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Abstract of the Dissertation

Quality of Information Driven Environment

Crowdsourcing and its Impact on Personal Wellness

Applications

by

Jerrid E. Matthews

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Mario Gerla, Chair

Mobile devices with programmable embedded sensors and internet access have enabled a new

paradigm of socially beneficial software applications. These devices may be stationary or

mobile, and located sparsely across the globe operating under heterogeneous environments.

These multi-lateral sensor data feeds produced by both autonomous and human sensing

agents can be aggregated and transformed by a system to produce a human understandable

spatiotemporal representation of a phenomenon (ie: event) in real-time. These data can then

be disseminated using many different communication infrastructures (e.g. 4GLTE, WiFi).

The study of how to efficiently organize these complex sensor data feeds is the primary

contribution of this dissertation; in addition we present two health and wellness sensor data

applications that leverage the sensor data feeds. Traditional sensor data platforms require the

data publisher to associate a set of descriptive terms (also known as keywords or tags) with

their data feed in order to organize the sensor data. Information operators must perform

a keyword-based search in order to retrieve the data feeds of interest, which may require

subject matter expertise to identify relevant keywords. The central theme of this thesis is

the leveraging of personal sensor platforms, internet computing resources and crowdsourcing

campaigns to achieve not only individual wellness but also community health maintenance.

We contribute a new ontological data model for organizing and enriching sensor data with

valuable QoI/VoI attributes. In addition, we combine theoretical models and systematic
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measurements to show that it is possible to organize sensor data in such a way to retrieve

relevant sensor data in order to measure a phenomenon of interest without tagging or human

input.
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CHAPTER 1

Introduction

1.1 Motivation for Sensor Networks

As with many technologies, defense applications have been the driver for research and de-

velopment in sensor networks. During the Cold War, the Sound Surveillance System (SO-

SUS) [2], a system of acoustic sensors (hydrophones) on the ocean bottom were deployed at

strategic locations to detect and track Soviet submarines. Over the years, more sophisticated

acoustic sensing agents have been developed and SOSUS was made available to the research

community, such as the National Oceanographic and Atmospheric Administration (NOAA)

for monitoring seismic and animal activity in the ocean [3]. Also during the Vietnamese

War, Operation Igloo White [4] was a covert operation to deploy thousands of Air Delivered

Seismic Intrusion Devices (ADSID) over the Ho Chi Minh Trail in an attempt to cut off

strategic enemy supply routes in the dense forest. The device could sense vertical earth mo-

tion by the use of an internal geophone and could determine whether a man or a vehicle was

in motion at a range of 30 meters and 100 meters respectively [5]. ADSID enabled US forces

to track enemy movements in Laos, which facilitated the interdiction of North Vietnamese

Army supply lines and staging areas used to resupply the military campaign conducted in

South Vietnam.

Distributed sensor networks were proven in-valuable for intelligence, surveillance, target

acquisition, and reconnaissance (ISTAR) missions. Later on, researchers at the Defense Ad-

vanced Research Projects Agency (DARPA) began investigating whether network communi-

cation principles from the ARPANET could be applied to low-cost networked autonomously

operated sensor nodes. Later on researchers began developing prototype distributed wire-
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Figure 1.1: A sensor network enabled coalition use case.

less sensor networks (WSN’s) and delay tolerant communication protocols [6–9]. During

this period, the network of sensing agents that scientists deployed were analogous to mod-

ern wireless sensor networks, and the culmination of sensor data provided by these sensing

agents improved the veracity of the reports that describe an event of interest provided by

the fusion modules that process the sensor measurements. The more accurate information

aided in better decision making and protected armed forces and allies stationed in high risk

attack zones.

1.1.1 The Semantic Sensor Network

In modern society, a complex web of semantic sensor networks (SSN) and open sensor data

publishing platforms have been erected to make sense of many worldly observable phenomena

(ie: events) through information analytics and data fusion. Consider the use case outlined

Figure 1.1. A collection of sensing resources belonging to a number of agencies (members)

is deployed in a broad area of interest. These sensing assets monitor events of interest and

feed their observations (directly or following various forms of information fusion) to end-

users within these agencies. The sensor-originated information flows over a shared support

(backbone) network, to which various agency networks couple. The use-case in the figure
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may represent any number of ad-hoc, or infrastructure-based cooperative, distributed sensor-

enabled operations including disaster response situations, coalition military operations, and

traffic monitoring services crossing multiple administrative domains. Sensor data applica-

tions require collection of data from both static and dynamic sensor networks. The devices

that measure the required data must be capable of assessing these sensor data for relevancy

to ensure effective operation of sensor-enabled operations and reliable business decisions.

In the next chapter, we discuss the legacy ontology based knowledge representation lan-

guages for characterizing sensor data, and propose a new ontology based data classification

model that allows users to construct a sensor knowledge base that maps a phenomenon of

interest (eg: a spatiotemporal event) to the appropriate set of sensors that are qualified to

provide information about the phenomenon.

1.1.2 Contributions

This paper studies one of the many challenges in architecting software systems to deal with

quality of information (QoI) evaluation operations for these systems in a reproducible fashion.

The sensing assets under consideration are wireless sensor networks (WSNs), comprising a

large number of low-cost untethered, yet interconnected, sensing nodes of (relatively) limited

computing, communication, and energy resources. They form the basis for a broad set

of smart applications, either smartening existing ones (such as building automation and

environmental control) or enabling entirely new applications, such as low-overhead remote

monitoring of habitat, farming fields, traffic conditions, etc. Assessing quality and the value

of an information product when there is no a priori knowledge of the information sources

that application will provide is indeed a challenge.

This is a crucial design challenge for the software system designer and developer that

ideally would like to design and develop a system that can be easily copied and deployed in

many occasions with as few customization adjustments to the core system code as possible.

The latter system design comes at a cost and is notorious for being bug-prone. To achieve

the above, a system development framework will be needed that remains valid from one
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deployment instance to another around which the core system code can be designed. In this

paper, we study one aspect of such a design framework with particular interest in the design

of a new ontology based data model for semantic sensor web (SSW) queries that classifies the

many different types of sensing agents qualified to provide information about a phenomenon

of interest (eg: a spatiotemporal event).

This thesis makes three principal contributions:

Contribution 1: New Ontology Based Data Model for SSW Queries that classifies the many

different types of sensing agents qualified to provide information about a phenomenon of in-

terest. We have extended the contributions of Bisdikian et. al. [10, 11] by developing an

ontology based classification model for sensing agents and sensor data fusion platforms to

enrich their sensor data with information about the data source and metrics describing the

accuracy, precision, completeness, timeliness, reliability, and utility of sensor data.

Contribution 2: Sensite: A knowledge-base Web Platform for SSW queries. We have

developed an open sensor data platform that enables users to upload an arbitrary sensor

data annotated ontology based data model. Users can perform a spatiotemporal query for a

phenomenon of interest (ie: rain) at a geographic coordinate (latitude, longitude) at a cer-

tain time and Sensite will return all relevant sensor information (which may consist of one

or more sensor types) capable of providing information about the phenomenon of interest

(whether directly or though sensor fusion of multiple sensor types). Conventional sensor data

platforms such as OpenRTMS [12], Google Cloud Platform [13], SAFECAST [14] use a non-

restricted keyword tagging based method that enables publishers to annotate keywords that

describe information about the sensor data and/or the phenomenon being observed. The

drawback to this approach is that the collection of tags may not provide a comprehensive

set of contextually related classifiers that describe the heterogeneous environmental contexts

that the sensor data may be applicable to providing information about. To our knowledge

this is the first application of its kind.

Contribution 3: Ultraviolet (UV) Guardian: A mobile application that leverages local

crowdsourced UV irradiance information for pedestrian UV exposure estimation. We have

developed a mobile application that provides recommendations to protect Sportspersons
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from Sun over-exposure and gives recommendations for sunlight benefits, such as Vitamin

D. This novel mobile application leverages environmental context sensor information and

crowdsourced UV irradiance information (provided by institutions and other UV Guardian

users) through Sensite in order to predict the amount of Sun exposure that the user will

receive without requiring the user to wear a UV sensor. To our knowledge this is the also

first application of its kind.

