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Abstract: 

Bipolar disorder (BD) is a serious mood disorder associated with circadian rhythm 

abnormalities. Risk for BD is genetically encoded and overlaps with systems that 

maintain circadian rhythms. Lithium is an effective mood stabilizer treatment for BD, but 

only a minority of patients fully respond to monotherapy. Presently, we hypothesized 

that lithium-responsive BD patients (Li-R) would show characteristic differences in 

chronotype and cellular circadian rhythms compared to lithium non-responders (Li-NR). 

Selecting patients from a prospective, multi-center, clinical trial of lithium monotherapy, 

we examined morning vs. evening preference (chronotype) as a dimension of circadian 

rhythm function in 193 Li-R and Li-NR BD patients. From a subset of 59 patients, we 

measured circadian rhythms in fibroblasts longitudinally over 5 days using a 

bioluminescent reporter (Per2-luc). We then estimated circadian rhythm parameters 

(amplitude, period, phase) and the pharmacological effects of lithium on rhythms in cells 

from Li-R and Li-NR donors. Compared to Li-NRs, Li-Rs showed a difference in 

chronotype, with higher levels of morningness. Evening chronotype was associated with 

increased mood symptoms at baseline, including depression, mania and insomnia. 

Cells from Li-R patients were more likely to exhibit a short circadian period, a linear 

relationship between period and phase, and period shortening effects of lithium. 

Common genetic variation in the IP3 signaling pathway may account for some of the 

individual differences in the effects of lithium on cellular rhythms. We conclude that 

circadian rhythms may influence response to lithium in maintenance treatment of BD. 

Pharmacogenetics of Bipolar Disorder (PGBD), Clinical Trials Registry: NCT0127253 
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Introduction 

Bipolar disorder (BD) is a disabling psychiatric disorder that affects 1-2% of the 

population (1, 2). BD is defined by the presence of recurrent depressive and 

manic/hypomanic episodes, as well as disruptions in rhythmic behaviors. For instance, 

depressive episodes are characterized by changes in sleep, daytime energy, 

motivation, and appetite; while mania is defined by decreased need for sleep and 

increased nocturnal activity. Even during euthymic periods, BD patients commonly show 

late onset of morning activity, intrusions of sleep during the day, a preference for 

evening activity, changes in hormonal rhythms and abnormal temperature cycles 

indicative of circadian rhythm abnormalities and consistent with delayed phase and/or 

long period (3-10).  

Circadian rhythms are maintained in a cell autonomous fashion by a molecular 

feedback loop comprised of ~20 “clock genes” (11). The essential elements of the loop 

include the CLOCK/BMAL1 protein complex that drives expression of PER1/2/3 and 

CRY1/2. Through negative feedback of BMAL1/CLOCK, PER and CRY inhibit their own 

expression over ~24 hr. cycles leading to rhythms in gene expression. In animals, 

disruption of clock genes has been used to model mania (12) and depression (13), and 

clock gene mutants show abnormal responses to lithium in models of mania (14). 

However, these animal models do not address some core features of BD including 

grandiosity, speech abnormalities and episodic alternations of mood. In humans, post 

mortem studies show the loss of circadian rhythms across several brain regions in 

patients with mood disorders (15). Moreover, variation in clock genes has been linked to 

morning/evening preference (“chronotype”) both in the general population (16) and in 



 

5 
 

circadian rhythm disorders (17, 18). Since the circadian clock is cell autonomous, it can 

be studied in peripheral cell cultures from humans using bioluminescent reporters. 

Using this approach, we have shown previously that compared to controls, circadian 

period is typically longer in cells from BD patients, consistent with the behavioral data 

observed in human subjects indicating a predisposition for evening activity in BD (19).   

Mood stabilizer medications positively impact the course of BD. However, many BD 

patients fail to respond adequately to pharmacotherapy (20). Lithium is the best studied, 

and arguably most effective mood stabilizer, with efficacy in depression, mania and 

maintenance and yet only about 30% of patients with BD respond fully to lithium (21). 

Like the risk for BD which is largely genetic (22), lithium response is heritable (23), and 

influenced by genetic variation (24). Recent genome-wide association studies have 

identified loci that predict lithium response (25), but the biological processes governed 

by these genes remain uncharacterized.  

