must also be a dot product kernel and furthermore a univariate function of the

pairwise correlation of its input arguments.

The following corollary, which follows immediately from Lemma 4.6.2 and (4.14), char-

acterizes the trace of the NTK matrix in terms of the trace of the input gram.

Corollary 4.6.3. Under the same conditions as Lemma 4.6.2, suppose ϕ and σ2
w are chosen

such that χ = 1. Then

Tr(Kn,l) = l. (4.21)

4.6.1.4 Hermite Expansions

We say that a function f : R → R is square integrable w.r.t. the standard Gaussian measure

γ = e−x
2/2/

√
2π if Ex∼N (0,1)[f(x)

2] < ∞. We denote by L2(R, γ) the space of all such

functions. The probabilist’s Hermite polynomials are given by

Hk(x) = (−1)kex
2/2 d

k

dxk
e−x

2/2, k = 0, 1, . . . .

The first three Hermite polynomials are H0(x) = 1, H1(x) = x, H2(x) = (x2 − 1). Let

hk(x) = Hk(x)√
k!

denote the normalized probabilist’s Hermite polynomials. The normalized

Hermite polynomials form a complete orthonormal basis in L2(R, γ) [OD14, §11]: in all
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that follows, whenever we reference the Hermite polynomials, we will be referring to the

normalized Hermite polynomials. The Hermite expansion of a function ϕ ∈ L2(R, γ) is given

by

ϕ(x) =
∞∑
k=0

µk(ϕ)hk(x), (4.22)

where

µk(ϕ) = EX∼N (0,1)[ϕ(X)hk(X)] (4.23)

is the kth normalized probabilist’s Hermite coefficient of ϕ. In what follows we shall make

use of the following identities.

∀k ≥ 1, h′k(x) =
√
khk−1(x), (4.24)

∀k ≥ 1, xhk(x) =
√
k + 1hk+1(x) +

√
khk−1(x). (4.25)

hk(0) =

 0, if k is odd

1√
k!
(−1)

k
2 (k − 1)!! if k is even

,

where k!! =


1, k ≤ 0

k · (k − 2) · · · 5 · 3 · 1, k > 0 odd

k · (k − 2) · · · 6 · 4 · 2, k > 0 even .

(4.26)

We also remark that the more commonly encountered physicist’s Hermite polynomials,

which we denote H̃k, are related to the normalized probablist’s polynomials as follows,

hk(z) =
2−k/2H̃k(z/

√
2)√

k!
.

The Hermite expansion of the activation function deployed will play a key role in deter-

mining the coefficients of the NTK power series. In particular, the Hermite coefficients of

ReLU are as follows.
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Lemma 4.6.4. [DFS16] For ϕ(z) = max{0, z} the Hermite coefficients are given by

µk(ϕ) =



1/
√
2π, k = 0,

1/2, k = 1,

(k − 3)!!/
√
2πk!, k even and k ≥ 2,

0, k odd and k > 3.

(4.27)

4.6.2 Expressing the NTK as a Power Series

4.6.2.1 Deriving a Power Series for the NTK

We will require the following minor adaptation of [NM20, Lemma D.2]. We remark this

result was first stated for ReLU and Softplus activations in the work of [OS20, Lemma H.2].

Lemma 4.6.5. For arbitrary n, d ∈ N, let A ∈ Rn×d. For i ∈ [n], we denote the ith row of

A as ai, and further assume that ∥ai∥ = 1. Let ϕ : R → R satisfy ϕ ∈ L2(R, γ) and define

M = Ew∼N (0,In)[ϕ(Aw)ϕ(Aw)T ] ∈ Rn×n.

Then the matrix series

SK =
K∑
k=0

µ2
k(ϕ)

(
AAT

)⊙k
converges uniformly to M as K → ∞.

The proof of Lemma 4.6.5 follows exactly as in [NM20, Lemma D.2], and is in fact slightly

simpler due to the fact we assume the rows of A are unit length and w ∼ N (0, Id) instead of
√
d and w ∼ N (0, 1

d
Id) respectively. For the ease of the reader, we now recall the following

definitions, which are also stated in Section 4.3. Letting ᾱl := (αp,l)
∞
p=0 denote a sequence of

real coefficients, then

F (p, k, ᾱl) :=


1 k = 0 and p = 0,

0 k = 0 and p ≥ 1,∑
(ji)∈J (p,k)

∏k
i=1 αji,l k ≥ 1 and p ≥ 0,

(4.28)
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where

J (p, k) := {(ji)i∈[k] : ji ≥ 0 ∀i ∈ [k],
k∑
i=1

ji = p}

for all p ∈ Z≥0, k ∈ Z≥1.

We are now ready to derive power series for elements of (Gl))
L+1
l=1 and (Ġl))

L+1
l=2 .

Lemma 4.6.6. Under Assumptions 4.2.1 and 4.3.1, for all l ∈ [2, L+ 1]

Gl =
∞∑
k=0

αk,l(XXT )⊙k, (4.29)

where the series for each element [Gl]ij converges absolutely and the coefficients αp,l are

nonnegative. The coefficients of the series (4.29) for all p ∈ Z≥0 can be expressed via the

following recurrence relationship,

αp,l =


σ2
wµ

2
p(ϕ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3.

(4.30)

Furthermore,

Ġl =
∞∑
k=0

υk,l(XXT )⊙k, (4.31)

where likewise the series for each entry [Ġl]ij converges absolutely and the coefficients υp,l for

all p ∈ Z≥0 are nonnegative and can be expressed via the following recurrence relationship,

υp,l =


σ2
wµ

2
p(ϕ

′), l = 2,∑∞
k=0 υk,2F (p, k, ᾱl−1), l ≥ 3.

(4.32)

Proof. We start by proving (4.29) and (4.30). Proceeding by induction, consider the base

case l = 2. From Lemma 4.6.1

G2 = σ2
wEw∼N (0,Id)[ϕ(Xw)ϕ(Xw)T ] + σ2

b1n×n.

By the assumptions of the lemma, the conditions of Lemma 4.6.5 are satisfied and therefore

G2 = σ2
w

∞∑
k=0

µ2
k(ϕ)

(
XXT

)⊙k
+ σ2

b1n×n

= α0,21n×n +
∞∑
k=1

αk,2
(
XXT

)⊙k
.
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Observe the coefficients (αk,2)k∈Z≥0
are nonnegative. Therefore, for any i, j ∈ [n] using

Lemma 4.6.2 the series for [Gl]ij satisfies

∞∑
k=0

|αk,2|
∣∣⟨xi,xj⟩k∣∣ ≤ ∞∑

k=0

αk,2⟨xi,xi⟩k = [Gl]ii = 1 (4.33)

and so must be absolutely convergent. With the base case proved we proceed to assume the

inductive hypothesis holds for arbitrary Gl with l ∈ [2, L]. Observe

Gl+1 = σ2
wEw∼N (0,In)[ϕ(Aw)ϕ(Aw)T ] + σ2

b1n×n,

where A is a matrix square root of Gl, meaning Gl = AA. Recall from Lemma 4.6.1 that Gl

is also symmetric and positive semi-definite, therefore we may additionally assume, without

loss of generality, that A ∈ Rn×n is symmetric, which conveniently implies Gn,l = AAT .

Under the assumptions of the lemma the conditions for Lemma 4.6.2 are satisfied and as

a result [Gn,l]ii = ∥ai∥ = 1 for all i ∈ [n], where we recall ai denotes the ith row of A.

Therefore we may again apply Lemma 4.6.1,

Gl+1 = σ2
w

∞∑
k=0

µ2
k(ϕ)

(
AAT

)⊙k
+ σ2

b1n×n

= (σ2
wµ

2
0(ϕ) + σ2

b )1n×n + σ2
w

∞∑
k=1

µ2
k(ϕ) (Gn,l)

⊙k

= (σ2
wµ

2
0(ϕ) + σ2

b )1n×n + σ2
w

∞∑
k=1

µ2
k(ϕ)

(
∞∑
m=0

αm,l(XXT )⊙m

)⊙k

,

where the final equality follows from the inductive hypothesis. For any pair of indices

i, j ∈ [n]

[Gl+1]ij = (σ2
wµ

2
0(ϕ) + σ2

b ) + σ2
w

∞∑
k=1

µ2
k(ϕ)

(
∞∑
m=0

αm,l⟨xi,xj⟩m
)k

.

By the induction hypothesis, for any i, j ∈ [n] the series
∑∞

m=0 αm,l⟨xi,xj⟩m is absolutely

convergent. Therefore, from the Cauchy product of power series and for any k ∈ Z≥0 we

have (
∞∑
m=0

αm,l⟨xi,xj⟩m
)k

=
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p, (4.34)
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where F (p, k, ᾱl) is defined in (4.4). By definition, F (p, k, ᾱl) is a sum of products of positive

coefficients, and therefore |F (p, k, ᾱl)| = F (p, k, ᾱl). In addition, recall again by Assumption

4.3.1 and Lemma 4.6.2 that [Gl]ii = 1. As a result, for any k ∈ Z≥0, as |⟨xi,xj⟩| ≤ 1

∞∑
p=0

|F (p, k, ᾱl)⟨xi,xj⟩p| ≤

(
∞∑
m=0

αm,l

)k

= [Gn,l]ii = 1 (4.35)

and therefore the series
∑∞

p=0 F (p, k, ᾱl)⟨xi,xj⟩p converges absolutely. Recalling from the

proof of the base case that the series
∑∞

p=1 αp,2 is absolutely convergent and has only non-

negative elements, we may therefore interchange the order of summation in the following,

[Gl+1]ij = (σ2
wµ

2
0(ϕ) + σ2

b ) + σ2
w

∞∑
k=1

µ2
k(ϕ)

(
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p
)

= α0,2 +
∞∑
k=1

αk,2

(
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p
)

= α0,2 +
∞∑
p=0

(
∞∑
k=1

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p.

Recalling the definition of F (p, k, l) in (4.4), in particular F (0, 0, ᾱl) = 1 and F (p, 0, ᾱl) = 0

for p ∈ Z≥1, then

[Gl+1]ij =

(
α0,2 +

∞∑
k=1

αk,2F (0, k, ᾱl)

)
⟨xi,xj⟩0 +

∞∑
p=1

(
∞∑
k=1

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=

(
∞∑
k=0

αk,2F (0, k, ᾱl)

)
⟨xi,xj⟩0 +

∞∑
p=1

(
∞∑
k=0

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=
∞∑
p=0

(
∞∑
k=0

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=
∞∑
p=0

αp,l+1⟨xi,xj⟩p.

As the indices i, j ∈ [n] were arbitrary we conclude that

Gl+1 =
∞∑
p=0

αp,l+1

(
XXT

)⊙p
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as claimed. In addition, by inspection and using the induction hypothesis it is clear that the

coefficients (αp,l+1)
∞
p=0 are nonnegative. Therefore, by an argument identical to (4.33), the

series for each entry of [Gl+1]ij is absolutely convergent. This concludes the proof of (4.29)

and (4.30).

We now turn our attention to proving the (4.31) and (4.32). Under the assumptions of

the lemma the conditions for Lemmas 4.6.1 and 4.6.5 are satisfied and therefore for the base

case l = 2

Ġ2 = σ2
wEw∼N (0,In)[ϕ

′(Xw)ϕ′(Xw)T ]

= σ2
w

∞∑
k=0

µ2
k(ϕ

′)
(
XXT

)⊙k
=

∞∑
k=0

υk,2
(
XXT

)⊙k
.

By inspection the coefficients (υp,2)
∞
p=0 are nonnegative and as a result by an argument again

identical to (4.33) the series for each entry of [Ġ2]ij is absolutely convergent. For l ∈ [2, L],

from (4.29) and its proof there is a matrix A ∈ Rn×n such that Gl = AAT . Again applying

Lemma 4.6.5

Ġn,l+1 = σ2
wEw∼N (0,In)[ϕ

′(Aw)ϕ′(Aw)T ]

= σ2
w

∞∑
k=0

µ2
k(ϕ

′)
(
AAT

)⊙k
=

∞∑
k=0

υk,2 (Gn,l)
⊙k

=
∞∑
k=0

υk,2

(
∞∑
p=0

αp,l
(
XXT

)⊙p)⊙k

.

Analyzing now an arbitrary entry [Ġl+1]ij, by substituting in the power series expression for
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Gl from (4.29) and using (4.34) we have

[Ġl+1]ij =
∞∑
k=0

υk,2

(
∞∑
p=0

αp,l⟨xi,xj⟩p
)k

=
∞∑
k=0

υk,2

(
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p
)

=
∞∑
p=0

(
∞∑
k=0

υk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=
∞∑
p=0

υp,l+1⟨xi,xj⟩p.

Note that exchanging the order of summation in the third equality above is justified as for

any k ∈ Z≥0 by (4.35) we have
∑∞

p=0 F (p, k, ᾱl)|⟨xi,xj⟩|p ≤ 1 and therefore

∞∑
k=0

∞∑
p=0

υk,2F (p, k, ᾱl)⟨xi,xj⟩p

converges absolutely. As the indices i, j ∈ [n] were arbitrary we conclude that

Ġl+1 =
∞∑
p=0

υp,l+1

(
XXT

)⊙p
as claimed. Finally, by inspection the coefficients (υp,l+1)

∞
p=0 are nonnegative, therefore, and

again by an argument identical to (4.33), the series for each entry of [Ġn,l+1]ij is absolutely

convergent. This concludes the proof.

We are now prove the key result of Section 4.3.

