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Abstract 

 
 

Cell-cycle regulation of silent chromatin in Saccharomyces cerevisiae 
 
 

by 
 

Davis W Goodnight 
 

Doctor of Philosophy in Molecular and Cell Biology 
 

University of California, Berkeley 
 

Professor Jasper Rine, Chair 
 

 
 
 
 In eukaryotes, the physical packaging of DNA into chromatin plays a major role in 
modulating gene expression. In the budding yeast Saccharomyces cerevisiae, silent chromatin, a 
repressive chromatin structure analogous to the heterochromatin found in animals, is required for 
cell mating-type identity. Silent chromatin forms at the cryptic mating type loci HML and HMR 
and depends on the interactions between the Silent Information Regulator SIR proteins and 
nucleosomes. A longstanding model for how Sir proteins build a repressive chromatin structure 
posits a stepwise process of histone tail deacetylation by Sir2, followed by recruitment of Sir3 and 
Sir4 to those deacetylated tails. However, this model is incomplete, as it does not account for the 
observed dependence of silencing establishment on progression through S phase of the cell cycle, 
which has been known for decades, but remained unexplained when I began these studies. I worked 
to resolve this mystery first by characterizing the establishment of silencing using modern 
molecular techniques and then by performing genetic analysis to identify the molecular 
determinants of silencing establishment.  
 

Using the inducible allele SIR3-EBD, I demonstrated that silencing establishment has 
similar cell-cycle requirements at HML and HMR, which corrected an incorrect claim in the 
literature. This finding simplified the possible models that could explain an S-phase dependence 
for silencing establishment, as the models did not have to account for locus-specific effects. Using 
chromatin immunoprecipitation followed by sequencing (ChIP-seq), I confirmed the earlier 
finding that Sir protein recruitment and spread across HML and HMR does not require cell-cycle 
progression. However, I also showed that S phase promotes Sir protein binding beyond the level 
that can be obtained without cell-cycle progression. Using single-molecule RNA fluorescence in 
situ hybridization (smRNA-FISH) to study the establishment of silencing, I found that 
transcriptional repression occurs gradually in individual cells, not via discrete transitions between 
the expressed and repressed states. Thus, the model for silencing must account for intermediate 
levels of repression occurring during establishment. I found that cells lacking DOT1, SAS2, or 
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RTT109, which code for anti-silencing histone modifying enzymes, could partially establish 
silencing without S phase passage. Dot1 was particularly interesting, because the anti-silencing 
mark it deposits, methylation of H3K79, lacks a known demethylase, and thus the mark can only 
be removed through histone turnover, which occurs mainly during S phase. Consistent with this 
expectation, I found that Sir proteins were unable to deplete H3K79 methylation from HML and 
HMR without passage through S phase. Together, these results suggest that removal of methylation 
from H3K79 is a major cell-cycle-dependent step in the establishment of silent chromatin. 

 
While silencing establishment relies on incorporation of new silencing-competent histones 

during S phase, a long-standing hypothesis in the field of heterochromatin is that the epigenetic 
inheritance of the silent state depends on inheritance of modified parental histones during S phase. 
Recent work from the Rine lab has demonstrated that parental histones are locally redeposited after 
DNA replication at the non-Sir-bound GAL10 locus. Furthermore, mutations in the replisome 
components DPB3 and MCM2 severely reduce local histone inheritance at GAL10, but do not 
cause complete loss of epigenetic memory at silent loci, calling into question the model that local 
histone inheritance is required for epigenetic inheritance. A major open question is whether the 
mechanisms of histone position memory at GAL10 function similarly at the silent locus HML. 

 
I found that histones are locally inherited at HML in wild-type cells and that this inheritance 

seems to be weakened in sir mutant cells. In the course of these experiments, I observed a synthetic 
sickness that occurs when cells lack both the histone inheritance factor Dpb3 and the histone 
deacetylases Hst3 and/or Hst4, which remove a histone modification that marks newly-synthesized 
histones. A genetic screen for suppressors of this synthetic phenotype yielded mutations in many 
proteasome subunits, suggesting that aberrant degradation of some protein, potentially H3 itself, 
is responsible for the sickness in these cells. The work on both local histone inheritance at HML 
and the interaction between DPB3 and HST3/4 is ongoing. 
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Chapter 1:   
 

Introduction to silencing and nucleosome dynamics in Saccharomyces cerevisiae 
 
 

The trillions of cells in a human all harbor essentially identical genetic codes in their DNA. 
That is to say, the many different types of cells found throughout the body all have the same set of 
inherited “instructions” to perform the disparate functions needed to sustain life. The organism 
must therefore ensure that only the appropriate information is decoded in any given cell type, such 
that each cell performs its proper function—transmitting action potentials in the case of neurons, 
secreting insulin in the case of pancreatic beta cells, etc.—but not the functions of other cell types. 
The mechanisms by which cells decode specific information to drive function constitute the field 
of “gene regulation.” 

 
Gene regulation occurs at many levels, but the most fundamental node of control is 

transcription. In general, if a protein-coding gene is transcribed by RNA polymerase II, the 
transcript will subsequently be translated by the ribosome and give rise to a protein product. In 
eukaryotes, transcriptional regulation depends both on DNA-binding transcription factors which 
bind target sequences and function to promote or repress transcription of a given gene, and the 
broader chromatin context in which a gene is located, including particular histone modifications 
and nucleosome-binding proteins. In some eukaryotes, transcriptional regulation is even further 
complicated by the presence of RNA interference (RNAi)-driven chromatin regulation and DNA 
methylation, which add additional levels of control to gene expression. Evolution will make use 
of any strategy of regulation that increases the fitness of the organism, guided only by the utility 
that allowed its selection. Molecular biologists have made great strides to understand gene 
regulation via reductionism. We hope that in studying the constituent pieces of a dizzying 
biological puzzle, the sum of knowledge about the parts leads us closer to an understanding of the 
whole. Studying transcriptional regulation in the budding yeast Saccharomyces cerevisiae is an 
explicitly reductionist approach: yeast cells are able to regulate their genomes dynamically using 
a markedly simpler toolkit than that of animals. The work presented in this dissertation is in service 
of that aim: to understand the mechanisms of gene regulation mechanisms in budding yeast, and 
in so doing gain insight into how the process works across eukaryotes. 

 
1.1 Silencing in Saccharomyces cerevisiae 
 

Approximately one billion years ago, a single cell underwent a division and produced two 
daughter cells. The descendants of one of those cells, after many more divisions, eventually gave 
rise to all animals, including humans, while the other cell’s descendants gave rise to all fungi, 
including the budding yeast Saccharomyces cerevisiae. This last common ancestor of animals and 
fungi, had already evolved all of the necessary features for eukaryotic life. This unity at the 
foundation of eukaryotic life allows us to use S. cerevisiae as a model organism to better 
understand the biology of humans. Our human-centric worldview leads us to imagine that the 
ancestral cell was simple, probably not unlike a modern yeast cell, and that the emergence of 
multicellularity and eventually humanity was accompanied by the evolution of complex new 
proteins to perform “higher” functions. To some degree this is true: there are certainly molecules 
and processes observed in specialized cells of plants and animals that are found nowhere else in 
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biology. But this common perception of evolution is at its core incorrect: evolution is not a march 
from simplicity toward complexity. The budding yeast has undergone just as much evolutionary 
change since the bifurcation point as we have. One clear illustration of this principle is evident 
when we compare the repressive chromatin structures formed in humans and in Saccharomyces. 

 
Silent chromatin in Saccharomyces cerevisiae is functionally analogous to heterochromatin, a 

form of chromatin originally defined in other eukaryotes by morphological criteria. 
Heterochromatin and silent chromatin are both compact chromatin structures that reduce DNA 
accessibility to protein binding and thus antagonize transcription. In many eukaryotes, most 
notably animals, heterochromatin occurs in two flavors. “Constitutive” heterochromatin forms 
over domains of repetitive DNA and represses transcription and recombination for the life of the 
organism (Elgin and Reuter, 2013). In contrast, “facultative” heterochromatin forms over 
dynamically regulated blocs of genes to repress transcription only during particular stages of 
development (Simon and Kingston, 2009). These forms of heterochromatin are defined by specific 
histone modifications, as well as the enzymes that deposit those modifications, and proteins that 
are recruited by the modifications. Interestingly, homologs of many of the key proteins involved 
in constitutive and facultative heterochromatin—namely the methyltransferases Su(var)3-9 and 
E(z), and the histone-binding heterochromatin protein 1 (HP1)—are inferred to have been present 
in the last common ancestor of yeast and metazoans (Talbert et al., 2019). Also present in this 
ancestral cell was the machinery for RNA interference (RNAi) and DNA methylation, both of 
which play major roles in heterochromatin-mediated gene repression in diverse organisms (Iyer et 
al., 2011; Martienssen and Moazed, 2015). Thus, the last common ancestor of budding yeast and 
humans likely had a form of repressive chromatin that was quite similar at the molecular level to 
the heterochromatin seen today in humans and many other modern animals and plants. However, 
in that lineage that gave rise to Saccharomyces, something striking happened: the ancestral genes 
for DNA methylation, RNAi, constitutive heterochromatin, and facultative heterochromatin were 
all lost. In their place, the budding yeast built a new molecular system for accomplishing much the 
same task: silent chromatin. 

 
Why would a cell constitutively repress any genetic information? In the case of S. cerevisiae, 

repression of the mating type loci HML and HMR is necessary for cells to mate (Herskowitz et al., 
1992). Yeast have both a sexual and a nonsexual life. In the sexual life cycle, there are two mating 
types, a and α1. Haploid a cells mate with haploid α cells, and the resulting diploid a/α cells are 
sterile, but can undergo meiosis to produce haploid progeny. Mating types, analogous to biological 
                                                
1 Why were the yeast mating types named a and α, two letters that appear nearly identical in many typefaces and 
require switching between Greek and English keyboards to type? We can thank two of the heroes of yeast genetics, 
Gertrude and Carl Lindegren, for this frustrating nomenclature, but to my knowledge, no evidence exists as to why 
these names were chosen. In the two decades after Winge’s 1935 description of the yeast life cycle, various naming 
conventions were used for mating types, including + and – in the Lindegrens’ first paper on the subject in May 1943 
(Lindegren and Lindegren, 1943a). This is the same naming system they had used to describe Neurospora mating 
types, which they had studied before turning to yeast. Within half a year, though, they had begun referring to the two 
yeast mating types “provisionally” as a and α, and the rest is history (Lindegren and Lindegren, 1943b). They may 
have been influenced by George Beadle’s Neurospora nomenclature, which used the letters A and a to refer to the 
mating types. My best guess, purely conjecture, is that by late 1943 it was clear to the Lindegrens that (1) using + 
and – to refer to mating-type alleles across different organisms would eventually lead to confusion and that (2) using 
a convention like Beadle’s A/a could also create confusion, since capital/lowercase distinctions were already in use 
to distinguish dominant/recessive or wild-type/mutant alleles. A pair of letters that appear similar to each other and 
are of the same case, like a and α, perhaps connote the symmetry and distinguishability of mating types. 
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sexes in multicellular organisms, are determined by whether the a or α master regulator genes are 
present at the MAT locus of chromosome III. Some wild strains of yeast can change mating types 
after cell division via the generation of a DNA double-strand break at the MAT locus and 
homology-directed repair from either the HMLα or HMRa locus (Haber, 2012; Strathern et al., 
1982). Thus, in addition to a functional copy of the mating type information at MAT, cells must 
have extra copies of the mating type information elsewhere. If the master regulator genes encoded 
at HML or HMR were to be expressed, the cell would gain the a/α diploid gene expression pattern 
and thus be sterile. These extra copies of the mating information are therefore stably repressed, 
and this repression does not depend on the promoter sequence, since, e.g., HMRa and MATa share 
the same promoter but have different expression properties. Rather, the repression of HML and 
HMR is a property of the locus where the sequence resides. 

 
The locus-specific repression of HML and HMR is mediated by the products of the Silent 

Information Regulator genes SIR1-4. Several genetic screens identified mutant alleles of these four 
genes through defects in mating, but their specific role in silencing was demonstrated in a genetic 
screen that searched for mutants capable of de-repressing HML and HMR (Rine and Herskowitz, 
1987). Deletion of SIR2, SIR3, or SIR4 leads to complete loss of silencing at HML and HMR, 
whereas deletion of SIR1 causes a bistable phenotype wherein silent loci are either fully repressed 
or fully de-repressed in individual cells, with rare switches between the two epigenetic states 
(Pillus and Rine, 1989). The mechanisms by which the four proteins encoded by the SIR genes 
contribute to silencing has been the subject of intense study for over four decades. In addition to 
their effects at HML and HMR, Sir2/3/4 also drive a form of silencing at telomeres, and Sir2 also 
participates in a separate silencing complex at ribosomal DNA. These forms of silencing have been 
reviewed elsewhere (Gartenberg and Smith, 2016), and the work in this dissertation will focus on 
silencing at HML and HMR. 

 
Sir proteins are recruited to regulatory sites termed silencers, which flank the HML and HMR 

loci. These sequences were identified by deletion analysis of plasmid-borne copies of HML and 
HMR (Abraham et al., 1984; Feldman et al., 1984). Two features of the silencers were quickly 
noticed: (1) some DNA sequence elements were found in multiple silencers and (2) the silencers 
all possessed autonomous replication (ARS) activity, meaning they could initiate DNA replication 
on a plasmid. Subsequent work explained the common sequence elements by identifying DNA-
binding proteins that bound multiple silencers: all four silencers are bound by the Origin 
Recognition Complex (ORC), and each silencer is also bound by Repressor-activator protein Rap1 
and/or ARS-binding factor Abf1 (Bell et al., 1993; Buchman et al., 1988; Foss et al., 1993; 
Kimmerly et al., 1988). Rap1 recruits both Sir3 and Sir4 to silencers via protein-protein 
interactions with the Rap1 C-terminal domain (Chen et al., 2011; Luo et al., 2002; Moretti et al., 
1994; Moretti and Shore, 2001). Meanwhile, ORC recruits Sir1 to silencers via protein-protein 
interactions with the Orc1 subunit (Triolo and Sternglanz, 1996). In the case of Abf1, despite 
common claims in the literature that Abf1 recruits a Sir protein via a protein-protein interaction, 
to the best of my knowledge, this result has never been published2. It is possible that in addition to 
their roles in recruiting Sir proteins, silencer-binding factors also help create a silencing-conducive 
chromatin environment by depleting nucleosomes from silencers: in a systematic study of 104 

                                                
2 In looking backwards through references in search of a datum showing that Abf1 is involved in recruiting Sir 
proteins to HMR or HML, I arrive at the following from Gasser and Cockell, 2001: “Abf1p appears to act by direct 
interaction with Sir3p, to help nucleate mating type repression (P. Moretti and D. Shore, personal communication)” 
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yeast transcription factors, Rap1, Abf1, and Orc1 stood out as three of the proteins most capable 
of depleting nucleosomes from their vicinity (Yan et al., 2018). The capacity of nucleosome-
depleted regions to position flanking nucleosomes and, in so doing, modulate silencing has been 
recently appreciated by work from Daniel Saxton’s work (Saxton and Rine, 2020). The 
evolutionary co-option of these three proteins in silencing is notable: all three have essential 
functions outside of silencing, Rap1 and Abf1 as transcriptional activators and ORC as the initiator 
of DNA replication. The relationship between these proteins’ silencing functions and other 
essential functions has been the focus of much research, including the open question of how Abf1 
and Rap1 can serve as both activators and repressors depending on the context, and whether ORC’s 
role in DNA replication and silencing are connected (described below in Section 1.2). 

 
The mechanism of Sir protein recruitment to silencers via sequence-specific adaptor proteins 

is conceptually simple, but does not explain how Sir proteins repress transcription. The HML and 
HMR silencers are over a kilobase away from the promoters that they regulate, and thus any model 
for silencing requires an explanation for how Sir proteins can act at a distance to repress 
transcription. Sir-mediated repression was shown early to induce locus-wide alterations to the 
chromatin at HML and HMR (Gottschling, 1992; Loo and Rine, 1994; Nasmyth, 1982; Singh and 
Klar, 1992), which contributed to the idea that Sir proteins bind across the silent loci, not just at 
silencers (Hecht et al., 1995a). Chromatin immunoprecipitation (ChIP) studies of silencing 
revealed that Sir2, Sir3, and Sir4 bind across the silent domains, while Sir1 associates only with 
the silencers (Hecht et al., 1996; Hoppe et al., 2002; Rusché et al., 2002; Strahl-Bolsinger et al., 
1997). The spread of Sir2/3/4 from the silencers is dependent on a complex network of protein-
protein interactions among the Sir proteins (thoroughly reviewed in Gartenberg and Smith, 2016). 
As a central example, Sir4 binds to itself (Chang et al., 2003; Murphy et al., 2003), to Sir1 (Bose 
et al., 2004; Triolo and Sternglanz, 1996), to Sir3 (Chang et al., 2003; Liou et al., 2005; Moazed 
et al., 1997), and, as a stable heterodimer, to Sir2 (Hsu et al., 2013; Moazed et al., 1997). A key 
role for the histone H4 tail in silencing, and specifically for an interaction between Sir3 and 
deacetylated lysine residues of the H4 tail was demonstrated first genetically (Johnson et al., 1990; 
Kayne et al., 1988; Megee et al., 1990; Park and Szostak, 1990) and later via biochemistry that 
confirmed that Sir3 and Sir4 have high affinity for deacetylated histone tails (Carmen et al., 2002; 
Hecht et al., 1995a; Liou et al., 2005). These observations, coupled with the seminal discovery that 
Sir2 is an NAD-dependent histone deacetylase (Imai et al., 2000; Landry et al., 2000; Smith et al., 
2000) form the basis for our understanding of how Sir proteins “spread” across a locus (Hoppe et 
al., 2002; Rusché et al., 2002). Sir protein recruitment to silencers is thought to allow Sir2 to 
deacetylate adjacent or nearby nucleosomes at H4K16, which in turn favors binding of Sir3 and 
Sir4 to the deacetylated nucleosome. Because Sir4 and Sir2 form a complex, the binding of Sir4 
to the deacetylated histone tail allows Sir2 to further deacetylate subsequent histones along the 
chromatin array. 

 
While deacetylation of H4K16 is regarded as the defining histone modification associated with 

silencing, other histone-modifying enzymes have also been shown to regulate silent chromatin. 
Some of these associations are tenuous and might reflect indirect effects, given the elaborate 
crosstalk between different chromatin marks (Talbert and Henikoff, 2021). Generally, convincing 
claims of a direct connection between a given histone modification and silencing require in vitro 
data in addition to genetics, because mutant analysis changes the global pool of histones, making 
it nearly impossible to attribute phenotypes specifically to defects in the chromatin at the silent 
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loci. One histone modification that has bona fide effects on silencing is methylation of H3K79, 
which is deposited by the methyltransferase Disruptor of telomeric silencing, Dot1 (Singer et al., 
1998; Van Leeuwen et al., 2002). Structural and biochemical studies have converged on a model 
wherein Dot1 and Sir proteins mutually antagonize each other by directly competing for shared 
binding surfaces on the nucleosome and via their respective histone modifications (Altaf et al., 
2007; Armache et al., 2011; Valencia-Sánchez et al., 2021). Indeed, in a beautiful convergence of 
genetics and structural biology, the very point mutations in SIR3 that suppressed the silencing 
phenotypes of H4 tail mutants, were identified decades later to lie at the interface that binds to 
unmethylated H3K79 (Armache et al., 2011). While H4K16 deacetylation is thought to be an 
essential step in the spread of Sir proteins across HML and HMR, whether other histone 
modifications need to be added or removed to facilitate Sir protein spread is an open question. 

 
The nucleation and spread model provides a framework for understanding silencing, but there 

are major missing pieces in a complete description of the molecular mechanisms of SIR-mediated 
gene repression. One fascinating mystery, which forms the basis for the work described in Chapter 
2 of this dissertation, is how the cell cycle regulates silencing establishment (further discussed in 
Section 1.2). Another is that, at a fundamental level, we cannot explain exactly how Sir protein 
binding represses transcription. This latter question can be divided into two parts, both of which 
are open areas of research: (1) which specific silencing-dependent molecular changes determine 
whether repression occurs? and (2) which steps in transcription are inhibited by silencing? 

 
To the first question, it seems likely that both the binding of Sir proteins and the Sir2-dependent 

deacetylation of H4K16 are necessary for silencing, although the interdependence of those two 
processes makes it difficult to study one without the other. The combination of Sir protein binding 
and histone tail deacetylation might drive repression per se, but there is also evidence that Sir3 
dimers form bivalent interactions with adjacent nucleosomes, driving a compaction of chromatin 
structure (Behrouzi et al., 2016; Swygert et al., 2018). In addition, multiple lines of evidence 
suggest that silent chromatin forms a higher-order chromatin structure. Most convincingly, DNA 
supercoiling assays show that HMR and HML have SIR-dependent changes in supercoiling that 
cannot be explained by the effects of transcription or histone acetylation (Bi and Broach, 1997; 
Cheng and Gartenberg, 2000). The supercoiling change in silent chromatin could be due to 
increased nucleosome density, but micrococcal nuclease mapping reveals that silencing leads to 
better positioning of nucleosomes, but does not change the total number or location of nucleosomes 
(Nasmyth, 1982; Thurtle and Rine, 2014; Weiss and Simpson, 1999). To date, no studies have 
conclusively determined whether changes in higher-order chromatin structure are required for gene 
repression, or are simply correlated with it. There is ample precedent for overzealous 
interpretations of correlations leading the silencing field astray. One notable example is that 
despite significant cell biology work on the localization of silent chromatin to the nuclear 
periphery, this subnuclear localization is not required for silencing (Gartenberg et al., 2004). 

 
To the second question, much work has gone into identifying the specific steps of transcription 

that are inhibited by silencing, but the results have been contradictory. Nasmyth showed early that 
several DNase I hypersensitive sites at HML and HMR are regulated by the SIR genes, including, 
notably, one that fell at the site of HO endonuclease activity, which could explain HML and HMR’s 
resistance to HO cutting (Nasmyth, 1982). Subsequently, it was shown that silenced chromatin is 
generally resistant to DNA methylases and endonucleases, which formed the basis for the “steric 
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occlusion” model of silencing, wherein Sir proteins function to prevent access of DNA-binding 
proteins to their targets (Gottschling, 1992; Loo and Rine, 1994; Singh and Klar, 1992). However, 
one of those initial studies also found that reduced methylase accessibility was a general feature 
of repressed loci (i.e., uninduced GAL10, PHO5, etc.), and not specific to silent chromatin, which 
could suggest that such accessibility reductions are not due specifically to Sir-mediated occlusion 
(Singh and Klar, 1992). A major limitation of the occlusion model is that silent chromatin is clearly 
not completely refractory to all DNA transactions, such as replication or homologous 
recombination. Further counterevidence to the occlusion model was provided by ChIP studies that 
measured the effects of silencing on the recruitment of transcription machinery to chromatin (Chen 
and Widom, 2005; Gao and Gross, 2008). While these two studies reached different conclusions 
as to the specific step in transcription that was inhibited—respectively PolII binding itself (Chen 
and Widom, 2005) or transcription elongation (Gao and Gross, 2008)—they both demonstrated 
that some activating proteins could access silent chromatin, meaning that silencing does not 
prevent transcription by broadly preventing all DNA-protein interactions. The inconsistency of the 
previous results, not to mention the drastic technological improvements that have occurred in the 
intervening years, makes this question an appealing target for future work. 

