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ABSTRACT OF THE DISSERTATION

Lyapunov exponents: continuity, positivity, and consequences for upper bounds in
quantum dynamics and fractal spectrum

By

Matthew Taylor Powell

Doctor of Philosophy in Mathematics

University of California, Irvine, 2023

Professor Svetlana Jitomirskaya, Chair

We consider quasiperiodic Jacobi and Schrödinger operators of both a single- and multi-

frequency. These operators appear very naturally in condensed matter physics, where they

have seen applications in the study of Graphene and the Quantum Hall effect. The pro-

totypical example of the single-frequency operator is the almost Mathieu operator (AMO).

While much is known about the AMO, less may be said about the multifrequency analogues

and even some perturbed single-frequency models. This thesis has one recurring theme:

properties of the Lyapunov exponent (LE); moreover, this thesis may be split into two parts.

First, we explore continuity of the LE for multifrequency analytic quasiperiodic cocycles and

positivity of the LE for single-frequency analytic quasiperiodic Schrödinger operators with

an additional background potential. We then derive upper bounds in quantum dynamics as

a consequence of LE regularity, and explore the fractal properties of spectral measures.

In addressing the first part, we prove joint continuity of the LE for non-identically singular

multifrequency analytic quasiperiodic cocycles in both cocycle and frequency, and we prove

that the (lower) LE for single frequency analytic quasiperiodic Schrödinger operators with

added background potential can be made uniformly positive by taking a sufficiently large

coupling constant independent of the background.
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The former is accomplished by adapting an inductive argument of Bourgain which was origi-

nally used to derive similar results for SL(2,C)-cocycles. The latter involves complexification

in phase of the associated transfer matrix and appealing to various properties of analytic

and subharmonic functions.

In the second part, we first derive a lite version of dynamical localization: under suitable

assumptions on the frequency and LE, (time-averaged) moments of the position operator

grow no faster than a power of the logarithm. The main achievement here is that our notion

is stable under perturbations and holds for all values of the phase and an arithmetically

defined set of frequencies of full measure.

We then extend the Jitomirskaya-Last power-law subordinacy theory and Last theory of

quantum dynamics to encompass a more general version of Hausdorff dimension. This allows

us to study fine dimensional properties of spectral measures, particularly ‘zero-dimensional’

measures.
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Chapter 1

Introduction

Let (Ω,F , µ) denote a probability space, and let T : Ω → Ω denote an invertible measure

preserving transformation. A 1-dimensional ergodic Jacobi operator HT,x : `2(Z)→ `2(Z) is

given by

(HT,xψ)(n) = a(T nx)ψ(n− 1) + a(T nx)ψ(n+ 1) + f(T n(x))ψ(n), n ∈ Z, (1.1)

where f ∈ C(Ω,R) is called the potential and x ∈ Ω is called the phase. Let 1 ≤ d <

∞. When Ω = Td ' (R/Z)d and Tx = x + ω, for some ω ∈ Ω, we call such operators

quasiperiodic, and denote them by Hω,x, and we call ω the frequency. When a ≡ 1, we

call these operators Schrödinger operators. These will be our main focus, though we will

occasionally consider more general objects.

The spectral theory of these operators is quite rich, and has been the subject of many

works spanning the fields of mathematical physics, spectral theory, dynamical systems, and

harmonic analysis, among others.

This work will focus on three properties of these operators (and their generalizations):
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1. Regularity of the Lyapunov exponent;

2. Bounds in quantum dynamics;

3. Fractal properties of the associated spectral measures.

1.1 Motivation: some physics

Quasiperiodic operators arise very naturally in condensed matter physics. The effective

tight-binding model in condensed matter physics allows us to construct a Hamiltonian for

an electron in a 2D crystal lattice under the influence of a perpendicular magnetic field. A

suitable gauge transform allows us to express this 2D problem as an effective 1D problem

modeled by a quasiperiodic operator.

One of the most well-studied and well-understood examples which arises from such a situation

is the almost Mathieu operator (AMO), which corresponds to a ≡ 1 and f(x) = 2λ cos(2πx).

Introduced in the late 1970s, the AMO (also called Harper’s model in physics literature) has

been the source of many numerical studies, and a plot of its spectrum was the source of

the first example of a fractal in physics; it has been the subject of intensive study, in both

mathematics and physics literature, ever since.

A great deal is now known about the AMO, and it is a natural question whether methods

used to study the AMO are applicable to more general operators. In the past two decades,

this has been extensively studied for quasiperiodic operators of the form (1.1) with analytic

f. Notable works include Avila’s Global Theory for 1-frequency operators and its extension

to Jacobi operators. However, there are have been efforts, both preceding (see e.g. [6, 7, 54])

and following (see e.g. [10, 11, 12, 23, 55, 59]) the development of Avila’s theory, to consider

more general objects which do not fall under the umbrella of Global Theory. Among other

directions are the following: one route is to consider multi-frequency quasiperiodic operators

2



and another is to consider 1-frequency quasiperiodic operators with a non-quasiperiodic

background. Addressing these two situations is the main objective of this work.

We emphasize that there are two major sources of difficulty in these scenarios. For one,

studying multi-frequency operators is fraught with issues arising from the interplay between

the different components of the frequency. Moreover, Jacobi operators may contain zero

off-diagonal entries, which introduces singularities when trying to use existing methods.

Combined, these two notions have been shown to cause problems with certain arguments

associated with Global Theory [25]. An important property of our general work on multi-

frequency operators is that we neither require a(x) to be bounded away from zero, nor

do we restrict the frequencies ω we consider. Applications of our general work do impose

certain restrictions on a and ω, but only when necessary. Secondly, adding non-quasiperiodic

backgrounds destroys much of the dynamical systems behavior which underpins the Global

Theory.

The central object of our study is the so-called Lyapunov exponent, which was used so

fruitfully to study spectral problems associated to the AMO and related operators.

1.2 Transfer matrices and Lyapunov exponents

When one explores spectral theoretic questions about quasiperiodic operators, a key role is

played by solutions of the eigenequation:

Hω,xψ = Eψ, (1.2)
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where E ∈ C. Any solution to the eigenequation can be reconstructed from the n-step

transfer matrix

1∏
k=n

f(T kω (x))− E −1

1 0

 (1.3)

using the identity

ψ(n+ 1)

ψ(n)

 =
1∏

k=n

f(T kω (x))− E −1

1 0


ψ(1)

ψ(0)

 . (1.4)

From a dynamical systems point of view, the transfer matrix is an example of a cocycle, and

it is often useful to study properties of transfer matrices by studying more general cocycles

instead.

A cocycle is a particular example of a dynamical system which arises in ergodic theory;

cocycles are dynamical systems on vector bundles which preserve the linear bundle structure

and induce a measure-preserving dynamical system on the base space. A particular class of

examples are the quasiperiodic cocycles defined over (C2,Td), with the underlying dynamical

system given by a shift on the d-dimensional torus, Td ' Rd/Zd ' [0, 1]d. More concretely,

let M(2,C) be the set of 2×2 matrices with complex entries, let Td denote the d-dimensional

torus, and for ω ∈ Td, let Tω : Td → Td be given by Tωx = x + ω. We call ω the frequency

of the shift. A d-dimensional quasiperiodic cocycle is a pair (A, ω) ∈ C(Td,M(2,C)) × Td

when viewed as a linear skew product: (A, ω) acting on C2 × Td with

(A, ω)(w, x) = (A(x)w, Tωx). (1.5)

The cocycle iterates are given by

(A, ω)N = (AN , Nω), (1.6)
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where

AN(x, ω) = A(x+ (N − 1)ω) · A(x). (1.7)

Throughout this work, we use the term cocycle to describe AN(x, ω).

As we noted above, the study of quasiperiodic cocycles has immediate applications to the

study of one-dimensional (and quasi-one-dimensional) quasiperiodic operators Hω,x : the

associated transfer matrix:
1∏

j=N

E − v(x+ jω) −1

1 0

 .

describes a cocycle, with

A(x) =

E − v(x) −1

1 0

 .

Cocycles of the above form are typically called Schrödinger cocycles.

Schrödinger cocycles are always SL(2,R) cocycles. We may also consider quasiperiodic

Jacobi operators on L2(Z) given by hω,x, where

(hω,xψ)(n) = a(x+ (n− 1)ω)ψ(n− 1) + a(x+ nω)ψ(n+ 1) + v(x+ nω)ψ(n), (1.8)

where v is as in the Schrödinger case, and a : Td → C. We can define an analogous cocycle

to study these operators:

A(x) =

(E − v(x)) −a(x− ω)

a(x) 0

 (1.9)

The fundamental difference between the Schrödinger and Jacobi case, though, is that, based

on the choice of function a, the cocycle need not be SL(2,R). In fact, it could have zero

5



determinant somewhere. When a cocycle has zero determinant somewhere, we say it is

singular, and we call the points where the determinant vanishes singularities.

The asymptotic behavior of a cocycle is captured by the Lyapunov exponent. We begin by

defining

L′N(A, ω, x) =
1

N
ln ‖AN(x, ω)‖ . (1.10)

Denote

L′N(A, ω) =

∫
Td
L′N(A, ω, x). (1.11)

It follows by subadditivity considerations that the limit

L′(A, ω) = lim
N→∞

∫
Td
L′N(A, ω, x)dx (1.12)

exists, though it may be −∞, depending on the behavior of the cocycle. We call L′(A, ω)

the (upper) Lyapunov exponent of the cocycle (A, ω).

Remark 1. It does not matter what norm we put on the space of 2×2 matrices for use in this

definition, but it is often useful to consider the Hilbert-Schmidt norm: ‖A‖2
HS = tr(A∗A).

We typically ask two regularity questions about L′(A, ω), and each has consequences for the

spectral properties of the underlying operator:

1. Is L′ uniformly positive?

2. Is L′ a continuous function of A and/or ω?

For Schrödinger operators where the potential f is an analytic function, uniform positivity

of the Lyapunov exponent is typically indicative of Anderson localization (pure point spec-

6



trum with exponentially decaying eigenfunctions) and dynamical localization (boundedness

in time of the moments of the position operator) for a.e. parameter. We expand on this

below. Continuity, on the other hand, implies that spectral properties of an operator may be

obtained by studying operators which approximate the desired operator in a suitable sense.

For quasiperiodic operators, this is typically captured by varying the frequency; irrational

frequencies may be approximated by rational frequencies, and rational frequencies create

periodic operators, which are usually easier to understand.

1.3 Quantum dynamics

Given a (quasiperiodic) Schrödinger operator of the form (1.1), with a ≡ 1, an object often

of physical interest is the time-evolution: e−itHT,x . Physically, this describes how an initial

state, ψ evolves over time under the influence of the Hamiltonian HT,x. One often wants to

know if the operator HT,x is localized or not. Two related but different notions are Ander-

son localization and dynamical localization. An operator exhibits Anderson localization if

its spectrum is pure point and the corresponding eigenfunctions decay exponentially. Dy-

namical localization (a stronger and more physically relevant notion) is characterized by

boundedness in time of the moments of the position operator (defined below). It is well

known that Anderson localization is highly unstable with respect to various perturbations.

For quasiperiodic operators, it depends very sensitively on the arithmetics of the phase (a

seemingly irrelevant parameter from the point of view of the physics of the problem), and

doesn’t hold generically [49]. It can also be destroyed by generic rank one perturbations

[31, 22]. This instability is therefore also present for the - very physically relevant - notion

of dynamical localization.

Let us consider dynamical localization more concretely. Consider the time-averaged quantity:

7



a(n, T ) =
2

T

∫ ∞
0

e2t/T 1

2

(∣∣〈e−itHω,xδ0, δn
〉∣∣2 +

∣∣〈e−itHω,xδ1, δn
〉∣∣2) dt, (1.13)

where δn(m) = 1 when m = n and 0 otherwise. The moments of the position operator are

given by

〈|X|p(T )〉 =
∑
n∈Z

(1 + |n|)pa(n, T ). (1.14)

Moments of the position operator for generic rank one perturbations of many operators

with a.e. (in phase) dynamical localization are unbounded in time. This bizarre situation

is partially rescued by a result of [20, 19]: when eigenfunctions have an additional SULE

(semi-uniform localization) property, the moments of the position operators of all rank-one

perturbations grow at most power-logarithmically (see Chapter 5 for the definition of SULE

and a further discussion). SULE has since been proved for all operators with localization

that come from physically realizable models. From this point of view, power-logarithmic

bounds of the moments are the stable - and therefore physically relevant - property, making

it worthwhile to prove directly for operator families with (expected) a.e. (in phase) local-

ization, bypassing the technically difficult localization proof. This, in particular, includes

one-dimensional quasiperiodic operators Hω,x with positive Lyapunov exponent.

1.4 Fractal behavior of spectral measures

Recall that, given a self-adjoint operator A on a Hilbert space H, the spectrum of A is given

by the set

σ(A) = {λ ∈ R : (A− λId) is not invertible} . (1.15)
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The functional calculus allows this set to be decomposed into three disjoint subsets: the

pure point, singular continuous, and absolutely continuous components: σpp, σsc, and σac,

respectively. These may be studied via the operator’s spectral measures. One of the most

difficult objects to study has been the singular continuous spectrum, largely because singular

continuous measures are defined by what they are not: neither pure point nor absolutely

continuous. This rough definition, however, eliminates the fine structure of the singular

continuous spectrum: for example, some measures are ‘closer’ to being pure point than

others.

Classifying these measures goes back to work by Rogers and Taylor [63, 64], where measures

were decomposed with respect to the classical Hausdorff measures. This theory has been

applied to the spectral theory of Schrödinger operators by various authors (see [56, 57, 58,

37, 38, 32] among others). One limitation of this theory, however, is that the so-called zero-

dimensional regime is still quite rich: zero-dimensional measures need not be pure point. This

leads one to the natural question: can we stratify the zero-dimensional regime any further?

As we will see, the answer is yes, and is, in fact, beneficial, with a wealth of consequences.

1.5 Outline

The results of this thesis are based on the four works [57, 46, 62, 61] and may best be

summarized as a study of the regularity of Lyapunov exponents, along with consequences

of that regularity. This work may be divided into three roughly interconnected pieces:

regularity of the Lyapunov exponents (Chapters 2 and 3), consequences for the quantum

dynamics of Schrödinger operators (Chapter 4), and the general fractal structure of spectral

measures and its relation to the Lyapunov exponent and quantum dynamics (Chapter 5).

Regularity (either positivity or continuity) of Lyapunov exponents makes an appearance in

every chapter, and plays a critical role in our discussion of quantum dynamics in Chapter
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4. As we will see, there is also strong interplay between the fractal structure of spectral

measures and bounds in quantum dynamics (see Section 5.7 and Chapter 4). Moreover,

positivity of the Lyapunov exponent has implications for this fractal structure.

The Lyapunov exponent plays a key role in this work, and we devote the first two chapters

to exploring its regularity. We explore the continuity of the Lyapunov exponent for multi-

frequency quasiperiodic cocycles in the abstract setting of non-identically singular cocycles

in Chapter 2. To date, the only other abstract result as strong as ours for quasiperiodic

operators with dynamics over Td is due to Bourgain [6]. In Chapter 3, we explore a suf-

ficient condition for the Lyapunov exponent of ‘perturbed’ operators to remain uniformly

positive. Similar results for ‘unperturbed’ operators date back to Sorets and Spencer [69]

and Bourgain [5].

We then turn our attention to a careful analysis of the quantum dynamics of quasiperiodic

Schrödinger operators. As we have already discussed, there are various notions of localiza-

tion, but they are typically unstable. In Chapter 4, we consider a lite version of localization

which is, in fact, stable under perturbations. For quasiperiodic Schrödinger operators in the

regime of positive Lyapunov exponent, various authors have shown that the moments of the

position operator grow slower than any polynomial. We refine these results by employing

techniques pioneered by Bourgain in order to show that positivity of the Lyapunov exponent

actually implies logarithmic growth of the moments. These results are based on joint work

with Jitomirskaya [46].

The spectrum of any self-adjoint operator may be decomposed into three parts: pure point,

singular continuous, and absolutely continuous. From the standpoint of analysis, the first and

third objects are fairly well-understood, while the second is not: it is typically defined as that

which is neither pure point nor absolutely continuous. This odd definition presents a wealth

of interesting questions. One method of studying the rich structure of singular continuous

spectrum is by studying the inherent fractal properties. This is the subject of Chapter 5. We
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develop a general fractal dimension, based on the classical notion of Hausdorff dimension,

and explore Schrödinger operators via this tool. In particular, we explore how positivity

of the Lyapunov exponent implies singularity of spectral measures and how continuity of

spectral measures implies lower bounds in quantum dynamics. This discussion is based on

earlier work by Jitomirskaya and Last [37], Landrigan [56], Last [58], and our joint work

with Landrigan [57].
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Chapter 2

Lyapunov exponents I: continuity of

Lyapunov exponents for M(2,C)

cocycles

2.1 Preliminaries

In this chapter, we study continuity properties of Lyapunov exponents related to ana-

lytic quasiperiodic cocycles. Such properties have been studied extensively for analytic

Schrödinger cocycles both when d = 1 and d > 1, as well as non-identically singular M(2,C)

cocycles with when d = 1. Up until now, continuity for non-identically singular M(2,C) co-

cycles when d > 1 is known only when the frequency satisfies a Diophantine condition. Here,

we improve this to include all frequencies by extending Bourgain’s multifrequency SL(2,C)

result to cover the general M(2,C) case.

We now proceed to give (or recall) the formal definitions necessary to state our main theorem.
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We are interested in analytic quasiperiodic cocycles. That is, quasiperiodic cocycles (A, ω),

where A is taken to be an analytic M(2,C)-valued function on Td with an analytic extension,

continuous up to the boundary, to the complex strip |=zj| < ρ, ρ > 0, for all 1 ≤ j ≤ d.

We denote the space of such A by Cρ(Td,M(2,C)). We put a natural metric on the space of

these cocycles:

d((A, ω), (B,ω′)) = ‖A−B‖ρ + ‖ω − ω′‖Td , (2.1)

where

‖A−B‖ρ = sup
z:|=zj |<ρ

|A(z)−B(z)| (2.2)

and ‖ω − ω′‖Td is the usual norm on Rd/Zd = Td. Note that any analytic function on Td has

an analytic extension to some complex strip |=zj| < ρ, ρ > 0. This observation may be used

to define an inductive topology on the space of all analytic cocycles:
⋃
ρ>0Cρ. Moreover, we

will assume det(A(x)) is not identically zero.

Remark 2. Note that any M(2,C) cocycle AN(x) for which det(A(x)) is not identically zero

can be renormalized to form an SL(2,C) cocycle (see e.g.[35]), however the resulting cocycle

may lose boundedness if det(A(x)) has zeros. This is precisely the nature of difficulty when

extending SL(2,C) results to the M(2,C) case.

The (upper) Lyapunov exponent is then defined as

L′(A, ω) =
1

N

∫
Td

ln ‖AN(x, ω)‖ dx. (2.3)

Note that, while L′(A, ω) need not be non-negative, the related object

L(A, ω) = lim
N→∞

∫
Td
LN(Ã, ω, x)dx, (2.4)
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is, where Ã ∈ SL(2,C) is a renormalization of A :

Ã =
1

| detA|1/2
A. (2.5)

Moreover, LN and L′N are related by the following relation:

LN(A, ω) = L′N(A, ω)− 1

2

∫
Td

ln | det(A(x))|dx. (2.6)

It follows that, when ln | det(A(x))| ∈ L1, both L and L′ share the same regularity properties.

In particular, if one is continuous, in some sense, then so is the other. Throughout, we will

occasionally write LN(A, x) or LN(x) in place of LN(A, ω, x), when there can be no ambiguity.

Similarly, we will occasionally write LN(A) in place of LN(A, ω) when ω is clear.

Remark 3. We would like to make a note about a convention that we use. Throughout

this paper, we use capital letters (e.g. C,C ′, etc.) to denote constants which are sufficiently

large, and lower-case letters to denote constants which are sufficiently small (e.g. c, c′,

etc.). How large/small depends, unless otherwise specified, on the dimension, d, and uniform

measurements of the cocycle, A.

We prove the following:

Theorem 2.1.1. Suppose ω = (ω1, ..., ωd) ∈ Td. Let (A, ω) be an analytic quasiperiodic

M(2,C)-cocycle. Suppose, moreover, that det(A) 6≡ 0. Then L(A, ω) satisfies the following.

(a) L(A, ω) is continuous in A for any ω ∈ Td.

(b) L(A, ω) is jointly continuous in A and ω for ω such that k ·ω 6= 0 for any k ∈ Zd\ {0} .

Remark 4. Analyticity is necessary for continuity of L(A, ω), in general. It is well-known

that the Lyapunov exponent is discontinuous in C0-topology at all non-uniformly hyperbolic

cocycles. There are also examples in Cr, 1 ≤ r ≤ ∞. Wang-You [72] constructed SL(2,C)
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cocycles which are C∞ with L(A, ω) > 0, yet may be approximated in C∞ topology by cocy-

cles with zero Lyapunov exponent. Similarly, Jitomirskaya-Marx [43] constructed examples

of M(2,C) cocycles which are discontinuous in C∞-topology.

Remark 5. Part (b) of the above theorem is optimal, in the sense that there are examples

of cocycles A0 for which L(A0, ω) is a discontinuous function of ω at frequencies such that

‖k · ω‖ = 0 for some 0 6= k ∈ Zd. Indeed, consider any 0 6= k = (k1, ..., kd) ∈ Zd. Let

λ(x) = e2πik·xe−2π(k1+···+kd), and define

A0(x) =

eλ(x) 0

0 e−λ(x)

 . (2.7)

This generates an analytic quasiperiodic cocycle, (A0, ω). We can easily verify the following:

1. If ‖k · ω‖ = 0, then L(A0, ω) =
(

2
π

)
e−2π(k1+···+kd);

2. If ‖k · ω‖ 6= 0, then L(A0, ω) = 0.

Thus L(A0, ω) is continuous at (A0, ω) for any ω such that ‖k · ω‖ 6= 0 and is discontinuous

at (A0, ω) for all ω such that ‖k · ω‖ = 0.

The first result on continuity of L for analytic cocycles is a theorem of Goldstein and Schlag

[30], who proved continuity in E (in fact, they proved Hölder continuity) for Schrödinger

cocycles with d = 1, under the assumption that the frequency satisfies a strong Diophantine

condition. The first result where (a) and (b) were established was [9], where it was done

for 1-frequency SL(2,C) cocycles. See the next remark for a brief summary of the relevant

historical developments of (a) and (b).

Remark 6. 1. When d = 1, (a) and (b) were proved in [9] for SL(2,C) cocycles, and

later extended in [35] for non-identically singular M(2,C) cocycles under a Diophantine

frequency assumption.
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2. When d ≥ 1, (a) and (b) were proved by Bourgain for Schrödinger cocycles (though

the argument clearly applies to SL(2,C) cocycles) [6].

3. When d = 1, (a) was proven by Avila, Jitomirskaya, and Sadel for all analytic M(n,C),

with any n, cocycles [1] by a different method (see also [43]).

4. When d ≥ 1, (a) was proven by Duarte and Klein for all analytic M(n,C), with any

n, cocycles, assuming a fixed Diophantine frequency [23, 26].

5. As far as we know, Theorem 2.1.1 is the first result establishing joint continuity for

non-SL(2,C) cocycles, and continuity in the cocycle for all frequencies.

This result applies to particular instances of the operator we will consider in Chapter 3, as

we now describe. The multifrequency analytic quasiperiodic Jacobi operator is defined as

(hx,ωψ)(n) = a(x+ (n− 1)ω)ψ(n− 1) + a(x+ nω)ψ(n+ 1) + v(x+ nω)ψ(n), (2.8)

where v ∈ Cω
ρ (Td,R) and a ∈ Cω

ρ (Td,C). Solutions to the eigenequation Hψ = Eψ may be

recovered using the transfer matrix:

1∏
j=N

E − v(x+ jω) −a(x+ (j − 1)ω)

a(x+ jω) 0

 .

The transfer matrix may be realized as a cocycle by setting

A(x) =

E − v(x+ ω) −a(x− ω)

a(x) 0

 .

These cocycles are singular precisely when a(x) has zeros; we assume a(x) does not vanish

identically. The regularity of the Lyapunov exponent for such cocycles when d = 1 is

already well-understood [35]. Consider, moreover, the quasiperiodic operator with a periodic
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background. That is, consider:

(h̃x,ωψ)(n) = (hx,ωψ)(n) + vper(n)ψ(n), (2.9)

where vper is a q-periodic sequence of real numbers. Solutions to the eigenequation for this

operator may be recovered from the new transfer matrix

1∏
j=N

E − v(x+ jω)− vper(j) −a(x+ (j − 1)ω)

a(x+ jω) 0

 .

This transfer matrix may be realized as a quasiperiodic cocycle by “regrouping along the

period” and setting

A(x) =
1∏
j=q

E − v(x+ jω)− vper(j) −a(x+ (j − 1)ω)

a(x+ jω) 0

 .

We can now define the Lyapunov exponent of this cocycle, L(E, v, a, vper, ω), as usual, and

it will, in fact, agree with the Lyapunov exponent associated with the transfer matrix. An

immediate corollary of Theorem 2.1.1 is the following.

Corollary 2.1.1. Consider the multifrequency quasiperiodic Schrödinger operator with pe-

riodic background given by (2.9). Suppose v ∈ Cω
ρ (Td,R) and a ∈ Cω

ρ (Td,C) do not vanish

identically, and suppose vper is a q-periodic sequence of real numbers. Then we have the

following.

1. L(E, v, a, vper, ω) is continuous in E, v, a and vper for any ω ∈ Td.

2. L(E, v, a, vper, ω) is jointly continuous in E, v, a, vper and ω for ω such that k · ω 6= 0

for any k ∈ Zd\ {0} .

Statements like Theorem 2.1.1, for both d = 1 and d > 1, have been studied extensively by
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many authors under suitable restrictions on the cocycle. Two particular methods have been

used effectively in the past to establish continuity of L(A, ω) for quasiperiodic cocycles: one,

used in [1] to prove continuity for arbitrary 1-frequency cocycles, is based on complexification

of the cocycle and appealing to the notion of dominated splitting; recently, Duarte and Klein

[25] showed that there are large classes of multifrequency quasiperiodic cocycles which do

not have dominated splitting, thus showing that this method cannot be used to address the

multifrequency case; the second method (c.f. [6, 9, 23, 35]) is an induction scheme using

the so-called Avalanche Principle and statistical properties of quasiperiodic cocycles. In this

paper, we adapt the second method.

Bourgain and Jitomirskaya [9] obtained joint continuity (as in (b)), a result that was essential

for Avila’s global theory, Ten Martini problem, and other important developments. It was

observed by Jitomirskaya, Koslover, and Schulteis that this argument extends to the case of

non-identically singular analytic cocycles which posses some analytic extension to a complex

strip. The argument of these results relies on two ideas: first, a statistical property known

as a large deviation theorem (LDT); and second, a general property of SL(2,C) matrices

with large norm, known as the Avalanche Principle (AP). The argument of [9] for d =

1 was based on the same basic ingredients as [30]: large deviation estimates LDT (i.e.

statistical properties of the cocycle) and Avalanche Principle; however, [9] constructed a

special inductive scheme to deal with arbitrary frequencies and joint continuity.

A large deviation estimate is an estimate of the form:

∣∣∣∣{x ∈ X : |f(x)−
∫
X

f(x)dµ(x)| > η

}∣∣∣∣ < ε(η)

where, ideally, ε is exponentially small in η. Such estimates were first used by Bourgain and

Goldstein [7] to establish Anderson localization for one-frequency quasiperiodic Schrödinger

operators, and they have since been extended [59] and play an important role in the study
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of various properties of quasiperiodic Schrödinger operators. For example, they have been

used recently to obtain estimates on quantum dynamics (c.f. [46, 41, 65] etc.).

The Avalanche principle was first introduced by Goldstein and Schlag [30] in their work on

Hölder regularity of the integrated density of states, and variations of the original statement

have been used in proofs of the continuity of L(A, ω) in various settings (c.f. [1, 9, 6, 35]).

The argument for SL(2,C) cocycles with d = 1 developed in [9] roughly proceeds as fol-

lows. First, the frequency is assumed to be irrational, since rational frequencies are well-

understood. Analyticity of the cocycle implies that LN(A, ω, x) is subharmonic in x with

a bounded subharmonic extension to the strip |=z| < ρ, for some ρ > 0. An analysis of

bounded subharmonic functions on the strip leads to estimates on the decay of the Fourier

coefficients of LN , and this, in turn, leads to an LDT of the form

|{x ∈ T : |LN(A, ω, x)− LN(A, ω)| > κ}| < e−cκq,

where κ and q relate to properties of the frequency, ω. Combining this with the Avalanche

Principle results in an estimate of the form

|LN0(A, ω)− LN1(A, ω)| < κ,

where N0 is an initial scale which depends on measurements of the frequency, κ is an error

which depends on measurements of the frequency and N0, and N1 is a multiple of N0 which

is not too large. This estimate is then used successively in an induction scheme to relate

LN0(A, ω) to L(A, ω), and continuity of L follows from continuity of LN0 .

When d > 1, serious technical issues arise which makes the arguments more complex. The

only general result for arbitrary frequencies is Bourgain [6], where an exact analogue of The-

orem 2.1.1 was established for Schrödinger cocycles (though the argument extends without
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issue to SL(2,C) cocycles). One of the goals of this paper is to illustrate the power of the

argument in [6] by extending it to a more difficult general M(2,C) case, while also providing

additional details and clarifications to the original argument.

The rest of this chapter is organized in the following way. In section 2.2 we briefly de-

scribe our argument. In Section 2.3 we recall the relevant facts about subharmonic and

plurisubharmonic functions, and use them to prove two essential measure estimates, Lemma

2.3.8 and Theorem 2.3.2. In Section 2.4, we prove joint continuity of LN(A, ω) for fixed

N and arbitrary ω. In Section 2.5 we recall the Avalanche Principle and prove Theorem

2.5.3, which we use throughout our induction scheme. In Section 2.6, we establish estimates

between LN(A, ω) at different scales when ω satisfies a Liouville-type condition. In Section

2.7, we establish estimates between LN(A, ω) at different scales when ω satisfies a mixed

Liouville-Diophantine condition. In Section 2.8 we use induction to extend the conclusions

of Sections 2.6 and 2.7 to larger length scales. Finally, in Section 2.9, we use our induction

result and finite-scale continuity to prove Theorem 2.1.1. We also provide an appendix,

where we provide proofs of the relevant plurisubharmonic function estimates from Section

2.3.

2.2 A brief description of our argument

In the SL(2,C) case, the major differences between d = 1 and d > 1 are largely a re-

sult of the interactions between the different components of the frequency. In particular,

LN(A, ω, x) is a bounded plurisubharmonic function (i.e. a multivariable function which is

subharmonic in each variable) which does not behave as well as a subharmonic function.

This makes the analysis necessary to obtain an LDT more technical. Moreover, there is no

longer a dichotomy between rational and irrational frequencies, but rather a trichotomy be-

tween frequencies whose components are purely Diophantine, purely Liouville (or rationally
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dependent), and those with some components which are Diophantine and some which are

Liouville (or rationally dependent). This complicates the argument in two ways. First, an

LDT can only be obtained for purely Diophantine ω, so an additional argument is needed

to obtain some (weaker) measure-theoretic estimate which is applicable when the frequency

is not purely Diophantine. Second, the inductive procedure necessary to relate LN0 to L is

different depending on what kind of ω we have.

Let us now take some time to briefly describe our argument. We follow the same general

structure as in [6], and our argument can be viewed as an extension of Bourgain’s. That is,

the main scheme of our proof is adapted from [6]. However, while our result is significantly

more general and more technically complex, our argument can be viewed as a clarifica-

tion of Bourgain’s main ideas, and hopefully, improves the readability of the argument. In

particular, we provide missing details in the arguments in Section 2.6 and Section 2.8 and

summarize the main ideas throughout. The original argument is not directly applicable in

our general setting due to a few technical issues that arise while considering general cocycles.

In particular, uniform (in N) pointwise boundedness and non-negativity of LN(x), as well

as quantitative estimates on |LN(x)− LN(x+ ω)|, are used extensively in Bourgain’s work,

while they no longer hold if det(A(x)) is allowed to vanish, as, say, in the case of Jacobi

cocycles; these need to be dealt with uniformly in N.

Here, we give a brief description of Bourgain’s scheme and the key difficulties in its adapta-

tion.

The first step is to establish a large deviation estimate under suitable assumptions made on

ω. As we noted above, this is typically arrived at by observing that LN(A, ω, x) is plurisub-

harmonic with a bounded extension to a strip. Since we consider cocycles which may have

singularities, LN(A, ω, x) need not be bounded. Fortunately, following ideas introduced in

[23], while we cannot say LN(A, ω, x) is uniformly pointwise bounded, we can say it is uni-

formly L2 bounded. It turns out that this is sufficient to perform the necessary analysis to
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obtain an LDT for ω which posses Diophantine-like properties up to suitably large scales

(see Theorem 2.3.2).

The uniform large deviation estimate we establish here (see Theorem 2.3.2) is different from

the uniform large deviation estimate established in [23] (c.f. [23] Theorem 6.6) in one crucial

aspect: the result of Duarte and Klein requires an explicit Diophantine condition on the

frequency, whereas our result requires a restricted Diophantine condition. In particular, every

ω = (ω1, ..., ωd) ∈ Td, where ω1, ..., ωd are irrational and rationally independent, satisfies a

restricted Diophantine condition but need not satisfy a Diophantine condition. Due to the

generality of the frequencies we consider, we lose any control over the modulus of continuity.

It is this difference, however, which allows us to establish continuity which does not require

a Diophantine assumption.

Our second step is to establish quantitative estimates on |LN(A, ω, x) − LN(A, ω, x + a)|,

which we use when our frequency is such that our LDT is not applicable. Our analysis of

the plurisubharmonic function LN(A, ω, x) allows us to say that, for any a ∈ Td, LN(A, ω, x)

and LN(A, ω, x+ a) are close, away from a set of small measure (see Lemma 2.3.8).

Next, we establish quantitative estimates on |LN(A, ω, x)− LN(A, ω, x + ω)|, which we use

throughout to relate LN0(A, ω, x) and LN1(A, ω, x). In the Schrödinger case (and, in fact, in

the case of nowhere singular cocycles) this is a simple consequence of the everywhere invert-

ibility of A; we consider cocycles which may be non-invertible somewhere. Once again, we

are able to use our uniform L2 boundedness, along with a uniform version of the Lojasiewicz

inequality (see Lemma 2.3.3), to prove that this difference is small away from an exponen-

tially small set (see Lemma 2.3.2). This is actually a recurring theme: any time Bourgain

would have appealed to pointwise boundedness, we appeal to a cutoff argument which takes

advantage of L2 boundedness and the Lojasiewicz inequality.