Theorem 4.3.2. Under Assumptions 4.2.1 and 4.3.1, for all l ∈ [L+ 1]

nKl =
∞∑
p=0

κp,l
(
XXT

)⊙p
. (4.5)

The series for each entry n[Kl]ij converges absolutely and the coefficients κp,l are nonnegative

and can be evaluated using the recurrence relationships

κp,l =


δp=0γ

2
b + δp=1γ

2
w, l = 1,

αp,l +
∑p

q=0 κq,l−1υp−q,l, l ∈ [2, L+ 1],

(4.6)
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where

αp,l =


σ2
wµ

2
p(ϕ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3,

(4.7)

and

υp,l =


σ2
wµ

2
p(ϕ

′), l = 2,∑∞
k=0 υk,2F (p, k, ᾱl−1), l ≥ 3,

(4.8)

are likewise nonnegative for all p ∈ Z≥0 and l ∈ [2, L+ 1].

Proof. We proceed by induction. The base case l = 1 follows trivially from Lemma 4.6.1.

We therefore assume the induction hypothesis holds for an arbitrary l − 1 ∈ [1, L]. From

(4.14) and Lemma 4.6.6

nKl = Gl + nKl−1 ⊙ Ġl

=

(
∞∑
p=0

αp,l
(
XXT

)⊙p)
+

(
n

∞∑
q=0

κq,l−1

(
XXT

)⊙q)⊙

(
∞∑
w=0

υw,l
(
XXT

)⊙w)
.

Therefore, for arbitrary i, j ∈ [n]

[nKl]ij =
∞∑
p=0

αp,l⟨xi,xj⟩p +

(
n

∞∑
q=0

κq,l−1⟨xi,xj⟩q
)(

∞∑
w=0

υw,l⟨xi,xj⟩w
)
.

Observe n
∑∞

q=0 κq,l−1⟨xi,xj⟩q = Θ(l−1)(xi,xj) and therefore the series must converge due

to the convergence of the NTK. Furthermore,
∑∞

w=0 υw,l⟨xi,xj⟩w = [Ġn,l]ij and therefore is

absolutely convergent by Lemma 4.6.6. As a result, by Merten’s Theorem the product of

these two series is equal to their Cauchy product. Therefore

[nKl]ij =
∞∑
p=0

αp,l⟨xi,xj⟩p +
∞∑
p=0

(
p∑
q=0

κq,l−1υp−q,l

)
⟨xi,xj⟩p

=
∞∑
p=0

(
αp,l +

p∑
q=0

κq,l−1υp−q,l

)
⟨xi,xj⟩p

=
∞∑
p=0

κp,l⟨xi,xj⟩p,

from which the (4.5) immediately follows.
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4.6.2.2 Analyzing the Coefficients of the NTK Power Series

In this section we study the coefficients of the NTK power series stated in Theorem 4.3.2.

Our first observation is that, under additional assumptions on the activation function ϕ,

the recurrence relationship (4.6) can be simplified in order to depend only on the Hermite

expansion of ϕ.

Lemma 4.6.7. Under Assumption 4.3.3 the Hermite coefficients of ϕ′ satisfy

µk(ϕ
′) =

√
k + 1µk+1(ϕ)

for all k ∈ Z≥0.

Proof. Note for each n ∈ N as ϕ is absolutely continuous on [−n, n] it is differentiable a.e. on

[−n, n]. It follows by the countable additivity of the Lebesgue measure that ϕ is differentiable

a.e. on R. Furthermore, as ϕ is polynomially bounded we have ϕ ∈ L2(R, e−x2/2/
√
2π). Fix

a > 0. Since ϕ is absolutely continuous on [−a, a] it is of bounded variation on [−a, a]. Also

note that hk(x)e
−x2/2 is of bounded variation on [−a, a] due to having a bounded derivative.

Thus we have by Lebesgue-Stieltjes integration-by-parts (see e.g. [Fol99, Chapter 3])∫ a

−a
ϕ′(x)hk(x)e

−x2/2dx

= ϕ(a)hk(a)e
−a2/2 − ϕ(−a)hk(−a)e−a

2/2 +

∫ a

−a
ϕ(x)[xhk(x)− h′k(x)]e

−x2/2dx

= ϕ(a)hk(a)e
−a2/2 − ϕ(−a)hk(−a)e−a

2/2 +

∫ a

−a
ϕ(x)

√
k + 1hk+1(x)e

−x2/2dx,

where in the last line above we have used the fact that (4.24) and (4.25) imply that xhk(x)−

h′k(x) =
√
k + 1hk+1(x). Thus we have shown∫ a

−a
ϕ′(x)hk(x)e

−x2/2dx

= ϕ(a)hk(a)e
−a2/2 − ϕ(−a)hk(−a)e−a

2/2 +

∫ a

−a
ϕ(x)

√
k + 1hk+1(x)e

−x2/2dx.
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We note that since |ϕ(x)hk(x)| = O(|x|β+k) we have that as a → ∞ the first two terms

above vanish. Thus by sending a→ ∞ we have∫ ∞

−∞
ϕ′(x)hk(x)e

−x2/2dx =

∫ ∞

−∞

√
k + 1ϕ(x)hk+1(x)e

−x2/2dx.

After dividing by
√
2π we get the desired result.

In particular, under Assumption 4.3.3, and as highlighted by Corollary 4.6.8, which

follows directly from Lemmas 4.6.6 and 4.6.7, the NTK coefficients can be computed only

using the Hermite coefficients of ϕ.

Corollary 4.6.8. Under Assumptions 4.2.1, 4.3.1 and 4.3.3, for all p ∈ Z≥0

υp,l =


(p+ 1)αp+1,2, l = 2,∑∞

k=0 υk,2F (p, k, ᾱl−1), l ≥ 3.

(4.36)

With these results in place we proceed to analyze the decay of the coefficients of the

NTK for depth two networks. As stated in the main text, the decay of the NTK coefficients

depends on the decay of the Hermite coefficients of the activation function deployed. This

in turn is strongly influenced by the behavior of the tails of the activation function. To

this end we roughly group activation functions into three categories: growing tails, flat or

constant tails and finally decaying tails. Analyzing each of these groups in full generality

is beyond the scope of this paper, we therefore instead study the behavior of ReLU, Tanh

and Gaussian activation functions, being prototypical and practically used examples of each

of these three groups respectively. We remark that these three activation functions satisfy

Assumption 4.3.3. For typographical ease we let ωσ(z) := (1/
√
2πσ2) exp (−z2/(2σ2)) denote

the Gaussian activation function with variance σ2.

Lemma 4.3.4. Under Assumptions 4.2.1 and 4.3.1,

1. if ϕ(z) = ReLU(z), then κp,2 = δ(γb>0)∪(p even)Θ(p−3/2),
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2. if ϕ(z) = Tanh(z), then κp,2 = O
(
exp

(
−π

√
p−1
2

))
,

3. if ϕ(z) = ωσ(z), then κp,2 = δ(γb>0)∪(p even)Θ(p1/2(σ2 + 1)−p).

Proof. Recall (4.9),

κp,2 = σ2
w(1 + γ2wp)µ

2
p(ϕ) + σ2

wγ
2
b (1 + p)µ2

p+1(ϕ) + δp=0σ
2
b .

In order to bound κp,2 we proceed by using Lemma 4.6.4 to bound the square of the Hermite

coefficients. We start with ReLU. Note Lemma 4.6.4 actually provides precise expressions

for the Hermite coefficients of ReLU, however, these are not immediately easy to interpret.

Observe from Lemma 4.6.4 that above index p = 2 all odd indexed Hermite coefficients are

0. It therefore suffices to bound the even indexed terms, given by

µp(ReLU) =
1√
2π

(p− 3)!!√
p!

.

Observe from (4.26) that for p even

hp(0) = (−1)p/2
(p− 1)!!√

p!
,

therefore

µp(ReLU) =
1√
2π

(p− 3)!!√
p!

=
1√
2π

|hp(0)|
p− 1

.

Analyzing now |hp(0)|,

(p− 1)!!√
p!

=

∏p/2
i=1(2i− 1)√∏p/2
i=1(2i− 1)2i

=

√√√√∏p/2
i=1(2i− 1)∏p/2

i=1 2i
=

√
(p− 1)!!

p!!
.

Here, the expression inside the square root is referred to in the literature as the Wallis ratio,

for which the following lower and upper bounds are available [Kaz56],√
1

π(p+ 0.5)
<

(p− 1)!!

p!!
<

√
1

π(p+ 0.25)
. (4.37)

As a result

|hp(0)| = Θ(p−1/4)
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and therefore

µp(ReLU) =


Θ(p−5/4), p even,

0, p odd.

As (p+ 1)−3/2 = Θ(p−3/2), then from (4.9)

κp,2 = Θ((pµ2
p(ReLU) + δγb>0(p+ 1)µ2

p+1(ReLU)))

= Θ((δp evenp
−3/2 + δ(p odd)∩(γb>0)(p+ 1)−3/2))

= Θ
(
δ(p even)∪((p odd)∩(γb>0))p

−3/2
)

= δ(p even)∪(γb>0)Θ
(
p−3/2

)
as claimed in item 1.

We now proceed to analyze ϕ(z) = Tanh(z). From [PSG20, Corollary F.7.1]

µp(Tanh
′) = O

(
exp

(
−
π
√
p

4

))
.

As Tanh satisfies the conditions of Lemma 4.6.7

µp(Tanh) = p−1/2µp−1(Tanh
′) = O

(
p−1/2 exp

(
−π

√
p− 1

4

))
.

Therefore the result claimed in item 2. follows as

κp,2 = O((pµ2
p(Tanh) + (p+ 1)µ2

p+1(Tanh)))

= O
(
exp

(
−π

√
p− 1

2

)
+ exp

(
−
π
√
p

2

))
= O

(
exp

(
−π

√
p− 1

2

))
.

Finally, we now consider ϕ(z) = ωσ(z) where ωσ(z) is the density function of N (0, σ2).

Similar to ReLU, analytic expressions for the Hermite coefficients of ωσ(z) are known see

e.g., Theorem 2.9 in [Dav21],

µ2
p(ωσ) =


p!

((p/2)!)22p2π(σ2+1)p+1 , p even,

0, p odd.
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For p even

(p/2)! = p!!2−p/2.

Therefore
p!

(p/2)!(p/2)!
= 2p

p!

p!!p!!
= 2p

(p− 1)!!

p!!
.

As a result, for p even and using (4.37), it follows that

µ2
p(ωσ) =

(σ2 + 1)−(p+1)

2π

(p− 1)!!

p!!
= Θ(p−1/2(σ2 + 1)−p).

Finally, since (p+ 1)1/2(σ2 + 1)−p−1 = Θ(p1/2(σ2 + 1)−p), then from (4.9)

κp,2 = Θ((pµ2
p(ωσ) + δγb>0(p+ 1)µ2

p+1(ωσ)))

= Θ
(
δ(p even)∪((p odd)∩(γb>0))p

1/2(σ2 + 1)−p
)

= δ(p even)∪(γb>0)Θ
(
p1/2(σ2 + 1)−p

)
as claimed in item 3.

4.6.2.3 Numerical Approximation via a Truncated NTK Power Series and In-

terpretation of 4.2

Currently, computing the infinite-width NTK requires either a) explicit evaluation of the

Gaussian integrals highlighted in (4.13), b) numerical approximation of these same integrals

such as in [LBN18], or c) approximation via a sufficiently wide yet still finite-width network,

see for instance [EWS22, NSS22]. These Gaussian integrals (4.13) can be solved solved ana-

lytically only for a minority of activation functions, notably ReLU as discussed for example

by [ADH19b], while the numerical integration and finite-width approximation approaches

are relatively computationally expensive. The truncated NTK power series we define as

analogous to (4.5) but with the series involved being computed only up to the T th element.

Once the top T coefficients are computed, then for any input correlation the NTK can be

approximated by evaluating the corresponding finite degree T polynomial.
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For an arbitrary pair x,y ∈ Sd−1 let ρ = xTy denote their linear correlation. Under

Assumptions 4.2.1, 4.3.1 and 4.3.3, for all l ∈ [2, L + 1] the T -truncated NTK power series

Θ̂
(l)
T : [−1, 1] → R is defined as

Θ
(l)
T (ρ) =

T∑
p=0

κ̂p,lρ
p, (4.38)

and whose coefficients are defined via the following recurrence relation,

κ̂p,l =


δp=0γ

2
b + δp=1γ

2
w, l = 1,

α̂p,l +
∑p

q=0 κ̂q,l−1υ̂p−q,l, l ∈ [2, L+ 1].

(4.39)

Here, with ¯̂αl−1 = (α̂p,l−1)
T
p=0,

α̂p,l :=


σ2
wµ

2
p(ϕ) + δp=0σ

2
b , l = 2,∑T

k=0 α̂k,2F (p, k,
¯̂αl−1), l ≥ 3

(4.40)

and

υ̂p,l :=


√
p+ 1α̂p+1,2, l = 2,∑T
k=0

√
k + 1α̂p+1,2F (p, k, ¯̂αl), l ≥ 3.

(4.41)

In order to analyze the performance and potential of the truncated NTK for numeri-

cal approximation, we compute it for ReLU and compare it with its analytical expression

[ADH19b]. To recall this result, let

R(ρ) :=

√
1− ρ2 + ρ · arcsin(ρ)

π
+
ρ

2
,

R′(ρ) :=
arcsin(ρ)

π
+

1

2
.

Under Assumptions 4.2.1 and 4.3.1, with ϕ(z) = ReLU(z), γ2w = 1, σ2
w = 2, σ2

b = γ2b = 0,

x,y ∈ Sd and ρ1 := xTy, then Θ1(x,y) = ρ and for all l ∈ [2, L+ 1]

ρl = R(ρl−1),

Θl(x,y) = ρl + ρl−1R
′(ρl−1).