Contribution 4: Dengue Detector Mobile Application (DDMA): A mobile application that

aims to provide a rapid and economical dengue diagnosis solution for territories unable to

afford expensive dengue diagnosis testing kits. Moreover, DDMA is designed with Physi-

cians and the Center for Disease Control (CDC) in mind to enable them to track dengue

outbreaks in real-time through a website that queries our Sensite platform for crowdsourced

dengue diagnosis test results uploaded by DDMA. DDMA aims to improve the quality of life

in developing countries by providing disease diagnosis and surveillance on-site rather than

waiting a few days with the conventional dengue diagnosis kits.
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CHAPTER 2

Ontology Based Model for Assessing the QoI/VoI of

Sensor Data

2.1 Introduction

Intelligence, Surveillance and Reconnaissance (ISR) networks, accurately assessing the qual-

ity of sensor information is key to making better decisions. In semantic web technology,

ontologies continue to play a major role in the organization of sensor information to decide

a course of action to take pertaining to data received from a source. In this chapter, we

study how an ontology can be used to capture information about the many different types

of sensing agents that are capable of relaying data about worldly phenomenons. We will

discuss the design of our ontology based data model for assessing the quality and value of

information (QoI and VoI) of sensor data and the data source publishing the information.

Next, we will describe our implementation of an extensible software library that semantic

sensor web (SSW) platform software developers can use to associate QoI error analysis algo-

rithms that aid in assessing the QoI produced by data sources operating under heterogeneous

environments in an ISR army simulation application. In chapter 3, we discuss how the pro-

posed data model is applied to our Sensite Knowledgebase sensor data web platform for

SSW data queries. Finally, the following chapters will describe novel applications for health

and wellness monitoring that leverage crowdsourced sensor data provided by the Sensite

Knowledgebase application.
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2.2 Defining an Ontology based QoI/VoI Data Model

Traditionally, WSNs are designed, deployed and operate in rather “closed” set-ups, where

WSNs are intimately tied to their applications. However, we envisage that a natural evo-

lution to openness for their design, deployment, and operational architectures will come to

prevalence (or at least attain significant penetration) as it has happened with many other

distributed computing and communication technologies. Such openness will permit the eco-

nomic reuse of sensing resources by multiple applications and facilitate the timely deployment

of both smart sensing systems and even smarter sensor enabled applications that may search,

select and bind (and unbind) dynamically to sensing systems that can best support their

current information needs. Information needs relate to the what, where, and when proper-

ties of required information. Information providers (representing the who and how of the

information sources) are selected to best match these. What “best” could be is characterized

and assessed via the QoI and VoI of the desired information pieces. The distinction between

QoI and VoI is necessitated from the fact that the same piece of information, e.g., an image

which has given quality characteristics (e.g., resolution, area it covers, time it was taken,

owner, etc.) may have many different uses and bring different value to each of these uses.

Consider the use-case outlined Figure 1.1, where a collection of sensing resources be-

longing to a number of agencies (members) is deployed in a broad area of interest. The

sensing assets monitor events of interest and feed their observations (directly or following

various forms of information fusion) to end-users within these agencies. The sensor origi-

nated information flows over a shared support (backbone) network, to which various agency

networks couple. The use-case in the figure may represent any number of ad-hoc, or infras-

tructure based cooperative, distributed sensor enabled operations including disaster response

situations, coalition military operations, and traffic monitoring services crossing multiple ad-

ministrative domains.
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2.3 Conventional Ontology Data Models for Sensor Data

Ontologies play an important role in the representation and organization of information for

data retrieval. Semantic web languages such as Ontology Web Language (OWL) [15] and

Suggested Upper Merged Ontology (SUMO) [16] attempt to define a high level taxonomic

schema for defining terms for entities and their relationships. These ontological languages

allow users to define terminologies that describe entities and their relationships. Research

related to sensor networks and the semantic web has focused on using an ontology to define

sensor instances, relationships between sensors in sensor networks, and organization of sensor

data. OWL added another level of flexibility by allowing the user to define their own entities,

taxonomies, and relationships. The SUMO schema is relatively specific to defining a schema

for devices, and their relationships within the semantic web. However, these semantic rep-

resentation languages fail to provide a solution that addresses the quality and value of the

information attributes. Ontology based sensor metadata solutions also include SensorML,

an XML-based language that describes sensing platforms, data, and processes [17].

Figure 2.1: Bisdikian et. al. proposed the following ontology as a general purpose quality of

information data model for sensor data.

In [11], Bisdikian et. al. proposed the ontology based data model shown in Figure 2.1
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to describe the general body of attributes of Quality of Information (QoI) and Value of

Information (VoI) for an arbitrary type of sensor data in Figure 2.2. A characterization of

Figure 2.2: Bisdikian et. al. proposed the following ontology as a general purpose Value of

Information (VoI) data model for sensor data.

QoI is useful in many contexts and can be invaluable in making decisions such as trusting,

managing, and using the information in particular applications. However, the manner of

representing QoI is highly application dependent, and incorporating algorithms on-the-fly to

account for the operational and environmental context changes that these sensing agents may

operate under can be cumbersome. Therefore, the authors proposed an application context

agnostic ontology based data model for assessing the QoI and VoI of sensor information.

The authors define QoI and VoI as the following:

• Quality of information (QoI) represents the body of evidence (described by infor-

mation quality attributes) used to make judgments about the fitness (or, utility) of the

information contained in an information stream.

• Value of information (VoI) represents the utility of the information in an informa-

tion stream when used in the specific application context of the receiver.

The flow of information in a typical SSW network goes from the sensing asset (human or

9



Figure 2.3: QoI Library: An ontology based model for associating QoI error analysis algo-

rithms with the applicable sensing agents according to the operational environment context.

electronic device) to what the authors define as an information processing operator. Infor-

mation operators may consume the sensor data directly or perform data fusion to produce

a new piece of information and append metadata that describe the QoI and VoI attributes

for sensor data when applied to a specific application context.

2.4 New Contribution in Defining QoI/VoI

In [18], we extended the data model described in section 2.3 and implemented an ontology

based framework, referred to as the “QoI Library” for associating a library of QoI analysis

algorithms that are specific to a data source.

Our proposed model (shown in Figure 2.3) is designed to be broad in scope for applications

operating in any environment. Our data model follows the premise that an “Observation”

of “Phenomena” (ie: worldly events) is observed by a “DataSource”, operating within an

environmental context denoted by PhenomCntx (eg: air, water, land), and may have some

sort of (assumed detectable and correctable) error in measurement with respect to the specific

operating environment. The following sections break down our data model in further detail.
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Figure 2.4: A DataSource (i.e. “data source”) is an entity that disseminates and publishes

information also known as an observation to its subscribers.

2.4.1 Sensing Agent

We studied the general characteristics of both human and electronic sensing agents (ie:

DataSources) and the environmental contexts that these various sensing modalities operate

under and describe our proposed ontology data model shown in Figure 2.4. In alignment with

the use-case presented in Figure 1.1, sensing agents publish observations of a phenomenon

typically as a sensor data stream that information operators can subscribe to in order to make

decisions. Any process or agent that generates successive messages can be considered a source

of information, where each observation published is treated as independent and somewhat

stochastic, in a sense that all possible subsequent states of the sensor is determined by the

predictable actions of the sensor plus the phenomena being observed.

We define the object to be classified as either a sensor or human. If a sensor, then we

include such information as the type of platform used (stationary or mobile) and the sensors

operation environment. Other information can also be extended from this framework as

necessary to define identifying attributes for the software application.
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Figure 2.5: An Observation is a piece of information (e.g., sensor data) observed by and

published from a data source describing an event of interest.

2.4.2 Observation

An Observation (see Figure 2.5) is a piece of information (e.g., sensor data) observed by

and published from a data source describing an event of interest. An observation is usually

measureable information that represents qualitative or quantitative attributes seen as the

foundation of which knowledge is derived. The root framework of this library is tightly

coupled in relationship to an observation.

The core of the ontology is comprised of predefined relationships which extend from an

Observation object. An Observation describes information produced from a data source,

denoted by the “observed by” relationship. The event (eg: sniper shot) that triggered the

Observation is classified or categorized by a unique term Phenomena, which we denote by the

“classified by” relationship. A Phenomena, may produce many multifaceted observations

that are mutually exclusive and potentially from a single or multiple data sources. We use the

term mutually exclusive to state that each observation provides a qualitative or quantitative

sensor measurement under a single context that is time bounded.

2.4.3 Phenomona

A Phenomena (see Figure 2.3) represents a uniquely identifiable name for categorizing any

observable occurrence at the highest level. Essentially, the attribute is to be used for the

naming and classification of an event that produced one or more Observations from a set

of data sources. The PhenomCntx attribute provides information about the context of the

12



Figure 2.6: The PhenomCntx attribute provides information about the context of a specific

observation. For example, an acoustic array can produce a bearing context event (Phenom-

Cntx ) as the result of a sniper shot (ie: transient phenomenon).

phenomenon being sensed. A PhenomCntx may span various spatiotemporal regions in

relation to the phenomena that it describes. For example, consider the SniLoc scenario

where a sniper shot (ie: transient phenomena) has occurred. A GPS sensor can produce

a temporal observation under the context of location and an acoustic array can produce a

direction of arrival (DOA) observation under the context of bearing. DOA events and GPS

data are two separate entities each having their own unique context, although associated with

the same parent phenomenon. The relationship between the Phenomena and PhenomCntx

is unidirectional and hierarchical, with the Phenomena serving as the single parent instance

that can generate multiple PhenomCntx events related to a unique context.

