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How could a rational analysis model explain? 
 

Samuli Reijula (samuli.reijula@helsinki.fi) 
TINT / Social and Moral Philosophy 

PO BOX 24, 00014 University of Helsinki, Finland  
 

Abstract 

Rational analysis is an influential but contested account of how 
probabilistic modeling can be used to construct non-
mechanistic but self-standing explanatory models of the mind. 
In this paper, I disentangle and assess several possible 
explanatory contributions which could be attributed to rational 
analysis. Although existing models suffer from evidential 
problems that question their explanatory power, I argue that 
rational analysis modeling can complement mechanistic 
theorizing by providing models of environmental affordances.  

Keywords: probabilistic modeling; rational analysis; 
scientific explanation; mechanism; affordance 

1. Introduction 
During the past two decades, probabilistic modeling has 
become one of the most visible strands of cognitive modeling 
alongside connectionism, dynamical systems, and rule-based 
approaches. Curiously, against the general trend in the 
psychological sciences where theorizing is increasingly 
anchored in neuroscience findings, probabilistic modeling of 
higher cognition has been a characteristically top-down 
endeavor. Without making any substantial commitments 
about the underlying cognitive mechanisms, probabilistic 
modeling has been applied to complex aspects of human 
cognition, which still largely remain beyond the reach of 
mechanistic research methods. Models of human memory, 
categorization, causal learning, concept learning, and 
conditional inference, to mention a few applications, often 
show an impressive fit to empirical data, and the novel 
analyses of cognitive capacities provided by the models 
appear to have shed new light on the nature of the studied 
phenomena. 

However, how does that shedding light actually occur –
how do such computational probabilistic models explain? 
Although probabilistic modeling, in principle, does not rely 
on any particular method of explanation (and not all models 
aim to be explanatory), modelers often refer to the idea of 
rational analysis as the account of how and why their models 
help us understand the mind (Anderson 1990; Oaksford & 
Chater 2007). The striking claim made by rational analysis 
(RA) modelers is that by treating higher cognitive capacities 
as forms of inductive inference, we can predict behavior, and 
explain a lot about human cognition without making any 
assumptions about the underlying representations and 
processes. This agnosticism about implementation is 
typically justified by making reference to a rationality 
assumption: We know that human agents tend to be well-

                                                             
1 To be clear, probabilistic models are also used for purposes other 

than explanation (e.g., prediction, hypothesis generation). This 
paper, however, only examines their explanatory import. 

adapted to their environment, and hence a careful analysis of 
the cognitive task encountered by the mind, coupled with an 
assumption of the optimality of human behavior in the task, 
results in a putatively powerful methodology of prediction 
and explanation.  

However, it is a widely-held view in the philosophy of 
science that explanations, also in the cognitive sciences, 
should track causal mechanisms, and the way that RA 
purports to sidestep the evidential and explanatory problems 
arising from the causal complexity of cognition has given rise 
to a strongly polarized debate (see, e.g.,  Jones & Love 2011). 
On the one hand, the way that the new mathematical methods 
in probabilistic modeling can capture the interplay of 
structure and learning in human thought has led to the 
emergence of an exciting research paradigm. On the other 
hand, the proponents of non-mechanistic (or even non-
causal) explanation need to show when and how it is that such 
models genuinely explain rather than only redescribe or 
merely formally unify various phenomena (see Colombo & 
Hartmann 2017). Failing to do that, rational analysis could 
simply be seen as the last breath of the autonomist dream of 
studying the mind independently from the brain.  

The goal of this paper is to advance the debate by 
disentangling various explanatory contributions which can be 
attributed to RA models. By relying on the influential 
contrastive-counterfactual account of explanation, I 
distinguish between three possible explanatory contributions: 
Uncovering (a) constitutive dependencies in cognitive 
systems (i.e. dependencies between parts and wholes), (b) 
environment-behavior dependencies, and (c) environment–
optimal behavior dependencies.1 I argue that often the option 
(c) best describes the nature of the new understanding 
provided by RA models: In many cases, RA models should 
be interpreted as being explanatory not of human behavior as 
such, but of environmental affordances. Consequently, well 
conducted modeling of environmental affordances can 
complement mechanistic theorizing by providing resources 
for understanding the possible space of behavior of agents.  