(4.42)
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Turning our attention to Figure 4.2, we observe particularly for input correlations |ρ| ≈ 0.5

and below then the truncated ReLU NTK power series achieves machine level precision. For

|ρ| ≈ 1 higher order coefficients play a more significant role. As the truncated ReLU NTK

power series approximates these coefficients less well the overall approximation of the ReLU

NTK is worse. We remark also that negative correlations have a smaller absolute error as

odd indexed terms cancel with even index terms: we emphasize again that in Figure 4.2 we

plot the absolute not relative error. In addition, for L = 1 there is symmetry in the absolute

error for positive and negative correlations as αp,2 = 0 for all odd p. One also observes that

approximation accuracy goes down with depth, which is due to the error in the coefficients at

the previous layer contributing to the error in the coefficients at the next, thereby resulting

in an accumulation of error with depth. Also, and certainly as one might expect, a larger

truncation point T results in overall better approximation. Finally, as the decay in the

Hermite coefficients for ReLU is relatively slow, see e.g., Table 4.1 and Lemma 4.3.4, we

expect the truncated ReLU NTK power series to perform worse relative to the truncated

NTK’s for other activation functions.

4.6.3 Effective Rank of Power Series Kernels

Recall that for a positive semidefinite matrix A we define the effective rank [HHV22] via the

following ratio

eff(A) :=
Tr(A)

λ1(A)
.

We consider a kernel Gram matrix K ∈ Rn×n that has the following power series represen-

tation in terms of an input gram matrix XXT

nK =
∞∑
i=0

ci(XXT )⊙i.

Whenever c0 ̸= 0 the effective rank of K is O(1), as displayed in the following theorem.
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Figure 4.2: NTK Approximation via Truncation Absolute error between the analytical

ReLU NTK and the truncated ReLU NTK power series as a function of the input correlation

ρ for two different values of the truncation point T and three different values for the depth

L of the network. Although the truncated NTK achieves a uniform approximation error of

only 10−1 on [−1, 1], for |ρ| ≤ 0.5, which we remark is more typical for real world data,

T = 50 suffices for the truncated NTK to achieve machine level precision.

Theorem 4.4.1. Assume that we have a kernel Gram matrix K of the form

nK =
∞∑
p=0

cp(XXT )⊙p

where c0 ̸= 0. Furthermore, assume the input data xi are normalized so that ∥xi∥ = 1 for

all i ∈ [n]. Then

eff(K) ≤
∑∞

p=0 cp

c0
.

Proof. By linearity of trace we have that

Tr(nK) =
∞∑
i=0

ciTr((XXT )⊙i) = n
∞∑
i=0

ci
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where we have used the fact that Tr((XXT )⊙i) = n for all i ∈ N. On the other hand

λ1(nK) ≥ λ1(c0(XXT )0) = λ1(c01n×n) = nc0.

Thus we have that

eff(K) =
Tr(K)

λ1(K)
=
Tr(nK)

λ1(nK)
≤
∑∞

i=0 ci
c0

.

The above theorem demonstrates that the constant term c01n×n in the kernel leads to

a significant outlier in the spectrum of K. However this fails to capture how the structure

of the input data X manifests in the spectrum of K. For this we will examine the centered

kernel matrix K̃ := K− c0
n
11T . Using a very similar argument as before we can demonstrate

that the effective rank of K̃ is controlled by the effective rank of the input data gram XXT .

This is formalized in the following theorem.

Theorem 4.4.3. Assume that we have a kernel Gram matrix K of the form

nK =
∞∑
p=0

cp(XXT )⊙p

where c1 ̸= 0. Furthermore, assume the input data xi are normalized so that ∥xi∥ = 1 for

all i ∈ [n]. Then the centered kernel K̃ := K− c0
n
1n×n satisfies

eff(K̃) ≤ eff(XXT )

∑∞
p=1 cp

c1
.

Proof. By the linearity of the trace we have that

Tr(nK̃) =
∞∑
i=1

ciTr((XXT )⊙i) = Tr(XXT )
∞∑
i=1

ci

where we have used the fact that Tr((XXT )⊙i) = Tr(XXT ) = n for all i ∈ [n]. On the

other hand we have that

λ1(nK̃) ≥ λ1(c1XXT ) = c1λ1(XXT ).
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Thus we conclude

eff(K̃) =
Tr(K̃)

λ1(K̃)
=
Tr(nK̃)

λ1(nK̃)
≤ Tr(XXT )

λ1(XXT )

∑∞
i=1 ci
c1

.

4.6.4 Effective Rank of the NTK for Finite-width Networks

4.6.4.1 Notation and Definitions

We will let [k] := {1, 2, . . . , k}. We consider a neural network

m∑
ℓ=1

aℓϕ(⟨wℓ,x⟩)

where x ∈ Rd and wℓ ∈ Rd, aℓ ∈ R for all ℓ ∈ [m] and ϕ is a scalar valued activation function.

The network we present here does not have any bias values in the inner-layer, however the

results we will prove later apply to the nonzero bias case by replacing x with [xT , 1]T . We

let W ∈ Rm×d be the matrix whose ℓ-th row is equal to wℓ and a ∈ Rm be the vector whose

ℓ-th entry is equal to aℓ. We can then write the neural network in vector form

f(x;W, a) = aTϕ(Wx)

where ϕ is understood to be applied entry-wise.

Suppose we have n training data inputs x1, . . . ,xn ∈ Rd. We will let X ∈ Rn×d be the

matrix whose i-th row is equal to xi. Let θinner = vec(W) denote the row-wise vectorization

of the inner-layer weights. We consider the Jacobian of the neural networks predictions on

the training data with respect to the inner layer weights:

JTinner =

[
∂f(x1)

∂θinner
,
∂f(x2)

∂θinner
, . . . ,

∂f(xn)

∂θinner

]
Similarly we can look at the analagous quantity for the outer layer weights

JTouter =

[
∂f(x1)

∂a
,
∂f(x2)

∂a
, . . . ,

∂f(xn)

∂a

]
= ϕ

(
WXT

)
.
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Our first observation is that the per-example gradients for the inner layer weights have a

nice Kronecker product representation

∂f(x)

∂θinner
=


a1ϕ

′(⟨w1,x⟩)

a2ϕ
′(⟨w2,x⟩)

· · ·

amϕ
′(⟨wm,x⟩)

⊗ x.

For convenience we will let

Yi :=


a1ϕ

′(⟨w1,xi⟩)

a2ϕ
′(⟨w2,xi⟩)

· · ·

amϕ
′(⟨wm,xi⟩)

 .

where the dependence of Yi on the parameters W and a is suppressed (formally Yi =

Yi(W, a)). This way we may write

∂f(xi)

∂θinner
= Yi ⊗ xi.

We will study the NTK with respect to the inner-layer weights

Kinner = JinnerJ
T
inner

and the same quantity for the outer-layer weights

Kouter = JouterJ
T
outer.

For a hermitian matrix A we will let λi(A) denote the ith largest eigenvalue of A so that

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). Similarly for an arbitrary matrix A we will let σi(A) to the

ith largest singular value of A. For a matrix A ∈ Rr×k we will let σmin(A) = σmin(r,k).
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4.6.4.2 Effective Rank

For a positive semidefinite matrix A we define the effective rank [HHV22] of A to be the

quantity

eff(A) :=
Tr(A)

λ1(A)
.

The effective rank quantifies how many eigenvalues are on the order of the largest eigenvalue.

We have the Markov-like inequality

|{i : λi(A) ≥ cλ1(A)}| ≤ c−1Tr(A)

λ1(A)

and the eigenvalue bound
λi(A)

λ1(A)
≤ 1

i

T r(A)

λ1(A)
.

Let A and B be positive semidefinite matrices. Then we have

Tr(A+B)

λ1(A+B)
≤ Tr(A) + Tr(B)

max (λ1(A), λ1(B))
≤ Tr(A)

λ1(A)
+
Tr(B)

λ1(B)
.

Thus the effective rank is subadditive for positive semidefinite matrices.

We will be interested in bounding the effective rank of the NTK. Let K = JJT =

JouterJ
T
outer + JinnerJ

T
inner = Kouter + Kinner be the NTK matrix with respect to all the

network parameters. Note that by subadditivity

Tr(K)

λ1(K)
≤ Tr(Kouter)

λ1(Kouter)
+
Tr(Kinner)

λ1(Kinner)
.

In this vein we will control the effective rank of Kinner and Kouter separately.

4.6.4.3 Effective Rank of Inner-layer NTK

We will show that the effective rank of inner-layer NTK is bounded by a multiple of the

effective rank of the data input gram XXT . We introduce the following meta-theorem that

we will use to prove various corollaries later
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Theorem 4.6.9. Set α := sup∥b∥=1

[
minj∈[n] |⟨Yj,b⟩|

]
. Assume α > 0. Then

mini∈[n] ∥Yi∥22 Tr(XXT )

maxi∈[n] ∥Yi∥22 λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤

maxi∈[n] ∥Yi∥22
α2

Tr(XXT )

λ1(XXT )
.

Proof. We will first prove the upper bound. We first observe that

Tr(Kinner) =
n∑
i=1

∥∥∥∥∂f(xi)∂θinner

∥∥∥∥2
2

=
n∑
i=1

∥Yi ⊗ xi∥22 =
n∑
i=1

∥Yi∥22 ∥xi∥
2
2

≤ max
j∈[n]

∥Yj∥22
n∑
i=1

∥xi∥22 = max
j∈[n]

∥Yj∥22 Tr(XXT ).

Recall that

λ1 (Kinner) = λ1
(
JinnerJ

T
inner

)
= λ1

(
JTinnerJinner

)
.

Well

JTinnerJinner =
n∑
i=1

∂f(xi)

∂θinner

∂f(xi)

∂θinner

T

=
n∑
i=1

[Yi ⊗ xi] [Yi ⊗ xi]
T

=
n∑
i=1

[
YiY

T
i

]
⊗
[
xix

T
i

]
.

Well then we may use the fact that

λ1(J
T
innerJinner) = max

∥b∥2=1
bTJTinnerJinnerb.

Let b1 ∈ Rm and b2 ∈ Rd be vectors that we will optimize later satisfying ∥b1∥2 ∥b2∥2 = 1.

Then we have that ∥b1 ⊗ b2∥ = 1 and

(b1 ⊗ b2)
TJTinnerJinner(b1 ⊗ b2) =

n∑
i=1

(b1 ⊗ b2)
T
([
YiY

T
i

]
⊗
[
xix

T
i

])
(b1 ⊗ b2)

=
n∑
i=1

[
bT1YiY

T
i b1

] [
bT2 xix

T
i b2

]
≥
[
min
j∈[n]

bT1YjY
T
j b1

] n∑
i=1

bT2 xix
T
i b2

=

[
min
j∈[n]

bT1YjY
T
j b1

]
bT2

[
n∑
i=1

xix
T
i

]
b2 =

[
min
j∈[n]

bT1YjY
T
j b1

]
b2X

TXb2.

Pick b2 so that ∥b2∥ = 1 and

b2X
TXb2 = λ1(X

TX) = λ1(XXT ).
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Thus for this choice of b2 we have

λ1(J
T
innerJinner) ≥ (b1 ⊗ b2)

TJTinnerJinner(b1 ⊗ b2) ≥[
min
j∈[n]

bT1YjY
T
j b1

]
b2X

TXb2 =

[
min
j∈[n]

bT1YjY
T
j b1

]
λ1(XXT ).

Now note that α2 = sup∥b1∥=1

[
minj∈[n] b

T
1YjY

T
j b1

]
. Thus by taking the sup over b1 in our

previous bound we have

λ1(Kinner) = λ1(J
T
innerJinner) ≥ α2λ1(XXT ).

Thus combined with our previous result we have

Tr(Kinner)

λ1 (Kinner)
≤

maxi∈[n] ∥Yi∥22
α2

Tr(XXT )

λ1(XXT )
.

We now prove the lower bound.

Tr(Kinner) =
n∑
i=1

∥∥∥∥∂f(xi)∂θinner

∥∥∥∥2
2

=
n∑
i=1

∥Yi ⊗ xi∥22 =
n∑
i=1

∥Yi∥22 ∥xi∥
2
2

≥ min
j∈[n]

∥Yj∥22
n∑
i=1

∥xi∥22 = min
j∈[n]

∥Yj∥22 Tr(XXT ).

Let Y ∈ Rn×m be the matrix whose ith row is equal to Yi. Then observe that

Kinner = [YYT ]⊙ [XXT ]

where ⊙ denotes the entry-wise Hadamard product of two matrices. We now recall that if

A and B are two positive semidefinite matrices we have [OS20, Lemma 2]

λ1(A⊙B) ≤ max
i∈[n]

Ai,iλ1(B).

Applying this to Kinner we get that

λ1(Kinner) ≤ max
i∈[n]

∥Yi∥22 λ1(XXT ).

Combining this with our previous result we get

mini∈[n] ∥Yi∥22 Tr(XXT )

maxi∈[n] ∥Yi∥22 λ1(XXT )
≤ Tr(Kinner)

λ1(Kinner)
.
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We can immediately get a useful corollary that applies to the ReLU activation function

Corollary 4.6.10. Set α := sup∥b∥=1

[
minj∈[n] |⟨Yj,b⟩|

]
and γmax := supx∈R |ϕ′(x)|. As-

sume α > 0 and γmax <∞. Then

α2

γ2max ∥a∥
2
2

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ γ2max ∥a∥

2
2

α2

Tr(XXT )

λ1(XXT )
.

Proof. Note that the hypothesis on |ϕ′| gives ∥Yi∥22 ≤ γ2max ∥a∥
2
2 for all i ∈ [n]. Moreover by

Cauchy-Schwarz we have that mini∈[n] ∥Yi∥2 ≥ α. Thus by theorem 4.6.9 we get the desired

result.