Next, we turn our attention to something which, at first glance, might seem trivial. In
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the SL(2,C) case, the entire argument relies on the well-understood fact that LN(A, ω)

is jointly continuous for any (A, ω) when N is fixed. The typical argument for this relies

on boundedness of LN(A, ω). Since we no longer have boundedness, it is not immediately

obvious why continuity should still hold. In the not-identically singular 1-frequency case [35],

joint continuity was proved using a cutoff argument and Diophantine considerations. In the

multifrequency case with Diophantine frequency [23], continuity was proved using ergodicity

considerations which required restrictive assumptions on the frequency. Neither method is

wholly applicable in our setting, as we want a result for all frequencies. Using a uniform

Lojasiewicz inequality, we are able to adapt the cutoff argument of Jitomirskaya, Koslover,

and Schulteis and extend it to arbitrary frequencies.

Our next step is to establish our base estimate relating LN0(A, ω) to LN1(A, ω), for N1 not

too large, when ω is not Diophantine (see Theorem 2.6.1). We prove this as a consequence

of the Avalanche Principle and Lemma 2.3.8. This argument is of critical importance, as

it provides the framework for estimates whenever the frequency is not purely Diophantine,

and we appeal to it again when we prove Theorem 2.7.1.

We then turn our attention to relating LN0(A, ω) to LN1(A, ω), for N1 not too large, when

some components of ω are Diophantine and other components are not (see Theorem 2.7.1).

The case when the frequency is purely Diophantine is a special case of this. Our argument

here relies on applying Lemma 2.3.8 in the variables corresponding to the non-Diophantine

components of ω and applying Theorem 2.3.2 in those components which are Diophantine.

This, eventually, leads us to a situation where the proof of Theorem 2.6.2 is applicable.

Remark 7. Our estimates in Theorems 2.6.1 and 2.7.1 differ from the corresponding esti-

mates in the SL(2,C) case (c.f. [6] Corollary 3.12 and Lemma 3.26) by a small power of κ,

which is a consequence of using a uniform L2 estimate for LN(A, x), rather than a uniform

pointwise bound.
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Our final step is an inductive argument allowing us to iterate our initial estimates to larger

scales (see Theorem 2.8.1). This relies on a delicate argument where we alternate between

applying a toral automorphism (i.e. a change of variables which does not change the value

of LN(A, ω)) and applying Theorem 2.7.1.

The continuity of L then follows from Theorem 2.8.1 and continuity of LN(A, ω).

2.3 Plurisubharmonic functions and related estimates

In this section, we present the relevant facts and estimates related to plurisubharmonic

functions defined on complex strips in Cd. The results here are based on results found in

Chapter 6 of [23] and we apply them to recover results from Section 1 of [6]. We present

the statements of the main results here, mostly without proof. We provide proofs of Lemma

2.3.7, Theorem 2.3.2, and Lemma 2.3.8, as we will make repeated use of these results in later

sections. A detailed discussion and proofs of the remaining results is provided in ??.

One of the major obstacles to extending results about Lyapunov exponents for Schrödinger

cocycles to general M(2,C) cocycles is the lack of uniform pointwise boundedness in the

latter case. It turns out, however, that a uniform Lp estimate is sufficient for our argument.

The following lemma establishes such a uniform estimate.

Lemma 2.3.1 ([23] Proposition 6.3). Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically

0. Then there are δ = δ(A) > 0 and C = C(A) <∞ such that for any B ∈ Cω
ρ (Td,M(2,C)),

with ‖B − A‖ρ < δ, then

‖L′n(B)‖L2(Td) ≤ C (2.10)
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and

‖ln | det(B(x))|‖L2(Td) ≤ C. (2.11)

By the definition of LN , we have the following corollary.

Corollary 2.3.1. Under the assumptions of Lemma 2.3.1, we have

‖Ln(B)‖L2(Td) ≤ C. (2.12)

The main application of this lemma will be in excising certain small sets of “bad” points

(where the pointwise bound is large) and showing that the integral of LN(x) over these bad

sets is small by Hölder’s inequality.

Another major obstacle is relating LN(x) to LN(x+ω). In the SL(2,C) case, the well-known

estimate

|LN(x)− LN(x+ ω)| < C
1

N

holds. Such an estimate does not hold, in general, for non-invertible cocycles. However, it

is possible to show that such an estimate holds for a large set of x.

Lemma 2.3.2 ([23] Proposition 6.4). Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically

0. Then there are δ = δ(A) > 0 and C = C(A) < ∞ such that for any 0 < a < 1, if

B ∈ Cω
ρ (Td,M(2,C)) with ‖B − A‖ρ < δ, then

|L′N(B, x)− L′N(B, x+ ω)| ≤ CN−a (2.13)

holds for all N ≥ 1 and for all x 6∈ FN , where |FN | < e−N
1−a
. Moreover,

ln | detAN(x)| − ln | detAN(x+ ω)| ≤ CN−a (2.14)
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in the same set FN .

Again, the definition of LN allows for an immediate corollary.

Corollary 2.3.2. Under the assumptions of Lemma 2.3.2, we have

|LN(B, x)− LN(B, x+ ω)| ≤ CN−a (2.15)

holds for all N ≥ 1 and for all x 6∈ FN , where |FN | < e−N
1−a
.

Both of these estimates relies on a uniform version of the Lojasiewicz inequality, which is of

independent interest to us.

Lemma 2.3.3 ([23] Lemma 6.1). Let f(x) ∈ Cω
ρ (Td,C) be such that f(x) is not identically

zero. Then ther are constants δ = δ(f) > 0, S = S(f) < ∞, and b = b(f) > 0 such that if

g(x) ∈ Cω
ρ (Td,C) with ‖g − f‖ρ < δ, then

∣∣{x ∈ Td : |g(x)| < t
}∣∣ < Stb (2.16)

for all t > 0.

With these lemmas in hand, we may proceed with our analysis of LN(A, x). Our next goal

is to obtain finer control over LN(x), with the eventual goal of obtaining a large deviation

estimate. Large deviation estimates for quasiperiodic cocycles typically arise from suitable

decay of the associated Fourier coefficients (and ergodicity), so we begin by controlling the

behavior of the Fourier coefficients.

Remark 8. The following three lemmas may be recovered via a synthesis of the statements

and proofs in Chapter 6 from [23], and are stated for L′N . We will state corollaries of these

results for LN afterwards. For convenience, we provide a discussion of the proofs of these

three results in the Appendix.
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Lemma 2.3.4. Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically 0. Then there are

δ = δ(A) > 0 and C = C(A, ρ) < ∞ such that for any N ≥ 1 and B ∈ Cω
ρ (Td,M(2,C))

with ‖B − A‖ρ < δ,

∑
k∈Zd,|k|>K0

|L̂′N(B, k)|2 ≤ C
1

K0

(2.17)

∑
k∈Zd,|k|>K0

| (ln | det(BN)|)∧ (k)|2 ≤ C
1

K0

(2.18)

Though we are interested in cocycles on Td, with d > 1, it is often possible to obtain results

for d > 1 from the corresponding d = 1 result applied in each variable. We will occasionally

use this technique when applying our Fourier coefficient estimate, so we also include the

superior estimate we have when d = 1.

Lemma 2.3.5. Let A ∈ Cω
ρ (T,M(2,C)) with det(A) not identically 0. Then there are

δ = δ(A) > 0 and C = C(A, ρ) <∞ such that for any N ≥ 1 and B ∈ Cω
ρ (T,M(2,C)) with

‖B − A‖ρ < δ,

|L̂′N(B, k)| ≤ C
1

k
(2.19)

| (ln | det(BN)|)∧ (k)| ≤ C
1

k
(2.20)

We are now in a position to discuss a large deviation estimate. The general strategy is to

combine the estimates from Lemma 2.3.2 and Lemma 2.3.4 to obtain an L1 estimate, which

we then improve using the following fact about BMO (bounded mean oscillation) functions.

We present this next estimate using L′N(x), but it, in fact, holds for plurisubharmonic func-

tions defined on strips in Cd which obey certain a priori estimates.
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Lemma 2.3.6. Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically 0. Moreover, suppose

∥∥∥∥L′N(A, x)−
∫
Td
L′N(A, x)dx

∥∥∥∥
L1

< ε. (2.21)

Then there is c = c(d) such that

∣∣∣∣{x ∈ Td :

∣∣∣∣L′N(A, x)−
∫
Td
L′N(A, x)dx

∣∣∣∣ > εc
}∣∣∣∣ < eε

−c
. (2.22)

Remark 9. Note that if we assume (2.21) holds for ln | det(AN(x))| instead, then we may

replace L′N in the conclusion with ln | det(AN(x))|.

These results allow us to obtain a uniform large deviation estimate for LN(A, x), which will

be required in Section 2.7. We present the large deviation estimate in two steps, for clarity.

Lemma 2.3.7. Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically 0. Suppose ω ∈ Td is

such that

‖k · ω‖ > δ0

for all 0 < |k| < K0. Moreover, suppose

R >
√
K0δ

−1
0 .

Then there are δ = δ(A) > 0 and C = C(A, ρ) <∞ such that for any B ∈ Cω
ρ (Td,M(2,C))

with ‖B − A‖ρ < δ,

∣∣∣∣∣
{
x ∈ Td :

∣∣∣∣∣ 1

R

R−1∑
j=0

L′N(B, x+ jω)− 〈L′N(B)〉

∣∣∣∣∣ > CρK
−c
0

}∣∣∣∣∣ < e−CρK
c
0 . (2.23)

Proof. Consider ∣∣∣∣∣ 1

R

R−1∑
j=0

L′N(B, x+ jω)−
∫
Td
L′N(B, x)dx

∣∣∣∣∣ .
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We have:

1

R

R−1∑
j=0

L′N(B, x+ jω) =
1

R

R−1∑
j=0

∑
k∈Zd

L̂′N(k)(B)e2πik·(x+jω) (2.24)

=
1

R

R−1∑
j=0

L̂′N(0)(B) +
1

R

R−1∑
j=0

∑
0<|k|≤K0

L̂′N(k)(B)e2πik·(x+jω) (2.25)

+
1

R

R−1∑
j=0

∑
|k|>K0

L̂′N(k)(B)e2πik·(x+jω) (2.26)

= (I) + (II) + (III). (2.27)

Observe that we have

(I) =

∫
Td
L′N(B, x)dx.

Thus

(I)−
∫
Td
L′N(B, x)dx = 0,

Next, for 0 < |k| ≤ K0 we may appeal to our condition on ω to conclude

∣∣∣∣∣ 1

R

R−1∑
j=0

e2πik·jω

∣∣∣∣∣ . 2

R ‖kω‖
≤ 2K

−1/2
0 .

Thus

‖(II)‖L2 ≤ CK
−1/2
0 . (2.28)

Here C depends only on A.

Finally, for |k| > K0, we know
∑
|k|>K0

|L̂′N(k)(B)|2 < C|K0|−1, where C depends only on
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A. Moreover, |e2πijk·ω| = 1, so

‖(III)‖2 ≤

 ∑
|k|>K0

|ûn(k)|2
1/2

(2.29)

< CK
−1/2
0 . (2.30)

Hence ∥∥∥∥∥ 1

R

R−1∑
j=0

L′N(B, x+ jω)−
∫
Td
L′N(B, x)dx

∥∥∥∥∥
L1

< CK
−1/2
0 .

Now we appeal to Lemma 2.3.6 applied to the function 1
R

∑R−1
j=0 LN(B, x+jω)−

∫
Td LN(B, x),

which completes our proof.

Remark 10. It is easy to see from the proof that this result also holds for ln | det(BN(x))|

in place of L′N(B, x).

Theorem 2.3.1. Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically 0. Suppose ω ∈ Td

is such that

‖k · ω‖ > δ0

for all 0 < |k| < K0. Moreover, suppose

N > K0δ
−1
0 .

Then there are δ = δ(A) > 0 and C = C(A, ρ) <∞ such that for any B ∈ Cω
ρ (Td,M(2,C))

with ‖B − A‖ρ < δ,

∣∣{x ∈ Td : |L′N(B, x)− L′N(B)| > CρK
−c
0

}∣∣ < e−CρK
c
0 . (2.31)
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Proof. Apply Lemma 2.3.7 with R =
√
N. We obtain

∣∣∣∣∣∣
x ∈ Td :

∣∣∣∣∣∣ 1√
N

√
N−1∑
j=0

L′N(B, x+ jω)− 〈L′N(B)〉

∣∣∣∣∣∣ > CρK
−c
0


∣∣∣∣∣∣ < e−CρK

c
0 . (2.32)

Moreover, recalling

∣∣{x : |L′N(B, x+ jω)− L′N(B, x)| < C|j|N−1/2
}∣∣ < e−N

1/2

,

where C depends only on A, away from a set of measure at most R2e−N
1/2

< e−N
1/3
, we have

1√
N

√
N−1∑
j=0

L′N(B, x+ jω) =
1√
N

√
N−1∑
j=0

(L′N(B, x) +O(|j|/N)) (2.33)

= L′N(B, x) +O(
√
N/N) (2.34)

≤ L′N(B, x) + CK
−1/2
0 . (2.35)

Triangle inequality thus yields

∥∥∥∥LN(B, x)−
∫
Td
LN(B, x)

∥∥∥∥
L1

< CK
−1/2
0 .

We now conclude in the same was as before.

Remark 11. The proof clearly works for ln | det(BN(x))| as well.

We can combine these results for L′N and ln | det(BN(x))|, and appeal to our definition of

LN , to obtain the desired result for LN .

Theorem 2.3.2. Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically 0. Suppose ω ∈ Td

is such that

‖k · ω‖ > δ0

31



for all 0 < |k| < K0. Moreover, suppose

N > K0δ
−1
0 .

Then there are δ = δ(A) > 0 and C = C(A, ρ) <∞ such that for any B ∈ Cω
ρ (Td,M(2,C))

with ‖B − A‖ρ < δ,

∣∣{x ∈ Td : |LN(B, x)− LN(B)| > CρK
−c
0

}∣∣ < e−CρK
c
0 . (2.36)

At this point, we have suitable estimates for frequencies which obey a diophantine estimate

at certain length scales. We are interested, however, in general frequencies. The following

estimate will be used in the absence of a diophantine frequency. This follows as a consequence

of the Fourier coefficient decay estimate.

Lemma 2.3.8. Let A ∈ Cω
ρ (Td,M(2,C)) with det(A) not identically 0. Then there are δ =

δ(A) > 0 and C = C(A, ρ) <∞ such that for any B ∈ Cω
ρ (Td,M(2,C)) with ‖B − A‖ρ < δ,

and for a ∈ T small and κ > 0, we have, uniformly in N,

∣∣{x ∈ Td : |LN(B, x)− LN(B, x+ a)| > κ
}∣∣ < Cκ−3|a| (2.37)

Remark 12. We will need a to be small so that C(A)−1κ|a|−1 ≥ 1. This is necessary for us

to define K0 appropriately in our proof (see (2.46)).

Proof. We will prove this for d = 1. The general case follows from the d = 1 case and Fubini’s

theorem.

We have

LN(B, x) =
∑
k∈Z

L̂n(B, k)e2πk·x,
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so

LN(B, x)− LN(B, x+ a) =
∑
k∈Z

L̂n(B, k)e2πk·x(1− e2πk·a) (2.38)

=
∑
|k|<K0

+
∑
|k|≥K0

(2.39)

= (I) + (II). (2.40)

Recall that, when d = 1, we have

∣∣∣L̂n(B, k)
∣∣∣ ≤ C(A)(1 + |k|)−1.

It follows that

|(I)| ≤
∑
|k|<K0

∣∣∣L̂n(B, k)
∣∣∣ |(1− e2πk·a)| (2.41)

≤
∑
|k|<K0

C(A)(1 + |k|)−1|k||a| (2.42)

≤ C(A)K0|a|. (2.43)

For (II), we have

‖(II)‖2
L2 ≤

∑
|k|≥K0

2
∣∣∣L̂n(B, k)

∣∣∣2 (2.44)

≤ C(A)K−1
0 . (2.45)

Taking

K0 ∼ C(A)−1κ|a|−1, (2.46)
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we have

|(I)| ≤ κ (2.47)

‖(II)‖2
L2 ≤ C(A)κ−1|a|. (2.48)

Applying Chebyschev’s inequality,

|{x ∈ T : |(II)| > κ}| < C(A)κ−3|a|. (2.49)

It follows that

∣∣{x :|LN(B, x)− LN(B, x+ a)| > κ
}∣∣ (2.50)

≤

∣∣∣∣∣∣
x : |

∑
|k|<K0

| > κ


∣∣∣∣∣∣+

∣∣∣∣∣∣
x : |

∑
|k|≥K0

| > κ


∣∣∣∣∣∣ (2.51)

≤ C(A)κ−3|a|. (2.52)

2.4 Finite-scale continuity

In the Schrödinger cocycle case (and the SL(2C) case more generally), one of the key ob-

servations is that, for fixed N, LN(A, ω) is jointly continuous in A and ω for any ω. This is

a simple consequence of the everywhere invertibility of the cocycle, A. The analogous result

for M(2,C) cocycles requires an argument.

In this section, we establish continuity of the finite-scale Lyapunov exponents, LN(A, ω)

jointly in A and ω for any not identically singular A and any frequency ω.
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Lemma 2.4.1. Let (A, ω) ∈ Cρ(Td,M(2,C)) × Td, A 6≡ 0, be an analytic quasiperiodic

cocycle. Then for any ε > 0, there exists constants δ = δ(A, ε), C = C(A, ε), and N0 =

N0(A, ε), such that for any B ∈ Cρ(Td,M(2,C)) with ‖A−B‖ρ < δ and ‖ω − ω′‖ < δ we

have

|LN(A, ω)− LN(B,ω′)| < CAε

for all N > N0.

Proof. Continuity of LN will follow from continuity of L′N and
∫

ln | detAN(x)|dx. We present

the following argument for L′N , but it is easy to see that it applies to
∫

ln | detA(x)|dx as

well.

Let δ0 > 0, fix N > N0, and set

FA,δ0 :=
{
x ∈ Td : ‖AN(x, ω)‖ < e−N

1+δ0
}

(2.53)

FB,δ0 :=
{
x ∈ Td : ‖BN(x, ω′)‖ < e−N

1+δ0
}

(2.54)

G :=
{
x ∈ Td : ‖AN(x, ω)‖ ≤ ‖BN(x, ω′)‖

}
. (2.55)

Note that

|L′N(A, ω)− L′N(B,ω′)| =
∣∣∣∣∫

Td

1

N
ln

(
‖AN(x, ω)‖
‖BN(x, ω′)‖

)
dx

∣∣∣∣ (2.56)

=

∣∣∣∣∣
∫
FA∩FB

+

∫
F cA∩FB

+

∫
FA∩F cB

+

∫
F cA∩F

c
B

∣∣∣∣∣ . (2.57)

Observe, for x ∈ F c
A ∩ F c

B, we have

|L′N(A, x, ω)− L′N(B, x, ω′)| =


1
N

ln
(
‖AN (x,ω)‖
‖BN (x,ω′)‖

)
x 6∈ G

1
N

ln
(
‖BN (x,ω′)‖
‖AN (x,ω)‖

)
x ∈ G

. (2.58)
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Consider x ∈ G. The case x 6∈ G will be the same. We have

1

N
ln

(
‖BN(x, ω′)‖
‖AN(x, ω)‖

)
≤ 1

N
‖AN(x, ω)‖−1CN

A ‖A(x, ω)−B(x, ω′)‖ρ (2.59)

≤ eN
1+δ0CN

A

(
‖A(x, ω)−B(x, ω)‖ρ + ‖B(x, ω)−B(x, ω′)‖

)
.

(2.60)

Taking ‖A−B‖ρ and ‖ω − ω′‖ sufficiently small (dependent on A,N, and δ0) ensures this

is no more than ε/4.

Next, consider x ∈ FA∩F c
B. The case x ∈ F c

A∩FB is the same. We have, necessarily, x ∈ G,

and thus

|L′N(A, x, ω)− L′N(B, x, ω′)| = 1

N
ln

(
‖BN(x, ω′)‖
‖AN(x, ω)‖

)
(2.61)

=
1

N
(ln ‖BN(x, ω′)‖ − ln ‖AN(x, ω)‖) (2.62)

≤ 1

N

(
ln ‖BN(x, ω′)‖ −

N∑
j=1

ln | detA(x+ jω)|

)
(2.63)

≤ 1

N

(
NCA −

N∑
j=1

ln | detA(x+ jω)|

)
. (2.64)

Moreover,

FA ∩ F c
B ⊂ FA ⊂

N⋃
j=1

{
x : | det(x+ jω)| < e−N

δ0
}

=:
N⋃
j=1

Sj.

Thus

∣∣∣∣∣
∫
FA∩F cB

∣∣∣∣∣ ≤
N∑
j=1

1

N

∫
Sj

(
NCA −

N∑
k=1

ln | detA(x+ kω)|

)
dx (2.65)

≤ CA

N∑
j=1

|Sj|+
1

N

N∑
j=1

N∑
k=1

∣∣∣∣∣
∫
Sj

ln | detA(x+ kω)|dx

∣∣∣∣∣ (2.66)

≤ NCAe
−σNδ0 +

1

N

N∑
j=1

N∑
k=1

∣∣∣∣∣
∫
Sj

ln | detA(x+ kω)|dx

∣∣∣∣∣ . (2.67)
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Now, we may use Lemmas 2.3.1 and 2.3.3 to bound

1

N

N∑
j=1

N∑
k=1

∣∣∣∣∣
∫
Sj

ln | detA(x+ kω)|dx

∣∣∣∣∣ ≤ Ce−σN
δ0N1+δ0 .

Putting all of this together and taking N sufficiently large guarantees this is no larger than

ε/4.

The case x ∈ FA ∩ FB is similar.

Thus |L′N(A, ω)− L′N(B,ω′)| < ε, so L′N is continuous in A and ω.

Continuity of
∫

ln | detA(x, ω)|dx quickly follows by a similar argument.

2.5 Avalanche principle and immediate consequences

Theorem 2.5.1 (Avalanche Principle). Suppose A1, ..., An ∈ SL(2,C) are such that

min
1≤j≤n

‖Aj‖ ≥ µ > n (2.68)

and

max
1≤j<n

|ln ‖A)j‖+ ‖Aj+1‖ − ln ‖Aj+1Aj‖| ≤
1

2
lnµ. (2.69)

Then

∣∣∣∣∣ln ‖An · A1‖+
n−1∑
j=2

ln ‖Aj‖ −
n−1∑
j=1

ln ‖Aj+1Aj‖

∣∣∣∣∣ < C
n

µ
. (2.70)

The C above is an absolute constant. We include this result for completeness, but we will

actually use a slight variation of this result which is due to Bourgain [6].
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Theorem 2.5.2 (Avalanche Principle Variation). Suppose A1, ..., An ∈ SL2(C) are such that

µ < ‖Aj‖ < µC (2.71)

for all 1 ≤ j ≤ n and some µ sufficiently large. Moreover, suppose

max
1≤j<n

|ln ‖Aj‖+ ‖Aj+1‖ − ln ‖Aj+1Aj‖| ≤
1

2
lnµ. (2.72)

Then

∣∣∣∣∣ln ‖An · A1‖+
n∑
j=1

ln ‖Aj‖ −
n−1∑
j=1

ln ‖Aj+1Aj‖

∣∣∣∣∣ < n

µ1/3
+ 4C lnµ. (2.73)

We refer readers to [30] for the proof of Theorem 2.5.1 and to [6] for the proof of Theorem

2.5.2. Both of these references prove the Avalanche Principle for SL(2,R) matrices, but the

arguments clearly apply to SL(2,C) matrices.

The Avalanche Principle allows us to relate Lyapunov exponents at some initial scale to

Lyapunov exponents at a larger scale via the following.

Theorem 2.5.3. Fix an analytic cocycle (A, ω). Fix x ∈ Td and let δ > 0 be a fixed constant.

Let N0 > 0 be sufficiently large (depending only on δ and measurements of A(x)). Take

N1 ∈ Z, N1 ≥ N0, N0|N1. Assume, moreover, that

LN0(x) > δ (2.74)

|LN0(x)− L2N0(x)| < 1

100
LN0(x) (2.75)

|LN(x)− LN(x+ jN0ω)| < δ

100
(2.76)
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for N = N0, 2N0, and j ≤ N1

N0
. Then

∣∣∣∣∣LN1(x) +
1

n

n−1∑
j=0

LN0(x+ jN0ω)− 2

n

n−2∑
j=0

L2N0(x+ jN0ω)

∣∣∣∣∣
< exp

{
−N0

4
LN0(x)

}
+ C|LN0(x)|N0

N1

,

(2.77)

where n = N1/N0. Moreover,

|LN1(x) + LN0(x)− 2L2N0(x)| < δ

20
+ C|LN0(x)|N0

N1

. (2.78)

The C here is an absolute constant.

We will provide a proof of this result for convenience, though a proof for Schrödinger cocycles

may be found in [6]. A key difference between our presentation and the presentation in [6] is

the inclusion of LN0(x) in the right hand side of (2.77) and (2.78). This is due to the absence

of a uniform pointwise bound on LN0(x) in the case of general cocycles. This will not pose

a problem later, as we have Lemma 2.3.1 to deal with integrals of the right-hand side.

Proof. Fix a cocycle A. We will write LN0(x) in place of LN0(A, x). Define Mj = AN0(x +

jN0ω) ∈ SL(2,C). Our goal is to apply Theorem 2.5.2 to Mj. By (2.76) and (2.74), we

obtain

99

100
LN0(x) ≤ LN0(x)− δ/100

≤ LN0(x+ jN0ω)

≤ LN0(x) + δ/100

≤ 101

100
LN0(x).

(2.79)
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The definition of LN0 now yields, for j ≤ N1/N0,

99

100
N0LN0(x) < ln ‖Mj‖ <

101

100
N0LN0(x). (2.80)

Setting

µ = e
99
100

N0LN0
(x),

we have

µ < ‖Mj‖ < µ101/99 = µC . (2.81)

Moreover,

Mj+1Mj = A2N0(x+ jN0ω).

Thus, for j < N1/N0,

∣∣∣∣ ln ‖Mj+1‖+ ln ‖Mj‖ − ln ‖Mj+1Mj‖
∣∣∣∣ (2.82)

= N0 |LN0(x+ (j + 1)N0ω) + LN0(x+ jN0ω)− 2L2N0(x+ jN0ω)| . (2.83)

Hence, by (2.76) and triangle inequality,

∣∣∣∣ ln ‖Mj+1‖+ ln ‖Mj‖ − ln ‖Mj+1Mj‖
∣∣∣∣ (2.84)

≤ 2N0 |LN0(x) + L2N0(x)|+ N0δ

25
(2.85)

≤ N0δ

50
+
N0δ

25
(2.86)

=
3N0δ

50
(2.87)

<
3N0

50
LN0(x) (2.88)

<
1

10
lnµ. (2.89)
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The last inequality follows from the definition of µ. This, along with (2.81), means Theorem

2.5.2 is applicable, and we obtain, with N = N1

N0
− 1,

∣∣∣∣N1LN1(x)+N0

N∑
j=0

LN0(x+ jN0ω)− 2N0

N−1∑
j=0

L2N0(x+ jN0ω)

∣∣∣∣ (2.90)

<
N1

N0

µ−1/3 + C lnµ (2.91)

=
N1

N0

µ−1/3 + CN0LN0(x). (2.92)

Dividing by N1, and using the definition of N, we have

∣∣∣∣LN1(x)+
1

N
(1−N0/N1)

N∑
j=0

LN0(x+ jN0ω) (2.93)

− 2
1

N
(1−N0/N1)

N−1∑
j=0

L2N0(x+ jN0ω)

∣∣∣∣ (2.94)

=
1

N0

µ−1/3 + C
N0

N1

LN0(x). (2.95)

Now we note that

1

N
(1−N0/N1) =

1

N + 1

and

N−1
0 µ−1/3 < e−

1
4
N0LN0

(x),

which together yield (2.77). Combining this with (2.76) and triangle inequality yields (2.78).
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2.6 Comparing Lyapunov exponents at different scales:

Liouville frequencies

Throughout this section, we establish estimates of the form |LN0(A)− LN1(A)| < C ′κ. The

constant C ′ depends on measurements of A and can thus be taken uniform for all B with

‖A−B‖ sufficiently small. The uniformity of this constant will be essential to establishing

continuity in Section 2.9. In what follows, the constant C will be taken to be sufficiently

large so that Theorem 2.3.2 is applicable with c = 1/C.

Before considering the general case of arbitrary ω ∈ Td, we will consider the special case

where ω satisfies a Liouville-type condition.

Remark 13. We would like to note that we could just as easily have skipped the discussion

in this section and simply proved Theorem 2.7.1. We choose to present the following special

case to illustrate the main ideas of the proof in a simplified setting.

Lemma 2.6.1. Fix N0 = a2bq0, with b ∈ N large. Consider the set F consisting of all x ∈ Td

such that |LN(x)− LN(x + jq0ω)| < κ for all N = 2−sN0, with 0 ≤ s ≤ −C3 lnκ = s0, and

all j ≤ N1/q0 such that N02−s/q0 divides j for some 0 ≤ s ≤ s0. Here C3 is a sufficiently

large constant. Then ∣∣∣∣∫
F

LN0(x)− LN1(x)dx

∣∣∣∣ < Cκ.

Proof. Consider x ∈ F such that LN0(x) > 103κ. Define N0,1 = N0/2. Then N0 = 2N0,1.
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Since x ∈ F, we have

LN0(x) =
1

N0

ln ‖AN0(x, ω)‖ (2.96)

=
1

2N0,1

ln
∥∥A2N0,1(x, ω)

∥∥ (2.97)

≤ 1

2N0,1

(
ln
∥∥AN0,1(x, ω)

∥∥+ ln
∥∥AN0,1(x+N0,1, ω)

∥∥) (2.98)

=
1

2
LN0,1(x) +

1

2
LN0,1(x+

N0,1

q0

q0ω) (2.99)

≤ LN0,1(x) + κ. (2.100)

The last line follows from the definition of F. Thus

LN0 ≤ LN0/2(x) + κ.

We can obtain a similar estimate using N0,s = N0/2
s instead:

LN02−s(x) ≤ LN02−s′ (x) + κ

for any s ≤ s′ ≤ s0.

Since LN0(x) > 103κ, we have

999κ < LN02−s(x). (2.101)

Thus, for 0 ≤ s ≤ s0, the sequence 999κ < L2−sN0
(x) is increasing, up to modification by

O(κ).
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At this point, we further restrict our allowable x to a suitable set

Z =
{
x ∈ Td : L2−s0N0

(x) < κ−1
}
.

By Chebyschev’s inequality, |Td\Z| < C(A)κ, so

∣∣∣∣∫
Td\Z

LN1(x)− LN0(x)dx

∣∣∣∣ < Cκ.

For x ∈ F ∩ Z, we define N00 = N00(x) = N0

2s(x)
, where 0 ≤ s(x) ≤ s0 is chosen so that

N00 < κN0, (which is possible because s0 = −C3 lnκ > − lnκ), and

99

100
LN00(x) < L2N00(x) < LN00(x) + 10κ.

The right inequality is true because LN02−s(x) is increasing up to modification by O(κ), and

the left inequality is true by taking C3 large. Indeed, if the left inequality fails for all choices

of N00(x), then we have, for x ∈ F ∩ Z,

(
99

100

)−C3 lnκ

κ−1 >

(
99

100

)−C3 lnκ

L2−s0N0
(x) > L0(x) > 103κ.

Taking a logarithm of the leftmost and rightmost terms, we quickly see that this is impossible

for large C3. (Say C3 > 10).

Hence

|LN00(x)− L2N00(x)| < 1

100
LN00(x). (2.102)

Now note that x ∈ F and N00, 2N00 are of the form of the length scales included in the

definition of F, so for N = N00 and 2N00, and for all j = n N0

2sq0
, j ≤ N1/q0, 0 ≤ s ≤ s0, we
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have

|LN(x+ jq0ω)− LN(x)| < κ. (2.103)

In particular, if we take j = n = N00q
−1
0 , n ≤ N1/N00, we have

|LN(x+ nN00ω)− LN(x)| < κ. (2.104)

Thus Theorem 2.5.3 is applicable, and we obtain

|LN1(x) + LN00(x)− 2L2N00(x)| < O(κ) + CLN00(x)
N00

N1

(2.105)

|LN0(x) + LN00(x)− 2L2N00(x)| < O(κ) + CLN00(x)
N00

N0

. (2.106)

Since x ∈ F, we have LN00(x) ≤ L2−s0N0
(x) + κ. Moreover, by construction, N00

N1
, N00

N0
< κ.

Thus, for x ∈ F such that LN0(x) > 103κ,

|LN0(x)− LN1(x)| < (C + L2−s0N0
(x))κ. (2.107)

Moreover, we know
∫
Td |L2−s0N0

(x)|dx < C(A), so the integral of the above is bounded by

C(A)κ. Finally, for x ∈ F such that LN0(x) < 103κ, we have

LN1(x) ≤ LN0(x) < 103κ.

Thus

∣∣∣∣∫
F

LN1(x)− LN0(x)dx

∣∣∣∣ < C(A)κ. (2.108)
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Lemma 2.6.2 (Liouville Frequencies). Let κ > 0 be small, and let N0, q0 ∈ N be such that

‖q0ω‖ =
∑
‖q0ωj‖ < κCρ4 q0

N0

(2.109)

and

N0κ
C > q0. (2.110)

Then

|LN1 − LN0| < C ′κ1/2 (2.111)

for all N1 such that N0|N1 and

N1 < κC/2ρ2

√
N0q0

‖q0ω‖
. (2.112)

Here C = C(v, E) and can be taken uniform in E whenever E is restricted to a bounded set.

Remark 14. The following proof is essential to our overall argument, and elements of it will

be used again to prove Theorem 2.7.1. In particular, the introduction of and restriction to

the set F is essential. Once we restrict to F, the following argument goes through without

issues. The key difficulty is showing that Td\F has small measure. This is accomplished

here using Lemma 2.3.8. Later it will be accomplished using more involved estimates.

Proof. We will first prove this result for N0 such that

N0 = a2bq0, a, b ∈ N, b > −C
2

lnκ, (2.113)

for some C sufficiently large (this is the same C which appears in the statement of the

lemma). Note that this assumption on b allows for N0 slightly smaller than those imposed
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by the condition (2.110). Then we will derive the general result for general N0 satisfying

(2.110).

Fix κ small. Consider the set of x ∈ Td such that

|LN(x+ jq0ω)− LN(x)| < κ

for all 2−s0N0 ≤ N ≤ N0, where s0 = −C3 lnκ, with C3 > 4 and set C > 0 such that

C − C3 > 4, N is of the form 2−sN0, and j ≤ N1/q0 is such that N0/2
sq0 divides j for some

s ≤ s0. In other words, we want to consider the set F defined as follows. Define

FN
j =

{
x ∈ Td : |LN(x+ jq0ω)− LN(x)| < κ

}
(2.114)

and set

F =

s0⋂
n=0

s0⋂
s=0

N12s/N0⋂
m=1

F 2−nN0

mN0/2sq0
(2.115)

We have

LN0 − LN1 =

∫
F

(LN0(x)− LN1(x))dx+

∫
Td\F

(LN0(x)− LN1(x))dx.