2.4.4 QoI Context

As mentioned in the earlier section, the QoI library, is an ontology based framework for

mapping the relationship between analysis algorithms and a sensor data source (human or

sensor) and its operational environment in order to aid in the improvement of QoI. In spite

of the methods used to calibrate the sensors, random Gaussian noise may occur to bias the

observations produced by the data sources. Therefore, we define a set of extensible abstract
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Figure 2.7: The QoIErrorCntx attribute is designed with extensibility in mind for SSW

developers to categorize and extend QoI error analysis algorithms associated with a specific

data source that provides information about a phenomenon of interest.

classes to represent all of the possible sensing modalities of a sensor. The software system

designer and developer ideally would like to design and develop a system that can be easily

copied and deployed as necessary with as few customization adjustments to the core system

code as possible. Error analysis algorithms can be extended from the QoIErrorCntx classes

(see Figure 2.7) by the software developer to perform analysis on observed and measureable

events under specific contexts in the world. We stated that each sensor observes, measures,

and reports occurring events under certain observable contexts in the world (PhenomCntx ).

Objects extending the QoIErrorCntx represent a taxonomic category of all feasible attributes

that a sensor observation can represent, such as time, bearing, and temperature which when

associated with the QoIErrorCntx will become a one to one mapping with their corresponding

error object instance classes TimeError, BearingError, and TemperatureError respectively.

The usage of the QoIErrorCntx is based upon the assumption that each extended object will

define error analysis algorithms corresponding to assessing the capabilities of the data source

that it corresponds to. The subclasses of the parent class can be augmented depending on

the application domain.
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Figure 2.8: A collection of sensing resources belonging to a number of agencies (members)

is deployed in a broad area of interest.

2.5 Use-case for the QoI Library

Consider the use-case outlined Figure 2.8, where we describe the sniper shooter localization

(SniLoc) scenario. We consider a coalition operation environment with coalition partners

pursuing common mission objectives; we can think of this as an instance of a multi-domain

sensor driven use-case. The coalition partners collaborate at various mission tasks sharing

along the way their sensing resources and senor originated information. Our interest here is

in ISR (intelligence, surveillance, and reconnaissance) applications that depend on various

sensor networks and sensing agents to monitor certain events. Based upon application needs,

these sensing agents, which we shall call platforms, are designed with general purpose exten-

sibility in mind. ISR sensor networks may include multiple sensor devices (GPS, barometer,

acoustic, radar) residing on a single platform providing information feeds to applications.

With regard to our exemplar case, a shooter localization-sensing task is underway in

support of a general ISR security mission. The task makes use of SniLoc, a sensor enabled

application that analyzes sensor-originated information. SniLoc produces reports about

sniper activity along with localization information produced by processing information de-
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rived from acoustic sensors. SniLoc is (assumed to be) deployed and running on a network

such as the one in Figure 1.1, making use of the QoI metadata and the services provided

by QoI annotators that create and process these metadata as discussed earlier. Suppose

that SniLoc makes use of three acoustic sensors, noted as s1, s2, and s3, for its localization

operation. Suppose, the situation is such that sensors s1 and s3 are A-sensors while sensor s2

is a non-A-sensor, i.e., it belongs and has been deployed by another coalition partner where

the trust level of s2 is questionable, so any localization report involving s2 must account for

this.

From a system design point of view, the above will involve some form of a sub-classing of

QoI evaluation procedures that are applicable to the type of acoustic sensors that s2 belongs

to. For example, to calculate, say, the accuracy of the localization estimate provided by

sensors s1, s2, and s3, a software instance of a QoI annotator will need to access the QoI

library for algorithms used to analyze and/or improve the quality of information produced

from each sensor. Given a trace of historical observations of data produced from s2, it

is discovered that this sensor was configured to introduce an increased level of error in

the measurements. However the error model follows a predictable pattern over a period

of time. Error correction algorithms that specifically apply to one or more pieces of data

produced from this sensor can be extended from the QoI library to enable real-time analysis

or correction of produced information. With respect to SniLoc, the data fusion layer in

Figure 2.9 aggregates/fuses acoustic sensor observations, such as DOA measurements, caused

by shockwaves from the sniper fire. As a result of this aggregation, the layer produces

localization reports that include not only the estimated location of the firing, but a statement

regarding the goodness of the estimate that corresponds to the accuracy quality attribute.

The three properties mentioned above are relatively static over a long period of time,

however dynamic properties, such as large military vehicles (Humvee, MRAP’s, APC’s and

MBT’s) temporarily residing in the path of the sensor also can affect DOA measurements

from an acoustic sensor by delaying the time of arrival of sound waves. Figure 2.8 shows

four sensors deployed in an area of interest that have detected a sniper shot. The red

ellipse represents the region of the possible shooter locations. The variable di represents
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Figure 2.9: End to end architectural detail of the interaction between sensors observing an

event and the application consuming sensor data.

the distance between the sensor and the shooters location; ti represents the time that the

sensor hears the event; cwi (correlation window) represents the time window for processing

all aggregated DOA measurements within the time period; and v represents the speed of

sound. It is assumed that the position of each sensor is known. Given the location of

each sensor, event timestamps, and DOA measurements (with error), the fusion annotator

can estimate the location of the shooter. Upon receiving DOA measurements from each

sensor, the fusion annotator can validate each sensors measurement by constructing a time-

line of arrival at each sensor. Generally, sensing events will fall within a narrow window

of each other denoted by cw1. However, sensor s4 is (presumably) located adjacent to a

tall brick wall, with an elongated armored military vehicle impeding its line of sight to

the sniper’s location. In this situation, the sensor overhears the sound due to refraction

against the wall, however the time of arrival of the event at the data fusion layer is within

the next correlation time window cw2, thus the measurement is excluded from the fusion

process. A Fusion Annotator constructs a meaningful summary or transformation of its

inputs in a format consumable by an application. The QoI library also resides within this

layer to aid in the assessment of information to produce QoI metadata defining the accuracy

of the information. The act of a sniper shot is considered a Transient event under the
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Figure 2.10: Example QoI Library scenario for shooter localization.

Phenomena attribute within the library (see Figure 2.10). The borrowed acoustic array,

which has been configured by coalition members to reduce the accuracy of published data

is named “ArrayT17”. This array produces DOA measurements, also known as “Bearing”

events, denoted by the PhenomCntx. The class “ArrayT17DOAErrorTrace”, extends from

the generic BearingError class, and performs a trace on DOA measurements reported for

this sensor whenever a new DOA measurement is reported. The output of this algorithm is

an assessment of trustworthiness given previous reports and their value to the application.

The QoILibraryHandlerIFC and DataSourceHandlerIFC is an interface implemented for

the QoI library that manages the indexing of extended error calculation classes and data

sources respectively.

QoILibraryHandlerIFC handler = QoILibraryHandler.getInstance();

DataSourceHandlerIFC datasource_handler = QoILibraryHandler.getInstance();

The new error algorithm class “ArrayT17DOAErrorTrace” to be added to the QoI Library

will be extended using the following method addNewErrorLibrary(). This method serves as

a triple key/value pair that provides an indexing scheme for the error analysis algorithm

class in the library according to the following attributes denoted in the code below.

//Load library

QoIErrorCntx library = new ArrayT17DOAErrorTrace();

DataSource source = handler.addNewErrorLibrary(
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DataSourceHandlerIFC.SENSOR,"ARRAYT17","TRANSIENT’’,

QoILibraryHandlerIFC.BEARING, library);

source.setName("ARRAYT17");

//Retrieve library

QoIErrorCntx lib = handler.retrieveErrorLibrary("ARRAYT17",

"TRANSIENT",QoILibraryHandlerIFC.BEARING);

Whenever an application needs to access the algorithm for assessing the reputation of

measurements reported from “ArrayT17”, the DOA error analysis algorithm is retrieved by

the aforementioned code.

The scenario described above is a subset of many other types of algorithms that provide

usage for error analysis and assessment of sensor data.