Previous preclinical studies have focused on lithium’s ability to inhibit inositol 

monophosphates (IMP) (26) and glycogen-synthase kinase 3 (GSK3) (27), molecules 

with possible links  to circadian rhythms. While the role of IMP in circadian timing is 

relatively unexplored, our recent work indicates inositol metabolism affects rhythms 

(28). GSK3 is known to regulate the stability and turnover of clock proteins, and GSK3 

inhibition has effects on circadian rhythm amplitude and period (29-32). These changes 

in period may facilitate phase shifting, improve entrainment and have important 

implications for lithium’s effects on mood. In the dopamine transporter (DAT) 

knockdown model of mania, mice have a longer circadian period, and the period was 

shortened by the mood stabilizer valproic acid (33). Similar period shortening effects of 
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valproic acid were observed in gene expression rhythms in cells from BD patients (33), 

an effect on rhythms similar to selective GSK3 inhibitors (32). In humans, clinical 

interventions including partial sleep deprivation and phototherapy both advance 

circadian phase and facilitate the therapeutic effects of lithium (34). These data together 

indicate that period shortening and/or phase advancing may have beneficial effects on 

mood, possibly by correcting mismatches between the environmental light/dark cycle 

and endogenous rhythms that occur in the context of long period and/or phase delays.  

Based on the observations that circadian rhythm abnormalities are central to BD, that 

lithium response is genetically encoded, and that lithium affects the circadian clock, we 

hypothesized lithium responsive BD patients (Li-R) would have identifiable differences 

in circadian rhythms compared to lithium non-responders (Li-NR). Moreover, we 

expected that we could use identifiable circadian biomarkers to better predict 

therapeutic outcomes after lithium pharmacotherapy. 

Methods 

Lithium Clinical Trial. Clinical response to lithium was determined prospectively in 

between January 2011 and January 2016 through the PGBD multi-center treatment trial 

(35). Additional detail is summarized in Supplementary Methods.  

Determination of clinical response to lithium. Subjects with BD type I were 

transitioned to lithium monotherapy over 12-weeks. Subjects able to stabilize on lithium 

monotherapy were classified as lithium responders (Li-R) and entered maintenance 

treatment. Subjects who were unable to stabilize were classified as lithium non-

responders (Li-NR) and discontinued from the study. Subjects who left the study for 
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intolerable side effects or reasons unrelated to their clinical response to lithium were 

excluded from further analysis. After these exclusions, 193 subjects were considered 

(N=135 Li-R/N=58 Li-NR). Subjects in maintenance were evaluated in person every two 

months, until either the occurrence of a depressive/manic episode (defined by DSM-IV 

criteria), or the end of the 2-yr. follow-up period.  

Chronotype Analysis. At baseline, subjects completed the Basic Language 

Morningness scale (BALM), a validated, 13-item self-reported measure of chronotype 

(36, 37). Higher BALM values correspond to a greater level of morningness. 

Analysis of Depressive and Manic Symptoms, and Suicide History. Subjects 

completed the 16 item Quick Inventory of Depressive Symptomatology Self-Report 

(QIDS-SR16) (38), the Clinician Administered Rating Scale for Mania (CARS-M) (39), 

and a detailed self-report of past suicidal behaviors. Scoring was conducted in 

accordance with the respective protocol for each scale. To minimize survival bias, only 

baseline mood measures were considered. 

Cell Culture. 59 study participants with informative clinical outcomes (N=44 Li-R/15Li-

NR) donated skin biopsies for fibroblast cell lines (Supplementary Methods). To 

facilitate studies of molecular mechanisms, we also used a mouse NIH3T3 fibroblast 

line stably transfected with the Per2-luc reporter. The NIH3T3 model recapitulates key 

features of lithium’s effects on rhythms (28, 40, 41) and allowed us to conduct drug and 

transfection studies that would not be practical in primary human fibroblasts. As a 

fibroblast line, we reasoned that the results are likely comparable across cell types. 
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Measurement of Cellular Circadian Rhythms. Chronotype is determined in part by 

circadian period and phase, either of which either individually or in combination affect 

the onset of activity and entrainment to a 24 h light/dark cycle. Period changes is a 

pharmacological effect of lithium, and we have shown previously that cells from BD 