Observe that Lemma 2.3.8 implies

∣∣Td\FN
j

∣∣ ≤ Cκ−3ρ−3|j| ‖q0ω‖ .
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Thus, setting α(s) = N12s/N0, we have

|Td\F | ≤
s0∑
n=0

s0∑
s=0

α(s)∑
m=1

Cκ−3ρ−3 ‖q0ω‖mN0/2
sq0 (2.116)

∼
s0∑
n=0

s0∑
s=0

κ−3ρ−3 ‖q0ω‖
N2

1

N0q0

2s (2.117)

∼
s0∑
n=0

κ−3ρ−3 ‖q0ω‖
N2

1

N0q0

2s0 (2.118)

=

s0∑
n=0

κ−3ρ−3 ‖q0ω‖
N2

1

N0q0

κ−C3 (2.119)

∼ s0κ
−3−C3ρ−3 ‖q0ω‖

N2
1

N0q0

(2.120)

≤ κ−3−C3ρ−3 ‖q0ω‖
N2

1

N0q0

. (2.121)

Thus, the set of x excluded from F has measure at most

κ−3−C3ρ−3 ‖q0ω‖
N2

1

N0q0

< κ,

and we have ∣∣∣∣∫
Td\F

(LN0(x)− LN1(x))dx

∣∣∣∣ ≤ Cκ1/2

by Lemma 2.3.1.

It thus suffices to understand
∫
F

(LN0(x)− LN1(x))dx.

Since the set F we consider here satisfies the conditions of the set from Lemma 2.6.1, we

conclude that ∣∣∣∣∫
F

(LN0(x)− LN1(x))dx

∣∣∣∣ < Cκ.

Our conclusion now follows, assuming

N0 = a2bq0, a, b ∈ N, b > −C lnκ. (2.122)

48



Now consider arbitrary N0 such that (2.109) and (2.110) hold. Let N ′0 = 2bq0 be of the form

considered above such that N ′0 ≤
√
N0. Moreover, let α ∈ N be such that αN ′0 ≤ N0 ≤

(α + 1)N ′0. In particular, N0 = αN ′0 + O(N ′0). We may now run the above argument using

αN ′0 as our initial scale. Let F be the same set considered before, with respect to the initial

scale αN ′0. Then |Td\F | < κ, and thus

∣∣∣∣∫
Td\F

LN0(x)− LN1(x)dx

∣∣∣∣ < Cκ

for all suitable N0|N1. Furthermore, on F such that LαN ′0(x) < 103κ and

LO(N ′0)(A, x+ αN ′0ω) < N0κ,

we also have LN0(x) < Cκ and LN1(x) < Cκ. Since

∣∣∣∣{x : LO(N ′0)(A, x+ αN ′0ω) <
N0

O(N ′0)
κ

}∣∣∣∣ < Cκ,

by Chebyschev’s inequality and our choice of N ′0, excluding this set only changes our final

integral by a term of order κ.

On F such that LN ′0(x) > 103κ, we may define N00(x) < καN ′0 ≤ κN0 as before and note

that there is a ∈ N such that 1/a < κ and

aN00 < N0 < (a+ 1)N00. (2.123)

Moreover, we have, by (2.105),

|LαN ′0(x)− L(α+1)N ′0
(x)| < Cκ1/2. (2.124)
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Next, we consider the set

G =
{
x ∈ Td :

∥∥∥ÃO(N ′0)(x+ αN ′0ω)
∥∥∥ < eN0κ

}
.

Clearly, since N ′0 <
√
N0, and N0 > κ−C , with C > 4, we may apply Chebyschev’s inequality

to obtain

|Td\G| ≤ C(A)
N ′0
N0κ

< Cκ.

It follows that ∣∣∣∣∫
Td\G

LN0(x)− LN ′0(x)dx

∣∣∣∣ < Cκ.

On G, LO(N ′0)(A, x+ αN ′0ω) < N0

O(N ′0)
κ, so

LN0(x) ≤ αN ′0
N0

LαN ′0(x) +
O(N ′0)

N0

LO(N ′0)(x+ αN ′0ω) (2.125)

≤ LαN ′0(x) + κ. (2.126)

We may similarly obtain

L(α+1)N ′0
(x) ≤ LN0(x) + κ (2.127)

by considering a slightly different set G′ with |Td\G′| < κ still. Thus

|LN0(x)− LαN ′0(x)| < Cκ1/2. (2.128)

We can similarly obtain the bound

|LN1(x)− LβN ′0(x)| < Cκ1/2 (2.129)
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for β = cα such that βN ′0 < N1 < (β+1)N ′0 (away from a set of measure at most κ). Finally,

|LβN ′0(x)− LαN ′0(x)| < Cκ1/2

by (2.107). Combining all of these with the triangle inequality, and Lemma 2.3.1 we obtain

our desired result.

Our next step is to extend the conclusion of Lemma 2.6.2 to allow for larger scales N1. This

is most directly achieved by iterating Lemma 2.6.2: informally, we first apply the result with

initial scale N0 to obtain an estimate between scales N0 and N1; then apply the result with

initial scale N1 to obtain an estimate between scales N1 and new scale N2; repeating this

iteration until we can no longer choose a suitable new initial scale. Unfortunately, as the

result is stated now, this results in an error given by a multiple of κ, and that multiple could,

potentially, be large enough to overcome the desired κ error. Therefore, it is necessary for

us to rewrite the conclusion of Lemma 2.6.2 in a way which expresses the error in terms of

N0 and N1. This is achieved in the following.

Lemma 2.6.3 (Liouville Frequencies). Let N0, q0 ∈ N and c = C−1, with C as in Lemma

2.6.2. Suppose N0 > q0 and ‖q0ω‖ < ρ4 q0
N0
. Then for N0|N1 with N1 < ρ2

√
N0q0
‖q0ω‖ ,

|LN1 − LN0| < C ′

((
q0

N0

)c/2
+

(
N2

1 ‖q0ω‖
N0q0ρ4

)c/2)
. (2.130)

Here C ′ = C ′(A) is a constant uniform in a neighborhood of the cocycle A.

Proof. Fix N0, q0, and ρ so that N0 > q0 and ‖q0ω‖ < ρ4 q0
N0
. Then let 1 > κ′ > 0 be the

smallest possible κ such that Lemma 2.6.2 is applicable. That is, κ′ is the smallest such

number for which (2.109), (2.110), and (2.112) all hold. Then |LN0−LN1| < C ′κ′. Moreover,

equality must hold for one of (2.109), (2.110), or (2.112).
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If equality holds in (2.109), then

κ′ =

(
q0

N0

)c
and our conclusion follows.

If, on the other hand, equality does not hold in (2.109), then equality must hold in (2.112),

since N1 > N0. Thus

κ′ =

(
N2

1 ‖q0ω‖
N0q0ρ4

)c
and our conclusion follows.

It is now possible to iterate Lemma 2.6.2 as we described to allow for larger scales N1.

Theorem 2.6.1. Suppose N0κ
C > q0 and N0 ‖q0ω‖ < κCρ4q0. Then

|LN ′ − LN0| < C ′κ1/6 (2.131)

for all N ′ such that N0|N ′, N ′ = 2jN0 for some j ≥ 0, and

N ′ < κCρ4 q0

‖q0ω‖
. (2.132)

Proof. Fix N ′ < κCρ4 q0
‖q0ω‖ . We will construct a sequence of scales, Ns, inductively. Starting

with N0 such that q0 < κCN0 and ‖q0ω‖ < κCρ4 q0
N0
, we define

Ns ∼ N
2/3
s−1

(
q0ρ

4

‖q0ω‖

)1/3

(2.133)

where ∼ here indicates that we take any value no larger than the right hand side such that

Ns−1|Ns and Ns−1 6= Ns. This last condition is possible because, by an inductive argument,

N
2/3
s−1

(
q0ρ4

‖q0ω‖

)1/3

> Ns−1κ
−C ≥ 2Ns−1. Observe that this last condition ensures that Ns is an

52



increasing sequence, and thus there is some s0 ≥ 1 such that

Ns0 < κCρ4 q0

‖q0ω‖

and

Ns0+1 > κCρ4 q0

‖q0ω‖
.

Moreover, we have, for 0 ≤ s ≤ s0,

Ns ≤ N
2/3
s−1

(
q0ρ

4

‖q0ω‖

)1/3

(2.134)

= N
1/2
s−1N

1/6
s−1

(
q0ρ

4

‖q0ω‖

)1/3

(2.135)

≤ N
1/2
s−1κ

C/6

(
q0ρ

4

‖q0ω‖

)1/6(
q0ρ

4

‖q0ω‖

)1/3

(2.136)

= κC/6ρ2

(
q0Ns−1

‖q0ω‖

)1/2

(2.137)

≤ ρ2

(
q0Ns−1

‖q0ω‖

)1/2

. (2.138)

Thus Lemma 2.6.3 is applicable at scales Ns and Ns−1 when 0 ≤ s ≤ s0. Applying Lemma

2.6.3, we obtain, for s ≤ s0,

|LNs − LNs−1| < C ′

((
q0

Ns−1

)c/2
+

(
N2
s ‖q0ω‖

Ns−1q0ρ4

)c/2)
(2.139)

≤ C ′

((
q0

Ns−1

)c/2
+

(
Ns−1 ‖q0ω‖

q0ρ4

)c/6)
. (2.140)

Now we consider anyN ′ < κCρ4 q0
‖q0ω‖ . There are two possibilities: (i)Ns < N ′ ≤ Ns+1, s < s0,

or (ii) N ′ > Ns0 .

In the first case, we may simply redefine the appropriate Ns+1 = N ′. Then, we observe that
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2j−1N0 ≤ Nj−1 ≤ 2−(s0+1−j)κCρ4 q0
‖q0ω‖ , by construction. This yields

|LN0 − LN ′| ≤
s∑
j=1

|LNj−1
− LNj | (2.141)

≤
s∑
j=1

C ′

((
q0

Nj−1

)c/2
+

(
Nj−1 ‖q0ω‖

q0ρ4

)c/6)
(2.142)

≤
s∑
j=1

C ′

((
q0

N0

21−j
)c/2

+
(
2−(s0+1−j)κC

)c/6)
(2.143)

≤ C ′′

((
q0

N0

)c/2
+ κ1/6

)
(2.144)

≤ C ′′(κ1/2 + κ1/6) (2.145)

≤ C ′′κ1/6. (2.146)

For case (ii), we may repeat the same argument as above, plus the observation that

N ′ < Ns0+1 (2.147)

∼ N2/3
s0

(
q0ρ

4

‖q0ω‖

)1/3

(2.148)

< κC/6N1/2
s0

(q0ρ
4/ ‖q0ω‖)1/2. (2.149)

Now, we may apply lemma 2.6.2 with N0 = Ns0 and N1 = N ′ and κ replaced by κ1/3 to

obtain the estimate

|LNs0 − LN ′| < C ′κ1/6.

This completes our proof.

Note that this immediately implies continuity of L(A, ω) in A whenever the components of

ω, are rational.
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2.7 Comparing Lyapunov exponents at different scales:

mixed Liouville-Diophantine frequencies

In this section, we turn out attention to obtaining estimates of the form |LN0(A, ω) −

LN1(A, ω)| < Cκ for those ω which are not necessarily Liouville.

Theorem 2.7.1. Assume x = (x1, x2) ∈ Td1 × Td2 = Td. Suppose that ω = (ω1, ω2) ∈

Td1 × Td2 is such that there is δ > 0, 0 < K0 ∈ Z and 0 < q0 ∈ Z such that

‖q0ω1‖ < κCρ3q0/N0 (2.150)

and

‖k · ω2‖ > δ (2.151)

for all k ∈ Zd2 , 0 < |k| < K0, where

K0 > (ρ1+cκ)−Cq0 (2.152)

N0 > κ−Cδ−1K0. (2.153)

Then

|LN − LN0 | < C ′κ1/6 (2.154)

when N0|N,N = 2jN0 for some j ≥ 0, and

N < min

{
κCρ3 q0

‖q0ω1‖
, N0e

(
K0
q0

)c}
. (2.155)

Here C is an absolute constant defined in the proof and c = C−1 above.
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We would like to make a note about our general approach to the proof, before we present

the full details. As we remarked after Lemma 2.6.2, the argument we used to establish

Lemma 2.6.2 applies once we restrict our attention to a suitable set F. Here, we will restrict

to a suitable set F defined analogously, but we cannot just appeal to Lemma 2.3.8 to show

Td\F has small measure, since Lemma 2.3.8 requires a small change in x, and we assume a

Diophantine condition (corresponding to a large change in x) for part of ω. Therefore, the

main difficulty we face here is showing Td\F has small measure. The idea we present here is to

use Lemma 2.3.8 in the variables where we have suitable smallness of the frequency (namely

x1 with ω1) and use Theorem 2.3.2 in the variables where we have a suitable Diophantine

condition. Together, this will yield smallness of Td\F.

Proof. As in Lemma 2.6.2, we will consider those N0 of the form a2bq0, for suitably large b.

The case of general N0 will then follow in the same way as before.

Consider the set F consisting of points x = (x1, x2) ∈ Td1 × Td2 = Td such that

|LN(x)− LN(x+ jq0ω)| < κ

for all 2−s0N0 ≤ N ≤ N0, where s0 = −C1 lnκ, C1 > 4, with C > 0 such that C >

6(3C1 + 3) + 1, N is of the form 2−sN0, and j ≤ N1/q0 is such that N0/2
sq0 divides j for

some s ≤ s0. We are in precisely the setting of Lemma 2.6.1, so we conclude that

|
∫
F

LN1(x)− LN0(x)dx| < C ′′κ. (2.156)

It now suffices to understand |Td\F |.

We will begin by restricting our attention to the set

HN =
{
x ∈ Td : |LN(x)− LN(x+ jq0ω)| < C(A)|j|q0N

−1/2, 1 ≤ j ≤ κN/q0

}
,
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which, by Lemma 2.3.2, has small complement

|Td\HN | < κe−N
1/3

.

As in Lemma 2.6.1, we observe that Lemma 2.3.8 applies to LN(x1, x2) in the first variable,

which yields

LN(x+ jq0ω) = LN(x1 + jq0ω1, x2 + jq0ω2)

= LN(x1, x2 + jq0ω2) +O(κ),

away from a set GN,j ⊂ Td of small measure:

|GN,j| < C ′κ−3ρ−3|j| ‖q0ω1‖ .

Hence

LN(x+ jq0ω) = LN(x1, x2 + jq0ω2) +O(κ) + gN,j(x), (2.157)

where gN,j(x) is a function such that ‖gN,j‖L1(Td) ≤ C ′κ−3ρ−3|j| ‖q0ω1‖ . In particular, gN,j(x)

is the restriction of LN(x) to the set GN,j. Moreover, for x ∈ HN ∩
⋃R−1
j=0 (Td ∩ GN,j) and

R < κ
√
N
q0
,

LN(x) =
1

R

R−1∑
j=0

LN(x+ jq0ω) + C ′Rq0/
√
N (2.158)

=
1

R

R−1∑
j=0

LN(x1, x2 + jq0ω2) +O(κ) (2.159)
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and thus

LN(x) =
1

R

R−1∑
j=0

LN(x1, x2 + jq0ω2) +O(κ) + gN(x), (2.160)

where gN(x) = 1
R

∑R−1
j=0 gN,j(x) satisfies ‖gN‖L1(Td) ≤ C ′κ−3ρ−3R ‖q0ω1‖ . Note that the O(κ)

term is no larger than 2κ.

Now, by defining ω′2 = q0ω2, we have ‖k · ω′2‖ > δ for all 0 < |k| < K0/q0. Thus we may

apply Lemma 2.3.7 to LN(x1, x2) in the variable x2 to obtain

∣∣∣∣{(x1, x2) ∈ Td :

∣∣∣∣ 1

R

R−1∑
j=0

LN(x1, x2 + jq0ω2)−
∫
LN(x1, x2)dx2

∣∣∣∣ > ρ−1(K0/q0)c
}∣∣∣∣

< e−ρ
1+c(K0/q0)c .

Denote by ΓN the set on the left hand side. We have, ρ−1(K0/q0)−c < κ, so for (x1, x2) 6∈ ΓN ,

1

R

R−1∑
j=0

LN(x1, x2 + jq0ω2) =

∫
Ln(x1, x2)dx2 +O(κ).

On the other hand, the integral of 1
R

∑R−1
j=0 LN(x1, x2 + jq0ω2) over ΓN obeys

∫
ΓN

∣∣∣∣∣ 1

R

R−1∑
j=0

LN(x1, x2 + jq0ω2)

∣∣∣∣∣ dx2 ≤ C ′e−
1
2
ρ1+c(K0/q0)c ,

by Lemma 2.3.1. Hence

1

R

R−1∑
j=0

LN(x1, x2 + jq0ω2) =

∫
Ln(x1, x2)dx2 +O(κ) + γN(x), (2.161)

where γN(x) is the restriction of LN(x) to ΓN and satisfies ‖γN‖L1(Td) < e−
1
2
ρ1+c(K0/q0)c .
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Combining this with (2.159), we have

LN(x) =

∫
LN(x1, x2)dx2 +O(κ) + gN(x) + γN(x). (2.162)

We may apply Lemma 2.3.8 again in x1 to
∫
LN(x1, x2)dx2 to obtain

∣∣∣∣∫ LN(x1, x2)dx2 −
∫
LN(x1 + jq0ω1, x2 + jq0ω2)dx2

∣∣∣∣ = O(κ) + hN,j(x), (2.163)

where hN,j(x) is a suitable restriction of LN(x) and satisfies ‖hN,j(x)‖L1 < κ−3ρ−3|j| ‖q0ω1‖ .

Altogether, we have

|LN(x)− LN(x+ jq0ω)| = O(κ) + gN(x) + γN(x) + hN,j(x). (2.164)

It now follows that

|Td\F | < κ−C
′
ρ−3N

2
1 ‖q0ω1‖
q0N0

+ κ−C
′N1

N0

e
−ρ1+c

(
K0
q0

)c
.

Here c is a sufficiently small constant which is anything smaller than both the constant from

Theorem 2.3.2 and 1/C, and C ′ is such that C/3 > C ′. In particular, this computation

follows by observing that Td\F is contained in the union of the supports of gN , γN , and hN,j

over all relevant N and j.

It follows that

|LN1 − LN0| < C ′′κ+ κ−C
′
ρ−3N

2
1 ‖q0ω1‖
q0N0

+ κ−C
′N1

N0

e
−ρ1+c

(
K0
q0

)c
. (2.165)
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Now, if N1 is such that

ρ−3N
2
1 ‖q0ω1‖
q0N0

+
N1

N0

e
−ρ1+c

(
K0
q0

)c
< κ1+C′ ,

then we have our desired bound. Moreover, if

N1

N0

≤ min

{(
ρ3q0

N0 ‖q0ω1‖

)1/3

, e
1
2
ρ1+c(K0/q0)c

}
,

then by direct computation (using (2.150)) such a bound is satisfied.

We can now use the exact same argument as was used in Theorem 2.6.1 to extend our

allowable length scales N1 to the desired range, since the scale

N0

(
ρ3q0

N0 ‖q0ω1‖

)1/3

is precisely the intermediate scale we used to extend Lemma 2.6.2 to Theorem 2.6.1.

2.8 Continuity of Lyapunov exponents

The main technical lemma which we will establish at the end of this section is the following.

Lemma 2.8.1. Assume x = (x1, x2) ∈ Td1 × Td2 , ω = (ω1, ω2) ∈ Td1 × Td2 such that

‖q0ω1‖ = 0

and

‖k · ω2‖ > δ for k ∈ Zd2 , 0 < |k| ≤ K,

where

q0 < K1/10.
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Then

|LN − L| < κ

for all N > K2/δ.

This lemma will be sufficient to obtain continuity due to the following observation. Every

ω = (ω1, ..., ωd) ∈ Td falls into one of three categories: (i) k · ω 6= 0 for every k ∈ Zd\{0},

(ii) ωj ∈ Q for some j, or (iii) ωj are all irrational but rationally dependent. The above

lemma clearly applies to the ω in the first two of these possibilities. The last possibility

can be “transformed” into the second possibility after an application of an appropriate

toral automorphism (i.e. a suitable change of variables), B ∈ SL(d,Z). Indeed, for any

B ∈ SL(d,Z), we have:

LN(A, ω) =
1

N

∫
ln

∥∥∥∥∥
0∏

j=N−1

A(x+ jω)

∥∥∥∥∥ dx (2.166)

=
1

N

∫
ln

∥∥∥∥∥
0∏

j=N−1

(A ◦B)(x+ jB−1ω)

∥∥∥∥∥ dx (2.167)

= LN(A ◦B,B−1ω). (2.168)

Since (A ◦ B,B−1ω) is still an analytic quasiperiodic cocycle, all of the results from the

previous sections apply. The key idea is to now find an appropriate such B so that B−1 rear-

ranges the components of ω into two pieces: one piece consisting of irrational and rationally

independent components, and another piece consisting of rationals and rationally dependent

components.

The main step towards achieving this is the following theorem.

Theorem 2.8.1. Let (ω1, ω2) ∈ Td1 × Td2 , d1 + d2 = d. Let 1 ≥ δ0 > 0, ε0 ≥ 0, and suppose
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q0 ∈ N and K0 ∈ N, with q0 < K
1/10
0 , satisfies

‖q0ω1‖ ≤ ε0, (2.169)

‖kω2‖ ≥ δ0; 0 < |k| ≤ K0. (2.170)

Furthermore, suppose N0 is such that

1

2
K2

0δ
−1
0 ≤ N0 < ε−1

0 K−1
0 . (2.171)

Finally, suppose ρ > K−c0 . Then for N0|N1, N1 = 2jN0 for some j ≥ 0, and N1 ≤ ε−1K−1
0 ,

we have

|LN0 − LN1| < K−c0 . (2.172)

We will prove this by induction, but before we present the proof, we will provide a lemma

which reduces the above result to proving analogous bounds on shorter length scales.

Lemma 2.8.2. In addition to the assumptions of Theorem 2.8.1, suppose, moreover, that

|LN0 − LN ′| < Kc
0 (2.173)

for N0|N ′, N ′ = 2jN0 for any j ≥ 0 such that

N ′ ≤ min

{
ε−1

0 K−1
0 , K40

0

(
min

0<|k|≤K20
0

‖k · ω2‖
)−1

+N0

}
. (2.174)

Then (2.172) holds for N0|N1, N1 = 2jN0 for any j ≥ 0 such that N1 ≤ ε−1K−1
0 .

62



Proof. Suppose (2.172) holds for N ′ as above. We will construct a sequence of length scales,

N0,s, and iterate the conclusion in a way that mirrors our proof of Theorem 2.6.1.

Note that, if

K40
0

(
min

0≤|k|≤K20
0

‖k · ω2‖
)−1

+N0 > ε−1
0 K−1

0 ,

then there is nothing to prove, so we will assume

K40
0

(
min

0≤|k|≤K20
0

‖k · ω‖
)−1

+N0 ≤ ε−1
0 K−1

0

Set K1 = K20
0 , δ1 = min0<|k|≤K1 ‖k · ω2‖ . Then define

N0,1 ∼
K2

1

δ1

+N0, (2.175)

where ∼ here means take the largest multiple of N0 no larger than the right hand side of the

form N0,1 = 2jN0. By our assumptions, N0,1 satisfies (2.174), and thus

|LN0 − LN0,1| < K−c0 .

Moreover, suppose N0,1 < ε−1
0 K−1

1 . We will deal with the case where N0,1 ≥ ε−1
0 K−1

1 at the

end of the proof using Theorem 2.7.1.

Now we observe that we may replace δ0, K0, and N0 in the hypothesis of our lemma with

δ1, K1, and N0,1, respectively. It then follows, by our assumptions, that

|LN ′ − LN0,1| < K−c1

for all N ′ such that N0,1|N ′ and

N ′ ≤ min

{
ε−1

0 K−1
1 , K40

1

(
min

0<|k|≤K20
1

‖k · ω2‖
)−1

+N0,1

}
.

63



At this point, two possibilities arise. First, suppose

K40
1

(
min

0<|k|≤K20
1

‖k · ω2‖
)−1

+N0,1 ≤ ε−1
0 K−20

1 . (2.176)

We will see later that the case where (2.176) fails may be dealt with via Theorem 2.7.1. In

fact, this assumption is analogous to the assumption N0,1 < ε−1
0 K−1

1 we made above. Set

K2 = K20
1 , δ2 = min0<|k|≤K2 ‖k · ω2‖ . Then define

N0,2 ∼
K2

2

δ2

+N0,1, (2.177)

where ∼ here means take the largest multiple of N0,1 of the form N0,2 = 2jN0,1 which is no

larger than the right hand side. By our assumptions, N0,2 satisfies (2.174), and thus

|LN0,1 − LN0,2| < K−c1

and

|LN ′ − LN0,2| < K−c2

for all N ′ such that N0,2|N ′ and

N ′ ≤ min

{
ε−1

0 K−1
2 , K40

2

(
min

0<|k|≤K20
2

‖k · ω2‖
)−1

+N0,2

}
.

We continue in this way to define Ks = K20
s−1, δs = min0<|k|≤Ks ‖k · ω2‖ , and N0,s ∼ K2

s

δs
+

N0,s−1 for s ≤ s0, where s0 is the first index for which

K40
s0

(
min

0<|k|≤K20
s0

‖k · ω2‖

)−1

+N0,s0 > ε−1
0 K−1

s0
.
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By construction, for all s ≤ s0,

|LN0,s − LN0,s−1| < K−cs−1 (2.178)

and for s < s0,

|LN0,s − LN ′| < K−cs−1, (2.179)

for all N ′ = 2jN0,s, where

N ′ ≤ min
{
ε−1

0 K−1
s , K2

s+1δs+1 +N0,s

}
.

Now set N ′0,s0 ∼ max
{
N0,s0−1, ε

−1
0 K−1

s0

}
, where, again, ∼ denotes taking the largest value

no larger than the right hand side such that N0,s0−1|N ′0,s0 . Thus, by construction,

|LN0,s0−1 − L′N0,s0
| < K−cs0−1.

At this point, we may apply Theorem 2.7.1 to the scale N ′0,s0 , with Ks0−1 and δs0−1. Indeed,

N ′0,s0ε0 ≤ max
{
N0,s0−1ε0, K

−1
s0

}
(2.180)

≤ max
{
K−1
s0−1, K

−1
s0

}
(2.181)

≤ K−1
s0−1 (2.182)

≤ K−1
0 (2.183)

≤ κCρ4q0, (2.184)

where κ = K−c0 , and C is chosen appropriately large, depending on c we used in the hypoth-
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esis of this theorem. Thus (2.150) holds. We also have

K0 > ρ−1/Cκ−1/Cq0, (2.185)

so (2.152) holds. Finally,

N ′0,s0 ≥ N0,s0−1 (2.186)

≥ K2
s0−1δ

−1
s0−1 (2.187)

≥ Ks0−1δ
−1
s0−1κ

−C , (2.188)

and thus (2.153) holds. It follows that Theorem 2.7.1 is applicable with our chosen parame-

ters, and we obtain

|LNs0 − LN ′| < K−c0 (2.189)

for all N ′ of the form 2jN0,s0 such that

N ′ ≤ min
{
ε−1

0 K−1
0 , ε−1

0

}
.

This now includes all N ′ ≤ ε−1
0 K−1

0 , as desired.

Now we fix any N ′ = 2jN0. Two possibilities arise. First, suppose N0,s < N1 ≤ N0,s+1 for

some 0 ≤ s ≤ s0. By construction of N0,s+1, we have

|LN0,s − LN ′ | < K−cs ,
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and thus

|LN0 − LN ′| < |LN0 − LN0,1|+
s−1∑
j=1

|LN0,j
− LN0,j+1

| (2.190)

+ |LN0,s − LN ′| (2.191)

≤ K−c0 +
s−1∑
j=1

K−cj +K−cs (2.192)

= K−c0 +
s−1∑
j=1

K−c20j

0 +K−c20s

0 (2.193)

≤ CK−c0 , (2.194)

where C is an absolute constant.

Now, suppose N ′ > N0,s0 . As we observed above,

|LNs0 − LN ′| < K−c0 ,

and the same argument as the previous case yields our desired result.

At this point, we provide a lemma guaranteeing the existence of the special toral automor-

phisms we discussed at the beginning of this section.

Lemma 2.8.3 ([6] Lemma 4.41). Assume k = (k1, ..., kd) ∈ Zd and gcd(k1, ..., kd) = 1. Then

there is A ∈ SLd(Z) satisfying

A1j = kj; 1 ≤ j ≤ d, (2.195)

67



|Aij| ≤ |k| = max |kl|; 1 ≤ i, j ≤ d. (2.196)

We will now use this in an induction scheme to prove Theorem 2.8.1.

proof of Theorem 2.8.1. By Lemma 2.8.2, it suffices to prove our result for N1 which satisfies

(2.174). We will prove this by induction on d2.

First, we consider the base case, d2 = 0. Set κ = K−c0 , with c a suitably small absolute

constant. Set C = c−1. Then

N0κ
C = N0K

−1
0 > K0 > q10

0 > q0.

Moreover,

N0 ‖q0ω1‖ ≤ N0ε0 < K−1
0 < κC < κCρ4q0.

Thus Theorem 2.6.1 is applicable, and we obtain

|LN0 − LN1 | < K
−c/3
0

for

N1 < K
−1/2
0 ρ4q0/ ‖q0ω1‖ .

Since ε−1K−1
0 < K

−1/2
0 ρ4q0/ ‖q0ω1‖ , our conclusion follows.

Now we turn our attention to the inductive step. Assume (2.172) holds for ω2 ∈ Td2−1 and

N1 satisfying (2.174). We will show that (2.172) is true for ω2 ∈ Td2 .

Fix any suitable ω2 ∈ Td2 . Set K1 = K20
0 and δ1 = min0<|k|≤K1 ‖k · ω2‖ . Note that, if
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N0 ≥ K2
1δ
−1
1 , then any N1 satisfying (2.174) also satisfies N1 < 2N0 and our result is

vacuously true. Thus, we will assume N0 < K2
1δ
−1
1 .

Now, by the definition of δ1, there is some q′ ∈ Zd2 , with 0 < |q′| ≤ K1, such that the

minimum is achieved. That is, we can find q′ = (q′1, . . . , q
′
d2

) ∈ Zd2 , with 0 < |q′| ≤ K1, such

that ‖q′ω2‖ = δ1. Write q′ = q1 · n1, where q1 ∈ Z\ {0} , |q1| ≤ K1, and n1 = (n11, ..., n1d2) is

such that gcd(n11, ..., n1d2) = 1.

At this point, our goal is to perform a suitable change of variables to reduce our situation to

that covered in our induction hypothesis. We apply Lemma 2.8.3 with k = n1 to construct

B ∈ SLd(Z) with entries bounded by K1 such that

B(ω1, ω2) = ω′ = (ω′1, ω
′
2) ∈ Td1+1 × Td2−1, (2.197)

where

‖q′1ω′1‖ = δ1. (2.198)

We may also assume that B fixes the first d1 components of ω. Moreover, by Cramer’s rule,

the entries of B−1 are all bounded by Kd−1
1 .

Now, since B ∈ SLd(Z), we have, for every N,ω,

LN(A, ω) =
1

N

∫
Td

ln

∥∥∥∥∥
1∏

j=N

A(x+ jω)

∥∥∥∥∥ dx (2.199)

=
1

N

∫
Td

ln

∥∥∥∥∥
1∏

j=N

AB−1(Bx+ jBω)

∥∥∥∥∥ dx (2.200)

=
1

N

∫
Td

ln

∥∥∥∥∥
1∏

j=N

AB−1(x+ jBω)

∥∥∥∥∥ dx (2.201)

= LN(AB−1, Bω). (2.202)
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Here, the second to last equality is simply a change of variables, Bx 7→ u, and we take

advantage of the fact that B ∈ SLd(Z). Thus, to understand the Lyapunov exponent for the

cocycle (A, ω), we may study the related cocycle (AB−1, Bω) = (AB−1, ω′). We now want

to show that this new cocycle satisfies the induction hypothesis.

Recall that LN(A, ω) has a plurisubharmonic extension to |=zj| < ρ = ρ0 which satisfies

the conditions necessary to establish the results in the previous sections. It follows that

LN(AB−1, ω′) also has a plurisubharmonci extension to |=zj| < ‖B−1‖ ρ0 for which the

results of the previous section apply. Since ‖B−1‖ < Kd−1
1 , the extension can certainly be

restricted to

|=zj| < ρ1 = K1−d
1 ρ0.

Moreover, we know ρ0 > K−c0 , so

ρ1 > K−c0 K1−d
1 > K−d1 . (2.203)

Next, observe that

‖q0q1ω
′
1‖ = ‖q0q1(ω1, ω̃)‖ (2.204)

= ‖q0q1ω1‖+ ‖q0q1ω̃‖ (2.205)

< q1ε0 + q0δ1 (2.206)

=: ε1. (2.207)

Moreover,

ε1 ≤ K1(ε0 + δ1). (2.208)

70



Now, define K2 = KC1
1 , where C1 = d/c and observe that (2.203) implies

ρ1 > K−c2 .

Finally, define

δ2 = min
0<|k|≤K2

‖k · ω′2‖ . (2.209)

At this point there are two possible scenarios. Either

N0 ≥ K2
2δ
−1
2 (2.210)

or

N0 < K2
2δ
−1
2 . (2.211)

We will consider (2.210) first.

Our strategy here is to appeal to Theorem 2.7.1. Suppose (2.210) holds. If N0 ≤ ε−1
1 K−1

2 ,

then we may appeal to our induction hypothesis applied to ω′ with K0 and δ0 replaced by

K2 and δ2, respectively, to obtain

|LN0 − LN0,2| < K−c2 < K−c0 , (2.212)

for all N0,2 such that N0|N0,2 and N0,2 ≤ ε−1
1 K−1

2 . Now set N0,2 as close as possible to ε−1
1 K−1

2 .

If N0 > ε−1
1 K−1

2 , set N0,2 = N0.

Now that we have the new length scale N0,2, we want to apply Theorem 2.7.1 to ω′ with

N0 replaced by N0,2, δ = δ0, K = K0, and κ = K−c0 . It remains to verify the hypothesis of
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Theorem 2.7.1.

First, if (2.150) fails, then

ε0N0,2 > κCρ3 > K−1
0 ,

and thus N0,2 > ε−1
0 K−1

0 and we have reached our desired scale, in which case (2.212) is our

desired conclusion. Thus, we may assume that (2.150) holds.

Next, recall that N0,2 ≥ N0, so

κ−Cδ−1
0 K0 = K1+cC

0 δ−1
0 (2.213)

≤ K2
0δ
−1
0 (2.214)

≤ N0 (2.215)

≤ N0,2 (2.216)

as long as c ≤ 1/C. We also have

(ρ1+cκ)−Cq0 < (K−c−c
2

0 K−c0 )−Cq0 (2.217)

= K
(2+c)cC
0 q0 (2.218)

< K
(2+c)cC+1/10
0 (2.219)

< K0 (2.220)

for c sufficiently small (say c < 1/3C). Using such a c throughout only changes the exponent

of κ in the conclusions in the previous sections by an amount proportional to the change we

make to c here. It follows that (2.152) and (2.153) hold. Theorem 2.7.1 is thus applicable

and we obtain

|LN1 − LN0,2| < K−c0 , (2.221)
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and thus

|LN0 − LN1| < 2K−c0 , (2.222)

for all N0,2|N1 such that

N1 < min

{
κC

ρ3q0

‖q0ω1‖
, N0,2e

(K0/q0)c
}
.