 
Silent chromatin has long been known to have dynamic properties (Cheng and Gartenberg, 

2000), and the field would be well-served by developing models for repression that account for 
our current view of the highly dynamic nature of transcription (Liu and Tjian, 2018). In particular, 
there has been scant investigation into the dynamics of Sir protein association with chromatin. One 
speculative framework for thinking about silencing is in terms of the ON and OFF rates with which 
Sir proteins and transcription-favoring proteins associate with chromatin. Silencing and 
transcription could mutually inhibit each other by modulating the ON/OFF rates for protein-
chromatin interactions, via histone modifications and direct competition for binding surfaces on 
chromatin. 
 
1.2 Regulation of silencing establishment by the cell cycle 
 

So far in describing silencing, I have invoked the idea of a stepwise process of silent chromatin 
“establishment” whereby Sir proteins are recruited to silencers, spread across HML and HMR, and 
repress transcription. For most of the studies referenced heretofore, the idea of “establishment” 
was an abstraction, in that the experiments were actually steady-state measurements of the 
phenotypes of mutant cells or biochemical interactions that differed between non-silenced and 
silenced loci. This abstraction is partially because in wild-type cells, silencing is constitutive, save 
for rare, transient losses of silencing (Dodson and Rine, 2015). Thus “silencing establishment” 
does not really happen in the same sense that heterochromatin formation happens in animals, 
wherein at one stage of development heterochromatin doesn’t exist, and then at some later stage it 
does. In contrast, for a wild-type yeast cell, we should really think of silencing as a process of 
constantly reinforcing an already-established repressive domain. We can however, force cells to 
undergo silencing establishment, through the use mutant conditions that either destabilize silencing 
in a way that causes losses and gains of silencing to occur (e.g., sir1∆) or allow for inducible 
silencing (e.g., temperature-sensitive sir alleles). The latter strategy has proved especially fruitful 
in allowing for precise experimental control over silencing establishment, which allows us to study 
whether the model of silencing presented above is consistent with the actual dynamic process of 
building a silent chromatin domain. 
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The discovery of ARS sequences in the silencers of HML and HMR inspired Miller & Nasmyth 

to study the relationship between DNA replication and silencing (Miller and Nasmyth, 1984). 
Strikingly, they showed that cells arrested in G1 of the cell cycle were unable to repress HMLa or 
HMRa when switched from the non-permissive temperature to the permissive temperature for the 
temperature-sensitive sir3-8 allele. Furthermore, they showed that when cells passed from G1 to 
early S phase they were similarly unable to repress transcription, but that when cells were allowed 
to pass from G1 to early M, repression was possible. They concluded that DNA replication of 
HMR was somehow necessary for silencing to be established at that locus. The early ideas for how 
DNA replication might regulate silencing establishment revolved around replication creating a 
transiently opened or otherwise different property at a locus, and thus altering the binding 
properties of some transcriptional activator or repressor. 

 
The following decade was a heyday for studies of eukaryotic DNA replication initiation, 

enabled in part by the development of 2D gel electrophoresis methods to directly study origins on 
plasmids and in chromosomes (Brewer and Fangman, 1987; Huberman et al., 1988) and the 
identification of ORC as the ARS-binding eukaryotic DNA replication initiator (Bell and Stillman, 
1992). In line with the known role of ARS sequences in silencer activity, it was quickly shown 
that in addition to promoting DNA replication, ORC also had a key role in transcriptional silencing 
(Foss et al., 1993; Micklem et al., 1993). But explanations for how DNA replication could drive 
silencing establishment were still lacking, and the ORC findings prompted particularly fanciful 
ideas related to origin firing and replication fork passage leading to spread of Sir proteins from 
silencers. The discovery that ORC binds to Sir1 provided a hypothesis that cell-cycle-regulated 
ORC-Sir1 interactions could drive silencing establishment (Triolo and Sternglanz, 1996). 
However, the same study showed that ORC was dispensable for silencing if Sir1 was artificially 
recruited to silencers, weakening the connection between silencing and DNA replication. The 
possibility that ORC was involved in conferring the DNA replication requirement for silencing 
establishment was conclusively rejected in a study showing that when ORC binding sites were 
completely removed from HMR and a synthetic Gal4-Sir1 fusion protein was used to nucleate Sir 
proteins, silencing still occurred and indeed still required S phase for establishment (Fox et al., 
1997). Contemporaneous genetic experiments demonstrated that the role of ORC in promoting 
silencing was separable from its role in promoting replication initiation (Dillin and Rine, 1997). 
Thus, the hunt continued for how DNA replication might promote silencing establishment, without 
ORC as a key player. 
 

Back-to-back papers published in 2001 completely broke the paradigm of the field of silencing 
establishment by demonstrating that Miller & Nasmyth’s presumed DNA replication requirement 
did not in fact require DNA replication (Kirchmaier and Rine, 2001; Li et al., 2001)3. In both 
studies, HMR was excised from the chromosome using site-specific recombination and the 
resulting DNA episomes, which lacked origins of replication, were assayed for silencing 
establishment. Surprisingly, silencing establishment could occur on these non-replicating 
episomes to the same extent as it could on the chromosome, and this establishment still required 

                                                
3 Ann Kirchmaier’s paper will always be one of my favorites for its succinctness and elegance, which are reflected 
in its title, “DNA Replication-Independent Silencing in S. cerevisiae.” I would like to officially record here that my 
own paper on the subject, “S-phase-independent silencing establishment in Saccharomyces cerevisiae,” was named 
in homage to it. 
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progression through S phase. Thus, DNA replication of HMR was not required for silencing 
establishment. Instead, some other S-phase-dependent process was. 

 
Around the same time that DNA replication was shown not to be essential for silencing 

establishment, the involvement of various replication-coupled chromatin assembly proteins on 
silencing was demonstrated (Enomoto and Berman, 1998; Tyler et al., 1999; Zhang et al., 2000). 
Dissecting the roles of these players, including the processivity clamp PCNA and the histone 
chaperones Asf1 and CAF-I, in silencing has proven difficult, given the subtle phenotypes of 
mutations in these genes and overlapping molecular roles of the proteins in chromatin assembly 
(thoroughly reviewed in Young and Kirchmaier, 2012). By and large, the phenotypes of chromatin 
assembly mutants have been studied outside the specific context of silencing establishment, except 
for one study that found PCNA mutants to have mild defects in cell-cycle-dependent silencing 
establishment (Miller et al., 2010). It seems likely that the subtle silencing phenotypes observed in 
cells mutant for chromatin assembly genes are due to the mis-regulation of specific histone 
modifications associated with newly-incorporated histones, and in at least some cases, the defect 
lies not in incorrectly incorporating silencing-refractory histones at silent loci, but rather in 
incorrectly incorporating silencing-competent histones throughout the genome (Miller et al., 2010, 
2008; Young and Kirchmaier, 2012). 

 
The finding that silencing establishment does not require DNA replication led to a surge of 

work on the topic, aiming to identify what non-replication S-phase process drives gene repression. 
Two follow-up studies looked at the potential role for steps beyond S phase in silencing 
establishment and made some fascinating observations, but reached different conclusions 
(Kirchmaier and Rine, 2006; Lau et al., 2002). Lau and colleagues concluded that both S-phase-
dependent and M-phase-dependent processes drove silencing establishment, and, furthermore, 
identified the M-phase process as the dissolution of sister chromatid cohesion. In contrast, 
Kirchmaier and Rine found that S phase is the sole cell-cycle window required for robust gene 
repression. The differences in the way silencing was induced—the temperature-sensitive sir3-8 
allele for the Bell lab and the inducible fusion protein Gal4-Sir1 for the Rine lab—could explain 
the different results. In the Gal4-Sir1 induction strain HMR-I was deleted and the ORC binding 
site at HMR-E was replaced four Gal4 binding sites, thus removing ORC entirely from HMR. This 
could lead to artificially precocious silencing establishment by driving super-physiological 
recruitment of Sir1 to the four Gal4 sites or by removing an unidentified negative role of ORC for 
silencing. Meanwhile, the design of the sir3-8 experiments did not allow any time for Sir3 to be 
re-synthesized before passage through S phase, and thus could have driven sub-physiological 
recruitment of Sir3 before the critical S phase window for silencing establishment. Kirchmaier & 
Rine conceded that cohesin could indeed have a negative effect on silencing establishment, but 
that in the case where Sir proteins are recruited before S phase, and thus before cohesin loading, 
this negative effect might be avoided. This possibility has yet to be rigorously tested (further 
discussed in Chapter 2). 

 
  Above and beyond its discussion of whether there are silencing establishment steps beyond 

S phase, the 2006 Kirchmaier & Rine study revealed a host of new data about how silencing 
establishment is limited by the cell cycle. One peculiar finding that remains unexplained is that 
when HMR is on an episome, it displays a precocious silencing phenotype, with the episomal form 
able to repress HMR by early S phase, while the chromosomal form requires passage through S 



 9 

phase4. In light of the work described in Chapter 2, this could reflect a difference in histone 
turnover between chromosomal and episomal DNA, but that possibility has not been tested. The 
most striking finding of the study was that both Sir protein nucleation at silencers and spread across 
HMR could occur without cell-cycle progression. Critically, this spread of Sir proteins was 
associated with modest but incomplete deacetylation of histone tails. Thus, one possible 
mechanistic explanation of the S-phase step in silencing establishment was that a threshold level 
of histone deacetylation was not reached until after S phase. Alternatively, some unidentified S-
phase-dependent step in silencing establishment may occur downstream of Sir protein binding to 
HMR. Another study analyzed the kinetics of silencing-relevant histone modifications during the 
course of silencing establishment and the effects of removing those modifications on Sir protein 
recruitment (Katan-Khaykovich and Struhl, 2005). The study showed that in cycling cells, histone 
deacetylation precedes depletion of the anti-silencing H3K79 methylation. Furthermore, while 
induction of silencing could drive deacetylation of histones on a replicating or non-replicating 
HMR, in agreement with the Kirchmaier result, depletion of Dot1-deposited H3K79 methylation 
could occur robustly only on replicating HMR. Together, these results strongly hinted that cell-
cycle-dependent changes to histone modifications could be limiting in silencing establishment, but 
the work did not actually include any cell-cycle-controlled experiments, which limited the authors’ 
ability to make the strongest versions of their claims. 

 
The studies described so far all investigated silencing establishment at HMR. This focus is 

because strains in which wild-type HMLα is de-repressed lose sensitivity to α factor, and thus 
cannot be easily arrested in G1. Two groups were undaunted by this limitation and attempted to 
investigate silencing establishment at HML, and both reported the surprising finding that HML and 
HMR have fundamentally different cell-cycle requirements for silencing establishment (Lazarus 
and Holmes, 2011; Ren et al., 2010). In both cases, cells were arrested with hydroxyurea or 
nocodazole to obviate the need for α factor responsiveness, and in both cases, the authors claimed 
that HML was less dependent on cell-cycle progression for silencing establishment than HMR. Ren 
and colleagues attributed the difference between HML and HMR to HML having a weaker 
promoter than HMR, and thus being more amenable to silencing than HMR. In contrast, the Holmes 
group found that a tRNA gene adjacent to HMR conferred the cell cycle requirement for 
establishment. These two studies would seem to force a reappraisal of the mechanisms of silencing, 
and lead us to believe that the differences between HML and HMR are more profound than we had 
previously appreciated. However, both papers are subject to considerable technical limitations. In 
both cases, the authors failed to adequately control for the known negative autoregulation of HMLα 
via the a1/α2 transcriptional repressor (Siliciano and Tatchell, 1986). In addition, the reliance on 
non-quantitative RT-PCR by Lazarus & Holmes led to considerable experiment-to-experiment 
variability in the reported data, which could also have affected the major conclusions of the paper. 
Given the uncertainty regarding the conclusions of these two papers, it was important to consider 
whether the HML vs. HMR dichotomy held up to analysis using more modern, well-controlled 
assays (see Chapter 2 for a more thorough discussion). 

 

                                                
4 All cell-cycle arrest strategies have their own quirks that demand careful analysis and good controls. Hydroxyurea 
“arrests” at “early S phase” are particularly fraught, because hydroxyurea, an inhibitor of ribonucleotide reductase, 
does not actually arrest cells, but rather dramatically slows the progression of S phase via activation of multiple 
checkpoints (Alvino et al., 2007). 
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All of the work above led the field of silencing establishment to be somewhat impenetrable at 
the point when I began working on it in 2016. By accepting prima facie the arguments from the 
described studies, the unidentified S-phase-dependent step in silencing establishment should come 
downstream of Sir protein binding, act at HMR but not at HML, be alleviated in absence of the 
tRNA adjacent to HMR, and precede a separate cohesin-regulated step in silencing establishment. 
Theorizing about what possible mechanism could align with such disparate data proved dizzying. 
In Chapter 2, I will show that making progress in this field required first re-assessing some of these 
prior results, which resulted in a new view of silencing establishment that is at once simpler and 
fully supported by the data. 

 
1.3 Histone dynamics and epigenetic inheritance 
 

While Chapter 2 of this dissertation is concerned with the means by which the cell cycle 
promotes changes in chromatin state, in Chapter 3 I present work on how chromatin state might 
be preserved through the cell cycle. In the introduction to that chapter, I discuss the particular 
context of that work, but here I offer a brief perspective on the field of epigenetic inheritance of 
chromatin. The field of epigenetics, like the broader field of gene regulation, has its origin in the 
question of how an organism with only one set of genetic information can give rise to a variety of 
cell types with disparate forms and functions. Epigenetics specifically is concerned with the 
inheritance of gene regulation through cell division and even through generations. 

 
The conflation of the terms “epigenetics” and “chromatin” is pervasive and pernicious (Deans 

and Maggert, 2015; Henikoff and Greally, 2016). One source of this issue is that “epigenetics” has 
come to have two related meanings, one strict and one broad. One articulation of the strict 
definition is that “an epigenetic trait is a stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence” (Berger et al., 2009; emphasis added). The 
broader definition encompasses all mechanisms “that impart temporal and spatial control on the 
activities” of genes (Holliday, 1990). The key distinction falls in the heritability of a given gene 
regulatory mechanism. This may appear to be a minor distinction, but I believe that the dual use 
of “epigenetics” to refer to both the inheritance of an expression state and the sum of all forms of 
gene regulation has led many, including those in the field, to the unsupported conclusion that 
mechanisms of gene regulation are by and large heritable5. The corollary of this, given that 
chromatin modifications are a major contributor to gene expression, is that histone modifications 
are presumed a priori to be subject to mechanisms of inheritance, which is not generally true6. The 
modification cycle for most histone marks in most contexts is probably more like the following: 
(1) a sequence specific factor or factor associated with some DNA transaction—replication, 
transcription, damage, etc.—recruits an enzyme that deposits a histone modification; (2) effector 
proteins are recruited by the mark to perform some function; and (3) after the inciting recruitment 
factor is removed, the mark is eventually lost through histone turnover or enzymatic removal. In 
this context, the information associated with gene regulation lies not with the modified histone, 
                                                
5 Philosophers of language discuss the hypothesis of “linguistic relativity” or Whorfianism, which posits that the 
language we use to describe an object has a major role in our understanding of the object itself. I cannot vouch for 
the overall validity of Whorfianism, but it seems quite true in looking at the use of the term “epigenetics.” 
 
6 This perspective is likely also influenced by overzealous analogy to DNA methylation, which is epigenetically 
propagated based on the activities of the hemi-methylation-specific DNA methylases in prokaryotes and the so-
called “maintenance” methylases in eukaryotes. 



 11 

but with the inciting modifier, such that after cell division, the chromatin state will only be 
maintained if the inciting modifier is present in the daughter cell. 

 
Notwithstanding all of the above caveats, some chromatin-mediated gene regulation does 

indeed display epigenetic characteristics. In fact, the sir1∆ phenotype in S. cerevisiae (Pillus and 
Rine, 1989) is a model chromatin-mediated epigenetic phenomenon, and active research is 
ongoing as to the molecular nature of the epigenetic memory in sir1∆ cells (Saxton and Rine, 2019 
and unpublished). Even in the case of chromatin-mediated epigenetics, the direct role of the histone 
modifications in carrying epigenetic information has not been well supported in most cases. 
Indeed, for a histone modification to be truly epigenetic, two strict preconditions must be met. 
First, a single protein module must contain both a “reader” domain that recognizes a modification 
and a “writer” enzymatic domain that deposits the same modification on nearby histones, such that 
after DNA replication, the modified histones that were passed from one generation to the next can 
also form a template for propagation of the state. This condition is met by the enzymes that deposit 
H3K9 methylation in fission yeast and humans, and the propagation of this mark can occur 
epigenetically (Audergon et al., 2015; Ragunathan et al., 2015). The second condition is that the 
genomic location of a modified histone before DNA replication is remembered after DNA 
replication. Otherwise, even if there were a self-templating read-write process that could spread 
old modification information to new histones, the old information would be dispersed in the 
genome, not retained at the particular locus where it served to modulate gene expression. 
Comparatively little study has gone into this process, although Gavin Schlissel found while in the 
lab that in yeast, histones do remember their locations after DNA replication to some degree 
(Schlissel and Rine, 2019). The work presented in Chapter 3 aims to expand on that finding, with 
the specific question of whether chromatin modifications modulate the local inheritance of histone 
molecules. 
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Chapter 2: 
 

S-phase-independent silencing establishment in Saccharomyces cerevisiae1 
 
2.1 Abstract 
 
The establishment of silent chromatin, a heterochromatin-like structure at HML and HMR in 
Saccharomyces cerevisiae, depends on progression through S phase of the cell cycle, but the 
molecular nature of this requirement has remained elusive despite intensive study. Using high-
resolution chromatin immunoprecipitation and single-molecule RNA analysis, we found that 
silencing establishment proceeded via gradual repression of transcription in individual cells over 
several cell cycles, and that the cell-cycle-regulated step was downstream of Sir protein 
recruitment. In contrast to prior results, HML and HMR had identical cell-cycle requirements for 
silencing establishment, with no apparent contribution from a tRNA gene adjacent to HMR. We 
identified the cause of the S-phase requirement for silencing establishment: removal of 
transcription-favoring histone modifications deposited by Dot1, Sas2, and Rtt109. These results 
revealed that silencing establishment was absolutely dependent on the cell-cycle-regulated 
interplay between euchromatic and heterochromatic histone modifications. 
 
2.2 Introduction 
 

Inheritance of gene expression state often accompanies the inheritance of genetic content 
during cell division. Indeed, the eukaryotic replication fork plays host to the enzymes needed to 
replicate DNA as well as intricate machinery that reassembles chromatin in the wake of replication. 
However, during development, cell division is also coupled to the rewiring of gene expression 
patterns that lead to the generation of new cell types. An understanding of chromatin and 
epigenetics requires an understanding of the mechanisms by which cells can both faithfully 
transmit chromatin state through cell division, and subvert that inheritance to establish new cell 
types. The silent chromatin controlling mating-type identity in Saccharomyces cerevisiae offers a 
tractable context for exploring how cell-cycle-regulated chromatin dynamics lead to the 
establishment of new expression states. 

The maintenance of the correct mating type in Saccharomyces relies on both the expression 
of the a or α mating-type genes at the MAT locus and the heterochromatin-mediated silencing of 
copies of those same genes at HML and HMR (Herskowitz, 1989). Silencing is dependent on the 
Silent Information Regulator genes, SIR1-4, whose study has led to an understanding of how 
silencing is achieved (Gartenberg and Smith, 2016; Rine and Herskowitz, 1987). HML and HMR 
are flanked by DNA sequences termed silencers, which recruit the DNA-binding proteins Rap1, 
Abf1, and ORC. These in turn recruit the Sir proteins via protein-protein interactions. Sir protein 
recruitment to silencers is followed by the spread of Sir proteins across the multi-kilobase loci by 
iterative cycles of deacetylation of the tails of histones H3 and H4 by Sir2 and binding of Sir3 and 
Sir4 to those deacetylated histone tails (Hecht et al., 1995b; Hoppe et al., 2002; Rusché et al., 
2002). 

Despite decades of work, a longstanding puzzle remains at the heart of the mechanism of 
silencing: cells must pass through S phase to establish silencing, but the identity of the elusive cell-
                                                
1 A version of this work was originally published as: Goodnight, D., Rine, J., S-phase-independent silencing 
establishment in Saccharomyces cerevisiae. eLife 9, e58910 (2020) doi: 10.7554/eLife.58910 
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cycle-dependent component is unknown (reviewed in Young and Kirchmaier, 2012). Cells with a 
temperature-sensitive sir3-8 allele arrested in G1 cannot repress HMRa1 when switched from the 
non-permissive temperature to the permissive temperature, but can when allowed to progress 
through the cell cycle (Miller and Nasmyth, 1984). DNA replication per se is not required for 
silencing establishment. Excised DNA circles bearing HMR but no origin of replication, can be 
silenced if allowed to pass through S phase (Kirchmaier and Rine, 2001; Li et al., 2001). Thus, 
some feature of S-phase, but not DNA replication itself, is crucial for silencing establishment. 

Interestingly, low-resolution chromatin immunoprecipitation (ChIP) studies showed that 
Sir protein recruitment to HMR can occur with or without cell-cycle progression, suggesting that 
Sir protein binding and silencing are not inextricably linked (Kirchmaier and Rine, 2006). If Sir 
proteins can bind to a locus but not silence it, then other molecular changes must be required to 
create silencing-competent chromatin. In cycling cells undergoing silencing establishment, 
removal of histone modifications associated with active transcription occurs over several cell 
cycles (Katan-Khaykovich and Struhl, 2005). Furthermore, deletion of genes encoding enzymes 
that deposit euchromatic histone marks modulates the speed of silencing establishment in cycling 
cells (Katan-Khaykovich and Struhl, 2005; Osborne et al., 2009), suggesting that removal of these 
marks is a key step in building heterochromatin. It is unknown whether the removal of euchromatic 
marks is related to the S-phase requirement for silencing establishment. 

To better understand how chromatin transitions from the active to repressed state are 
choreographed, we developed an estradiol-regulated Sir3 fusion protein which, combined with 
high-resolution ChIP and RNA measurements, allowed precise experimental analysis of silencing 
establishment with single-cell resolution. We characterized the molecular changes that occur 
during silencing establishment and identified the genetic drivers of the S-phase requirement for 
silencing establishment. 
 
