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Abstract

We investigate how the mixing efficiency in stratified turbulence is affected by the strength
of the stratification. We show that the mixing coefficient I' ~ Fr~2 for weakly stratified
turbulence, where I' = ¢, /¢, and Fr = ¢;/(Nu?) is the turbulent Froude number, taken
as F'r > 1 in our scaling analysis. A series of direct numerical simulations of forced
turbulence with uniform stratification N confirm that I' o« Fr~2 for Fr > 1. In the
simulations the Froude number is then decreased below Fr = 1 and we find ', = 0.51
at F'r =~ 0.3 suggesting efficient mixing despite a stronger vertical stability. At even lower
Fr, there is an approach towards a constant I' of order unity in accordance with the
strongly stratified turbulence theory. We briefly discuss the implications our results may
have on mixing efficiency parametrizations based on the buoyancy Reynolds number.

1 Introduction

Turbulent mixing in the atmosphere and oceans is a key factor to consider when estimating
global energetics. In oceanographic applications, the density perturbation p away from
the background density profile py, and hence defined as p = piot — po, acts as the scalar
field. The corresponding eddy diffusivity is defined as K, = B/N?; this is actually the
eddy diffusivity for the buoyancy field b = —pg/p.er since it is the ratio of the buoyancy
flux B = —(bu.) to the mean background buoyancy gradient N? = dby/dz. The buoyancy
flux can be modelled as B = —(bu,) = K,dby/dz, analogously to how the Reynolds
stresses are typically calculated. We denote volume averaging over the physical domain
by (...) while time averaging over the statistically steady period of a quantity is denoted
by the overbar (...). Note that we mostly consider stratified turbulence in the absence of
a mean flow so we do not use primes for turbulence quantities and simply write them as
u = (Uy, Uy, u,), p and b.

Starting from the eddy diffusivity framework, Osborn (1980) introduced the flux Richard-
son number Ri; = B/(B+e;), which is the ratio of buoyancy flux to turbulence production
and can be thought of as a mixing efficiency. The mixing coefficient is similarly defined
as [' = B/e; related to the eddy diffusivity as K, = T'e;/N?. The kinetic energy dis-
sipation rate is defined as €, = 2v/(S5;;5;;) where S;; is the velocity gradient tensor. A
constant mixing efficiency Ri; = 0.17 was assumed by Osborn (1980) leading to a mix-
ing coeflicient I' = Rif/(1 — Riy) = 0.2, a value which has been used in oceanographic
applications ever since. More recently, Salehipour and Peltier (2015) have suggested to
use the potential energy dissipation rate ¢, instead of the buoyancy flux when calculating
I' because in steady-state stratified turbulence B = ¢, and the irreversible conversion of
available potential energy into background potential energy due to mixing is given by
€p- The potential energy dissipation rate is defined as €, = (D/N?)(Vb - Vb) since the
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available potential energy is E, = (b*)/(2N?) and D is the buoyancy diffusivity. Support
for the eddy diffusivity expression as K, = ¢,/N? was provided by the work of Lindborg
and Brethouwer (2008) who derive an analytical expression for the mean square particle
displacement 1/2(§z2), which increases linearly in time with a constant of proportionality
equal to K,. We therefore stick to these definitions of I' = ¢, /¢, for the mixing coefficient
and Ri; = €,/(e; + €,) for the mixing efficiency.

In general, the mixing efficiency in stratified flows is not constant but varies in a certain
parameter range. Classical parametrizations of mixing have focused on the bulk Richard-
son number Ri,, which is related to the Froude number as Ri, ~ Fr~2. In experiments
of mixing across a density interface the entrainment velocity u, was measured and it was
found that u./u, where u is the turbulent velocity, reaches a constant in the case of weak
stratification, implying that Rif oc¢ Rip(u./u) < Ri, (see Turner (1973)). At the other end
of the spectrum, strong stratification leads to an entrainment velocity u./u Rz’gl in the
experiments by Kato and Philipps (1969). Hence a constant mixing efficiency follows, as
has been confirmed by several more recent strongly stratified turbulence experiments (see
Olsthoorn and Dalziel (2015) and references therein). In the research work of Shih et al.
(2005) a constant mixing coefficient I' &~ 0.2 was found for buoyancy Reynolds numbers in
the range 7 < Re, < 100 in a series of DNS of stratified sheared turbulence but the mixing
coefficient then varied as I' Reb_l/ ? for Re, > 100. Ocean field measurements by Davis