If ϕ is a leaky ReLU type activation (say like those used in [NM20]) Theorem 4.6.9

translates into an even simpler bound

Corollary 4.6.11. Suppose ϕ′(x) ∈ [γmin, γmax] for all x ∈ R where γmin > 0. Then

γ2minTr(XXT )

γ2maxλ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ γ2max
γ2min

Tr(XXT )

λ1(XXT )
.

Proof. We will lower bound

α := sup
∥b∥=1

[
min
j∈[n]

|⟨Yj,b⟩|
]

so that we can apply Corollary 4.6.10. Set b = a/ ∥a∥2. Then we have that

⟨Yj,b⟩ =
m∑
ℓ=1

aℓϕ
′(⟨wℓ,xj⟩)aℓ/ ∥a∥2 ≥

γmin
∥a∥2

m∑
ℓ=1

a2ℓ = γmin ∥a∥2 .

Thus α ≥ γmin ∥a∥2. The result then follows from Corollary 4.6.10.

To control α in Theorem 4.6.9 when ϕ is the ReLU activation function requires a bit

more work. To this end we introduce the following lemma.

Lemma 4.6.12. Assume ϕ(x) = ReLU(x). Let Rmin, Rmax > 0 and define τ = {ℓ ∈ [m] :

|aℓ| ∈ [Rmin, Rmax]}. Set T = mini∈[n]
∑

ℓ∈τ I [⟨xi,wℓ⟩ ≥ 0]. Then

α := sup
∥b∥=1

[
min
i∈[n]

|⟨Yi,b⟩|
]
≥ R2

min

Rmax

T

|τ |1/2
.

217



Proof. Let aτ be the vector such that (aτ )ℓ = aℓI[ℓ ∈ τ ]. Then note that

⟨Yj, aτ/ ∥aτ∥2⟩ =
1

∥aτ∥
∑
ℓ∈τ

a2ℓI[⟨wℓ,xj⟩ ≥ 0] ≥

R2
min

∥aτ∥
∑
ℓ∈τ

I[⟨wℓ,xj⟩ ≥ 0] ≥ R2
min

∥aτ∥2
T ≥ R2

min

Rmax|τ |1/2
T.

Roughly what Lemma 4.6.12 says is that α is controlled when there is a set of inner-

layer neurons that are active for each data point whose outer layer weights are similar

in magnitude. Note that in [DZP19], [ADH19a], [OFL19], [LSO20], [XLS17] and [OS20]

the outer layer weights all have fixed constant magnitude. Thus in that case we can set

Rmin = Rmax in Lemma 4.6.12 so that τ = [m]. In this setting we have the following result.

Theorem 4.6.13. Assume ϕ(x) = ReLU(x). Suppose |aℓ| = R > 0 for all ℓ ∈ [m].

Furthermore suppose w1, . . . ,wm are independent random vectors such that wℓ/ ∥wℓ∥ has

the uniform distribution on the sphere for each ℓ ∈ [m]. Also assume m ≥ 4 log(n/ϵ)
δ2

for some

δ, ϵ ∈ (0, 1). Then with probability at least 1− ϵ we have that

(1− δ)2

4
eff(XXT ) ≤ eff(Kinner) ≤

4

(1− δ)2
eff(XXT ).

Proof. Fix j ∈ [n]. Note by the assumption on the wℓ’s we have that

I[⟨w1,xj⟩ ≥ 0], . . . , I[⟨wm,xj⟩ ≥ 0]

are i.i.d. Bernouilli random variables taking the values 0 and 1 with probability 1/2. Thus

by the Chernoff bound for Binomial random variables we have that

P

(
m∑
ℓ=1

I[⟨wℓ,xj⟩ ≥ 0] ≤ m

2
(1− δ)

)
≤ exp

(
−δ2m

4

)
.

Thus taking the union bound over every j ∈ [n] we get that if m ≥ 4 log(n/ϵ)
δ2

then

min
j∈[n]

m∑
ℓ=1

I[⟨wℓ,xj⟩ ≥ 0] ≥ m

2
(1− δ)
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holds with probability at least 1 − ϵ. Now note that if we set Rmin = Rmax = R we have

that τ = [m] where τ is defined as it is in Lemma 4.6.12. In this case by our previous bound

we have that T as defined in Lemma 4.6.12 satisfies T ≥ m
2
(1− δ) with probability at least

1− ϵ. In this case the conclusion of Lemma 4.6.12 gives us

α ≥ Rm1/2 (1− δ)

2
= ∥a∥2

(1− δ)

2
.

Thus by Corollary 4.6.10 and the above bound for α we get the desired result.

We will now use Lemma 4.6.12 to prove a bound in the case of Gaussian initialization.

Lemma 4.6.14. Assume ϕ(x) = ReLU(x). Suppose that aℓ ∼ N(0, ν2) for each ℓ ∈ [m]

i.i.d. Furthermore suppose w1, . . . ,wm are random vectors independent of each other and

a such that wℓ/ ∥wℓ∥ has the uniform distribution on the sphere for each ℓ ∈ [m]. Set

p = Pz∼N(0,1) (|z| ∈ [1/2, 1]) ≈ 0.3. Assume

m ≥ 4 log(n/ϵ)

δ2(1− δ)p

for some ϵ, δ ∈ (0, 1). Then with probability at least (1− ϵ)2 we have that

α := sup
∥b∥=1

[
min
i∈[n]

|⟨Yi,b⟩|
]
≥ ν

8
(1− δ)3/2p1/2m1/2.

Proof. Set Rmin = ν/2 and Rmax = ν. Now set

p = Pa∼N(0,ν2) (|a| ∈ [Rmin, Rmax]) = 2Pz∼N(0,1)

(
z ∈

[
Rmin

ν
,
Rmax

ν

])
= 2Pz∼N(0,1) (z ∈ [1/2, 1]) ≈ 0.3.

Now define τ = {ℓ ∈ [m] : |aℓ| ∈ [Rmin, Rmax]}. We have by the Chernoff bound for binomial

random variables

P (|τ | ≤ (1− δ)mp) ≤ exp
(
−δ2mp

2

)
.

Thus if m ≥ log
(
1
ϵ

)
2
pδ2

(a weaker condition than the hypothesis on m) then we have that

|τ | ≥ (1 − δ)mp with probability at least 1 − ϵ. From now on assume such a τ has been
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observed and view it as fixed so that the only remaining randomness is over the wℓ’s. Now

set T = mini∈[n]
∑

ℓ∈τ I [⟨xi,wℓ⟩ ≥ 0]. By the Chernoff bound again we get that for fixed

i ∈ [n]

P

(∑
ℓ∈τ

I [⟨xi,wℓ⟩ ≥ 0] ≤ (1− δ)

2
|τ |

)
≤ exp

(
−δ2 |τ |

4

)
.

Thus by taking the union bound over i ∈ [n] we get

P
(
T ≤ (1− δ)

2
|τ |
)

≤ n exp

(
−δ2 |τ |

4

)
≤ n exp

(
−δ2 (1− δ)mp

4

)
.

Thus if we consider τ as fixed and m ≥ 4 log(n/ϵ)
δ2(1−δ)p then with probability at least 1− ϵ over the

sampling of the wℓ’s we have that

T ≥ (1− δ)

2
|τ |.

In this case by lemma 4.6.12 we have that

α := sup
∥b∥=1

[
min
i∈[n]

|⟨Yi,b⟩|
]
≥ R2

min

Rmax

T

|τ |1/2

≥ ν

8
(1− δ)3/2m1/2p1/2.

Thus the above holds with probability at least (1− ϵ)2.

This lemma now allows us to bound the effective rank of Kinner in the case of Gaussian

initialization.

Theorem 4.6.15. Assume ϕ(x) = ReLU(x). Suppose that aℓ ∼ N(0, ν2) for each ℓ ∈ [m]

i.i.d. Furthermore suppose w1, . . . ,wm are random vectors independent of each other and

a such that wℓ/ ∥wℓ∥ has the uniform distribution on the sphere for each ℓ ∈ [m]. Set

p = Pz∼N(0,1) (|z| ∈ [1/2, 1]) ≈ 0.3. Let ϵ, δ ∈ (0, 1). Then there exists absolute constants

c,K > 0 such that if

m ≥ 4 log(n/ϵ)

δ2(1− δ)p
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then with probability at least 1− 3ϵ we have that

1

C

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ C

Tr(XXT )

λ1(XXT )

where

C =
64

(1− δ)3p

[
1 +

max{c−1K log(1/ϵ),mK}
m

]
.

Proof. By Bernstein’s inequality

P
(
∥a/ν∥22 −m ≥ t

)
≤ exp

[
−c ·min

(
t2

mK2
,
t

K

)]
where c is an absolute constant. Set t = max{c−1K log(1/ϵ),mK} so that the right hand

side of the above inequality is bounded by ϵ. Thus by Lemma 4.6.14 and the union bound

we can ensure that with probability at least

1− ϵ− [1− (1− ϵ)2] = 1− 3ϵ+ ϵ2 ≥ 1− 3ϵ

that ∥a/ν∥22 ≤ m+ t and the conclusion of Lemma 4.6.14 hold simultaneously. In that case

∥a∥22
α2

≤ ν2[m+ t]
ν2

64
(1− δ)3mp

=
64

(1− δ)3p

[
1 +

t

m

]
= C.

Thus by Corollary 4.6.10 we get the desired result.

By fixing δ > 0 in the previous theorem we get the immediate corollary

Corollary 4.6.16. Assume ϕ(x) = ReLU(x). Suppose that aℓ ∼ N(0, ν2) for each ℓ ∈ [m]

i.i.d. Furthermore suppose w1, . . . ,wm are random vectors independent of each other and a

such that wℓ/ ∥wℓ∥ has the uniform distribution on the sphere for each ℓ ∈ [m]. Then there

exists an absolute constant C > 0 such that m = Ω(log(n/ϵ)) ensures that with probability

at least 1− ϵ
1

C

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ C

Tr(XXT )

λ1(XXT )
.

221



4.6.4.4 Effective Rank of Outer-layer NTK

Throughout this section ϕ(x) = ReLU(x). Our goal of this section, similar to before, is to

bound the effective rank of Kouter by the effective rank of the input data gram XXT . In this

section we will use often make use of the basic identities

∥AB∥F ≤ ∥A∥2 ∥B∥F

∥AB∥F ≤ ∥A∥F ∥B∥2

Tr(AAT ) = Tr(ATA) = ∥A∥2F

∥A∥2 =
∥∥AT

∥∥
2

λ1(A
TA) = λ1(AAT ) = ∥A∥22 .

To begin bounding the effective rank of Kouter, we prove the following lemma.

Lemma 4.6.17. Assume ϕ(x) = ReLU(x) and W is full rank with m ≥ d. Then∥∥ϕ(WXT )
∥∥2
F

[∥ϕ(WXT )∥2 + ∥ϕ(−WXT )∥2]
2 ≤ ∥W∥22

σmin(W)2
Tr(XXT )

λ1(XXT )
.

Proof. First note that

∥∥ϕ(WXT )
∥∥2
F
≤
∥∥WXT

∥∥2
F
≤ ∥W∥22

∥∥XT
∥∥2
F
= ∥W∥22 Tr(XXT ).

Pick b ∈ Rd such that ∥b∥2 = 1 and ∥Xb∥2 = ∥X∥2. Since WT is full rank we may set

u = (WT )†b so that WTu = b where ∥u∥2 ≤ σmin(W
T )−1 where σmin(W

T ) is the smallest

nonzero singular value of WT . Well then

∥X∥2 = ∥Xb∥2 =
∥∥XWTu

∥∥
2
≤
∥∥XWT

∥∥
2
∥u∥2 ≤

∥∥XWT
∥∥
2
σmin(W

T )−1

=
∥∥WXT

∥∥
2
σmin(W)−1.
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Now using the fact that x = ϕ(x)− ϕ(−x) we have that

∥∥WXT
∥∥
2
=
∥∥ϕ(WXT )− ϕ(−WXT )

∥∥
2
≤
∥∥ϕ(WXT )

∥∥
2
+
∥∥ϕ(−WXT )

∥∥
2
.

Thus combined with our previous results gives

∥X∥2 ≤ σmin(W)−1
[∥∥ϕ(WXT )

∥∥
2
+
∥∥ϕ(−WXT )

∥∥
2

]
.

Therefore ∥∥ϕ(WXT )
∥∥2
F

σmin(W)−2 [∥ϕ(WXT )∥2 + ∥ϕ(−WXT )∥2]
2 ≤

∥∥ϕ(WXT )
∥∥2
F

∥X∥22

≤ ∥W∥22 Tr(XXT )

∥X∥22
= ∥W∥22

Tr(XXT )

λ1(XXT )

which gives us the desired result.

Corollary 4.6.18. Assume ϕ(x) = ReLU(x) and W is full rank with m ≥ d. Then

max
(∥∥ϕ(WXT )

∥∥2
F
,
∥∥ϕ(−WXT )

∥∥2
F

)
max

(
∥ϕ(WXT )∥22 , ∥ϕ(−WXT )∥22

) ≤ 4
∥W∥22

σmin(W)2
Tr(XXT )

λ1(XXT )
.

Proof. Using the fact that

∥∥ϕ(WXT )
∥∥
2
+
∥∥ϕ(−WXT )

∥∥
2
≤ 2max

(∥∥ϕ(WXT )
∥∥
2
,
∥∥ϕ(−WXT )

∥∥
2

)
and lemma 4.6.17 we have that∥∥ϕ(WXT )

∥∥2
F

4max
(
∥ϕ(WXT )∥22 , ∥ϕ(−WXT )∥22

) ≤ ∥W∥22
σmin(W)2

Tr(XXT )

λ1(XXT )
.