2. Probabilistic modeling and rational analysis 

2.1 Procedure of rational analysis  
The idea of rational analysis modeling dates back to John 
Anderson’s work on human memory and categorization in 
The Adaptive Character of Thought (1990). Having already 
worked on his ACT* cognitive architecture, the new 
methodology put forward in the book reflected Anderson’s 
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increasing worries that the research methods of the time could 
not really uncover cognitive mechanisms. Lacking a clear 
picture of what it is that cognitive mechanisms do (i.e. what 
the psychological explananda are), the available evidence of 
cognitive processes and their neural implementation was 
insufficient to uncover the mechanistic architecture of the 
human mind (Anderson 1990, pp.23–26). Compared to 
bottom-up research strategies, rational analysis begins from 
the other end: 

[…] We can understand a lot about human cognition 
without considering in detail what is inside the human 
head. Rather, we can look in detail at what is outside the 
human head and try to determine what would be optimal 
behavior given the structure of the environment and the 
goals of the human. (Anderson 1990, p.3) 

According to Anderson, careful mathematical modeling of 
the environment and task structure combined with an 
assumption about the optimality of human behavior leads to 
a new self-standing research strategy for understanding the 
mind: “As this book is evidence, a rational analysis can stand 
on its own without any architectural theory" (ibid.). By 
providing a precise model of what the mind does, rational 
analysis can constrain the search space for cognitive 
mechanisms, and, putatively, put the scientific study of the 
mind on a firm foundation.  

This view of the role of computational modeling 
immediately brings to mind Marr’s (1982) account of multi-
level theorizing. However, whereas Marr provides no 
systematic account of how computational-level theories are 
to be constructed, RA modeling has predominantly 
proceeded according to the six-step cycle proposed by 
Anderson (1990, p.29):  

1. Specify precisely the goals of the cognitive system 
2. Develop a formal model of the environment to which the 

system is adapted 
3. Make minimal assumptions about computational 

limitations 
4. Derive the optimal behavior function, given items  

1 through 3  
5. Examine the empirical evidence to see whether the 

predictions of the behavior function are confirmed  
6. Repeat, iteratively refining the theory 

These steps embody an account of how a large part of 
probabilistic cognitive modeling is done. However, two 
further assumptions of RA should be made explicit. First, the 
derivation of optimal behavior in steps 2-4 typically employs 
probability calculus (not logic) as the normative baseline 
theory of rational behavior. Secondly, the link between model 
predictions (step 4) and observed behavior of humans (step 
5) is formed by an assumption about the optimality of the 
observed behavior (see quoted passage above).  

                                                             
2 In Oaksford & Chater 2007, P(q|p) was set to 0.9. See ibid. for 

the underlying account of conditional inference and for the 
mathematical details. 

Below I illustrate this process with an example. However, 
a comment on the status of the approach in cognitive science 
is in place: Obviously, not all probabilistic modelers endorse 
the rational analysis framework (see Brighton & Gigerenzer 
2008; Danks 2015; Frank 2013). Focusing on RA is useful 
for two reasons, however. The approach is undeniably 
influential, and its core commitments have been endorsed by 
a large group of well-known modelers (e.g., Anderson 1990; 
Oaksford & Chater 1994; Griffiths & Tenenbaum 2009). A 
further advantage of focusing on RA has to do with the fact 
that often the theoretical commitments of mathematical 
modelers can be hard to pin down. In some cases, the 
ambiguities are surely due to the modelers themselves not 
being clear about where their commitments (about how to 
understand explanatoriness, optimality, etc.) lie. Rational 
analysis is a clear account of the conceptual foundations of 
probabilistic cognitive modeling, and provides a starting 
point, or at least a foil, for explicating such commitments. 

To illustrate the rational analysis process, I now briefly 
introduce Mike Oaksford and Nick Chater’s (1994, 2007) 
analysis of the Wason selection task. 

2.2 The information gain model  
Wason selection task is one of the most famous laboratory 
experiments discussed in the literature on human rationality. 
In the original form of the task, participants are given four 
cards, each of which has a letter on one side and a number on 
the other. The participants’ task is to determine whether the 
rule “If there is a vowel on one side of the card (p), then there 
is an even number on the other side (q)” holds. More 
precisely, they are asked to select those cards which must be 
turned over to discover whether the rule is true or false. The 
famous finding from the task and its several replications is 
that only a small minority (less than 10%) select the correct 
cards (vowel, odd number) corresponding to the falsifying 
instance. That is, judged in the light of logic, most 
participants fail to perform in a rational way.  

