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Linguistic disparities 
in cross‑language automatic 
speech recognition transfer 
from Arabic to Tashlhiyt
Georgia Zellou 1* & Mohamed Lahrouchi 2

Tashlhiyt is a low-resource language with respect to acoustic databases, language corpora, 
and speech technology tools, such as Automatic Speech Recognition (ASR) systems. This study 
investigates whether a method of cross-language re-use of ASR is viable for Tashlhiyt from an existing 
commercially-available system built for Arabic. The source and target language in this case have 
similar phonological inventories, but Tashlhiyt permits typologically rare phonological patterns, 
including vowelless words, while Arabic does not. We find systematic disparities in ASR transfer 
performance (measured as word error rate (WER) and Levenshtein distance) for Tashlhiyt across word 
forms and speaking style variation. Overall, performance was worse for casual speaking modes across 
the board. In clear speech, performance was lower for vowelless than for voweled words. These results 
highlight systematic speaking mode- and phonotactic-disparities in cross-language ASR transfer. 
They also indicate that linguistically-informed approaches to ASR re-use can provide more effective 
ways to adapt existing speech technology tools for low resource languages, especially when they 
contain typologically rare structures. The study also speaks to issues of linguistic disparities in ASR 
and speech technology more broadly. It can also contribute to understanding the extent to which 
machines are similar to, or different from, humans in mapping the acoustic signal to discrete linguistic 
representations.

The huge rise and fast-paced advancement of speech technology—computational systems that understand and 
generate spoken language—allows for millions of people to communicate with devices using speech to perform 
a range of tasks (i.e., dictate text messages, seek information using voice searches, play games or music, etc.)1,2. 
Speech-enabled devices can also be used for a wide range of education and healthcare applications, such as lan-
guage translation3, language learning4,5, and “emergency media” technologies that connect users to emergency 
service providers in the case of a crisis6.

However, there are asymmetries in who has access to speech technology. Currently, there are over 7,000 lan-
guages spoken in the world7, but speech technology is available in only approximately 100 languages8. There is a 
bias in speech technology development for languages that have large digital resources, such as acoustic databases, 
lexicons and pronunciation dictionaries, and transcribed corpora9. Low-resource languages, like Tashlhiyt (an 
Amazigh language of Southern Morocco), are disadvantaged for speech technologies, such as Automatic Speech 
Recognition (ASR), which provide users with a range of applications for healthcare, education, and other domains 
where ASR is valuable. Even for languages that have commercially available ASR systems, there are disparities 
in how well they perform across dialects and varieties10–12. Access to ASR for more languages and varieties is 
beneficial to language communities all around the world by providing more equitable access to technology.

One approach to addressing the gaps in availability of speech technology is to re-use an existing acoustic 
model and ASR system developed for a high-resource language (the “source” language) that is phonologically 
similar to the “target” low-resource language without any kind of adaptation13. Prasad et al. argue that if two lan-
guages are similar enough in terms of their phonological inventories, the acoustic model of the source language 
could be applied to the low-resource target language without any modifications. They demonstrate this approach 
using Hindi as the source language and Marathi and Gujarati as the target languages and report a less than 20% 
word error rate (WER). Researchers have applied this technique for re-using ASR systems for other target and 
source languages (e.g.,14 for Tigrinya as target language using Amharic as source language;15 and16 use a variety 
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of source and target languages, including Bulgarian and Czech with varying success). In the current study, we 
apply the cross-language ASR transfer method to Tashlhiyt, which is under-resourced with respect to speech 
technology, using Arabic as the source language.