Note that

κC
ρ3q0

‖q0ω1‖
> K−1

0 ε−1
0

and, using (2.208),

N0,2e
(K0/q0)c > N0,2e

K
c9/10
0 (2.223)

& K−1
1 ε−1

1 eK
c9/10
0 (2.224)

= K−20C1
0

1

q1ε0 + q0δ1

eK
c9/10
0 (2.225)

> 2K40
0 (δ1 + ε0)−1 (2.226)

= 2K2
1(δ1 + ε0)−1 (2.227)

If δ1 < ε0, then the right hand side is no less than K2
1ε
−1
0 > ε−1

0 K−1
0 , and we have reached

our desired scale. On the other hand, if δ1 > ε0, then the right hand side is no less that

K2
1δ
−1
1 . If

K2
1δ
−1
1 > ε−1

0 K−1
0 ,

then we have reached our desired scale length, and we are done. On the other hand, if

K2
1δ
−1
1 < ε−1

0 K−1
0 ,

then we may repeat our entire argument above with N0 replaced by N1 ∼ K2
1δ
−1
1 . This puts
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us in the situation where our conclusion is vacuously true, as described at the start of this

proof. Thus, either situation leads to our desired conclusion.

It now remains to consider the case (2.211). We may perform another change of variables

by applying another suitable matrix, B1 ∈ SLd(Z), with entries bounded by K2 so that

B1ω
′ = (ω′′1 , ω

′′
2) ∈ Td1+2 × Td2−2 (2.228)

and

‖q2ω
′′
1‖ = δ2 (2.229)

for some q2 ∈ N, q2 ≤ K2. This, as with the first change of variables, decreases the width of

the strip for which we have a suitable subharmonic extension to

ρ2 = ρ1K
1−d
2 > K−d2 .

We now define K3 = KC1
2 so that ρ2 > K−c3 , and set

δ3 = min
0<|k|≤K3

‖k · ω′′2‖ .

Now, we are once again in a situation where one of two things must hold. Either

N0 ≥ K2
3/δ3 (2.230)

or

N0 < K2
3/δ3. (2.231)

We assume N0 ≥ K2
3/δ3. Indeed, if not, we will perform another change of variables as above.
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We now, as before, assume N0 < ε−1
2 K−1

3 and apply our induction hypothesis to (ω′′1 , ω
′′
2)

with K0 replaced with K3, δ0 replaced by δ3, q0 replaced by q0q1q2, and ε0 replaced by

ε2 = ‖q0q1q2ω
′′
1‖ (2.232)

≤ q2ε1 + q0q1δ2 (2.233)

≤ q2(q0δ1 + q1ε0) + q0q1δ2 (2.234)

≤ K2(δ1 + δ2 + ε0). (2.235)

Thus

|LN0 − LN0,3| < K−c3 < K−c0 (2.236)

for all N0,3 such that N0|N0,3 and N0,3 < ε−1
2 K−1

3 . Now fix N0,3 as close as possible to ε−1
2 K−1

3 .

If N0 > ε−1
2 K−1

3 , then we set N0,3 = N0.

Now either ε0N0,3 > K−1
0 , in which case we have reached our desired scale and there is

nothing else to do, or we may apply Theorem 2.7.1, the hypotheses of which hold using the

same argument as we used for N0,2. In the latter case, we obtain

|LN − LN0,3| < K−c0 (2.237)

|LN − LN0| < K−c0 (2.238)

for all N0,3|N such that

N < min
{
ε−1

0 K−1
0 , N0,3e

Kc
0
}
.

By our choice of N0,3, we have

N0,3e
Kc

0 > K4
2ε
−1
2 >

K2
2

ε0 + δ1 + δ2

.
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If ε0 + δ1 > δ2, then

N0,3e
Kc

0 >
K2

2

2ε0 + 2δ1

,

and we have reached the desired scale: either ε0 < δ1, in which case the right hand side is no

less than K2
1δ
−1
1 + N0, or ε0 > δ1, in which case the right hand side is no less than ε−1

0 K−1
0 .

On the other hand, if ε0 + δ1 ≤ δ2, then

N0,3e
Kc

0 >
K2

2

2δ2

.

In this case, we can repeat all of the preceding using N0,3 instead of N0. Since N0,3 ≥ K2
2

2δ2
,

we are in the first scenario we considered, and our conclusion follows.

If N0 < K2
3/δ3, then, as remarked above, we may perform another change of variables to

define K4, δ4 and we may repeat the above procedure. Suppose, therefore, that for some

2 ≤ j ≤ d2 + 1, we may perform j changes of variables as above and obtain N0 ≥ K2
j /δj. We

may set δd2+1 = 1. The above procedure allows us to define a scale N0,j such that

|LN0 − LN0,j
| < K−c0

and

|LN0,j
− LN | < K−c0

for N0,j|N such that

N < min
{
ε−1

0 K−1
0 , N0,je

Kc
0
}
.

Either N has reached the desired scale, in which case we are done, or N satisfies N ≥

K2
j−1/δj−1. We may now repeat the entire procedure starting at scale N instead of N0, and

we will reach our desired scale after at most d2 iterations of this argument.

Finally, we must consider the case where, no matter how many changes of variables we use,
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we are never in the case where N0 ≥ K2
j /δj, where Kj and δj are defined inductively as

above for d2 ≥ j ≥ 2, and δd2+1 = 1. In this case, we may apply Theorem 2.7.1 with N0, δ0,

and K0. This leads to

|LN0 − LN ′0| < K−c0

for N0|N ′0 and

N ′0 ≤ min
{
ε−1

0 K−1
0 , N0e

(K0/q0)c
}
.

If N0e
(K0/q0)c > ε−1

0 K−1
0 , then we have reached our desired scale and we are done. Otherwise,

set N ′0 ∼ N0e
(K0/q0)c . At this point, we will suppose that K0 > K ′(d2) is large enough such

that

N0e
(K0/q0)c > K2

d2+1.

With this in hand, we may repeat the entire argument starting at scale N ′0, and know that

we are guaranteed to satisfy N0 ≥ K2
j /δj for some 2 ≤ j ≤ d2 + 1.

This completes our induction argument.

We may now prove Lemma 2.8.1.

Proof of Lemma 2.8.1. Apply Theorem 2.8.1 with ε0 = 0, δ0 = δ,K0 = K, and N0 = N. This

yields

|LN − LN ′ | < K−c

for all N |N ′, N ′ <∞. Taking a limit, N ′ →∞, completes the proof.
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2.9 Proof of Continuity

We are now in a position to prove continuity of L.

Lemma 2.9.1. Suppose ω = (ω1, ..., ωd) ∈ Td. Let (A, ω) be an analytic quasiperiodic

M(2,C)-cocycle which has an analytic extension to the strip |=(zj)| < ρ. Suppose, moreover,

that det(A) 6≡ 0. Then L(A, ω) is jointly continuous in A and ω for ω such that k ·ω 6= 0 for

any k ∈ Zd\ {0} .

Proof. Fix a cocycle (A, ω), where ω = (ω1, ..., ωd) is such that ‖k · ω‖ 6= 0 for all k ∈ Zd, |k| 6=

0. Fix κ > 0 and let K0 be large enough such that K−c0 < κ. Set δ0 = min0<|k|≤K0 {‖k · ω‖} >

0 and take N > K2
0/δ0. We have, by Lemma 2.8.1 with d1 = 0,

|LN(A, ω)− L(A, ω)| < C(A)K−c0 < C(A)κ.

Moreover, for fixed N, we know LN(A, ω) is jointly continuous in A and ω, so for any cocycle

(B,ω′) such that ‖A−B‖ and ‖ω − ω′‖ are sufficiently small, we have

|LN(A, ω)− LN(B,ω′)| < κ.

Finally, for ω′ sufficiently close to ω, we have ‖k · ω′‖ > 1
2
δ0 for 0 < |k| ≤ K0. Thus

|LN(B,ω′)− L(B,ω′)| < C(A)κ.

Here we have C(A) by taking B sufficiently close to A. Triangle inequality now yields our

conclusion.

Lemma 2.9.2. Suppose ω = (ω1, ..., ωd) ∈ Td. Let (A, ω) be an analytic quasiperiodic

M(2,C)-cocycle which has an analytic extension to the strip |=(zj)| < ρ. Suppose, more-

over, that det(A) 6≡ 0. Then L(A, ω) is continuous in A for any ω ∈ Td.
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Proof. Fix ω ∈ Td. If k · ω 6= 0 for any k ∈ Zd\ {0} , then continuity in A follows from joint

continuity for at such ω. Thus, it suffices to suppose k · ω = 0 for some k ∈ Zd\ {0} . First,

we claim that we may assume that ω = (ω1, ω2) ∈ Td1 ×Td2 is such that ‖qω1‖ = 0 for some

q ∈ N and ‖k · ω2‖ 6= 0 for all k ∈ Zd2 , |k| 6= 0. Indeed, suppose ‖k · ω‖ = 0 for some |k| 6= 0.

We may perform a change of variables, B1, so that

B1(ω) = (ω1, ω2) ∈ T× Td−1,

where ω1 ∈ Q. If ω2 ∈ Td−1 is such that ‖k′ω2‖ = 0 for some |k′| 6= 0, then we may perform

another change of variables, B2, such that

B2(ω1, ω2) = (ω′1, ω
′
2) ∈ T2 × Td−2,

where, for some q, ‖qω′1‖ = 0. We may thus perform consecutive changes of variables until

we reach ω′ = (ω′1, ω
′
2) ∈ Td1 × Td2 where ‖qω′1‖ = 0 for some q ∈ N and ‖k · ω′2‖ 6= 0 for all

k ∈ Zd2 , |k| 6= 0. Since a change of variables will not change the regularity of the Lyapunov

exponent, this proves our reduction claim.

Now, assuming

ω = (ω1, ω2) ∈ Td1 × Td2

is such that ‖qω1‖ = 0 for some q ∈ N and ‖k · ω2‖ 6= 0 for all k ∈ Zd2 , |k| 6= 0, our conclusion

follows from Lemma 2.8.1, continuity of LN for fixed N, and triangle inequality.
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Chapter 3

Lyapunov exponents II: positivity of

Lyapunov exponents for operators

with finite-valued background

potentials

3.1 Preliminaries

Let us recall the usual 1-frequency quasiperiodic operator:

(Hv
λ,ω,xu)(n) = u(n− 1) + u(n+ 1) + λv(x+ nω)u(n). (3.1)

In this chapter, we are interested in operators on `2(Z) of the form

H̃v,v1
λ,ω,x = Hv

λ,ω,x + v1, (3.2)
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where v is real-analytic and v1 : Z → R is a background sequence of real numbers. We will

explore uniform positivity properties of the (lower) Lyapunov exponent. Combined with the

results we will present in Chapter 5, the result in this chapter implies particular singularity

of the operator’s spectral measures.

Recently, many authors have turned their attention to the properties of Schrödinger operators

of the above form. One of the commonly studied models is the mixed quasiperiodic-random

potential (see [11, 12] and references therein for known results), which coincides to v1 begin

a realization of a random variable. Of particular relevance to this note is that Cai, Duarte,

and Klein recently proved a criterion for positivity of the (maximal) Lyapunov exponent for

mixed multifrequency quasiperiodic-random potentials, where the quasiperiodic potential is

continuous [12].

It is also possible, however, to consider properties of operators with quasiperiodic plus a

deterministic background, such as a periodic sequence. Recently, Damanik, Fillman, and

Gohlke [14] studied, among other more general objects, such operators where the (one-

frequency) quasiperiodic potential is a trigonometric polynomial and the deterministic back-

ground is q-periodic, and they showed that, for large coupling constant, λ, on the quasiperi-

odic potential, the Lyapunov exponent is positive. In particular, they showed that the

Lyapunov exponent has an energy-independent lower bound of 1
2

ln(λ).

Liu has also considered models with low-complexity backgrounds and established large-

deviation estimates and modulus of continuity for the integrated density of states associ-

ated with these models [59]; see also [10], where the low-complexity background was first

incorporated in a localization-type argument.

We will focus on one-frequency quasiperiodic operators with analytic potential, along with

a deterministic background consisting of a finite-range sequence−that is, a sequence which

takes only finitely many values−and we prove that the (lower) Lyapunov exponent has
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an energy-independent (and, in a suitable sense, a background-independent) uniform lower

bound when the coupling constant is sufficiently large. As we can see from the existing

results on mixed-type potentials, such a result is not unexpected.

For one-frequency quasiperiodic operators with no background, positivity results go back

to Herman [34] for trigonometric polynomial potentials, and to Sorets and Spencer [69] for

analytic potentials; see also [5]. Such results originally took the form L(E) ≥ 1
2

ln(λ). In

the case of one-frequency analytic quasiperiodic operators with no background, this was

improved to L(E) ≥ ln(λ)− O(1) by Duarte and Klein [24] using a convexity argument for

means of subharmonic functions, which bypasses the harmonic measure argument present

in [5]. This lower bound is sharp, in the sense that L(E) = ln(λ) for the almost Mathieu

operator.

In this chapter, we find that it is, in fact, possible to obtain analogous results as [24] by

carefully modifying the harmonic measure argument of [5] without appealing to convexity.

Moreover, our approach is robust enough to apply when a finite-valued background is present.

More precisely, we consider the quasiperiodic operator H̃v,v1
λ,ω,x where ω, x ∈ T and v : T→ R

is an analytic function which is not identically zero. We are interested in the behavior when

v1 is a real-valued sequence on Z which takes only finitely many values. We consider lower

limits of

LN(E) =
1

N

∫
T

ln ‖MN(x,E, ω)‖ dx (3.3)

where

MN(x,E, ω) =
1∏

k=N

E − λv(x+ kω)− Vper(k) −1

1 0

 . (3.4)
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We set

L(E) = lim inf
N→∞

LN(E).

We call L(E) the (lower) Lyapunov exponent. It is important to note that the limit need

not exist in general, however, if the background is periodic, then we can actually easily see

that the limit exists. Moreover, if the background potential is described by some ergodic

process, such as a sub-shift on a finite alphabet, then we may replace lim inf with lim and

this definition will agree with the usual notion of Lyapunov exponent after integration by a

suitable ergodic measure associated with the background.

The recent result by Damanik, Fillman, and Gohlke, L(E) ≥ 1
2

ln(λ), (c.f. Theorem 4.2.5 of

[14]) was established for potentials given by trigonometric polynomials with periodic back-

grounds by appealing to Avila’s global theory. The method of [14] does require periodicity

of the background and does not easily extend to general analytic potentials. In contrast, we

utilize properties of subharmonic functions to prove the sharp result L(E) ≥ ln(λ) − O(1),

which works for all analytic potentials with arbitrary finite-valued backgrounds.

Theorem 3.1.1. Suppose H = Hv
λ,ω,x + v1, with Hv

λ,ω,x as above. Then for any q ∈ N, there

exists λ0 = λ0(v, q), independent of the background, such that for any λ > λ0(v, q), and any

sequence of q real numbers, v1, we have L(E) > ln(λ)−O(1).

Remark 15. The O(1) term in Theorem 3.1.1 is independent of the background and may

be written down explicitly in terms of λ0 and properties of v.

The background potentials, v1, we consider include periodic sequences, Sturmian sub-shifts

of finite type (or, more generally, low-complexity sub-shifts over finite alphabets), and real-

izations of Bernoulli random variables.
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3.2 Proof of positivity

Lemma 3.2.1. Suppose v is a bounded 1-periodic non-constant analytic function on the

complex strip |=(z)| < ρ, ρ > 0 Then for any 0 < δ < ρ there is ε > 0 depending only on

δ, k, and v such that, for any k-tuple (E1, ..., Ek) ∈ Rk,

sup
δ
2
≤y≤δ

min
1≤j≤k

inf
x∈[0,1]

|v(x+ iy)− Ej| > ε.

Proof. Fix δ < ρ. Let sup|=(z)|<ρ |v(z)| = Cv < ∞. Observe that, if |Ej| > 2Cv, then the

boundedness of v implies |v(z)−Ej| > Cv for any |=(z)| < ρ and k ∈ Z. Thus, it just suffices

to establish the claim for |Ej| ≤ 2Cv.

Indeed, suppose not. Using compactness of [−2Cv, 2Cv]
k, we may suppose that there is some

(E1, ..., Ek) ∈ [−2Cv, 2Cv]
k such that for any δ

2
≤ y0 ≤ δ, we have

inf
x∈[0,1]

|v(x+ iy0)− Ej| = 0

for some 1 ≤ j ≤ k.

Since there are infinitely many choices of y0, but only finitely many choices of Ej, we must

be able to find a fixed Ej, a sequence yn in our desired interval, and a sequence xn ∈ [0, 1]

such that

v(xn + iyn)− Ej = 0.

Since the left hand side is an analytic function, and since we are taking xn + iyn in a

compact subset of C, this analytic function must have an accumulation point of zeros in

its domain, and thus it must be constant zero. This immediately implies v(z) is constant,

which is a contradiction. Thus, the claim holds. Uniformity of ε for any k-tuple follows from

compactness of [−2Cv, 2Cv].
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With this lemma, we can now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Since v is 1-periodic and real analytic, it has a bounded complex-

analytic extension to the strip |=(z)| < ρ. Say the extension is bounded by Cv. Moreover,

if we add any real number to v, say α, then v + α still has a bounded complex-analytic

extension to the same strip. Indeed, the bound has simply changed to Cv + |α|.

We now consider the complex-analytic matrix-valued function

MN(z, E) =
1∏

k=N

E − λv(z + kω)− v1(k) −1

1 0

 . (3.5)

Observe that

‖MN(z, E)‖ ≤ (Cv|λ|+ |E|+ max |v1|+ 1)N ,

and thus

uN(z) =
1

N
ln ‖MN(z, E)‖

is a subharmonic function on the strip |=(z)| < ρ obeying

uN(z) ≤ ln(Cv|λ|+ |E|+ max |v1|+ 1).

Moreover, MN(z, E) ∈ SL2(C), so ‖MN(z, E)‖ ≥ 1. Thus

0 ≤ uN(z) ≤ ln(Cv|λ|+ |E|+ max |v1|+ 1).

Our conclusion will now follow if we can bound
∫ 1

0
uN(x)dx from below independent of N.

Let k1, . . . , kq denote the q points in Z which yield the q distinct values for v1. Let us consider
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any fixed E ∈ R and let Ej = E − v1(kj) so that

|v(x+ iy)− E + v1(kj)| = |v(x+ iy)− Ej|.

Observe that Lemma 3.2.1 is applicable in (q-tuple form) to the right hand side, so we can

fix 0 < δ = ρ
100
, and let ε > 0 be the corresponding ε associated to this choice of δ in Lemma

3.2.1. We know that for any E ∈ R, there is δ
2
< y0 < δ such that for any k ∈ Z

inf
x∈[0,1]

∣∣∣∣v(x+ iy0)− E

λ
+
v1(k)

λ

∣∣∣∣ > ε.

Since v is 1-periodic, we can extend this to the entire real line

inf
x∈R

∣∣∣∣v(x+ iy0)− E

λ
+
v1(k)

λ

∣∣∣∣ > ε. (3.6)

Define λ0 = λ0(v) = 5Cvε
−1 and fix λ > λ0.

Consider the set Z = {j ∈ {1, 2, . . . , N} : |v1(j)− E| ≤ 5Cvλ} . Suppose |Z| = k, and let

{j1, . . . , jN−k} = {1, . . . , N} \Z. By induction on N, (3.6), and our definition of Z, we see

that

‖MN(a+ iy0, E)‖ ≥

∣∣∣∣∣∣∣
〈
MN(a+ iy0, E)

1

0

 ,

1

0

〉
∣∣∣∣∣∣∣ (3.7)

≥ (λε− 1)k
N−k∏
n=1

(|E − λv(a+ iy0 + jnω)− v1(jn)| − 1) (3.8)

for any a ∈ [0, 1]. Thus, we may improve our lower bound on uN for any a ∈ R

uN(a+ iy0) >
k

N
ln(|λ|ε− 1) +

1

N

N−k∑
n=1

ln (|E − λv(a+ iy0 + jnω)− v1(jn)| − 1) > 0.
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Now, we let µa+iy0 denote the harmonic measure associated to a + iy0 in the complex strip

0 ≤ iy ≤ iρ/2. In particular, µa+iy0 is a regular Borel measure on the two lines y = 0 and

iy = iρ/2. The definition of the harmonic measure quickly yields

µa+iy0 {iy = iρ/2} =
2y0

ρ
(3.9)

µa+iy0 {iy = 0} = 1− 2y0

ρ
(3.10)

Since uN is subharmonic, we have

uN(a+ iy0) ≤
∫
iy=0

uN(x)dµa+iy0(x) +

∫
iy=iρ/2

uN(x+ iy)dµa+iy0(x)

=

∫
iy=0

uN(x+ a)dµiy0(x) +

∫
iy=iρ/2

uN(x+ a+ iy)dµiy0(x).

(3.11)

Here we used a change of variables and translation properties of the harmonic measure on a

horizontal strip (see proof of Proposition 11.21 in [5]). Now we can integrate throughout in

a over the unit interval, and appeal to periodicity of u in x to obtain

∫ 1

0

uN(x+ iy0)dx <

∫ 1

0

uN(x)dx · µiy0 {iy = 0}+

∫ 1

0

uN(x+ i
ρ

2
)dx · µiy0

{
iy = i

ρ

2

}
≤ (1− 2y0/ρ)

∫ 1

0

uN(x)dx+ (2y0/ρ)

∫ 1

0

uN(x+ iρ/2)dx.

(3.12)

Moreover,

uN(x+ iρ/2) ≤ k

N
ln(2Cv|λ|) +

1

N

N−k∑
n=1

ln (|E − λv(a+ iρ/2 + jnω)− v1(jn)|+ 1) ,
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so

∫ 1

0

uN(x+ iy0)dx ≤
(

1− 2y0

ρ

)∫ 1

0

uN(x)dx

+
2y0

ρ

k

N
ln(Cv|λ|)

+
2y0

ρ

1

N

N−k∑
n=1

∫ 1

0

ln (|E − λv(x+ iρ/2 + jnω)− v1(jn)|+ 1) dx.

We thus have:(
1− 2y0

ρ

)∫ 1

0

uN(x)dx

≥ k

N
ln(λε− 1)− 2y0

ρ

k

N
ln(Cv|λ|)

+
1

N

N−k∑
n=1

∫ 1

0

ln (|E − λv(x+ iy0 + jnω)− v1(jn)| − 1) dx

− 2y0

ρ

1

N

N−k∑
n=1

∫ 1

0

ln (|E − λv(x+ iρ/2 + jnω)− v1(jn)|+ 1) dx

(3.13)

≥ k

N

(
ln(λε− 1)− 2y0

ρ
ln(Cv|λ|)

)
+

2y0

ρ

ρ

2y0

1

N

N−k∑
n=1

∫ 1

0

ln (|E − λv(x+ iy0 + jnω)− v1(jn)| − 1) dx

− 2y0

ρ

1

N

N−k∑
n=1

∫ 1

0

ln (|E − λv(x+ iρ/2 + jnω)− v1(jn)|+ 1) dx

(3.14)

Now we have v(x + iρ/2) = v(x + iy0) + η(x), where |η(x)| ≤ Cv, and |E − λv(x + iy0 +

jnω)− v1(jn)| ≥ 4Cvλ, so

ln(|E−λv(x+ iρ/2 + jnω)− v1(jn)|+ 1)

≤ ln(2|E − λv(x+ iy0 + jnω)− λη(x+ jnω)− v1(jn)|+ 1)

. (3.15)

It now follows that we can bound (3.14) from below using (3.15), the definitions of η(x) and
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Z, and triangle inequality to obtain

(
1− 2y0

ρ

)∫ 1

0

uN(x)dx (3.16)

≥ k

N

(
ln(λε− 1)− 2y0

ρ
ln(Cvλ)

)
+

2y0

ρ

1

N

N−k∑
n=1

∫ 1

0

ln
(
(Cvλ)ρ/2y0−1

)
dx

(3.17)

≥ k

N

(
ln(λ) + ln(ε)− 2y0

ρ
ln(λ)− 2y0

ρ
ln(Cv)

)
+

2y0

ρ

(
ρ

2y0

− 1

)
N − k
N

ln(Cvλ)

(3.18)

=
k

N

(
1− 2y0

ρ

)
ln(λ) +

k

N

(
ln(ε)− 2y0

ρ
ln(Cv)

)
+
N − k
N

(
1− 2y0

ρ

)
ln(λ) + Cv,ρ

(3.19)

Since δ/2 < y0 < δ = ρ/100, the term ln(ε)− 2y0
ρ

ln(Cv) is a constant which may be bounded

by something depending only on v, λ0, and ρ, dividing by 1− 2y0
ρ

yields our result.
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Chapter 4

Further consequences for quantum

dynamics: logarithmic upper bounds

In the Chapter 5, we will discuss and extension of Yoram Last’s theory of quantum dynamics

to establish lower bounds in quantum dynamics whenever spectral measures are sufficiently

continuous. Here, we are interested in the opposite phenomenon: obtaining upper bounds in

quantum dynamics; we will see that upper bounds in quantum dynamics imply singularity

of the associated spectral measures.

Direct proofs of upper quantum dynamical bounds for quasiperiodic and other ergodic opera-

tors with positive Lyapunov exponents have been done, in increasing generality in [17, 45, 32].

In all of these cases, the results featured the desired stability in phase and were often arith-

metic in frequency (in contrast with many localization proofs). All of the papers men-

tioned above obtain vanishing of the transport exponents β(p) (see (4.3)), which implies

sub-polynomial growth of the moments. Here we present a method that allows us to improve

this to power-logarithmic bounds. We note that our results are also phase-stable and our

frequency conditions are arithmetic. The only previous direct proof of power-logarithmic
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bounds was done for the Anderson model in [47] based on different considerations, but we

note that for the Anderson model localization always holds ([13] or see a very simple re-

cent argument in [50]). Thus, to the best of our knowledge, we present the first proof of

power-logarithmic quantum dynamical bounds for models without localization.

Technically, our method goes back to [38] where the existence of transfer matrices grow-

ing appropriately along a subsequence was first used to prove zero Hausdorff dimension of

spectral measures for one-frequency quasiperiodic operators, including in situations where

localization cannot hold. The ideas of [38] were first applied in [17] to obtain vanishing trans-

port exponents for those models, and then this was further modified and developed in [45] to

allow very rough functions. These methods however required continued fraction techniques

and did not extend naturally even to the case of shifts on higher-dimensional tori. This was

tackled in [32] which developed a method allowing to handle general dynamics of zero topo-

logical entropy. Here, for our one-frequency result we go back to the approach of [38, 17, 45].

The method of [32] however is too rough for the logarithmic scale. It turns out that for

higher-dimensional shifts and skew-shifts the basics of Bourgain’s semi-algebraic/large devi-

ations method [5] are ideally suited to obtain the desired power-logarithmic bounds on the

moments.

The key estimate from Bourgain’s method used here is the sublinear bound (4.22) on the

number of hits of a semi-alebraic set by a shift ([5]) or skew-shift ([59]) trajectory. In fact,

all we need is a much weaker statement: the existence of at least one miss in sublinear time,

which of course follows from the sublinear bound. We make some explicit estimates on the

power used in the sublinear bound ((4.22)) in Section 4.3. The sublinear bound was also

fruitfully used in a recent work [41] to establish vanishing of transport exponents β(p) (thus

subpolynomial bounds on the moment growth) for long-range quasiperiodic operators, for

which the authors of [41] developed a non-transfer-matrix based approach. It is an interesting

question whether power-logarithmic bounds can be also obtained in that case.
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We cover all scenarios where a.e. Anderson localization has been proved for one-dimensional

operators with analytic quasiperiodic and skew-shift potentials as described in Bourgain’s

book [5] and with Gevrey extensions in [55, 54]. For all these models the a.e. dynamical

localization was also shown to hold [8]. Essentially, what we demonstrate by this work is

that power-logarithmic bounds on transport can be viewed as dynamical localization-lite,

since the proof is considerably simpler than that of localization and in fact can be obtained

in many known scenarios as a part of the latter proof. Yet the results are phase-stable and

presumably optimal as far as phase-stable results go. Just as with Anderson localization, our

theorems are non-perturbative (our results are obtained as a corollary of positive Lyapunov

exponents, which holds independent of the frequency) for analytic potentials over shifts of

higher-dimensional tori and Gevrey potentials for one-frequency shifts, while they require

large coupling constants dependent on the frequency for the multifrequency Gevrey and

skew shift cases. We note however, that all such dependence comes from the large deviation

estimates that we use as a black box; we don’t add any further “perturbative” components

through our technique.

We proceed to formulate our main results. Consider the time-averaged quantity:

a(n, T ) =
2

T

∫ ∞
0

e2t/T 1

2

(∣∣〈e−itHω,xδ0, δn
〉∣∣2 +

∣∣〈e−itHω,xδ1, δn
〉∣∣2) dt, (4.1)

where δn(m) = 1 when m = n and 0 otherwise.

Dynamical localization is characterized by boundedness in time of the moments of the posi-

tion operator:

〈|X|p(T )〉 =
∑
n∈Z

(1 + |n|)pa(n, T ). (4.2)

For simplicity, we are restricting our attention to time-averaged quantities, rather than con-

sidering a(n, t) = 1
2

(∣∣〈e−itHω,xδ0, δn
〉∣∣2 +

∣∣〈e−itHω,xδ1, δn
〉∣∣2) , but our analysis can be carried
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through for non-time-averaged quantities as well, following the ideas in [18]. We only consider

time-averaging for a small simplification.

Dynamical localization always implies Anderson localization, but is strictly stronger [20, 48].

When dynamical localization does not hold, the moments of the position are unbounded in

time and a natural quantity of interest is how fast this growth is. Classically, this is captured

by the upper and lower transport exponents:

β+(p) = lim sup
t→∞

ln 〈|X|p(t)〉
p ln t

; β−(p) = lim inf
t→∞

ln 〈|X|p(t)〉
p ln t

, (4.3)

which describe power-law bounds on the growth of the moments. It is known that, under very

relaxed conditions (c.f. [32]), the transport exponents vanish when the Lyapunov exponent

is positive. Let us refine the notion of transport exponents by defining the logarithmic

transport exponents as

β+
ln(p) = lim sup

t→∞

ln 〈|X|p(t)〉
p ln ln t

; β−ln(p) = lim inf
t→∞

ln 〈|X|p(t)〉
p ln ln t

. (4.4)

Our first result is that positivity of the Lyapunov exponent will imply that this exponent is

finite for every p.

Let Tω represent either the shift or the skew-shift on the torus, Tν , Gσ(Tν) denote the

Gevrey class, L(E) denote the Lyapunov exponent, and DC(A, c) and SDC(A, c) denote

Diophantine conditions (see Section 4.1 for the relevant definitions). In this regime, we have

the following.

Theorem 4.0.1. Let Hω,x be an operator of the form (??) with Tω given by the shift on T,

and either f is analytic or f ∈ Gσ(T), σ > 1, and obeys the transversality condition (4.11).

Suppose that L(E) > 0 for every E ∈ R. Then for any x ∈ T, ε > 0 and m > 0,

1. if ω ∈ R\Q, then lim infT→∞
〈|X|m(T )〉

(lnT )m(σ+1+ε) <∞;
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2. if ω ∈ DC(A, c), then lim supT→∞
〈|X|m(T )〉

(lnT )m(σ+1+ε) <∞.

Remark 16. We can rewrite the conclusions of Theorem 4.0.1 as follows:

1. if ω ∈ R\Q, then β−ln(p) ≤ 1 + σ for every p > 0 and x ∈ T.

2. if ω ∈ DC(A, c), then β+
ln(p) ≤ 1 + σ for every p > 0 and x ∈ T.

Remark 17. For analytic f the conclusion holds with σ = 1.

We have similar logarithmic quantum-dynamical bounds for non-constant analytic potentials

on higher-dimensional tori.

Theorem 4.0.2. Let Hω,x be an operator of the form (??) with Tω given by the shift on Tν

with ν > 1. Suppose also that f is a non-constant analytic function on Tν , ω ∈ DC(A, c),

and that L(E) > 0 for every E ∈ R. Then there exists γ = γ(ν,A) such that, for every

m > 0,

β±ln(m) ≤ γ. (4.5)

for all x ∈ Tν .

Remark 18. For analytic f, the condition L(E) > 0 for every E ∈ R is satisfied for λf,

where λ > λ0(f). Also we have as an immediate corollary that there exists γ(ν) such that

for a.e. ω ∈ Tν , β±ln(m) ≤ γ(ν) for every m > 0.

Things become a bit more technical when we consider the multi-frequency shift with poten-

tials in the Gevrey class, or when considering the skew shift instead of the shift.

Theorem 4.0.3. Let x ∈ Tν . Let Hω,x be an operator of the form (??) with Tω given by

the shift on Tν with ν > 1. Suppose also that f = λf0 ∈ Gσ(Tν) such that f0 obeys the
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transversality condition (4.11), ω ∈ DC(A, c), and that L(E) > 0 for every E ∈ R. Then

there exists λ0 = λ0(f0, ω) > 0 and γ = γ(σ, ν, A) such that, for every λ > λ0 and m > 0,

β±ln(m) ≤ γ. (4.6)

Remark 19. The condition on λ0 comes from [54] and is necessary to obtain and use a large

deviation estimate which is critical to our proof. See Theorem 4.1.4.

Theorem 4.0.4. Let Hω,x be an operator of the form (??) with Tω given by the skew-shift

on Tν , suppose f = λf0 ∈ Gσ(Tν) such that f0 obeys (4.11), and ω ∈ SDC(A, c), for some

A ≤ 2. Suppose that L(E) > 0 for every E ∈ R. Then there exists λ0 = λ0(f0, ω) > 0 and

γ = γ(σ, ν, A) such that for every λ > λ0 and m > 0,

β±ln(m) ≤ γ. (4.7)

for all x ∈ Tν .

Remark 20. As mentioned earlier, the perturbative nature of Theorems 4.0.3 and 4.0.4 is

fully captured in the ω-dependence of λ0 that comes from [55, 54], while the bound γ that

we prove to exist is constant for a.e. Diophantine ω.

Remark 21. We will see in our proof that the γ that appears in Theorems 4.0.3 and 4.0.4

has ω-dependence which appears precisely as the constant δ from (4.22). It is possible to

explicitly compute γ = C(σν+1)
(

1
δ

)
. Here C is a universal constant C = C(ν). The constant

δ is different for the shift and skew shift, and will be obtained by semialgebraic methods in

section 4.3, where we obtain the explicit estimates δ ≤ 1
A+ν

for the shift and δ < 1
Aν2ν−1 for

the skew-shift.