2.6 Discussion

The proposed design (see Figure 2.3) is the first step towards providing an extensible library

for system software developers to design and develop a QoI aware solution with the QoI

Library. Future work will consider the addition of a model for data provenance. Data

fusion layers may produce a new data stream summarizing a set of information reported

from aggregated sensor data. It is our intent to maintain a historical record of ancestral

information, appended as metadata to maintain a lineage of the transformation process of

data produced. This research was sponsored by the US Army Research Laboratory and was

accomplished under Agreement Number W911NF-06-3-0002-P00008.
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CHAPTER 3

Sensite: Knowledge based Platform for Semantic

Sensor Web Queries

The goodness and utility of information typically is assessed by how comprehensive the

what, when, and where properties of the information are. In chapter 2, we studied how

WSN’s are designed, deployed and operated. We proposed our vision for WSN’s to move

from traditionally “closed” set-ups, where WSN’s are intimately tied to their applications

to an open platform where information operators can dynamically bind to web accessible

sensing agents on-the-fly. We also discussed the design of our ontology based data model for

assessing the quality and value of information (QoI and VoI) provided by a data source. The

recent Internet of Things (IoT) and Web of Things (WoT) standard embodies the vision that

we proposed in [18]. In this section, we describe Sensite, an open sensor data publishing

and query web platform that applies the data model proposed in chapter 2 in order to

add contextual relevance to the taxonomic relationship between sensors qualified to provide

information about a worldly phenomena (ie: event) of interest.

3.1 Introduction

The Internet of Things (IoT) is a paradigm that defines a framework where multiple internet

enabled intelligent embedded devices can be controlled and their data streams assessed.

Recent applications in the IoT space have been implemented in domains such as home [19,20],

logistics [21] and transportation [22, 23]. More recently, the Web of Things (WoT) builds

on the IoT standard and mandates sensor devices to deploy representational state transfer

(RESTful) API’s to access the data streams that a sensing agent provides. The IoT and WoT

20



are a proposed standard that brings SSW enabled devices closer to the realization of our

vision described in chapter 2 and [18], where the data feeds from multi-purpose SSW sensor

devices (when commercially available) are made available to a group of trusted members

who are granted access. Information from these data streams are fused by information

operators in order to make inferences and decisions about multiple phenomena of interest.

We apply the Observation concept from our ontology based data model to a web based

sensor data publishing platform named Sensite. We also discuss the research challenges

faced when designing an unsupervised learning algorithm within Sensite that identifies what

type of sensing agents are qualified to provide information about a phenomenon (directly or

through data fusion).

3.2 Conventional SSW Sensor Data Platforms

COSM was a popular “open” SSW sensor data platform [24] that provided a repository for

SSW developers to publish arbitrary types of sensor data streams (such as Arduino, Twitter

feeds, or other feeds). In order to publish to COSM, the owner must assign a title (eg:

Arduino Temperature) and descriptive keywords (eg: Arduino, temperature, outside) to use

as search terms. Information operators could consume a feed by performing a query using

the relevant keywords, then bind to the related sensor feed(s) of interest from the query

results. COSM enabled users to store specific or arbitrary types of sensor data, however

did not provide a comprehensive set of contextually related classifiers that describe the

heterogeneous environmental contexts that the sensor data may be applicable to. In other

words, these sensor data may be applicable to measuring and/or describing many other types

of phenomena (eg: shooter localization, nuclear radiation, etc.), however there is no clear

model that enables the user and/or application to obtain as much information as possible

to make an informed decision about a certain phenomenon of interest without performing

multiple queries for the different types of applicable sensor data and implementing algorithms

to fuse these data. Moreover, having sufficient subject matter expertise of the applicable

types of sensor data is also a requirement.
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Recently, COSM has changed their name to Xively [25] and their business model to

providing a service that enables seamless communication for arbitrary types of SSW devices.

COSM also provides custom data analytics through dashboards in order to support the

rapid decision making process by minimizing the time that it takes to process information.

Other popular related commercial SSW platforms either enable seemless communication

protocols for disparate sensors [25,26] or provide analytics for a specific set of SSW enabled

sensors [12, 27,28].

We studied the principles of information theory and propose an unsupervised learning

algorithm implemented within our Sensite Knowledgebase platform that learns the many

phenomena that a sensor is qualified to provide information about by crawling unstructured

text from the world wide web (www). Our algorithm enables a non-subject matter expert to

make informed decisions about a phenomenon of interest without having to know beforehand

all of the applicable types of sensor devices.

3.3 System Overview

Figure 3.1: System architecture diagram for the Sensite sensor data knowledgebase web

platform.
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Figure 3.2: Ontology based data model that defines the BaseQoI schema for annotating a

piece of sensor data with QoI information.

Sensite is an open sensor data web platform that enables information operators (human or

software) to query for arbitrary types of sensor information that is “best” qualified to provide

information about a phenomenon of interest at a given location, at a given time. Sensite

can be used to query these sensor data feeds via the RESTful API, the webpage, Twitter

or Facebook pages (see Figure 3.1). The metric that Sensite uses to gauge what sensors are

“best” qualified to provide information either directly or indirectly (assumed though data

fusion which is at the discretion of the user to perform) about a phenomenon of interest comes

from an inference based learning algorithm that crawls webpages from the www and applies

statistical algorithms to obtain a relevancy metric. Sensite’s system architecture is shown in

Figure 3.1. Users can upload QoI/VoI annotated sensor data in batch or individually using

the Sensite webpage or RESTful API, and Sensite’s Knowledgebase module will process the

information about the publishing data source.
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Figure 3.3: The BaseVoI class describes attributes related to the value of information. The

BaseData class contains the sensor data and with spatiotemporal information about the

observation.

3.4 Implementation of the Ontology Based QoI/VoI Data Model

We applied the ontolgy based model proposed in section 2.4 as an instantiable XML schema

document (XSD) (see Figure 3.2), which the end user can convert to a Javascript Object No-

tation (JSON) format representation and append QoI/VoI metadata to the information pro-

duced from the sensor data feed(s). We extended the data model by providing the BaseVoI

and BaseData attributes proposed in [11] (see Figure 3.3). BaseVoI describe attributes that

are related to the value of information. Attributes that we extend are VoITrustAttr, which

describe data trustworthiness and VoIUsefulnessAttr/VoIConvenienceAttr which describes

usefulness and utility respectively of the data for the information operator to consume. Base-

Data contains the actual sensor datum point, along with spatiotemporal information about

the observation. The sensor data returned by Sensite is in JSON format in order to make

consuming the data easier for human and web service based information operators.
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Figure 3.4: Webpage interface for querying sensor data.

3.5 How to Query/Upload Sensor Data

The Sensite application applies the corollary stated in section 2.4.2 that a sensing agent (ie:

Datasource) senses a phenomena occurring at a certain location, at a given time. The query

language that we use also adheres to the structure. In the next sections, we describe how

the user can perform a query to obtain sensor data.

3.5.1 Webpage

The webpage interface, shown in Figure 3.4 enables the user to query the name of a phe-

nomenon of interest, the latitude and longitude geographic location, and the date/time of

the desired observation. When the user clicks “Submit”, all relevant sensor data is returned

in the table below. The user can click the “+” in the Expand column to see the JSON

formatted metadata associated with that piece of sensor data.
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Figure 3.5: RESTful API for querying sensor data.

Sensor data can be uploaded by clicking the “Upload Sensor Data” link. The user will

then be presented with a page that enables batch uploading of the sensor data to the Sensite

Knowledgebase.

3.5.2 RESTful API Web Service

The RESTful API exposes two web service methods that enable users to upload or query

sensor data. The query API, shown in Figure 3.5 requires the name of a phenomena of

interest, the latitude and longitude geographic coordinates, and the date/time of the desired

observation. The data returned will be JSON formatted metadata associated with that piece

of sensor data. Sensor data can be uploaded from the REST API by accessing the URL to

upload sensor data. This is also the same URL that the Sensite “Upload Sensor Data”

webpage uses.

3.5.3 Twitter and Facebook

Many sensor data applications have leveraged social networking sites as a method of mining

or publishing sensor data [29–31]. Twitter and Facebook are (in essence) fairly open sensor

data publishing platforms. For instance, the Facebook Check-in feature uses sensor data to

track the location of an individual.

We collaborated with Dr. Eduardo Cerqueira, from the Federal University of Para,
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Figure 3.6: Query sensor data via Twitter.

Figure 3.7: Query sensor data via Facebook.

27



Brazil in order to integrate their existing Twitter social networking Sensor4Cities sensor

data querying platform into our Sensite platform so that users can query for sensor data

using the following query structures for Facebook and Twitter (examples given in Figures

3.6 and 3.7):

• Twitter - @sensor4cities #ss phenomenon$latitude,longitude$date time (see Figure

3.6)

• Facebook - #ss phenomenon$latitude,longitude$date time (see Figure 3.7)

Sensite will post a response containing a dynamic HTML link to the sensor data requested

that the user can click on to see the raw sensor data. An incorrect query will result in a

response message posted on the page.

3.6 Unsupervised Learning Algorithm

3.6.1 World Wide Web as a Data Source

The www hosts over one billion websites, each containing a wealth of multi-faceted infor-

mation. We assume that each webpage represents a piece of information about our universe

that we assume to be true (including the justification for those entanglements). Our algo-

rithm associates mentioned sensors with the phenomena that they are qualified to provide

information about by analyzing webpage text and extracting the contextual meaning of only

complete (properly structured) sentences. Based upon the law of large numbers, we assume

that our algorithm will eventually converge to the true relationships as new information is

obtained from the number of related websites visited. We will go into further detail later in

the chapter.