In addition to this goal of determining whether cross-language re-use of ASR for Tashlhiyt is a viable solution, 
we are interested in exploring the linguistic, phonological, and phonetic factors that might influence the success 
of this approach. While much of the work in this area is aimed at understanding the broad practical challenges 
with this approach, examining systematic disparities in recognition of different phonological and phonetic 
forms of words within the target language can lead to more theoretically-guided and effective cross-language 
ASR transfer practices. In particular, the current study focuses on two types of systematic ways in which speech 
patterns vary across and within languages: phonotactic variation (the allowance of certain sound sequences in 
the words of a language) and speaking style variation (talking clearly vs. talking casually). Human listeners with 
different native language backgrounds show difficulty adapting to phonotactic patterns that are not allowed in 
their first language17–19. Do ASR systems also show “native” (i.e., source) language phonotactic biases when adapt-
ing to a target language? This is a gap in our understanding of the parallels and differences across machine and 
human cross-language perception and can identify major disparities that could arise during transfer of any kind.

In this study, we specifically focus on Tashlhiyt, which is well-known in the linguistics literature for hav-
ing typologically rare phonological patterns. Tashlhiyt permits many words that contain sequences of only 
consonants—vowelless words (e.g., zdm ‘to collect wood’; See Supplementary Materials for our wordlist)20–24. A 
fundamental observation is that certain sequences of speech sounds are favored, and others dispreferred, in the 
forms of words found cross-linguistically. Across languages of the world, there is an overwhelming preference 
for words to contain a vowel. One view is that vowelless words are dispreferred because they might be harder 
for listeners to hear, since a lack of vowels means less robust acoustic cues in the speech signal. Thus, it has 
been argued that observed cross-linguistic phonological tendencies are the result of auditory properties of the 
speech signal or perceptual processing mechanisms25,26. Do the same biases apply to an ASR system? It might 
be predicted that since ASR systems are trained to detect variations in spectral amplitude when identifying the 
signal27, vowelless words will be more difficult for speech recognition systems since they contain the smallest 
differences in acoustic modulations across segments, compared to words that have vowels which contain large 
acoustic perturbations28,29. Understanding the role of word form variation on ASR recognition is a major area 
of work with both scientific and commercial application27. Since Tashlhiyt has unusual phonological patterns, 
the current study can enhance our understanding of how ASR handles even the rarest cross-linguistic variation.

Target and source languages: Tashlhiyt and Arabic
There is currently no commercially available speech recognition technology system available for Tashlhiyt. Some 
researchers have worked on developing speech recognition systems for other Amazigh languages. For instance30, 
used open-source technology (CMU-Sphinx) to create an ASR system for Tarifit, a language related to Tashlhiyt. 
However, Telmem and Ghanou built their system on limited acoustic data from 1 speaker, and report that their 
system is highly speaker-dependent. A speaker-independent speech recognition system for spoken digits and 
letters in Amazigh languages has also been developed31. These systems are limited in their generalizability across 
takers and words and also are not easily accessible by most people for every-day use. Moreover, neither of these 
studies discuss the systems’ performance for Tashlhiyt, or on vowelless words, specifically.

The cross-language ASR transfer approach13 has high potential to create a successful ASR system for Tashlhiyt. 
In the current study, we use a language model built for Arabic using Sonix Speech-to-text, a popular and versatile 
online transcription service. Arabic and Tashlhiyt both have three vowels and a large consonant inventory, with 
overlapping phoneme inventories: i.e., pharyngealized consonants, uvular, and pharyngeal segments; yet, there 
are major differences in the phonotactics, or allowable sound sequences, between Tashlhiyt and Arabic, such as 
the presence of vowelless words in Tashlhiyt which is not permitted in Arabic20,24,32,33.

ASR systems convert speech to text transcriptions. Amazigh languages have their own ancient writing system 
(Tifinagh), which was selected as the official orthography for those languages in Morocco in 2003, though Arabic 
was and is still often used for writing Amazigh34. Using the Arabic ASR system means converting Tashlhiyt speech 
into Arabic orthographic forms, which will be familiar to many Amazigh speakers (though, we acknowledge, 
comes with complex social, political, and cultural concerns). A practical benefit of using Arabic speech to text 
is that there is a large amount of shared vocabulary and cognates between Tashlhiyt and Arabic34, which can 
be useful given our non-modification ASR transfer approach in the current study. Arabic is an alphabet with 
characters representing consonants and long vowels. Optionally, diacritics can be added to characters to indicate 
short vowels and geminates; the output of the ASR system used in the current study does not use diacritics in the 
transcriptions. Thus, the use of Arabic transcriptions is appropriate since we are interested in the present study 
on recognition of words without vowels.