Note that the right hand side and the denominator of the left hand side do not change when

you replace W with −W. Therefore by using the above bound for both W and −W as the

weight matrix separately we can conclude

max
(∥∥ϕ(WXT )

∥∥2
F
,
∥∥ϕ(−WXT )

∥∥2
F

)
4max

(
∥ϕ(WXT )∥22 , ∥ϕ(−WXT )∥22

) ≤ ∥W∥22
σmin(W)2

Tr(XXT )

λ1(XXT )
.
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Corollary 4.6.19. Assume ϕ(x) = ReLU(x) and m ≥ d. Suppose W and −W have the

same distribution. Then conditioned on W being full rank we have that with probability at

least 1/2
Tr(Kouter)

λ1(Kouter)
≤ 4

∥W∥22
σmin(W)2

Tr(XXT )

λ1(XXT )
.

Proof. Fix W where W is full rank. We have by corollary 4.6.18 that either∥∥ϕ(WXT )
∥∥2
F

∥ϕ(WXT )∥22
≤ 4

∥W∥22
σmin(W)2

Tr(XXT )

λ1(XXT )

holds or ∥∥ϕ(−WXT )
∥∥2
F

∥ϕ(−WXT )∥22
≤ 4

∥W∥22
σmin(W)2

Tr(XXT )

λ1(XXT )

(the first holds in the case where
∥∥ϕ(WXT )

∥∥2
2
≥
∥∥ϕ(−WXT )

∥∥2
2
and the second in the case∥∥ϕ(WXT )

∥∥2
2
<
∥∥ϕ(−WXT )

∥∥2
2
). Since W and −W have the same distribution, it follows

that the first inequality must hold at least 1/2 of the time. From

Tr(Kouter)

λ1(Kouter)
=

∥∥JTouter∥∥2F
∥JTouter∥

2
2

=

∥∥ϕ(WXT )
∥∥2
F

∥ϕ(WXT )∥22
we get the desired result.

We now note that whenW is rectangular shaped and the entries ofW are i.i.d. Gaussians

that W is full rank with high probability and σmin(W)−2 ∥W∥22 is well behaved. We recall

the result from [Ver12]:

Theorem 4.6.20. Let A be a N ×n matrix whose entries are independent standard normal

random variables. Then for every t ≥ 0, with probability at least 1− 2 exp(−t2/2) one has

√
N −

√
n− t ≤ σmin(A) ≤ σ1(A) ≤

√
N +

√
n+ t.

Corollary 4.6.19 gives us a bound that works at least half the time. However, we would

like to derive a bound that holds with high probability. We will have that when m ≳ n we

have sufficient concentration of the largest singular value of ϕ(WXT ) to prove such a bound.

We recall the result from [Ver12] (Remark 5.40):
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Theorem 4.6.21. Assume that A is an N × n matrix whose rows Ai are independent sub-

gaussian random vectors in Rn with second moment matrix Σ. Then for every t ≥ 0, the

following inequality holds with probability at least 1− 2 exp(−ct2)∥∥∥∥ 1

N
A∗A− Σ

∥∥∥∥
2

≤ max(δ, δ2) where δ = C

√
n

N
+

t√
N

where C = CK , c = cK > 0 depend only on K := maxi ∥Ai∥ψ2
.

We will use theorem 4.6.21 in the following lemma.

Lemma 4.6.22. Assume ϕ(x) = ReLU(x). Let A = ϕ(WXT ) and M = maxi∈[n] ∥xi∥2.

Suppose that w1, . . . ,wm ∼ N(0, ν2Id) i.i.d. Set K =Mν
√
n and define

Σ := Ew∼N(0,ν2I)[ϕ(Xw)ϕ(wTXT )].

Then for every t ≥ 0 the following inequality holds with probability at least 1− 2 exp(−cKt2)∥∥∥∥ 1

m
ATA− Σ

∥∥∥∥
2

≤ max(δ, δ2) where δ = CK

√
n

m
+

t√
m
,

where cK , CK > 0 are absolute constants that depend only on K.

Proof. We will let Aℓ : denote the ℓth row of A (considered as a column vector). Note that

Aℓ : = ϕ(Xwℓ).

We immediately get that the rows of A are i.i.d. We will now bound ∥Aℓ : ∥ψ2
. Let b ∈ Rn

such that ∥b∥2 = 1. Then

∥⟨ϕ(Xwℓ),b⟩∥ψ2
=

∥∥∥∥∥
n∑
i=1

ϕ(⟨xi,wℓ⟩)bi

∥∥∥∥∥
ψ2

≤
n∑
i=1

|bi| ∥ϕ(⟨xi,wℓ⟩)∥ψ2
≤

n∑
i=1

|bi| ∥⟨xi,wℓ⟩∥ψ2

≤
n∑
i=1

|bi|C ∥xi∥2 ν ≤ CMν ∥b∥1 ≤ CMν
√
n
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where C > 0 is an absolute constant. Set K := Mν
√
n. Well then by theorem 4.6.21 we

have the following. For every t ≥ 0 the following inequality holds with probability at least

1− 2 exp(−cKt2)∥∥∥∥ 1

m
ATA− Σ

∥∥∥∥
2

≤ max(δ, δ2) where δ = CK

√
n

m
+

t√
m
.

We are now ready to prove a high probability bound for the effective rank of Kouter.

Theorem 4.6.23. Assume ϕ(x) = ReLU(x) and m ≥ d. Let M = maxi∈[n] ∥xi∥2. Suppose

that w1, . . . ,wm ∼ N(0, ν2Id) i.i.d. Set K =Mν
√
n

Σ := Ew∼N(0,ν2I)[ϕ(Xw)ϕ(wTXT )]

δ = CK

[√
n

m
+

√
log(2/ϵ)

m

]
where ϵ > 0 is small. Now assume

√
m >

√
d+

√
2 log(2/ϵ)

and

max(δ, δ2) ≤ 1

2
λ1(Σ).

Then with probability at least 1− 3ϵ

Tr(Kouter)

λ1(Kouter)
≤ 12

(√
m+

√
d+ t1√

m−
√
d− t1

)2
Tr(XTX)

λ1(XTX)
.

Proof. By theorem 4.6.20 with t1 =
√
2 log(2/ϵ) we have that with probability at least 1− ϵ

that
√
m−

√
d− t1 ≤ σmin(W/ν) ≤ σ1(W/ν) ≤

√
m+

√
d+ t1. (4.43)

The above inequalities and the hypothesis on m imply that W is full rank.
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Let A = ϕ(WXT ) and Ã = ϕ(−WXT ). Set t2 =
√

log(2/ϵ)
cK

where cK is defined as in

theorem 4.6.22. Note that A and Ã are identical in distribution. Thus by theorem 4.6.22

and the union bound we get that with probability at least 1− 2ϵ∥∥∥∥ 1

m
ATA− Σ

∥∥∥∥
2

,

∥∥∥∥ 1

m
ÃT Ã− Σ

∥∥∥∥
2

≤ max(δ, δ2) =: ρ (4.44)

where

δ = CK

√
n

m
+

t2√
m
.

By our previous results and the union bound we can ensure with probability at least

1− 3ϵ that the bounds (4.43) and (4.44) all hold simultaneously. In this case we have∥∥∥∥ 1

m
ÃT Ã

∥∥∥∥
2

≤
∥∥∥∥ 1

m
ATA

∥∥∥∥
2

+ 2ρ

=

∥∥∥∥ 1

m
ATA

∥∥∥∥
2

[
1 +

2ρ∥∥ 1
m
ATA

∥∥
2

]
≤
∥∥∥∥ 1

m
ATA

∥∥∥∥
2

[
1 +

2ρ

λ1(Σ)− ρ

]
.

Assuming ρ ≤ λ1(Σ)/2 we have by the above bound∥∥∥∥ 1

m
ÃT Ã

∥∥∥∥
2

≤ 3

∥∥∥∥ 1

m
ATA

∥∥∥∥
2

.

Now note that ∥∥ATA
∥∥
2
=
∥∥ϕ(WXT )

∥∥2
2

∥∥∥ÃT Ã
∥∥∥
2
=
∥∥ϕ(−WXT )

∥∥2
2

so that our previous bound implies∥∥ϕ(−WXT )
∥∥2
2
≤ 3

∥∥ϕ(WXT )
∥∥2
2
.

Then we have by corollary 4.6.18 that

Tr(Kouter)

λ1(Kouter)
=

∥∥ϕ(WXT )
∥∥2
F

∥ϕ(WXT )∥22
≤ 12

∥W∥22
σmin(W)2

Tr(XXT )

λ1(XXT )

≤ 12

(√
m+

√
d+ t1√

m−
√
d− t1

)2
Tr(XXT )

λ1(XXT )
.
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From the above theorem we get the following corollary.

Corollary 4.6.24. Assume ϕ(x) = ReLU(x) and n ≥ d. Suppose that w1, . . . ,wm ∼

N(0, ν2Id) i.i.d. Fix ϵ > 0 small. Set M = maxi∈[n] ∥xi∥2. Then

m = Ω
(
max(λ1(Σ)

−2, 1)max(n, log(1/ϵ))
)

and

ν = O(1/M
√
m)

suffices to ensure that with probability at least 1− ϵ

Tr(Kouter)

λ1(Kouter)
≤ C

Tr(XXT )

λ1(XXT )

where C > 0 is an absolute constant.

4.6.4.5 Bound for the Combined NTK

Based on the results in the previous two sections, we can now bound the effective rank of

the combined NTK gram matrix K = Kinner +Kouter.

Theorem 4.4.5. Assume ϕ(x) = ReLU(x) and n ≥ d. Fix ϵ > 0 small. Suppose that

w1, . . . ,wm ∼ N(0, ν21Id) i.i.d. and a1, . . . , am ∼ N(0, ν22). Set M = maxi∈[n] ∥xi∥2, and let

Σ := Ew∼N(0,ν21I)
[ϕ(Xw)ϕ(wTXT )].

Then

m = Ω
(
max(λ1(Σ)

−2, 1)max(n, log(1/ϵ))
)
, ν1 = O(1/M

√
m)

suffices to ensure that, with probability at least 1 − ϵ over the sampling of the parameter

initialization,

eff(K) ≤ C · eff(XXT ),

where C > 0 is an absolute constant.

Proof. This follows from the union bound and Corollaries 4.6.16 and 4.6.24.
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4.6.4.6 Magnitude of the Spectrum

By our results in sections 4.6.4.3 and 4.6.4.4 we have that m ≳ n suffices to ensure that

Tr(K)

λ1(K)
≲
Tr(XXT )

λ1(XXT )
≤ d.

Well note that

i
λi(K)

λ1(K)
≤ Tr(K)

λ1(K)
≲ d.

If i ≫ d then λi(K)/λ1(K) is small. Thus the NTK only has O(d) large eigenvalues. The

smallest eigenvalue λn(K) of the NTK has been of interest in proving convergence guarantees

[DLL19, DZP19, OS20]. By our previous inequality

λn(K)

λ1(K)
≲
d

n
.

Thus in the setting where m ≳ n≫ d we have that the smallest eigenvalue will be driven to

zero relative to the largest eigenvalue. Alternatively we can view the above inequality as a

lower bound on the condition number

λ1(K)

λn(K)
≳
n

d
.

We will first bound the analytical NTK in the setting when the outer layer weights have

fixed constant magnitude. This is the setting considered by [XLS17], [ADH19a], [DZP19],

[OFL19], [LSO20], and [OS20].

Theorem 4.6.25. Let ϕ(x) = ReLU(x) and assume X ̸= 0. Let K∞
inner ∈ Rn×n be the

analytical NTK, i.e.

(K∞
inner)i,j := ⟨xi,xj⟩Ew∼N(0,Id) [ϕ

′(⟨xi,w⟩)ϕ′(⟨xj,w⟩)] .

Then
1

4

Tr(XXT )

λ1(XXT )
≤ Tr(K∞

inner)

λ1 (K∞
inner)

≤ 4
Tr(XXT )

λ1(XXT )
.
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Proof. We consider the setting where |aℓ| = 1/
√
m for all ℓ ∈ [m] and wℓ ∼ N(0, Id) i.i.d..

As was shown by [JGH18], [DZP19] in this setting we have that if we fix the training data

X and send m→ ∞ we have that

∥Kinner −K∞
inner∥2 → 0

in probability. Therefore by continuity of the effective rank we have that

Tr(Kinner)

λ1(Kinner)
→ Tr(K∞

inner)

λ1(K∞
inner)

in probability. Let η > 0. Then there exists an M ∈ N such that m ≥M implies that∣∣∣∣Tr(Kinner)

λ1(Kinner)
− Tr(K∞

inner)

λ1(K∞
inner)

∣∣∣∣ ≤ η (4.45)

with probability greater than 1/2. Now fix δ ∈ (0, 1). On the other hand by Theorem 4.6.13

with ϵ = 1/4 we have that if m ≥ 4
δ2
log(4n) then with probability at least 3/4 that

(1− δ)2

4

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ 4

(1− δ)2
Tr(XXT )

λ1(XXT )
. (4.46)

Thus if we set m = max( 4
δ2
log(4n),M) we have with probability at least 3/4 − 1/2 = 1/4

that (4.45) and (4.46) hold simultaneously. In this case we have that

(1− δ)2

4

Tr(XXT )

λ1(XXT )
− η ≤ Tr(K∞

inner)

λ1 (K∞
inner)

≤ 4

(1− δ)2
Tr(XXT )

λ1(XXT )
+ η

Note that the above argument runs through for any η > 0 and δ ∈ (0, 1). Thus we may send

η → 0+ and δ → 0+ in the above inequality to get

1

4

Tr(XXT )

λ1(XXT )
≤ Tr(K∞

inner)

λ1 (K∞
inner)

≤ 4
Tr(XXT )

λ1(XXT )
.

We thus have the following corollary about the conditioning of the analytical NTK.