and Moninsmith (2011) have found similar variations of I" o Reb_l/ ? at high Re, > 100.
Atmospheric boundary layer measurements by Lozovatsky and Fernando (2013) have a
similar variation of I' with Re,, albeit at Re, > 10* suggesting a very different bound on
the buoyancy Reynolds number.

In summary, the parameters that seem to affect mixing in stratified turbulence are the
Froude number and the buoyancy Reynolds number. We define these quantities and the
Reynolds number based on the Taylor microscale as (with uj = (u2 + u?)/2),

€k €L 15u%
Fr=-"%_" Rey= - Rey= |
TTNE YT N T e (1)

from which it is clear that Re, = (1/15)Re3 Fr?. These definitions are different from
the classical ones using a horizontal turbulent lengthscale ¢;,. According to the strongly
stratified turbulence theory developed by Billant and Chomaz (2001) and Lindborg (2006)
this can be done since € ~ u} /¢, and €, ~ u} /{}, as a result of equipartition of kinetic
and potential energy. This brings about the prediction that the mixing coefficient I' ~ 1
in strongly stratified turbulence.

The objective of this paper is to determine the dependent parameter affecting I' in strati-
fied turbulent mixing from weakly stratified turbulence to turbulence strongly affected by
the stratification. Is the important physical parameter F'r or Re,? We consider a single-
parameter approach to estimating the mixing efficiency because of the idealized nature
of the problem under scrutiny: homogeneous stratified turbulence in the absence of solid
boundaries or mean shear, and that is statistically stationary. In addition, we neglect the
influence of the Schmidt number S¢ = v/D, which could be important if Sc > 1 as is the
case for salt-stratified water. The Schmidt number was found to have an influence on I"
in the numerical simulations by Shih et al. (2005); Salehipour and Peltier (2015) and in
many other papers.
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2 Scaling Analysis

The case of very small stratification N and of F'r > 1 corresponds to a physical regime
that could be occurring in turbulence generated at great depths in the ocean. In the
limit of weakly stratified turbulence, the horizontal and vertical length scales can be as-
sumed to be equal as can be done for the horizontal and vertical velocity scales and the
turbulence has a single integral lengthscale ¢ and velocity scale u. Under these assump-
tions, the equations of motion simplify to the Navier-Stokes equations, with buoyancy
effects becoming negligible to leading order as shown in our previous scaling analysis
of the problem (see Maffioli et al. (2016)). Here we choose an alternative but entirely
consistent approach by assuming from the start that the problem is governed by passive
scalar advection of buoyancy in a turbulent flow with a mean scalar gradient given by N2.
Turbulent mixing of a passive scalar presents the well-known convective-inertial range
at intermediate wavenumbers k with a Monin-Obukhov spectrum for the scalar variance
Ey(k) ~ <X>e,;1/3 k=5/3 (see Yeung et al. (2005)). Identifying the generic scalar quantity
¢ as the buoyancy b and hence the buoyancy dissipation rate as (x) = N?¢, we can write
the scalar spectrum as:

Ey~ N%e,e, k33 (2)

We consider linearly stratified fluids with constant density gradient and therefore N =
const is assumed throughout. In weakly stratified turbulence we expect the buoyancy
and vertical velocity fields to be well-correlated because both physical quantities should
be concentrated at large scales. Moreover, the buoyancy field has no significant feedback
on the velocity field so it is clear that the vertical kinetic energy spectrum will present the
classical Kolmogorov spectral form E,, (k) ~ ei/ ® k=53, The co-spectrum of buoyancy and
vertical velocity Eg(k) corresponds to the 3-D spectrum of buoyancy flux as a function
of wavenumber k. From our hypotheses it follows that,