Remark 22. One of the only places where there is still room for improvement in this

approach is the estimate on δ in Theorem 4.1.2. The closer δ is to 1, the smaller γ will

be, and thus the better the localization result. Our estimate for the shift follows from a
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harmonic analysis approach given by Bourgain. For ω ∈ DC(A, c), other estimates have

been obtained by other authors using alternative methods (c.f. [32] and [59]) but when

A� 1, our localization result is stronger.

We note that the method in [32] while applicable to all our models and a lot more, is

insufficient to obtain ln-type estimates which we are after here, largely because it allows

to find the required exponential growth of the transfer matrix only on polynomially-large

length scales, whereas the growth needs to be on logarithmic length scales to obtain ln-type

estimates.

A corollary of these bounds may be obtained using the results we will present in Chapter 5

(see that chapter for the relevant definitions).

Corollary 4.0.1. Under the assumptions of Theorem 4.0.1, with ω ∈ DC(A, c), we have

dim+
ln(µ) ≤ 1 + σ, where µ is the spectral measure related to δ0 and Hω,x. Under the assump-

tions of Theorem 4.0.3, we have dim+
ln(µ) ≤ γ.

Other quantities have been proposed for studying dynamical localization-type estimates, see

[4, 17], but one of the major advantages of β±ln(p) is that, similar to β±(p), it is stable under

perturbations in certain circumstances. See Theorem 4.0.5 part (b) for a precise statement.

One transfer-matrix based way to approach upper dynamical bounds goes back to a scheme

by Damanik and Tcheremchantsev [17] wherein the quantity β±(p) was related to suitable

growth of the transfer matrices along suitable length scales (see also [47]) . In this paper, we

refine this scheme to allow us to obtain finer dynamical estimates. Our contribution is the

following theorem, which required us to address certain technical limitations in the original

argument (see Section 4.1.2 for the relevant definitions and Section 4.2 for full details).

Theorem 4.0.5. Suppose H1 is of the form (??) with bounded potential v1 and σ(H1) ⊂

[−K + 1, K − 1].
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(a) Suppose for all δ <∞ and T > T0, we have

∫ K

−K

(
min
l=±1

max
1≤lj≤(lnT )γ

∥∥∥Av1,E+i/T
j (x)

∥∥∥2
)−1

dE = O(T−δ) (4.8)

for some γ > 1. Then β+
ln,1(p) ≤ γ, where β+

ln,1(p) is the transport exponent associated

to H1. If the above condition holds for a sequence Tn →∞, then β−ln,1(p) ≤ γ.

(b) In addition to the above, suppose also that H2 is an operator of the form (??) with

bounded potential v2 such that σ(H2) ⊂ [−K + 1, K − 1] and suppose that there exists

B > 0 such that for all E ∈ [−K + 1, K − 1], 0 < ε ≤ 1, and |n| ≤ ln(ε−1),

εB
∥∥Av1,E+iε

n

∥∥ .
∥∥Av2,E+iε

n

∥∥ . ε−B
∥∥Av1,E+iε

n

∥∥ . (4.9)

Then β±ln,2(p) ≤ γ for every p > 0, where β±ln,2(p) is the transport exponent associated

to H2.

Remark 23. It is worth noting that Theorem 4.0.5 is a purely deterministic result, and thus

holds for general operators of the form

(Hu)(n) = u(n− 1) + u(n+ 1) + V (n)u(n),

where V is a bounded sequence of real numbers.

Theorem 4.0.5 is similar to Theorem 1 in [17], but there is a major issue with just repeating

the proof of Theorem 1 in [17] using (lnT )γ in place of T γ. The problem is that the result

in [17] a priori assumes that β±(p) < ∞ for every p > 0. This is the well-known ballistic

upper bound. We do not, unfortunately, have a similar a priori estimate on β±ln(p), even

when β±(p) = 0, which means the original argument is insufficient. Our main technical

achievement on the way to a proof of Theorem 4.0.5 is a sufficient condition (Theorem 4.2.2)

under which we can say β±ln(p) < C <∞ for every p > 0. Once we have this, we can use the
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ideas from [17] to obtain Theorem 4.0.5.

This essentially reduces the problem of bounding log-transport exponents to obtaining lower

bounds on the growth of the transfer matrix along particular length scales. This will be

done in a two-step process. First, we will demonstrate that, for a fixed energy and frequency,

transfer matrix growth can be suboptimal only for a set of phases of small measure. This

will be captured by so-called large deviation estimates. Then we will show that every phase

will correspond to a transfer matrix with good growth after at most power-log many iterates

of the transformation.

The rest of our paper is organized in the following way. In Section 4.1 we introduce the

relevant definitions needed for our paper. Section 4.1.2 is devoted to those definitions needed

for the proof of Theorem 4.0.5. Section 4.1.3 recalls facts about semialgebraic sets which will

be necessary for the proof of Theorem 4.0.3. Section 4.1.4 recalls the large deviation theorems

needed for measure estimates. We prove Theorem 4.0.5 in Section 4.2. We explicitly compute

discrepancy bounds in Section 4.3. We prove two technical lemmas regarding the set of good

phases in Section 4.4. Finally, we prove Theorem 4.0.1 in Section 4.5 and Theorem 4.0.3 in

Section 4.6. Proofs of theorems 4.0.2 and 4.0.4 are essentially identical to that of theorem

4.0.3, however, we describe the small changes needed in, correspondingly, Section 4.7 and

Section 4.8.
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4.1 Preliminaries

4.1.1 Schrödinger operators and transfer matrices

We consider two particular types of Schrödinger operator, Hω,x : `2(Z)→ `2(Z) given by

(Hω,xψ)(n) = ψ(n− 1) + ψ(n+ 1) + f(T nω (x))ψ(n), n ∈ Z. (4.10)

The first case we consider is where x ∈ Tν , Tω is the shift: Tωx = x+ω, and ω = (ω1, ..., ων)

and (ω1, ..., ων , 1) are rationally independent. The second case we consider is where x ∈ Tν , Tω

is the skew-shift: Tω(x1, ..., xν) = (x1 + ω, x2 + x1, x3 + x2, ..., xν + xν+1), and ω ∈ R\Q.

Additionally, we recall that Gσ(Tν) denotes the Gevrey class:

Gσ(Tν) =
{
f : Tν → R : ‖Dαf‖∞ < C |α|+1(α!)σ

}
.

An equivalent definition of Gσ which we will take advantage of is:

Gσ(Tν) =
{
f : Tν → R : |f̂(n)| ≤ e−|n|

1/σ
}
.

In both of the cases, we will consider f ∈ Gσ(Tν) in (4.10).

For technical reasons, we will further restrict our attention to those Gevrey class functions

that obey a transversality condition:

Dαf(x) 6= 0 for any x ∈ Tν , α ∈ Nν . (4.11)

From this point forward, when discussing f ∈ Gσ(Tν), we will mean those f ∈ Gσ(Tν)

that satisfy (4.11). This transversality condition is a generalization of the “non-constant”
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assumption that is made when f is analytic. Recall that, for any E ∈ C, any solution to the

eigen-equation Hω,xψ = Eψ can be reconstructed from the n-step transfer matrix:

Af,En (x) =
1∏

k=n

f(T kω (x))− E −1

1 0

 (4.12)

by

ψ(n+ 1)

ψ(n)

 = Af,En (x)

ψ(1)

ψ(0)

 . (4.13)

We can then define

Ln(E) =
1

n

∫
ln
∥∥Af,En (x)

∥∥ dx
and the Lyapunov exponent is given by

L(E) = limLn(E) = inf Ln(E).

We will also need a Diophantine condition. We say that ω ∈ DC(A, c) if ‖k · ω‖ > c|k|−A for

every k ∈ Zν\{0}. We say that ω ∈ SDC(A, c) if ‖k · ω‖ > c 1
|k|(ln |k|)A . We will only consider

ω ∈ SDC(A, c) for A ≤ 2, which is a restriction imposed by Theorem 4.1.4. See [54] for

details.

In what follows, C and c will denote finite constants and ε will denote a small constant, all of

which can only depend on f, ν, ω, or E. Moreover, these constants may change throughout

a proof, but ε will always denote a small constant, and boundedness of C and c will be

unchanged.
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4.1.2 Transport exponents

Recall that we have defined

β+
ln(p) = lim sup

ln 〈|X|p(t)〉
p ln ln t

; β−ln(p) = lim inf
ln 〈|X|pt 〉
p ln ln t

.

It is simple to verify via Hölder’s inequality that β±ln(p) is non-decreasing in p, so obtaining

a bound on β±ln(+∞) is sufficient for bounding β±ln(p) for any p > 0.

To bound β±ln(+∞), for general operators, we will need to define the so-called outside prob-

abilities:

Pl(N, T ) =
∑
n<−N

a(n, T ) (4.14)

Pr(N, T ) =
∑
n>N

a(n, T ) (4.15)

P (N, T ) = Pl(N, T ) + Pr(N, T ) (4.16)

=
∑
|n|>N

a(n, T ) (4.17)

along with associated log-transport quantities:

S+
ln(α) = − lim sup

ln(P ((lnT )α − 2, T ))

ln lnT
(4.18)

S−ln(α) = − lim inf
ln(P ((lnT )α − 2, T ))

ln lnT
(4.19)

α±ln = sup
{
α ≥ 0 : S±ln(α) <∞

}
. (4.20)

A quick note on our convention here; we use (lnT )α − 2 so that S±ln(0) = 0 as in [17].

Our goal in Section 4.2 will be to show that, under suitable conditions, β±ln(p) ≤ α±ln for every

p > 0, which will be used to establish Theorem 4.0.5.
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4.1.3 Semialgebraic sets

Definition 4.1.1. We say that a set S ⊂ Rn is semialgebraic if it can be written as a finite

union of polynomial inequalities. More precisely, suppose P = {p1, . . . , ps} ⊂ R[X1, . . . , Xn],

is a finite collection of real polynomials in n variables, whose degrees are bounded by d. A

closed semialgebraic set, S ⊂ Rn, is given by an expression of the form

S =
k⋃
j=1

⋂
m∈Qj

{x ∈ Rn : pmsjm0} , (4.21)

where Qj ⊂ {1, ..., s} and sjm ∈ {≤,=,≥} are arbitrary. Moreover, we say that S has degree

at most sd, and its degree is the infimum of sd over all representations as in (4.21).

Theorem 4.1.1 ([5] Corollary 9.6). Let S ⊂ [0, 1]n be semialgebraic of degree B. Let ε > 0

be a small number and |S| < εn, where | · | represents Lebesgue measure. Then there exists

C = C(n) such that S may be covered by at most BCε1−n ε-balls.

Using these results for general semialgebraic sets, we can obtain sublinear bounds for the

shift and skew-shift.

Theorem 4.1.2. Let Tω represent either the shift or the skew-shift. Let S ⊂ [0, 1]n be

semialgebraic of degree B and |S| < η. Let ω ∈ DC(A, c) (when considering the shift) or

ω ∈ SDC(A, c) (when considering the skew-shift), and let N be an integer such that

B ≤ N <
1

η
.

Then there is C = C(n) and δ = δ(ω) such that for any x0 ∈ Tn,

#
{
k = 1, ..., N : T kω (x0) ∈ S

}
< N1−δBC . (4.22)

Remark 24. While the above result holds for any N ≥ B, the resulting bound, N1−δBC
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will only be smaller than N when ln(N) > C ln(B), where C = C(n, δ).

The case where Tω is the shift is due to Bourgain [[5] Corollary 9.7] and the case for the

skew-shift follows from Lemma 8.4 in [59]. The particular δ obtained differs between the

shift and skew-shift, as we will show in Section 4.3.

Remark 25. Different authors obtain different values of δ for the shift (c.f. [59] and [32])

depending on what method they use. In Section 4.3 we explicitly estimate δ for the shift

using the approach from [5], which turns out to be better than the values from [59] and [32]

when ω ∈ DC(A, c), A� 1 (i.e. very weak Diophantine conditions).

4.1.4 Large deviation theorems

Throughout the section, we will assume that the energy, E, is such that L(E) > 0.

The estimate we will obtain in section 4.3 will rely on estimates on the measure of semial-

gebraic sets. The particular semialgebraic sets we are interested in are the set of phases, x,

for which 1
n

∥∥Af,En (x)
∥∥ converges to L(E) slowly. To this end, we recall the following large

deviation theorems, the first of which is due to Bourgain, Goldstein, and Schlag, and the

second is due to S. Klein, which quantitatively measure the rate of convergence.

For the shift model with non-constant analytic potential, there is a well-known large deviation

estimate.

Theorem 4.1.3 ([5] Theorem 5.5). Assume ω ∈ Tν satisfies ω ∈ DC(A, c). Let f be a

non-constant real analytic function on Tν . Then there is α = α(A) > 0 such that

∣∣∣∣{x ∈ Tν :

∣∣∣∣ 1

N
ln
∥∥∥Af,EN (x)

∥∥∥− LN(E)

∣∣∣∣ < N−α
}∣∣∣∣ < e−N

α

. (4.23)

This can also be seen as a consequence of the more general large deviation estimate we obtain
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in Chapter 2.

For the shift model with Gevrey class potential and skew shift with analytic or Gevrey class

potential satisfying a transversality condition, we have:

Theorem 4.1.4 ([54] Theorem 6.1). Assume f ∈ Gσ(T ν) satisfies a transversality condition,

and suppose f = λf0, for some λ ∈ R and f0 ∈ Gσ fixed. Let ω ∈ DC(c, A) (for the shift)

or ω ∈ SDC(A, c), A ≤ 2 (for the skew-shift). Then there exists λ0 = λ0(f0, A) such that for

every fixed |λ| > λ0 and for every energy E we have

∣∣∣∣{x ∈ Tν :

∣∣∣∣ 1

N
ln
∥∥∥Af,EN (x)

∥∥∥− LN(E)

∣∣∣∣ < N−τ
}∣∣∣∣ < e−N

α

, (4.24)

for some constants τ, α > 0 depending only on ν, and every N > N0(λ, c, f0, σ, ν).

4.2 Transport exponents

Our first goal in this section is to relate β±ln(p) to S±ln. Observe that, if S−ln(α) < +∞ we have:

P ((lnT )α − 2, T ) > (lnT )−S
−
ln(α)− (4.25)
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and so

〈|X|p(T )〉 =
+∞∑

n=−∞

(|n|+ 1)pa(n, T ) (4.26)

≥
∑

|n|>(lnT )α−2

(|n|+ 1)pa(n, T ) (4.27)

≥ C(lnT )αpP ((lnT )α − 2, T ) (4.28)

≥ C(lnT )αp(lnT )−S
−
ln(α)− (4.29)

= C(lnT )αp−S
−
ln(α)− (4.30)

and thus

β−ln(p) ≥ α− S−ln(α)

p
. (4.31)

A similar analysis for S+
ln(α) < +∞ shows

β+
ln(p) ≥ α− S+

ln(α)

p
. (4.32)

Together, this shows that

β±ln(+∞) ≥ α±ln. (4.33)

On the other hand, it is possible to use α±ln to bound β±ln(+∞) from above:

Theorem 4.2.1. Let H be an operator of the form (??) with bounded potential and suppose

that for some η > 0, and for all p > 0, we have

〈|X|p(T )〉 < Cp(lnT )ηp. (4.34)
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Then 0 ≤ α±ln ≤ η and

β±ln(+∞) ≤ α±ln. (4.35)

Remark 26. We can replace (4.34) with the condition β+
ln(p) < η for every p > 0.

Remark 27. The following proof uses the same ideas as the proof of Theorem 4.1 in [27].

Proof. The bound 0 ≤ α±ln ≤ η follows from the computation performed above, so we will

focus on proving (4.35).

Fix 0 ≤ α ≤ α+
ln, ε > 0 and consider the following:

〈|X|p(T )〉 =
+∞∑

n=−∞

(|n|+ 1)pa(n, T ) (4.36)

=
∑

|n|≤(lnT )α−2

+
∑

(lnT )α−2<|n|≤(lnT )
α+
ln

+ε/2

(4.37)

+
∑

(lnT )
α+
ln

+ε/2
<|n|≤(lnT )η+ε

+
∑

(lnT )η+ε<|n|

. (4.38)

Let us label these sums 1 - 4. A few notes before we start bounding these sums. First, we

will assume α > 0. If α = 0, then we may proceed by removing the second sum and replacing

α with α+
ln in the first sum. Second, if α+

ln = η, then the third sum is unnecessary.

We can bound sum 1 by ∑
|n|≤(lnT )α−2

< C(lnT )αp.

We can bound sum 2:

∑
(lnT )α−2<|n|≤(lnT )

α+
ln

+ε/2

≤ C(lnT )pα
+
ln+pε/2P ((lnT )α − 2, T ).
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If α+
ln = η, then sum 3 is unnecessary. If α+

ln < η, then we can bound sum 3 by

∑
(lnT )

α+
ln

+ε/2
<|n|≤(lnT )η+ε

≤ (lnT )ηp+pεP ((lnT )α
+
ln+ε/2, T ),

and by definition of α+
ln, the right hand side goes to 0, so it can be further bounded by some

constant C.

Finally, we have the bound for sum 4. For any m,

∑
(lnT )η+ε<|n|

≤ (lnT )−(η+ε)m
〈
|X|p+m(T )

〉
≤ Cp+m(lnT )−(η+ε)m(lnT )η(p+m).

By taking m > ηp/ε, we have

∑
(lnT )η+ε<|n|

< C.

Putting everything together, we have

〈|X|p(T )〉 < C + C(lnT )pα + C(lnT )pα
+
ln+pε/2P ((lnT )α − 2, T ). (4.39)

Taking ln throughout, and letting

f(T, p, α, ε) = max
{
αp ln ln(T ), (pα+

ln +
pε

2
) ln ln(T ) + ln(P ((lnT )α − 2, T ))

}
,

we have

ln (〈|X|p(T )〉) < C + f(T, p, α, ε) (4.40)
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so

β+
ln(p) ≤ max

{
α, α+

ln +
ε

2
− S+

ln(α)

p

}
. (4.41)

Taking p→∞ yields our result for β+
ln(p). The proof for β−ln(p) is similar.

The major roadblock to using this result to obtain bounds on β±ln(p) is that it requires an

a priori finite estimate on β±ln(p) for every p > 0, which we do not have in general. This

differs from the situation arising when we merely want to bound β±(p), since in that case

we usually have a trivial ballistic upper bound: β±(p) ≤ 1. To remedy this, we have the

following, which provides a sufficient condition for β±(p) < C <∞ for every p > 0.

Theorem 4.2.2. Let H be an operator of the form (??) with bounded potential and suppose

that α±ln < +∞. Moreover, suppose that, for some ξ > 0,

P ((lnT )ξ, T ) = O(T−a) (4.42)

for every a > 1, and for some γ <∞ we have

〈|X|p(T )〉 < CpT
γp. (4.43)

Then for some η <∞ (4.34) holds.

Remark 28. As noted above, (4.43) always holds with γ = 1 when the potential is bounded.

Proof. The proof proceeds the same as before, expressing 〈|X|p(T )〉 as a sum, and decom-

posing that sum into four further sums, except we take η to be ξ. With this modification,

the bounds for sums 1 - 3 still hold, but we need to be more careful with the fourth sum.

108



We have:

∑
(lnT )ξ+ε<|n|

=
∑

(lnT )ξ+ε<|n|≤T γ+ε
+

∑
T γ+ε<|n|

. (4.44)

Let us denote the first sum by I and the second sum by II. We can bound sum I by

∑
(lnT )ξ+ε<|n|≤T γ+ε

≤ T (γ+ε)pP ((lnT )ξ+ε, T ) (4.45)

≤ T p(γ+ε)−a (4.46)

for large T, where we can take any a > 1. Taking a > p(γ+ε), we have
∑

(lnT )ξ+ε<|n|≤T γ+ε < C.

For sum II, we have

∑
T γ+ε<|n|

= T−m(γ+ε)
∑

T γ+ε<|n|

(|n|+ 1)p+ma(n, T ) (4.47)

≤ T−m(γ+ε)
〈
|X|p+m(T )

〉
(4.48)

≤ Cm+pT
(p+m)γ−m(γ+ε) < C. (4.49)

for m > γp/ε. With these two bounds, we may proceed as before to conclude that β+
ln(p) <

C < +∞.

We will now turn our attention to the proof of Theorem 4.0.5. We start with a lemma due

to Damanik and Tcheremchantsev:

Lemma 4.2.1 ([17] Theorem 7). Suppose H is of the form (??), where V is a bounded

real-valued function, and K ≥ 4 is such that σ(H) ⊂ [−K + 1, K − 1]. Then

Pr(N, T ) . e−cN + T 3

∫ K

−K

(
max

1≤n≤N

∥∥Af,E+i/T
n

∥∥2
)−1

dE (4.50)

Pl(N, T ) . e−cN + T 3

∫ K

−K

(
max

1≤n≤N

∥∥∥Af,E+i/T
−n

∥∥∥2
)−1

dE (4.51)
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With this lemma, and the preceding theorems, we will prove Theorem 4.0.5.

Proof of Theorem 4.0.5 (a). In light of Theorem 4.2.1, it suffices to show that α±ln ≤ γ.

We will do this for α+
ln and observe that the proof for α−ln is the same.

Using (4.8) and Lemma 4.2.1, since γ > 1, we have

P ((lnT )γ, T ) = O(T−δ) (4.52)

for every δ <∞. Thus

ln (P ((lnT )γ, T ))

ln ln(T )
≤ −δ ln(T )

ln ln(T )
. (4.53)

We are left with

S+
ln(γ) = +∞, (4.54)

so α+
ln ≤ γ.

We will now prove the second part.

Proof of Theorem 4.0.5(b). Fix H1 and H2 of the form (??) with bounded potentials,

v1 and v2, and let K ≥ 4 be such that σ(Hi) ⊂ [−K + 1, K − 1] for i = 1, 2. Denote the

corresponding transfer matrices by Av1 and Av2 and the corresponding transport exponents

by β±ln,1(p), β±ln,2(p). Suppose that there is γ <∞ such that, for every M > 0 and T > T0(M),

∫ K

−K

(
max

0≤|n|≤(lnT )γ
‖Av1n (x,E + i/T )‖2

)−1

dE ≤ CT−M .

Moreover, suppose that there exists A > 0 such that for all E ∈ [−K + 1, K − 1], 0 < ε ≤ 1,
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and |n| ≤ ln(ε−1),

εA
∥∥Av1,E+iε

n

∥∥ .
∥∥Av2,E+iε

n

∥∥ . ε−A
∥∥Av1,E+iε

n

∥∥ . (4.55)

Let P1(N, T ) and P2(N, T ) be the corresponding outside probabilities.

Observe, by Lemma 4.2.1 and our assumptions above, that for any M > 0, and T > T0(M),

P2((lnT )γ, T ) ≤ e−C(lnT )γ + T 3

∫ ∫ K

−K

(
max

0≤|n|≤(lnT )γ
‖Av2n (x,E + i/T )‖2

)−1

dE (4.56)

≤ e−C(lnT )γ + T 3+A

∫ ∫ K

−K

(
max

0≤|n|≤(lnT )γ
‖Av1n (x,E + i/T )‖2

)−1

dE

(4.57)

≤ CT−M , (4.58)

and thus

ln(P2((lnT )γ, T ))

ln ln(T )
≤ −M ln(T ) + ln(C)

ln ln(T )
. (4.59)

We conclude as before.

4.3 Semialgebraic sets

Here we obtain an explicit estimate on the δ from Theorem 4.1.2.

Theorem 4.3.1. When Tω is the shift on Tn, and ω ∈ DC(A, c), we can take δ ≤ 1
A+n

in Theorem 4.1.2. When Tω is the skew-shift on Tn, and ω ∈ SDC(A, c), we can take

δ < 1
n2n−1(1+ε)

for any ε > 0.
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Remark 29. The general idea of the proof is the same in both cases. We first prove a

bound of the form # {k = 1, ..., N : Tω(x0) ∈ Bε} ≤ N−ζ , where Bε is a ball of radius ε.

Then we use the covering lemma for semialgebraic sets (Theorem 4.1.1) to cover the desired

semialgebraic set by by ε-balls. Because of this similarity, we will only give a proof for the

shift. The details for the skew-shift can be found in [59] (Lemma 8.4 and Theorem 8.7).

Proof. Fix ε = N−δ and let χ(x) = χB(0,ε)(x) be the characteristic function of the ball of

radius ε centered at 0. Let R = 1
10ε

and let

FR(xj) =
1

R

(
sin(Rx/2)

sin(x/2)

)2

=
∑
|m|<R

(
1− |m|

R

)
eimxj =

∑
|m|<R

F̂R(m)eimxj

be the usual Fejer kenel on R.

If χ(x) = 0, then χ(x) ≤ CR−n
∏n

j=1 FR(xj) holds trivially. On the other hand, by our

choice of ε and R, if χ(x) = 1, then FR(xj) ∼ R, since, for small xj,

FR(xj) =
1

R

(
sin(Rxj/2)

sin(xj/2)

)2

∼ 1

R
R2 = R,

and we also have χ(x) ≤ CR−n
∏n

j=1 FR(xj). Thus we have

n∏
j=1

FR(xj) =
n∏
j=1

∑
|m|<R

F̂R(m)eimxj

=
∑
|m|<R

F̂R(m1) · · · F̂R(mn)eim·x.

(4.60)
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Hence, if we set m = (m1, ...,mn), we have

N∑
j=1

χ(x0 + jω) ≤ CR−n
N∑
j=1

∑
|mk|<R;1≤k≤n

F̂R(m1) · · · F̂R(mn)eim·(x0+jω) (4.61)

≤ CR−n
∑

|mk|<R;1≤k≤n

(
F̂R(m1) · · · F̂R(mn)eim·x

(
N∑
j=1

eijm·ω

))
(4.62)

≤ CR−n
∑

|mk|<R;1≤k≤n

(
F̂R(m1) · · · F̂R(mn)

∣∣∣∣∣
N∑
j=1

eijm·ω

∣∣∣∣∣
)
. (4.63)

At this point, we can split the sum into two parts: either mk = 0 for all 1 ≤ k ≤ n, or at

least one mk 6= 0. Thus we can write (4.63) = (4.64) + (4.65), where (4.64) and (4.65) are

given by

CR−nF̂R(0)n

∣∣∣∣∣
N∑
j=1

eij0·ω

∣∣∣∣∣ (4.64)

and

CR−n
∑

0≤|mk|<R;1≤k≤n; some mk 6=0

(
F̂R(m1) · · · F̂R(mn)

∣∣∣∣∣
N∑
j=1

eijm·ω

∣∣∣∣∣
)
. (4.65)

Since 0 < F̂R(m) ≤ 1 and
∣∣∣∑N

j=1 e
ijm·ω

∣∣∣ ≤ N, we have for any x0

N∑
j=1

χ(x0 + jω) ≤ CR−nN + CR−n
∑

0<|m|<R

∣∣∣∣∣
N∑
j=1

eijm·ω

∣∣∣∣∣
= CR−nN + CR−n

∑
0<|m|<R

∣∣∣∣1− eiNm·ω1− eim·ω

∣∣∣∣
≤ CR−nN + CR−n

∑
0<|m|<R

2|1− eim·ω|−1

≤ CR−nN + C max
0<|m|<R

2|1− eim·ω|−1.
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Since ω ∈ DC(c, A), we know ‖m · ω‖ > c|m|−A, for every m 6= 0, so |1 − eim·ω|−1 . RA,

and we conclude

N∑
j=1

χ(x0 + jω) ≤ CR−nN + CRA

≤ CN(R−n +RAN−1)

≤ CN(εn + ε−AN−1).

Now, if we take δ = 1
n+A

, then by our choice of ε we have

ε−AN−1 = ε−AεA+n

= εn,

so

N∑
j=1

χ(x0 + jω) ≤ CNεn.

We conclude the proof by observing that, by Theorem 4.1.1, it is possible to cover S using

no more than BCε1−n ε-balls, where C = C(n). Thus the above computation shows that

# {k = 1, ..., N : x0 + kω ∈ S} ≤ CNεnBCε1−n

= CNBCε

≤ N1−δBC .

For the skew-shift, we have, by Lemma 8.3 and Theorem 8.7 from [59], that for any ε′ > 0,

#
{
k = 1, ..., N : T kω (x0) ∈ Bε

}
≤ CN

− 1
2n−1(1+ε)

+ε′
.
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Applying Theorem 4.1.1, we have

#
{
k = 1, ..., N : T kω (x0) ∈ S

}
≤ CBCε1−nN

− 1
2n−1(1+ε)

+ε′

4.4 Technical lemmas

We will prove our results for right cocycles and observe that the exact same arguments

establish the same results for left cocycles.

Let us define

V f
k (E, a) :=

{
x ∈ Tν :

1

k
ln
∥∥∥Af,Ek (x)

∥∥∥ ≥ a

}
.

We will begin with the following lemma, which reduces everything to the study of semialge-

braic sets. Fix τ < 1 and 1− τ/16 > a > c > d > 1− τ/8 > 1− τ.

Lemma 4.4.1. Let f ∈ Gσ(Tν). There is some kτ (E) < ∞ so that for k > kτ (E) and

|E− z| < e
− kτL(E)
‖f‖∞ , we can find N1 <∞ so that we have the following sequence of inclusions:

V f
k (E, aL(E)) ⊂ V

f̃N1
k (E, cL(E)) ⊂ V f

k (z, dL(E)) (4.66)

where f̃N1(x) is a certain polynomial of degree N1, so V
f̃N1
k (E, cL(E)) is semialgebraic of

degree at most kN1.

Remark 30. We may take N1(k) ∼ kσν+ in the above lemma.
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Proof. Let us fix k ∈ N large and ε > 0 small. First, since f ∈ Gσ(Tν), we know that

|f̂(n)| ≤ C1e
−|n|1/(σ+)

. (4.67)

Let fN0(x) =
∑
|n|≤N0

f̂(n)ein·x. For N0 ≥ kσ+ε, we have

|f(x)− fN0(x)| ≤ e−k
1+ε ≤ e−k(1−c)L(E).

Now for such N0, there exists a polynomial f̃N1(x) of degree N1 with N1 = kσν+ε so that

|fN0(x)− f̃N1(x)| ≤ e−k(1−d)L(E).

This can be seen by approximating einjxj by a Taylor polynomial of degree kσ+ and then

bounding the error as usual. Note that these two inequalities hold for k sufficiently large

(dependent only on the dimension ν and ε).

By upper semicontinuity, compactness considerations, and a standard telescoping argument,

we have

∥∥∥Af,Ek (x)− AfN0
,E

k (x)
∥∥∥ < e−k

1+ε

(4.68)∥∥∥Af,Ek (x)− Af̃N1
(x),z

k

∥∥∥ < e−k(1−d+τ)L(E)ek(L(E)+ε) < ek(L(E)/2+ε) (4.69)

for k sufficiently large and |E − z| < e
− kτ(L(E)+ε)

‖f‖∞ . The first inclusion can now be established

by observing that, for x ∈ V f
k (E, aL(E)), we have

∥∥∥AfN0
,E

k (x)
∥∥∥ ≥ ∥∥∥Af,Ek (x)

∥∥∥− ∥∥∥Af,Ek (x)− AfN0
,E

k (x)
∥∥∥

≥ eckL(E).

The other inclusion is proved in the same way.
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The semialgebraic bound on V
f̃N1
k (E, cL(E)) follows from the fact that V

f̃N1
k (E, cL(E)) is

given by a single inequality involving a polynomial of degree kN1.

Now we have

Lemma 4.4.2. Let k,E, z, d, and V f
k (z, dL(E)) be as in Lemma 4.4.1. Then |V f

k (z, dL(E))| >

1/2, where | · | represents Lebesgue measure.

Proof. By definition of L(E) we have

L(E) ≤ 1

k

∫
ln
∥∥∥Af,Ek (x)

∥∥∥ dx
≤ |V f

k (E, aL(E))|(L(E) + ε) + (1− |V f
k (E, aL(E))|)(aL(E))

≤ |V f
k (E, aL(E))|((1− a)L(E) + ε) + aL(E).

Thus, by choosing ε appropriately (which can be done by upper semicontinuity and taking

k > k0(ε) sufficiently large), and the fact that a < 1, we have

|V f
k (E, aL(E))| ≥ 1

2
. (4.70)

The set inclusion proved above now yields the result.

Our next goal is to show that for Tω either the shift or skew-shift, there is some Nk < ∞

such that, for every x ∈ Tν , Tω(x) ∈ V f
k (z, dL(E)) for some 1 ≤ j ≤ Nk, and then obtain the

required transfer matrix bounds. We will split the remaining argument up into three cases:

the shift with ν = 1, the shift with ν > 1, and the skew shift with ν > 1.
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4.5 The case ν = 1

Our goal is to first establish the following estimates. Let d be as in Lemma 4.4.1.

Theorem 4.5.1. Let f ∈ Gσ(T), ω ∈ R\Q, and E ∈ C such that L(E) > 0. For any

0 < τ < 1, there exist kτ = kτ (E) <∞ such that for any ε > 0, k > kτ , and x ∈ T, there is

1 ≤ j ≤ Ck1+σ+ε so that for any z ∈ C with |z − E| < e
− τkL(E)
‖f‖∞ we have

∥∥∥Af,zk (x+ jω)
∥∥∥2

> edkL(E). (4.71)

Theorem 4.5.2. Fix ε > 0. Let f ∈ Gσ(T), ω ∈ DC(A, c), and L(E) > 0. Then for any

ξ, ζ > 1, there is C, c > 0 and TE <∞ such that for T > TE,

inf

{
min
ι=±1

max
1≤ιm≤C(lnT )ζ(1+σ+ε)

∥∥Af,zm (x)
∥∥2
T−ξ

}
> c (4.72)

where the infimum is over all x ∈ T and z ∈ C with |z−E| < T−ζ . Moreover, TE is uniformly

bounded below for E in compact sets with positive L(E).

In particular, for E ∈ [−K,K], we have max1≤n≤C(lnT )ζ(1+σ)

∥∥∥Af,E+i/T
n

∥∥∥2

≥ cT ξ for every

ξ > 1 and large T.

If ω ∈ R\Q, then the above holds for a sequence, Tn for n > nE for all E, and for n > n0

for E ∈ [−K,K].

When ν = 1, we can write ω as a continued fraction. Let pn
qn

be the continued fraction

approximation of ω. We then have the following lemma.

Lemma 4.5.1 (Lemma 9 from [38]). Suppose ∆ ⊂ T is an interval with |∆| > 1/qn. Then

for every x ∈ T, there exists 1 ≤ j ≤ qn + qn−1 − 1 such that x+ jω ∈ ∆.

Lemmas 4.4.1 and 4.4.2, along with Remark 30, imply V f
k (z, dL(E)) contains an open set,
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∆, of measure

1

2k1+σ+ε
. |∆|.

Now if we take k > Cq
1/(1+σ+ε)
n , we have |∆| > 1/qn, and so, by Lemma 4.5.1,

Lemma 4.5.2. Let f, E, z, and d be as in Lemma 4.4.1. For k ∼ q
1/(1+σ+ε)
n , there exists

1 ≤ j . k1+σ+ε such that x+ jω ∈ V f
k (z, dL(E)).

Theorem 4.5.1 now follows by the set inclusion we proved in the previous section.