Corollary 4.6.26. Let ϕ(x) = ReLU(x) and assume X ̸= 0. Let K∞
inner ∈ Rn×n be the

analytical NTK, i.e.

(K∞
inner)i,j := ⟨xi,xj⟩Ew∼N(0,Id) [ϕ

′(⟨xi,w⟩)ϕ′(⟨xj,w⟩)] .
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Then
λn(K

∞
inner)

λ1(K∞
inner)

≤ 4
d

n
.

4.6.5 Experimental Validation of Results on the NTK Spectrum

Figure 4.3: NTK Spectrum for CNNs We plot the normalized eigenvalues λp/λ1 of the

NTK Gram matrixK and the data Gram matrixXXT for Caltech101 and isotropic Gaussian

datasets. To compute the NTK, we randomly initialize convolutional neural networks of

depth 2 and 5 with 100 channels per layer. We use the standard parameterization and

Pytorch’s default Kaiming uniform initialization in order to better connect our results with

what is used in practice. We consider a batch size of n = 200 and plot the first 100

eigenvalues. The thick part of each curve corresponds to the mean across 10 trials while the

transparent part corresponds to the 95% confidence interval.

We experimentally test the theory developed in Section 4.4.1 and its implications by

analyzing the spectrum of the NTK for both fully connected neural network architectures

(FCNNs), the results of which are displayed in Figure 4.1, and also convolutional neural
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Figure 4.4: Asymptotic NTK Spectrum NTK spectrum of two-layer fully connected

networks with ReLU, Tanh and Gaussian activations under the NTK parameterization. The

orange curve is the experimental eigenvalue. The blue curves in the left shows the regression

fit for the experimental eigenvalues as a function of eigenvalue index ℓ in the form of λℓ =

aℓ−b where a and b are unknown parameters determined by regression. The blue curves

in the middle shows the regression fit for the experimental eigenvalues in the form of λℓ =

aℓ−0.75b−l
1/4

. The blue curves in the right shows the regression fit for the experimental

eigenvalues in the form of λℓ = aℓ−0.5b−l
1/2

.

network architectures (CNNs), shown in Figure 4.3. For the feedforward architectures we

consider networks of depth 2 and 5 with the width of all layers being set at 500. With regard

to the activation function we test linear, ReLU and Tanh, and in terms of initialization

we use Kaiming uniform [HZR15], which is very common in practice and is the default in

PyTorch [PGM19]. For the convolutional architectures we again consider depths 2 and 5,

with each layer consisting of 100 channels with the filter size set to 5x5. In terms of data,

we consider 40x40 patches from both real world images, generated by applying Pytorch’s

RandomResizedCrop transform to a random batch of Caltech101 images [LAR22], as well as

synthetic images corresponding to isotropic Gaussian vectors. The batch sized is fixed at

200 and we plot only the first 100 normalized eigenvalues. Each experiment was repeated

10 times. Finally, to compute the NTK we use the functorch4 module in PyTorch using an

algorithmic approach inspired by [NSS22].

4https://pytorch.org/functorch/stable/notebooks/neural_tangent_kernels.html
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The results for convolutional neural networks show the same trends as observed in feed-

forward neural networks, which we discussed in Section 4.4.1. In particular, we again observe

the dominant outlier eigenvalue, which increases with both depth and the size of the Gaus-

sian mean of the activation. We also again see that the NTK spectrum inherits its structure

from the data, i.e., is skewed for skewed data or relatively flat for isotropic Gaussian data.

Finally, we also see that the spectrum for Tanh is closer to the spectrum for the linear acti-

vation when compared with the ReLU spectrum. In terms of differences between the CNN

and FCNN experiments, we observe that the spread of the 95% confidence interval is slightly

larger for convolutional nets, implying a slightly larger variance between trials. We remark

that this is likely attributable to the fact that there are only 100 channels in each layer and

by increasing this quantity we would expect the variance to reduce. In summary, despite the

fact that our analysis is concerned with FCNNs, it appears that the broad implications and

trends also hold for CNNs. We leave a thorough study of the NTK spectrum for CNNs and

other network architectures to future work.

To test our theory in Section 4.4.2, we numerically plot the spectrum of NTK of two-

layer feedforward networks with ReLU, Tanh, and Gaussian activations in Figure 4.4. The

input data are uniformly drawn from S2. Notice that when d = 2, k = Θ(ℓ1/2). Then

Corollary 4.4.7 shows that for the ReLU activation λℓ = Θ(ℓ−3/2), for the Tanh activation

λℓ = O
(
ℓ−3/4 exp(−π

2
ℓ1/4)

)
, and for the Gaussian activation λℓ = O(ℓ−1/22−ℓ

1/2
). These

theoretical decay rates for the NTK spectrum are verified by the experimental results in

Figure 4.4.

4.6.6 Analysis of the Lower Spectrum: Uniform Data

Theorem 4.4.6. [AM15] Suppose that the training data are uniformly sampled from the

unit hypersphere Sd, d ≥ 2. If the dot-product kernel function has the expansion K(x1, x2) =∑∞
p=0 cp⟨x1, x2⟩p where cp ≥ 0, then the eigenvalue of every spherical harmonic of frequency
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k is given by

λk =
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
,

where Γ is the gamma function.

Proof. Let θ(t) =
∑∞

p=0 cpt
p, then K(x1, x2) = θ(⟨x1, x2⟩) According to Funk Hecke theorem

[BJK19, Section 4.2], we have

λk = Vol(Sd−1)

∫ 1

−1

θ(t)Pk,d(t)(1− t2)
d−2
2 dt, (4.47)

where Vol(Sd−1) = 2πd/2

Γ(d/2)
is the volume of the hypersphere Sd−1, and Pk,d(t) is the Gegenbauer

polynomial, given by

Pk,d(t) =
(−1)k

2k
Γ(d/2)

Γ(k + d/2)

1

(1− t2)(d−2)/2

dk

dtk
(1− t2)k+(d−2)/2,

and Γ is the gamma function.

From (4.47) we have

λk = Vol(Sd−1)

∫ 1

−1

θ(t)Pk,d(t)(1− t2)
d−2
2 dt

=
2πd/2

Γ(d/2)

∫ 1

−1

θ(t)
(−1)k

2k
Γ(d/2)

Γ(k + d/2)

dk

dtk
(1− t2)k+(d−2)/2dt

=
2πd/2

Γ(d/2)

(−1)k

2k
Γ(d/2)

Γ(k + d/2)

∞∑
p=0

cp

∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt. (4.48)

Using integration by parts, we have∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt

= tp
dk−1

dtk−1
(1− t2)k+(d−2)/2

∣∣∣∣1
−1

− p

∫ 1

−1

tp−1 d
k−1

dtk−1
(1− t2)k+(d−2)/2dt

= −p
∫ 1

−1

tp−1 d
k−1

dtk−1
(1− t2)k+(d−2)/2dt, (4.49)

where the last line in (4.49) holds because dk−1

dtk−1 (1− t2)k+(d−2)/2 = 0 when t = 1 or t = −1.
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When p < k, repeat the above procedure (4.49) p times, we get∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt = (−1)pp!

∫ 1

−1

dk−p

dtk−p
(1− t2)k+(d−2)/2dt

= (−1)pp!
dk−p−1

dtk−p−1
(1− t2)k+(d−2)/2

∣∣∣∣1
−1

= 0. (4.50)

When p ≥ k, repeat the above procedure (4.49) k times, we get∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt = (−1)kp(p− 1) · · · (p− k + 1)

∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt.

(4.51)

When p− k is odd, tp−k(1− t2)k+(d−2)/2 is an odd function, then∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt = 0. (4.52)

When p− k is even,∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt = 2

∫ 1

0

tp−k(1− t2)k+(d−2)/2dt

=

∫ 1

0

(t2)(p−k−1)/2(1− t2)k+(d−2)/2dt2

= B

(
p− k + 1

2
, k + d/2

)
=

Γ(p−k+1
2

)Γ(k + d/2)

Γ(p−k+1
2

+ k + d/2)
, (4.53)

where B is the beta function.

Plugging (4.53) , (4.50) and (4.52) into (4.51), we get∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt

=


(−1)kp(p− 1) . . . (p− k + 1)

Γ( p−k+1
2

)Γ(k+d/2)

Γ( p−k+1
2

+k+d/2)
, p− k is even and p ≥ k,

0, otherwise.

(4.54)
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Plugging (4.54) into (4.48), we get

λk =
2πd/2

Γ(d/2)

(−1)k

2k
Γ(d/2)

Γ(k + d/2)

∑
p≥k

p−k is even

cp(−1)kp(p− 1) . . . (p− k + 1)
Γ(p−k+1

2
)Γ(k + d/2)

Γ(p−k+1
2

+ k + d/2)

=
πd/2

2k−1

∑
p≥k

p−k is even

cp
p(p− 1) . . . (p− k + 1)Γ(p−k+1

2
)

Γ(p−k+1
2

+ k + d/2)

=
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
.

Corollary 4.4.7. Under the same setting as in Theorem 4.4.6,

1. if cp = Θ(p−a) where a ≥ 1, then λk = Θ(k−d−2a+2),

2. if cp = δ(p even)Θ(p−a), then λk = δ(k even)Θ(k−d−2a+2),

3. if cp = O
(
exp

(
−a√p

))
, then λk = O

(
k−d+1/2 exp

(
−a

√
k
))

,

4. if cp = Θ(p1/2a−p), then λk = O
(
k−d+1a−k

)
and λk = Ω

(
k−d/2+12−ka−k

)
.

Proof of Corollary 4.6.6, part 1. We first prove λk = O(k−d−2a+2). Suppose that cp ≤ Cp−a

for some constant C, then according to Theorem 4.4.6 we have

λk ≤
πd/2

2k−1

∑
p≥k

p−k is even

Cp−a
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
.

According to Stirling’s formula, we have

Γ(z) =

√
2π

z

(z
e

)z (
1 +O

(
1

z

))
. (4.55)

Then for any z ≥ 1
2
, we can find constants C1 and C2 such that

C1

√
2π

z

(z
e

)z
≤ Γ(z) ≤ C2

√
2π

z

(z
e

)z
. (4.56)
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Then

λk ≤
πd/2

2k−1

C2
2

C2
1

∑
p≥k

p−k is even

Cp−a

√
2π
p+1

(
p+1
e

)p+1
√

2π
p−k+1

2

( p−k+1
2

e

) p−k+1
2

√
2π

p−k+1

(
p−k+1

e

)p−k+1√ 2π
p−k+1

2
+k+d/2

( p−k+1
2

+k+d/2

e

) p−k+1
2

+k+d/2

=
πd/2

2k−1

C2
2C

C2
1

∑
p≥k

p−k is even

p−a
e

d
2

√
2
p+1

(p+ 1)p+1 (p−k+1
2

) p−k+1
2

(p− k + 1)p−k+1
√

1
p−k+1

2
+k+d/2

(
p−k+1

2
+ k + d/2

) p−k+1
2

+k+d/2

=
πd/2

2k−1

C2
2C

C2
1

∑
p≥k

p−k is even

p−a
e

d
2 2

−p+k
2 (p+ 1)p+

1
2

(p− k + 1)
p−k+1

2
(
p−k+1

2
+ k + d/2

) p−k
2

+k+d/2

= 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p−a (p+ 1)p+
1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.57)

We define

fa(p) =
p−a (p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.58)

By applying the chain rule to elog fa(p), we have that the derivative of fa is

f ′
a(p) =

(p+ 1)p+
1
2p−a

2(p− k + 1)
p−k+1

2 (p+ k + d+ 1)
p+k+d

2

·
(
−2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+ log(1 +

k2 − d(p− k + 1)

(p− k + 1)(p+ k + d+ 1)
)

)
. (4.59)

Let ga(p) = −2a
p
− k+d

(p+1)(p+k+d+1)
+ log(1 + k2−d(p−k+1)

(p−k+1)(p+k+d+1)
). Then ga(p) and f

′
a(p) have the

same sign. Next we will show that ga(p) ≥ 0 for k ≤ p ≤ k2

d+24a
when k is large enough.

First when p ≥ k and k2−d(p−k+1)
(p−k+1)(p+k+d+1)

≥ 1, we have

ga(p) ≥ −2a

k
− k + d

(k + 1)(k + k + d+ 1)
+ log(2) ≥ 0, (4.60)

when k is sufficiently large.

Second when p ≥ k and 0 ≤ k2−d(p−k+1)
(p−k+1)(p+k+d+1)

≤ 1, since log(1 + x) ≥ x
2
for 0 ≤ x ≤ 1, we
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have

ga(p) ≥ −2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+

k2 − d(p− k + 1)

2(p− k + 1)(p+ k + d+ 1)

≥ −2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+

k2 − dp

2p(p+ k + d+ 1)
.

When p ≤ k2

d+24a
, we have k2 − dp ≥ 24ap. Then

k2 − dp

4p(p+ k + d+ 1)
≥ 24ap

4p(p+ k + d+ 1)
≥ 6ap

(p+ 1)(p+ k + d+ 1)
≥ k + d

(p+ 1)(p+ k + d+ 1)

when k is sufficiently large. Also we have

k2 − dp

4r(p+ k + d+ 1)
≥ 24ap

4r(p+ k + d+ 1)
≥ 6a

p+ k + d+ 1
≥ 2a

p

when k is sufficiently large.

Combining all the arguments above, we conclude that ga(p) ≥ 0 and f ′
a(p) ≥ 0 when

k ≤ p ≤ k2

d+24a
. Then when k ≤ p ≤ k2

d+24a
, we have

fa(p) ≤ fa

(
k2

d+ 24a

)
. (4.61)

When p ≥ k2

d+24a
, we have

fa(p) =
p−a (p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

=
p−a (p+ 1)p+

1
2

((p+ 1)2 − k2 + d(p− k + 1))
p−k+1

2 (p+ k + 1 + d)
2k+d−1

2

=
p−a (p+ 1)−

d
2(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2
(
1 + k+d

p+1

) 2k+d−1
2

≤ p−a−
d
2(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2

.