Oaksford and Chater (O&C) challenge the irrationality 
claim by arguing that logic-based theories of inference and 
rationality misrepresent the participants’ behavior in the task. 
O&C’s own information gain model suggests that people’s 
apparently irrational way to test a hypothesis should actually 
be seen as optimal strategy for uncertainty reduction. The gist 
of O&C’s reinterpretation is that instead of engaging in 
deductive reasoning, participants interpret the task as an 
inductive one. They do not try to falsify the rule, but instead 
they try to determine which of two hypotheses holds:  

a) Independence model, MI: P(q|p) = P(q) or 
b) Dependence model, MD: P(q|p) is high, higher than P(q).2 

Being initially equally uncertain about both hypotheses, 
participants aim to reduce this uncertainty as much as 
possible by turning as few cards as possible.  
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The rational analysis proposed by O&C relies on three core 
principles:  

1) Higher cognition can be modeled as probabilistic 
(Bayesian) computation.  

2) The likelihoods and prior probabilities required by the 
model can be acquired from the analysis of the 
environment structure. 

3) Behavior of human agents constitutes an optimal response 
to the task.  

The model is constructed roughly as follows. To formalize 
the idea of uncertainty reduction, O&C adopt the optimal data 
selection paradigm, and interpret uncertainty reduction as 
optimizing expected information gain. Information gain 
𝐼"(𝐷) from turning over a card (D) is defined as	𝐼 𝑀(|𝐷 −
	𝐼 𝑀(  where the Shannon information3 𝐼(𝑀() can be derived 
from the probabilities of the hypotheses before and after 
observing data, 𝑃(𝑀() and 𝑃(𝑀(|𝐷). The required posteriors 
can be obtained by the Bayes’ rule from the likelihoods 
𝑃(𝐷|𝑀() and the prior probabilities of the hypotheses. 
Reflecting initial ignorance, the priors were set to 0.5 and 
hence the rest of the crucial model specification is built into 
the likelihoods, which reflect the nature of the four-card task. 
Oaksford and Chater (1994) show in detail how the required 
likelihoods can be read off the contingency tables describing 
the two hypotheses. 

From these derivations, it follows that the base rates of p 
and q have a central role in determining which behavior is 
optimal. They describe how frequently positive instances of 
the antecedent and consequent of the rule appear in the 
environment. Qualitatively, the expected information gain 
from each of the four cards turns out to depend on the base 
rates P(p) and P(q) in the following way: 

P(q) is small  à p card is informative  
P(p) is large  à not-q card is informative 
P(p) and P(q) are small  à q card is informative 
   (not-p card is not informative) 

How should these base rates, then, be determined? Instead of 
attempting to somehow measure them in relevant 
environments for different kinds of rules, O&C cite various 
intuitively plausible justifications for their rarity assumption: 
Relying on the observation that categories in language cut the 
world quite finely, and that properties that figure in causal 
relations tend to be rare, the assumption states that, generally, 
P(p) and P(q) are small in most situations. Under rarity, O&C 
conclude, the q card is more informative than the not-q card. 
Hence, the model suggests that the highest expected 
information gain is achieved by turning over the p and q 
cards, exactly as the majority of the participants do. In fact, 
with P(p)=0.22, P(q)=0.27, the model shows a very good fit 
to experimental data from the Wason task. Hence, by 
changing the normative model of rational behavior, O&C 
were able to explain away irrationality, and to show that 

                                                             
3 Uncertainty 𝐼 𝑀(  given n mutually exclusive and exhaustive 

hypotheses, is – 𝑃 𝑀( log0 𝑃 𝑀(
1
(23 .  

participants’ behavior in experiments is actually close to 
optimal. 

The model has received critical attention in the literature 
(see Oaksford & Chater 2009), but it serves our current 
purposes well. The model specification and the modeling 
assumptions are conceptually on a par with those in more 
complex Bayesian models: The complexity often pertains to 
the number of variables involved, the structure and 
generation of the hypothesis space, and in many cases 
advanced numerical methods are needed for solving the 
model. These mathematical sources of complexity do not, 
however, change the fundamental conceptual architecture of 
a model. What is common to all RA models is that none of 
their main components (hypothesis space, likelihood 
function, priors) are interpreted in a psychologically realistic 
way as mental representations (Jones & Love 2011). Instead, 
they stand directly for properties of the environment. 
Furthermore, empirical data about the properties of human 
cognition is not fed into the model specification to calibrate 
or to constrain the model. Instead, behavioral data enters only 
in step 5 of RA (see above) as a means for testing model 
predictions. In this sense, the information gain model is an 
illuminating example of the theoretical and conceptual 
assumptions made in rational analysis modeling. 