2.3 Materials and Methods 
 
Yeast strains 
 

Strains used in this study are listed in Tabe 2.1. All strains were derived from the W303 
background using standard genetic techniques (Dunham et al., 2015; Gietz and Schiestl, 2007). 
Deletions were generated using one-step replacement with marker cassettes (Goldstein and 
McCusker, 1999; Gueldener, 2002). The sir3-8 allele was introduced by a cross to the strain Y3451 
(Xu et al., 2006). The tRNA gene tT(AGU)C was seamlessly deleted using the “delitto perfetto” 
technique as described previously (Storici and Resnick, 2006). The MCD1-AID strain was 
generated by first inserting O.s.TIR1 at the HIS3 locus by transforming cells with PmeI-digested 
pTIR2 (Eng et al., 2014). Then, 3xV5-AID2:KanMX was amplified from pVG497 (a gift from 
Vincent Guacci and Douglas Koshland) with primers that included homology to MCD1, followed 
by transformation. The mutant allele HML* was synthesized as a DNA gene block (Integrated 
DNA Technologies) and integrated using CRISPR-Cas9 technology as previously described 
(Brothers and Rine, 2019). The EBD sequence was amplified by PCR from cre-EBD78 in the strain 
UCC5181 (Lindstrom and Gottschling, 2009) with primers that included homology to SIR3, then 
transformed using CRISPR-Cas9. Mutations of HHT1 and HHT2 were generated using CRISPR-
Cas9, with oligonucleotide repair templates. For all mutant analyses, at least two independent 
transformants or meiotic segregants were tested. 
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Culture growth and cell-cycle manipulations 
 

All experiments were performed on cells growing in yeast extract peptone + 2% dextrose 
(YPD) at 37°C, which led to more switch-like behavior for SIR3-EBD than growth at 30°C. For 
biological replicates, independent cultures were started from the same strain or from two isogenic 
strains. For steady-state measurements, cells were grown overnight in YPD, then diluted and 
grown in fresh YPD to a density of ~2-8 x 106 cells/mL. For cell-cycle control experiments, cells 
were grown overnight in YPD, followed by dilution and growth in fresh YPD for ≥ 3 hours until 
cultures reached a density of ~2 x 106 cells/mL. Then, α factor (synthesized by Elim 
Biopharmaceuticals; Hayward, CA) was added to a final concentration of 10 nM and the cultures 
were incubated for ~2 hours until >90% of cells appeared unbudded. For rtt109∆ strains, this 
incubation was ~3 hours. For experiments with prolonged α-factor arrests, additional α factor was 
added every ~2 hours to maintain the arrest. To release cells from α-factor arrest, protease from 
Streptomyces griseus (Sigma-Aldrich P5147; St. Louis, MO) was added to the media at a final 
concentration of 0.1 mg/mL. To re-arrest cells at G2/M, nocodazole (Sigma-Aldrich M1404) was 
added to a final concentration of 15 µg/mL. For SIR3-EBD induction, β-estradiol (Sigma-Aldrich 
E8875) was added to a final concentration of 50 µM from a 10 mM stock in ethanol. For Mcd1-
AID depletion, 3-indoleacetic acid (auxin; Sigma-Aldrich I2886) was added to a final 
concentration of 750 µM from a 1 M DMSO stock. For sir3-8 temperature shifts, cells were grown 
continuously at 37°C, then shifted to 24°C for the length of the experiment. 
 
RNA extraction and RT-qPCR 
 

For each sample, at least ~1 x 107 cells were collected by centrifugation and RNA was 
purified using an RNeasy Mini Kit (Qiagen 74104; Hilden, Germany), including on-column 
DNase digestion (Cat No. 79254), according to manufacturer’s recommendations. 2 µg of RNA 
was reverse transcribed using SuperScript III reverse transcriptase (Thermo Fisher Scientific 
18080044; Waltham, MA) and an “anchored” oligo-dT primer (an equimolar mixture of primers 
with the sequence T20VN, where V represents any non-T base). qPCR was performed using the 
DyNAmo HS SYBR Green qPCR kit (Thermo Fisher Scientific F410L), including a Uracil-DNA 
Glycosylase (Thermo Fisher Scientific EN0362) treatment, and samples were run using an Agilent 
Mx3000P thermocycler. Oligonucleotides used for qPCR are listed in Table 2.2. cDNA abundance 
was calculated using a standard curve and normalized to the reference gene ALG9. Each reaction 
was performed in triplicate, and a matched non-reverse-transcribed sample was included for each 
sample. 
 
Chromatin immunoprecipitation and sequencing 
 

For MNase ChIP experiments, ~5 x 108 cells were crosslinked in 1% formaldehyde at room 
temperature for 60 minutes (Figure 2.7A, 2.7B) or 15 minutes (all other figures). Following a 5-
minute quench in 300 mM glycine, cells were washed twice in ice-cold TBS and twice in ice-cold 
FA lysis buffer (50 mM HEPES, pH 7.5; 150 mM NaCl, 1 mM EDTA, 1% Triton, 0.1% sodium 
deoxycholate) + 0.1% SDS + protease inhibitors (cOmplete EDTA-free protease inhibitor cocktail, 
Sigma-Aldrich 11873580001). Cell pellets were then either flash frozen or lysed. For lysis, cell 
pellets were resuspended in 1 mL FA lysis buffer without EDTA + 0.1% SDS and ~500 µL 0.5-
mm zirconia/Silica beads (BioSpec Products; Bartlesville, OK) were added. Cells were lysed using 
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a FastPrep-24 5G (MP Biomedicals; Irvine, CA) with 6.0 m/s beating for 20 seconds followed by 
2 minutes on ice, repeated 4 times total. Lysate was transferred to a new microcentrifuge tube, then 
spun at 4°C for 15 minutes at 17,000 rcf. The pellet was resuspended in 1 mL FA lysis buffer 
without EDTA + 0.1% SDS + 2 mM CaCl2. The samples were incubated at 37°C for 5 minutes, 
followed by addition of 4 U MNase (Worthington Biochemical LS004798; Lakewood, NJ) per 1 
x 107 cells. Samples were placed on an end-over-end rotator at 37°C for 20 minutes, followed by 
addition of 1.25 mM EDTA to quench the digestion. Samples were spun at 4°C for 10 minutes at 
17,000 rcf, and the supernatant containing fragmented chromatin was saved. 

For sonication ChIP experiments (Figure 2.9 and Figure 2.13 only), fragmentation was 
performed as above, except following lysis and spin-down, the pellet was resuspended in ~500 µL 
FA Lysis Buffer + 0.1 % SDS, split between two tubes and sonicated using a Bioruptor Pico 
(Diagenode Inc.; Denville, NJ) for 15 cycles of 30 seconds ON followed by 30 seconds OFF. 
Following sonication, samples were spun at 4°C for 10 minutes at 17,000 RCF and supernatants 
were re-pooled. 

The fragmented chromatin was split, saving 50 µL as the input sample, and using the 
remaining ~900 µL for immunoprecipitation. IP for Sir4-13xMyc was performed using 50 µL 
Pierce Anti-c-myc magnetic beads (Thermo Fisher Scientific 88843) per sample. Beads were 
equilibrated by washing 5x in FA Lysis buffer + 0.1% SDS + 0.05% Tween, then resuspended in 
in 50 µL per sample of FA Lysis buffer + 0.1% SDS + 0.05% Tween. For Sir3-EBD, IP was 
performed using 25 µL of rabbit polyclonal anti-ERα (sc-8002; Santa Cruz Biotechnology, Inc.; 
Dallas, TX). For H3K79me3, IP was performed using 5 µL of rabbit polyclonal anti-H3K79me3 
(C15410068; Diagenode). All immunoprecipitations were performed in an end-over-end rotator at 
4°C overnight in the presence of 0.5 mg/mL BSA (NEB B9000S; Ipswich, MA). For the Sir3-
EBD and H3K79me3 IPs, samples were incubated for 1 hour at 4°C with 50 µL Dynabeads Protein 
A magnetic beads (Thermo Fisher Scientific 10002D), equilibrated as described above for Anti-c-
myc beads. The following washes were performed, placing each sample on an end-over-end rotator 
for ~5 minutes between each: 2x washes with FA Lysis + 0.1% SDS + 0.05% Tween; 2x washes 
with Wash Buffer #1 (FA Lysis buffer + 0.25 M NaCl + 0.1% SDS + 0.05% Tween); 2x washes 
with Wash Buffer #2 (10 mM Tris, pH 8; 0.25 M LiCl; 0.5% NP-40; 0.5% sodium deoxycholate; 
1 mM EDTA + 0.1% SDS + 0.05% Tween); and 1x wash with TE + 0.05% Tween. Samples were 
eluted by adding 100 µL TE + 1% SDS to the beads and incubating at 65°C for 10 minutes with 
gentle shaking. The eluate was saved, and the elution was repeated for a total eluate volume of 200 
µL. Input samples were brought to a total volume of 200 µL with TE + 1% SDS. IP and input 
samples were incubated with 10 µL of 800 U/mL Proteinase K (NEB P8107S) at 37°C for 2 hours, 
followed by overnight incubation at 65°C to reverse crosslinking. 

DNA was purified using a QIAquick PCR purification kit (Qiagen 28104). Libraries were 
prepared for high-throughput sequencing using the Ultra II DNA Library Prep kit (NEB E7645L). 
For IP samples, the entire purified sample was used in the library prep reaction. For the input 
samples, 10 ng were used. Samples were multiplexed and paired-end sequencing was performed 
using either a MiniSeq or NovaSeq 6000 (Illumina; San Diego, CA). 

Sequencing reads were aligned using Bowtie2 (Langmead and Salzberg, 2012) to a 
reference genome derived from SacCer3, modified to include the mutant HML* and mat∆. Reads 
were normalized to the non-heterochromatic genome-wide median (i.e., to the genome-wide 
median excluding rDNA, subtelomeric regions, and all of chromosome III). For the MNase ChIP-
seq experiments, only mononucleosome-sized fragments (130-180 bp) were mapped. Analysis was 
performed using custom Python scripts and displayed using IGV (Thorvaldsdóttir et al., 2013). 
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For coverage calculations in Figure 2.13, read coverage for each gene was calculated using the 
bedcov function of SAMtools (Li et al., 2009), and then normalized to the length of each gene and 
mean coverage for all genes. Scatter plots were generated using ggplot2 (Wickham, 2016). All raw 
and processed sequencing data were deposited at the GEO under the accession number 
GSE150737. 
 
Single-molecule RNA fluorescence in situ hybridization 
 

For smRNA-FISH experiments, cells were grown and cell-cycle arrests were performed as 
described above. Preparation of samples for imaging was as previously described (Chen et al., 
2018). The only modification from that protocol was the concentration of zymolyase used: for 
cycling cells, 5 µL of 1.25 mg/mL zymolyase-100T (VWR IC320932; Radnor, PA) was used 
during the spheroplasting; for arrested cells, 5 µL of 2.5 mg/mL zymolyase-100T was used. Probes 
were synthesized by Stellaris (Biosearch Technologies; Novato, CA). Probes for cre and KAP104 
were previously described (Dodson and Rine, 2015). The sequences the newly-designed probes 
for a1 are listed in Table 2.3. Probes for cre and a1 were coupled to Quasar 670 dye, while probes 
for KAP104 were coupled to CAL Fluor Red 590 dye. Probes for cre and KAP104 were used at a 
final concentration of 100 nM. Probes for a1 were used at a final concentration of 25 nM. 

Imaging was performed on an Axio Observer Z1 inverted microscope (Zeiss; Oberkochen, 
Germany) equipped with a Plan-Apochromat 63x oil-immersion objective (Zeiss), pE-300 ultra 
illumination system (CoolLED; Andover, UK), MS-2000 XYZ automated stage (Applied 
Scientific Instrumentation; Eugene, OR), and 95B sCMOS camera (Teledyne Photometrics; 
Tucson, AZ). The following filter sets were used: for Quasar 670, Cy5 Narrow Excitation (Chroma 
Cat No. 49009; Bellows Falls, VT); for CAL Fluor Red 590, filter set 43 HE (Zeiss); for DAPI, 
multiband 405/488/594 filter set (Semrock Part No. LF405/488/594-A-000; Rochester, NY). The 
microscope was controlled using Micro-manager software (Edelstein et al., 2014). Z-stack images 
were taken with a total height of 10 µm and a step size of 0.2 µm. Manual cell outlining and 
automatic spot detection was performed using FISH-quant (Mueller et al., 2013) and data was 
plotted using ggplot2 (Wickham, 2016). Representative images were generated using FIJI 
(Schindelin et al., 2012). 
 
Protein extraction and immunoblotting 
 

Protein extraction and immunoblotting were performed as previously described (Brothers 
and Rine, 2019). The primary antibodies used were 1:20,000 Rabbit anti-Hexokinase 
(Rockland #100-4159; Limerick, PA) and 1:2,500 Mouse anti-V5 (Thermo Fisher Scientific R960-
25). The secondary antibodies used were 1:20,000 IRDye 800CW Goat anti-Mouse (Li-Cor; 
Lincoln, NE) and 1:20,000 IRDye 680RD Goat anti-Rabbit (Li-Cor). 
 
Flow cytometry 
 

For every cell-cycle experiment, an aliquot of cells was taken for flow-cytometry analysis 
of DNA content to monitor cell-cycle stage. Sample preparation and flow cytometry was 
performed as described previously (Schlissel and Rine, 2019). 
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2.4 Results 
 
2.4.1 S phase as a critical window for silencing establishment 
 

Previous studies of silencing establishment have used a variety of strategies to controllably 
induce silencing establishment, each with their own strengths and weaknesses (see, e.g., Miller 
and Nasmyth, 1984; Kirchmaier and Rine, 2001; Li, Cheng and Gartenberg, 2001; Lazarus and 
Holmes, 2011). We sought a new tool to induce silencing that would allow preservation of the 
structure of the silencers at HML and HMR and minimally perturb cell physiology upon induction. 
To do this, we fused the coding sequence of the estrogen binding domain (EBD) of the mammalian 
estrogen receptor α to SIR3, making SIR3’s function estradiol-dependent (Figure 2.1A; Lindstrom 
and Gottschling, 2009; Picard, 1994). Estradiol addition frees the EBD from sequestration by 
Hsp90, and hence the induction is rapid because it does not require new transcription or translation 
(McIsaac et al., 2011). SIR3-EBD strains grown without estradiol failed to repress HMR, 
mimicking the sir3∆ phenotype, while those grown with estradiol repressed HMR to a similar 
degree as wild-type SIR3 strains (Figure 2.1B).  
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Figure 2.1: Silencing establishment using SIR3-EBD required S-phase progression. (A) Schematic for SIR3-
EBD activation. When estradiol is absent, SIR3-EBD is kept inactive and HML and HMR are expressed. Upon 
addition of estradiol, SIR-EBD is activated and HML and HMR are repressed. (B) RT-qPCR of mRNA from sir3∆ 
(JRY12168), SIR3+ (JRY12171), and SIR3-EBD (JRY12170) cells grown with ethanol (solvent control) or 
estradiol (N=3 for each condition). The HMRa1no RT/ALG9 value for SIR3+ cells established that SIR3+ cells and 
SIR3-EBD cells grown with estradiol silenced HMRa1 to essentially the limit of detection. (C) SIR3-EBD cultures 
(JRY12169, JRY12170) were grown to mid-log phase, then split and grown in medium with either estradiol or 
ethanol added. Silencing was monitored by RT-qPCR in a time course after estradiol addition. t=0 represents the 
point of estradiol addition for this and subsequent experiments. (D) SIR3-EBD cultures (JRY12169, JRY12170) 
were arrested in G1 with α factor, then split, with either ethanol or estradiol added. The arrest was maintained for 
6 hours, and silencing was assayed by RT-qPCR throughout. (E) SIR3-EBD cultures (JRY12169, JRY12170; 2 
replicates of each genotype) were arrested in G1 with α factor, then split and released to G2/M by addition of 
protease and nocodazole in the presence of either ethanol or estradiol. In this and all subsequent figures, dots 
represent biological replicates, and the bars/lines represent the averages of biological replicates. 
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To test whether the SIR3-EBD allele retained the requirement for cell-cycle progression to 
repress HMR, estradiol was added to cells that were either cycling or arrested in G1 by α factor. In 
cycling cells, silencing establishment of HMR occurred gradually over several hours (Figure 
2.1C). However, in cells arrested in G1, estradiol led to no measurable repression of HMR, even 
after many hours (Figure 2.1D). Thus, silencing of HMR could not occur without progression 
through the cell cycle, in agreement with prior results using other conditional alleles. 
Prior work indicated that S phase is a critical window during which cells may undergo partial 
silencing establishment (Kirchmaier and Rine, 2001; Lau et al., 2002; Miller and Nasmyth, 1984). 
Consistent with this, when we arrested cells in G1, then induced SIR3-EBD and allowed them to 
proceed through S phase and re-arrested them at G2/M, HMR was repressed ~60% from its starting 
levels (Figure 2.1E). Crucially, the extent of this partial repression was stable over many hours in 
these G2/M-arrested cells. Thus, a repression-permissive window or event occurred between G1 
and the beginning of mitosis that allowed partial silencing establishment, and further repression 
was not possible while arrested at G2/M. Indeed, after 3 hours in estradiol, cycling cells were 
repressed >20-fold from their starting value, compared to only ~3-fold for cells arrested after a 
single S phase (compare Figures 2.1C and 2.1E). This requirement for multiple cell cycles to 
occur before full gene repression was consistent with prior studies of silencing establishment both 
in cell populations and at the single-cell level (Katan-Khaykovich and Struhl, 2005; Osborne et 
al., 2009). 

Having established the validity of the SIR3-EBD fusion as a tool for studying silencing, 
we revisited two mutants that have been reported to bypass cell-cycle requirements for silencing 
establishment. In one study, depletion of the cohesin subunit Mcd1/Scc1 allowed for increased 
silencing in G2/M-stalled cells (Lau, Blitzblau & Bell 2002). In another study, deletion of a 
tRNA gene adjacent to HMR, termed tT(AGU)C, which is known to bind cohesin, was found to 
allow partial silencing establishment at HMR without S-phase progression (Lazarus and Holmes 
2011). Using SIR3-EBD in combination with an auxin-inducible degron (AID)-tagged Mcd1, we 
found no effect of depleting cohesin or deleting the tRNA gene in regulating silencing 
establishment (Figure 2.2). Thus, at least for strains using SIR3-EBD, the genetic basis for the 
cell-cycle requirement for silencing establishment at HMR was unknown. Possible explanations 
for the discrepancies between our results and earlier reports are discussed below. 

Our finding that tT(AGU)C did not regulate silencing establishment led us to reconsider 
the broader claim that HMR is distinct from HML in its requirement of S phase passage for 
silencing establishment (Lazarus and Holmes, 2011; Ren et al., 2010). Earlier silencing 
establishment assays at HML were complicated by the strong silencing-independent repression of 
HMLα1 and HMLα2 by the a1/α2 repressor (Herskowitz, 1989; Siliciano and Tatchell, 1986): 
when both a and α information are expressed in the same cell, the a1 and α2 proteins form a 
transcriptional repressor whose targets include the HMLα promoter. Unless strains are carefully 
designed, assays conventional measures of silencing will also inadvertently measure this silencing-
independent repression. To circumvent this limitation, we constructed an allele of HML with 
nonsense mutations in both α1 and α2, so that the α1 and α2 proteins were never made, even when 
HML was de-repressed. This modification also allowed us to use α factor to arrest cells while 
studying silencing establishment at HML, which was not possible before because expression of 
either the α1 or α2 protein renders cells insensitive to α factor. We also introduced additional single 
nucleotide polymorphisms into the regions of HML that are homologous to HMR, to allow 
unambiguous assignment of high-throughput sequencing reads to the two loci (see below). We 
refer to the mutant locus as HML* and the mutant alleles as hmlα1* and hmlα2* hereafter. 
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When cells with HML* and SIR3-EBD, were arrested in G1 and then treated with estradiol, 
they were unable to silence hmlα1* or hmlα2* while kept in G1 (Figure 2.3A, 2.3B). Interestingly, 
expression of hmlα1* and hmlα2* increased markedly over the course of the α-factor arrest. This 
α-factor-dependent hyper-activation was observed even in sir3∆ cells in which no silencing occurs 
(Figure 2.3E, 2.3F). We identified two previously-unreported binding sites for Ste12, the 
transcription factor activated by mating pheromone, in the bidirectional α1/α2 promoter, which 
explains the increased expression when cells are exposed to α factor (Figure 2.3G; Dolan et al., 
1989). Both hmlα1* and hmlα2* decreased in expression following release from G1 to G2/M 
(Figure 2.3C, 2.3D), suggesting that S phase was required for partial silencing establishment at 
HML. Notably, the fold change in expression that followed a single passage through S phase was 
not identical among HMRa1, hmlα1*, and hmlα2*. Thus, some S-phase-dependent process was 
important for silencing both HML and HMR, but the effects of that process varied in magnitude 
between these two loci.  
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Figure 2.2: Effects of cohesin depletion and tT(AGU)C deletion on silencing establishment. (A) SIR3-EBD 
strains (JRY12269, JRY12270) and SIR3-EBD strains with seamless deletion of tT(AGU)C (JRY12267; 
JRY12268) were arrested in G1 with α factor, then split, with half the culture receiving estradiol and half receiving 
ethanol. Samples were collected after 3 hours for RT-qPCR, with each sample normalized to its own pre-estradiol 
value. (B) Cells with MCD1-AID (JRY12560, JRY12561) were arrested in G1 with α factor, then split, with half 
receiving auxin and the other half receiving DMSO (solvent control). After 30 minutes, each culture was further 
split, with half receiving estradiol and the other half ethanol. All cultures were released to G2/M by addition of 
protease and nocodazole. Cells were collected after 3 hours for RT-qPCR, with each sample normalized to its own 
pre-estradiol value. (C) Immunoblot analysis showing Mcd1-AID depletion for experiment described in (B). 
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2.4.2 Silencing establishment occurred through a partially repressive intermediate 
 
We were interested in the partial silencing observed in cells that transited through a single 

S phase after SIR3-EBD induction, in which transcription of HMRa1 was down ~60% (see Figure 
2.1E). This appearance of a stable intermediate level of silencing could reflect either of two distinct 
phenomena at the single-cell level (Figure 2.4A). One possibility was that cells have a ~60% 
chance of establishing stable heterochromatin during the first S phase after SIR3-EBD induction 
and a ~40% chance of failing to do so. This possibility would resonate with the behavior of certain 
mutants, e.g. sir1∆, wherein silent loci can exist in one of two epigenetic states: stably repressed 
or stably de-repressed, with rare transitions between the two (Pillus and Rine, 1989; Xu et al., 
2006). Alternatively, every cell might reach a partially repressive chromatin state at HMR during 
the first S phase during silencing establishment.  