By applying the cross-language ASR transfer approach to Tashlhiyt, we can investigate fundamental questions 
about how variation in word forms across source and target language impacts the efficacy of cross-language ASR 
adaptation. Examining whether a current acoustic model can be re-used for Tashlhiyt, and for vowelless words 
in Tashlhiyt in particular, can be a key milestone in the development of ASR technology for the low-resource 
language. Moreover, identification of the specific types of phonological structures, speaking styles, and phonetic 
patterns that might pose particular challenges using this approach can also be used to support targeted adapta-
tion and fine-tuning when re-using an existing acoustic model to a new language in other source and target 
language contexts.
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ASR performance across speaking styles
As mentioned above, we also explore the effect of speech style variation on the efficacy of this cross-language 
ASR transfer approach. In particular, we compare ASR transcription errors across clear and casual (reduced) 
speech productions of Tashlhiyt words. Speakers vary their speaking style based on communicative context: 
they can hyperarticulate and produce more extreme acoustic realizations of words if they believe the listener 
will have trouble understanding or they can exert less articulatory effort and produce more acoustically reduced 
forms of words if they think the listener will have no trouble comprehending35–37. Clear speech forms are indeed 
more intelligible and better perceived by listeners38,39. ASR systems, also, have been shown to perform better 
at word recognition of clear speech forms, compared to reduced forms40,41. Temporal and segmental reduction 
are commonly observed pronunciation variants in reduced speech that lead to ASR errors across languages42,43.

How can this speaking style disparity be addressed? Increasing the amount of casual speech the ASR systems 
get in training can improve recognition accuracy for reduced word forms42,44. Another solution is to add sequen-
tial pronunciation variants to the pronunciation dictionary, e.g. a “clear” and a “casual” form of variable words42,43. 
But first, understanding the nature of disparities across speech styles in ASR performance when adapting to a 
low-resource language can be helpful in targeting the type of data that could be used to efficiently improve the 
model. Clear speech does not always contain the same types of acoustic enhancements across languages and 
varieties37,45, therefore, it is critical to explore the performance of different types of registers when exploring the 
efficacy of cross-language ASR transfer.

Current study
The current study tests performance of the “out-of-the-box” cross-language ASR transfer method on Tashlhiyt 
vowelless and voweled words, produced in both Clear and Casual speaking styles. This study was designed to 
address three major gaps in the literature on speech recognition technology.

First, this study addresses a gap in understanding how cross-linguistic differences in phonological structure 
influence ASR transfer. If there are disparities across voweled and vowelless words for Tashlhiyt, this can illumi-
nate how phonotactic differences (differences in word shape and sound combinations) across target and source 
languages can result in less effective ASR transfer even if the languages have similar phoneme inventories. This 
is also a gap in our understanding of the parallels or differences across machine and human cross-language 
perception. Human adults show particular difficulties in learning second languages that differ from their native 
language’s restrictions on sound sequences18. Therefore, we predict ASR systems will have a hard time identify-
ing words in the target language that do not conform to the source language’s rules of sound sequencing and 
word structure.

Second, there is a gap in examining how speaking style differences influence cross-language ASR transfer. 
Thus, we also compare cross-language ASR transfer across clear and reduced speech productions of the target 
language. It is predicted that the ASR system will perform less well for reduced speech forms, consistent with 
prior findings that fast, casual speech is less well understood than clear speech by human (e.g., for Tashlhiyt46) 
and machine42 comprehenders. However, if vowelless words are understood at an even lower rate than voweled 
words in one speech mode, this can further reveal how disparities across phonotactic patterns in the target 
language can be amplified given the range of variation in speaking styles that is found across users and contexts.

Finally, Tashlhiyt is one of the thousands of languages that do not have commercially-available speech technol-
ogy systems. Exploring if cross-language ASR transfer is a viable approach to speech recognition for Tashlhiyt 
is one small step in addressing the huge gap in speech-enabled technology availability for under-resourced 
languages.