A big challenge that we faced was figuring out how to query webpages in the www. Due

to economies of scale, we are not able to query the entire www. Therefore, we decided to

use Google’s search engine as a vehicle for webpage search and extracting information from

webpages that contain sentences describing relevant contextual information. Our algorithm
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assumes the following information is known a priori:

a) the name (not including the synsets) of sensor devices capable of measuring a worldly

phenomena

b) the name (not including the synsets) of worldly phenomena (ie: events) that are observ-

able by a sensor device

c) knowledge of verbs (including the synsets) that are used in a complete sentence to ascer-

tain the extent, dimensions, or quantity of a worldly phenomena

a) We store the names of a total of 139 sensors. Some of which are rain gauge, accelerometer,

breathalyzer, acoustic sensor, etc. Sources such as Wikipedia [32] provide an exhaustive list

of sensor devices that are both modern and obsolete. One could argue to simply assume

that the sensor usage definition provided by Wikipedia is sufficient rather than learning the

relationships by analyzing webpage text. However, the definition given by Wikipedia and

the dictionary only describe the intended purpose of the sensor, and omit other contexts that

the same sensor can be used to provide information about. For instance, an optical sensor is

by definition a device that is used to measure ambient light. However, this definition alone

omits the fact that an optical sensor can also be used to detect an explosion (a transient

worldly phenomenon). Another exemplary usecase is using a speedometer to determine the

speed of an object. However, speed can also be extracted using other sensors such as an

accelerometer or a clock by applying a transform or sensor data fusion algorithm.

b) We assume knowledge a priori of the names of observable worldly phenomena (not includ-

ing their synsets) because our inference algorithm is currently not capable of automatically

deciphering the terms that describe a phenomenon. Therefore, we store the names of a total

of 71 observable worldly phenomena in a database. Some which are rain, acceleration, fire,

explosion, etc.

As mentioned previously, although we store the names of sensors and worldly phenomena,

our knowledgebase initially is not aware of any of their relationships. This information

is learned by analyzing the text from the www. As mentioned in section 3.6, no SSW

29



Figure 3.8: This object is tagged with keywords that describe what it is, but no keywords

are listed that describe the contexts of how the object can be used (e.g. writing, coloring,

hole punch, etc.). This is the problem with current SSW sensor data storage platforms.

sensor data platform provides a comprehensive set of contextually related classifiers that

describe the heterogeneous environmental contexts that the sensor data may be applicable

to: Requiring the information operator to have knowledge beforehand of all the necessary

sensor data that their application needs. We use the example in Figure 3.8 to illustrate

our main point in bullet point a), which is that most SSW data publishers tend to apply

keywords that describe the sensor type and the current context to which the sensor is applied.

However, when the data is uploaded to a SSW sensor data platform, the SSW data publisher

usually neglects to add keywords to describe the other related contexts to which the sensor

data can also be applicable to. Humans naturally categorize sensors according to contextual

relevance, rather than by the sensor name or feed id. Given this, Sensite provides a query

structure where users can perform spatiotemporal queries based on the phenomena of interest

(see section 3.5), and recieve a manifest list of all the applicable sensor types (if data exists)

that they can bind to. Our algorithm is implemented within the Knowledge Base module

(see Figure 3.1) of Sensite as a service. To the best of our knowledge Sensite is the first SSW

sensor data platform to apply this approach.

c) There are many ways that a sentence can be constructed to describe the same contextual

relationship. There are also many different senses that a single word can be used, and synsets
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Figure 3.9: a) A human viewing this webpage in a web browser, can process the text in

this webpage to understand what an altimeter is by reading the complete sentences. b)

The Sensite Knowledgebase sees only unstructured text and must extract the sensor to

phenomenon relationship. Our algorithm only processes text that is a complete sentence.

(ie synonyms) that describe the same hyponym. For instance:

• A pluviometer is used to quantify the amount of rainfall over a period of time.

• A udometer is a sensing device used to measure the amount of precipitation over a

period of time.

• A rain gauge collects falling precipitation and funnels it to a rain measurement device.

(Source: www.weathershack.com)

The aforementioned sentences use three different synsets to describe a rain gauge sensor and

there are three different synsets used to describe rain. Therefore, we apply a semantic sim-

ilarity algorithm to identify the relationships between the words of interest when analyzing

the text. We will discuss our algorithm in the next section.

3.6.2 Understanding the Semantic and Grammatical Context of a Sentence

A human typically processes information from a webpage viewed in the browser by reading

complete sentences and extracting the relevant context. However, when a computer program
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(ie: our Sensite knowledgebase) views the same webpage, it sees simply unstructured text.

Therefore, the research challenge of interest is identifying the best method to process text

within the webpage in order to identify the relevant context (see Figure 3.9B).

Considering this, we selected a few random sensor devices and searched for webpages that

describe the phenomena that each sensor is qualified to provide information about. Our goal

was to identify certain predictable characteristics of a properly structured sentence. We then

viewed the same webpage from the perspective of what our Knowledgebase would see, and

discovered that the best method to obtain valid information from the document corpus is

to process only complete sentences. A complete sentence typically consists of a subject-verb

pair, and present a complete thought. Sentences that describe a valid sensor/phenomena

relationship contained on average 4 words at minimum and 24 words maximum. This average

sentence length also concurs with LIWC [33, 34]; a comprehensive study to understand the

physical and mental health of the author based upon their writing (web, article, etc.) style

using sentiment analysis. Finally, we discovered that a sentence of interest must also contain

either of the following hyponyms or their synsets; measure, detect, or quantify.

3.6.2.1 Overview of the N-gram Language Model

N-grams [35] are a very effective method to validate proper word and sentence structure.

It is used in most text editors that offer features, such as spell check [36, 37] and sentence

structure validation [38, 39]. A statistical N-gram language model describes the conditional

probability of a word w given its history, described by the n − 1 previous words, h. The

general equation is given by

P (wn1 ) = P (w1)P (w2|w1)P (w3|w2
1)....P (wn|wn−1

1 ) ≈
n∏
k=1

P (wk|wk−1) (3.1)

where the word sequence w1, w2, ..., wn−1 is represented as wn−1
1 . The likelihood estimate of a

word’s existence is based on the samples obtained by a large text corpus consisting of (ideally)

many different genera’s of literature (eg: poems, legal documents, blogs, scientific articles,

comedy, etc.). The more diverse the text corpus, the better the likelihood estimates. N-gram

conditional probabilities can be estimated from raw text based on the relative frequency of
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word sequences. Popular N-gram combinations are unigram (N=1), bigram (N=2), and

trigram (N=3).

To understand how N-grams work, lets take the following sentence as an example using

a bigram: A sphygmomanometer is used to measure blood pressure. One would represent

the conditional probability of this sentence by the following equation

P(<s> A sphygmomanometer measures blood pressure </s>) =

P(A|<s>)*P(sphygmomanometer|A)*P(measures|sphygmomanometer)*

*P(blood|measures)P(pressure|blood)*P(</s>|pressure)

Note that < s > and < /s > are standard symbols used to denote the start and end of a

sentence respectively. Using the conditional probability equation for a bigram described in

equation 3.1, the probability of a complete sentence is the product of the maximum likelihood

estimates (MLE) of each bigram word combination. A single term can be thought of as the

likelihood of seeing the current word (or symbol) wn given the prior word (or symbol) wn−1,

as a factor of the emission probability that the prior word wn−1 has been seen in the training

corpus.

3.6.2.2 Using N-grams to Validate Complete Sentences

In this study, we explored bigrams and trigrams to find the best method to recognize complete

sentences. An N-gram language model must be trained using a large text corpus in order to

estimate the parameter values. Therefore, we constructed a large training and testing text

corpus of sample literature from the following sources [40,41]. These sources consist of news

articles, editorials, reports, scientific papers, and legal trial transcripts. Next, we used the

training data to establish a conditional probability that a word wn will exist given the prior

word order for the bigram and trigram using the following equations respectively

P (wn|wn−1
1 )bigram =

C(wn−1, wn)

C(wn−1)
(3.2)

P (wn|wn−1
n−N+1)trigram =

C(wn−1
n−N+1, wn)

C(wn−1
n−N+1)

(3.3)
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Figure 3.10: Chart’s A and B show the probability distribution for sentences that we know

to be complete or incomplete for bigrams respectively according to sentence length. The

distribution is indistinguishable due to having a limited size training data set.