Es(k) ~ /Ey(k) B () ~ \/ (N2 e e/ k303) (/3 k=5/3) ~ N el/2 /057503, (3)

from which we obtain the buoyancy flux at wavenumber k as,

B(k) ~ kEp(k) ~ N e/ ¢}/ k723, (4)
The total buoyancy flux B is well approximated by the expression in (4) if we take k ~ 1/¢.
This is because the large-scale contribution of B(k) to the buoyancy flux B is the dominant
one in weakly stratified turbulence. Furthermore, statistical stationarity results in B = ¢,
and so €, ~ (N e,lg/ Ok2/3)2 = N2 e,lﬁ/ % k=4/3. Similarly as for the buoyancy flux, the kinetic
energy can be estimated from the 3-D energy spectrum as u? ~ kE(k) ~ 62/3 k=23 We
finally arrive at the expression for the mixing coefficient in weakly stratified turbulence:

- @ N2 6}1/3 L—4/3 B N2(€i/3 k*2/3)2 N N2 4 B (Nu2>2 e )
- = 2 2 - :
€k €k €5 €x €k

This result means physically that under weak stratification conditions, turbulent flows
have a mixing coefficient that decreases rapidly with increasing Fr. Also, I' o« N? meaning
that the mixing coefficient is linearly proportional to the background buoyancy gradient.
This result is analogous to that obtained when considering Turner’s experiment of a two-
layer system where the mixing efficiency Ri; o< Riy ~ Fr=2
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3 Direct numerical simulations

We have performed DNS of stratified turbulence with uniform N. The equations being
solved in our pseudo-spectral code are the incompressible Navier-Stokes equations with the
Boussinesq approximation. We have included a body force f in the momentum equation
to ensure that the turbulence reaches statistical stationarity. For the simulations at high
Fr, we opted for isotropic forcing while at low F'r we utilize vortical forcing concentrated
in modes with k£, = 0. The Schmidt number in all the DNS simulations was chosen as
Sc = 1. More details of the numerical methods can be found in Maffioli et al. (2016).
As shown in Table 1, the first 5 DNS runs with increasing resolution have a successively
increasing Rey and decreasing F'r to keep Re, = const ~ 103. In the second set of 5
DNS runs the stratification is decreased gradually to obtain Fr > 1; the 10243 resolution
ensures Re, ~ 240 since this value for Re, is a good high value above which stratified
turbulence becomes independent of Rey (see de Bruyn Kops (2015)). The last set of 5
runs goes up to high resolution in order to properly capture the dynamics of strongly
stratified turbulence with low F'r and Re, > 10, a necessary condition to sustain 3-D
turbulent flow (see Bartello and Tobias (2013)).

Table 1: Relevant non-dimensional parameters and type of forcing for DNS runs.

Run Ny =Ny, | N, Fr Rey, Re, | forcing
R1kF2.9 96 96 2.90 1010 42 iso
R1kF1.6 192 192 | 1.64 990 74 iso
R1kF0.9 384 384 | 0.94 980 129 iso
R1kF0.5 768 768 | 0.52 960 229 iso
R1kF0.3 1536 1536 | 0.29 990 423 iso

1024F0.7 1024 1024 | 0.70 | 2340 | 266 iso
1024F'1.6 1024 1024 | 1.58 | 10430 | 250 1so

1024F3.1 1024 1024 | 3.10 | 37370 | 242 1s0
1024F5.9 1024 1024 | 5.86 | 133430 | 241 iso
1024F'12 1024 1024 | 11.97 | 537250 | 237 1s0

R200F0.14 1024 1024 | 0.141 200 390 | vort
R57F0.09 1024 1024 | 0.091 o7 319 | vort
R14F0.04 1024 512 | 0.044 14 324 | vort
R15F0.03 2048 512 | 0.035 15 432 | vort
R17F0.02 4096 1024 | 0.020 17 805 | vort