Methods
Target words
Target items were 74 Tashlhiyt words consisting of 37 vowelless words and 37 words with a vowel nucleus. The 
voweled words were selected to contain a vowel with consonants on either side. Within voweled words, there 
was roughly an equal number of items containing /a/ (n = 11), /i/ (n = 12), and /u/ (n = 14), the three vowel 
phonemes in Tashlhiyt.

The vowelless words were selected to contain exactly three consonants. We focus on tri-segmental vowelless 
words as a way to strategically home in on the precise mechanisms at play for ASR comprehension disparities 
across voweled and vowelless sequences: a trisegmental word form is the smallest structure where a middle seg-
ment is surrounded by two consonants. One way to quantify how much acoustic modulation a segment carries 
is sonority (defined as the relative loudness and resonant properties of a sound). All sounds can be assigned 
a ranking within a universal hierarchy of sonority: vowels, which are most sonorous, are assigned the highest 
numerical sonority score, and consonants are assigned sequentially lower values based on their acoustic-sonority 
properties ([47]8 = vowels, 7 = glides, 6 = liquids, 5 = nasals, 4 = voiced fricatives, 3 = voiceless fricatives; 2 = voiced 
stops; 1 = voiceless stops). As mentioned in the Introduction, vowelless words might be more difficult for speech 
recognition systems; since vowelless words contain smaller differences in acoustic modulations across seg-
ments,  it will be harder to detect variations in spectral amplitude in the acoustic signal27. Following from this, we 
also predict that within vowelless words, ASR performance will decrease for items that contain center segments 
with lower sonority values than those that contain center consonants with higher sonority values. We selected 
target vowelless word items that contained a range of sonority values of the center consonant (center segment 
sonority ranged from 6–1; glides are not permitted as word centers in Tashlhiyt).

A full list of the target words is provided in the Supplemental Materials.
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Stimulus materials
Four native Tashlhiyt speakers produced the wordlist in two speaking styles. Three of the speakers were born in 
Agadir, Morocco and one speaker was born outside of Marrakech, Morocco (mean age = 48 years old; 1 female, 
3 male).

Recordings were made with Audacity. The recording took place in a sound attenuated booth using a micro-
phone and audio mixer (AT 8010 Audio-technica microphone and USB audio mixer, M-Audio Fast Track), 
digitized at a 44.1 kHz sampling rate.

Words were recorded in two speaking styles: Clear and Casual. To elicit Clear Speech, the speakers were given 
instructions used to elicit clear speech in prior work48: “In this condition, speak the words clearly to someone 
who is having a hard time understanding you.” Following the Clear Speech style elicitation, the speakers pro-
duced the words in a fast, casual speaking style with the following instructions also modeled after those used in 
prior work48: “now, speak the list as if you are talking to a friend or family member you have known for a long 
time who has no trouble understanding you, and speak quickly”. The speakers produced the words in two frame 
sentences in each speaking style: ini ___ jat tklit ‘say ___ once’, inna ___ baɦra ‘he said ___ a lot’. A total of 1,185 
target word productions were collected.

The study was approved by the UC Davis Institutional Review Board (IRB). All research was performed 
in accordance with guidelines and regulations of the IRB. Informed consent was obtained from the speakers.

Data and coding
Each recording was transcribed using Sonix, an ASR tool for transcribing audio, with the language set to Arabic. 
The Sonix transcript for each file was downloaded as a .csv file, with a timestamp for each word. Transcriptions 
for target words were identified and coded based on the timestamp. Any punctuations were removed from the 
transcript.

Each target word was given an acceptable “ground truth” Arabic transcription (non-diacritized, as is the 
output of the ASR system); these written forms are provided in the Supplementary Materials. There are several 
consonantal phonemes (in both source and target languages) for which there is not a distinct Arabic letter. First, 
based on tests of the ASR system and conventions for how this letter is used across Arabic varieties, we used the 
Arabic letter jeem to represent the phoneme /g/ (e.g., “رجل” , < r-ž*-l > for /rgl/), in addition to /ž/ (e.g., 
 ž-l-d > for /žld/). Also, Tashlhiyt has additional pharyngealized segments that do not have a distinct letter > ,”جلد“
in written Arabic. For these segments, the “ground truth” transcription contained the non-pharyngealized letter 
(e.g., “زور” < z-w-r > for /zˤurˤ/).