Since the proof of Theorem 4.5.2 is identical to the proof of Theorem 4.6.2 in the next section,

we omit it and refer readers to the next section for the details.

With Theorem 4.5.2, we can prove Theorem 4.0.1.

Proof of Theorem 4.0.1. Let us begin by fixing x ∈ T and f ∈ Gσ(T). Moreover suppose

that L(E) > 0 for every E ∈ R. First, we will consider the case ω ∈ DC(A, c). Fix ε > 0

and set γ = 1 + σ. The hypotheses of Theorem 4.5.2 are satisfied, and we can combine the

conclusion of Theorem 4.5.2 with the conclusion of Lemma 4.2.1 to obtain

P ((lnT )γ+ε − 2, T ) ≤ e−C(lnT )ζ(γ+ε) + CT−δ

for every ζ, δ > 1. Since γ > 1, we can further bound this by

P ((lnT )γ+ε − 2, T ) ≤ CT−δ,

using a different constant C. As before, we obtain α+
ln ≤ 1 + σ < +∞.

We can now appeal to Theorem 4.2.2 to establish the hypotheses of Theorem 4.2.1, so

β+
ln(p) ≤ α+

ln ≤ 1 + σ.
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Now we turn to the case ω ∈ R\Q. We can appeal to Theorem 4.5.2 to obtain the above for

a sequence Tn → ∞. With a sequence, we have analagous statements as above, but for S−

and α−. Thus we obtain β−ln(p) ≤ 1 + σ.

4.6 The case ν > 1

As in the case ν = 1, our goal is to first establish the following estimates:

Theorem 4.6.1. Let f = λf0 ∈ Gσ(T ν), ν > 1, ω ∈ DC(A, c), λ > λ0(f0, ω), and E ∈ R

such that L(E) > 0. For any 0 < τ < 1, there exist kτ = kτ (E) < ∞, δ = δ(ω, ν), and

γ = γ(σ, ν, δ) such that for any ε > 0, k > kτ , and x ∈ Tν , there is 1 ≤ j ≤ kγ+ε so that for

any z ∈ C with |z − E| < e
− τkL(E)
‖f‖∞ we have

∥∥∥Af,zk (x+ jω)
∥∥∥ > ek(1−τ)L(E). (4.73)

Theorem 4.6.2. Fix ε > 0. Let f = λf0 ∈ Gσ(Tν), ν > 1, ω ∈ DC(c, A), λ > λ0(f0, ω), and

L(E) > 0. Then for any ξ, ζ > 1, there is c > 0 and TE <∞ such that for T > TE,

inf

{
min
ι=±1

max
1≤ιm≤(lnT )ζ(γ+ε)

∥∥Af,zm (x)
∥∥2
T−ξ

}
> c (4.74)

where γ and δ are as above, and the infimum is over all x ∈ Tν and z ∈ C with |z−E| < T−ζ .

Moreover, the dependence of TE on E is through L(E), as in Theorem 4.5.2. Thus, as before,

TE is uniformly bounded below for E in compact sets with positive L(E).

Remark 31. If we consider just E ∈ [−K,K] in the above theorem, then continuity of

L(E), which was established for our situation in [54], and compactness of [−K,K] yields the

desired uniform lower bound on T.
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When ν > 1, we need to do a bit more work to obtain an analogue of Lemma 4.5.1.

We may appeal to Theorems 4.1.4 and 4.1.2 to obtain:

Lemma 4.6.1. Let ω ∈ DC(A, c). For f = λf0 ∈ Gσ(Tν), there exists λ0(f0, ω) such that,

for λ > λ0 and every x ∈ Tν there exists 1 ≤ j ≤ kC(ν+A)(σν+1)+ such that x + jω ∈

V
f̃N1
k (E, cL(E)).

Proof. Recall that by Theorem 4.1.4, combined with (4.68), with N1 as in Lemma 4.4.1,

there exists a λ0 so that, for all λ > λ0 and f = λf0, we have

∣∣∣∣{x ∈ Tν :

∣∣∣∣1k ln
∥∥∥Af̃N1

,E

k (x)
∥∥∥− Lk(E)

∣∣∣∣ > 2k−τ
}∣∣∣∣ < e−k

α

. (4.75)

This implies

∣∣∣∣{x ∈ Tν :
1

k
ln
∥∥∥Af̃N1

,E

k (x)
∥∥∥− L(E) < −2k−τ

}∣∣∣∣ < e−k
α

, (4.76)

since Lk(E) ≥ L(E). Thus, for k sufficiently large, and N1(k) ∼ kσν+, by Remark 30,

∣∣∣Tν\V f̃N1
k (E, cL(E))

∣∣∣ < e−k
α

. (4.77)

Since the left hand side is the complement of a semialgebraic set of degree at most kN1, it is

itself semialgebraic of degree at most kN1. By Theorem 4.3.1, for fixed 0 < ε < δ = 1
ν+A

, we

can thus set S =
(
Tν\V f̃N1

k (E, cL(E))
)
, η = e−k

α
, B = kN1, and N = BC/(δ−ε), and then

appeal to Theorem 4.1.2 to obtain, for any 0 < ε < δ,

# {1 ≤ j ≤ N : x+ jω ∈ S} < BC 1−δ
δ−εBC = BC 1−ε

δ−ε . (4.78)

Thus, for every x ∈ Tν there is a 1 ≤ j ≤ (kN1)C
1−ε
δ−ε < N1−ε so that x+jω ∈ V f̃N1

k (E, cL(E)).

The result now follows from our choice of N1 ∼ kσν+ in Lemma 4.4.1.
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Theorem 4.6.1 now follows from the fact that V
f̃N1
k (E, cL(E)) ⊂ V f

k (z, dL(E)), and observing

that d > 1− τ, just as in the case ν = 1.

Theorem 4.6.2 can now be proved using Theorem 4.6.1.

Proof of Theorem 4.6.2. Fix ξ, ζ > 1 and 0 < τ <
ζ‖f‖∞
ζ‖f‖∞+ξ

< 1. Consider any Mk =

Mk(ξ, ζ) such that the following holds:

ekτL(E)/(ζ‖f‖∞) < Mk < ek(1−τ)L(E)/ξ (4.79)

and

(lnMk)
(γ+ε)ζ > kγ+ + k. (4.80)

Both conditions can be satisfied by taking k sufficiently large due to our choice of τ and

ζ > 1. Appealing to Theorem 4.6.1, for every x ∈ Tν there is 1 ≤ j ≤ (lnMk)
(γ+ε)ζ − k so

that for |z − E| < M−ζ
k we have

∥∥∥Af,zk (x+ jω)
∥∥∥ ≥M ξ

k . (4.81)

Now recall that, by definition,

Af,zk+j(x) = Af,zk (x+ jω)Af,zj (x). (4.82)

Moreover, A is an SL2(R) cocycle, so ‖Ak‖ =
∥∥A−1

k

∥∥ , and thus

∥∥∥Af,zk (x+ jω)
∥∥∥ ≤ ∥∥∥Af,zk+j(x)

∥∥∥∥∥∥Af,zj (x)
∥∥∥ . (4.83)
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This together with (4.81) implies

max
1≤j≤(lnMk)(γ+ε)ζ−k

{∥∥∥Af,zk+j(x)
∥∥∥ ,∥∥∥Af,zj (x)

∥∥∥} ≥M ξ
k . (4.84)

Thus we must have

max
1≤j≤(lnMk)(γ+ε)ζ

∥∥∥Af,zj (x)
∥∥∥2

≥M ξ
k . (4.85)

It is not difficult to show that for some T0 = T0(E) < ∞, and any T > T0, we can find

k <∞ and Mk = T satisfying (4.79) and (4.80). Thus, we have, for any ξ, ζ > 1,

inf
|z−E|<T−ζ ;x∈Tν

{
max

1≤ιj≤(lnT )(γ+ε)ζ

∥∥∥Af,zj (x)
∥∥∥2

T−ξ
}
> c > 0. (4.86)

It remains to show that we can also use the same Mk to obtain an analogous bound for the

left transfer matrix. Note that for an ergodic invertible cocycle, the Lyapunov exponent of

the forward cocycles and the Lyapunov exponent of the backward cocycles agree. Moreover,

if Ak(ω, x) is the cocycle over rotations by ω, then A−k(ω, x) = Ak(−ω, x+ ω). Since ω and

−ω obey the same Diophantine condition, Lemma 4.6.1 also holds for Af,z−k(x), which means

we can use the exact same Mk to obtain a bound as above.

Now we can turn to the proof of Theorem 4.0.3.

Proof of Theorem 4.0.3. We can follow the same idea as in the proof of Theorem 4.0.1,

using Theorem 4.6.2 in place of Theorem 4.5.2. Let us fix x ∈ Tν , ω ∈ DC(A, c) ⊂ Tν , and

f = λf0 ∈ Gσ(Tν), where λ > λ0(f0, ω) so that we satisfy the conclusions of Theorem 4.1.4.

Moreover, suppose that L(E) > 0 so that we may appeal to Theorem 4.6.2.
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By Theorem 4.6.2, along with Theorem 4.2.1, we have

P ((lnT )γ+ε − 2, T ) ≤ CT−β

for some γ = γ(A, c, σ, ν) < +∞ and every β > 1. Moreover, it is clear that

ln(P ((lnT )γ+ε − 2, T ))

ln ln(T )
≤ −δ ln(T )

ln ln(T )
, (4.87)

so by Theorems 4.2.2 and 4.2.1, β±ln(p) ≤ α±ln ≤ γ.

4.7 The analytic case

The proofs of our main results in the case of an analytic potential are morally the same

as those for Gevrey potentials. Indeed, we can quickly obtain the following using the same

proofs as the analogous results above.

Theorem 4.7.1. Let f be a non-constant analytic function on Tν , ν ≥ 1, ω ∈ DC(A, c), and

E ∈ R such that L(E) > 0. For any 0 < τ < 1, there exist kτ = kτ (E) < ∞, δ = δ(ω, ν),

and γ = γ(ν, δ) such that for any ε > 0, k > kτ , and x ∈ Tν , there is 1 ≤ j ≤ kγ+ε so that

for any z ∈ C with |z − E| < e
− τkL(E)
‖f‖∞ we have

∥∥∥Af,zk (x+ jω)
∥∥∥ > ek(1−τ)L(E). (4.88)

Theorem 4.7.2. Fix ε > 0. Let f be a non-constant analytic function on Tν , ν ≥ 1, ω ∈

DC(c, A), and L(E) > 0. Then for any ξ, ζ > 1, there is c > 0 and TE < ∞ such that for
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T > TE,

inf

{
min
ι=±1

max
1≤ιm≤(lnT )ζ(γ+ε)

∥∥Af,zm (x)
∥∥2
T−ξ

}
> c (4.89)

where γ and δ are as before, and the infimum is over all x ∈ Tν and z ∈ C with |z−E| < T−ζ .

Moreover, the dependence of TE on E is through L(E), as in Theorem 4.5.2. Thus, as before,

TE is uniformly bounded below for E in compact sets with positive L(E).

The main difference between these two results and the variants from Sections 4.5 and 4.6 is

the assumption on f. Here, we do not need to assume f = λf0 for λ > λ0(f0, ω). Indeed, this

condition is needed for the Gevrey case in order to use the large deviation estimate Theorem

4.1.4, but the analogous estimate for analytic potentials, Theorem 4.1.3, does not require

such a condition. Once we have a large deviation estimate, the proofs proceed exactly as in

the proof of Theorem 4.6.1, with (4.67) replaced by |f̂(n)| ≤ CEc|n|. Note that continuity of

L(E), which is required in the uniform minoration of TE, was established in [5].

4.8 The skew-shift case, ν > 1

Let Tω denote the skew shift on Tν . As in the shift case, our goal is to first establish the

following estimates:

Theorem 4.8.1. Let f = λf0 ∈ Gσ(T ν), ν > 1, ω ∈ SDC(A, c), λ > λ0(f0, ω) and E ∈ R

such that L(E) > 0. For any 0 < τ < 1, there exist kτ = kτ (E) < ∞, δ = δ(ω, ν), and

γ = γ(σ, ν, ω) such that for any ε > 0, k > kτ , and x ∈ Tν , there is 1 ≤ j ≤ kγ+ε so that for

any z ∈ C with |z − E| < e
− τkL(E)
‖f‖∞ we have

∥∥∥Af,zk (x+ jω)
∥∥∥ > ek(1−τ)L(E). (4.90)
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Theorem 4.8.2. Fix ε > 0. Let f = λf0 ∈ Gσ(Tν), ν > 1, ω ∈ SDC(c, A), λ > λ0(f0, ω) and

L(E) > 0. Then for any ξ, ζ > 1, there is c > 0 and TE <∞ such that for T > TE,

inf

{
min
ι=±1

max
1≤ιm≤(lnT )ζ(γ+ε)

∥∥Af,zm (x)
∥∥2
T−ξ

}
> c (4.91)

where γ and δ are as above, and the infimum is over all x ∈ Tν and z ∈ C with |z−E| < T−ζ .

Moreover, if we restrict our attention to E in some compact interval [−K,K], we can take

TE uniformly bounded below.

In particular, for E ∈ [−K,K], we have max1≤n≤(lnT )ζ(γ+ε)

∥∥∥Af,E+i/T
n

∥∥∥2

≥ CT ξ for every

ξ > 1 and T large.

An analogue of Lemma 4.5.1 follows using the same argument as in the multifrequency shift

case. The proof is identical to the proof of Lemma 4.8.1, but we use the skew-shift bound

from Theorem 4.1.2 instead of the shift bound.

Lemma 4.8.1. Let δ be defined as above. For f = λf0 ∈ Gσ(Tν), there exists λ0(f0, ω)

such that, for λ > λ0, every ε > 0 and x ∈ Tν there exists 1 ≤ j ≤ kC(1/δ)(σν+1)+ε such that

Tω(x) ∈ V f̃N1
k (E, cL(E)).

Theorem 4.8.1 now follows from the fact that V
f̃N1
k (E, cL(E)) ⊂ V f

k (z, dL(E)), and observing

that d > 1− τ, just as in the case ν = 1.

Theorem 4.8.2 can now be proved using Theorem 4.8.1 in the same way that Theorem 4.6.2

was proved using Theorem 4.6.1.

Proof of Theorem 4.0.4. We can use the same argument as the proof of Theorem 4.0.3,

using the analogous results from this section rather than those from Section 4.6.
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Chapter 5

Fractal properties of spectral

measures: generalized Hausdorff

dimension

5.1 Introduction

The classification of measures using the classical power-law Hausdorff measures and dimen-

sions has found many applications within spectral theory ([16, 20, 33, 36, 37, 38, 42, 44, 70, 71]

and others). While this classification theory has been very useful in many situations, notably

when the Hausdorff dimension is positive, it has not been general enough to understand the

differences between zero-dimensional spectra. This has been explored in recent papers by

Mavi [60], who studied logarithmic dimension bounds for the disordered Holstein model, and

Avila, Last, Shamis, and Zhou [2], who studied the modulus of continuity of the integrated

density of states for the almost Mathieu operator using a logarithmic dimension.

Our primary purpose in this chapter is to develop general tools to study these and even finer
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spectral questions. Explicitly, we consider different kinds of singular-continuous measures

based on a more general notion of Hausdorff measure and dimension. The relevant definitions

are discussed in section 5.2.

One of the advantages of our approach is that it allows us to distinguish between measures

that are classically termed “zero-dimensional”. These broad questions are very relevant to

the study of quantum dynamics, as we will explore in Section 5.7 and Chapter 4, where

the fractal properties of spectral measures are usually connected with anomalous transport

properties (e.g. [3, 58]), while “zero-dimensional” spectral measures naturally occur when

studying ergodic Schrödinger operators with positive Lyapunov exponent (see e.g. [32, 37, 38,

44, 67]). In particular, a general result due to Simon [67] says that the spectral measures,

µθ, associated to an ergodic family of Schrödinger operators, Hθ, on l2(Z) with positive

Lyapunov exponent are supported on sets of logarithmic capacity 0. This implies that the

spectral measures are zero-dimensional. We explored positivity of the Lyapunov exponent

for special types of non-ergodic Schrödinger operators in Chapter 3.

Results pertaining to dynamics have always been closely tied to the dimensional character-

istics of spectral measures, so a finer distinction between dimensions should also provide

additional tools to strengthen dynamics results. Additionally, recent work by Jitomirskaya

and Liu [40] leads us to expect that the existence of phase resonances in quasiperiodic models

implies very deeply zero-dimensional spectral measures whose dimensional properties cannot

be well understood with classical notions, or even the log-dimension which was developed

by one of the authors in his thesis [56] and has been studied in recent papers [2, 60].

The generality of our analysis is only possible because of our development and exploration of

a complete family of Hausdorff dimension functions (Definition 5.2.3). In particular, a key

technical component of our theory is Theorem 5.2.2, which only discusses a single Hausdorff

measure. This theorem becomes useful in practice once we restrict our attention to a suitable

collection of Hausdorff measures, rather than all possible Hausdorff measures, since it is not
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possible to compare all Hausdorff measures to one another. This has been done in the past

by considering powers of suitable gauge functions, such as (ln(1/t))−1, but this is not suitable

for our fine analysis; for example, the dimension of a set with respect to the two families

F1 = {(ln(1/t))−α : α > 0} and F2 = {(ln(1/t) ln ln(1/t))−α : α > 0} will always coincide.

Determining which of the two is “closer” to the actual dimension requires a more general

type of family.

The results in this chapter are motivated by two phenomena that we know yield zero-

dimensional spectra:

1. Schrödinger operators with positive Lyapunov exponent;

2. Local perturbations of systems with exponentially localized eigenfunctions.

We also extend the theory of quantum dynamics to our more general setting, an application

of which was presented in Chapter 4.

We are motivated by one particular question when considering the regime of positive upper

Lyapunov exponent:

Question 1. Does positive upper Lyapunov exponent imply an upper bound on how singular

the spectral measure must be?

In 1999, Jitomirskaya and Last [37] proved that spectral measures for half-line Schrödinger

operators with phase boundary condition θ and positive upper Lyapunov exponent must be

zero Hausdorff dimensional (in the classical sense of Hausdorff dimension) for every θ.

In 2001, one of the authors [56] introduced the notion of logarithmic dimension, and proved

that spectral measures for half-line Schrödinger operators with phase boundary condition

θ and positive upper Lyapunov exponent must have logarithmic dimension at most 1 for

every θ. The results of the thesis [56] were never published previously and are incorporated
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here. In our current framework, the logarithmic dimension coincides with dimF when F =

{(ln(1/t))−α : 0 < α <∞} .

In 2007, Simon [67] proved that, given a family of ergodic Schrödinger operators Hθ with

positive Lyapunov exponent, the spectral measure µθ must be supported on a set with

zero logarithmic capacity for a.e. θ. This immediately yields the upper bound on Hausdorff

dimension obtained in [37] when Lyapunov exponent, rather than upper Lyapunov exponent,

is considered. The ergodicity and positive Lyapunov exponent conditions in [67] are more

restrictive than our requiring positive upper Lyapunov exponent. Hence, Simon’s result still

leaves us with the question of what (finer) upper bounds on the dimension are possible in

the setting of positive upper Lyapunov exponent, as well as what happens on the excluded

Lebesgue null set.

These results lead us to consider the following, more refined question:

Question 2. Does positive upper Lyapunov exponent imply that the spectral measure is

always singular with respect to the (ln(1/t))−1-Hausdorff measure?

In this paper, we answer this in two ways for half-line operators with phase boundary condi-

tion θ.We prove that dimF(µθ) = 1, when considering the family F = {(ln(1/t))−α : 0 < α <∞} ,

(Theorem 5.2.4) and that more generally, the spectral measure must be at least (ln(1/t) ln ln(1/t)2)−1-

singular (Theorem 5.2.3), where both results hold for every phase θ. Furthermore, we con-

struct half-line operators with phase boundary condition θ and positive upper Lyapunov

exponent for every θ such that dimF(µθ) = α0 for Lebesgue a.e. θ and any complete fam-

ily of Hausdorff dimension functions, F = {ρα : α ∈ I} , such that (ln(1/t))−1 = ρα0 ∈ F

(Theorem 5.2.4). These show that the ideal bound lies somewhere between (ln(1/t))−1 and

(ln(1/t)(ln ln(1/t))2)−1. These are the main results of our paper.

This, therefore, extends Corollary 4.2 from [37] in a natural way. Moreover, it shows that the

bound is sharp for log-dimension, in the sense that we cannot do better in general. However,
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this sense of sharpness might not necessarily be true for our more refined notion of dimension.

Furthermore, the recent work of Jitomirskaya and Liu [40] leads us to expect that phase

resonances in quasiperiodic models implies very singular, but not necessarily pure-point,

spectral measures. The existence of such phenomena would make obtaining lower bounds for

our refined notion of dimension exceptionally difficult−perhaps even impossible−for general

operators unless we consider additional assumptions on the potential, which is why we only

obtain general results for upper bounds on the dimension. In comparing our results to

Simon’s [67], we are drawn to two major differences: (1) we do not assume ergodicity and

(2) we do not exclude a Lebesgue null set.

The salient point here is that we arrive at a result similar to that in [67] without the as-

sumption of ergodicity or positivity of the Lyapunov exponent; we just need positive upper

Lyapunov exponent. It is possible to view an ergodic family of operators as similar to a

family of operators with a phase boundary condition. This surface analogy would lead us

to believe that the result in [67] should be the same as the result in our situation, but this

is not the case. Moreover, if there were an analogy between the ergodic parameter and the

phase boundary parameter, then Simon’s result would lead one to believe that a Lebesgue

null set of phases needs to be excluded; our result shows that this is not true. We are able

to obtain a logarithmic bound for all boundary phases.

We are also interested in local perturbations of systems with exponentially localized eigen-

functions and the following question:

Question 3. Suppose A : l2(Zν)→ l2(Zν) is self-adjoint with semi-uniformly localized eigen-

functions, and let µ = µ0 be the spectral measure for δ0. If Aλ = A+λ 〈δ0, ·〉 δ0 is a rank one

perturbation at the origin, and if µλ is the spectral measure for δ0 associated to Aλ, is there

an upper bound on how singular µλ is?

In 1996, del Rio, Jitomirskaya, Last, and Simon proved that µλ must be zero Hausdorff
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dimensional (in the classical sense of Hausdorff dimension) for every λ.

We refine this answer in the following way (Theorem 5.2.5): not only are the spectral

measures zero-dimensional (see Definition 5.2.8), but the spectral measures µλ are in fact

(ln(1/t))−ν−ε-singular for every λ and ε > 0.

We also rigorously extend the quantum dynamic theory of Last from the power-law setting

to the general Hausdorff dimension setting (section 5.7). A similar result extending quantum

dynamics appears in Mavi [60]. We believe that these results, especially Theorem 5.2.6, can

lead to a strengthening of existing dynamics results for quasiperiodic models (c.f. [32, 39, 42,

44]). Indeed, in [46], Jitomirskaya and one of the authors showed that, under the assumption

of positive Lyapunov exponent, certain general quasiperiodic operators possess moments of

the position operator which exhibit sub-logarithmic growth, which improved the classical

results in [32, 39, 42, 44] which established sub-polynomial growth.

The starting point for our analysis is the decomposition theory of Rogers and Taylor [63, 64].

Classically, any σ-finite measure can be decomposed into pure point, singular continuous,

and absolutely continuous parts via the Lebesgue decomposition theorem; Rogers and Taylor

took this further and decomposed the singular continuous part into measures that are singular

or continuous with respect to the power-law Hausdorff measures.

Briefly, a measure µ is said to have exact power-law dimension α ∈ [0, 1] if and only if

µ(E) = 0 for every set S with power-law Hausdorff dimension β < α and if µ is supported

on a set a power-law Hausdorff dimension α. In the terms used in this paper, this is equivalent

to the upper and lower dimensions with respect to the family F = {tα : 0 < α} coinciding.

Measures with exact dimension 0 or 1 are often viewed as “close” to pure point or absolutely

continuous measures, respectively, but they do not need to be pure point or absolutely con-

tinuous. Relevant examples include the spectral measures of 1D quasiperiodic Schrödinger

operators. It is known that the spectral measure is 0-dimensional for every irrational fre-
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quency, yet there exist frequencies for which the measure is not pure point [38]. Much of

the work applying this theory to spectral theory has been unable to address how close these

measures are to these two extremes.

It is known, however, that more general Hausdorff measures can be defined by replacing tα

in the definition with a suitable gauge function ρ(t).

One of the authors has explored a generalization using (ln(1/t))−α in the definition of Haus-

dorff measures to create a logarithmic dimension and used it to study spectral questions in

his thesis [56]. This has already found applications in [15]. We take these concepts and

generalize them even further using modern ideas into what we believe is the most natural

general framework (complete families of Hausdorff measure functions). Using these general

families of Hausdorff measures, a similar notion of dimension can be developed to address

these more delicate situations. Full details are presented in section 5.2.

With this theory, we are able to extend the Gilbert-Pearson and Jitomirskaya-Last theories of

power-law subordinacy (Theorem 5.2.2), and we prove that half-line operators with positive

upper Lyapunov exponent have at most a logarithmic dimension (Theorem 5.2.3). Moreover,

we are able to construct half-line operators that achieve any given dimension for Lebesgue

a.e. boundary phase (Theorem 5.2.4). We have not extended this analysis to every boundary

phase, but we believe that the removal of a null set of boundary phases is simply a limitation

of our proof methods.

Moreover, in Theorem 5.2.3, we obtain a (ln ln(1/t))2 correction term, which is lacking in all

of the existing results that just use a log-dimension. The proof heavily relies on the fact that

the spectral measure of an operator of the form (5.7) is supported on the set of energies, E,

for which there exists a solution u1 to Hu1 = Eu1 satisfying:

u1(0) = 0 and u1(1) = 1
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and for every δ > 0,

lim sup
L→∞

‖u1‖2
L

L(lnL)1+δ
<∞, (5.1)

where ‖·‖L is defined by (5.14) below. This is the origin of the (ln ln(1/t))1+δ correction

term, and reveals when we expect this correction term to be unnecessary: whenever we can

improve (5.1) on certain length scales. This is precisely what we do in our proof of part 3 of

Theorem 5.2.4. The potentials constructed in Theorem 5.2.4 do not exhibit this correction

term for a.e. θ, so it would be of interest to know if there are potentials that yield spectral

measures that achieve a dimension with this correction term.

The rest of our paper is organized in the following way: in section 5.2, we build a general

Hausdorff dimension framework, and introduce the major definitions, models, and results

of our paper. In section 5.3, we relate the Hausdorff dimension of a measure to tangential

limits of its Borel transform. In section 5.4, we apply these notions to derive a subordinacy

theory for half-line operators, proving Theorem 5.2.2 and the first part of Theorem 5.2.3.

In section 5.5, we analyze the dimension of spectral measures associated to operators with

sparse barrier potentials and prove Theorem 5.2.4. In section 5.6, we discuss the behavior

of spectral measures under rank-one perturbations and show that, under local perturba-

tions, the spectrum of systems with exponentially localized eigenfunctions remains at most

a logarithmic-power dimension. Finally, in section 5.7 we use our general Hausdorff dimen-

sion framework to extend the quantum dynamics theory of Last [58] to encompass our more

general notion of dimension.
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5.2 Preliminaries: a generalized Hausdorff dimension

Now we will give an overview of the relevant definitions for a discussion of generalized

Hausdorff dimension.

Our analysis begins with the decomposition theory of Rogers and Taylor [63, 64]. The clas-

sical Lebesgue decomposition theorem provides a way to decompose any measure into three

pieces: an absolutely continuous piece, a singular continuous piece, and a pure point piece.

Rogers and Taylor used Hausdorff measures to further decompose the singular continuous

piece.

Definition 5.2.1. A Hausdorff dimension function, or gauge function, is a strictly increasing

differentiable function ρ : (0,∞)→ (0,∞) with

lim
t→0+

ρ(t) = 0.

Definition 5.2.2. The ρ-dimensional Hausdorff measure, µρ, is defined on the Borel σ-

algebra as

µρ(F ) := lim
δ→0

inf
δ-covers

{
∞∑
i=1

ρ(|Fi|)

}
.

Observe that if ρ(t) = tα then we arrive at the usual α-dimensional Hausdorff measure.

Consider the family of all Hausdorff dimension functions, H and the partial order, ≺, on H

given by ρ ≺ ξ if and only if

lim
t→0+

ρ(t)

ξ(t)
=∞. (5.2)

It is easy to see that if limt→0+
ρ(t)
ξ(t)

= 0 then ξ ≺ ρ. Additionally, we will define an equivalence
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relation, ∼, on H by ρ ∼ ξ if and only if

0 < lim
t→0+

ρ(t)

ξ(t)
<∞.

We say that ρ - ξ if and only if ρ ≺ ξ or ρ ∼ ξ.

Definition 5.2.3. We say F ⊂ H is a complete one-parameter family of comparable Haus-

dorff dimension functions if F is a totally ordered subset of H which is order isomorphic

to a subinterval I ⊂ R. That is, if every pair ρ, ξ ∈ F obeys either ρ ≺ ξ or ξ ≺ ρ, and if

there exists an interval I ⊂ R such that there is an order-preserving bijection from F to I.

Particularly, we can write F = {ρα : α ∈ I, ρα ≺ ρβ iff α < β} .

For simplicity, since these are the only families we will work with in this paper, we will

simply call these comparable families or complete comparable families.

Remark 32. We may relax the order isomorphism condition slightly to allow for order

isomorphisms with boxes in Rn, for 1 ≤ n ≤ ∞, along with the lexicographical order. All of

our applications, however, use n = 1.

From this point forwards, we will restrict our attention to such families. Typical examples

include the usual functions {tα}α∈R used to define the usual Hausdorff dimension, and even

more generally, families of the form {ρ(t)α}α>0 for some fixed ρ(t) ∈ H.

We can use the completely ordered family (F ,≺) to generalize the Hausdorff dimension

of sets and measures in a way that reduces, in a sense, to the classical definition when

F = {tα : 0 < α ≤ 1} :

Definition 5.2.4. Let F = {ρα : α ∈ I ⊂ (0,∞), ρα ≺ ρβ iff α < β} . The F -dimension of a
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set S, denoted dimF(S), is given by

dimF(S) =


α′ if α′ ∈ I

0 if α′ 6∈ I and α′ < α for all α ∈ I

∞ if α′ 6∈ I and α′ > α for all α ∈ I

(5.3)

where α′ = sup {α ∈ I : µρα(S) =∞} = inf {α ∈ I : µρα(S) = 0} .

Remark 33. It is natural to ask that a “good” definition of the dimension of a set be well-

defined for any Borel set and agree with the usual Hausdorff dimension when applicable.

We require the order isomorphism to be with an interval (or more generally, a box) to avoid

the pathological behavior caused by the presence of “gaps”, which can be illustrated in two

examples:

1. First, we have the case of F = {tα : α ∈ [0, 1]\Q} , which is unable to describe the

dimension of sets with usual Hausdorff dimension 1/2, since the notion of supremum

and infimum are not defined on F .

2. Second, we have the case of F = {tα : α ∈ (0, 1/3] ∪ [2/3, 1]} , which is also unable to

describe the dimension of sets with usual Hausdorff dimension 1/2, since the supremum

and infimum will not agree.

Observe that this is a precise generalization of the normal Hausdorff dimension when F

contains only functions of the form tα.

Unlike sets, a measure need not have an F -dimension, which motivates the following defini-

tions:

Definition 5.2.5. We say that a measure µ is ρ-singular if there exists some set G such that

µ(R\G) = 0 and µρ(G) = 0. Similarly, we say that a measure µ is ρ-continuous if µ(S) = 0

for every set S with µρ(S) = 0.

137



This leads us the the notion of upper and lower dimension:

Definition 5.2.6. The upper F -dimension of a measure µ, denoted dim+
F(µ), is given by

dim+
F(µ) =


β′; if β′ ∈ I

∞; if β′ 6∈ I and β′ > α for every α ∈ I

0; if β′ 6∈ I and β′ < α for every α ∈ I

(5.4)

where β′ = inf {α ∈ I : µ is ρα-singular} . Similarly, we define the lower F -dimension of a

measure µ, denoted dim−F(µ) is given by

dim−F(µ) =


γ′; if γ′ ∈ I

0; if γ′ 6∈ I and γ′ < α for every α ∈ I

∞; if γ′ 6∈ I and γ′ > α for all α ∈ I

(5.5)

where γ′ = sup {α ∈ I : µ is ρα-continuous} .

We can now define the F -dimension of a Borel measure µ.

Definition 5.2.7. The F -dimension of a Borel measure µ, denoted dimF(µ), is given by

dimF(µ) =


dim+

F(µ); if dim+
F(µ) = dim−F(µ)

undefined; if dim+
F(µ) 6= dim−F(µ)

. (5.6)

Related concepts we will occasionally use are the idea of zero-dimensional and positive-

dimensional Hausdorff measure functions.

Definition 5.2.8. We say a function ρ ∈ H is a zero-dimensional Hausdorff dimension

function if ρ ≺ tα for every α > 0. Analogously, we say a function ξ ∈ H is a positive-

dimensional Hausdorff dimension function if tα ≺ ξ for some α > 0.
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Our approach here is, as far as we know, novel. Past work in this direction has always dealt

with studying the singularity and continuity of a measure with respect to families of the form

{ρα}α∈I , whereas our notion of a complete family of Hausdorff dimension functions allows

us to consider more varied families, which allows us to gain sharper results.

5.2.1 Consequences for 1D Operators

First, we will examine dimensional properties of discrete Schrödinger operators on the half-

line. We define

(Hθψ)(n) = ψ(n− 1) + ψ(n+ 1) + V (n)ψ(n), (5.7)

along with a phase boundary condition

ψ(0) cos θ + ψ(1) sin θ = 0, (5.8)

where −π
2
< θ ≤ π

2
and the potential V = {V (n)}∞n=1 is a sequence of real numbers. The

study of operators of the form (5.7) along with the boundary condition (5.8) is equivalent to

the study of (5.7) with a Dirichlet boundary condition

ψ(0) = 0

ψ(1) = 1

(5.9)

along with a rank-one perturbation at the origin

V (1) 7→ V (1)− tan θ. (5.10)

So, without loss of generality, we will confine our attention to operators of the form (5.7) on

l2(Z+) along with the Dirichlet boundary condition (5.9) and interpret the boundary phase
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as applying the corresponding rank-one perturbation at the origin.

For these operators, it is known that the vector δ1, which is 1 for n = 1 and 0 otherwise,

is cyclic, so the spectral problem reduces to the study of the spectral measure µ = µδ1 .

The behavior of this spectral measure is related to the behavior of the Weyl-Titchmarsh

m-function, which in our case coincides with the Borel transform of µ :

Fµ(z) =

∫
R

dµ(x)

x− z
. (5.11)

When there is no ambiguity, we will usually omit the dependence on µ and express the Borel

transform as F (z). For a full discussion of this relationship, we refer the reader to Simon

[66]. Of particular note is that the Borel transform of a measure µ exists whenever

∫
dµ(x)

|x|+ 1
<∞. (5.12)

We will assume all measures considered in this paper satisfy this condition.