4 Results

4.1 Variation of mixing coefficient at constantRe,

In the first simulations we keep the buoyancy Reynolds number at Re ~ 1000 and vary
the Froude number F'r. The value chosen for Re, is well within the energetic-regime of
Shih et al. (2005) and so the mixing coefficient is expected be varying as a function of Re,
and should consequently be a constant value in our five DNS runs. As shown in Figure 1
though, we find a significant variation of I' across the runs, which is not due to variations
in Rep, held constant, but is due to a changing Fr. The values of I' span an order of
magnitude as do the values of F'r in the simulations. At Fr = 0.29 we have I' = 0.51, a
high value compared to the often quoted I" = 0.2 value due to Osborn (1980). The plots
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Figure 1: Mixing coefficient against F'r for the five runs from R1kF2.9 to R1kF0.3.

are made taking the time-averaged value for each DNS runs, specifically what is shown is
I' =¢,/¢ and F'r = €/(Nu}), and the same procedure is applied in the next sections.

4.2 Buoyancy flux and mixing at highF'r

We turn to the DNS runs at high F'r and consider the prediction of our scaling analysis
regarding the buoyancy flux spectrum. In Figure 2 the compensated form of Ep(k)
is plotted. The spectra are compensated according to the form given in (3) with time
averaging of the quantities over the steady-state period of the forced simulations. From the
plots it is clear that there is a good collapse of the DNS runs with high F'r > 1 for about a
decade of wavenumbers, 7 < k < 70. On the other hand, the only DNS run with Fr < 1,
run 1024F0.7, deviates significantly from the expected form of Eg(k). Interestingly, it is
also the only spectrum that has a portion with Ep(k) < 0 at high wavenumbers, shown by
the dotted line in Figure 2. This physically means that there is an exchange of potential
energy back to kinetic energy at the small scales of the turbulence. We observed this
phenomenon in all simulations with Fr < 1 and it has already been reported in other
studies of strongly stratified turbulence such as in Augier et al. (2015). The good collapse
of compensated Ep(k) spectra gives support to the theoretical predictions of the scaling
analysis. It should be noted that the full expression in (3) contains a k=3 dependency
of Ep(k) whereas the compensated spectra shown have a limited inertial range without a
clear plateau, which could be due to the moderate Re, of this series of DNS runs.

4.3 Mixing coefficient across the DNS dataset

We consider all runs with Re, > 200, for which we plot I' as a function of F'r in Figure 3.
If we focus on the high-Fr behaviour we see that I' o Fr=2 for F'r > 1, which confirms
the prediction of the scaling analysis. At the other side of the plot in Figure 3 at very low
Fr < 0.04 the mixing coefficient seems to be reaching a constant value around I" = 0.33.
This provides considerable support to the conjecture that in strongly stratified turbulence
[' = O(1). All in all, the results show that the physical parameter affecting mixing
coefficient and mixing efficiency is the Froude number F'r.

5 Discussion and conclusions

We have presented results from direct numerical simulations of constant-N forced strati-
fied turbulence covering almost 3 orders of magnitude in F'r and a big range of Re,. The
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Figure 2: Buoyancy flux spectra in compensated form for the five DNS runs from 1024F0.7 to 1024F12.
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Figure 3: Mixing coefficient as a function of Froude number (log-log plot shown in inset).

simulations at high Re, show a non-monotonic behaviour of the mixing coefficient as a
function of F'r with a peak in I' at F'r = 0.3 where I' = 0.51. This value is significantly
larger than the I' = 0.2 value that is commonly used in oceanographic applications. The
mixing coefficient then drops to values around I' = 0.33, which are still high values due to
the presence of a strong density differences at low Fr, which high-Re;, turbulence is able
to mix efficiently. The results show that using I' = const may not be an accurate approach
for estimating mixing rates and that it is important to consider local properties of ocean
turbulence before deciding on a suitable value for I' to use. Our results point towards the
Froude number as the main physical parameter influencing I' in homogeneous stratified
turbulence. This could provide a new way of interpreting recent parametrizations and
field measurements of ocean mixing using the buoyancy Reynolds number.
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