C(x, y) is a function denoting the total number of times that the word wn is preceded by

the prior word wn−1 for a bigram or wn−1
n−N+1 for a trigram. C(x) is a function denoting the

total number of times that wn exists in the training data.

After obtaining the MLE estimates for both bigrams and trigrams, we used the random

sentences collected from webpage searches, which we knew to be either complete or incom-

plete in order to identify a threshold that distinguishes between a complete vs. incomplete

sentence. Results show that the probability distribution describing the range of values for

complete vs. incomplete sentences given sentences of various length are indistinguishable for

bigrams (see Figure 3.10) due to having limited size training set. The probability distribu-

tion for trigrams are worse, with the majority of values converging close to zero for both

sentence types, due to many non-existing trigram word combinations.

Generally, a “good” training set is comprehensive, such that it (ideally) includes all of

the many ways that words can be structured to produce a complete sentence. Since the

dataset used in this study is limited in size, an alternative approach was taken in order to

predict complete sentences based on part of speech (PoS) rather than word combination.

A complete sentence must contain a subject-verb pair and express a complete thought. In

addition, a complete sentence usually follows a fairly structured ordering of words. For

example, a complete sentence will not begin or end with a conjunction. Considering this, we
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re-trained the conditional probability tables for equations 3.2 and 3.3 respectively to produce

MLE’s according to sentence PoS and repeated our test to distinguish between complete vs.

incomplete sentences. We found that setting P (wn1 )bigram = .006 results in 87% correct

predictions of complete sentences. Given the amount of training data that we have access

to (which is over 2GB in size), building a conditional probability table using PoS was the

best solution to maximize the likelihood of correctly predicting a complete sentence. If given

access to a larger data set, the accuracy of our algorithm can be improved greater.

The next step was implementing a webpage text parser that split the text in a webpage

into a vector of elements according to punctuation marks. Then feed each element (i.e.

sentence) into our Sensite Knowledgebase module, containing the bigram sentence detection

algorithm. The text parser removes all extra space characters (including new lines) before

feeding a line of text into the bigram complete sentence prediction algorithm. Reasons

for an incomplete sentence are either the text from html links or ads were appended to a

valid sentence, alternatively sentences listed as bullet points with no period at the end were

appended together to produce a run-on sentence. If our algorithm predicts that a sentence

is complete, then the next step is to evaluate the context of the sentence, which we discuss

in the next section.

3.6.2.3 Understanding the Context of a Sentence

A complete sentence contains a subject-verb pair and expresses a complete thought. Prior

to beginning our experiments, we studied the characteristics of complete sentences that

describe a sensor-phenomenon relationship and discovered that each sentence contains at

least two nouns and a verb. The common verbs found in the majority of sentences were

“detect” or “measure” (or its synset). Since the sentence that we are looking for should

contain a term that denotes quantifying or detection, our algorithm only performs contextual

analysis if either a verb exists. If the term exists, then our algorithm searches for two nouns

that denote the sensor-phenomenon relationship. As stated in section 3.6.1, the sensor

and phenomena terms must exist in the database in order for our algorithm to track the
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relationship. In addition, the sensor and phenomenon terms in our database are all mutually

exclusive (no synsets exist). Therefore, we applied the Wu & Palmer (wup) lexical word

similarity algorithm [42] to gauge the relationships between words. We chose to use the

wordnet similarity for Java (ws4j) due to their successful integration of Wordnet’s lexical

dictionary [43]. WUP uses a decimal value between 0 (no relationship) and 1 (strong) to

denote the strength of the relationship between two words. The strength is based upon the

number of overlapping synsets between two given words.

Other approaches considered were the Jaccard Index [44, 45] and the Cosine Similarity

[46,47] algorithms. The weakness of both algorithms is that they measure sentence similarity

by exactness rather than context. Therefore, in order for this algorithm to scale we must

maintain a database of all possible ways to construct a complete sentence that describes the

relationship of every valid sensor-phenomenon relationship that exists. This solution is not

scalable.

Now that we are able to ascertain the sensor-phenomena relationship by evaluating sen-

tences, we discuss our algorithm for a relevancy metric that determines the strength of the

relationship.

3.6.2.4 Storing the Sensor to Phenomena Relationship

The Sensite Knowledgebase crawls random webpages from a Google search looking for com-

plete sentences (predicted by our bigram algorithm described in section 3.6.2.1) that contain

between 4 to 24 words. Given a valid sentence, our algorithm looks for any verb term that

describes detection or quantification. If the term is found, then the sentence is processed

further to extract at least two nouns that describe a sensor and a phenomenon listed in our

database. If the two terms are found then we count the relationship in our database. Note

that our algorithm is not yet capable of determining whether a sentence is communicating

a “does not” relationship. This is the subject of future work. If the desired terms are found

in a sentence, then our algorithm assumes a valid association.

We track the sensor-phenomenon associations in our database using the following JSON
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data structure:

{

"phenomenon": "temperature",

"observations": 11,

"association": [

{

"sensor": "temperature gauge",

"count": 1

},

{

"sensor": "thermometer",

"count": 6

},

{

"sensor": "infrared thermometer",

"count": 1

},

{

"sensor": "multimeter",

"count": 1

},

{

"sensor": "thermocouple",

"count": 2

}

]

}

The “phenomenon” variable represents the worldly event that sets of sensors are qualified to
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provide information about (temperature in this case). The “association” variable is an array

that contains the list of sensors that the Knowledgebase discovers are associated with tem-

perature as a result of crawling random webpages, and the “observation” variable represents

the total number of observed webpages that contain a complete sentence describing a sensor-

phenomenon relationship. Finally, the “count” variable that is associated with each sensor

represents the total number of times a sentence was encountered describing that specific

relationship.

3.6.2.5 Association Algorithm to Determine Sensor to Phenomena Relationship

One can think of the way that we approach associations as treating the billions of webpages

in the www as a universe. Each valid sentence found in the webpage is a piece of information

in a universe that is assumed to be true, however the likelihood of actually being true is a

factor of the new information also agreeing with the prior discovery as more webpages are

visited. We tried various approaches to developing an algorithm that tabulates the observed

sensor-phenomena relationships. We discuss each approach considered and their justification.

Bayes’ Theorem: Our first approach was to model the relationship using Bayes’ Theorem.

Let ω = s1, s2, ..., sn be the set of unique sensors listed in our database, and φ = p1, p2, ...pn

be the set of unique phenomena in the database. Hi is our belief that si measures (or detects)

pi and Di is the piece of information found in the webpage that describe the relationship.

The likelihood of the sensor-phenomena relationship can be defined as

P (Hi|Di) =
P (Hi)P (Di|Hi)

P (Di)
(3.4)

This type of problem could be solved using Bayes’ Theorem, however it is only solvable if

a small number of sensors are listed in the database. As mentioned in section 3.6.1, our

database maintains a total of 139 unique sensors and our Knowledgebase does not know

about any sensor-phenomena relationships beforehand. Therefore, worse case we have to

assume that either every sensor is equally likely (P (Hi) = 1/139) to be qualified to provide

information about a sensor or that no sensor is qualified at all by setting P (Hi) equal to a

value near 0 (e.g. P (Hi) = .000001). One can choose either assumption to be true, however
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since the total number of sensors that Sensite tracks is so large that assuming equal likelihood

for P (Hi) is no different than the later assumption. P (Hi) will be near 0 in both cases and

the MLE P (Hi|Di) will not grow by a significant amount due to the low probability prior

believe. Given this, Bayes’ Theorem cannot be applied to this problem.

Frequency Based Statistics: We tried the simple approach of creating a histogram of the

frequency count for all sensors si that are associated with a phenomenon pi, and rank the

associated sensors according to the strength of their relevance (ie: greatest count). In order

to do this, the data needed to be normalized and then sorted. We then set a threshold

value of .8 to filter out the low relevance sensors. This approach worked well when the

number of observations was small. However, as new data Di appears, the total number of

observations grow causing the ratio to grow smaller and smaller to the point where eventually

some relevant relationships filter below the threshold and are omitted. Consider the sensor-

phenomenon relationship for temperature denoted in section 3.6.2.4. Lets assume that the

total number of observations for temperature grows large (say 10,000), and the majority

of the readings become skewed towards the “thermometer” (8,967 readings) such that a

long tailed distribution occurs when comparing the remaining distribution among the other

sensors. There is no transform that one can apply to cap the “thermometer” readings and

re-balance the distribution so that the skew no longer exists. Therefore, we abandoned this

approach.