Our first results will extend the Jitomirskaya-Last theory of power-law subordinacy [37],

which is itself an extension of the Gilbert-Pearson theory [28, 29, 51], both of which re-

late spectral properties of the operator (5.7) to solutions of the corresponding Schrödinger

equation

u(n− 1) + u(n+ 1) + V (n)u(n) = Eu(n). (5.13)

More specifically, we will let ‖u‖L be the norm of u over the lattice interval of L. That is,

‖u‖L =

 bLc∑
n=1

(|u(n)|2 + (L− bLc)|u(bLc+ 1)|2)

1/2

, (5.14)
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where bLc is the integer part of L. We say that a solution u of (5.13) is called subordinate

if

lim
L→∞

‖u‖L
‖v‖L

= 0 (5.15)

for any other linearly independent solution v. The Gilbert-Pearson theory related the abso-

lutely continuous part of the spectral measure µ to those energies E for which (5.13) has no

subordinate solutions; likewise, the singular part of the spectral measure µ is supported on

the set of energies for which the solutions to (5.13) with the Dirichlet boundary condition

are subordinate. The Jitomirskaya-Last theory refined the treatment of the singular part

of the spectral measure to consider different kinds of singular-continuous spectral measures

based on the classification of those measures with respect to the usual power-law Hausdorff

measures and dimensions using a decomposition theory developed by Rogers and Taylor

[63, 64]. Our treatment goes further still and considers decompositions with respect to

arbitrary families of Hausdorff measures, not just the usual power-law measures.

Given Hθ of the form (5.7), and E ∈ R, we define u1 to be the solution to (5.13) obeying

the Dirichlet boundary condition:

u1(0) = 0

u1(1) = 1

(5.16)

and let u2 be the solution of (5.13) obeying the orthogonal boundary condition:

u2(0) = 1

u2(1) = 0.

(5.17)

Given any ε > 0, we define the length scale L(ε) ∈ (0,∞) as the length that yields the
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equality

‖u1‖−1
L(ε) ‖u2‖−1

L(ε) = 2ε. (5.18)

Another useful tool in studying operators of the form (5.7) is the n-step transfer matrix

Φn(θ, E). This is the matrix

Φn(θ, E) =

u1(n+ 1) u2(n+ 1)

u1(n) u2(n)

 . (5.19)

With this, we can define the upper Lyapunov exponent,

L∗(θ, E) = lim sup
n→∞

1

n
ln ‖Φn(θ, E)‖ . (5.20)

We know of no explicit link between the operator H and the local scaling behavior of the

spectral measure µ in this regime, so we begin with an important technical result relating

the generalized Hausdorff dimension of a Borel measure to growth properties of its Borel

transform:

Theorem 5.2.1. Define A0 = {0} , A1 = (0,∞), and A2 = {∞} . Suppose ρ is a Hausdorff

dimension function satisfying ρ(t) ≺ tα, α < 1. We have

lim sup
ε→0+

µ((x− ε, x+ ε))

ρ(ε)
∈ Ai

if and only if

lim sup
ε→0+

ε

ρ(ε)
ImF (x+ iε) ∈ Ai,

with i = 0, 1, 2.

Our first core result is a subordinacy theory extending the work of Jitomirskaya-Last [37,
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38], which links the generalized Hausdorff dimension of the spectral measure µ to growth

properties of u1 and u2 :

Theorem 5.2.2. Let u1 and u2 be solutions of the equation Hu = Eu for E ∈ R obeying

u1(0) = 0, u1(1) = 1, u2(0) = 1, and u2(1) = 0. Let ρ(t) be a Hausdorff measure function.

We have

lim sup
ε→0

ε

ρ(ε)
F (E + iε) =∞

if and only if

lim inf
L→∞

ρ(‖u1‖−1
L ‖u2‖−1

L ) ‖u1‖2
L = 0.

Our second key result is a bound on the upper spectral dimension of a half-line operator

with positive upper Lyapunov exponent:

Theorem 5.2.3. Let F = {ρα : α ∈ I} be a family of comparable Hausdorff dimension

functions such that for some δ, ε > 0, we have α1, α2 ∈ I such that fδ(t) = ρα1 , g(t)1−ε =

ρα2 ∈ F , where

fδ(t) =
1

ln(1/t)(ln(ln(1/t)))1+δ
(5.21)

and

g(t) =
1

ln(1/t)
. (5.22)

If the upper Lyapunov exponent is positive for every E in some Borel set A then dim+
F(µ(A∩

·)) ≤ α1. Moreover, there exists an operator of the form (5.7) with positive upper Lyapunov

exponent whose spectral measure µ obeys dim−F(µ) ≥ α2.

This improves upon an earlier result from [37] which was only able to conclude that the

power-law dimension was 0, and earlier results from Landrigan, which were only able to
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conclude that the log-dimension was at most 1. There are two immediate consequences of

this result: (i) the lower dimension bound shows that Landrigan’s log-dimension result is

sharp, (ii) our upper dimension result reveals that there may be examples of operators with

positive upper Lyapunov exponent that have a dimension strictly larger than α2.

While we do not know which of these bounds is sharp, by considering an operator with a

suitably sparse barrier potential, we are able to show that, with respect to a suitable fam-

ily, F , the lower dimension above can coincide with the actual dimension for Lebesgue a.e.

boundary phase. Let β(x) be a non-negative increasing convex function such that ln(β(x))

is still convex. For example, we could take β(x) = ex. Moreover, suppose that G(t) =

1/β−1(1/t2) defines a zero-dimensional Hausdorff dimension function. Let f j denote β−1

composed with itself j-times. We will consider any family of Hausdorff dimension functions,

F = {ρα : α ∈ I} , such that there are α1, α2, and α3 ∈ I such that ρα1 = G(t)1/ηf j(1/t2)−1,

ρα2 = G(t)(1−ε)/η and ρα3 = G(t)1/η/(ln(β−1(1/t)))1+δ. That is, G(t)1/ηf j(1/t2)−1, G(t)(1−ε)/η

and G(t)1/η/(ln(β−1(1/t)))1+δ ∈ F for some j ≥ 1 and η, δ > 0. Define length scales induc-

tively by L1 = 2, Ln+1 = β(Ln)n and define a potential

V (n) =


β(Lk)

η n = Lk

0 n 6∈ {Lk}∞k=1

. (5.23)

A theorem of Simon and Spencer [68] ensures the resulting Schrödinger operator with poten-

tial as above has no absolutely continuous spectra, since limn→∞ |V (n)| =∞. Moreover, this

potential does not satisfy the criterion for presence of pure point spectra from [53]. These

two observations make the following theorem particularly meaningful.

Theorem 5.2.4. Let η, β,G(t),F , ρα1 , ρα2 , ρα3 and V (n) be as above. Let µθ be the spectral

measure of the half-line operator (Hθu)(n) = u(n+ 1) + u(n− 1) + V (n)u(n) with boundary

phase θ. Then
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(i) for every boundary phase θ, the spectrum of Hθ consists of the interval [−2, 2] (which

is the essential spectrum) along with some discrete point spectrum outside this interval;

(ii) for every θ,

α2 ≤ dim−F(µθ((−2, 2) ∩ ·)) ≤ dim+
F(µθ((−2, 2) ∩ ·)) ≤ α3;

(iii) for Lebesgue a.e. θ, dim+
F(µ) ≤ α1.

In particular, if we take β(x) = ex, η = 1, then Theorem 5.2.4 proves the second part of

Theorem 5.2.3.

One of the most interesting parts of this theorem is that we only prove an exact dimension

result for a.e. boundary phase θ. This is a limitation of our proof, where we carefully

study the existence of suitably decaying solutions in the case θ = 0, and interpret different

boundary phases as consequences of particular rank-one perturbations; by considering rank-

one perturbations, we are able to deduce the existence of similarly decaying solutions for

other boundary phases, but lose a Lebesgue null set in the process. A similar result is

known to hold for every boundary phase when positive power-law Hausdorff dimensions are

considered, but the only proof we are aware of requires more involved arguments involving

quantum dynamics [71].

5.2.2 Consequences for systems with exponentially localized eigen-

functions

We then turn our attention to fractal properties of Schrödinger operators on the lattice

l2(Zν), ν ≥ 1.

First, we study what happens to the dimensional properties of spectral measures when we
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apply rank-one perturbations to operators with exponentially localized eigenfunctions. More

specifically, by the spectral theorem it is known that every bounded self-adjoint operator on

a Hilbert can be realized as A : L2(dµ)→ L2(dµ), ψ 7→ ψ ·x, for some suitable measure µ. If

we let ϕ ∈ L2(dµ) be a cyclic unit vector, then we can easily define the rank-one perturbation

of A by ϕ as

Aλ = A+ λ 〈ϕ, ·〉ϕ, λ ∈ R. (5.24)

If we let µλ denote the spectral measure of Aλ associated to ϕ, and Fλ the Borel transform

of µλ, then it is known that

Fλ(z) =
F0(z)

1 + λF0(z)
(5.25)

which, in conjunction with our work relating dimensional properties of a measure to growth

properties of Borel transforms, allows us to study how the dimension of a spectral measure

is affected when it is under the effect of a rank-one perturbation.

We say that a self-adjoint operator on l2(Zν) has semi-uniformly localized eigenfunctions

(SULE) if and only if there is a complete set of orthonormal eigenfunctions, {ϕn}∞n=1 , there

is α > 0 and mn ∈ Zν , n ≥ 1 and for each δ > 0, a Cδ > 0 so that

|ϕn(m)| ≤ Cδe
δ|mn|−α|m−mn| (5.26)

for all m ∈ Zν , and n ≥ 1. Here | · | on the r.h.s. denotes any Zν norm.

It is known, [21], that if an operator H : l2(Zν)→ l2(Zν) has SULE, if Hλ = H + λ 〈δ0, ·〉 δ0,

and if µ and µλ are the spectral measure for H and Hλ respectively associated to δ0, then

µλ is zero-dimensional. We are able to improve this into

Theorem 5.2.5. Suppose H : l2(Zν)→ l2(Zν) has SULE and let F = {(ln(1/t))−α : 0 < α <∞} .
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Let Hλ = H + λ 〈δ0, ·〉 δ0. Let dµ be the spectral measure of H associated to δ0, and let dµλ

be the corresponding spectral measures for Hλ. Then for every λ, dimF(supp(dµλ)) ≤ ν.

5.2.3 Consequences for quantum dynamics

We now turn our attention to dynamical properties of Schrödinger operators on the lattice

l2(Zν), ν ≥ 1. Our main interest in this setting is in dynamical properties of operators of the

form

(Hψ)(n) =
∑

|n−m|=1

ψ(m) + V (n)ψ(n), (5.27)

though much of our discussion applies to any self-adjoint Hamiltonian. A theory based on

the power-law dimension was developed by Last [58]. Notably, the theory establishes an

extremely useful connection between the continuity of a spectral measure and the average

growth of the moments of the corresponding position operator (see, e.g. [16], [52], [70], [71]).

Our starting point is that the original theory of Rogers and Taylor was actually developed

in the generality that we are using; in particular, the decomposition theory and the critical

Theorem 4.2 in [58] exists in our general setting once a suitable notion of uniform Hölder

continuity with respect to a general Hausdorff dimension function is realized. This allows us

to proceed in much the same manner as Last.

A common application of Last’s theory is the notion of a transport exponent, which relates

to the average power-law growth of the pth moment of the position operator. One of our

most important results in this direction is

Theorem 5.2.6. If H is self-adjoint on l2(Zν) and Pρcψ 6= 0, where Pρc is the orthogonal

projection on Hρc, then for each m > 0, there exists a constant C = C(ψ,m) such that for

147



every T > 1

〈〈|X|m〉〉T > Cρ(1/T )−m/ν . (5.28)

We refer readers to Section 5.7 for the definition of Hρc and the l.h.s. of (5.28). This may be

used to define a more general notion of transport exponent than has previously been studied.

Analysis of this transport exponent has been of central importance in many dynamical results

(see e.g. [16], [52], [70], [71]).

5.3 General Hausdorff dimension of sets and measures

The following characterization dates back to the original work of Rogers and Taylor [63, 64]

Theorem 5.3.1. Let A be a Borel set, and let µ be a Borel measure. Then

1. µ(· ∩ A) is ρ-singular if and only if

lim sup
ε→0

µ(x− ε, x+ ε)

ρ(ε)
=∞

for µ-a.e. x ∈ A.

2. µ(· ∩ A) is ξ-continuous if and only if

lim sup
ε→0

µ(x− ε, x+ ε)

ξ(ε)
<∞

for µ-a.e. x ∈ A.

When µ is the spectral measure of some self-adjoint operator A, we know of no direct

relation between the local scaling behavior of µ and spectral properties of A. To bridge the
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gap between the the two, we will need to introduce the Borel transform, as in [20]:

Definition 5.3.1. The Borel transform of a measure µ, denoted Fµ(z), is

Fµ(z) =

∫
R

dµ(x)

x− z
.

It is known that the Borel transform provides an alternate characterization to Theorem 5.3.1

for the usual Hausdorff dimension, but it in fact applies to our more general notion. Notably,

we may now prove Theorem 5.2.1:

Proof of Theorem 5.2.1. Let M δ
µ(x0) = µ(x0 − δ, x0 + δ). By definition, we have

ImFµ(x0 + iε) = ε

∫ ∞
−∞

dµ(y)

(y − x0)2 + ε2
≥ 1

2ε
M ε

µ(x0), (5.29)

so

M ε
µ(x0)

ρ(ε)
≤ 2

ε

ρ(ε)
ImFµ(x0 + iε). (5.30)

Thus

lim sup
ε→0+

M ε
µ(x0)

ρ(ε)
≤ 2 lim sup

ε→0+

ε

ρ(ε)
ImFµ(x0 + iε). (5.31)

Hence, if the LHS = ∞, then so does the RHS. Analogously, if the RHS = 0, then so does

the LHS.

On the other hand, suppose lim supε→0
Mε
µ(x0)

ρ(ε)
<∞. Then we know that

M δ
µ(x0) ≤ Cρ(δ), (5.32)
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for δ sufficiently small, so we have

lim sup
ε→0+

ε

ρ(ε)
ImFµ(x0 + iε) ≤ lim sup

ε

ρ(ε)
|Fµ(x0 + iε)| (5.33)

≤ lim sup
ε

ρ(ε)

∫ ∞
−∞

dµ(y)

[(x0 − y)2 + ε2]1/2
(5.34)

= lim sup
ε

ρ(ε)

(∫
|y−x0|>1

+

∫
|y−x0|≤1

)
(5.35)

= lim sup
ε

ρ(ε)

∫
|y−x0|≤1

dµ(y)

[(x0 − y)2 + ε2]1/2
. (5.36)

Here (5.36) follows from the observation that

ε

ρ(ε)

∫
|y−x0|>1

dµ(y)

[(x0 − y)2 + ε2]1/2
≤ ε

ρ(ε)
C(x0) (5.37)

→ 0 (5.38)

where the inequality is a consequence of (5.12) and the limit is a consequence of ρ ≺ tα ≺ t.

We can then evaluate the remaining integral by integrating by parts, and by observing that

the boundary term at 0 vanishes:

lim sup
ε

ρ(ε)

∫
|y−x0|≤1

dµ(y)

[(x0 − y)2 + ε2]1/2
= lim sup

ε

ρ(ε)

∫ 1

0

δ

(ε2 + δ2)3/2
M δ

µ(x0)dδ

(5.39)

≤ lim supC
ε

ρ(ε)

∫ 1

0

δρ(δ)

(ε2 + δ2)3/2
dδ. (5.40)

Now we break the integral into two pieces:
∫ ε

0
+
∫ 1

ε
and observe that the first piece is uni-

formly bounded. The second piece can be bounded as

lim supC
ε

ρ(ε)

∫ 1

ε

δρ(δ)

(ε2 + δ2)3/2
dδ ≤ C

ε

ρ(ε)

∫ 1

ε

ρ(δ)

δ2
dδ. (5.41)
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Observe that either this is immediately obvious to be finite, or L’Hospital’s rule applies to

∫ 1

ε
ρ(δ)
δ2
dδ

ρ(ε)/ε
.

Applying L’Hospital’s rule, the limit will coincide with

lim
ε→0

ρ(ε)

ρ(ε)′ε− ρ(ε)
.

This will be finite as long as

ρ(ε)

ρ(ε)′ε

is bounded away from 1. Now rewrite as

ρ′/ρ

1/ε
.

Since ρ ≺ tα, we know that

lim
ε→0

ln(ρ(ε))/ ln(ε) ≤ α.

However, L’Hospital’s rule also applies to this limit, which implies the desired boundedness

property.

This finally implies that the two desired lim sup are either both finite or infinite. Moreover,

if lim supε→0+
Mε
µ(x0)

ρ(ε)
= 0 then the constant C above may be taken to be arbitrarily small,

ensuring that lim supε→0+
ε
ρ(ε)

ImFµ(x0 + iε) = 0. This completes our proof.

151



5.4 Half-line subordinacy

Let Hθ be the self-adjoint operator defined on l2(Z+) by

(Hθu)(n) = u(n− 1) + u(n+ 1) + V (n)u(n), (5.42)

where {V (n)}∞n=1 is a sequence of real numbers along with the phase boundary condition

u(0) cos θ + u(1) sin θ = 0. (5.43)

Definition 5.4.1. We define the length scale L(ε) as the length that yields the equality

‖u1‖−1
L(ε) ‖u2‖−1

L(ε) = 2ε.

Theorem 5.4.1. Let u1 and u2 be solutions of the equation Hu = Eu for E ∈ R obeying

u1(0) = 0, u1(1) = 1, u2(0) = 1, and u2(1) = 0. Let ρ(t) be a Hausdorff measure function.

We have

lim sup
ε→0

ε

ρ(ε)
F (E + iε) =∞

if and only if

lim inf
L→∞

ρ(‖u1‖−1
L ‖u2‖−1

L ) ‖u1‖2
L = 0.

Proof. This follows from Theorem 1 of [37] and Theorem 5.2.1 above.

We now have two applications of this theorem to zero dimensional Hausdorff dimension

functions and positive dimension Hausdorff dimension functions.

Theorem 5.4.2. Let f(L) be a continuous, strictly increasing function such that (1) f(0) ≥ 0

(2) limL→∞ f(L) = ∞ and (3) limL→∞
Lα

f(L)
= 0 for every α ≥ 1, and let g(t) = 1

t(ln t)1+δ
.

Suppose that for every E in some Borel set A, we can find a solution, v = au1 + bu2, to
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Hv = Ev that satisfies

lim sup
L→∞

‖v‖2
L

f(L)
≥ 1.

Let F = {ρα : α ∈ I} be any family of comparable Hausdorff dimension functions such that

there is α1 ∈ I such that ρα1 = g(f−1( |b|2
1−|b|2εt

−2)), for some constant |b| and 0 < ε < 1/|b|2.

Then dim+
F(µ(A ∩ ·)) ≤ α1.

Proof. It is known that µ is supported on the set of energies E for which u1 satisfies the

inequality

lim sup
L→∞

‖u1‖2
L

L(lnL)1+δ
<∞, (5.44)

for every δ > 0, so we may restrict our attention to those energies. For every E ∈ A, v must

be a linear combination of u1 and u2, say v = au1 + bu2. Thus, for every L,

‖v‖L ≤ |a| ‖u1‖L + |b| ‖u2‖L .

By our choice of f, and our restriction on the energies, E, we see that we must have b 6= 0,

so

‖u2‖L ≥
‖v‖L − |a| ‖u1‖L

|b|
.

Hence, we must also have

lim sup
L→∞

‖u2‖2
L

f(L)
≥ 1

|b|2
(5.45)

for all such E. Now (5.44) implies

‖u1‖L < CL1/2(lnL)(1+δ)/2 (5.46)
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for some constant C > 0, and (5.45) implies

‖u2‖2
Ln
>

(
1

|b|2
− ε
)
f(Ln) (5.47)

for some sequence Ln →∞ and every 0 < ε < 1
|b|2 .

Now consider εn such that Ln = L(εn). We have

g(f−1(
|b|2

1− |b|2ε
‖u1‖2

Ln
‖u2‖2

Ln
)) ‖u1‖2

Ln
(5.48)

=
‖u1‖2

Ln

f−1( |b|2
1−|b|2ε ‖u1‖2

Ln
‖u2‖2

Ln
)(ln(f−1)( |b|2

1−|b|2ε ‖u1‖2
Ln
‖u2‖2

Ln
))1+δ

(5.49)

.
Ln(lnLn)1+δ

f−1(f(Ln)) ln(f−1(f(Ln)))1+δ
(5.50)

= 1. (5.51)

Thus, if g(f−1( |b|2
1−|b|2εt

−2)) ≺ ρ(t) it is easy to see that

lim
Ln→∞

ρ(‖u1‖2
Ln
‖u2‖2

Ln
) ‖u1‖2

Ln
= 0.

We now finish by appealing to Theorem 5.2.2.

Corollary 5.4.1. Let f(t), g(t), and F be as in Theorem 5.4.2. Moreover, suppose ρα1 as

before with |b| = 1. Let Φn(θ, E) be the n-step transfer matrix associated to Hu = Eu along

with the boundary condition θ. Suppose

lim sup
L→∞

1

f(L)

L∑
n=1

‖Φn(θ, E)‖2 ≥ 2

for every E in some Borel set A. Then dim+
F(µ(A ∩ ·)) ≤ α1.
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Proof. Recall that

Φn(θ, E) =

u1(n+ 1) u2(n+ 1)

u1(n) u2(n)

 (5.52)

so

‖Φn(θ, E)‖2 ≤ |u1(n+ 1)|2 + |u1(n)|2 + |u2(n+ 1)|2 + |u2(n)|2, (5.53)

and summing yields

L∑
n=1

‖Φn(θ, E)‖2 ≤ 2(‖u1‖2
L + ‖u2‖2

L). (5.54)

Thus we conclude that (5.45) holds, so Theorem 5.4.2 yields our result.

Using Corollary 5.4.1, we can now prove Theorem 5.2.3:

Proof of Theorem 5.2.3. Positive upper Lyapunov exponent yields

‖Φnk(θ, E)‖ > enk(L∗(E)/2)

for some subsequence nk. Thus we may apply the corollary with f(L) = eL(L∗(E)/2) to see

that

dim+
F(µ(A ∩ ·)) ≺ 2

L∗(E) ln( 1
1−εt

−2)(ln(2 ln( 1
1−εt

−2))1+δ/L∗(E))
.

Note that

ln(
1

1− ε
t−2) = ln(t−2)− ln(1− ε)

and

(ln(2 ln(
1

1− ε
t−2)))1+δ = (ln 4− ln(

1

2
ln(1− ε) + ln(t−1)))1+δ.
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In both of these, the ln(1− ε) and ln 4 terms do not contribute meaningfully to the limit as

t→ 0, so we can see that

2

L∗(E) ln( 1
1−εt

−2)(ln(2 ln( 1
1−εt

−2))1+δ/L∗(E))
∼ 1

ln(1/t)(ln(ln(1/t)))1+δ
,

where ∼ here is meant as the equivalence relation defined on the family of all Hausdorff

dimension functions, H. The second part of the theorem follows from Theorem 5.2.4, which

is proved in the next section.

We also have

Theorem 5.4.3. Let f(L) = Lg(L) be a continuous, strictly increasing function such that

(1) f(0) ≥ 0 and (2) lim supL→∞ g(L) = α ∈ (1,∞). Let

ρβ(t) =
t2/(1+β)

(ln t)2β/(1+β)
(5.55)

and suppose F is a family of comparable Hausdorff dimension functions that contains ρβ for

some β < α. Suppose that for every E in some Borel set A, we can find a solution, v, to

Hv = Ev that satisfies

lim sup
L→∞

‖v‖2
L

f(L)
> 0.

Then dim+
F(µ(A ∩ ·)) ≤ β.

Proof. As before, we have the following bounds on ‖u1‖ and ‖u2‖ :

‖u1‖L . L1/2 lnL (5.56)

and

‖u2‖2
Ln

& f(Ln) (5.57)
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for some sequence Ln →∞. Taken together, we have

ρβ(‖u1‖−1
Ln
‖u2‖−1

Ln
) ‖u1‖2

Ln
=

‖u1‖2β/(1+β)
Ln

‖u2‖2/(1+β)
Ln

(ln(‖u1‖Ln ‖u2‖Ln))2β/(1+β)2/(1 + β)
(5.58)

.
L
β/(1+β)
n ln(Ln)2β/(1+β)

L
g(Ln)/(1+β)
n (g(Ln) ln(Ln))2β/(1+β)

(5.59)

=
L
β−g(Ln)

1+β
n

g(Ln)
2β
1+β

→ 0. (5.60)

We now finish by appealing to Theorem 5.2.2.

There is also an analogous version of Corollary 5.4.1.

5.5 Proof of Theorem 5.2.4

Let β(x) be a non-negative increasing convex function such that ln(β(x)) is still convex.

For example, we could take β(x) = ex. Moreover, suppose that G(t) = 1/β−1(1/t2) defines

a zero dimensional Hausdorff dimension function. Let f j denote β−1 composed with itself

j-times. We will consider any family of Hausdorff dimension functions, F = {ρα : α ∈ I} ,

such that there are α1, α2, and α3 ∈ I and j ≥ 1, η, δ > 0 such that ρα1 = G(t)1/ηf j(1/t2)−1,

ρα2 = G(t)(1−δ)/η and ρα3 = G(t)1/η/(ln(β−1(1/t)))1+δ.

Define length scales inductively by L1 = 2, Ln+1 = β(Ln)n and define a potential

V (n) =


β(Lk)

η n = Lk

0 n 6∈ {Lk}∞k=1

. (5.61)

We will begin with an elementary lemma which will be useful:

Lemma 5.5.1. Let β(x) be defined as above. Then β−1(xy) ≤ β−1(x) + β−1(y) for every
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x, y ≥ 0.

Proof. Since β is increasing, this inequality is trivial if x = 0 or y = 0, so suppose x, y > 0.

Then we can write x = ex1 and y = ey1 for some x1 6= −y1 ∈ R. Since ln(β(x)) is convex,

the inverse, β−1(ex), is concave. Define f(x) = β−1(ex). Then we have:

β−1(xy) = f(x1 + y1). (5.62)

Since positive concave functions are subadditive, we have

f(x1 + x2) ≤ f(x1) + f(x2) (5.63)

= β−1(x) + β−1(y). (5.64)

Hence β−1(xy) ≤ β−1(x) + β−1(y).

Now we may turn our attention to a proof of Theorem 5.2.4:

Proof of Theorem 5.2.4(i). It is well-known [37] that the essential spectrum is contained in

the interval [−2, 2], so it just remains to prove the dimension result.

Proof of Theorem 5.2.4(ii). For simplicity, we will prove the theorem for η = 1. The proof

of the general case is similar. Let I = [a, b] ⊂ (−2, 2) It suffices to prove the theorem for

µθ(I ∩ ·).

Let α(x) be defined such that β(x) = xα(x).

First, we will prove that dim+
F(µθ(I ∩ ·)) ≤ α3 for every every boundary phase θ. For every

E ∈ I,m > k ≥ 0, let

Φk,m(E) = Tm(E)Tm−1(E) · · ·Tk+1(E) (5.65)

158



where

Tn(E) =

E − V (n) −1

1 0

 . (5.66)

Since det(Φk,m(E)) = 1, it follows that
∥∥Φ−1

k,m(E)
∥∥ = ‖Φk,m(E)‖−1 . For any n ∈ Z+, if

Ln ≤ k < m < Ln+1, then Φk,m(E) is the same as the transfer matrix for the free Laplacian.

In particular, there exists some constant CI , depending only on the interval I, such that

1 ≤ ‖Φk,m(E)‖ ≤ CI for any such k,m and E ∈ I. Moreover, for any n ∈ Z+, we have

ΦLn−1,Ln(E) = TLn(E) =

E − V (Ln) −1

1 0

 , (5.67)

and so

max {1, V (Ln)− 2} ≤ ‖TLn(E)‖ ≤ V (Ln) + 3. (5.68)

If we consider some n ∈ Z+ and Ln ≤ m < Ln+1, then we have

Φ0,m(E) = ΦLn,mTLnΦLn−1,Ln−1TLn−1 · · ·ΦL1,L2−1TL1Φ0,L1−1. (5.69)

Thus we see that

‖Φm(E)‖ ≤ Cn+1
I

n∏
k=1

(V (Lk) + 3)

≤ Cn
1

n∏
k=1

L
α(Lk)
k

≤ Cn
1

(
n∏
k=1

Lk

)α(Ln)

,

(5.70)
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where C1 is some constant. Similarly, for large n, we also have

‖Φm(E)‖ ≥

(
Cn+1
I

n−1∏
k=1

(V (Lk) + 3)

)−1

(V (Ln)− 2)

≥ C−n2

(n−1∏
k=1

Lk

)−1

Ln

α(Ln)

,

(5.71)

where C2 is some constant. Since Ln+1 = β(Ln)n, we see that we can take n sufficiently large

so that

Ln
β−1(Ln)

<

(
n−1∏
k=1

Lk

)−1

Ln <
n∏
k=1

Lk < Lnβ
−1(Ln). (5.72)

Similarly, for any ε > 0 and n large enough we have Cn
1 < β−1(Ln)ε and Cn

2 < β−1(Ln)ε.

Hence, for any Ln ≤ m < Ln+1,

(
Ln

β−1(Ln)

)α(Ln)

β−1(Ln)−ε ≤ ‖Φm(E)‖ ≤
(
Lnβ

−1(Ln)
)α(Ln)

β−1(Ln)ε. (5.73)

Set h(m) = β(m). By taking m = Ln, we have

1

h(m)

m∑
k=1

‖Φk‖2 ≥ L−α(Ln)
n

(
Ln

β−1(Ln)

)2α(Ln)

β−1(Ln)−2ε

= Lα(Ln)
n β−1(Ln)−2α(Ln)−2ε

(5.74)

By our assumptions on β, (5.74) →∞. Corollary 5.4.1 now yields

dim+
F(µθ(I ∩ ·)) ≤ α3,

for every boundary phase θ as desired.

Now we will prove that dim−F(µθ(I ∩·)) ≥ α2 for every every boundary phase θ. By Theorem
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5.2.2 it suffices to prove that for every E ∈ I

lim inf
L→∞

(β−1(‖u1‖2
L ‖u2‖2

L))δ−1 ‖u1‖2
L > 0. (5.75)

First, note that we have |u1(m)|2 + |u2(m)|2 ≥ ‖Φm(E)‖−2 . We see, by (5.73) and our choice

of Ln, for sufficiently large n and Ln ≤ m < Ln+1,

‖u1‖2
m >

1

2

(
(Ln − Ln−1)

(
Ln−1

β−1(Ln−1)

)−2α(Ln−1)

+ l

(
Ln

β−1(Ln)

)−2α(Ln)
)

(5.76)

≥ Ln
β−1(Ln)

+ l

(
Ln

β−1(Ln)

)−2α(Ln)

, (5.77)

where l = m− Ln + 1. Similarly, we have

‖u2‖2
m < Ln

(
Ln−1β

−1(Ln−1)
)2α(Ln−1)

+ l
(
Lnβ

−1(Ln)
)2α(Ln)

(5.78)

≤ Lnβ
−1(Ln) + l

(
Lnβ

−1(Ln)
)2α(Ln)

. (5.79)

For simplicity, let

An =
Ln

β−1(Ln)

Bn =

(
Ln

β−1(Ln)

)−2α(Ln)

Cn = Lnβ
−1(Ln)

Dn =
(
Lnβ

−1(Ln)
)2α(Ln)

so that (5.77) becomes ‖u1‖2
m > An + lBn and similarly (5.79) becomes ‖u2‖2

m < Cn + lDn.

By combining (5.77), (5.79) and (5.44), and letting 1 ≤ l < Ln+1 − Ln + 1, we obtain
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(β−1(‖u1‖2
L ‖u2‖2

L))δ−1 ‖u1‖2
L ≥ (β−1((Cn + lDn)(m(ln(m))2)))δ−1(An + lBn)

=
An + lBn

(β−1((Cn + lDn)(l + Ln − 1)(ln(l + Ln − 1))2))1−δ

≡ Fn,δ(l).

(5.80)

We now need to analyze lower bounds for Fn,δ(l) for 1 ≤ l < Ln+1 − Ln + 1, so consider the

two cases:

Case 1: lBn ≤ An

Case 2: lBn ≥ An

We can see that case 1 is equivalent to the case where l ≤ DnCnL
−2ε
n and case 2 is equivalent

to the case where l ≥ DnCnL
−2ε
n .

Considering case 1, we have:

Fn,δ(l) ≥
An

(β−1((Cn + CnL−2ε
n D2

n)(l + Ln − 1)(ln(l + Ln − 1))2))1−δ (5.81)

≥ An
(β−1((2CnL−2ε

n D2
n)(2DnCnL−2ε

n ) ln(2DnCnL−2ε
n )))1−δ (5.82)

=
An

(β−1(4D3
nC

2
nL
−4ε
n ln(2DnCnL−2ε

n ))1−δ (5.83)

≥ An

(β−1(4D
3+1/2
n C

2+1/2
n L

−4ε−1/2
n ))1−δ

. (5.84)

We can now appeal to Lemma 5.5.1 and the fact that Dn = β(Ln)2(1+ε)Lεn to obtain:

An

β−1(4D
3+1/2
n C

2+1/2
n L

−4ε−1/2
n ))1−δ

≥ L1−ε
n

KL1−δ
n

, (5.85)

for some constant K > 0. Since we may take ε arbitrarily small by taking n sufficiently large,
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we conclude that this limits to ∞ for every δ > 0.

Now considering case 2, we have:

Fn,δ(l) ≥
An + lBn

(β−1(KlDn(2l)(ln(2l))2))1−δ (5.86)

≥ An + lBn

(β−1(K) + 2β−1(l) + β−1(Dn) + β−1((ln(2l))2))1−δ (5.87)

→∞. (5.88)

Thus for every δ > 0, Fnδ(l)→∞ as n, l→∞, which completes our proof.

Proof of Theorem 5.2.4(iii). Once again, we will consider η = 1. We will show that for

Lebesgue a.e. E, and a.e. θ, the equation Hu = Eu has solutions with appropriate decay

properties.