To distinguish between these possibilities, we used single-molecule RNA fluorescence in-
situ hybridization (smRNA-FISH) to quantify the expression of HMRa1during the establishment 
process. If silencing establishment proceeded via individual cells transitioning between the 
discrete “ON” and “OFF” states during S phase, we would expect an accumulation of cells with 
zero transcripts during the establishment of silencing, with no change in the average number of 
transcripts in those cells still expressing HMRa1. However, if silencing establishment proceeded 
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Figure 2.3: Silencing establishment required S phase at HML*. (A) Cells with SIR3-EBD (JRY12169) were 
arrested in G1 with α factor, then split, with one sub-culture receiving estradiol and the other receiving ethanol. 
Cells were collected after 6 hours in estradiol and analyzed by RT-qPCR for hmlα1*. (B) RT-qPCR for hmlα2* 
in the same cells described in (A). (C) Cells were arrested in G1 with α factor, then split and released to G2/M 
with protease and nocodazole, with one sub-culture receiving estradiol and the other receiving ethanol. Cells were 
collected after 3 hours in estradiol and analyzed by RT-qPCR for hmlα1*. The pre-estradiol samples for this 
experiment were the same as those described in (A). (D) RT-qPCR for hmlα2* in the same cells described in (C). 
(E) Cells lacking SIR3 (JRY11966) were arrested in α factor for 2 hours, then split, with half staying in α factor 
and the other being released to G2/M by addition of protease and nocodazole. Cells were analyzed by RT-qPCR 
for hmlα1*, with error bars representing standard deviation among technical replicates (N=1 biological sample). 
(F) RT-qPCR for hmlα2* in the cells described in (E). (G) Map of the α1/α2 promoter, showing newly-identified 
Ste12 motifs (TGAAACA) along with previously-identified binding sites for Rap1 and a1/α2. 
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via partially repressive intermediates in individual cells, we would expect a shift downward in the 
mean number of transcripts per cell (Figure 2.4A). In both cases, cells with zero transcripts would 
accumulate over time. 
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Figure 2.4: Silencing establishment proceeded via gradual repression in individual cells. (A) Potential models 
for silencing establishment. Before silencing establishment (top), mRNA transcripts are present as a distribution 
around a mean. If silencing establishment occurred via intermediate states (left), the mean number of transcripts 
per cell would decrease over time, with complete silencing, i.e., zero transcripts per cell, occurring as the 
probability distribution shifted toward the y axis. If silencing establishment occurred via discrete transitions 
(right), an increasing fraction of cells would have zero transcripts over time, but the distribution of cells with >0 
transcripts would retain the same shape. (B) smRNA-FISH for HMRa1 during silencing establishment after 1 S 
phase. A SIR3-EBD culture (JRY11762) was arrested in G1 with α factor (“G1 pre-estradiol”), then split and 
released to G2/M by addition of protease and nocodazole in the presence of either estradiol or ethanol. Samples 
were collected 2 hours after estradiol addition. (C) smRNA-FISH for HMLα::cre during silencing establishment 
in cycling cells. A SIR3-EBD strain bearing the HMLα::cre reporter (JRY12514) was grown to mid-log phase 
(“pre-estradiol”), then the culture was split in two, with one sub-culture receiving estradiol and the other receiving 
ethanol. Samples were collected for smRNA-FISH at t=1.5 hours and t=3 hours after estradiol addition. For both 
(B) and (C), the images displayed are representative maximum-intensity Z-projections. The data shown in (B) and 
(C) each represent one of two replicate experiments, for which the other replicate is shown in Figure 2.5 and 
Figure 2.6, respectively. Scale bars = 5 µm. 
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As expected, SIR3-EBD cells arrested in G1 without estradiol had similar numbers of 

HMRa1 transcripts as sir3∆ cells (Figure 2.5A). When we added estradiol and allowed the cells 
to go through S phase to G2/M, the decrease in transcript number in the population of cells 
analyzed closely mirrored the results we obtained using RT-qPCR, confirming that our single-
molecule analysis was consistent with bulk measurements (Figure 2.5B, compare to Figure 2.1E).  
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Figure 2.5: Gradual silencing establishment at HMR. (A) Quantification of HMRa1 and KAP104 transcripts in 
G1-arrested SIR3-EBD (JRY11762, JRY11763) and sir3∆ (JRY11966) cells. The SIR3-EBD data are the same as 
displayed in Figure 2.4 and Figure 2.5D. (B) Average number of HMRa1 transcripts per cell before and after 
silencing establishment, quantified from data shown in Figure 2.4B and Figure 2.5D. Compare changes in mRNA 
levels to values from bulk measurement in Figure 2.1E. (C) Quantification of KAP104 transcripts per cell for 
experiment described in Figure 2.4B. (D) Replicate experiment to that shown in Figure 2.4B with isogenic cells 
(JRY11763). 
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This decrease occurred via a reduction in the average number of transcripts per cell, and 
not simply by an increase in the number of cells with zero transcripts (Figure 2.4B, Figure 2.5C, 
2.5D). Thus, individual cells undergoing silencing establishment at HMR formed partially 
repressive heterochromatin after a single S phase. To determine whether the stepwise repression 
seen at HMR was a general feature of silencing establishment or if it was particular to HMR and/or 
the cell-cycle conditions tested, we performed an analogous experiment using the HMLα::cre 
allele that has been previously characterized by smRNA-FISH (Dodson and Rine, 2015). In this 
experiment, we analyzed the number of cre transcripts per cell over time following induction of 
SIR3-EBD, without any cell-cycle perturbations. Silencing establishment at HML also occurred 
via partially repressive intermediate states (Figure 2.4C, Figure 2.6A, 2.6B). The degree of 
repression observed by smRNA-FISH was quantitatively similar to the measurement of the same 
gene by RT-qPCR (Figure 2.6C, 2.6D). Together, these results suggested that silencing 
establishment proceeded via the gradual repression of genes by the Sir proteins, and that there were 
specific windows of the cell cycle during which transcriptional tune-down could occur. 
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Figure 2.6: Gradual silencing establishment at HMLα::cre. (A) Quantification of KAP104 transcripts per cell 
for experiment described in Figure 2.4C. (B) Replicate experiment to that shown in Figure 2.4B with isogenic 
cells (JRY12513). (C) Average number of cre transcripts per cell before and during silencing establishment, 
quantified from data shown in Figure 2.4C and Figure 2.6B. (D) Bulk measurement RT-qPCR for cre during 
silencing establishment in an analogous experiment to that described in Figure 2.4C. 
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2.4.3 Extensive Sir protein binding could occur without gene repression 
 

The gradual silencing establishment described above might be achieved via increased Sir 
protein recruitment to HML and HMR during each passage through a specific cell-cycle window. 
Alternatively, Sir protein recruitment might be independent of the cell cycle, in which case passage 
through the cell cycle would favor repression via a step occurring after Sir protein recruitment. To 
test whether Sir protein recruitment was limited in the cell cycle, we performed ChIP-seq on myc-
tagged Sir4 during silencing establishment. The tagged Sir4-myc is functional for silencing 
(Figure 2.1B), and its localization at HML and HMR is indistinguishable from Sir2-myc and Sir3-
myc in wild-type cells (Thurtle and Rine, 2014). 

We developed a protocol for ChIP-seq using MNase-digested chromatin, which resulted in 
increased signal-to-noise over standard sonication-based ChIP-seq (Figure 2.7, Figure 2.8, 
Figure 2.9). One limitation of this approach is that MNase can digest non-nucleosomal DNA, and 
thus the silencers at HML* and HMR and the tRNA gene adjacent to HMR, which are not 
nucleosome-bound, are under-recovered relative to sonication ChIP (Figure 2.9). 

As expected, ChIP-seq on cells with wild-type SIR3 revealed strong binding of Sir4-myc 
throughout HML* and HMR (Figure 2.7A & 2.7B). SIR3-EBD cells grown with estradiol gave 
profiles that were indistinguishable in both the strength of binding and the location of binding. In 
sir3∆ cells and SIR3-EBD cells grown without estradiol, some Sir4-myc binding across HML* and 
HMR, though severely reduced, was still evident (Figure 2.7A & 2.7B). This weak binding was 
observed in multiple replicates with different crosslinking times and was not observed in cells with 
untagged Sir4 (Figure 2.8A). We also performed ChIP-seq for Sir3-EBD using an antibody to the 
estrogen receptor, and found that its binding was strongly dependent on the presence of estradiol, 
and its binding pattern was indistinguishable from Sir4-myc (Figure 2.10). The apparent weak 
Sir3-EBD signal at HML* and HMR in the absence of estradiol did not drive the weak Sir4-myc 
binding described above, as the same Sir4-myc binding was observed in sir3∆ cells as in SIR3-
EBD cells grown without estradiol. 

ChIP-seq data from SIR3-EBD cells arrested in G1 without estradiol revealed the same 
weak enrichment of Sir4-Myc at HML* and HMR that we observed in cycling cells (Figure 2.7 & 
Figure 2.8C). However, upon addition of estradiol in cells kept in G1, we saw a strong increase 
in Sir4-myc binding across the loci (Figure 2.7C & Figure 2.8C). The increase in Sir4-myc 
binding to HMR was not associated with any change in expression of HMRa1, which remained 
completely de-repressed (Figure 2.8B). Hence, Sir protein binding across HML* and HMR was 
not sufficient to lead to gene silencing. When cells were allowed to pass from G1 to G2/M, the 
resulting partial silencing was correlated with an increase in Sir4-myc binding at HML* and HMR 
(Figure 2.7C & Figure 2.8C). Thus, Sir proteins binding throughout HML* and HMR in absence 
of cell-cycle progression achieved no repression, and some S-phase-dependent process promoted 
further binding and partial repression. Together, these data revealed the existence of cell-cycle-
regulated steps beyond Sir binding required to bring about silencing. 
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Figure 2.7 (continued from previous page) All panels show Sir4-13xMyc ChIP-seq signal in blue and input in 
black. Read counts were normalized to the non-heterochromatin genome-wide median. IP and input values are 
plotted on the same scale. (A) Left, ChIP-seq for Sir4-13xMyc at HMR in strains with SIR3+ (JRY12172), sir3∆ 
(JRY12168), and SIR3-EBD (JRY12170) grown with or without estradiol and fixed for 60 minutes in 
formaldehyde. Right, same data as the left panel for sir3∆ and SIR3-EBD without estradiol, enlarged to show IP 
levels above input. (B) Same as (A), but showing data from HML*. (C) ChIP-seq for Sir4-13xMyc during silencing 
establishment at HMR (left) and HML* (right). Cultures of SIR3-EBD cells (JRY12169) were arrested in G1 with 
α factor (“pre-estradiol”), then split four ways. Two sub-cultures were maintained in G1 in medium with estradiol 
or ethanol (“G1 + estradiol” and “G1 - estradiol”). The other two sub-cultures were released to G2/M by addition 
of protease and nocodazole; and received either estradiol or ethanol (“G2/M + estradiol” and “G2/M - estradiol”). 
After 3 hours in medium with estradiol or ethanol, cultures were fixed in formaldehyde for 15 minutes and 
collected for ChIP-seq. Data shown represent one of two replicates, with the other shown in Figure 2.8. 

Figure 2.8: Silencing establishment ChIP-seq. All ChIP-seq panels show Sir4-13xMyc in blue and input in 
black. Read counts were normalized to the non-heterochromatin genome-wide median. IP and input values are 
plotted on the same scale. (A) ChIP-seq for Sir4-13xMyc at HMR (top) and HML* (bottom) in strains with SIR3+ 
(JRY12171) and sir3∆ (JRY12167). Also shown is an equivalent experiment in cells with untagged Sir4 
(JRY12269). Cells were grown to mid-log phase and fixed for 15 minutes in formaldehyde. (B) RT-qPCR analysis 
of silencing establishment at HMRa1 from samples that were used for ChIP-seq described in Figure 2.7C and 
2.8C. Values are scaled to the pre-estradiol value for each sample. (C) Replicate experiment to that described in 
Figure 2.7C, using an isogenic strain (JRY12170). 
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Figure 2.9: ChIP-seq with sonicated chromatin. All panels show Sir4-13xMyc in blue and input in black. Read 
counts were normalized to the non-heterochromatin genome-wide median. IP and input values are plotted on the 
same scale. Cells with SIR3+ (JRY12171, JRY12172), sir3∆ (JRY12167, JRY12168), and a no-tag control 
(JRY12169) were grown to mid-log phase and fixed for 15 minutes in formaldehyde. (A) ChIP-seq for Sir4-
13xMyc at HMR. (B) ChIP-seq for Sir4-13xMyc at HML*. 

Figure 2.10: ChIP-seq for Sir3-EBD. All panels show ChIP-seq signal in blue and input in black. Read counts 
were normalized to the non-heterochromatin genome-wide median. IP and input values are plotted on the same 
scale. Cells with SIR3-EBD (JRY12170) were grown to mid-log phase with or without estradiol, then fixed for 15 
minutes in formaldehyde. Also shown is Sir4-13xMyc ChIP signal from Figure 2.8A. (A) Sir3-EBD and Sir4-
13xMyc ChIP-seq at HMR. (B) Sir3-EBD and Sir4-13xMyc ChIP-seq at HML*. 
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2.4.4 Removal of H3K79 methylation was a critical cell-cycle-regulated step in silencing 
establishment 
 

Given that silencing at HML and HMR was established only during a discrete window of 
the cell cycle, the key issue was to identify what molecular event(s) occurred during this window 
and why it/they were limited in the cell cycle. A mutant that could establish silencing while 
arrested in G1 would potentially identify that molecular event.  

The histone methyltransferase Dot1 has several characteristics that suggest it might act as 
an antagonist of silencing establishment. Dot1 methylates histone H3 on lysine 79 (H3K79), which 
interferes with Sir3 binding to nucleosomes (Altaf et al., 2007; Armache et al., 2011; Van Leeuwen 
et al., 2002; Yang et al., 2008). Dot1 is unique among yeast histone methyltransferases in lacking 
a counteracting demethylase that removes H3K79 methylation. Thus, removal of H3K79 
methylation can be achieved only through turnover of the histones that bear it, such as occurs 
during S phase, when new histones are incorporated that lack H3K79 methylation (De Vos et al., 
2011). Indeed, dot1∆ SIR3-EBD cells arrested in G1 robustly repressed HMRa1, hmlα1*, and 
hmlα2* upon addition of estradiol (Figure 2.11, Figure 2.12A, 2.12B). This phenotype was not 
limited to SIR3-EBD strains. Strains bearing the temperature-sensitive sir3-8 allele and dot1∆ 
could also establish silencing in G1 when shifted from the non-permissive temperature to the 
permissive temperature (Figure 2.11E). Thus, removal of H3K79me from HML and HMR was 
one crucial S-phase-specific step during silencing establishment. 
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Figure 2.11: Cells without H3K79 methylation established silencing without cell-cycle progression. (A) 
Cultures of dot1∆ cells (JRY12443, JRY12445) were arrested in G1 with α factor, then split, with half receiving 
ethanol and the other half receiving estradiol. Silencing was monitored by RT-qPCR over time after estradiol 
addition. (B) dot1∆ mutants were arrested in G1 with α factor, then released to G2/M (continued on next page) 
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To test whether the dot1∆ phenotype was due specifically to methylation at H3K79, both 

copies of histone H3 were mutated to encode arginine at position 79 (H3K79R), a mimic for the 
non-methylated state. This mutant also allowed for robust silencing establishment in G1, in fact, 
to a stronger degree than dot1∆ (Figure 2.11C). Strains with H3K79 mutated to leucine (H3K79L) 
or methionine (H3K79M) failed to establish silencing even after passage through S phase (Figure 
2.12C, 2.12D), confirming the importance of the positive charge on H3K79 in silencing. Notably, 
even though G1-arrested H3K79R cells could strongly repress HMRa1 (~15-fold), this was still 
incomplete relative to fully silenced cells, which repressed HMRa1 >1000-fold (see Figure 2.1B). 
Thus, either increased time or cell cycle progression promoted silencing establishment even in 
absence of H3K79 methylation. 

In addition to promoting S-phase-independent silencing establishment, dot1∆ and H3K79R 
cells that passed from G1 to G2/M also repressed HMRa1 more robustly than did wild-type cells 
transiting the same cell-cycle window (Figure 2.11B & 2.11D, compare to Figure 2.1E). S-phase 
passage markedly increased the speed of silencing establishment in dot1∆ cells, though the 
ultimate degree of repression was similar whether cells passed through S phase or stayed in G1 
(compare 2.11A & 2.11B). Thus, some feature of S phase still promoted silencing establishment 
in cells lacking H3K79 methylation. 

To understand how H3K79 methylation prevented silencing establishment, we performed 
ChIP-seq for Sir4-myc in dot1∆ cells undergoing silencing establishment in the absence of cell-
cycle progression. G1-arrested dot1∆ cells already displayed clear partial silencing establishment 
after 1.5 hours in estradiol (Figure 2.12E). However, the level of Sir4-myc recruitment to HML* 
and HMR at this early time point was similar to the recruitment observed in wild-type cells, in 
which no gene repression had occurred after 3 hours (Figure 2.11F & Figure 2.12F). Therefore, 
even though dot1∆ and wild-type cells had indistinguishable levels of Sir binding, that binding 
gave rise to different transcriptional effects. Thus, removal of H3K79me did not regulate silencing 
establishment by controlling Sir protein binding. 

We next tested explicitly whether H3K79 methylation depletion can occur during a G1 
arrest and during passage through S phase. As noted previously, in wild-type cells, H3K79 
trimethylation (H3K79me3) is almost completely absent from HML* and HMR, but in sir3∆ 
mutants, H3K79me3 is present at both loci (Figure 2.13A, 2.13B). When SIR3-EBD was induced 

Figure 2.11 (continued from previous page) by addition of protease and nocodazole, and either ethanol or 
estradiol. Silencing was monitored by RT-qPCR over time after estradiol addition. (B) dot1∆ mutants were 
arrested in G1 with α factor, then released to G2/M by addition of protease and nocodazole, and either ethanol or 
estradiol. Silencing was monitored by RT-qPCR over time after estradiol addition. (C) Cultures of cells in which 
lysine 79 was mutated to arginine in both HHT1 and HHT2 in two isogenic strains (H3K79R; JRY12851, 
JRY12852) were arrested in G1 with α factor, then split, with one sub-culture receiving ethanol and the other 
receiving estradiol. Silencing was assayed by RT-qPCR after 6 hours in ethanol. (D) H3K79R cells were arrested 
in G1 with α factor, then released to nocodazole with protease and nocodazole and either estradiol or ethanol. 
Silencing was assayed by RT-qPCR after 3 hours in estradiol. The pre-estradiol sample for this experiment was 
the same culture used in (C). (E) Cultures of dot1∆ sir3-8 cells (JRY12859, JRY12890) were grown at the non-
permissive temperature for sir3-8 (37°C) and arrested in G1 with α factor, then split, with half shifted to the 
permissive temperature (24°C) and other half staying at the non-permissive temperature. Silencing was assayed 
by RT-qPCR after 6 hours.  (F) Cultures of dot1∆ cells (JRY12443, JRY12444) were arrested in G1 with α 
factor (“pre-estradiol”), then split, with half the culture receiving ethanol, and the other half receiving estradiol. 
After 1.5 hours and after 3 hours, samples were fixed for 15 minutes in formaldehyde and collected for ChIP. 
Sir4-13xMyc ChIP-seq signal is in blue and input in black, each normalized to the non-heterochromatin 
genome-wide median and plotted on the same scale. Also displayed are two replicates of wild-type G1 cells after 
3 hours in estradiol from Figures 2.7C and Figure 2.8C. 
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in cells arrested in G1, no change in H3K79me3 was observed (Figure 2.13), even though robust 
Sir protein recruitment could occur (Figure 2.7C). Following S phase, though, H3K79me3 was 
partially depleted from HMR and from hmlα1*, but not from hmlα2* (Figure 2.13). Thus, Sir 
protein binding in G1 was insufficient to change H3K79me3 levels at HML and HMR. The first 
depletion of this mark occurred concomitantly with S phase. 
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Goodnight_Fig_4_Supp_1Figure 2.12: Silencing establishment in dot1∆ cells. (A) dot1∆ cells (JRY12443) were arrested in G1 with α 
factor, then split, with one sub-culture receiving estradiol and the other receiving ethanol. Cells were collected 
after 6 hours in estradiol and RT-qPCR was performed for hmlα1*. The data in this plot are also shown in Figure 
2.14 for comparison with other mutants. (B) RT-qPCR for hmlα2* in the cells described in (A). (C) Cells with 
lysine 79 of H3 mutated to leucine in both HHT1 and HHT2 in two isogenic strains (H3K79L; JRY12854, 
JRY12855) were arrested in G1 with α factor, then split four ways. Two cultures were kept in G1, with one 
receiving estradiol and the other ethanol. The other two cultures were released to G2/M by addition of protease 
and nocodazole, and either estradiol or ethanol. Cells were collected after 3 hours for the G2/M samples and 
after 6 hours for the G1 samples, and RT-qPCR was performed for HMRa1. Also shown is a sample grown 
overnight in medium with estradiol. (D) Cells with lysine 79 of H3 mutated to methionine in both HHT1 and 
HHT2 in two isogenic strains (H3K79M; JRY12857, JRY12858) were subjected to the same experiment 
described in (C). (E) RT-qPCR analysis of silencing establishment at HMRa1 from samples that were used for 
ChIP-seq shown in Figure 2.11F and Figure 2.12F. (F) Sir4-13xMyc binding at HML* from the same samples 
displayed in Figure 2.11F. Sir4-13xMyc is in blue and input in black, plotted on the same scale. Read counts 
were normalized to the non-heterochromatin genome-wide median. 
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Goodnight_Fig_4_Supp_2Figure 2.13: H3K79 trimethylation dynamics during silencing establishment. SIR3-EBD cultures 
(JRY12169, JRY12170) were arrested in G1 with α factor, then split four ways. Two cultures were kept in G1, 
with one receiving estradiol (blue) and the other ethanol (black). The other two cultures were released to G2/M 
by addition of protease and nocodazole, and either estradiol (blue) or ethanol (black). Cells were collected after 
3 hours and subjected to ChIP-seq for H3K79me3. (A) ChIP-seq for H3K79me3 at HMR. For the top two 
panels, cultures of SIR3+ (JRY12171) and sir3∆ (JRY12167) cells were grown to mid-log phase and subjected 
to ChIP-seq for H3K79me3. All data are plotted on the same scales. For the G1 and G2/M samples, the plotted 
value is the average of two biological replicates. (B) ChIP-seq for H3K79me3 at HML*. (C) Total ChIP-seq 
coverage was calculated for each gene and scaled to the length of the gene and the genome-wide mean coverage. 
Displayed is the normalized H3K79me3 signal for HMRa1, hmlα1*, and hmlα2*. (D) Normalized H3K79me3 
signal for all genes after estradiol or ethanol addition, in G1 (left) and in G2/M (right). The plotted values 
represent the average of two biological replicates. The 5% most estradiol-responsive genes are shaded in red and 
the genes at HML and HMR are enlarged and shaded in yellow. 
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2.4.5 SAS2 and RTT109 contributed to limiting silencing establishment to S phase 
 

The crucial role of H3K79 methylation removal in silencing establishment led us to 
consider other chromatin modifications that might regulate silencing establishment. Two histone 
acetyltransferases, Sas2 and Rtt109, were especially interesting given the S-phase dynamics of the 
marks they deposit and their known relevance to silencing. Sas2, the catalytic component of the 
SAS-I complex, acetylates H4K16 during S phase (Kimura et al., 2002; Meijsing and Ehrenhofer-
Murray, 2001; Reiter et al., 2015; Suka et al., 2002). The removal of H4K16 acetylation by Sir2 is 
the central histone modification associated with silencing (Imai et al., 2000; Johnson et al., 1990; 
Landry et al., 2000; Park and Szostak, 1990). Rtt109 acetylates newly-incorporated histone H3 at 
lysines 9 and 56 during S phase, and this acetylation is largely removed by Hst3 and Hst4 by the 
time of mitosis (Adkins et al., 2007; Celic et al., 2006; Driscoll et al., 2007; Fillingham et al., 2008; 
Schneider et al., 2006). Mutations in SAS2 and RTT109 have both been shown to have subtle 
silencing phenotypes (Imai et al., 2000; Miller et al., 2008). 