Relationship Degree Normalization: We studied the pros and cons of the aforementioned

approaches and devised an algorithm that effectively solves the problem. The goal of our

algorithm is to ensure that we can effectively quantify the relationship between the sensors

without any disproportionality as the number of observations grow. Ideally, we want an

algorithm that gives equal likelihood to any sensor found to be associated with a phenomenon,

and 0 likelihood to sensors that are not found to be associated at all. We do this by describing

an algorithm that we describe as the “relationship degree”. We define the sensor-phenomena

relationship degree as

Rdegree =
C(sn1 )total − C(sn1 )min
C(sn1 )max − C(sn1 )min

× α + β (3.5)
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Figure 3.11: Table describes a breakdown of the computed relationship degree for our pro-

posed algorithm.

where sn1 is shorthand for all sensors, C(..)total is the total number of observations, and

C(..)min|max is the minimum and maximum sensor observation count respectively. α and β

are paramaters that control the range of the weights for the relationship degree. We set

α = .45 and β = .5 because it constrains the range of Rdegree degree from .50 to .95. β

is set to this value because if Di describes an assumed true sensor-phenomena relationship,

then that sensor should have equal likelihood of association. As the counts increase, the

weights will change accordingly but will always remain between .50 to .95. Figure 3.11, gives

an example of the a visual description of the relationship degree. The following sensors are

associated with the phenomenon temperature. Sensors with a single observation count have

a 50% relevancy association, while the others with larger counts have a greater score. If no

sensor is associated with a phenomenon, then that means the Knowledgebase did not find

any webpage that describes the relationship and that sensor will not be in the result set

when the user queries for a particular phenomenon. This algorithm was implemented in the

Sensite Knowledgebase platform, with a default threshold for Rdegree of .8. Any sensors that

have 80% or more relevance are returned from the user’s query.

3.7 Experiment

There is no SSW sensor database that we can benchmark our platform against, because

current commercial systems require the user to manually query for sensor data feeds. This is
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Figure 3.12: A) The sensor-phenomenon relationship accuracy is 42% (3 of 7 correct). How-

ever, a user’s query will return rain gauge as the 1st rank and anemometer 2nd rank, which is

incorrect. An anemometer measures wind speed. B) The accuracy of the sensor-phenomenon

relationship for rain is 100%. A user query will return rain gauge as 1st rank and pluviometer

2nd rank. Incorrect sensors are omitted.

the exact thing that we are looking to mitigate the user from doing. Therefore, we compared

the veracity of our proposed algorithm against an algorithm that took all mentioned sensors

and phenomena in a webpage and stored the permutation of the relationships. Justification

for storing the permutations is the assumption that the content of a typical webpage is

usually focused on a main topic. Therefore assuming the law of large numbers, the true

relationships will surface as the number of webpages visited increase. Figure 3.12A denotes

the sensor to phenomena relationships found by permutation. Figure 3.12B denotes the

relationships using our proposed algorithm. The results show that applying our algorithm

significantly reduces number of incorrect sensor associations and greatly improves accuracy

as a result. This is largely in part to the fact that complete sentences represent a complete

thought. Therefore, by omitting run-on and incomplete sentences that can be produced by

ads or hyperlinks appended to valid text we mitigate the error.
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3.8 Discussion

To the best of our knowledge this is the first SSW sensor data platform that applies an

unsupervised learning algorithm in order to understand the relationships between a sensor

and the many phenomena that it is qualified to provide information about. Our Sensite

platform enables the user to perform spatiotemporal queries for sensor data according to the

phenomena, location and time of the readings of interest. A user interested in publishing

sensor feeds to our platform does not need to bother tagging the sensor with arbitrary

keywords. They simply need to annotate their sensor data with our QoI/VoI data model and

include the sensor type, location and timestamp. Sensite will organize the sensor information

and provide it to the community. We envision this type of sensor data platform to be the

next generation SSW sensor data platform.
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CHAPTER 4

Use Case: Ultraviolet Guardian Health & Wellness

Application

4.1 Introduction

In 1987, former President Ronald Reagan had basal cell surgically removed and he survived.

In 1977, Reggae legend Bob Marley, was diagnosed with malignant melanoma in the late

stage and he did not survive [48,49]. It is projected that 1 in 5 Americans will develop some

form of skin cancer in their lifetime [50]. Moreover, both Dermatologists and Epidemiologists

that we have interviewed have confirmed that no concrete data exists to identify specifically

what ultraviolet (UV) exposure patterns over time lead to a specific skin cancer type. Why?

Because conventional dosimeters, which turn color shades to quantify personal UV exposure

levels cannot capture the time in which the instantaneous exposure occurred. We have

developed a mobile application that tracks your fine grain UV exposure without needing

a UV sensor, provides recommendations to protect the user from Sun over-exposure, and

allows the user to compare their relative exposure to others in their social circle. Our studies

prove that our application can accurately estimate UV dosage for body parts, such as the

vertex of the head, shoulders and feet that are always exposed to the sun (assuming the

individual is standing upright). This fine grain spatiotemporal information is valuable for

Epidemiologists to provide new insights about skin cancer, to influence Dermatologists, so

that they can provide better care to their patients.
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4.2 Background on Ultraviolet Solar Radiation (a basic review)

4.2.1 Ultraviolet Electromagnetic Spectrum

Figure 4.1: Spectral wavelengths emitted from the sun.

The UV portion of the solar spectrum (shown in Figure 4.1) plays an important role

in many processes in the biosphere, such as initiating photosynthesis in plants. The UV

spectrum is divided into three wavelengths; UVA 315-400nm, UVB 280-315nm, and UVC

200-280nm. Human skin cells are highly sensitive to UVC, however these wavelengths are

blocked by the ozone. UVB wavelengths pass through the atmosphere, and are primarily

responsible for skin reddening by damaging the epidermal layer. The skin is least sensitive

to UVA wavelengths and is responsible for tanning by damaging the dermal layer. There are

several benefits to sunlight, however may also be very harmful if an individual’s personal UV

exposure levels exceed “safe” thresholds. Some of the evidential effects include dark spots,

tanning, redness of the skin, chaffing and carcinoma. To avoid effects such as these, people

should take protective measures and limit their exposure to high solar radiation.

4.2.2 Atmospheric Properties

The diurnal and annual variability of solar UV radiation reaching the ground is governed

by astronomical and geographical parameters and atmospheric conditions. Pollution such as

carbon monoxide generated by humans also affect the atmosphere (see Figure 4.2 [51]) and

the level of UV radiation reaching the ground. Roughly 30% of the radiation striking Earth’s
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Figure 4.2: Left: Naturally occurring greenhouse gases; carbon dioxide (CO2), methane

(CH4), and nitrous oxide (N2O) normally trap some heat from the Sun, keeping the planet

from freezing. Right: Human activities, such as the burning of fossil fuels, increase green-

house gas levels, leading to an enhanced greenhouse effect. The result is global warming and

gradual climate change.

atmosphere is immediately reflected back into to space by clouds, ice, snow, sand and other

reflective surfaces. The remaining 70% of incoming solar radiation is absorbed by the ocean,

land and atmosphere [52]. As they heat up, the ocean, land and atmosphere release heat in

the form of IR thermal radiation, which passes out of the atmosphere and into space. Cities

and industrial areas typically release a higher amount of ozone affecting pollution, which in

effect increases the ground level UV radiation.

Earth’s atmosphere, shown in Figure 4.3, is roughly 600 kilometers (372 miles) from

Earth’s surface. The atmosphere absorbs the energy from the Sun, recycles water and other

chemicals, and works with the electrical and magnetic forces to provide Earth’s climate. The

atmosphere also protects us from high-energy radiation and the frigid vacuum of space. The

atmosphere is made up of the following:

Troposphere: The troposphere extends from the Earth’s surface to about 15 kilometers

(9 miles) high. The trophosphere is the densest, and the temperature drops from about 17

to -52 degrees Celsius as you climb higher in this layer. Almost all weather is in this region.
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Figure 4.3: Earth’s atmosphere is comprised of layers that work together to shield out

harmful ultraviolet rays.
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The tropopause separates the troposphere from the next layer. The tropopause and the

troposphere are known as the lower atmosphere.

Stratosphere: The stratosphere starts just above the troposphere and extends to 50 kilo-

meters (31 miles) high. The stratosphere is dry and less dense. The temperature in this

region increases gradually to -3 degrees Celsius due to the absorbtion of UV radiation. The

ozone layer, which absorbs and scatters the solar UV radiation resides in the stratosphere.

The stratopause separates the stratosphere from the next layer.

Mesosphere: The mesosphere starts just above the stratosphere and extends to 85 kilome-

ters (53 miles) high. In this region, the temperatures again fall as low as -93 degrees Celsius

as you increase in altitude. The molecules residing in this layer absorb a lot of the Sun’s

shortwave (eg: xray energy), which cause the chemicals in this layer to be in an excited state.

The mesopause separates the mesosphere from the thermosphere.

Thermosphere: The thermosphere starts just above the mesosphere and extends to 600

kilometers (372 miles) high. The temperature goes up as you increase in altitude due to the

Sun’s energy. Temperatures in this region can go as high as 1,727 degrees Celsius. Chemical

reactions occur much faster here than on the surface of the Earth. This layer is known as

the upper atmosphere.