If k2−d(p−k+1) < 0,
(
1− k2−d(p−k+1)

(p+1)2

) p−k+1
2 ≥ 1. If k2−d(p−k+1) ≥ 0, i.e., p ≤ k2+dk−d

d
,
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for sufficiently large k, we have

(
1− k2 − d(p− k + 1)

(p+ 1)2

) p−k+1
2

≥

(
1−

k2 − d( k2

d+24a
− k + 1)

( k2

d+24a
+ 1)2

) k2+dk−d
d

−k+1

2

≥
(
1− 48a(d+ 24a)

k2

) k2

2d

≥ e−
k2

2d
48a(d+24a)

k2 = e−
48a(d+24a)

2d ,

which is a constant independent of k. Then for p ≥ k2

d+24a
, we have

fa(p) ≤ e
48a(d+24a)

2d p−a−
d
2 . (4.62)

Finally we have

λk = 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

fa(p)

≤ O

 ∑
k≤p≤ k2

d+24a
p−k is even

fa(p) +
∑

p≥ k2

d+24a
p−k is even

fa(p)



≤ O


(

k2

d+ 24a
− k + 1

)
fa

(
k2

d+ 24a

)
+

∑
p≥ k2

d+24a
p−k is even

e
48a(d+24a)

2d p−a−
d
2


≤ O

((
k2

d+ 24a
− k + 1

)
e

48a(d+24a)
2d

(
k2

d+ 24a

)−a− d
2

+
e

48a(d+24a)
2d

a+ d
2
− 1

(
k2

d+ 24a
− 1

)1−a− d
2

)
= O(k−d−2a+2).

Next we prove λk = Ω(k−d−2a+2). Since cp are nonnegative and cp = Θ(p−a), we have

that cp ≥ C ′p−a for some constant C ′. Then we have

λk ≥
πd/2

2k−1

∑
p≥k

p−k is even

C ′p−a
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
. (4.63)
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According to Stirling’s formula (4.55) and (4.56), using the similar argument as (4.57) we

have

λk ≥
πd/2

2k−1

C2
1

C2
2

∑
p≥k

p−k is even

C ′p−a

√
2π
p+1

(
p+1
e

)p+1
√

2π
p−k+1

2

( p−k+1
2

e

) p−k+1
2

√
2π

p−k+1

(
p−k+1

e

)p−k+1√ 2π
p−k+1

2
+k+d/2

( p−k+1
2

+k+d/2

e

) p−k+1
2

+k+d/2

(4.64)

= 2πd/2
2

d
2 e

d
2C2

1C
′

C2
2

∑
p≥k

p−k is even

p−a (p+ 1)p+
1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

(4.65)

≥ 2πd/2
2

d
2 e

d
2C2

1C
′

C2
2

∑
p≥k2

p−k is even

fa(p), (4.66)

where fa(p) is defined in (4.58). When p ≥ k2, we have

fa(p) =
p−a (p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

=
p−a (p+ 1)p+

1
2

((p+ 1)2 − k2 + d(p− k + 1))
p−k+1

2 (p+ k + 1 + d)
2k+d−1

2

≥ (p+ 1)−a−
d
2(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2
(
1 + k+d

p+1

) 2k+d−1
2

.

For sufficiently large k, k2 − d(p− k + 1) < 0. Then we have(
1− k2 − d(p− k + 1)

(p+ 1)2

) p−k+1
2

=

(
1− k2 − d(p− k + 1)

(p+ 1)2

) −(p+1)2

k2−d(p−k+1)
·−k2+d(p−k+1)

(p+1)2
· p−k+1

2

≤ e
−k2+d(p−k+1)

(p+1)2
· p−k+1

2

≤ e
dp2

2p2 = e
d
2

which is a constant independent of k. Also, for sufficiently large k, we have(
1 +

k + d

p+ 1

) 2k+d−1
2

=

(
1 +

k + d

p+ 1

) p+1
k+d

k+d
p+1

2k+d−1
2

≤ e
k+d
p+1

2k+d−1
2

≤ e
3k2

2r = e
3
2 .
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Then for p ≥ k2, we have fa(p) ≥ e−
d
2
− 3

2 (p+ 1)−a−
d
2 .

Finally we have

λk ≥ 2πd/2
2

d
2 e

d
2C2

1C
′

C2
2

∑
p≥k2

p−k is even

fa(p) (4.67)

≥ 2πd/2
2

d
2 e

d
2C2

1C
′

C2
2

∑
p≥k2

p−k is even

e−
d
2
− 3

2 (p+ 1)−a−
d
2 (4.68)

≥ 2πd/2
2

d
2 e

d
2C2

1C
′

C2
2

e−
d
2
− 3

2
1

2(a+ d
2
− 1)

(k2 + 2)1−a−
d
2 (4.69)

= Ω(k−d−2a+2). (4.70)

Overall, we have λk = Θ(k−d−2a+2).

Proof of Corollary 4.6.6, part 2. It is easy to verify that λk = 0 when k is even because

cp = 0 when p ≥ k and p − k is even. When k is odd, the proof of Theorem 4.4.6 still

applies.

Proof of Corollary 4.6.6, part 3. Since cp = O
(
exp

(
−a√p

))
, we have that cp ≤ Ce−a

√
p for

some constant C. Similar to (4.57), we have

λk ≤ 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

e−a
√
p (p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.71)

Use the definition in (4.58) and let a = 0, we have

f0(p) =
(p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.72)

Then according to (4.61) and (4.62), for sufficiently large k, we have f0(p) ≤ f0

(
k2

d

)
when

k ≤ p ≤ k2

d
and f0(p) ≤ C3p

− d
2 for some constant C3 when p ≥ k2

d
. Then when k ≤ p ≤ k2

d
,

we have f0(p) ≤ f0

(
k2

d

)
≤ C3

(
k2

d

)− d
2
. When p ≥ k2

d
, we have f0(p) ≤ C3p

− d
2 ≤ C3

(
k2

d

)− d
2
.

Overall, for all p ≥ k, we have

f0(p) ≤ C3

(
k2

d

)− d
2

. (4.73)
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Then we have

λk ≤ 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

e−a
√
pf0(p) (4.74)

≤ 2πd/2
2

d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d
2 ∑

p≥k
p−k is even

e−a
√
p (4.75)

≤ 2πd/2
2

d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d
2 2e−a

√
k−1(a

√
k − 1 + 1)

a2
(4.76)

= O
(
k−d+1/2 exp

(
−a

√
k
))

. (4.77)

Proof of Corollary 4.6.6, part 4. Since cp = Θ(p1/2a−p), we have that cp ≤ Cp1/2a−p for

some constant C. Similar to (4.57), we have

λk ≤ 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p1/2a−p (p+ 1)p+
1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.78)

Use the definition in (4.58) and let a = 0, we have

f0(p) =
(p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.79)

Then according to (4.61) and (4.62), for sufficiently large k, we have f0(p) ≤ f0

(
k2

d

)
when

k ≤ p ≤ k2

d
and f0(p) ≤ C3p

− d
2 for some constant C3 when p ≥ k2

d
. Then when k ≤ p ≤ k2

d
,

we have p1/2f0(p) ≤ p1/2f0

(
k2

d

)
≤ C3

(
k2

d

)1/2 (
k2

d

)− d
2
. When p ≥ k2

d
, we have p1/2f0(p) ≤

C3p
1/2p−

d
2 ≤ C3

(
k2

d

)− d
2
+ 1

2
. Overall, for all p ≥ k, we have

p1/2f0(p) ≤ C3

(
k2

d

)− d
2
+ 1

2

. (4.80)
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Then we have

λk ≤ 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p1/2a−pf0(p) (4.81)

≤ 2πd/2
2

d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d
2
+ 1

2 ∑
p≥k

p−k is even

a−p (4.82)

≤ 2πd/2
2

d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d
2
+ 1

2 1

log a
a−(k−1) (4.83)

= O
(
k−d+1a−k

)
. (4.84)

On the other hand, since cp = Θ(p1/2a−p), we have that cp ≥ C ′p1/2a−p for some constant

C ′. Similar to (4.65), we have

λk ≥ 2πd/2
2

d
2 e

d
2C2

1C
′

C2
2

∑
p≥k

p−k is even

p1/2a−p (p+ 1)p+
1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

(4.85)

≥ 2πd/2
2

d
2 e

d
2C2

1C
′

C2
2

k1/2a−k (k + 1)k+
1
2

(k − k + 1)
k−k+1

2 (k + k + 1 + d)
k+k+d

2

(4.86)

= Ω

(
k−d/2+1a−k (k + 1)k

(k + k + 1 + d)k

)
. (4.87)

Since (k + 1)k = kk(1 + 1/k)k = Θ(kk). Similarly, (k + k + 1 + d)k = Θ((2k)k). Then we

have

λk = Ω

(
k−d/2+1a−k (k + 1)k

(k + k + 1 + d)k

)
(4.88)

= Ω

(
k−d/2+1a−kkk

(2k)k

)
(4.89)

= Ω
(
k−d/2+12−ka−k

)
. (4.90)

For the NTK of a two-layer ReLU network with γb > 0, then according to Lemma 4.3.4

we have cp = κp,2 = Θ(p−3/2) . Therefore using Corollary 4.4.7 λk = Θ(k−d−1). Notice here
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that k refers to the frequency, and the number of spherical harmonics of frequency at most

k is Θ(kd). Therefore, for the ℓth largest eigenvalue λℓ we have λℓ = Θ(ℓ−(d+1)/d). This rate

agrees with [BJK19] and [VY21]. For the NTK of a two-layer ReLU network with γb = 0,

the eigenvalues corresponding to the even frequencies are 0, which also agrees with [BJK19].

Corollary 4.4.7 also shows the decay rates of eigenvalues for the NTK of two-layer networks

with Tanh activation and Gaussian activation. We observe that when the coefficients of

the kernel power series decay quickly then the eigenvalues of the kernel also decay quickly.

As a faster decay of the eigenvalues of the kernel implies a smaller RKHS, Corollary 4.4.7

demonstrates that using ReLU results in a larger RKHS relative to using either Tanh or

Gaussian activations. We numerically illustrate Corollary 4.4.7 in Figure 4.4, Section 4.6.5.

4.6.7 Analysis of the Lower Spectrum: Non-uniform Data

The purpose of this section is to prove a formal version of Theorem 4.4.8. In order to prove

this result we first need the following lemma.

Lemma 4.6.27. Let the coefficients (cj)
∞
j=0 with cj ∈ R≥0 for all j ∈ Z≥0 be such that the

series
∑∞

j=0 cjρ
j converges for all ρ ∈ [−1, 1]. Given a data matrix X ∈ Rn×d with ∥xi∥ = 1

for all i ∈ [n], define r := rank(X) ≥ 2 and the gram matrix G := XXT . Consider the

kernel matrix

nK =
∞∑
j=0

cjG
⊙j.

For arbitrary m ∈ Z≥1, let the eigenvalue index k satisfy n ≥ k > rank (Hm), where Hm :=∑m−1
j=0 cjG

⊙j. Then

λk(K) ≤ ∥G⊙m∥
n

∞∑
j=m

cj. (4.91)
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Proof. We start our analysis by considering λk(nK) for some arbitrary k ∈ N≤n. Let

Hm :=
m−1∑
j=0

cjG
⊙j,

Tm :=
∞∑
j=m

cjG
⊙j

be the m-head and m-tail of the Hermite expansion of nK: clearly nK = Hm +Tm for any

m ∈ N. Recall that a constant matrix is symmetric and positive semi-definite, furthermore,

by the Schur product theorem, the Hadamard product of two positive semi-definite matrices

is positive semi-definite. As a result, G⊙j is symmetric and positive semi-definite for all

j ∈ Z≥0 and therefore Hm and Tm are also symmetric positive semi-definite matrices. From

Weyl’s inequality [Wey12, Satz 1] it follows that

nλk(K) ≤ λk(Hm) + λ1(Tm). (4.92)

In order to upper bound λ1(Tm), observe, as Tm is square, symmetric and positive semi-

definite, that λ1(Tm) = ∥Tm∥. Using the non-negativity of the coefficients (cj)
∞
j=0 and the

triangle inequality we have

λ1(Tm) =

∥∥∥∥∥
∞∑
j=m

cjG
⊙j

∥∥∥∥∥ ≤
∞∑
j=m

cj
∥∥G⊙j∥∥ .

By the assumptions of the lemma [G]ii = 1 and therefore [G]jii = 1 for all j ∈ Z≥0. Further-

more, for any pair of positive semi-definite matrices A,B ∈ Rn×n and k ∈ [n]

λ1(A⊙B) ≤ max
i∈[n]

[A]iiλ1(B), (4.93)

[Sch11]. Therefore, as maxi∈[n][G]ii = 1,

∥∥G⊙j∥∥ = λ1(G
⊙j) = λ1(G⊙G⊙(j−1)) ≤ λ1(G

⊙(j−1)) =
∥∥G⊙(j−1)

∥∥
for all j ∈ N. As a result

λ1(Tm) ≤
∥∥G⊙m∥∥ ∞∑

j=m

cj.
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Finally, we now turn our attention to the analysis of λk(Hm). Upper bounding a small

eigenvalue is typically challenging, however, the problem simplifies when and k exceeds

the rank of Hm, as is assumed here, as this trivially implies λk(Hm) = 0. Therefore, for

k > rank(Hm)

λk(K) ≤ ∥Gm∥
n

∞∑
j=m

cj

as claimed.