Interestingly, both sas2∆ and rtt109∆ mutations led to partial repression of HMR upon 
SIR3-EBD induction in cells arrested in G1 (Figure 2.14A). The magnitude of this effect was 
weaker than in dot1∆ cells but highly significant. Cells without RTT109 grew slowly and were less 
sensitive to α factor than wild-type cells, so we cannot exclude the possibility that a population of 
rtt109∆ cells passed through S phase during the experiment, contributing to the observed 
phenotype (Figure 2.15). When combined with dot1∆, both sas2∆ and rtt109∆ led to a further 
increase in silencing establishment. Thus, SAS2 and RTT109 impeded silencing establishment by 
a different mechanism than DOT1. Silencing establishment in cells lacking both SAS2 and RTT109 
was not significantly different from that of the single mutants. Strikingly, triple mutant sas2∆ 
rtt109∆ dot1∆ strains established silencing no better than single-mutant dot1∆ cells. Interestingly, 
the G1 phenotypes we observed at HMR for dot1∆, sas2∆, and rtt109∆ single mutant cells were 
largely similar at hmlα1* (Figure 2.14B). Altogether, these findings demonstrate that SAS2, 
RTT109, and DOT1 inhibit silencing establishment outside of S phase. 
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Figure 2.14 (continued from previous page) For all strains, cultures were arrested in G1 with α factor, then 
split, with one sub-culture receiving estradiol and the other receiving ethanol. Silencing was assayed by RT-
qPCR 6 hours after additions. Each sample was normalized to its own pre-estradiol value. The following strains 
were used. WT: JRY12169; dot1∆: JRY12443, JRY12445; sas2∆: JRY12615, JRY12616; rtt109∆: JRY12689, 
JRY12690; sas2∆ rtt109∆: JRY12765, JRY12766; sas2∆ dot1∆: JRY12618, JRY12619; rtt109∆ dot1∆: 
JRY12691, JRY12692; sas2∆ rtt109∆ dot1∆: JRY12767, JRY12768. (A) Silencing establishment of HMRa1 by 
RT-qPCR. The level of repression observed in each mutant was significantly greater than in wild type (Two-
tailed T-test; p < 0.005 for each pair-wise comparison). The level of repression observed in sas2∆ dot1∆ and 
rtt109∆ dot1∆ double mutants was significantly greater than in the dot1∆ single mutant (p < 0.01 for each pair-
wise comparison), but there was no significant difference between the values from the dot1∆ single mutant and 
the triple mutant sas2∆ rtt109∆ dot1∆ (p = 0.70). (B) Silencing establishment of hmlα1* by RT-qPCR in a 
subset of mutant strains. The level of repression for each mutant was significantly greater than in wild type (p < 
0.05 for each pair-wise comparison). The level of repression observed in the rtt109∆ dot1∆ double mutant was 
significantly greater than in the dot1∆ single mutant (p = 0.028), but there was no significant difference between 
the values from sas2∆ dot1∆ double mutant and the dot1∆ single mutant (p = 0.19). 
 

Figure 2.15 : Representative flow cytometry profiles. (A) Wild-type (JRY12169) and dot1∆ (JRY12443) cells 
arrested in G1 with α factor for ~2 hours. (B) Wild-type and dot1∆ cells kept in G1 for 6 hours, as in, e.g., 
Figure 2.1D. (C) Wild-type and dot1∆ cells after 3 hours in G2/M, as in, e.g., Figure 2.1E. (D) Cells lacking 
RTT109 (JRY12689, JRY12691) arrested in G1 with α factor for ~3 hours did not arrest uniformly. 
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2.5 Discussion 
 

In this study, we identified why silencing establishment requires cell cycle progression. 
These results highlighted the value of studying the dynamics of silencing both in populations of 
cells and at the single cell level. By monitoring changes in chromatin and changes in expression 
simultaneously, we documented effects that were elusive at steady state, but critical for a 
mechanistic understanding of the process. We found that the cell-cycle-dependent removal of 
euchromatic marks was a major driver of a cell’s ability to establish stable heterochromatin. 
Interpretation of our results required critical reassessment of some earlier results. 
 
2.5.1 Silencing establishment occurred by tuning down transcription in individual cells after 
Sir proteins were bound 
 

The classic model for silencing establishment involves two steps: nucleation of Sir proteins 
at the silencers, followed by spreading of Sir proteins from silencers via the stepwise deacetylation 
of nucleosomes by Sir2 and subsequent binding of Sir3 and Sir4 to deacetylated positions of H3 
and H4 tails (Hecht et al., 1995b; Hoppe et al., 2002; Rusche et al., 2003; Rusché et al., 2002). In 
the classic model, individual Sir proteins are recruited to the silencers, but the spread across the 
locus is dependent on all three proteins Sir2/3/4, with both continuous Sir protein binding and 
histone deacetylation being required for gene repression (Johnson et al., 2009; Yang and 
Kirchmaier, 2006). The binding of a Sir2/3/4 complex to internal nucleosomes at HML and HMR 
is thought to drive gene repression at least partly through sterically preventing other proteins from 
accessing the underlying DNA (Loo and Rine, 1994; Steakley and Rine, 2015). Repression may 
also rely on inhibition of specific steps in transcription downstream of activator binding (Chen and 
Widom, 2005; Gao and Gross, 2008; Johnson et al., 2013). A puzzling observation is that, 
qualitatively, the nucleation and spread of Sir2, Sir3, and Sir4 to HML and HMR appears to be 
cell-cycle-independent, even though the silencing activity of these proteins is clearly dependent 
on cell cycle progression (Kirchmaier and Rine, 2006). 

Surprisingly, we found that silencing establishment led to increased Sir4 binding both at 
silencers and across the silent loci, beginning from a low-level distributed binding that was present 
even in the absence of Sir3. The weak Sir4 binding across HML and HMR in sir3∆ cells suggested 
that the full Sir2/3/4 complex was not necessary for the distributed binding of Sir4. Rather, Sir3 
appeared to stabilize or otherwise enhance Sir4-nucleosome interactions. Further high-resolution 
ChIP-seq studies will be needed to determine whether Sir2, Sir3, and Sir4, which localize 
indistinguishably in wild-type cells (Thurtle and Rine, 2014), behave similarly in absence of the 
full complex, and during silencing establishment. 

Upon induction of SIR3-EBD, G1-arrested wild-type cells could robustly recruit Sir4 to 
HML and HMR without causing any gene repression at these loci. Passage through S phase led to 
increased Sir binding and partial silencing establishment. However, in G1-arrested dot1∆ cells, in 
which Sir4 binding patterns were indistinguishable from G1-arrested wild-type cells, induction of 
SIR3-EBD caused partial silencing establishment. Together, these observations indicate that a key 
regulated step in building heterochromatin occurred after the major silencing factors were already 
present at the locus. Two interpretations were compatible with our data. First, the non-repressive 
Sir4 binding observed in G1 and the repressive Sir4 binding observed in G2/M could differ in 
some parameter that is not apparent in crosslinking ChIP experiments, such as differences in the 
on and off rates for Sir4 binding to nucleosomes. Second, Sir binding could be unable to drive 
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transcriptional changes until competing euchromatic marks on chromatin are relieved. Consistent 
with the latter interpretation, we found that Sir protein binding could lead to changes in H3K79 
trimethylation only after S phase. In addition, a prior study of telomeric silencing found that while 
Sir protein binding was detectable at both repressed and de-repressed telomeres, euchromatic 
marks, including H3K79me, were found only at de-repressed telomeres, and that, in vitro, 
H3K79me could disturb silencing without changing Sir protein binding (Kitada et al., 2012). 

Our smRNA-FISH results showed that silencing establishment proceeds via the gradual 
tune-down of transcription in individual cells, and that this tune-down occurs over multiple cell 
cycles. Interestingly, the fraction of cells with zero transcripts after a single S phase (~30%, see 
Figure 2.4B), is similar to the fraction of cells that established phenotypic silencing after a single 
division in a previous study (Osborne et al., 2009). While these results are not directly comparable, 
as the previous study assayed silencing at HML and used a different induction strategy, one 
possibility is that phenotypic silencing only arises when transcript number falls to zero in a given 
cell. This result conflicts with a prior study of silencing establishment in single cells using a 
fluorescent reporter at HML. That study concluded that silencing establishment proceeded via 
discrete transitions from the “ON” to the “OFF” state (Xu et al., 2006). However, because that 
study relied on qualitative assessment of fluorescence intensity in individual cells, it may not have 
been possible to ascertain intermediate states. Indeed, our data illustrate an inherent limitation of 
qualitative measurements of single-cell parameters: in the smRNA-FISH images in Figure 2.4, a 
striking feature is the dichotomy between cells with no transcripts and those with some transcripts. 
That observation might lead to the conclusion that silencing establishment is caused by the 
complete shutdown of transcription stochastically in some cells. However, as illustrated by Figure 
2.4A, that dichotomy is expected from both an “all-or-nothing” model and a “gradual transition” 
model. It is only through the quantitative analysis that we could see the gradual decrease in 
transcription in individual cells. 

Whether silencing acts through steric occlusion or through a more specific inhibition of 
some component necessary for transcription, it is difficult to explain how any intermediate in the 
assembly of a static heterochromatin structure could drive partial repression. The simplest 
explanation for how partially repressive chromatin could form would be that silencing machinery 
and transcriptional machinery both come on and off the chromatin, and the establishment of 
silencing involves a change in the relative rates of those two processes. In that case, histone 
modifications could be crucial in shifting the balance. 
 
2.5.2 Euchromatic histone mark removal was a key cell-cycle-regulated step in silencing 
establishment 
 

Removal of Dot1-deposited methylation of H3K79 was a critical step in silencing 
establishment. This finding was consistent with earlier studies of cycling cells, which found that 
dot1∆ cells established silencing more quickly than wild-type cells (Katan-Khaykovich and Struhl, 
2005; Osborne et al., 2009). Indeed, Katan-Khaykovich and Struhl proposed a model for silencing 
establishment in which Sir protein binding and histone deacetylation occur rapidly, followed by 
slow removal of methylation over several cell cycles, which is consistent with our findings. 
Removal of H3K79 methylation appears to be the primary reason why cells need to progress 
through S phase to establish silencing. Dot1 is thought to reduce the Sir3 BAH domain’s affinity 
for the nucleosome core by methylating H3K79 (Martino et al., 2009; Ng et al., 2002a; Onishi et 
al., 2007). In addition to Dot1 and Sir3 both binding the nucleosome core at H3K79, they also 
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compete for binding to the H4 tail, and deacetylation of the tail by Sir2 is thought to favor Sir3 
binding at the expense of Dot1(Altaf et al., 2007). Thus, through modifications at H4K16 and 
H3K79, transcription and silencing mutually antagonize each other. In a cell in G1, even if Sir2/3/4 
are able to displace Dot1 by deacetylating H4K16, H3K79me will remain until histones are turned 
over, which seems to explain the S-phase requirement for silencing establishment. 

Silencing establishment at HMR does not require replication of the locus, as shown by the 
ability of excised episomes bearing HMR but no replication origin to establish silencing in an S-
phase-dependent manner (Kirchmaier and Rine, 2001; Li et al., 2001). This finding presented a 
major mystery: what S-phase-specific process other than replication fork passage drives silencing 
establishment? Our results suggest that an influx of H3 molecules lacking methylation at K79 
could be the solution. Replication-independent histone exchange can occur throughout the cell 
cycle (Dion et al., 2007; Rufiange et al., 2007; Schlissel and Rine, 2019), which means that a 
replicating or non-replicating copy of HMR can incorporate histone molecules from the nuclear 
pool. Outside of S phase, ~90% of all H3 in the nucleus is methylated at K79 (Van Leeuwen et al., 
2002), so histone exchange would likely lead to incorporation of the silencing-refractory 
methylated form. However, during S phase, a large quantity of newly-synthesized non-methylated 
H3 is present. Therefore, histone incorporation during S phase through either replication-coupled 
chromatin assembly or replication-independent histone would lead to incorporation of many H3 
molecules that are not methylated at K79. This might explain why silencing establishment can 
occur at HMR, whether it is replicated or not, and why that establishment depends on S phase. 

We found that H3K79R mutants, which mimicked the non-methylated state of H3K79, also 
established silencing in G1-arrested cells and did so even more strongly than dot1∆ mutants. A 
simple explanation for this difference in impact of the two mutations could be that Sir3 binds more 
strongly to arginine than lysine at position 79. Alternatively, Dot1 has been shown to have several 
methyltransferase-independent functions, and it was possible that one of these functions acted to 
promote silencing. In particular, Dot1 has recently been shown to possess histone chaperone 
activity that is independent of its ability to methylate histones (Lee et al., 2018). In addition, Dot1 
has the methyltransferase-independent ability to stimulate ubiquitination of histone H2B (van 
Welsem et al., 2018). The latter result is particularly interesting, because H2B ubiquitination is 
itself required for both H3K79 methylation (Briggs et al., 2002; Ng et al., 2002b) and H3K4 
methylation (Dover et al., 2002; Sun and Allis, 2002). Conflicting reports have pointed to a role 
of H3K4 methylation in silencing (Fingerman et al., 2005; Mueller et al., 2006; Santos-Rosa et al., 
2004). Thus, it is possible that in a dot1∆ mutant, the removal of H3K79me per se promotes 
silencing, but an indirect effect through H2Bub and/or H3K4me partially counteracts the 
H3K79me effect. 

The histone acetyltransferases Sas2 and Rtt109 also had roles in limiting silencing 
establishment to S phase. Individually, sas2∆ and rtt109∆ mutations led to partial silencing 
establishment in G1-arrested cells, and each of these effects was additive with a dot1∆ mutation. 
Acetylation of H4K16 by Sas2, like methylation of H3K79 by Dot1, is critical in distinguishing 
euchromatin and heterochromatin. Interestingly, in a previous study, while dot1∆ sped silencing 
establishment at HML, sas2∆ delayed silencing establishment by that assay (Osborne et al., 2009). 
The single-cell α-factor response assay used in that study required cells to fully repress HML to 
gain the a mating type identity, whereas our assay used more direct measures of changes in 
transcription at HML and HMR. Thus, one explanation consistent with both results is that sas2∆ 
cells begin silencing more readily than wild-type cells, but take more cell cycles to reach full 
repression. This could be the result of the competing effects of the sas2∆ mutation: hypoacetylation 
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of histones at HML and HMR might increase Sir protein recruitment, while the global pool of 
hypoacetylated histones can also titrate Sir proteins away from HML and HMR. 

The ability of rtt109∆ cells to drive partial silencing establishment in G1-arrested cells was 
surprising. Like Sas2, Rtt109 binds to Asf1 and acetylates newly-synthesized histones (Driscoll et 
al., 2007), but H3K56 acetylation is removed after S phase by the sirtuins Hst3 and Hst4 (Celic et 
al., 2006). The residual H3K56ac present outside of S phase is due to transcription-coupled histone 
turnover, which incorporates new histones marked with H3K56ac (Rufiange et al., 2007). A 
negative role for H3K56 acetylation in silencing has been observed, although this has not been 
well-characterized (Dodson and Rine, 2015; Miller et al., 2008). One simple model is that 
H3K56ac favors transcription, and thus impedes silencing establishment. However, given genome-
wide acetylation and deacetylation of H3K56, indirect effects cannot be excluded. 
 
2.5.3 Silencing establishment occurred via similar mechanisms at different loci 

The mechanism of repression at the two silent mating type loci, HML and HMR, is 
generally assumed to be quite similar, but there are mutations that cause effects only at one of the 
two loci, and others that cause divergent phenotypes between the two loci (Park and Szostak, 1990; 
Ehrenhofer-Murray, Rivier and Rine, 1997; Yan and Rine, unpublished). Earlier studies concluded 
that cell-cycle requirements for silencing establishment differed at HML and HMR (Ren, Wang 
and Sternglanz, 2010; Lazarus and Holmes, 2011) In contrast, in both wild-type cells and the 
mutant conditions we tested, both loci behaved similarly. A major innovation that distinguished 
our studies from the prior studies was our use of a mutant HML that allowed unambiguous study 
of its expression by ensuring that α1 and α2 proteins would not be made. This strategy removed 
the strong repressive effect that the a1/α2 repressor has on transcription from the HML promoter, 
which was a confounding influence in earlier experimental designs that could have led to apparent 
cell-cycle independent silencing of HML. In the course of this work, we found that the HML 
promoter is subject to hyperactivation by α factor, which further complicates studies of silencing 
establishment at the locus. More work is clearly needed to fully understand how silencing 
establishment is regulated at HML. 

We did note one distinction between HML* and HMR. After a single S phase, H3K79 
trimethylation was depleted from HMR and hmlα1*, but not from hmlα2*. Given that H3K79 
methylation is a major regulator of silencing establishment, this could explain the observation that 
hmlα2* was also the gene whose silencing was weakest after a single S phase of silencing 
establishment. The interrelation between promoter strength, transcription-coupled histone 
modification, and silencing remains a fascinating topic for future study. 

This fundamental similarity between HML and HMR in silencing establishment was further 
evidenced by the lack of an effect of the tRNA gene adjacent to HMR, or the tRNA gene’s binding 
partner, cohesin, loss of either of which were reported to allow early silencing establishment in 
previous studies (Lau et al., 2002; Lazarus and Holmes, 2011). The reason behind the differences 
between our results and those of the previous studies is not clear. We did observe subtle silencing-
independent fluctuations in HMRa1 expression through the cell cycle, which may have confounded 
earlier results that relied on non-quantitative RT-PCR assays (data not shown). We cannot exclude 
the possibility that differences between SIR3-EBD and earlier inducible alleles contributed to the 
different results, as temperature, metabolism, and hormone addition could each affect silencing or 
the cell cycle in unappreciated ways. Lazarus & Holmes’s use of the galactose promoter to drive 
SIR3 expression would alter Sir3 concentration and the stoichiometry of the SIR complex, both of 
which would be expected to be important parameters in regulating silencing establishment. 
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2.5.4 Do the contributions of DOT1, SAS2, and RTT109 completely resolve the cell-cycle 
requirement for silencing establishment? 
 

In dot1∆ mutants, S phase still dramatically accelerated silencing establishment, indicating 
that some feature of S phase beyond H3K79me removal was important in those cells. In addition, 
we found no case in which silencing establishment in G1-arrested cells matched the degree of 
silencing observed after overnight growth in estradiol. However, the ~90% repression observed in, 
e.g., G1-arrested H3K79R cells should be sufficient to completely turn off transcription at HML 
and HMR in the majority of cells (see Figure 2.4). The quantitative gap in the level of silencing 
seen at steady state and that which is achieved in the experiments reported here could reflect a 
requirement for further cell-cycle steps or more time to complete silencing establishment. Others 
have identified a cell-cycle window between G2/M and G1 that contributes to silencing 
establishment (Lau et al., 2002), and none of our data were inconsistent with that result. Identifying 
mutant conditions in which G1-arrested cells and cycling cells establish silencing at an equal rate 
will be required before the cell-cycle regulated establishment of silencing is fully understood. In 
addition, future studies should address whether the antagonistic effects of euchromatic histone 
modifications on silencing establishment can be counteracted by increasing SIR complex 
concentration. 

Together, our data suggest that silencing establishment cannot proceed without removal of 
histone modifications that favor transcription. In this view, at any stage of the cell cycle, Sir 
proteins can bind to HML and HMR. Passage through S phase leads to incorporation of new 
histones, which, crucially, lack H3K79 methylation. This decrease of H3K79me by half leads to 
both further Sir binding and decreased transcription. However, one cell cycle is not sufficient to 
fully deplete activating marks, and successive passages through S phase complete the process of 
silencing establishment. 
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Table 2.1: Yeast strains used in this study: All strains listed were generated for this study and 
derived from the W303 background. Unless otherwise noted, all strains are ADE2; can1-100; leu2-
3,112; ura3-1; lys2-; TRP1; mat∆::HygMX; bar1∆::loxP:k.l.LEU2:loxP 
 

Strain Genotype 
JRY11664 hml∆::HML*; sir3-8 
JRY11762 hml∆::HML*; SIR3-EBD78 
JRY11763 hml∆::HML*; SIR3-EBD78 
JRY11966 hml∆::HML*; sir3∆::k.l.URA3 
JRY12167 hml∆::HML*; sir3∆::k.l.URA3; SIR4-13xMyc::KanMX 
JRY12168 hml∆::HML*; sir3∆::k.l.URA3; SIR4-13xMyc::KanMX 
JRY12169 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX 
JRY12170 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX 
JRY12171 hml∆::HML*; SIR4-13xMyc::KanMX 
JRY12172 hml∆::HML*; SIR4-13xMyc::KanMX 
JRY12267 hml∆::HML*; SIR3-EBD78; tT(AGU)C∆ 
JRY12268 hml∆::HML*; SIR3-EBD78; tT(AGU)C∆ 
JRY12269 hml∆::HML*; SIR3-EBD78 
JRY12270 hml∆::HML*; SIR3-EBD78 
JRY12443 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX 
JRY12444 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX 
JRY12445 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX 
JRY12513 bar1∆::loxP hmlα2∆::CRE-hmlα1∆::k.l.LEU2_ORF; SIR3-EBD78 
JRY12514 bar1∆::loxP hmlα2∆::CRE-hmlα1∆::k.l.LEU2_ORF; SIR3-EBD78 
JRY12560 hml∆::HML*; SIR3-EBD78; his3∆::C.G.HIS3:O.s.TIR1; MCD1-3V5-AID2:KanMX 
JRY12561 hml∆::HML*; SIR3-EBD78; his3∆::C.G.HIS3:O.s.TIR1; MCD1-3V5-AID2:KanMX 
JRY12615 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; sas2∆::k.l.URA3 
JRY12616 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; sas2∆::k.l.URA3 
JRY12618 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX; sas2∆::k.l.URA3 
JRY12619 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX; sas2∆::k.l.URA3 
JRY12689 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; rtt109∆::k.l.URA3 
JRY12690 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; rtt109∆::k.l.URA3 
JRY12691 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX; rtt109∆::k.l.URA3 
JRY12692 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX; rtt109∆::k.l.URA3 
JRY12765 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; rtt109∆::NatMX; sas2∆::k.l.URA3 
JRY12766 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; rtt109∆::NatMX; sas2∆::k.l.URA3 

JRY12767 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX rtt109∆::NatMX; 
sas2∆::k.l.URA3 

JRY12768 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; dot1∆::HisMX rtt109∆::NatMX; 
sas2∆::k.l.URA3 

JRY12851 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; hht1K79R; hht2K79R 
JRY12852 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; hht1K79R; hht2K79R 
JRY12854 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; hht1K79L; hht2K79L 
JRY12855 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; hht1K79L; hht2K79L 
JRY12857 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; hht1K79M; hht2K79M 
JRY12858 hml∆::HML*; SIR3-EBD78; SIR4-13xMyc::KanMX; hht1K79M; hht2K79M 
JRY12859 hml∆::HML*; sir3-8; dot1∆::HisMX 
JRY12890 hml∆::HML*; sir3-8; dot1∆::HisMX 
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Table 2.2: Oligonucleotides used for RT-qPCR 
 

Name Sequence 
a1 Forward GGCGGAAAACATAAACAGAAC 

a1 Reverse GGGTGATATTGATGATTTTCCC 

α1 Forward TCACAGGATAGCGTCTGGAA 
α1 Reverse TCAGCGAGCAGAGAAGACAA 

α2 Forward TCCACAAATCACAGATGAGT 

α2 Reverse GTTGGCCCTAGATAAGAATCC 

cre Forward CGTACTGACGGTGGGAGAAT 
cre Reverse CCCGGCAAAACAGGTAGTTA 

ALG9 Forward CGTTGCCATGTTGTTGTATG 

ALG9 Reverse GCCAGCCTAGTATACTAGCC 

 
Table 2.3: Newly designed probes used for smRNA-FISH.  
 

a1 Probe sequences 

CTACAAATATCATCCATGTTGT 

AGAGTTCTGTTTATGTTTTCCG 

TCTCAGTACCTAGAATGTTAAA 

AGTATTGAGATTGATTTCATCA 

ACTTTAGTCAAATTACTTTCCA 

TTTTGTGTAATGTATGTTGCTC 

GGTATATTTCTAACCTATTGTT 

GCTCTTCTCTTTTTTAATGTGG 

TGATATTGATGATTTTCCCTTT 

TTCTAAAAATGCCCGTGCTTGG 

CTTTGCTTTCTTCTAAAAACCT 

TCTTCTTTTTCCTTGGAATTAA 

TAATGCCACATTTCTTTGCAAC 

CCAAACTCTTACTTGAAGTGGA 

GATCTCATACGTTTATTTATGA 
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Chapter 3:   
 

Toward a context-specific understanding of histone inheritance 
 
3.1 Abstract 
 
 A major open question in epigenetics is whether inheritance of modified histones 
contributes to the inheritance of epigenetic chromatin states. One precondition of any model that 
includes histones as memory carriers is that histones remember their position through DNA 
replication. Our lab has recently shown this to be the case at one locus, GAL10, but we do not yet 
know whether robust local inheritance of histones occurs genome-wide. Here we show that local 
histone inheritance also occurs at the silent HML locus, and that the locus displays reduced local 
histone inheritance when de-repressed. In the course of this work, we also found that cells lacking 
the histone inheritance factor DPB3 are hypersensitive to the sirtuin inhibitor nicotinamide. This 
sensitivity is due to inhibition of the H3K56 deacetylases Hst3 and Hst4. We isolated suppressors 
of the dpb3∆ nicotinamide sensitivity and found that most suppressors had mutations in genes 
related to proteasome-mediated degradation. We speculate that degradation of H3 itself may be 
involved in the phenotype, and discuss ongoing work to further characterize the genetic interaction 
between DPB3, a factor involved in retention of parental histones, and HST3/4, factors involved 
in the proper labeling of new histones. 
 