ASR transcription performance was assessed in three ways:

Transcription generated: In a small number of cases, the ASR system did not generate a transcription of 
the target word, indicating a recognition failure—for instance, that the system treated the speech sample as 
noise or non-linguistic audio. Since vowelless words, in particular, might contain no voicing information, they 
might be particularly prone to being treated like “noise” rather than “speech” by the ASR system and hence 
not transcribed. Thus, we evaluated this as one metric of ASR performance—generating a transcription is 
evidence that the ASR treats the input as speech. All trials were coded as “transcription” or “no transcription”.
Transcription accuracy: Of the words where a transcription was generated, these were then coded for accu-
racy if the ASR transcription output matched the “ground truth” transcription of the word in Arabic script 
or not.
Levenshtein distance: For each transcribed word, Levenshtein distance was calculated, which quantifies 
the distance between two strings in terms of substitutions, deletions, and insertions49 (and used in linguistic 
studies such as for measures of phonetic distances between languages and varieties50,51). Levenshtein distance 
is used here as a metric for phonetic distance between ground truth and generated transcriptions.

We also coded ASR transcriptions as being either real Arabic words (identified as such using google translate) 
or nonwords. 83% of target word transcriptions generated by the ASR were real words. A chi-square test revealed 
that there was a difference in the proportion of real vs. nonwords for vowelless and voweled words (Χ2(1) = 82.5, 
p < 0.001). Vowelless words were less likely to be transcribed as nonwords (36/547 transcriptions) than voweled 
words (156/573 transcriptions).

Results
Comparing ASR performance across voweled and vowelless words
Our first set of analyses investigated whether the ASR performs differently for vowelless and voweled words, as 
well as the effect of speaking style.

We ran two separate mixed effects logistic regressions. The first model analyzed whether there was a difference 
in rates of “no transcription” across target words as a function of word type and speech style. For this model, data 
were coded for whether the ASR system produced any transcription (= 1) or not (= 0). The second model was run 
on a subset of data for which the ASR system did produce a transcription (n = 1,120). For these data, we modeled 
accuracy in generating the ground truth transcription (= 1) or not (= 0). Both models were run using the glmer 
function in the lme4 R package52. The models included fixed effects of Word Type (voweled vs. vowelless) and 
Speaking Style (Clear vs. Casual), as well as their interaction. Effects were sum-coded. For the random effect 
structure: We first fit models with maximal random effects structure, consisting of random intercepts for speaker 
and word, as well as by-speaker random slopes for Word Type and Style and the interaction between them. If this 
resulted in a singularity error (indicating overfitting of the random effects), then the random effects structure 
was then simplified by removing predictors that accounted for the least amount of variance until the model fit53. 
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(Random effects simplification for all models reported in this paper followed the same procedure.) The glmer 
syntax for the retained transcription presence model was: transcription presence ~ Word Type * Speech Style + (1 
| Word) + (1 + Speech Style | Speaker); the glmer syntax for the retained accuracy model was: accuracy ~ Word 
Type * Speech Style + (1 | Word) + (1 + Word Type + Speech Style | Speaker).

Figure 1A shows the averaged performance of the ASR system in generating a transcription across vowelless 
and voweled words by speaking style. Overall, only 5% (n = 65) of target words did not get assigned a transcription 
by the ASR system. Yet, the transcription presence model revealed an effect of Word Type such that vowelless 
words were more likely to not get transcribed at all than voweled words (coef. = -0.4, SE = -0.2, z = -2.5, p < 0.05). 
Thus, even though 95% of target words did get transcribed, there were still disparities in this measure by word 
type. There was not an effect of Speaking Style (p = 0.7) and there was not an interaction between Word Type 
and Speaking Style (p = 0.5) for the transcription presence model.