Fix θ0 = 0, and let H = Hθ0 . For each m ∈ Z+, let Gm be the operator on l2(Z+) given by

〈δi, Gmδj〉 = δi,m−1δj,m + δi−1,mδj,m−1. (5.89)

For each k ∈ Z+, define new operators H ′k = H − GLk and Ĥk = H − GLk − GLk+1, and

for every z ∈ C, define the resolvent operators G(z) = (H − z)−1, G′k(z) = (H ′k − z)−1, and

Ĝk(z) = (Ĥk − z)−1. Moreover, for i, j ∈ Z+, let the corresponding Green’s functions be

given by

G(i, j, z) = 〈δi, G(z)δj〉 (5.90)

G′k(i, j, z) = 〈δi, G′k(z)δj〉 (5.91)

Ĝk(i, j, z) =
〈
δi, Ĝk(z)δj

〉
. (5.92)

163



Now considering some n > Lk, we can use the resolvent identityG(z) = G′k(z)−G(z)GLkG
′
k(z)

to obtain

G(1, n, z) = −G(1, Lk − 1, z)G′k(Lk, n, z). (5.93)

A similar computation with G′k(z), yields the identity

G′k(z) = Ĝk(z)− Ĝk(z)GLk+1G
′
k(z),

so we have

G′k(Lk, n, z) = −Ĝk(Lk, Lk, z)G
′
k(Lk + 1, n, z) =

−1

V (Lk)− z
G′k(Lk + 1, n, z). (5.94)

Together, (5.93) and (5.94) yield

G(1, n, z) = G(1, Lk − 1, z)G′k(Lk + 1, n, z)
1

V (Lk)− z
. (5.95)

Whenever z = E + iε, ε > 0, we see that G(i, j, z) and G′k(i, j, z) have the form (5.11)

and thus are Borel transforms of signed measures. We know (see e.g. [67] for details)

that Borel transforms have finite non-tangential limits a.e. on the real axis: |G(i, j, E)| =

|G(i, j, E + i0)| < +∞ and |G′k(i, j, E)| = |G′k(i, j, E + i0)| < +∞.

Let us also recall Boole’s equality for Borel transforms of singular measures: if F (z) is the

Borel transform of a singular measure on R such that µ(R) = 1, then for any λ > 0, we have

| {E : f(E) > λ} | = 2/λ. Since we have already shown that the spectral measures of H for

any vector δi are singular (Theorem 5.2.4 (ii) above), we conclude that

|{E : |G(i, j, E)| > λ}| ≤ 4/λ, (5.96)

|{E : |G′k(i, j, E)| > λ}| ≤ 4/λ. (5.97)
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From this, we deduce that for any j ≥ 1, γ > 0, k > 1, n > Lk and E ∈ (−2, 2),

∣∣∣∣{E : |G(1, n, E)| > f j(Lk)
γ

V (Lk)− 2

}∣∣∣∣ ≤ 8

f j(Lk)γ/2
, (5.98)

where f(x) = β−1(x) and f j(x) is the j-fold composition of f with itself. Let us now fix

j ≥ 1. By our choice of Lk,
∑∞

k=2(f j(Lk))
−γ/2 < ∞ for every j ≥ 1 and γ > 0. By the

Borel-Cantelli lemma, for Lebesgue a.e. E ∈ (−2, 2), there exists a K(E, j) such that for

any k > K(E, j) and n = Lk + 1 or Lk + 2,

|G(1, n, e)| ≤ f j(Lk)
γ

V (Lk)− 2
. (5.99)

Now, if E is such that the sequence un = {G(1, n, E)}∞n=1 exists, it necessarily solves the

equation Hu = Eu for n > 2. Thus for any Lk + 2 < n ≤ Lk+1, we can recover G(1, n, E)

using G(1, Lk + 1, E) and G(1, Lk + 2, E) and the action of the free transfer matrix:

G(1, n+ 1, E)

G(1, n, E)

 = ΦLk+2,n(E)

G(1, Lk + 2, E)

G(1, Lk + 1, E)

 . (5.100)

Since we know that the free transfer matrix is bounded, we have
∥∥ΦLk+2,n(E)

∥∥ ≤ C(E) for

Lk + 2 < n < Lk+1 and E ∈ (−2, 2). Hence for Lk < n ≤ Lk+1, (5.99) holds for the same full

measure set of E as above and k > K(E).

It now follows that for Lebesgue a.e. E ∈ (−2, 2), there exists a solution v of Hu = Eu with

|v(0)|2 + |v(1)|2 = 1 and a constant C = C(E), such that for sufficiently large k and n > Lk,

|v(n)| < C
f j(Lk)

γ

V (Lk)
= Cf j(Lk)

γβ(Lk)
−1 = Cf j(Lk)L

−1/k
k+1 . (5.101)

Moreover, since there can be at most one subordinate solution of Hu = Eu with the normal-
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ization property |v(0)|2 + |v(1)|2 = 1 which is decaying, v must be the unique subordinate

solution of Hu = Eu. We also have, for m ∈ Z+, Ln < m ≤ Ln+1 with n sufficiently large,

‖v‖2
m =

m∑
j=1

|v(j)|2 (5.102)

=

Lk(E)∑
j=1

|v(j)|2 +
m∑

j=Lk(E)+1

|v(j)|2 (5.103)

≤ C(E, v) + C

n∑
i=k(E)

Li+1f
j(Li)

2γL
−2/i
i+1 (5.104)

≤ C(E, v) + Cf j(Ln)2γLn+1. (5.105)

Now we return to considering Hθ, where θ can vary. Recall that we can view Hθ as H

along with an appropriate rank-one perturbation at the origin. By the theory of rank-one

perturbations (again, we refer readers to [67] for full details), it is known that for any set

A ⊂ R with |A| = 0, we have µ(A) = 0 for Lebesgue a.e. boundary phase θ. Since the set of

energies for with the solution v above does not exist is a Lebesgue null set, we can conclude

that for a.e. boundary phase θ, the associate spectral measure µ is supported on the set of

E where the solution v above exists. Furthermore, since µ must also be supported on the

set of energies for which u1 is subordinate, it follows that for a.e. θ and a.e. E with respect

to µ, u1 must coincide with v above.

For this u1 and m = Ln + LnL
2/n
n+1, we have

‖u1‖2
m =

Ln∑
j=1

|u1(j)|2 +
m∑

Ln+1

|u1(j)|2 (5.106)

≤ C(E, v) + Cf j(Ln−1)2γLn + C(m− Ln)f j(Ln)2γL
−2/n
n+1 (5.107)

= C(E, v) + Cf j(Ln−1)2γLn + Cf j(Ln)Ln (5.108)

≤ C(1 + f j(Ln)2γLn). (5.109)
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On the other hand, a similar analysis yields

‖u2‖2
m ≥ Lnβ(Ln)2β−1(Ln)−1 (5.110)

for m = Ln + LnL
2/n
n+1.

Thus, if gk(x) = (β−1(1/x2)fk(1/x2))−1, and m = Ln + LnL
2/n
n+1, then

gk(‖u1‖−1
m ‖u2‖−1

m ) ‖u1‖2
m ≤

C(1 + f j(Ln)2γLn)

β−1(Lnβ(Ln)2β−1(Ln)−1)fk(Lnβ(Ln)2β−1(Ln)−1)
(5.111)

≤ C(1 + f j(Ln)2γLn)

2Lnfk−1(Ln)
. (5.112)

Since this limits to 0 whenever k ≤ j, and since j ≥ 1 was arbitrary, we conclude that

dim+
F(µ(A ∩ ·)) ≤ α1.

5.6 Rank one perturbations: general results

We will now consider a probability measure µ on R and the self-adjoint operator H :

L2(dµ) → L2(dµ) given by multiplication by x. Let ϕ be any cyclic unit vector in L2(dµ).

We define the rank one perturbation of H by ϕ as

Hλ = H + λ 〈ϕ, ·〉ϕ, λ ∈ R. (5.113)
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We will let µλ denote the spectral measure associated to Hλ and ϕ. Let Fλ denote the Borel

transform of µλ, and write F0 = F. Then

Fλ(z) =
F (z)

1 + λF (z)
, (5.114)

ImFλ(z) =
ImF (z)

|1 + λF (z)|2
, (5.115)

dµλ(x) = lim
x→ε+

1

π
ImFλ(x+ iε)dx, (5.116)

µλ,sing is supported by {x : F (x+ i0) = −1/λ} . (5.117)

In addition to the Borel transform, we define

G(x) =

∫
dµ(y)

(x− y)2
. (5.118)

It is well know that

{
x : G(x) <∞, F (x+ i0) = −λ−1

}
= set of eigenvalues of Hλ. (5.119)

Lemma 5.6.1. Let F be a family of comparable Hausdorff measure functions and let f =

ρα1 ∈ F . Suppose that for a family of intervals An, we have

|An| ≤ f−1(bn)

where bn ≥ 0 is a summable sequence of real numbers. Then dimF (lim supAn) ≤ α1.

Proof. Fix g ∈ F such that f ≺ g. That is, lim f(t)/g(t) = ∞, so g(t) ≤ f(t). Thus,

g−1(t) ≥ f−1(t). Since f is a Hausdorff dimension function, f−1(t) → 0 as t → 0. Hence

|An| → 0, so given δ, we can choose Nδ so that |An| ≤ δ for n ≥ Nδ. Then for m ≥ Nδ,
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⋃∞
n=mAn is a δ-cover of lim supAn. Thus,

∞∑
n=m

g(|An|) ≤
∞∑
n=m

g(f−1(bn)) ≤
∞∑
n=1

g(g−1(bn)) <∞. (5.120)

Thus, as m→∞, we have
∑∞

n=m g(|An|)→ 0. We conclude that

lim
δ→0

inf
δ-covers

{
∞∑
i=1

g(|Fi|)

}
= 0. (5.121)

Thus dimF(lim supAn) < ρβ for every β > α1, so dimF(lim supAn) ≤ α1.

Theorem 5.6.1. Let f(t) be a zero dimensional Hausdorff dimension function, let F =

{ρα = f(tα) : α > 0} , and suppose dµ(E) =
∑∞

n=1 andδEn(E) where an obeys the condition

that

|an| ≤ f−1(bn),

where bn is a summable sequence of positive real numbers. Then for every λ we have

dimF(supp(dµλ)) ≤ 2.

Proof. Let G(x) be defined as above and let S = {x : G(x) =∞, x 6∈ {Ei}∞i=1} . Then the

Aronszajn-Donoghue theory [66] says that for any λ 6= 0, dµscλ is supported by S, Thus, the

spectral measure dµλ is supported by S ∪ {eigenvalues of Hλ} . Since the set of eigenvalues

is countable, it will not contribute to the dimension of supp(dµλ), so it suffices to prove that

S has dimF(S) ≤ 2.

Fix ε > 0, let cn,ε = 1
2
|an|1/2−ε and let Aεn = [En − cn,ε, En + cn,ε]. Then

|Aεn| = 2cn,ε = |an|1/2−ε ≤ f−1(bn)1/2−ε.

Now by Lemma 5.6.1, for every ε > 0 and every f(t2/(1−2ε)) ≺ g(t) we have µg(lim supAεn) =

0.
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Now it remains to show that S ⊂ lim supAεn for every ε. That is, it remains to show that if

x 6∈ lim supAεn and x 6∈ {En}∞n=1 , then G(x) < ∞. If x 6∈ lim supAεn then for some N0, we

must have x 6∈
⋃∞
n=No

Aεn. Now observe that

G(x) =
∞∑
n=1

an
|x− En|2

(5.122)

=

N0∑
n=1

an
|x− En|2

+
N∞∑
n=N0

an
|x− En|2

(5.123)

≤ C +
∞∑

n=N0

an
c2
n,ε

(5.124)

≤ C +
∞∑

n=N0

2a2ε
n (5.125)

≤ C +
∞∑

n=N0

2f−1(bn)2ε. (5.126)

The first sum is bounded because x 6∈ {En}∞n=1 . Since f is a zero dimensional Hausdorff

dimension function, tα ≺ f−1(t) for every α > 0, so f−1(bn)2ε is summable, so we have

G(x) <∞. Thus S ⊂ lim supAεn for every ε. Thus dimF(S) ≤ 2/(1− 2ε) for every ε > 0. By

our definition of F , it follows that dimF(S) ≤ 2.

By considering the larger family G =
{
f(tα)β : α, β > 0

}
, we can actually take bn = 1/n

in the above theorem and conclude with the same result, for a suitably redefined choice of

indices ργ.

Definition 5.6.1. Let H be a self-adjoint operator on l2(Zν). We say that H has semi-

uniformly localized eigenfunctions (SULE) if and only if H has a complete set {ϕn}∞n=1 of

orthnormal eigenfunctions, there is α > 0 and mn ∈ Zν , n = 1, ..., and for each δ > 0, a Cδ

so that

|ϕn(m)| ≤ Cδe
δ|mn|−α|m−mn| (5.127)
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for all m ∈ Zν and n = 1, 2, ....

Lemma 5.6.2 ([20]). Suppose that H has SULE. Then there are C and D and a labeling of

eigenfunctions so that

|ϕn(0)| ≤ C exp(−Dn1/ν). (5.128)

Theorem 5.6.2 ((c.f. Theorem 5.2.5)). Suppose H has SULE and let F = {(ln(1/t))−α : 0 < α <∞} .

Let Hλ = H + λ 〈δ0, ·〉 δ0. Let dµ be the spectral measure of H associated to δ0, and let dµλ

be the corresponding spectral measures for Hλ. Then for every λ, dimF(supp(dµλ)) ≤ ν.

Proof. Let µ be the spectral measure associated to H and δ0, and µλ the spectral measures

of Hλ. Observe that we have

δ0 =
∞∑
n=1

ϕn(0)ϕn. (5.129)

Set an = ϕn(0). We can see that

dµ(E) =
∞∑
n=1

andδEn , (5.130)

where En is the eigenvalue associated to the eigenfunction ϕn. By Lemma 5.6.2, we have

|an| ≤ C exp(−Dn1/ν) = C/f−1(n). We can see that f(n) =
(
− ln(n)
D

)ν
, so by Theorem 5.6.1

we conclude that, for every λ, dimF(supp(dµλ)) ≤ ν.
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5.7 Dynamical bounds

Consider a separable Hilbert space H and H : H →H a self adjoint operator. Let us fix

a vector ψ ∈H with ‖ψ‖ = 1. The time evolution of ψ is given by

ψ(t) = e−iHtψ. (5.131)

We now introduce the following notation:

〈A〉 (t) = 〈ψ(t), Aψ(t)〉 (5.132)

for any operator A on H , and

〈f〉T = 〈f(t)〉T =
1

T

∫ T

0

f(t)dt (5.133)

for any measurable function f.

We also have the moments of the position operator in l2(Zν) :

|X|m =
∑
n∈Zν
|n|m 〈δn, ·〉 δn. (5.134)

Definition 5.7.1. Let µ be a finite Borel measure, and let ρ be a Hausdorff dimension

function. We say the measure µ is uniformly ρ-Hölder continuous (UρH) if there exists a

constant C > 0 such that µ(I) < Cρ(|I|) for sufficiently small intervals I.

Definition 5.7.2. Let H be a self-adjoint operator on a Hilbert space H . We denote the

the ρ-continuous subspace as

Hρc := {ψ ∈H : µψ is ρ-continuous} . (5.135)
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Theorem 5.7.1 (Rogers and Taylor [63]). Let µ be a finite Borel measure on R and let ρ

be a Hausdorff dimension function. Then µ is ρ-continuous if and only if for each ε > 0

there are mutually singular Borel measures µε1, µ
ε
2, such that dµ = dµε1 +dµε2, µ

ε
1 is UρH, and

µε2(R) < ε.

Theorem 5.7.2. Let ρ be a Hausdorff dimension function and Huh(ρ) = {ψ : µψ is UρH} .

Then Huh(ρ) is a vector space and

Huh(ρ) = Hρc. (5.136)

Proof. The only non-trivial vector space property is that Huh(ρ) is closed under linear com-

binations, so that is all we will prove here. Let ψ1, ψ2 ∈ Huh(ρ), and let ϕ = aψ1 + bψ2.

By assumption, there are constants C1 and C2 and δ > 0 such that µψ1(I) < C1ρ(|I|) and

µψ2(I) < C2ρ(|I|) for all intervals I with |I| < δ. For such I, let PI denote the spectral

projection on I. Then

µϕ(I) = 〈ϕ, PIϕ〉

= 〈aψ1 + bψ2, aPIψ1 + bPIψ2〉

≤ |a|2 〈ψ1, PIψ1〉+ |b|2 〈ψ2, Piψ2〉+ 2|a||b|| 〈ψ1, PIψ2〉 |.

(5.137)

Now

| 〈ψ1, PIψ2〉 | ≤
√
〈ψ1, PIψ1〉 〈ψ2, PIψ2〉

≤ 1

2
(〈ψ1, Piψ1〉+ 〈ψ2, PIψ2〉),

(5.138)
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so we have

µϕ(I) ≤ |a|2 〈ψ1, PIψ1〉+ |b|2 〈ψ2, Piψ2〉+ 2|a||b|| 〈ψ1, PIψ2〉 |

≤ (|a|2 + |a||b|) 〈ψ1, PIψ1〉+ (|b|2 + |a||b|) 〈ψ2, PIψ2〉

= (|a|2 + |a||b|)µψ1(I) + (|b|2 + |a||b|)µψ2(I)

≤ C1(|a|2 + |a||b|)ρ(|I|) + C2(|b|2 + |a||b|)ρ(|I|)

= Cρ(|I|).

(5.139)

Thus Huh(ρ) is a vector space.

Since Theorem 5.7.1 implies that Huh(ρ) ⊂Hρc, we have Huh(ρ) ⊂Hρc. Since Hρc is closed,

we have Huh(ρ) ⊂ Hρc. By Theorem 5.7.1, we can decompose dµϕ, ϕ ∈ Hρc, into a sum of

mutually singular measures: dµϕ = dµε1 + dµε2, where dµε1 is UρH and dµε2(R) < ε. Let Sε be

a Borel set that supports µε2 such that µε1(Sε) = 0, and let PSε denote the spectral projection

on Sε. We have

ϕ = PSεϕ+ (1− PSε)ϕ

with PSεϕ ∈Huh(ρ) and ‖(1− PSε)ϕ‖
2 < ε. Thus ϕ is the norm-limit of vectors in Huh(ρ),

so Hρc ⊂Huh(ρ)

Lemma 5.7.1. If µψ is UρH, then there exists a constant C = C(ψ) such that for any

ϕ ∈H with ‖ϕ‖ ≤ 1, we have

〈| 〈ϕ, ψ(t)〉 |2〉T < Cρ(1/T ). (5.140)

Remark 34. This is simply Lemma 3.2 from [58] converted into the general gauge function

setting. The proof is identical, but we will provide it below for convenience.

Proof. The spectral theorem implies that H restricted to the cyclic subspace spanned by ψ

is unitarily equivalent to multiplication by x on L2(R, dµψ). Thus, for each ϕ ∈ H there
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exists fϕ ∈ L2(R, dµψ) with ‖fϕ‖2 ≤ ‖ϕ‖ such that

〈ϕ, ψ(t)〉 =
〈
ϕ, e−iHtψ

〉
=

∫
e−ixtfϕ(x)dµψ(x).

By definition, in conjunction with the above,

〈| 〈ϕ, ψ(t)〉 |2〉T =

∫
R

∫
R
fϕ(x)fϕ(y)e−(x−y)2T 2/4dµψ(y)dµψ(x) (5.141)

≤
∫
R

∫
R
|fϕ(x)||fϕ(y)|e−(x−y)2T 2/8e−(x−y)2T 2/8dµψ(y)dµψ(x). (5.142)

Applying the Cauchy-Schwartz inequality in the y variable yields

| 〈ϕ, ψ(t)〉 |2〉T ≤
∫
R

∫
R
|fϕ(x)|2e−(x−y)2T 2/4dµψ(x)dµψ(y). (5.143)

Since µψ is UρH, we have

∫
R
e−(x−y)2T 2/4dµψ(y) =

∞∑
n=0

∫
n/2T≤|x−y|<(n+1)/2T

e−(x−y)2T 2/4dµψ(y)

≤ Cρ(1/T ).

Thus

| 〈ϕ, ψ(t)〉 |2〉T ≤ Cρ(1/T )

∫
|fϕ(x)|2dµψ(x) (5.144)

≤ C ‖fϕ‖2 ρ(1/T ) (5.145)

≤ Cρ(1/T ). (5.146)

Theorem 5.7.3. Suppose µψ is UρH. Then there exists a constant C = C(ψ) such that for
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any compact operator A, p ∈ N, and T > 0 :

〈| 〈A〉 |〉T < C1/p ‖A‖p ρ(1/T )1/p. (5.147)

Proof. Since A is compact, the spectral theorem guarantees the existence of orthonormal

bases {ψn}∞n=1 , {ϕn}
∞
n=1 , and a monotonely decreasing sequence {En}∞n=1 , , En ≥ 0, such

that A is given by the norm-convergent sum

A =
∞∑
n=1

En 〈ϕn, ·〉ψn. (5.148)

Moreover, ‖A‖p = ‖En‖lp . Thus we have

〈|〈A〉|〉T =

〈∣∣∣∣∣
∞∑
n=1

En 〈ϕn, ψ(t)〉 〈ψ(t), ψn〉

∣∣∣∣∣
〉
T

(5.149)

≤
∞∑
n=1

En〈| 〈ϕn, ψ(t)〉 〈ψ(t), ψn〉 |〉T (5.150)

≤
∞∑
n=1

En(〈| 〈ϕn, ψ(t)〉 |2〉T )1/2(〈| 〈ψ(t), ψn〉 |2〉T )1/2. (5.151)

If we let p, q ∈ N be such that 1/p + 1/q = 1, then we may apply Hölder’s inequality to

obtain

〈|〈A〉|〉T ≤ ‖En‖lp
∥∥(〈| 〈ϕn, ψ(t)〉 |2〉T )1/2(〈| 〈ψ(t), ψn〉 |2〉T )1/2

∥∥
lq

(5.152)

≤ ‖A‖p
∥∥〈| 〈ϕn, ψ(t)〉 |2〉T

∥∥1/2

lq

∥∥〈| 〈ψ(t), ψn〉 |2〉T
∥∥1/2

lq
. (5.153)

Moreover, by Lemma 5.7.1, we have

〈| 〈ϕn, ψ(t)〉 |2〉T < C(ψ)ρ(1/T )

〈| 〈ψ(t), ψn〉 |2〉T < C(ψ)ρ(1/T ).

176



Since the ψn and ϕn form orthonormal bases, and since e−iHt is unitary, we have

∞∑
n=1

〈| 〈ϕn, ψ(t)〉 |2〉T =
∞∑
n=1

〈| 〈ψ(t), ψn〉 |2〉T = ‖ψ‖2 = 1. (5.154)

Thus

∥∥〈| 〈ϕn, ψ(t)〉 |2〉T
∥∥q
lq
< (C(ψ)ρ(1/T ))q−1∥∥〈| 〈ψ(t), ψn〉 |2〉T

∥∥q
lq
< (C(ψ)ρ(1/T ))q−1.

(5.155)

Putting (5.155) and (5.153) together, we have

〈|〈A〉|〉T < ‖A‖p (C(ψ)ρ(1/T ))(q−1)/q = C(ψ)1/p ‖A‖p ρ(1/T )1/p, (5.156)

which completes our proof.

Now we can prove Theorem 5.2.6:

Proof of Theorem 5.2.6. Let ψρc = Pρcψ, ψρs = (1 − Pρc)ψ. By Theorem 5.7.1, there exist

mutually singular Borel measures, µ1, µ2 such that dµψρc = dµ1 + dµ2, where µ1 is UρH and

µ2(R) < 1
2
‖ψρc‖2 . Let S1 be a Borel set that supports µ1 and µ2(S1) = 0. Let PS1 denote

the spectral projection on S1 and set ψ1 = PS1ψρc and ψ2 = (1 − PS1)ψρc + ψρs. Clearly

ψ = ψ1 + ψ2 and ψ1 ⊥ ψ2. Moreover, we have dµψ1 = dµ1, so ψ1 is UρH and

‖ψ1‖2 =

∫
dµψ1 =

∫
dµψρc −

∫
dµ2 ≥

1

2
‖ψρc‖2 (5.157)

and

1 = ‖ψ1‖2 + ‖ψ2‖2 . (5.158)
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Let PN be the projection on the sphere of radius N ∈ [0,∞), defined by

PN =
∑
|n|≤N

〈δn, ·〉 δn. (5.159)

We can see that

Tr(PN) =
∑
n∈Zν
〈δn, PNδn〉

=
∑
n∈Zν

〈
δn,

∑
|k|≤N

〈δk, δn〉 δk

〉

=
∑
n∈Zν

∑
|k|≤N

〈δn, δk〉 〈δk, δn〉

=
∑
|n|≤N

1

= cνN
ν .

Where cν depends only on the space dimension ν. Thus PN is compact and it follows from

Theorem 5.7.3 that there exists a constant C1, which depends only on ψ1, such that for T

sufficiently large and N > 0,

〈‖PNψ1(t)‖2〉T = 〈〈ψ1(t), PNψ1(t)〉〉T

< C1Tr(PN)ρ(1/T )

< cνCψN
νρ(1/T ).

(5.160)

Moreover, we have

〈‖PNψ(t)‖2〉T ≤ 〈(‖PNψ1(t)‖+ ‖PNψ2(t)‖)2〉T

≤ 〈(‖PNψ1(t)‖+ ‖ψ2‖)2〉T

≤ (

√
〈‖PNψ1(t)‖2〉T + ‖ψ2‖)2.
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Now if we set

NT =

(
‖ψ1‖4

64C1cνρ(1/T )

)1/ν

then we have

〈‖PNψ(t)‖2〉T <

(
‖ψ1‖2

8
+ ‖ψ2‖

)2

=
‖ψ1‖4

64
+ ‖ψ2‖2 +

1

4
‖ψ1‖2 ‖ψ2‖

< ‖ψ2‖2 +
1

2
‖ψ1‖2

= 1− 1

2
‖ψ1‖2 .

Since

〈‖PNTψ(t)‖2〉T + 〈‖(1− PNT )ψ(t)‖2〉T = 1, (5.161)

we have

〈‖(1− PNT )ψ(t)‖2〉T >
1

2
‖ψ1‖2 . (5.162)

Hence

〈〈|X|m〉〉T =

〈〈
ψ(t),

∑
n∈Zν
|n|m 〈δn, ψ(t)〉 δn

〉〉
T

(5.163)

≥

〈〈
ψ(t),

∑
|n|≥NT

Nm
T 〈δn, ψ(t)〉 δn

〉〉
T

(5.164)

= Nm
T 〈〈ψ(t), (1− PNT )ψ(t)〉〉T (5.165)

≥ 1

2
‖ψ1‖2Nm

T (5.166)

=
1

2
‖ψ1‖2

(
‖ψ1‖4

64C1cν

)m/ν

ρ(1/T )−m/ν . (5.167)
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This completes our proof.
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Appendix A

Plurisubharmonic function facts and

estimates: the proofs

Our goal here is to obtain estimates on the decay of the Fourier coefficients for subharmonic

and plurisubharmonic functions, and then establish a boosting inequality which we use in

Chapter 5 to establish a large deviation estimate.

When d = 1, (i.e. subharmonic case) Fourier coefficient decay follows from an application of

the following result from [23].

Lemma A.0.1 ([23] Lemma 6.7). Suppose u : T → R is a subharmonic function with a

subharmonic extension to |=z| < ρ such that

sup
|=z|<ρ/4

u(z) + ‖u‖L2 ≤ C. (A.1)

Then there exists a constant C ′, dependent only on C and ρ, such that

|û(k)| < C(′|k|+ 1)−1. (A.2)
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The multifrequency (i.e. plurisubharmonic) estimate follows from the 1-frequency estimate.

Lemma A.0.2. Suppose u : Td → R is a plurisubharmonic function with a plurisubharmonic

extension to |=zj| < ρ such that

sup
|=zj |<ρ/4

u(z) + max
1≤j≤d

sup
xi∈T,i 6=j

‖u(x1, ..., xj, ..., xd)‖L2(dxj)
< C. (A.3)

Then there exists a constant C ′, dependent only on C and ρ, such that

∑
|k|>K0

|û(k)|2 ≤ C ′K−1
0 . (A.4)

Proof. Observe that, for any fixed x1, ..., xj−1, xj+1, ..., xd, we may define uj(xj) = u(x1, ..., xj, ..., xd)

and, by assumption, we have

sup
|=z|<ρ/4

uj(z) + ‖uj(xj)‖L2(dxj)
≤ C.

Thus Lemma A.0.1 applies to uj and we have, for every j,

|ûj(kj)| ≤ C ′(|kj|+ 1)−1.

Moreover, the constant C ′ is independent of j and xi, i 6= j. It follows that

∑
|kj |>K0

|ûj(kj)|2 ≤ (C ′)2K−1
0 .

This may be rewritten as

∑
|kj |>K0

|û(x1, ..., xj−1, xj+1, ..., xd)(kj)|2 ≤ (C ′)2K−1
0 .

We may now integrate the left hand side in the variables xi, i 6= j, and apply Parseval’s
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identity to obtain

∑
|kj |>K0,ki∈Z,i 6=j

|û(k1, ..., kj−1, kj, kj+1, ..., kd)|2 ≤ (C ′)2K−1
0 .

Since this holds for all 1 ≤ j ≤ d, we have

∑
k∈Zd,|k|>K0

|û(k)|2 < (C ′)2K−1
0

as desired.

It now suffices to show that the hypothesis of these previous lemmas hold in the setting of

Chapter 5.

Lemma A.0.3. Suppose (A, ω) is an analytic M(2,C) cocycle such that det(A) does not

vanish everywhere. Moreover, suppose

max
1≤j≤d

sup
xi∈T,i 6=j

‖ln | detA(x1, ..., xj, ..., xd)|‖L2(dxj)
< C. (A.5)

Then the previous two lemmas apply with u(x) = LN(A, x) with C ′ = C(A) independent of

N.

Proof. Set u(x) = LN(A, x). It suffices to verify that u(x) satisfies

sup
|=zj |<ρ/4

u(z) + max
1≤j≤d

sup
xi∈T,i 6=j

‖u(x1, ..., xj, ..., xd)‖L2(xj)
< C. (A.6)

Indeed, recall that, for any A ∈M(2,C) with det(A) 6= 0, we have

‖A‖2 ≥ | det(A)|.
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Since we assume det(A(x)) does not vanish everywhere, we know

‖A(x)‖2 ≥ | det(A(x))|

for a.e. x ∈ Td. Moreover, A(x) has an analytic extension, continuous up to the boundary,

to |=zj| < ρ for some ρ > 0, such that, for some M > 0, ‖A‖ρ < M. Thus

u(x) = LN(A, x)

is a plurisubharmonic function with a plurisubharmonic extension to |=zj| < ρ such that

max
|=zj |<ρ/4

u(z) < | lnM |.

Finally, we have

u(x) ≥ 1

2N

N−1∑
j=0

ln | det(A(x+ jω))|

by properties of det . Hence

‖u(x1, ..., xj, ..., xd)‖L2(dxj)
≤ max

| lnM |,
∥∥∥∥∥ 1

2N

N−1∑
k=0

ln | det(A(x+ kω))|

∥∥∥∥∥
L2(dxj)


(A.7)

≤ max

{
| lnM |, 1

2N

N−1∑
k=0

‖ln | det(A(x+ kω))|‖L2(dxj)

}
(A.8)

≤
{
| lnM |, 1

2
| lnC|

}
. (A.9)

It follows that, for some C, depending only on properties of A,

max
|=zj |<ρ/4

u(z) + max
1≤j≤d

sup
xi∈T,i 6=j

∫
T
|u(x1, ..., xj, ..., xd)|2dxj < C,
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and we are done.

It now suffices to ensure that (A.5) holds. We first recall a useful lemma due to Duarte and

Klein.

Lemma A.0.4 ([23] Theorem 6.3). Suppose A ∈ Cω
ρ (Td,C) is such that det(A) does not

vanish identically. Then there exist δ = δ(A) > 0, C = C(A) < ∞, and a linear change of

coordinates matrix, M ∈ SL(d,Z), such that for any B ∈ Cω
ρ (Td,C) such that ‖A−B‖ρ < δ,

we have f(x) = det(B ◦M(x)) satisfies

max
1≤j≤d

sup
xi∈T,i 6=j

‖f(x1, ..., xj, ..., xd)‖L2(dxj)
< C.

This ensures Lemma A.0.3 is applicable to the cocycle A ◦ M(x). This implies that the

argument in our paper actually applies to A◦M. However, since M ∈ SL(d,Z) is a constant

matrix, the Lyapunov exponent for A ◦M and A are the same. We may assume, therefore,

that M is the identity matrix. This establishes the desired decay of the Fourier coefficients.

Now we turn our attention to the boosting inequality. We will derive the d > 1 estimate

from the d = 1 estimate. First, we recall a known BMO estimate.

Lemma A.0.5 ([23] Lemma 6.8). Suppose u : T → R is a subharmonic function with a

subharmonic extension to |=z| < ρ such that

sup
|=z|<ρ/4

u(z) + ‖u‖L2 ≤ C. (A.10)

Moreover, suppose

∣∣∣∣{x ∈ T : |u(x)−
∫
u(x)dx| > ε0

}∣∣∣∣ < ε1. (A.11)
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Then there exists a constant C ′, dependent only on C and ρ, such that

‖u‖BMO(T) ≤ C ′(ε0 + ε
1/2
1 ). (A.12)

We may combine the BMO estimate and the Fourier coefficient decay to obtain the next

lemma. The argument we use was originally used by Bourgain (see [6] Corollary 1.24) for

bounded plurisubharmonic functions. The main difference is that we must use (A.13) in lieu

of boundedness, and Lemma A.0.5 in lieu of Bourgain’s BMO estimate (see [6] Lemma 1.16).

Lemma A.0.6. Suppose u : T→ R is a subharmonic function with a subharmonic extension

to |=z| < ρ such that

sup
|=z|<ρ/4

u(z) + ‖u‖L2 ≤ C. (A.13)

Moreover, suppose

∥∥∥∥u− ∫ udx

∥∥∥∥
L1(T)

< ε. (A.14)

Then there exists a constant c, dependent only on C and ρ, such that

∣∣∣∣{x ∈ T :

∣∣∣∣u(x)−
∫
T
u

∣∣∣∣ > ε1/6
}∣∣∣∣ < ecε

−1/6

. (A.15)

Proof. Let ε0 = ε1/3 and ε1 = ε2/3. Then

∣∣∣∣{x ∈ T : |u(x)−
∫
u(x)dx| > ε0

}∣∣∣∣ < ε1,

and Lemma A.0.5 is applicable. We obtain

‖u‖BMO(T) ≤ C ′ε1/3. (A.16)
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Now recall the John-Nirenberg inequality:

∣∣∣∣{x ∈ T :

∣∣∣∣f − ∫
T
f

∣∣∣∣ > λ

}∣∣∣∣ < c1e
−c2 λ

‖f‖BMO . (A.17)

Setting f = u and λ = ε1/6 completes our proof.

We can now apply this in each variable to deduce an analogue for d > 1 (c.f. Lemma 1.27

[6]).

Lemma A.0.7. Suppose u : Td → R is a plurisubharmonic function with a plurisubharmonic

extension to |=zj| < ρ such that

sup
|=zj |<ρ/4

u(z) + max
1≤j≤d

sup
xi∈T,i 6=j

‖u(x1, ..., xj, ..., xd)‖L2(dxj)
< C. (A.18)

Assume, moreover, that ∥∥∥∥u− ∫
Td
u

∥∥∥∥
L1(Td)

< ε.

Then there exist constants c, dependent only on C and ρ, and a = a(d), such that

∣∣∣∣{x ∈ T :

∣∣∣∣u(x)−
∫
Td
u

∣∣∣∣ > εa
}∣∣∣∣ < ecε

−a
. (A.19)
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