3.2 Introduction 
 

Decoding the grammar of histone modifications and their effects on nuclear processes 
including transcription has been a major focus in the field of gene regulation. That histones are 
covalently modified by methylation and acetylation has been known for almost sixty years 
(Murray, 1964; Phillips, 1963). It was quickly discovered that these modifications could regulate 
transcription in vitro (Allfrey et al., 1964). Evidence for the in vivo role for histone modifications 
in regulating gene expression was elusive for decades after these initial discoveries. Pioneering 
genetic studies of silencing in budding yeast provided the first evidence for direct functional roles 
of histone modifications in gene regulation in vivo (Clark-Adams et al., 1988; Johnson et al., 1992, 
1990; Kayne et al., 1988; Megee et al., 1990; Park and Szostak, 1990). These studies established 
that changes in histone genes caused changes in gene expression, and identified dynamically 
acetylated residues on the tail of histone H4 that were dispensable for normal growth, but 
absolutely required for silencing. An explosion of biochemical studies of histone-modifying 
enzymes began in the late 1990s following the Allis group’s purification of the first histone 
acetyltransferase (Brownell et al., 1996). Such work is ongoing, but considerable progress has been 
made on understanding how given histone modifications are deposited, what proteins are recruited 
by the modifications, and how the modifications impact processes such as transcription (Talbert 
and Henikoff, 2021). 
 

A similarly feverish line of inquiry has looked into the potential for these modifications to 
serve as information carriers. The logic of storing information in histones is that, assuming there 
exists a sufficiently robust mechanisms to pass histones from the pre-replication DNA strand to 
the post-replication daughter strands, the informative modifications on a given nucleosome could 
establish a means for stably propagating gene expression patterns from mother cell to daughter 
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cell. Indeed, in some specific contexts, this propagation of state is observed (Audergon et al., 2015; 
Gaydos et al., 2014; Ragunathan et al., 2015). Generally, though, absent specific evidence about 
their heritability, histone marks can be thought of in the same terms as any post-translational 
protein modification: they provide a way to modulate activity or change binding properties of a 
protein, but do not necessarily confer any emergent properties with regard to inheritance. 
 

The model that histones might pass information through replication demands, at a 
minimum, that a given histone molecule resides at approximately the same genomic location 
before and after DNA replication. Historically, this precondition has been difficult to test directly 
in vivo, because it requires the ability to know the location of a given histone molecule before and 
after DNA replication. So while experiments that label old and new histones (Dion et al., 2007; 
Radman-Livaja et al., 2011) can assay histone turnover rate at different genomic locations, they 
can only distinguish histones by age, not by location history. Similarly, assays that investigate 
histone modifications immediately after DNA replication have shown evidence that a given locus 
maintains similar modification states before and after replication (Reverón-Gómez et al., 2018), 
but this analysis cannot formally distinguish between local inheritance and rapid modification of 
new histones at that locus. 

 
Recent work from our lab developed a technique to directly track parental histones through 

DNA replication in Saccharomyces cerevisiae (Schlissel and Rine, 2019). In this study, all histone 
H3 molecules in the cell were tagged with the biotin acceptor AviTag peptide, which can be 
biotinylated by the bacterial biotin ligase BirA (Beckett et al., 1999; Fairhead and Howarth, 2015). 
BirA was fused to the DNA-binding protein TetR and recruited to a specific locus, in this case 
GAL10, by inserting the operator sequence tetO at that locus (Figure 3.1). It was found that 
splitting BirA into N-terminal and C-terminal halves, and thus limiting enzymatic activity to only 
when the two halves co-localized at a tetO binding site, increased signal-to-noise dramatically. By 
biotinylating histones at one locus and then stopping labeling by addition of doxycycline, which 
blocks TetR-tetO binding, one can directly investigate where the histones that were bound to 
GAL10 before replication localize after DNA replication. Schlissel & Rine found that when GAL10 
was transcriptionally inactive, histones were exquisitely retained at the same locus after DNA 
replication. When GAL10 transcription was induced in arrested cells, histones were locally 
retained initially, but were lost from the locus over several hours, suggesting that transcription 
increases nucleosome turnover directly or via recruitment of some other histone-displacing factor.  

 
The factors that mediate parental histone inheritance at the replication fork are only 

beginning to be understood. Studies that label old histones and track them through replication have 
identified several factors that are important for parental histone inheritance and resolved which 
factors contribute to inheritance on the leading versus the lagging strands. In mammals and yeast, 
Mcm2, a component of the replicative MCM2-7 helicase, transmits old histones to the lagging 
strand (Gan et al., 2018; Petryk et al., 2018). In yeast, two nonessential subunits of the leading 
strand DNA polymerase ε, Dpb3 and Dpb4, facilitate transfer of parental histones to the leading 
strand (Yu et al., 2018). Deletion of DPB3 or mutation of the histone-binding domain of MCM2 
lead to loss of local histone inheritance at GAL10 (Schlissel and Rine, 2019). These same mutations 
cause partial silencing defects, but do not completely eliminate epigenetic heritability of the silent 
state in sir1∆ cells (Saxton and Rine, 2019). Therefore, either sufficient histone inheritance occurs 
in the mutants to propagate the silent state or memory of silencing is carried by something other 
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than histones. Other components of the replisome, namely Ctf4 and the primase DNA Pol α, have 
been identified for their role in lagging strand histone inheritance (Gan et al., 2018), but the 
question of how histone chaperones and/or other components of the chromatin assembly 
machinery might distinguish parental from newly-synthesized histones remains an open question. 
In addition, another group working in mouse embryonic stem cells reported different locus-specific 
histone inheritance properties between active and repressed loci (Escobar et al., 2019). We aimed 
to study whether the local histone inheritance properties of GAL10 were true elsewhere in the 
genome, and whether silent chromatin displays specific histone inheritance properties.  

 

 
 
 
3.3 Materials and Methods 
 
Yeast strains and growth conditions 
 
 Strains used in this study (Table 3.3) were derived from the histone-labeling strains 
described previously, which were built in the W303 background (Schlissel and Rine, 2019). Strains 
were transformed and crossed using standard genetic techniques, including yeast-optimized 
CRISPR-Cas9 gene editing with gene block repair templates, as described previously (Brothers 
and Rine, 2019; Dunham et al., 2015; Gietz and Schiestl, 2007). The HML locus in these strains 
includes the following modifications: α2 is replaced with yEmRFP, α1 has an early nonsense 
mutation, and the two Ste12 binding sites in the promoter (Goodnight and Rine, 2020) are 
scrambled to prevent Ste12 binding. Various strains were generated using CRISPR-Cas9 to insert 
tetO sites at various positions in HML and GAL10. All of these modified loci were confirmed by 
Sanger sequencing. 

Figure 3.1: TetR-BirA labels histones at a specific locus. TetR binds to TetO as a dimer and recruits the two 
halves of split BirA to the locus. When co-localized, the two halves of split BirA form a functional biotin ligase 
which biotinylates adjacent histones on the C-terminal H3 AviTag. After replication, parental histones are tracked 
via biotin-specific pulldown with streptavidin or an anti-biotin antibody. 



 46 

Cells were grown and cell-cycle manipulations were performed as described in Chapter 2, 
except that all cells were grown at 30°C. For histone tracking experiments, doxycycline (Sigma 
D9891) was added to a final concentration of 0.1 mg/mL from a freshly-prepared stock of 10 
mg/mL doxycycline. In cell-cycle-controlled experiments, cells were kept in doxycycline for 30 
minutes before release to the next phase of the cell cycle. 

For assaying nicotinamide sensitivity, standard media plates were supplemented with 
either 25 mM or 5 mM nicotinamide (Sigma N3376) as noted in the text. For dilution plating 
assays, cells were first resuspended to OD ~ 1 (~1 x 107 cells/mL) in sterile water, from which 10-
fold serial dilutions were performed in a 96-well plate. From each well, 5 µL of cell suspension 
was plated. 
 
Chromatin affinity purification and chromatin immunoprecipitation 
 
 For each pulldown, ~2-5 x 108 cells were crosslinked in 1% formaldehyde for 15 minutes 
at room temperature, then quenched with 300 mM glycine for 5 minutes. Cells were washed twice 
with ~10 mL TBS and once with 1 mL FA lysis buffer (50 mM HEPES, pH 7.5; 150 mM NaCl, 1 
mM EDTA, 1% Triton, 0.1% sodium deoxycholate) + 0.1% SDS + cOmplete EDTA-free protease 
inhibitor (Sigma-Aldrich 11873580001). Cell pellets were resuspended in FA lysis buffer + 0.1% 
SDS + protease inhibitor and lysed using a FastPrep-24 5G (MP Biomedicals) with 6.0 m/s beating 
for 40 seconds followed by 2 minutes on ice, repeated 4 times total. The lysate was transferred to 
a 15-mL Bioruptor tube and ~200 µL of sonication beads were added  (Diagenode C01020031). 
Sonication was performed in a Bioruptor Pico (Diagenode) with 10 cycles of 30 seconds ON 
followed by 30 seconds OFF. The sonicated lysate was transferred to a new 1.5-mL tube and spun 
down at 4°C for 15 minutes at 17,000 RCF. The supernatant, now the soluble chromatin, was 
transferred to a new tube, and 10% was saved for the input. 
 For streptavidin pulldowns, 20 µL per sample of Dynabeads MyOne Streptavidin C1 beads 
(Thermo Fisher 65002) was washed 3 times in FA lysis buffer + 0.1% SDS, then added to the 
soluble chromatin along with 5 µL of 20 mg/mL BSA (NEB B9000S). The mixture was incubated, 
rotating, overnight at 4°C. The beads were washed twice with Wash Buffer (10 mM Tris pH 8, 
0.25 M LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA) and 3 times with TE + 3% 
SDS, with ~5 minutes of rotating between each wash. To elute the samples, 75 µL FA lysis buffer 
+ 0.1% SDS + 5 µL of 10 mg/mL RNase A was added and the sample was incubated at 65°C with 
shaking. After 1 hour, 5 µL of 20 mg/mL proteinase K was added, and the sample was incubated 
for another hour at 65°C with shaking, for a total of 2 hours at 65°C. The DNA was purified using 
either a PCR purification kit (Qiagen) or SPRI clean-up beads (UC Berkeley DNA Sequencing 
Facility). 
 For anti-biotin immunoprecipitations, 2 µL of anti-biotin antibody (Abcam ab53494) was 
added to each soluble chromatin sample along with 5 µL of 20 mg/mL BSA. This mixture was 
incubated overnight at 4°C while rotating. Then 25 µL of Protein A Dynabeades (Invitrogen 
10002D) were washed 3 times in FA lysis buffer + 0.1% SDS and then added to the samples and 
incubated for 1 hour at 4°C. The samples were then washed with the following buffers, incubating 
at room temperature for ~5 minutes on an end-over-end rotator between each wash: 2x washes in 
FA lysis buffer + 0.1% SDS; 2x washes in Wash buffer #1 (FA lysis buffer + 0.25 M NaCl + 0.1% 
SDS); 2x washes in Wash Buffer #2 (10 mM Tris pH 8, 0.25 M LiCl, 0.5% NP-40, 0.5% sodium 
deoxycholate, 1 mM EDTA); 1 wash in TE. Samples were eluted and DNA was purified as 
described above for streptavidin pulldown, except in TE + 1% SDS. 



 47 

 For anti-V5 immunoprecipitations, 40 µL of anti-V5 agarose beads (Sigma A7345) was 
washed 3x in FA lysis buffer + 0.1% SDS, then added along with 5 µL 20 mg/mL BSA and 
incubated overnight rotating at 4°C. The washes and elution were as described above for anti-
biotin immunoprecipitations. 
 Samples were analyzed either by qPCR or sequencing as described in Chapter 2. 
 
Nicotinamide sensitivity suppressor screen and mutation identification 
 
 Strains JRY13506 (MATa) and JRY13532 (MATα) were streaked to YPD to isolate clonal 
colonies. From each parent strain, 24 colonies were resuspended in water and ~105 cells were 
spread onto a YPD plate supplemented with 25 mM nicotinamide (NAM). Plates were incubated 
at 30°C for 2-3 days until clear fast-growing colonies had appeared from the slow-growing lawn. 
Putative suppressors were re-streaked to YPD + 25 mM NAM to confirm the NAM insensitivity 
and isolate clonal populations to save and analyze. From both parent strains, 47 independent 
suppressors (23 MATa and 24 MATα) were isolated. 
 DNA was isolated from each suppressor strain using the YeaStar Genomic DNA kit per 
manufacturer’s recommendations (Zymo Research D2002) and diluting final eluate into 100 µL 
TE. The DNA solution was sheared in 0.65-mL Bioruptor tubes using the Pico Bioruptor with 13 
cycles of 30 s ON/30 s OFF. Sheared DNA was prepared for sequencing using the NEB Ultra II 
library prep kit (NEB E7645L) and sequenced on an Illumina MiniSeq. 
 Sequencing reads were aligned to the SacCer3 genome using Bowtie2 (Langmead and 
Salzberg, 2012) and converted to sorted BAM files using SAMtools (Li et al., 2009). Variants 
were called using the SAMtools command mpileup piped to the BCFtools command call. Variants 
that were identified in multiple samples, and were thus unlikely to be novel causative mutations, 
were excluded using the BCFtools command isec with the option “-n-1”. Variant .vcf files were 
filtered using the BCFtools command filter to exclude variants for which either (1) reference-
mapping reads were present >20% as frequently as variant reads or (2) the variant quality score 
QUAL was <50. The merged list of variants was uploaded to the Variant Effect Predictor (McLaren 
et al., 2016), and the resulting list of variant effects was filtered for those that would alter a protein 
coding sequence, and sorted for whether the effect was likely to be deleterious using the SIFT 
metric included in the VEP analysis (Kumar et al., 2009). 
 
3.4 Results 
 
3.4.1 Assessing chromatin effects on histone inheritance 
 

To measure the effect of silencing on histone inheritance, we constructed strains with the 
same TetR-split BirA fusion as described previously (Schlissel and Rine, 2019), but with tetO 
sequence inserted at the silent locus HML. The strains also included the hmlα2∆::yEmRFP allele 
(Saxton and Rine, 2019), which can be used to monitor silencing, as well as the hmlα1* allele 
(Goodnight and Rine, 2020), which allows for α-factor sensitivity. We reasoned that histone 
dynamics may vary as a function of position when the histones are located near genetic features 
such as promoters and gene bodies (Dion et al., 2007; Kassem et al., 2020). Thus, we generated a 
trio of strains with tetO located at different features of HML, with the assumption that while 
transcription-dependent effects could vary among the strains, silencing-dependent effects would 
be observed in all strains (Figure 3.2). 
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To assess whether histone inheritance was similar at HML to that observed at GAL10 
previously, we performed analogous experiments to those from the GAL10 study (Schlissel and 
Rine, 2019). Cells were grown with the TetR-split BirA fusion proteins constitutively expressed, 
thus labeling the H3 molecules at HML:tetO with biotin. Then, cells were arrested in G1 with α 
factor and doxycycline was added to stop labeling. Cells were either maintained in G1 or released 
to G2/M (Figure 3.3). By measuring histone biotinylation using streptavidin pulldown followed 
by qPCR in these two conditions, we could distinguish between replication-independent histone 
turnover and replication-dependent histone turnover. 

 
 

 
 
 

In initial experiments comparing the HML:tetO strains, the strength of labeling above 
background varied from strain to strain, depending on the location of tetO within HML (Figure 
3.4, “pre” samples). After labeling was turned off by addition of doxycycline, the strains with 
promoter-located tetO and intergenic tetO appeared to have higher replication-dependent histone 
turnover than the gene body tetO strain. However, we noticed an unexpected feature of the 
pulldown efficiencies in these experiments: cells arrested for long periods in α factor or nocodazole 

Figure 3.2: HML:tetO strains. In all strains, the two Ste12 binding sites at the HML promoter were deleted. In 
the HML:tetOpromoter strain, the tetO sequence replaced one of the two Ste12 binding sites. All tetO sequences were 
placed in linker or nucleosome-depleted regions.  

Figure 3.3: Design of H3 biotinylation 
experiments. As described in Materials 
& Methods, cells were arrested in G1 
and either maintained in G1 or released 
to G2/M after addition of doxycycline. 
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displayed markedly lower recovery after pulldown than cycling cells or cells arrested for a short 
time (Figure 3.5). Input DNA quantity scaled as expected across samples—i.e., approximately 
identical for all G1-arrested samples and ~2x higher for cells that had been through S phase, 
indicating that the efficiency of cell lysis or DNA purification were not affected by the arrest 
conditions (Figure 3.5, left). However, after streptavidin pulldown, the quantity of recovered DNA 
was far higher in samples that were not subjected to long arrests (Figure 3.5, right). The simplest 
explanation for this observation is that some compound present in the cell lysate from cells that 
had experienced extended arrests outcompetes DNA for access to the streptavidin-coated beads. 
Condition-dependent differences in histone pulldown efficiency should not affect the reported data 
if the change in pulldown efficiency is the same at HML:tetO and the control non-biotinylated 
locus to which it is compared—ALG9 in these experiments—but we have not yet demonstrated 
that this is the case. One piece of evidence suggesting that the quality of the data might be 
negatively affected by these normalization concerns is seen in the HML:tetOgene experiment in 
Figure 3.4: the biotinylation signal is >50% of its starting value after DNA replication, which 
would run counter to the strong expectation that parental histones should be diluted at least by half 
during S phase. Altogether, for the data presented in Figure 3.4, the subtle differences in histone 
inheritance observed across conditions may be limited by a combination of relatively low signal-
to-noise and unpredictable background signal. These limitations led us to consider modifications 
to the experimental protocol that could alleviate those concerns.  

 
 

 

 
 

Figure 3.4: Replication-dependent and replication-independent histone turnover at HML:tetO. Cells from 
strains JRY13483 (HML:tetOpromoter), JRY13474  (HML:tetOgene), and JRY13485 (HML:tetOintergenic), were 
arrested in α factor for 2.5 hours (“pre” sample). Doxycycline was added for 30 minutes (“+dox”). The culture 
was then split, and cells were either kept in G1 or released to G2/M for 2 hours. At each time point, cells were 
fixed and collected for streptavidin pulldown. Dots represent biological replicates and bars represent the average 
of biological replicates. 
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As one attempt to increase signal, we performed analogous experiments to those described 

above, but using an anti-biotin antibody instead of streptavidin to pull down on biotinylated 
histones. In an attempt to reduce the differences in pulldown efficiency across conditions, we also 
shortened the length of the post-doxycycline incubation to only 75 minutes from 3 hours, just 
enough time for all cells to pass through S phase. While this approach did lead to a considerably 
higher signal-to-noise ratio, it did not change the pulldown efficiency reduction in G2/M-arrested 
cells (data not shown). With the increased signal, though, we were able to begin investigating the 
effect of silencing on histone inheritance (Figure 3.6). In wild-type cells, parental histones at HML 
strongly remember their position, to a similar degree as that observed at GAL10 (Schlissel and 
Rine, 2019). Interestingly, when we compared a SIR strain to a sir mutant strain by qPCR, the 
degree of replication-coupled parental histone loss, as measured at the intergenic operator, 
increased in the sir mutant (Figure 3.6A). The amount of labeling was also reduced at the onset 
of the experiment in sir mutants (compare “pre” samples). We performed ChIP-seq on these 
samples to identify whether histone labeling or retention was being fully captured by the qPCR 
result. The sequencing results recapitulated the qPCR finding that sir mutant cells lost parental 
histones more dramatically than did SIR cells (Figure 3.6B). However, the sequencing did not 
show any apparent SIR-dependent difference in pre-doxycycline labeling efficacy. This could be 
due to a slightly altered labeling radius in the SIR cells compared to sir mutant cells (Figure 3.6C). 
The peaks of biotinylation are offset by ~50-100 bp from each other, which could cause an apparent 
under-recovery of one or the other by qPCR, based on the exact location of the primers. 

Figure 3.5: Streptavidin pulldown efficiency is reduced in long arrests. The plotted data are from the same 
experiment as presented in Figure 3.4, using the strain JRY13483 (HML:tetOpromoter) as a representative example. 
Plotted are the raw values for ALG9 quantity for input samples (left) and streptavidin pulldown samples (right). 
Levels of ALG9, an arbitrary non-biotinylated locus, are shown, because they represent the background level of 
signal to which HML is normalized in the experiments in Figure 3.4. 
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3.4.2 Nicotinamide sensitivity in absence of histone inheritance factor DPB3 
 
 Cells lacking the DNA polymerase ε component Dpb3 or with a histone-binding mutation 
in the replicative helicase component Mcm2 display reduced parental histone inheritance, with 
the double mutants having an additive effect (Petryk et al., 2018; Schlissel and Rine, 2019; Yu et 
al., 2018). In the course of our work studying the intersection of parental histone inheritance and 
silencing, we discovered that double mutant dpb3∆ mcm2-3A cells displayed a hypersensitivity 
when treated with the sirtuin inhibitor nicotinamide (NAM; Figure 3.7). Deleting SIR1 and SIR3 
in a dpb3∆ mcm2-3A strain did not cause a growth defect, and thus the NAM sensitivity was not 
due to a failure of silencing. Through back-crossing the double mutant strain, we observed that 
dpb3∆ was largely responsible for the NAM sensitivity (Figure 3.8, top). On its own, mcm2-3A 
caused no NAM sensitivity, and the double mutant dpb3∆ mcm2-3A was very slightly sicker than 
the single dpb3∆ mutant. Even though mcm2-3A does not contribute strongly to the mutant 
phenotype, given that we had begun our analysis with the dpb3∆ mcm2-3A double mutant we 
continued to use that mutant as our parent strain for subsequent analyses. 