3. What rational analysis models fail to explain  
There is no consensus in philosophy (or in the sciences) about 
what scientific explanation is, or what makes a theory 
explanatory. However, a shared starting point for many 
accounts of scientific explanation has been to distinguish 
explanation from other epistemic activities (e.g., description 
and prediction) by pointing out that explanations offer 
information of a specific kind. Explanations show how or why 
something happened or obtains. According to an influential 
approach (Woodward 2013), the knowledge that allows one 
to answer such questions concerns change-relating 
counterfactual dependencies between the relata in the 
explanation, the explanans and the explanandum. That is, 
explanations show how (the state of) some things depend on 
(the state of) other things.  

This contrastive-counterfactual account of explanation 
suggests that explanatory information has generally the 
following form: 

{CC} y[y’] because of x [x’] (variable Y takes the value y 
instead of y’ because X has the value x instead of x’) 

According to the contrastive-counterfactual account, being 
able to explain means that one is able to correctly answer 
what-if-things-were-different questions, i.e. questions about 
how changes in explanantia variables influence the state of 
the explanandum variable. In addition to being a sufficiently 
general account of explanation, the contrastive-
counterfactual account suits the purposes of this article well, 
because it does not necessarily tie the notion of explanation 
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to that of causation. That is, although the ‘because’ in {CC} 
is typically understood as referring to a causal dependency, 
the account does not rule out the possibility of there being 
also non-causal explanations (Woodward 2013; Pincock 
2015; Rice 2015): If a suitable analysis of invariant 
dependency in non-causal contexts (e.g., for mathematical 
dependencies) can be found, the contrastive-counterfactual 
account can be applied to non-causal explanations as well. 
Hence, the account of explanation casts the net wide enough 
to give RA models a fair chance of being explanatory. 

A further advantage of treating explanations as answers to 
questions is that it allows us to sharpen the explananda, i.e. 
to make more precise the possible explanatory claims arising 
from RA models. I suggest that there are at least three 
different kinds of objective dependencies that RA models 
could be said to track: (1) constitutive dependencies between 
parts and wholes, (2) environment-behavior dependencies, 
and (3) environment–optimal-behavior dependencies. In the 
rest of this section, I argue that often RA models do not have 
genuine explanatory import with respect to the two first kinds 
of dependencies. The more promising third option is 
discussed in section 4. 

3.1 Constitutive what-ifs  
The notion of mechanism has acquired a central position in 
the philosophical debates on scientific explanation. A clear 
expression of the mechanistic viewpoint has recently been 
given in the model-to-mechanism mapping (3M) requirement 
by Kaplan and Craver (2011). According to the requirement, 
dynamical and mathematical models in systems- and 
cognitive neuroscience can be explanatory only if there is a 
mapping between elements in the model and elements in the 
mechanism for the phenomenon. As the example discussed 
above suggests, rational analysis models provide no such 
mapping. They are agnostic about algorithmic and 
implementation level details, and intentionally so. They 
clearly do not track constitutive dependencies. Does this 
mean they cannot be explanatory? 

As Kaplan and Craver themselves admit, their argument 
ultimately relies on shared norms about explanatoriness in the 
neuroscience community, and their account of explanation as 
uncovering multi-level mechanisms reflects these norms. If 
such norms do not hold among probabilistic cognitive 
modelers, it is not obvious why they, based on this argument 
alone, should abide by the 3M requirement. 

The contrastive-counterfactual account suggests a more 
positive reply to Kaplan and Craver’s argument: RA models 
obviously do not provide information about constitutive and 
causal dependencies in multi-level mechanisms, but this does 
not rule out the possibility of them tracking some other kinds 
of objective dependencies, for example, those holding 
between relata described in purely computational-level 
terms. Furthermore, a proponent of RA need not (and should 
not) claim that adding mechanistic detail never improves a 
computational explanation. To defend the explanatoriness of 
RA models, a far weaker claim suffices, one stating that it is 
possible to learn about objective explanatory dependencies 

without always relying on information about cognitive 
mechanisms. 

3.2 Environment–behavior what-ifs  
A second kind of explanatory question answered by an RA 
model could be: ”How would the behavior of the cognizer 
change when the cognitive task changes in some particular 
way?” That is, the model could uncover objective 
dependencies between properties of the environment and the 
behavior of cognizers. For example, O&C’s model can be 
used to derive predictions about what the behavior of the 
participants in the Wason task would be, were P(p) and P(q) 
to take some range of values. 