Figure 1B presents accuracy data for items where a transcription was generated. Speaking Style predicted 
accuracy, with the ASR system more likely to generate a “ground truth” transcription of Clear forms of words 
(coef. = 0.8, SE = 0.1, z = 5.9, p < 0.001). There was also an interaction between Word Type and Speech Style 
(coef. = -0.5, SE = 0.1, z = -5.2, p < 0.001). To explore this interaction, a Tukey’s HSD pairwise comparison was 
performed using the emmeans() function in the emmeans R package54. This post hoc comparison revealed that 
while vowelless words were less accurately transcribed than voweled words in Clear speech (coef. = -1.5, SE = 0.4, 
z = -3.5, p < 0.001), there was no difference in transcription accuracy for word types in Casual speech (p = 0.4).

Next, we analyzed Levenshtein distances for the items where a transcription was generated using a mixed 
effects linear regression model. The model included fixed effects of Word Type (voweled vs. vowelless) and 
Speaking Style (Clear vs. Casual), as well as their interaction. Effects were sum-coded. The random effects 
structure of the model started as maximal, but was reduced to avoid overfitting (lmer syntax of retained model: 
distance ~ Word Type * Style + (1| Word) + (1|Speaker)).

Figure 2 provides mean Levenshtein distances across items and conditions. The model computed an effect of 
Speaking Style wherein Clear speech transcriptions had lower Levenshtein distances than Casual speech produc-
tions (coef. = -0.5, SE = 0.04, t = -12.6, p < 0.001), meaning that transcriptions for casual items were further away 
from ground truth transcriptions than those for clear speech productions. There was also an interaction between 
Word Type and Style (coef. = 0.1, SE = 0.04, t = 2.7, p < 0.01). A post hoc pairwise comparison with emmeans 
revealed that Levenshtein distances were higher for vowelless words than for voweled words in Clear speech 
(coef. = 0.4, SE = 0.2, t = 2.6, p < 0.05), but there was no difference between word types in Casual speech (p = 0.9). 
In other words, within Clear speech, transcriptions for vowelless words were more different from ground truth 
forms than those for voweled words.

ASR performance within vowelless words
Finally, we ran two analyses on a subset of the data from vowelless words only. As mentioned above, our vowelless 
items varied in having consonantal centers that are more sonorous (i.e., /l/ and /r/ are loud, resonant, and highly 
sonorant consonants) or less sonorous (e.g., /d/ and /k/ are less sonorous sounds). Using a numerical scale that 
assigns consonants a rating based on their sonority properties47, we tested whether the sonority value of the 
central segment in vowelless words predicts ASR transcription accuracy and Levenshtein distances.

First, we ran a mixed effects logistic regression model on accuracy values for vowelless words only with fixed 
effects of Sonority value of the center consonant (continuous variable from 1–6, centered) and Speech Style 
(Clear vs. Casual, sum-coded), and their interaction (glmer syntax for the retained model: accuracy ~ Speech 

Figure 1.   Mean performance (and standard errors) for generating a transcription (A) and (B) accuracy in 
reflecting the written Arabic “ground truth” for words where a transcription was generated.
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Style * Center Consonant Sonority + (1 | Word) + (1 | Speaker)). Next, we ran a mixed effects linear regression 
on Levenshtein distance values for vowelless words with fixed effects of Sonority value, Speech Style, and their 
interaction (lmer syntax: distance ~ Style * Center Consonant Sonority + (1 | Word) + (1 + Speech Style | Speaker)).

For the accuracy model, there was an effect of Style, wherein Clear speech was more accurately transcribed 
than Casual speech (coef. = 0.3, SE = 0.1, z = 2.2, p < 0.05). There was also an interaction between Sonority and 
Style (coef. = 0.3, SE = 0.1, z = 2.7, p < 0.01), indicating that vowelless words containing more sonorous center 
consonants are more likely to be assigned the correct transcription by the ASR system in Clear speech; it also 
means the reverse is true: lower ASR accuracy for vowelless words with lower sonority centers.