Figure 3.6: Loss of silencing reduces replication-coupled histone inheritance. Cells with wild-type SIR alleles 
(JRY13544) or sir1∆ sir3∆ cells (JRY13541) were arrested in α factor for 2.5 hours (“pre” sample). Doxycycline 
was added for 30 minutes, followed by release to G2/M for 75 minutes (105 minutes total after doxycycline 
addition). Cells were fixed and processed for anti-biotin immunoprecipitation, followed by qPCR (A) or 
sequencing (B, C). Data in (B) are scaled to genome-wide median value, while data in (C) are scaled to the sample 
maximum value, to more easily see the shape of the labeling. 
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mcm2-3A hst4∆

dpb3∆ mcm2-3A hst4∆

Figure 3.7: Nicotinamide sensitivity of dpb3∆ mcm2-3A cells. The following strains were grown for 2 days on 
YPD or YPD + 5 mM NAM: DPB3 MCM2 SIR1 SIR3 (JRY13483); DPB3 MCM2 sir1∆ sir3∆ (JRY13168); 
dpb3∆ mcm2-3A SIR1 SIR3 (JRY13481); dpb3 mcm2-3A sir1∆ sir3∆ (JRY13170). 

Figure 3.8: Nicotinamide sensitivity is due to inhibition of HST3 and HST4 and does not depend on MCM2. 
The following strains were grown for 2 days on YPD or YPD + 5 mM NAM: WT (JRY13508); dpb3∆ 
(JRY13509); mcm2-3A (JRY13510); dpb3∆ mcm2-3A (JRY13511); hst3∆ (JRY13512); dpb3∆ hst3∆ 
(JRY13513); mcm2-3A hst3∆ (JRY13514); dpb3∆ mcm2-3A hst3∆ (JRY13515); hst4∆ (JRY13516); dpb3∆ hst4∆ 
(JRY13517); mcm2-3A hst4∆ (JRY13518); dpb3∆ mcm2-3A hst4∆ (JRY13519). All strains are MATα. 



 53 

 

 

 
 
 

 

 
 
 In addition to inhibiting Sir2, nicotinamide also inhibits the other sirtuins, two of which, 
Hst3 and Hst4, are known to have a role in replication-coupled histone dynamics. Newly-
synthesized histones are acetylated by Rtt109 on H3K56, which is thought to facilitate 
incorporation of new histones into DNA during replication (Driscoll et al., 2007; Li et al., 2008). 
After S phase, H3K56 acetylation is removed by Hst3 and Hst4, and failure to deacetylate H3K56 
leads to growth defects that are due to replication stress (Celic et al., 2008, 2006; Maas et al., 
2006). Thus, we were intrigued by the possibility that the nicotinamide sensitivity in dpb3∆ mcm2-
3A cells, which have defects in parental histone inheritance, might be due to defects in the removal 
of new histone marks. Indeed, the dpb3∆ mcm2-3A strains grew poorly when combined with hst3∆ 

YPD YPD + NAM

YPD YPD + NAM

DPB3 MCM2 MATα

DPB3 MCM2 MATa

dpb3∆ mcm2-3A MATα

dpb3 mcm2-3A MATa

dpb3∆::HisMX mcm2-3A MATa

dpb3∆::HisMX mcm2-3A MATα

dpb3∆::HygMX mcm2-3A MATa

dpb3∆::HygMX mcm2-3A MATα

All strains are HMRa hml* so on NAM, MATa strains stay a-mating but MATα strains become pseudodiploid  

Figure 3.9: MATa dpb3∆ cells are more sensitive to nicotinamide than MATα dpb3∆ cells. The following 
strains were grown for 2 days on YPD or YPD + 5 mM NAM: DPB3 MCM2 MATα (JRY13508); DPB3 MCM2 
MATa (JRY13520); dpb3∆ mcm2-3A MATα (JRY13511); dpb3∆ mcm2-3A MATa (JRY13523). 

Figure 3.10: Previously-described dpb3∆ strains were less sensitive to nicotinamide. The following strains 
were grown for 2 days on YPD or YPD + 5 mM NAM: DPB3 MCM2 (JRY11471); dpb3∆ MCM2 (JRY11550); 
DPB3 mcm2-3A (JRY11589); dpb3∆ mcm2-3A (JRY11590). Note that the DPB3 MCM2 strain is a CRASH assay 
strain, while the mutants are all FLAME assay strains (Saxton and Rine, 2019). 
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or hst4∆, and each grew worse when plated on NAM, indicating that both HST3 and HST4 
contribute to the phenotype (Figure 3.8). Deletion of RTT109, which codes for the H3K56 
acetyltransferase, suppressed the dpb3∆ mcm2-3A NAM sensitivity (Table 3.1 and below), further 
confirming that the phenotype was due to defects in removal of H3K56ac by Hst3 and Hst4. From 
the same cross that generated the hst3∆ and hst4∆ mutants, we noticed that MATa dpb3∆ cells 
were considerably more sensitive to NAM than MATα cells (Figure 3.9). In these strains, because 
HML does not encode any functional α proteins, MATa cells retain their a gene expression pattern 
on NAM, while MATα cells on NAM de-repress HMRa and become pseudo-diploid by expressing 
both a and α genes. 
 
 The strong nicotinamide sensitivity observed in dpb3∆ cells was counter to expectations 
based on previous work on the effects of DPB3 on silencing (Daniel Saxton, personal 
communication). Indeed, when we analyzed a previously-generated dpb3∆ strain (Saxton and 
Rine, 2019), it displayed nicotinamide sensitivity, but of far weaker magnitude than the sensitivity 
of the histone tracking strains (Figure 3.10). The histone tracking strains have a number of 
modifications relative to the strains used by Saxton & Rine (see Table 3.3), the most likely of 
which to cause increased dpb3∆ NAM sensitivity is the AviTag on histone H3. Even though the 
dpb3∆ NAM sensitivity is enhanced by some feature of the strain’s genetic background, the 
enhanced sensitivity is still specific to the combination of inhibited Hst3/Hst4 and dpb3∆. Thus, 
we treated the histone tracking dpb3∆ strain as a sensitized background in which to query the 
dpb3∆ NAM sensitivity. 
 
 Several suppressors of hst3∆ hst4∆ synthetic sickness have been previously identified 
(Celic et al., 2008, 2006; Collins et al., 2007; Driscoll et al., 2007). These suppressors fall into 
three classes: (1) mutations that decrease H3K56 acetylation, (2) mutations that decrease 
alternative clamp loading and favor PCNA loading, and (3) mutations in components of the 
Rtt101-Mms1-Mms22 E3 ligase, which is thought to act downstream of H3K56ac in several 
replication-coupled processes and may be directly stimulated by H3K56ac (Collins et al., 2007; 
Han et al., 2013). We tested these previously identified hst3∆ hst4∆ suppressors for their ability to 
suppress dpb3∆ NAM sensitivity (Table 3.1). Strikingly, the mutations that affect H3K56ac itself 
or the downstream Rtt101-Mms1-Mms22 E3 ligase all suppressed the NAM sensitivity observed 
in dpb3∆ mcm2-3A cells. In contrast, none of the mutants involved in clamp loading had any affect. 
Thus, in absence of Dpb3, hyperacetylation of H3K56 acetylation inhibits cell growth via a 
mechanism involving the Rtt101-Mms1-Mms22 E3 ligase, but not via aberrant DNA clamp 
loading. 
 
 To further understand the source of the dpb3∆ nicotinamide sensitivity, we performed a 
genetic screen to identify suppressors of the sensitivity. Spontaneous suppressors emerged 
frequently when dpb3∆ mcm2-3A cells were plated on 25 mM NAM, which is consistent with 
previous reports that both dpb3∆ cells and hst3∆ hst4∆ cells have mutator phenotypes (Aksenova 
et al., 2010; Kadyrova et al., 2013). We isolated and analyzed 47 independently derived 
spontaneous suppressors from the dpb3∆ mcm2-3A histone tracking strains JRY13506 (MATa) 
and JRY13532 (MATα). We sequenced these 47 suppressors and identified high-confidence 
protein-coding changes. Because we have not yet followed the linkage of phenotype to genotype 
through a cross, each coding change can presently only be described as a putative hit. The results 
of the screen are presented in Table 3.2. Almost all suppressor strains had at least two protein-



 55 

coding changes, so while we can tentatively ascribe suppressor phenotypes to some individual 
mutations, further analysis is needed to confirm this. Many of suppressor strains (29 out of 47) had 
mutant alleles of a proteasome component, with mutations in many individual subunits across both 
the 20S core particle and the 19S regulatory particle (Finley et al., 2016). The broad spectrum of 
proteasome mutations indicates that the suppressive phenotype is likely due to a general inhibition 
of proteasome activity. In addition to proteasome subunits, we also identified several mutations in 
genes with known roles in protein degradation, including the proteasome chaperone Poc4, the E2 
ubiquitin ligase Rad6, the ubiquitin protease Ubp14, and the SUMO-targeted ubiquitin ligase Uls1. 
Together, these data suggest that proteasome-dependent degradation of some target(s) is required 
for the sensitivity of dpb3∆ cells to nicotinamide.  
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Mutant Class Mutation Strain Number MAT Growth on YPD Growth on NAM 
dpb3∆ mcm2-3A 

parent strains 
JRY13532 α +++ – 
JRY13506 a +++ – 

1 
asf1∆ JRY13612 α +++ + 

JRY13599 a +++ + 

rtt109∆ JRY13539 α ++ ++ 
JRY13537 a ++ ++ 

2 

dcc1∆ JRY13608 α +++ – 
JRY13595 a + – 

rad24∆ JRY13609 α +++ – 
JRY13596 a +++ – 

ctf8∆ JRY13610 α + – 
JRY13597 a + – 

ctf4∆ JRY13619 α +++ – 
JRY13606 a +++ – 

mec3∆ JRY13613 α +++ – 
JRY13600 a +++ – 

ctf18∆ JRY13615 α + – 
JRY13602 a + – 

elg1∆ JRY13616 α +++ – 
JRY13603 a +++ – 

rad17∆ JRY13617 α +++ – 
JRY13604 a +++ – 

ddc1∆ JRY13618 α +++ – 
JRY13605 a +++ – 

3 

mms22∆ JRY13614 α +++ +/++ 
JRY13601 a +++ +/++ 

mms1∆ JRY13620 α +++ +/++ 
JRY13607 a +++ +/++ 

rtt101∆ JRY13611 α +++ ++ 
JRY13598 a +++ + 

 
 

 
  

Table 3.1: Effects of previously identified hst3∆ hst4∆ suppressors on dpb3∆ nicotinamide sensitivity. All 
strains were dpb3∆ mcm2-3A. The indicated strains were grown on YPD and YPD + 25 mM NAM to test for 
nicotinamide sensitivity. The level of growth was assessed qualitatively, with +++ indicating equivalent growth 
to wild-type cells on YPD, ++ indicating slightly weaker growth, + indicating weak but significant growth, and – 
indicating no or extremely weak growth. Mutations that suppress the dpb3∆ NAM sensitivity are noted in green. 
Mutants in Class 1 are the genes that are required for H3K56 acetylation (Celic et al., 2006; Driscoll et al., 2007). 
Mutants in Class 2 are those that suppress hst3∆ hst4∆ mutations by inhibiting alternate clamp loading or 
increasing PCNA loading (Celic et al., 2008). Mutants in Class 3 are components of an E3 ligase that acts 
downstream of H3K56 acetylation (Collins et al., 2007; Han et al., 2013). 
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Mutant 

identifier Protein coding changes Mutant 
identifier Protein coding changes 

A1 PUP3, JHD2, NUP133, GPR1 A5 SOK2, NOP8, POL3, PRE3 
A2††† DCR2, RPN6† A6 NUP57, MAM1, PRE10 
A3 POC4*, RPD3 A7 YLR255C, VHS2, NIS1*, RPT3 
B1 CLC1, YKR032W, PRE2 B5 PRE2 
B2 GPR1, MRPL1, PUP1 B6 RPN2 
B3 IPT1, ULS1 B7 NIS1 

C1 
VPS8, TFA2 

C5 
YGR114C*, MEH1, YBR225W, 
SAP190, NIS1, TIF4632, RPT6, 
VPS13, YGR115C* 

C2 VPS8, RPF1, HPF1, PRE8 C6 YPR114W, CBS2, QRI7, PRE7 
D1 PLM2, PRE4 C7 ZRG8, RPN5* 
D2 CWC15* D5 YBR225W, GPX2, RSN1, RTT101 
D3 ECM22, UBP14* D6††† SKI3, PUP1 
E1 CSF1, SAS3 D7 SRP1, RAD6 
E2 YNL205C*, PRE4 E5 YLR255C, RPN5* 

E3††† ESP1, KIN2 E6 YBR225W, NUP57, PUF3, 
RAD50, SKI3, PRE4 

F1 SLX1*, RPT3 E7 MDM20, PUP3 

F2 NGR1, SAS10, ENT1, ECM22, 
UCC1*, PRE4 F5 No protein-coding changes 

identified†† 
F3 YCR087W, ASN2 F6 NSR1, YGR160W, DOT1, RPT2 

G1 No protein-coding changes 
identified F7 MTC4, YNL205C*, RPT5 

G2 RTC1*, KIP1* G5 BUD4*, NSR1, YGR160W, 
IMD4, GDB1, PRE7 

G3 PRE4 G6 YBR225W, PUF3, EGH1, NNK1 

H1 SAS10, RKM3, CAF4, SPO1, 
DPM1, SEM1* G7 YLR255C, ASG1, ECM22, PUP3 

H2 NOP8, UBP14 H5 NMD2, RPP0, PSD1, PRE2 

H3 RTC1* H6 YBL070C, SAS10, ROM2, RNH1, 
YNL205C*, PRE6 

  H7 YGR114C*, YGR115C*, IRC20, 
RPN2* 

 

 

Table 3.2: Mutants identified in dpb3∆ NAM suppressor screen. The left and right columns of mutants were 
isolated, respectively, from the MATa parent strain JRY13506 and the MATα parent strain JRY13532. Amino acid 
changes flagged as deleterious by SIFT are marked in bold. Nonsense mutations are in addition marked with an 
asterisk (*). Genes encoding proteasome subunits are colored green.  
† The mutation in RPN6 in mutant A2 is at the stop codon, and generates a 7-residue readthrough. 
†† No coding mutation was identified in mutant F5, but a point mutation was identified in the TATA box upstream 
of RPN6. 
††† Mutants A2, E3, and D6 display dominant NAM resistance when crossed back to the opposite mating type 
parent strain 
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3.4 Discussion and Future Directions 
 
 
 The project described in this chapter is a work in progress, and thus the discussion will 
address both tentative conclusions and ongoing work. 
 
3.4.1 Silencing may regulate histone dynamics 
 
 I showed that in wild-type cells, parental histone inheritance is robust in silent chromatin. 
Furthermore, I showed preliminary evidence that silencing at HML may be important for the 
inheritance of parental histones through DNA replication. This would seem to be consistent with 
the increase in histone turnover observed at GAL10 when the locus was transcribed  (Schlissel and 
Rine, 2019). A critical issue still to be resolved is whether the reduced histone inheritance is due 
to transcription itself or a failure of a silencing-specific histone inheritance pathway. The existence 
of an epigenetic silencing phenotype in some mutants suggests that there are mechanisms in place 
to ensure the faithful transmission of the silent state (Pillus and Rine, 1989). However the model 
that the silent state is specifically mediated by inheritance of histones has been refuted (Saxton and 
Rine, 2019). Daniel Saxton’s work on epigenetic inheritance and Gavin Schlissel’s work on 
parental histone inheritance converged with the finding that dpb3∆ mcm2-3A cells had essentially 
no local parental histone inheritance, but retained the ability to propagate epigenetic chromatin 
states. This suggested that histones could not be the carriers of epigenetic memory. However, 
Gavin’s histone inheritance experiments were somewhat limited by the difficulties in performing 
cell-cycle arrests in dpb3∆ mcm2-3A strains, and he was forced to infer histone retention from 
mixed populations of cells, some of which were appropriately arrested and some of which were 
not. In my own preliminary experiments with similar strains, I have observed that while dpb3∆ 
mcm2-3A cells do indeed have severely reduced local histone retention at both GAL10 and HML, 
but the inheritance is not completely eliminated. Thus, it is formally possible that in dpb3∆ mcm2-
3A cells, the reduced but not eliminated local inheritance of modified parental histones was 
sufficient to give rise to the epigenetic memory Daniel observed in those strains. If inheritance of 
parental histones were important for the inheritance of the silent state, the machinery that retains 
parental histones at GAL10 would seem to be sufficient to propagate silencing, assuming that same 
machinery functions during replication at HML. That the same inheritance mechanisms function 
at both GAL10 and HML remains to be demonstrated, and it is possible that a different mechanism 
of parental histone transfer exists at silent chromatin. 

 
At the HML:tetOintergenic locus where histone inheritance was measured, the tetO site was 

~800 base pairs away from the hmlα2∆::yEmRFP gene, which would suggest that the silencing 
effect on histone inheritance is mediated by an effect on the chromatin at the locus, rather than 
transcription per se. However, the tetO site is at the 3’ end of pseudogene YCL068C, which is 
weakly transcribed in sir mutant cells (Ellahi et al., 2015), so direct effects mediated by the 
transcription of that gene cannot be excluded. Further experiments are in progress to study this 
distinction, including an attempt to completely remove transcription of YCL068C by mutating its 
putative promoter sequence. The increase in histone turnover at transcribed GAL10 is replication-
independent, and thus determining whether silencing effects at HML are replication-dependent or 
-independent could determine whether the effects are analogous to the GAL10 transcription effects 
or distinct. If transcription were directly evicting nucleosomes, then the strength of transcription 
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would be expected to correlate with the rate of histone loss, so comparing the histone inheritance 
at HML:tetOintergenic, in which the tetO overlaps with a very weakly transcribed pseudogene and 
HML:tetOgene, in which the tetO is in the much more highly transcribed gene, α1, would provide a 
test for the directness of a transcription effect. 

 
The possible confounding effect of arrest-specific changes in pulldown efficiency means 

that we must interpret the comparisons between different conditions carefully. However, even if 
comparing the ratio of biotinylation between arrests, e.g., G1 vs. G2/M, may be fraught, comparing 
the relative loss in different mutants in the same arrest condition, e.g. sir3∆ G2/M vs. SIR3 G2/M, 
should be more robust. To avoid the issue completely, we can perform non-cell-cycle-regulated 
experiments, which can measure the kinetics of histone loss, but are limited because they cannot 
distinguish between replication-dependent and replication-independent effects. 
 
3.4.2 A genetic interaction between DPB3 and HST3/4  
 

We reported an uncharacterized synthetic sickness that depends on loss of a protein 
involved in parental histone inheritance, Dpb3, and the enzymes that remove a defining mark from 
newly synthesized histones, Hst3 and Hst4. A recent study identified dpb3∆ as causing synthetic 
sickness in a hst3∆ hst4∆ background, and dpb3∆ was also identified in a screen for nicotinamide-
sensitive mutants, but neither of these results was further characterized (Choy et al., 2016; Gershon 
and Kupiec, 2021). We are interested in dissecting whether this phenotype is due to errors 
specifically related to these proteins’ roles mediating histone dynamics. In absence of Hst3 and 
Hst4 activity, histone H3 is hyperacetylated at K56, which is usually a mark of new histones (Celic 
et al., 2006), while in absence of Dpb3, old histone inheritance to the leading strand is reduced 
(Yu et al., 2018). Nicotinamide sensitivity in dpb3∆ cells could suggest that H3K56 acetylation 
reduces the residual leading-strand histone inheritance mechanisms in dpb3∆ cells. Alternatively, 
H3K56 acetylation may cause defects in lagging strand parental histone inheritance that cause 
synthetic defects when combined with the leading strand reduction caused by removal of DPB3. 
It is unclear how the Dpb3, Mcm2, and other components of the parental histone inheritance 
machinery specifically recognize their substrates, and given that H3K56 acetylation is a mark for 
new histones, the removal of that mark may be important for labeling a histone as “parental” for 
inheritance. 
 

The nicotinamide sensitivity we observed in dpb3∆ cells was more severe in MATa cells 
than MATα cells. When nicotinamide is added to these strains, Sir2 is inhibited, causing MATα 
cells to adopt the a/α diploid gene expression pattern, while MATa cells retain the a expression 
pattern. There are few gene expression differences between haploids and diploids, with most 
relating to mating regulation (Ellahi et al., 2015; Galgoczy et al., 2004). One notable exception is 
that non-homologous end-joining is repressed in diploids, where homologous recombination (HR) 
is favored (Åström et al., 1999; Lee et al., 1999). One speculative explanation for increased 
homologous recombination suppressing dpb3∆ NAM sensitivity is via the role of H3K56 
acetylation in promoting the activity of the cullin Rtt101-Mms1-Mms22 E3 ligase (Han et al., 
2013). Rtt101-Mms1-Mms22 is thought to mediate replication restart at stalled replication forks 
by promoting HR-mediated repair between newly-replicated strands (Alabert et al., 2009; Buser 
et al., 2016; Duro et al., 2008; McGlynn and Lloyd, 2002). Thus, in nicotinamide, increased 
H3K56 acetylation could decrease the activity of Rtt101-Mms1-Mms22, and thus inhibit HR-



 60 

mediated restart of stalled forks. The pseudodiploid-specific increase in homologous 
recombination activity could partially alleviate the sickness associated with stalled replication 
forks. 

 
Our screen for suppressors of dpb3∆ nicotinamide sensitivity yielded many mutants in 

proteasome subunits. We reasoned that because dpb3∆ H3-Avi strains are more sensitive to 
nicotinamide than dpb3∆ strains with wild-type H3, degradation of H3 itself might be driving the 
sensitivity. The Rtt101-Mms1-Mms22 E3 ligase complex has been shown to ubiquitinate histone 
H3 in an H3K56ac-dependent manner (Han et al., 2013). Furthermore, deletion of RTT101, MMS1, 
or MMS22 suppresses the sickness of hst3∆ hst4∆ strains (Collins et al., 2007). Thus, ubiquitin-
mediated degradation of H3 could increase in NAM-treated cells and drive a synthetic sickness 
with dpb3∆. Deletion of RTT101 does not affect the half-life of H3, which was taken as evidence 
that Rtt101-dependent ubiquitination of H3 does not target H3 for proteasomal degradation (Han 
et al., 2013). However, bulk half-life measurements might not be affected if Rtt101-dependent 
proteasomal degradation of H3 were occurring, but only on a subset of histones. Thus, it is possible 
that H3 acetylated at K56 is subject to Rtt101-Mms1-Mms22-dependent degradation. Our use of 
the H3-Avi sensitized background for the screen meant that if H3 degradation were involved in 
the phenotype, it could be explained by one of two mechanisms: (1) The combination of dpb3∆ 
and nicotinamide leads to increased proteasome-dependent degradation of H3, which slows 
growth, and the AviTag further destabilizes H3, enhancing the phenotype; or (2) the AviTag on 
H3 causes elevated proteasome-dependent degradation of H3, which sensitizes the cells to some 
other proteasome-independent defect caused by the combination of dpb3∆ and nicotinamide. If the 
first possibility were true, meaning that the proteasome is a bona fide mediator of dpb3∆ NAM 
sensitivity, we would expect the identified proteasome mutants to suppress the dpb3∆ NAM 
sensitivity in strains with wild-type H3. In addition, H3 degradation would be expected to increase 
in absence of DPB3 or upon NAM treatment. If the second possibility were true, we would only 
see such effects in H3-Avi strains. We are currently investigating whether the AviTag, 
nicotinamide, and removal of DPB3 affect H3 levels. In addition, we are continuing to investigate 
all mutants, including for whether they suppress the nicotinamide sensitivity of a dpb3∆ strain with 
a wild-type H3. 
 