patients show irregular amplitude responses to lithium (19). Therefore, we examined 

three circadian rhythm parameters (amplitude, period, phase) in fibroblasts under both 

lithium-treated and untreated conditions using fibroblasts donated by Li-R and Li-NR 

subjects. We hypothesized that short circadian period would predict clinical stability, and 

that Li-R cells, especially those with a longer period, would exhibit greater shortening of 

circadian period by lithium compared to Li-NR cells. To determine if lithium may reverse 

the long period abnormality associated with Li-NR, we examined the degree to which 

period changed in Li-R and Li-NR cells after treatment with lithium. Cellular rhythms 

were measured in parallel under lithium (1mM) treated and untreated (baseline) 

conditions (19). Data were fit to a damped sine wave and rhythm parameters were 

calculated using commercial software (Lumicycle Analysis). Time of peak signal (first 

peak after synchronization) was used as a phase marker.  

Drugs. Because lithium non-selectively inhibits inositol monophosphate (IMP), we 

tested whether inhibition of IMP affects circadian rhythms. Cells originating from the 

same culture were treated simultaneously in parallel with active drug or vehicle control. 

Lithium chloride was purchased from Sigma. 2-Aminoethoxydiphenylborane (APB), and 

[1-(4-Hydroxyphenoxy) ethylidene] bisphosphonic acid (L-690330) were purchased from 

Tocris Biosciences. Concentrated drug solutions were added to the growth media and 

diluted to the desired concentration. Drugs were dissolved in water or DMSO.  
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Gene Knockdown. Knockdown of Itpr3 was performed using siRNA in NIH3T3 cells 

stably expressing Per2-luc under hygromycin selection (28). See Supplementary 

Methods for details. Commercially available siRNAs (Dharmacon) were used according 

the manufacturer’s protocol. Bmal1 (also called Arntl, M-040483-01-0005) was targeted 

as a positive control, and siRNA that does not target any known transcript served as 

negative control (D-001206-14-05).  

Measurement of Cellular IP3. NIH3T3 cells were treated with lithium 10mM or vehicle 

for 24-hr. IP3 was measured using ELISA following the manufacturer’s protocol (Life 

Span BioSciences).  

Genotyping. Selective inhibition of GSK3 shortens circadian period (32), whereas 

lithium, a non-selective GSK3 inhibitor has been shown to paradoxically lengthen period 

in fibroblasts in a concentration dependent manner (19). Therefore, individual 

differences in the response of cellular period length to lithium may be relevant, possibly 

reflecting the varying balance of lithium’s pharmacological effects on GSK3 vs. 

competing pathways. Therefore, we tested whether genetic variation in the IP3 system 

and GSK3B explains differences in period among Li-R/Li-NR. BD subjects were 

genotyped at ~420K single nucleotide polymorphisms (SNP) on PsychChip by TGEN 

(Phoenix, AZ). Data were deposited on the Genetic Cluster Computer 

(http://www.geneticcluster.org) for quality control, processing and analysis, using the 

PGC pipeline (https://github.com/nievergeltlab). Imputation was based on 1000 

Genomes phase 3 (1KGP phase 3) using the first five ancestry informative principle 

components as covariates (42).  
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Multifactorial model of lithium response. We developed post-hoc four criteria by 

which to score donors on cellular circadian factors associated with lithium response: 1) 

Period <25.8 hr. (shorter than median).  2) Period >25.8 hr. and corrected by lithium to < 

25.8 hr. 3) Period >25.8 hr. and Tm <0.79 (top quartile phase advanced). 4) Rare allele 

ITPR3 genotype. The first three criteria were considered protective factors, while the 

fourth was considered a risk factor for non-response. One point was assigned for each 

protective factor, and one point subtracted for each risk factor (range of scores -1 to 3). 

Mean scores were compared across the two groups using a 2-tailed t-test. Specificity 

and sensitivity for Li-NR were calculated based on the absence of any protective feature 

(score <1).  