For the Levenshtein model, the effect of sonority was associated with a negative coefficient (coef. = -0.3, 
SE = 0.1, t = -2.7, p < 0.05), meaning that vowelless words with less sonorant centers are more likely to be tran-
scribed with forms that are further away from the ground truth transcriptions. There was not an interaction 
between Style and Sonority (p = 0.4).

Thus, these analyses provide converging evidence that, even within vowelless words, ASR performance 
decreases for Tashlhiyt words that contain less sonorant word centers.

General discussion
There is a language gap in speech technology: computer systems that understand speech are only available in a 
fraction of the extant languages of the world. In the current study, we re-used an existing, commercially-available 
ASR system from Arabic without any modification for Tashlhiyt, a low-resource language with over seven million 
speakers. The segmental inventories of Arabic and Tashlhiyt are similar and using Arabic orthography allows 
for a great deal of flexibility in providing functional transcriptions of vowelless words in Tashlhiyt (even though 
Amazigh languages have their own writing system). Overall, our results indicate this is a promising approach to 
adapt an existing ASR system for an under-resourced language. Yet, we found disparities in ASR performance 
across items and speech styles in Tashlhiyt. There were three key findings that reflect systematic phonological 
and speaking style factors that affect the efficacy of this method.

First, even though the system did not generate a transcription for only 5% of tokens, the proportion of items 
where the ASR system failed to transcribe the target word was higher for vowelless words than for words that 
contained vowels. This indicates that the ASR system is more likely to ignore vowelless words than voweled words. 
One possible explanation is that vowelless words are more likely to be identified as non-speech than voweled 
words. ASR systems detect variations in spectral amplitude when identifying the signal27. So, vowelless words, 
which overall contain smaller differences in spectral modulations across segments, compared with large acoustic 
perturbations that occur from consonant to vowel, will indeed have a unique acoustic signature that might be 
interpreted as non-speech by a ‘naive’ ASR system and not transcribed.

Second, when the ASR generated a transcription, we found that the WER and Levenshtein distances were 
higher for casual, compared to clear, speaking styles. This is an unsurprising finding as ASR systems perform less 
well on reduced speech, even for languages that they are trained on and built for55, but here it highlights even 
further disparities that can arise using the cross-language ASR transfer method due to speaking style variation. 
While many practical issues arise when considering similarities between source and target language13, this is the 
first study, to our knowledge, investigating the effect of speaking style on cross-language ASR transfer.

Figure 2.   Levenshtein distance means (and standard errors) for transcribed words, averaged by Word Type and 
Speaking Style.
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Thirdly, in Clear speech, both WERs and Levenshtein distances between generated and ground truth tran-
scriptions were greater for vowelless words than words with vowels. Note that there was no difference for these 
word forms in casual speech because performance was low across the board. Only in Clear speech, where ASR 
performance was enhanced, do we observe that vowelless words are accurately transcribed at lower rates than 
voweled words. This interaction parallels recent findings examining perceptual patterns of clearly- and casually-
produced Tashlhiyt words by non-native listeners in46. In that study, Tashlhiyt-naive listeners showed a clear 
speech boost in perceiving Tashlhiyt words that have phonotactic patterns that are also present in English (i.e., 
clear speech enhanced the discrimination of pairs like sin vs. fin). But there was not a perceptual benefit for clear 
speech productions of word forms that are not present in English (e.g., clear speech provided no improvement 
for discrimination of word pairs like ssin vs. fsin). Thus, our observation that clear speech does not enhance the 
intelligibility of words that are illegal in the “native” language than for those that are legal has support for both 
human perception and machine speech recognition.