Of the identified suppressors of hst3∆ nicotinamide sensitivity that do not appear to have 
mutations in proteasome subunits or other protein degradation factors, several are worthy of 
comment. SAS3, which codes for the catalytic subunit of the NuA3 complex (John et al., 2000), 
TFA2, which codes for a component of the TFIIE core transcription factor (Feaver et al., 1994), 
and CWC15, which codes for a spliceosome component (Ohi et al., 2002) are involved in 
transcription and pre-mRNA processing, and mutations in those genes might suppress sensitivity 
by reducing expression of another gene. Two frameshift variants of RTC1 were identified. Rtc1 is 
a positive regulator of TORC1 activity as a component of the SEACAT complex, which is 
analogous to the mammalian GATOR complex (Algret et al., 2014). Thus, mutation of RTC1 may 
reduce TORC1 activity, leading to many changes to cell metabolism. In addition, one strain had a 
mutation in the gene that codes for the Nnk1 kinase, which physically and functionally interacts 
with TORC1 (Breitkreutz et al., 2010). TORC1 signaling leads to increased H3K56 acetylation, at 
least partly via effects on Hst3 and Hst4 protein levels and localization (Chen et al., 2012; 
Workman et al., 2016), and thus a decrease in TORC1 signaling could suppress nicotinamide 
sensitivity by decreasing H3K56ac. Finally, one of only three dominant suppressors had a mutation 



 61 

in ESP1, the gene for yeast separase, with the mutation located in the Pds1-binding domain (Ciosk 
et al., 1998; Jensen et al., 2001). The DNA damage checkpoint inhibits Esp1 by stabilizing its 
repressor Pds1, and hst3∆ hst4∆ cells are known to have chronic DNA damage checkpoint 
activation (Celic et al., 2008; Yam et al., 2021). Overexpression of ESP1 can lead to bypass of 
DNA damage checkpoint arrest (Tinker-Kulbetg and Morgan, 1999). Thus, one possibility is that 
the dpb3∆ NAM sensitivity is due to hyperactivation of the DNA damage checkpoint and the 
mutant ESP1 allele alleviates the checkpoint inhibition. Further analysis is needed, including, 
critically, experiments to identify whether the dpb3∆ NAM sensitivity suppression is indeed due 
to these mutations. 
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Table 3.3: Yeast strains used in this study: Unless otherwise noted, all strains are ADE2; can1-
100; leu2-3,112; ura3-1; lys2-; trp1-1; HHT1-1xAvi; HHT2-1xAvi; ho∆::CDC37p-TetR-BirA(1-
213); bar1∆::CDC37p-TetR-BirA(214-320). All strains were generated for this study by 
transforming parent strains from Schlissel and Rine, 2019. The final four strains are from Saxton 
and Rine, 2019, and the full genotype is displayed. 

Strain Genotype 
JRY13506 MATa; GAL10:tetOgene; HML:tetOgene; dpb3∆::HygMX; mcm2-3A 
JRY13532 MATα; GAL10:tetOgene; HML:tetOgene; dpb3∆::KanMX; mcm2-3A 
JRY13483 MATa; GAL10:tetOpromoter; HML:tetOpromoter 
JRY13474 MATa; GAL10:tetOgene; HML:tetOgene 
JRY13485 MATa; GAL10:tetOgene; HML:tetOintergenic 
JRY13544 mat∆::loxP-KanMX-loxP; GAL10:tetOgene; HML:tetOintergenic 
JRY13541 mat∆::loxP-KanMX-loxP; GAL10:tetOgene; HML:tetOintergenic; sir1∆::LEU2; sir3∆::NatMX 
JRY13168 MATa; GAL10:tetOpromoter; HML:tetOpromoter; sir1∆::LEU2; sir3∆::NatMX 
JRY13481 MATa; GAL10:tetOpromoter; HML:tetOpromoter; dpb3∆::HIS3MX; mcm2-3A 

JRY13170 
MATa; GAL10:tetOpromoter; HML:tetOpromoter; dpb3∆::HIS3MX; mcm2-3A; sir1∆::LEU2; 
sir3∆::NatMX 

JRY13508 MATα; GAL10:tetOgene; HML:tetOgene 
JRY13509 MATα; GAL10:tetOgene; HML:tetOgene; dp3∆::HisMX 
JRY13510 MATα; GAL10:tetOgene; HML:tetOgene; mcm2-3A 
JRY13511 MATα; GAL10:tetOgene; HML:tetOgene; dpb3∆::HisMX; mcm2-3A 
JRY13512 MATα; GAL10:tetOgene; HML:tetOgene; hst3∆::NatMX 
JRY13513 MATα; GAL10:tetOgene; HML:tetOgene; dpb3∆::HisMX; hst3∆::NatMX 
JRY13514 MATα; GAL10:tetOgene; HML:tetOgene; mcm2-3A; hst3∆::NatMX 
JRY13515 MATα; GAL10:tetOgene; HML:tetOgene; dpb3∆::HisMX; mcm2-3A; hst3∆::NatMX 
JRY13516 MATα; GAL10:tetOgene; HML:tetOgene; hst4::NatMX 
JRY13517 MATα; GAL10:tetOgene; HML:tetOgene; dpb3∆::HisMX; hst4∆::NatMX 
JRY13518 MATα; GAL10:tetOgene; HML:tetOgene; mcm2-3A; hst4∆::NatMX 
JRY13519 MATα; GAL10:tetOgene; HML:tetOgene; dpb3∆::HisMX; mcm2-3A; hst4∆::NatMX 
JRY13520 MATa; GAL10:tetOgene; HML:tetOgene 
JRY13523 MATa; GAL10:tetOgene; HML:tetOgene; dpb3∆::HisMX; mcm2-3A 
JRY13595 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; dcc1∆::NatMX 
JRY13596 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; rad2∆::NatMX 
JRY13597 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; ctf8∆::NatMX 
JRY13598 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; rtt101∆::NatMX 
JRY13599 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; asf1∆::NatMX 
JRY13600 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; mec3∆::NatMX 
JRY13601 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; mms22∆::NatMX 
JRY13602 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; ctf18∆::NatMX 
JRY13603 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; elg1∆::NatMX 
JRY13604 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; rad17∆::NatMX 
JRY13605 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; ddc1∆::NatMX 
JRY13606 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; ctf4∆::NatMX 
JRY13607 MATa; GAL10:tetOgene; dpb3∆::HygMX; mcm2-3A; HML:tetOgene; mms1∆::NatMX 
JRY13608 MATα; GAL10:tetOgene; dpb3∆::KanMX; mcm2-3A; HML:tetOgene; dcc1∆::NatMX 
JRY13609 MATα; GAL10:tetOgene; dpb3∆::KanMX; mcm2-3A; HML:tetOgene; rad24∆::NatMX 

(Continued on next page) 
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(Continued from previous page) 
JRY13610 MATα; GAL10:tetOgene; dpb3∆::KanMX; mcm2-3A; HML:tetOgene; ctf8∆::NatMX 
JRY13611 MATα; GAL10:tetOgene; dpb3∆::KanMX; mcm2-3A; HML:tetOgene; rtt101∆::NatMX 

JRY11471 
ADE2, lys2, TRP1, hml∆, mat∆::NatMX, HMRα, hmrα2∆::CRE (N14), 
ura3∆::loxP:yEmRFP:tCYC1:KanMX:loxP:yEGFP:tADH1, can1-100, his3-11,15, leu2-3,112 

JRY11550 
ADE2, lys2, sir1∆::LEU2, dpb3∆, hml∆::NatMX, mat∆::KanMX, HMRα, hmrα2∆::yEGFP, 
can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1 

JRY11589 
ADE2, lys2, sir1∆::LEU2, mcm2-3A, hml∆::NatMX, mat∆::KanMX, HMRα, hmrα2∆::yEGFP, 
can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1 

JRY11590 
ADE2, lys2, sir1∆::LEU2, dpb3∆, mcm2-3A, hml∆::NatMX, mat∆::KanMX, HMRα, 
hmrα2∆::yEGFP, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1 
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Appendix: Additional studies of silencing1 
 
 Before becoming a scientist, I assumed that research progress was basically linear: one 
experiment gives a result that suggests a new hypothesis, which is then tested in the next 
experiment that suggests the next hypothesis, so on and so on, until a complete publication-worthy 
set of data accumulates. In the course of graduate school, I’ve learned how woefully incorrect this 
popular image of science is. The direct line that I had imagined is actually more like a subway 
system of interweaving and unpredictable research directions. To belabor the metaphor, much of 
my time in graduate school was spent taking random trains in uncertain directions, transferring 
when the signs look promising, and frantically backtracking when they did not. The work 
described earlier in the dissertation constitute the story I tell of my journey, which emphasizes the 
successes, the creative leaps, and the conclusive results. The final pages here concern a few parts 
of the journey that didn’t fit into the main narrative of the work described earlier, but that might 
provide food for thought for future researchers in the lab or in the field. All of these results should 
be viewed as preliminary, since they lack the thorough controls and follow-up work that would be 
needed to draw firm conclusions. 
 
A1: Using endonuclease accessibility to measure silent chromatin conformation 
 
 Early in graduate school, I was fascinated by the idea that silent chromatin might adopt a 
higher-order chromatin structure (Bi and Broach, 1997; Valenzuela et al., 2008), and that this 
structure might contribute to the gene repression observed at HML and HMR. I joined the lab soon 
after Debbie Thurtle published a study that investigated HML and HMR by ChIP-seq (Thurtle and 
Rine, 2014), and one of her findings was that when Sir proteins or H3 was immunoprecipitated 
from cross-linked chromatin, certain regions of HML and HMR were under-recovered. This was 
taken as evidence that silent chromatin might be forming a conformation in vivo that buried the 
core of the locus to the extent that, when cross-linked with formaldehyde, pockets of chromatin 
were protected from antibody binding. This result was especially intriguing in light of Ann 
Kirchmaier’s finding that Sir protein binding across HMR was not sufficient to drive gene 
repression (Kirchmaier and Rine, 2006). I thought that maybe Sir protein binding could occur 
irrespective of cell-cycle stage, but that S phase promoted the formation of the repressive 
“superstructure2.” 
 
 The idea of a repressive “superstructure” is built on the “occlusion” model of silencing 
(Loo and Rine, 1994), but makes a prediction that goes beyond the occlusion model: some sub-
regions within HML and HMR should be more inaccessible to protein binding than others. I wanted 
to test that model. I imagined that by assaying endonuclease accessibility across HML or HMR, 
much as Stephen Loo had done, that I might find such regions of relative inaccessibility. In 
designing the assay, I made two key changes to Loo’s method. First, I induced expression of the 
endonuclease in vivo, rather than adding nuclease to purified nuclei. I hoped that this would avoid 
                                                
1 The references in this appendix are listed in the main bibliography. 
 
2 This was the initial inspiration for the ChIP-seq experiments presented in Chapter 2. We anticipated that if 
superstructure formation were required for the formation of the silent state, in G1 arrested cells undergoing silencing 
establishment, we might see essentially uniform Sir protein binding across HML and HMR. Then, once the putative 
S phase superstructure formation occurred, we thought we might see preferential loss of Sir ChIP signal at certain 
regions of the locus.  
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any alteration to chromatin structure that might occur during the nucleus purification protocol. 
Second, rather than targeting nucleases to the endogenous restriction sites in silent chromatin, I 
introduced cut sites for the homing endonuclease I-SceI. By using the same cut site at different 
locations across HML, I thought I would avoid the variability inherent in using different restriction 
enzymes that target different sites. In pilot experiments, I assayed I-SceI accessibility and cutting 
by Southern blot. If the project had moved forward, my plan was to design a high-throughput 
sequencing assay to measure DNA accessibility for dozens or even of hundreds of pooled strains, 
and create a high resolution “accessibility map” of HML. 
 
 The first tests of I-SceI activity in vivo revealed the major limitation of this approach. With 
a test set of four I-SceI sites, two of which were in linkers and two of which were in nucleosomes, 
it was apparent that placement of an I-SceI site in a nucleosome severely reduced I-SceI’s cutting 
efficiency (Figure A1). If I could assay accessibility only at linker DNA, my hypothetical 
“accessibility map” of HML would have, at best, ~150 base pair resolution. Furthermore, because 
much of HML has poorly-positioned nucleosomes, the actual resolution might be even lower than 
that. It’s possible that with further optimization, I could have increased the cutting at nucleosomal 
DNA, but these results came around the same time I was preparing for my qualifying exam, which 
shifted my focus more conclusively toward studying the cell cycle. The idea that Thurtle and 
Rine’s ChIP-seq under-recovery and Bi and Broach’s negative supercoiling both reflect the same 
silent chromatin “superstructure” remains a possibility. However, the ChIP-seq results presented 
in Chapter 2 do not show any strong changes in Sir protein localization upon transition from the 
unsilenced G1 form to the silenced G2/M form, suggesting that a change in superstructure might 
not be the causative change in S phase that drives silencing establishment. 
 

 

 
A2: Genome-wide data on silencing establishment and the cell cycle 
 
 When they were in the lab, Aisha Ellahi and Debbie Thurtle performed the first RNA-seq 
study of the genome-wide targets of silencing (Ellahi et al., 2015). To do this, they compared RNA 

Figure A1: Nucleosomes limit I-SceI accessibility. Strains with I-SceI cut sites introduced at four different 
positions across HML were pre-grown in lactate-containing media, followed by I-SceI induction by addition of 
2% galactose for 2 hours. DNA was isolated by phenol:chloroform extraction, followed by ethanol precipitation. 
5 µg of DNA was digested overnight with PstI-HF, then run on an agarose gel and transferred to a nylon 
membrane and incubated with a radiolabeled HML probe.  
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levels in wild-type, sir2∆, sir3∆ and sir4∆ cells, reasoning that genes whose expression changed 
in all three mutants were those with silencing-dependent changes in gene expression. They found 
that very few subtelomeric genes were targets of silencing, in agreement with Debbie’s earlier 
ChIP-seq result that Sir proteins bind to subtelomeres only at discrete loci near telomeric repeats 
and X elements (Thurtle and Rine, 2014). Given my finding that HML and HMR both required S 
phase for silencing establishment, I was interested in whether the SIR-repressed genes outside 
HML and HMR have a similar requirement. 
 

I performed an experiment analogous to those described in Chapter 2, wherein I arrested 
SIR3-EBD cells in G1 and then added estradiol to turn on silencing and either kept the cells arrested 
in G1 or allowed them to pass to G2/M. At each collection point, I collected cells and performed 
RNA-seq. I focused my analysis on the set of genes Aisha and Debbie identified as SIR-regulated. 
When Sir3-EBD was induced and cells were held in G1, 18 genes had significant >2-fold changes 
in expression (Figure A2a). Only one of these genes, HSP12, was previously identified as SIR-
regulated (Ellahi et al., 2015), but the direction of the regulation was opposite—SIR-repressed in 
the earlier study, but SIR-activated here. For 16 out of 18 genes, Sir3-EBD induction increased 
expression, suggesting that the expression change was not due to a direct silencing effect. The only 
significant GO terms enriched in this set of genes were glucose-6-phosphate metabolism (3 out of 
18 genes) and hydrogen peroxide catabolism (2 out of 18 genes). Investigation of the SGD 
description of these genes’ functions revealed various metabolic processes, many of which appear 
stress-regulated. Thus, I think the most likely explanation is that the addition of estradiol causes a 
minor stress response, independent of silencing. To confirm this, I would need to perform a control 
where estradiol was added to a strain lacking Sir3-EBD or with an EBD not fused to Sir3. That 
none of Aisha and Debbie’s SIR-regulated genes are repressible without passage through S phase 
suggests that cell-cycle progression is a general requirement for silencing establishment. 
 
 After cells passed through S phase, 8 known SIR-regulated genes were significantly 
repressed (Figure A2b, orange points). Three of those genes were HMRa1, HMRa2, and HMLα1, 
as expected based on the results described in Chapter 2 and earlier studies3. The remaining 5 genes 
are all located directly adjacent to HML and HMR. Thus, the silencing establishment that does 
occur after a single S phase is only in direct proximity to HML and HMR. The remaining 
subtelomeric genes that are subject to silencing (16 in Aisha and Debbie’s data) must therefore 
require further time or cell-cycle steps in order to repress transcription. Four additional genes 
appeared to be SIR-repressed in this experiment, but did not appear in Aisha and Debbie’s earlier 
analysis—MNC1, SCR1, RRT15, and YGR161W-B. Of the four genes, two are from repetitive 
sequences—RRT15 is homologous to the rDNA and YGR161W-B is a Ty transposon—and one, 
MNC1, is a very short gene (201 bp), suggesting that the apparent repression of these three may 
be artifactual. The final gene, SCR1, encodes the RNA component of the signal recognition particle 
and overlaps ARS519. Recent studies have suggested a role for Sir proteins at euchromatic origins 
(Hoggard et al., 2018), and thus it is formally possible that SCR1 is directly regulated by the Sir 
proteins. However, Aisha and Debbie’s analysis did not show SCR1 to be SIR-regulated, and thus 

                                                
3 The expression change of HMLα2 upon induction of Sir3-EBD was statistically significant, but did not meet the 2-
fold change in FPKM threshold I set for this analysis. This is in strong agreement with the RT-qPCR data presented 
in Figure 2.3D, which showed that hmlα2* had only a ~30% reduction in transcription upon induction of Sir3-EBD 
and passage of a single S phase. 
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one would have to explain how SCR1 could be repressed by Sir3 during silencing establishment, 
but not at steady state. 
 I did not push these results any farther. Partially, this was because the conclusions were 
self-contained: (1) establishment of silencing requires S phase at both the canonical HML/HMR 
loci and all other known SIR-repressed loci, and (2) silencing establishment can occur after a single 
S phase only at HML and HMR. The latter point suggests that the silencing is strongest at HML 
and HMR, which is consistent with the finding that the few bona fide SIR-regulated subtelomeric 
genes are quite lowly expressed, even in absence of Sir proteins (Ellahi et al., 2015). 
 
 

 

 
  
 
A3: Cell-cycle requirements for silencing establishment using SIR4-EBD 
 
 Before I began using SIR3-EBD to induce silencing establishment, I spent over a year doing 
so with the SIR4-EBD allele. This was purely by chance: I started constructing strains with SIR3-
EBD and SIR4-EBD simultaneously, and the SIR4-EBD strains were ready first. At the time, I 
figured that the two induction strategies would be similar, i.e., that the same cell-cycle 

Figure A2: Silencing establishment at subtelomeric genes requires at least 1 S phase. SIR3-EBD strains 
were arrested in G1 with α factor. Then, the culture was split and cells were either maintained in α factor for 3 
hours (a) or released to nocodazole for 3 hours (b) in the presence of estradiol to induce Sir3-EBD or presence 
of solvent only. The experiment was performed in duplicate, and the average values are plotted here. Each gene 
is replicated by a dot, with dots above the diagonal reflecting genes with higher expression when Sir3-EBD was 
induced and. The diagonal lines on each plot represent two-fold changes in expression between the +estradiol 
and –estradiol condition. 
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requirements would exist when turning on silencing using SIR3-EBD or SIR4-EBD. In hindsight, 
this may or may not be true. 
 
 To begin at the end, I eventually stopped using SIR4-EBD for a simple reason: I realized, 
after doing a control experiment that I should have done far earlier, that SIR4-EBD did not display 
the exquisite switch-like behavior that I needed to study the transition between the silencing ON 
and OFF states. The level of HMRa1 transcription in SIR4-EBD cells grown without estradiol was 
~2-fold lower than sir3∆ mutant cells (data not shown). Thus, I reasoned, if I used those strains to 
study silencing establishment, I would actually be studying the transition from a partially silenced 
state to a fully silenced state, which was not desirable. This led me to switch to the SIR3-EBD 
work described in Chapter 2. 
 

However, before abandoning SIR4-EBD entirely, I found by happenstance that when the 
SIR4-EBD allele was present in the same cell as the SIR3-13xMyc allele, full de-repression of HMR 
occurred could occur in absence of estradiol. Thus, while SIR4-EBD on its own had some activity 
even in absence of estradiol, in combination with the apparently slightly hypormophic SIR3-
13xMyc, this activity was insufficient to cause partial silencing. So, by using a SIR4-EBD SIR3-
13xMyc strain, I could actually study silencing establishment from the de-repressed state. 
Interestingly, when I did perform silencing establishment assays on SIR4-EBD SIR3-13xMyc cells, 
the cell-cycle requirements were dramatically different from those described in Chapter 2 for SIR3-
EBD cells (Figure A3). Rather than partially establishing silencing after a single S phase, these 
cells seemed to require two S-phase passages to repress HMR (Figure A3a) and to recruit Sir3-
myc to HMR (Figure A3b). Note that both experiments displayed represent a single biological 
replicate, and occurred while I was still optimizing my techniques for both RT-qPCR and ChIP-
seq, and thus should be treated carefully. The most liberal interpretation of these results was that 
induction of SIR3 and induction of SIR4 led to fundamentally different silencing establishment 
processes. This would be consistent with the earlier finding that Sir4 is required to recruit Sir3 to 
silencers, but not vice versa (Rusché et al., 2002). Thus, one possibility was that Sir4 recruitment 
to silencers required a single S phase, and that the subsequent recruitment and spread of Sir3 
required a second S phase. A more conservative interpretation of the result would be that the 
hypomorphic SIR3-13xMyc allele led to an artifactually delayed silencing establishment process. 

 
Ultimately, I decided that the quirkiness of these strains—i.e., the need for a hypomorphic 

SIR3 allele to counteract a hyperactive SIR4 allele—would not be conducive to publication-quality 
results. But I still think there’s a reasonable possibility that beginning silencing establishment from 
a sir4- state, wherein the silent loci are completely devoid of Sir proteins, might reveal different 
cell-cycle requirements than beginning it from a sir3- state, wherein Sir2/4 are already bound to 
silencers. The use of better-behaved conditional SIR4 alleles would be necessary to test this 
possibility. 
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Figure A3: SIR4-EBD SIR3-13xMyc strains require two S phase passages to establish silencing. Cells with 
SIR4-EBD and SIR3-13xMyc were arrested in α factor, then either estradiol or solvent only was added and the 
cultures were split into sub-cultures that were either maintained in G1 or released and re-arrested at S phase with 
hydroxyurea or G2/M with nocodazole. For the “subsequent S” and “subsequent G2/M,” cells were released and 
allowed to freely cycle until the next G1, then re-arrested with hydroxyurea or nocodazole. At each time-point, 
cells were collected for either RT-qPCR (a) or ChIP-seq (b). In (a), error bars represent the standard deviation of 
technical replicates for a single biological replicate. In (b), the displayed signal is normalized to the genome-
wide median and plotted on the same scale across all samples. Also plotted, in black, is the input value for each 
sample. 