Statistical Analyses. Chronotype analysis was conducted in SPSS (version 20) using 

ANCOVA, corrected for age, race and sex. Cellular analyses were conducted to 

examine three related hypotheses evaluating how circadian rhythms associate with 

treatment response: baseline period, baseline phase, and pharmacological effects of 

the drug on period/phase. Given our modest sample size, and that the dependent 

variables were not independent, a stringent correction for multiple comparisons was not 

employed. The cellular rhythm analyses were completed using GraphPad Prism 

(version 5.0) using a two-tailed t-test or one-way analysis of variance, and univariate 

regression analyses of phase and period. An F-test was incorporated into all analyses 

to ensure the assumption of equal sample variance was satisfied. Group differences in 

linear regressions were assessed for statistical significance using Fisher’s r to z 

transformation. Genotypic analysis of period was conducted using linear regression 

under a dominant model. All analyses used α <0.05.   
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Human Subjects Research Oversight. The research protocol was reviewed and 

approved by the local IRBs pertaining to each participating site to ensure compliance 

with all pertinent regulations regarding the ethical conduct of human subjects research. 

All subjects provided informed consent to participate.  

Results: 

Clinical trial subjects. 193 lithium-treated subjects were considered for chronotype 

analysis (Table S1). The majority (N=135) advanced to the maintenance treatment, 

while 58 failed to achieve maintenance (Li-NR). Of the 135 Li-R subjects, 104 ultimately 

had informative clinical outcomes after 2 yr., while the remainder left the study before 

the 2-yr. endpoint for reasons unrelated to mood stability (Figure S1).  

Chronotype is associated with lithium response. Chronotype in people with BD is a 

stable trait (Figure S2). Past research indicates that low morningness is associated with 

depression (16), and worse treatment outcomes in major depression (43). Therefore, 

we examined chronotype to determine if it was a predictor of lithium response in BD. 

Using the categorical measure of lithium response, Li-R subjects were significantly 

higher in morningness compared to Li-NR (mean BALM=36.1 vs. 32.5, p<0.02, Figure 

1A). We then analyzed separately three specific sub-groups: subjects who failed to 

stabilize initially, relapsed during maintenance, and achieved long-term stability. The 

overall group difference in morningness was significant (p<0.01). Post-hoc tests 

revealed that there was no difference in chronotype between those who failed to 

stabilize and those who relapsed (mean BALM 32.5 vs. 34.4), but that among those 
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who remained stable for 2 yr., morningness was significantly higher compared to those 

who failed to stabilize (Figure 1B, mean BALM 37.1 vs. 32.5, p<0.05).  

In order to understand the particular factors driving the association between chronotype 

and lithium response, we analyzed specific symptoms of BD. We found that more 

severely depressed subjects were lower in morningness (Figure 1C). The most strongly 

associated depressive features were two sleep items: excessive sleepiness and 

delayed sleep onset (Table S2). Other functions that vary rhythmically over the day like 

energy, concentration and psychomotor retardation showed similarly strong negative 

associations. However, additional depressive symptoms that are not commonly 

considered rhythmic, including feelings of sadness, and low self-esteem were also 

negatively associated with morningness.  

Similarly, patients with more manic symptoms showed significantly reduced 

morningness scores (Figure 1D), and several individual manic symptoms on the CARS-

M scale, showed significant negative association with BALM, indicating that decreased 

need for sleep, disorganization and disorientation were all greater in subjects with low 

morningness (Table S3).  

Finally, we examined suicide attempt (SA) history and chronotype. Subjects who 

endorsed one or more previous SA were significantly lower in morningness compared to 

subjects who had not attempted suicide (Mean BALM: SA=32.9 vs. no SA=35.9, 

p<0.05, Figure 1E).  

Cellular rhythms. There were no significant demographic differences between Li-R and 

Li-NR cell line donors (Table S4). As expected, the duration of stability on lithium (Mean 
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± SEM) was significantly different (p<0.001) with 568.9 ± 39 days for Li-R (N=44) vs. 97 

± 9 days for Li-NR (N=15). BALM scores among the BD cell line donors reflected the 

same overall trends observed in the larger clinical cohort, with higher morningness 

scores in the Li-R group (Mean BALM Li-R 37.3 vs. Li-NR 31.9, p=0.05). BALM score 

was nominally correlated with cellular phase in the expected direction (r = -0.18), but 

this phase advance was not statistically significant. BALM score was not significantly 

correlated with any other cellular rhythm parameter.    