It is here that the optimality assumption of RA becomes 
crucial. To predict how human behavior would change in 
response to changes in the task, without knowing anything 
about the algorithms and processes producing the behavior, 
RA relies on the assumption that humans are well-adapted to 
their environments: If we assume that human behavior is 
close to optimal across a large variety of environments, the 
predictions derived from the RA model (step 4 of the RA 
procedure) should in fact apply to that behavior. Optimality 
forms the link between the normative theory and observed 
behavior. 

Given that human (ir)rationality has been the topic of a 
longstanding debate in philosophy and psychology, it is not 
surprising that the optimality assumption has drawn a lot of 
criticism (Jones & Love 2011). Although proponents of RA 
are correct in arguing that some degree of rationality of target 
behavior is required for us to even perceive it as intentional 
action, such modest levels of rationality hardly license the 
strong optimality assumptions of RA models. Neither do 
evolutionary arguments provide support for strong optimality 
claims: Natural selection is a source of design and 
adaptedness, but not necessarily of globally optimal solutions 
– merely a local comparative advantage is sufficient for 
evolutionary solutions to survive.  

Being aware of these problems, proponents of RA have 
avoided evolutionary defenses of the optimality assumption. 
Instead, they often justify optimality by relying on analogies 
to behavioral ecology and economics, where similar 
assumptions are commonly made (Chater et al. 2003). 
However, such analogies break down due to a crucial 
dissimilarity between these fields. Unlike in cognitive 
science, both in biology and economics the rationality claims 
typically concern aggregate behavior, not that of individual 
agents. Hence, I do not see how appealing to economics or 
biology could be a viable way to justify optimality 
assumptions in RA modeling.  

These problems with the general defenses of the optimality 
assumption suggest that perhaps optimality should be 
examined more locally. Now, what kind of evidence should 
be obtained to justify the optimality claim in the case of a 
particular cognitive task? It seems that to support a claim 
about there being an objective dependency between 
environment and behavior, we should gather data about 
human behavior in a task across a range of parameter values 
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describing various different environmental states. In other 
words, if human behavior fits the predictions of the model 
across a range of conditions, that would appear to be rather 
strong evidence of optimal performance.  

However, the existing RA models rarely make use of such 
cross-environmental data. First of all, many models do not 
rely on any actual measurements of environment parameters. 
Instead, they use plausible-sounding assumptions or 
analogies. For example, Anderson (1990, ch. 2) relied on data 
about library borrowings to model usage of memory 
structures, and Griffiths et al. (2007) use Google PageRank 
to predict fluency of recall. Models devoid of good quality 
empirical data should be considered as toy models (at best), 
incapable of uncovering the actual properties of cognitive 
environments. Furthermore, Marcus and Davis (2013, table 
1) suggest that Bayesian modelers have been selective in 
choosing the results that they report from experimental tasks, 
only reporting results where human behavior follows the 
model predictions and ignoring cases where behavior is not 
optimal.4  

That said, in the large literature on the information gain 
model, predictions from the model have been tested against 
human performance under different base rates and different 
framings of the task (e.g., descriptive vs. deontic; Oaksford 
& Chater 2007, Ch.6). Although the empirical findings 
remain inconclusive, such systematic variation of the task 
parameters should be used to produce evidence of a robust 
explanatory environment-behavior dependency.5 

4. Rational analysis and the logic of the 
situation  

Finally, let us examine the epistemic value of an RA model if 
we drop the optimality assumption. Assume that we have a 
model with a (i) well-specified task structure, (ii) parameter 
values based on measurements of the environment, and (iii) 
an empirically informed account of computational costs and 
cognitive limitations. What such a model could do is it could 
link combinations of parameter values to best possible 
behavioral choices in those situations. Is this not a kind of 
objective change-relating dependency? However, consider 
what the relata of such a dependency are. The model tells 
what the optimal behavior would be, given a particular 
combination of environmental conditions and computational 
limitations. Such counterfactuals do not say anything about 
actual human behavior. Instead, they can be seen as 
increasing our understanding of the environmental 
affordance, or, the logic of the situation (Popper 1963).6  

What mathematical models of affordances (of the 
opportunities that the environment offers for the agent) can 
help us understand is the possible space of action for 
cognitive agents. Models of affordances show what a 
hypothetical rational agent would do in different situations. 

                                                             
4 See Goodman et al. (2015) for the modelers’ response. 
5 See Griffiths & Tenenbaum (2006) for an empirical study that 

attempts to directly test the optimality assumption. 