Our findings highlight linguistic disparities that may occur in cross-language ASR transfer: phonotactically 
rare word forms. Speech recognition systems not trained on vowelless words will fail: a vowelless word is more 
likely to be transcribed incorrectly, and it is more likely to be further from the ground truth form making it even 
harder for a user to understand. An explanation for this disparity can be attributed to differences in phonotactics 
across source and target language: Arabic does not permit vowelless words. This observation indicates that re-
using an acoustic model trained on a source language with different phonotactic patterns can lead to disparities 
for phonological structures in the target language that are not attested in the source language. This means we 
can predict other cases where ASR transfer is likely to be problematic: even if target and source language have 
overlapping phoneme inventories, differences in the shapes of word forms across them might lead to disparities.

Furthermore, we also found that within vowelless words, ASR performance was lower for items containing 
center consonants that are less sonorous than words containing more sonorous centers. Thus, our results allow 
us to home in on which types of vowelless word forms, specifically, the ASR systems have the most trouble with: 
words with less resonant and sonorant center consonants. This observation provides even further evidence 
that ASR disparities are systematic and shows how machine recognition patterns can be analogous to auditory 
properties of human sound systems.

This study had several limitations that can serve as directions for future work. One limitation of the cur-
rent study is that the speech samples were not elicited as device-directed speech. Prior work has observed that 
speakers make distinct clear speech adjustments when talking to ASR-enabled devices, like smartphones and 
voice-AI assistants56,57, and adjust their pronunciations even more when the machine makes an error39. A ripe 
future direction is to explore whether cross-language ASR re-use recognition accuracy improves if the speakers 
are producing authentic device-directed speech. There are other factors that can be explored in future studies, 
such as how ASR transfer performs when there is background noise or other types of environmental factors (e.g., 
multiple talkers). Particularly for a language with typologically unusual phonological and phonetic patterns, such 
as Tashlhiyt, studying how within-speaker and across-context factors affect speech recognition can provide even 
further insight into how to address the language gap for speech technology.

Conclusion
In sum, we find that with zero modification, re-using a commercially available Arabic ASR system on Tashlhiyt 
resulted in close to 45% accurate word transcriptions for clearly spoken voweled words produced by multiple 
talkers. This means that such an “out-of-the-box” cross-language ASR transfer approach can provide some limited 
access to spoken language technology for a low resource language. However, the disparities in word transcription 
(simply in providing a transcription at all, and number of errors when there was a transcription) were systematic: 
lower performance for vowelless words. Vowelless words are a common word form in Tashlhiyt, so such failures 
are not trivial. However, future approaches to adapting an Arabic ASR system for Tashlhiyt can be most effective 
by targeting these linguistic structures. In other words, addressing the language gap in speech technology can be 
more efficient by understanding the within-language disparities that arise during ASR transfer.

The current study focused on machine recognition for cross-linguistically uncommon word forms—vowelless 
words in Tashlhiyt—and how differences in phonotactics across target and source language could influence ASR 
performance disparities. Yet, our findings can be useful for thinking more generally about the factors that affect 
cross-language ASR transfer. Two languages that have a similar set of consonants and vowels can have quite differ-
ent word forms and that creates challenges for second language learners: for instance, a Spanish speaker learning 
English might hear the word ‘sport’ as esport, because Spanish does not permit words with initial s + obstruent 
sequences (even though s and p are common sounds in Spanish)18,58. Thus, we predict that in any case where 
target and source language differ in phonotactics, there will be linguistic disparities. Engineers and scientists can 
more effectively augment cross-language speech technology transfer by understanding the linguistic issues that 
might lead to disparities within a target language and addressing them, such as training the system on the types of 
words that are more likely to fail using this approach. Investigating ways to make ASR more accessible for people 
who speak low resource languages is one step toward addressing major inequities in access to speech technology 
across the world. Our study also highlights how linguistically- and phonetically-informed approaches to this 
aim provide ways to more effectively and efficiently adapt existing speech technology to low-resource languages.

Finally, we find that disparities in ASR transfer generally parallel the types of difficulties that adults make 
when learning a second language (i.e., difficulties with sound sequences that are illegal in the first language). 
Therefore, this work can also speak to broader issues in cognitive science, linguistics, and human–computer 
interaction, particularly in understanding the extent to which machines are similar to or different from humans 
in mapping the acoustic signal to discrete linguistic representations29.
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