Amplitude. There was no significant difference in baseline amplitude in cells from Li-R 

and Li-NR, and no effect on amplitude from lithium, indicating that the drug treatment 

did not increase amplitude in the cells obtained from either BD group (Figure 2A). This 

finding independently replicates our previous work showing that unlike cells from 

controls in which lithium typically increases amplitude by 30-40%, lithium does not 

increase amplitude in fibroblasts from BD patients (19). 

Period. There was a difference in cellular period between Li-R and Li-NR donors that 

trended towards significance (mean period: Li-R 25.5 ± 0.14 vs. Li-NR 26.0 ± 0.17 hr. 

p=0.08, Figure 2B). Further inspection revealed that the cellular periods were not 

uniformly distributed between groups. Using a median split, a majority (25/29 or 86.2%) 

of short period (< 25.8 hr.) samples came from Li-R donors, while the majority of Li-NR 

cells (11/15 or 73%) had long periods (Figure 2C). These results indicate that the odds 

of non-response to lithium are significantly higher in cell donors with long period (OR = 

3.6, p<0.05). However, there was overlap between Li-R and Li-NR. The results indicate 

that short period may be predictive of response, and that while long period may be a 
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relative risk factor, alone it is insufficient to explain non-response. Therefore, additional 

mitigating factors may influence responsiveness in subjects with long period.    

Phase. There were no baseline differences in phase in cells from Li-R and Li-NR 

donors, and exposing the cells to lithium had no significant effect on phase. However, 

the relationship between period and phase differed between cells from Li-R and Li-NR. 

In cells from Li-R there was an inverse linear relationship between period and phase. Li-

R cells with long period were typically phase advanced. In Li-NR cells this relationship 

was not statistically significant. Unlike Li-R cells, Li-NR cells with a long period were no 

more likely to be phase advanced than cells with a short period. The difference in the 

variance explained by these relationships was significantly different (z=2.01, p<0.05) 

between Li-R and Li-NR (Figure 3A, 3B).  

Pharmacological effects of lithium. In Li-R cells there was a positive correlation 

(r=0.27, p=0.06) between period length and the degree to which lithium shortened 

period (Figure 4A). This relationship was attenuated in the Li-NR cells (r=0.15, p=0.58, 

Figure 4B). To investigate further, we used a median split to sub-divide Li-R/Li-NR into 

long and short period sub groups. Compared to Li-R cells with a short period, Li-R cells 

with long period shortened period to a greater degree (p<0.05, Figure 4C, 4D). In Li-NR 

cells, lithium had no effect on period length in either group. Therefore, in the subset of 

Li-R cells with a longer circadian period, lithium treatment favors period shortening.  

Period change by lithium is affected by IP3. The selective IMP1/2 inhibitor L-690330 

caused a concentration dependent lengthening in circadian period in NIH3T3 cells 

(Figure 5A, 5B). IMP inhibition is predicted to increase the intracellular levels of 1,4,5-
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trisphosphate (IP3) by reducing its turnover. Supporting this hypothesis, we found that 

24-hr treatment of NIH3T3 cells with lithium 10mM (a concentration that lengthens 

period) revealed a trend towards increased IP3 levels as expected (Figure 5C). 

Accordingly, we hypothesized that intracellular IP3 receptors (IP3R) may explain some 

of the period lengthening effect of lithium. In line with this expectation, the IP3R 

antagonist APB caused a concentration-dependent period shortening and attenuated 

the period lengthening effect of lithium (Figure 5D). Furthermore, genetic knockdown of 

Itp3r, the predominant IP3 receptor gene in NIH3T3 fibroblasts also blocked the period 

lengthening effect of lithium (Figure 5E, 5F). Using publicly available data 

(https://data.broadinstitute.org/mpg/ricopili), we determined that a common variant in 

ITPR3 (rs11758031) showed a modest nominal association with BD (p<6x10-4) in a 

previous GWAS of BD (44), while neither ITPR1 or ITPR2 showed similar trends. To 

test the role of ITPR3 in fibroblasts from BD patients, we examined whether this variant 

is associated with period. We found that when treated with lithium, cells with ITPR3 

minor A alleles showed significantly longer period compared to those with two common 

alleles (AA/AG: 26.04±0.26 vs. GG: 25.44±0.13, Figure 5G). Unlike at higher 

concentrations of lithium, the -50T/C variant in GSK3B (rs334558) was not associated 

with period change after lithium 1mM (Figure 5H).  