For what kind of purposes could such information be useful? 
First, were we to design artificial cognitive systems with a 
particular cognitive task in mind, these systems should 
approximate the optimal behavior specified by the model. For 
example, in the selection task, if we are interested in reducing 
our uncertainty, O&C’s model tells us something non-trivial, 
i.e. which information sources to examine given the base 
rates of p and q.  

Secondly, as in economics, rational models can obviously 
act as normative baselines to which human behavior can be 
compared. As Sloman & Fehrbach (2008) argue, often it is 
just as interesting to discover that behavior does not conform 
to the rational norm as to see that it does. Finding out when 
and how complex systems malfunction is often an efficient 
way to learn about the underlying processes. 

However, in neither one of these cases are RA models used 
to directly explain human behavior. Instead, the model 
functions as an inferential aid which helps to chart the 
possible space of action for agents, when faced with a 
particular task. Herein lies perhaps the hardest evidential 
problem faced by rational analysis. How do we know what 
the mind really does in some situation; where do the 
functional hypotheses in step 1 of RA come from? For 
example, how would O&C defend their Bayesian construal 
of the selection task against an adamant falsificationist? The 
currently available empirical evidence can hardly decide the 
issue: Where O&C see optimal behavior, the falsificationist 
sees well-known inferential blunders. Marcus and Davis 
(2013) have argued that similar problems of model selection 
plague several other RA models as well.  

The difficulty seems to come down to the fact that the 
cognitive tasks and the affordances available to an organism 
depend on its “life space” – not the physically objective world 
in its totality, but reality filtered through the organism’s 
needs, drives and perceptual apparatus. Therefore, we should 
not think that the researcher’s intuitions are necessarily a 
reliable guide to what the tasks faced by different aspects of 
the human cognition really are. Ad-hocness in task 
specification, in turn, raises serious worries about the 
relevance of RA modeling: Constructing detailed 
mathematical models of potential affordances is of little 
interest unless such affordances can be shown to be ones 
actually offering themselves to the human mind.  

This worry suggests that the six-step rational analysis 
modeling cycle introduced in section 2.1 should not proceed 
independently from knowledge originating from mechanistic 
research: As both the connectionist rivals of RA and 
proponents of multi-level mechanistic explanation have 
argued, functional hypotheses (step 1 of RA) in cognitive 
science must be formulated in an iterative process between 
bottom-up and top-down research strategies (see McClelland 
et al. 2010; Bechtel & Richardson 2010). In particular, 
knowledge of perceptual capacities and embodiment 

6 As an anonymous referee pointed out, also the dynamical 
models used in ecological psychology are often understood as 
formalizations of affordances. This calls for a systematic 
comparison between the two modeling paradigms. 
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(informing step 2), as well as of the computational constraints 
of organisms (step 3) mostly originate from the bottom-up 
research on the mind-brain, and this knowledge should be 
allowed to constrain RA models. In this sense, Anderson’s 
and O&C’s claims about the self-standing explanatory role of 
RA are not vindicated by my analysis.  

However, neither can bottom-up research strategies stand 
on their own, or at least they fail to reach high enough. The 
discussions on mechanistic explanation often have a 
reductionist bias, and understanding the environments within 
which cognitive mechanisms function has not received 
sufficient attention. Here RA models can complement 
mechanistic theories of cognition by providing precise 
mathematical models of the task and the environment. For 
example, as Chater et al. (2003) point out, a correctly 
formulated rational analysis can show why it is that some 
simple heuristic can be successful in solving a 
computationally complex task. 

5. Conclusions  
I have argued that given a sufficiently broad account of 
scientific explanation, there are several possible ways in 
which probabilistic modeling could increase our 
understanding of the mind. However, the strictly 
computational-level approach embodied in the six-step 
formula of rational analysis has led to theorizing which often 
fails to reliably uncover genuine explanatory dependencies. 
The shortcomings of RA are evidential in nature: The data, 
and the way it is used in model construction, often cannot 
support the counterfactual inferences needed explaining 
human behavior. 

My new proposal about the epistemic role of RA models is 
that they can be understood as models of environmental 
affordances. Interpreted in this way, the models do not 
actually provide information about the mind works, or even 
hypotheses about actual cognitive functions (cf. Marr 1982; 
Zednik & Jäkel 2014). Instead, they help to chart the possible 
cognitive space of action for an organism. The nature of the 
explanatory contribution of such information is best worked 
out as a part of a non-reductionist mechanistic research 
programme. 
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