In order to use Lemma 4.6.27 we require an upper bound on the rank of Hm. To this

end we provide Lemma 4.6.28.

Lemma 4.6.28. Let G ∈ Rn×n be a symmetric, positive semi-definite matrix of rank 2 ≤

r ≤ d. Define Hm ∈ Rn×n as

Hm =
m−1∑
j=0

cjG
⊙j (4.94)

where (cj)
m−1
j=0 is a sequence of real coefficients. Then

rank (Hm) ≤1 + min{r − 1,m− 1}(2e)r−1

+max{0,m− r}
(

2e

r − 1

)r−1

(m− 1)r−1.
(4.95)

Proof. As G is a symmetric and positive semi-definite matrix, its eigenvalues are real and

non-negative and its eigenvectors are orthogonal. Let {vi}ri=1 be a set of orthogonal eigen-

vectors for G and γi the eigenvalue associated with vi ∈ Rn. Then G may be written as a

sum of rank one matrices as follows,

G =
r∑
i=1

γiviv
T
i .

As the Hadamard product is commutative, associative and distributive over addition, for
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any j ∈ Z≥0 G⊙j can also be expressed as a sum of rank 1 matrices,

G⊙j =

(
r∑
i=1

γiviv
T
i

)⊙j

=

(
r∑

i1=1

γi1vi1v
T
i1

)
⊙

(
r∑

i2=1

γi2vi2v
T
i2

)
⊙ · · · ⊙

 r∑
ij=1

γijvijv
T
ij


=

r∑
i1,i2...ij=1

γi1γi2 · · · γir
(
vi1v

T
i1

)
⊙
(
vi2v

T
i2

)
⊙ · · · ⊙

(
vijv

T
ij

)
=

r∑
i1,i2,...,ij=1

γi1γi2 · · · γij
(
vi1 ⊙ vi2 ⊙ · · · ⊙ vij

) (
vi1 ⊙ vi2 ⊙ · · · ⊙ vij

)T
.

Note the fourth equality in the above follows from viv
T
i = vi ⊗ vi and an application of

the mixed-product property of the Hadamard product. As matrix rank is sub-additive, the

rank of G⊙j is less than or equal to the number of distinct rank-one matrix summands. This

quantity in turn is equal to the number of vectors of the form
(
vi1 ⊙ vi2 ⊙ · · · ⊙ vij

)
, where

i1, i2, . . . , ij ∈ [r]. This in turn is equivalent to computing the number of j-combinations with

repetition from r objects. Via a stars and bars argument this is equal to
(
r+j−1
j

)
=
(
r+j−1
r(n)−1

)
.

It therefore follows that

rank(G⊙j) ≤
(
r + j − 1

r − 1

)
≤
(
e(r + j − 1)

r − 1

)r−1

≤ er−1

(
1 +

j

r − 1

)r−1

≤ (2e)r−1

(
δj≤r−1 + δj>r−1

(
j

r − 1

)r−1
)
.

247



The rank of Hm can therefore be bounded via subadditivity of the rank as

rank(Hm) = rank

(
a01n×n +

m−1∑
j=1

cjG
⊙j

)

≤1 +
m−1∑
j=1

rank
(
G⊙j)

≤1 +
m−1∑
j=1

(2e)r−1

(
δj≤r−1 + δj>r−1

(
j

r − 1

)r−1
)

≤1 + min{r − 1,m− 1}(2e)r−1

+max{0,m− r}
(

2e

r − 1

)r−1

(m− 1)r−1.

(4.96)

As our goal here is to characterize the small eigenvalues, then as n grows we need both

k and therefore m to grow as well. As a result we will therefore be operating in the regime

where m > r. To this end we provide the following corollary.

Corollary 4.6.29. Under the same conditions and setup as Lemma 4.6.28 with m ≥ r ≥ 7

then

rank(Hm) < 2mr.

Proof. If r ≥ 7 > 2e+ 1 then r − 1 > 2e. As a result from Lemma 4.6.28

rank(Hm) ≤ 1 + (r − 1)(2e)r−1 + (m− r)

(
2e

r − 1

)r−1

(m− 1)r−1

< r(2e)r−1 + (m− 1)r

< 2mr

as claimed.

Corollary 4.6.29 implies for any k ≥ 2mr, k ≤ n that we can apply Lemma 4.6.27 to

upper bound the size of the kth eigenvalue. Our goal is to upper bound the decay of the

smallest eigenvalue. To this end, and in order to make our bounds as tight as possible, we

248



therefore choose the truncation point m(n) = ⌊(n/2)1/r⌋, note this is the largest truncation

which still satisfies 2m(n)r ≤ n. In order to state the next lemma, we introduce the following

pieces of notation: with L := {ℓ : R≥0 → R≥0} define U : L × Z≥1 → R≥0 as

U(ℓ,m) =

∫ ∞

m−1

ℓ(x)dx.

Lemma 4.6.30. Given a sequence of data points (xi)i∈Z≥1
with xi ∈ Sd for all i ∈ Z≥1,

construct a sequence of row-wise data matrices (Xn)n∈Z≥1
, Xn ∈ Rn×d, with xi corresponding

to the ith row of Xn. The corresponding sequence of gram matrices we denote Gn := XnX
T
n .

Let m(n) := ⌊(n/2)1/r(n)⌋ where r(n) := rank(Xn) and suppose for all sufficiently large n

that m(n) ≥ r(n) ≥ 7. Let the coefficients (cj)
∞
j=0 with cj ∈ R≥0 for all j ∈ Z≥0 be such that

1) the series
∑∞

j=0 cjρ
j converges for all ρ ∈ [−1, 1] and 2) (cj)

∞
j=0 = O(ℓ(j)), where ℓ ∈ L

satisfies U(ℓ,m(n)) < ∞ for all n and is monotonically decreasing. Consider the sequence

of kernel matrices indexed by n and defined as

nKn =
∞∑
j=0

cjG
⊙j
n .

With ν : Z≥1 → Z≥1 suppose
∥∥∥G⊙m(n)

n

∥∥∥ = O(n−ν(n)+1), then

λn(Kn) = O(n−ν(n)U(ℓ,m(n))). (4.97)

Proof. By the assumptions of the Lemma we may apply Lemma 4.6.27 and Corollary 4.6.29,

which results in

λn(Kn) ≤

∥∥∥G⊙m(n)
n

∥∥∥
n

∞∑
j=m(n)

cj = O(n−ν(n))
∞∑

j=m(n)

cj.
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Additionally, as (cj)
∞
j=0 = O(ℓ(j)) then

λn(Kn) = O

n−ν(n)
∞∑

j=m(n)

ℓ(j)


= O

(
n−ν(n)

∫ ∞

m(n)−1

ℓ(x)dx

)
= O

(
n−ν(n)U(ℓ,m(n))

)
as claimed.

Based on Lemma 4.6.27 we provide Theorem 4.6.31, which considers three specific sce-

narios for the decay of the power series coefficients inspired by Lemma 4.3.4.

Theorem 4.6.31. In the same setting, and also under the same assumptions as in Lemma

4.6.30, then

1. if cp = O(p−α) with α > r(n) + 1 for all n ∈ Z≥0 then λn(Kn) = O
(
n−α−1

r(n)

)
,

2. if cp = O(e−α
√
p), then λn(Kn) = O

(
n

1
2r(n) exp

(
−α′n

1
2r(n)

))
for any α′ < α2−1/2r(n),

3. if cp = O(e−αp), then λn(Kn) = O
(
exp

(
−α′n

1
r(n)

))
for any α′ < α2−1/2r(n).

Proof. First, as [Gn]ij ≤ 1 then∥∥G⊙m(n)
∥∥

n
≤ Trace(G⊙m(n))

n
= 1.

Therefore, to recover the three results listed we now apply Lemma 4.6.30 with ν(n) = 0.

First, to prove 1., under the assumption ℓ(x) = x−α with α > 0 then∫ ∞

m(n)−1

x−αdx =
(m(n)− 1)−α+1

α− 1
.

As a result

λn(Kn) = O
(
n−α−1

r(n)

)
.
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To prove ii), under the assumption ℓ(x) = e−α
√
x with α > 0 then∫ ∞

m(n)−1

e−α
√
xdx =

2 exp(−α(
√
m(n)− 1)(α

√
m(n)− 1 + 1)

α2
.

As a result

λn(Kn) = O
(
n

1
2r(n) exp

(
−α′n

1
2r(n)

))
for any α′ < α2−1/2r(n). Finally, to prove iii), under the assumption ℓ(x) = e−αx with α > 0

then ∫ ∞

m(n)−1

e−αxdx =
exp(−α(m(n)− 1)

α
.

Therefore

λn(Kn) = O
(
exp

(
−α′n

1
r(n)

))
again for any α′ < α2−1/2r(n).

Unfortunately, the curse of dimensionality is clearly present in these results due to the

1/r(n) factor in the exponents of n. However, although perhaps somewhat loose we empha-

size that these results are certainly far from trivial. In particular, while trivially we know

that λn(Kn) ≤ Tr(Kn)/n = O(n−1), in contrast, even the weakest result concerning the

power law decay our result is a clear improvement as long as α > r(n) + 1. For the other

settings, i.e., those specified in 2. and 3., our results are significantly stronger.
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[BM22a] Benjamin Bowman and Guido Montúfar. “Implicit Bias of MSE Gradient Opti-
mization in Underparameterized Neural Networks.” In International Conference
on Learning Representations, 2022.

253



[BM22b] Benjamin Bowman and Guido Montufar. “Spectral Bias Outside the Training
Set for Deep Networks in the Kernel Regime.” In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[BR93] Avrim L. Blum and Ronald L. Rivest. Training a 3-node neural network is NP-
complete, pp. 9–28. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[BT04] Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces
in Probability and Statistics. Springer, Boston, MA, 2004.

[BZZ18] Brian Bullins, Cyril Zhang, and Yi Zhang. “Not-So-Random Features.” In In-
ternational Conference on Learning Representations, 2018.

[CD07] Andrea Caponnetto and Ernesto De Vito. “Optimal rates for the regularized
least-squares algorithm.” Foundations of Computational Mathematics, 7(3):331–
368, 2007.

[CFW21] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. “To-
wards Understanding the Spectral Bias of Deep Learning.” In Zhi-Hua Zhou,
editor, Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pp. 2205–2211. International Joint Conferences on Arti-
ficial Intelligence Organization, 8 2021. Main Track.

[CLK21] Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. “General-
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F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[CS09] Youngmin Cho and Lawrence Saul. “Kernel Methods for Deep Learning.” In
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Ad-
vances in Neural Information Processing Systems, volume 22. Curran Associates,
Inc., 2009.

[CX21] Lin Chen and Sheng Xu. “Deep Neural Tangent Kernel and Laplace Kernel Have
the Same RKHS.” In International Conference on Learning Representations,
2021.

[Dav21] Tom Davis. “A General Expression for Hermite Expansions with Applications.”
2021.

254



[DFS16] Amit Daniely, Roy Frostig, and Yoram Singer. “Toward Deeper Understanding
of Neural Networks: The Power of Initialization and a Dual View on Expressiv-
ity.” In Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[DGM20] Yonatan Dukler, Quanquan Gu, and Guido Montúfar. “Optimization Theory
for ReLU Neural Networks Trained with Normalization Layers.” In Hal Daumé
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[PG07] Fernando Pérez and Brian E. Granger. “IPython: a System for Interactive Sci-
entific Computing.” Computing in Science and Engineering, 9(3):21–29, May
2007.

[PGM19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library.” In Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc., 2019.

[Pis89] Gilles Pisier. The Volume of Convex Bodies and Banach Space Geometry. Cam-
bridge Tracts in Mathematics. Cambridge University Press, 1989.

[PLR16] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya
Ganguli. “Exponential expressivity in deep neural networks through transient
chaos.” In Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016.

[Pol63] Boris Polyak. “Gradient methods for the minimisation of functionals.” Ussr
Computational Mathematics and Mathematical Physics, 3:864–878, 12 1963.

[PSG20] Abhishek Panigrahi, Abhishek Shetty, and Navin Goyal. “Effect of Activation
Functions on the Training of Overparametrized Neural Nets.” In International
Conference on Learning Representations, 2020.

[PW17] Jeffrey Pennington and Pratik Worah. “Nonlinear random matrix theory for deep
learning.” In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[PW18] Jeffrey Pennington and Pratik Worah. “The Spectrum of the Fisher Information
Matrix of a Single-Hidden-Layer Neural Network.” In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

262



[RBA19] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred
Hamprecht, Yoshua Bengio, and Aaron Courville. “On the Spectral Bias of Neu-
ral Networks.” In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 5301–5310. PMLR, 09–15 Jun
2019.

[RBV10] Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. “On Learning with
Integral Operators.” Journal of Machine Learning Research, 11(30):905–934,
2010.

[RJK19] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. “The Conver-
gence Rate of Neural Networks for Learned Functions of Different Frequencies.”
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[SY20] Zhao Song and Xin Yang. “Quadratic Suffices for Over-parametrization via Ma-
trix Chernoff Bound.”, 2020. arXiv:1906.03593.

[Tel21] Matus Telgarsky. “Deep learning theory lecture notes.” https://mjt.cs.

illinois.edu/dlt/, 2021. Version: 2021-10-27 v0.0-e7150f2d (alpha).

[TL19] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for Convo-
lutional Neural Networks.” In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR,
09–15 Jun 2019.

[Ver12] Roman Vershynin. “Introduction to the non-asymptotic analysis of random ma-
trices.” In Compressed Sensing, chapter 5. Cambridge University Press, 2012.

264

https://mjt.cs.illinois.edu/dlt/
https://mjt.cs.illinois.edu/dlt/


[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applica-
tions in Data Science. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, 2018.

[VGO20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
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