Modelling lithium response using circadian factors. To explore the overall 

relationship of circadian variables to lithium response, we developed a model to predict 

clinical lithium response that could assess four variables in cells (baseline period, period 

after lithium, phase, and ITPR3 genotype). Of 40 Li-R cell line donors, 33 (83%) had a 

score of 1.0 or more, indicating a preponderance of protective factors. Among Li-R only 
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1 cell line (3% of Li-R) had more than one protective factor, indicating minimal overlap 

among factors.  The mean (± SEM) composite score among Li-R was 0.85± 0.15. 

Among 15 Li-NR cell line donors, 12 (80%) scored ≤0, indicating a preponderance of 

risk factors and the mean score was 0.07± 0.07 (Figure S3). Accordingly, our four-factor 

model had a specificity of 83% and sensitivity of 80% for identifying Li-NR.  

Discussion 

We have shown that chronotype and cellular circadian rhythms predict lithium response 

in BD. Higher morningness was associated with fewer depressive and manic symptoms, 

fewer suicide attempts and longer duration of mood stability. In cells, short circadian 

period predicted lithium response in the donor. In cells with a long period, 

pharmacologically induced period shortening by lithium or phase advance was also 

associated with favorable clinical response. Finally, we identified IMP inhibition as a 

possible mechanism by which lithium affects circadian period. Taken together, our data 

support the hypothesis that features of circadian period and phase predicted to advance 

rhythms may positively contribute to lithium responsiveness. The results suggest a 

model by which lithium response could be predicted using circadian factors. It remains 

an open question whether in the course of lithium treatment circadian factors impact 

directly upon pathophysiological mechanisms causally related to BD, or non-specifically 

modify symptom burden.  

Most previous studies of lithium response utilized retrospective clinical assessment and 

subjects treated with multiple psychotropic medications. A strength of our study is that 

our relatively large cohort of BD subjects was evaluated prospectively on a standardized 
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lithium monotherapy protocol and that cells were available from these well-

characterized donors. Our study also has limitations. We did not have cell lines from 

every clinical trial subject and accordingly, the sample available for cellular analyses, 

while comparatively large for this kind of study, is incomplete and had relatively few Li-

NR lines. In addition, our cellular model of the 24-hr circadian cycle has caveats. 

Estimates of circadian parameters calculated in vitro likely differ from those obtained in 

vivo due to artifacts associated with the cell culture environment and the use of 

peripheral cells. Moreover, with particular respect to phase, the reference point in vitro 

is the synchronizing biochemical stimuli associated with medium change, whereas in 

vivo, phase reference point is determined by light exposure. While our chronotype 

findings in BD patients largely support our cell-based conclusions, underlying 

mechanistic differences in phase setting could limit their overall generalizability in vivo. 

Finally, without an independent cohort, we were unable to validate our predictive model 

in an independent data set.  

We reported previously that compared to controls, cells from BD patients had longer 

circadian periods and were more likely to show a period lengthening effect from lithium 

at a therapeutically relevant concentration, especially in cells from BD patients with a 

history of suicide attempt (19). These previous studies were conducted in cells collected 

from hospitalized patients with complex medication regimens. Therefore, it was 

previously impossible to determine the relationship between circadian rhythms and 

lithium response. The present study extends this previous work, and demonstrates that 

period modulation by lithium may have relevance not only as a discriminator of BD from 

control cells, but also for predicting therapeutic outcomes to lithium monotherapy. Our 
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previous work also found that lithium amplifies circadian rhythms in control cells, but not 

in BD cells (19, 40, 41). In this study, we found that the attenuation of this circadian 

amplitude phenotype in BD was present regardless of Li-R/Li-NR status. Therefore, it is 

a phenotypic marker of BD that may point to molecular mechanisms underlying the 

illness, but is not of any apparent prognostic value for predicting lithium response.  

Mood implications for circadian misalignment. Circadian rhythms entrain to 

environmental cues, most notably light. The intrinsic human circadian oscillator runs 

with a period of 24.2 hr (45). Therefore, there is typically a slight mismatch between the 

period of the endogenous circadian rhythm and the 24 hr light/dark cycle. Phase 

advancing in response to light allows the circadian clock to overcome this mismatch and 

entrain to a 24-hr cycle. However, with large mismatches between the light/dark cycle 

and the endogenous rhythm, entrainment is incomplete and results in syndromes such 

as advanced sleep phase (17) and delayed sleep phase (18) disorders. With extreme 

mismatches, the failure to entrain is compete and the endogenous rhythm “free runs” 

independently of the light/dark cycle. Healthy subjects maintained in a laboratory under 

free running conditions on a 28 hr. light/dark cycle demonstrate signs of severe 

physiological stress, including impairments in autonomic function, cortisol, sleep, 

cognition and mood (46, 47). Therefore, misalignment of the circadian clock causes 

physiological stress and negatively impacts mood. While subjects living in typical 

environmental conditions are unlikely to encounter such large clock/light mismatches, 

BD subjects do have a longer period (19), and frequently show behavior patterns that 

undermine efficient circadian entrainment, such as less daytime activity and limited 

exposure to light. In this way, BD subjects may experience mild clock/light mismatches 
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over extended periods of time (5). Therefore, we propose that the combination of longer 

period and compromised circadian entrainment causes some BD subjects to experience 

physiological distress, altered sleep and/or disturbed affect regulation. In this context, 

the degree to which lithium facilitates or opposes entrainment may affect the clinical 

course of lithium treatment.   

Inositol monophosphatase and circadian rhythms. Lithium differs from selective 

GSK3 inhibitors with respect to its circadian effects, causing period lengthening rather 

than shortening. IMP inhibition by lithium and subsequent accumulation of intracellular 

IP3 may underlie this effect, and variation in ITPR3 may affect the degree to which 

lithium lengthens period. Therefore, the degree to which mood stability is maintained in 

BD may relate to genetic variation in the IP3 pathway. In particular, lithium response 

may be enhanced in individuals where the balance of lithium’s effects is shifted toward 

GSK3 inhibition (resulting in short period) and away from IMP inhibition (resulting in long 

period). The rs11758031 A/G intronic nucleotide variant may be an example of a 

genetic factor that influences the circadian effects of lithium. The SNP has been shown 

to be functional, affecting the expression of ITPR3 and IP6K3, an adjacent gene 

involved in signal transduction (https://www.gtexportal.org/home). In a recent GWAS of 

sleep phenotypes in >1 million subjects, ITPR3 was implicated in insomnia both by 

gene-based analysis and exon sequencing (48). In contrast, the most recent GWAS for 

BD show little evidence of association with ITPR3 (49). Therefore, it may be that 

lithium’s effects on IP3 relate most directly to circadian factors and sleep, and perhaps 

less so to BD susceptibility factors. We have previously shown that IPMK, a gene 

involved in both GSK3 and inositol signaling may also influence the period lengthening 
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effect of lithium (28). For these reasons, further work on the inositol pathway as it 

relates to lithium is warranted.  

The role of the clock in mood stability. Presently, we cannot determine whether the 

circadian influence on lithium response is essential to promoting mood stability. By 

period lengthening, lithium could cause circadian misalignment, leading to a state of 

social, environmental and/or physiological distress, leaving only subjects who remain 

entrained to benefit from lithium’s therapeutic benefits. In these ways, the circadian 

influence on lithium response may be mediated by a lack of circadian “side effects” and 

be permissive rather than causal. Alternatively, the clock genes may be causally 

involved, preferentially activating neuroprotective processes in Li-R BD patients. Clock 

proteins like PER2, BMAL1 and REV-ERBα regulate neurogenesis (50, 51), and 

neuroprotective molecules involved in lithium’s therapeutic mechanism such as BDNF 

are rhythmically expressed (52-55). Therefore, the clock may alter lithium’s 

pharmacological actions directly through neurogenesis and/or neuroprotection, 

suggesting a direct role for clock genes in modifying lithium response.  

Conclusions. Circadian period and phase predict lithium response. Future experiments 

are needed to determine whether circadian clocks are essential for lithium response and 

if facilitation of entrainment is the ultimate circadian mechanism. 
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Figure 1. Chronotype is associated with clinical response to lithium. A) Li-R 
subjects (entered the maintenance phase, N=135) were significantly higher in trait 
morningness at baseline compared to Li-NR (those who failed to stabilize, N=57). B) 
Those who failed to stabilize mood (N=58) and those who suffered mood relapse during 
maintenance (N= 41) were similarly low in morningness. Morningness was highest in 
those who remained stable for 2-yr (N=63). Morningness is negatively correlated with C) 
baseline depression (for absent/mild/moderate/severe/extreme N=69/52/31/44/14) D) 
baseline symptoms of mania (for absent/mild/moderate/severe N=148/26/9/6). E) 
Morningness is negatively correlated with past suicide attempts (N=135 no attempt / 
N=54 past attempt). Numbers vary slightly across analyses due to missing data. Box 
plots indicate minimum, maximum and mean values. Error bars indicate SEM.  * 
indicates p<0.05 

Figure 2. Circadian rhythm parameters in cells from Li-R and Li-NR donors. A) 
There was no difference in amplitude in cells donated by Li-R (N=44) and Li-NR (N=15), 
either at baseline (untreated) or after cells were treated with lithium 1mM. B) Period 
length was more likely to be short in cells from Li-R donors compared to cells from Li-
NR. Mean period Li-R 25.5 ± 0.14 vs. Li-NR 26.0 ± 0.17 hr., two-tailed T test indicates 
p=0.08 C) The proportion of Li-R and Li-NR differs significantly in donors with short and 
long circadian period [Χ2=4.06(1), OR= 3.6, * indicates p<0.05]. Short/Long corresponds 
to below/above the median period of 25.8 hr. D) Representative rhythm traces of cells 
from Li-R (blue) and Li-NR (red) subjects. Error bars represent SEM.  

Figure 3. The phase-period relationship differs in cells from Li-NR compared to Li-
R. A) In Li-R cells (N=44), samples with the longest period are phase advanced relative 
to those with shorter periods. B) In Li-NR cells (N=15), there exists no significant 
relationship between period and phase. C) Representative rhythm traces showing the 
relative phase advance of Li-R cells vs Li-NR cells with similarly long periods. Arrows 
indicate phase marker (Tmax). 

Figure 4. Lithium shortens circadian period preferentially in cells from Li-R 
donors. A) In Li-R subjects the period shortening effect of lithium inversely correlates 
with baseline period length. Li-R subjects with long (>25.8 hr.) periods show the 
greatest shortening effect of lithium. B) In Li-NR subjects the relationship between 
baseline period length and the effect of lithium on period is attenuated and no longer 
significant. C) Li-R cells with long period (N=18) show significant period shortening after 
lithium compared to Li-R cells with short period (N=25). Lithium had no effect on period 
length in Li-NR with long (N=11) or short (N=4) period. * indicates p<0.05. D) 
Representative rhythm traces of a Li-R cell with long period after treatment with vehicle 
or lithium 1mM.  
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Figure 5. Inhibition of IMP causes period lengthening. Despite its action as an 
inhibitor of GSK3, lithium lengthens circadian period at high concentrations, perhaps 
indicating circadian effects of IMP inhibition.  A) Selective inhibition of IMP with L-
690330 causes period lengthening (N=6-9/group). B) Representative trace of the period 
lengthening effect of L-690330. C) Treatment of mouse fibroblast cell lines with lithium 
for 24 hr. caused a nominal increase in IP3 that trended towards statistical significance 
(N=7-8/group). D) Antagonism of the IP3 receptor shortens period and reverses the 
period lengthening effects of lithium (N=3/group). E) Knockdown of the IP3 receptor 
gene Itpr3 in NIH3T3 cells (N=8-14/group) blocks the period lengthening effect of lithium 
(10mM). F) Representative traces of Itpr3 knockdown experiment. Itpr3 knockdown 
attenuates the period lengthening effect of lithium. The loss of rhythm from Bmal1 
knockdown confirms efficient siRNA transfection. G) In cells from BD patients, ITPR3 
genotype at the variant rs11758031 predicts circadian period after treatment of the cells 
with lithium (N= 48 GG and 14 GA/AA, p<0.01), whereas H) GSK3B genotype at 
rs334558 (-50T/C) does not (N=23 TT, 38 CT/CC, p=0.65). Box plots indicate minimum, 
maximum and mean values. Error bars represent SEM. * indicates p<0.05 vs control. 
**indicates p<0.05 vs lithium treated.  
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