4.2.3 How is Solar Radiation Measured?

As stated in section 4.2.1, the UV spectrum is divided into three parts. The blue line in Figure

4.5 represents the typical intensity at each UV spectral wavelength at bandpass frequency.

Since UVC is mostly blocked by the ozone, the intensity level for those spectral wavelengths

are negligible and is reflected by the downward trend (although the UVC wavelength is not

directly shown in the figure). UVA and UVB are the primary wavelengths that reach the

pedestrian level.

The need to educate the public about UV exposure and its detrimental effects led sci-

entists to define the ultraviolet index (UVI), a parameter used to indicate the severity of

prolonged UV exposure for a typical Caucasian (see Figure 4.4). The erythmal weighting
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Figure 4.4: The ultraviolet index (UVI) describes the level of solar UV radiation at the

Earth’s surface and ranges from 1 to 11+. The higher the UVI, the greater the potential for

damage to the skin and eyes and the shorter the burn time.

Figure 4.5: Sample data showing instantaneous UV irradiance levels at a single time instance.

The blue line represents the UV irradiance measured by a bandpass spectroradiometer. The

green line represents the erythemal weighting factor for each individual UV wavelength.

The red curve represents the product of the green and blue lines to produce an erythemally

effective total UV dosage the skin would receive per unit time.

48



factor, denoted by the green line in Figure 4.5, was originally proposed in 1987 by McKinlay

and Diffey [53], and adopted as a standard by the International Commission on Illumination

(CIE) in 1992. Total UV irradiance (ie. radiation) represents the cumulative energy that

the skin receives per unit area and is defined by

UV irtotal =

∫ 400nm

200nm

I(λ)ω(λ)dλ (4.1)

where λ is the individual spectral wavelength measured in nanometers (nm), I(λ) is the

measured intensity at λ in (mW/m2), and ω(λ) is a weighting function denoted by the green

line in Figure 4.5 defined by

ω(λ) =



1 200 < λ ≤ 298

100.094(298−λ) 298 < λ ≤ 328

100.015(139−λ) 328 < λ ≤ 400

0 400 < λ

(4.2)

that represents the sensitivity level of the typical Caucasian skin individual to reach erythema

(sunburn) given I(λ). UV sensitive spectrometers perform integration typically over 4λ =

0.5nm resolution in order to compute the total erythemally effective UV dosage that an

individual would receive (denoted by the red line in Figure 4.5) at the ground level. This is

also the total energy that the ground receives over time generally in the units of mW/sm2.

The UVI can finally be derived by the following equation

UV I = d 1

25
∗ UV irtotale (4.3)

4.2.4 Sun Position

Figure 4.6 describes the geometric angles used to calculate the sun’s hemispherical position.

However, the actual computation is not as seemingly simple as the figure depicts. Many

researchers have proposed various complex algorithms to calculate sun position [54–56].

Since the accuracy of each of the proposed algorithms are within 0.01◦ accuracy, we decided

to use [54] for UVG since its accuracy is sufficient.

Solar elevation (ie: altitude) is the angle α between the horizon (as viewed by the person)

and the Sun. The solar zenith angle (SZA) ϕ is often used in place of α, and is measured
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Figure 4.6: The position of the sun in the sky can be determined by the altitude θ and

azimuth φ angles.

by ϕ = 90◦ − α. The azimuth angle ψ is the angle between the horizontal direction of the

Sun towards the horizon and the south direction of the Earth.

4.2.5 How is UV Irradiance Measured?

Initially, UV sensors located on top of base stations in sparse locations first measured UV

irradiance across the globe, however coverage was limited to a small area. Later, the TOMS

satellite became the conventional method for estimating UV irradiance due to its ability to

cover roughly a 100km x 100km area. TOMS measures the amount of UV back-scattering

from the Earth’s atmosphere. In addition to considering cloud reflexivity, ozone, ground

albedo and extra-terrestrial solar irradiance as parameters to estimate the ground level UV

irradiance over a large area [57–59]. Measurements are taken once a day during solar noon

and inaccurate estimations occur due to incorrect interpretation of environmental proper-

ties [58, 60–62]. Kalliskota et al [61] performed an extensive comparison of the calculated

daily UV dosage between TOMS vs. ground based sensors. Results conclude that TOMS

occasionally classifies snow as cloud cover causing an under estimation of ground level UV

irradiance. In addition, the weekly average UV irradiances reported from TOMS are about

20% higher than ground based measurements during the summer. Their results show sup-
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Figure 4.7: Comparison of the CIE erythemal action spectrum vs. the spectral response curve

of polysulfone film. The curves do not align exactly, however industry experts agree that

polysulfone provides a reasonable approximation for estimating UV dosage. Benchmarking

the reading against a certified spectroradiometer improves accuracy further.

porting evidence that ground based UV measurements are more accurate. Moreover, ground

based UV measurements are the only measurements reported in real-time and account for

sudden environmental changes (eg: rain, thick clouds). As a result, we rely primarily on

ground level UV sensor readings for UVG.

4.2.6 Polysulfone Dosemeters

Davis et. al. discovered that polysulfone and polyphenylene oxide darkened when exposed

to UV radiation [63,64] while evaluating weathering characteristics of plastics. The material

had the greatest responsivity primarily within the UVB electromagnetic spectrum, with

peak sensitivity at the 300nm wavelength, and minimum sensitivity at 330nm. The spectral

response of polysulfone (PS) film does not match exactly the erythemal action spectrum, as

shown in Figure 4.7, however can be correlated by calibration against a spectroradiometer.

This calibration should be performed seasonally in order to maintain a more precise estimate

given UV irradiance levels vary with the season.

PS films have been the most widely adopted dosimeters to assess personal UV exposure

[65–68] due to the similar spectral response characteristic of the erythemal action spectrum.
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Figure 4.8: Polysulfone film dosimeter.

Users typically mount the film in a small cardboard holder (or plastic as in Figure 4.8), and

commonly clipped on the lapel of a person’s garment, arm, or shoulders. These devices are

suitable for measuring anatomic body site specific cumulative exposure over a period of one

day to one week.

The effectiveness of UV radiation leading to erythema is usually expressed in terms of

the weighting function described in equation 4.2. When exposed to solar UV, the diphenyl

sulfone group in polysulfone absorbs UV at wavelengths shorter than 330nm and undergoes

a visual color change resulting in an increase in optical absorbency (Davis et al., 1976) due to

energy of the UV wavelengths absorbed over time. PS dosimeters are capable of reasonably

quantifying UV exposure, however are not able to store spatiotemporal information about

the instantaneous UV exposure observation.
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Figure 4.9: Digital UVB dosimeter manufactured by NIWA used for our extended experi-

ments estimating body site UV exposure. One of the sensors used in our experiments.

4.2.7 Digital Dosimeters

In 1995, Diffey et. al. [69] proposed an embedded device that incorporates a miniature UVB

sensitive sensor and a data logger that could be clipped to the lapel or on a waste belt in

order to estimate cumulative UV exposure. Their device would be cumbersome to carry,

however as technology evolved the digital dosimeter began to shrink in size, such as the

one in Figure 4.9. The digital dosimeter in the figure was one of the sensors used for our

experiments.

Digital dosimeters with integrated data loggers solve the problem of recording the time

in which the instantaneous exposure occurred. However, similar to PS dosimeters, digital

dosimeters are only capable of quantifying an exposure level for the single body site to

which it is affixed, and these dosimeters cannot store the geographic location where the

instantaneous reading was observed. We solve this problem by developing UV Guardian

(UVG), a mobile application that tracks fine grain UV exposure comparable to a digital

dosimeter, provides recommendations to protect the user from sun over-exposure, and allows

the user to compare their relative exposure to others in their social circle. This fine grain

spatiotemporal information is valuable for skin cancer researchers to provide new insights

about skin cancer, to influence Dermatologists, so they can provide better care to their

patients.

53



4.3 UV Guardian System Overview

Figure 4.10: A) is the user profile screen where the user can inform UVG of their body

exposure, sunscreen application and physical attributes. B) is a voice activated widget to

control the activity monitor. C) is the path tracking feature showing an experiment where

the participant performed a roughly 1 mile jog from Weyburne terrace to UCLA’s campus

during mid-day, with a digital UV dosimeter and the UVG mobile application affixed to

their arm.

UV Guardian (UVG) shown in Figure 4.10 is a mobile application that helps establish fine

grain UV exposure and skin cancer correlation. Moreover, UVG protects the user from sun

over-exposure, while providing recommendations to enjoy sun light benefits such as Vitamin

D. We propose a technique for tracking and estimating the UV exposure of a pedestrian

traveling along a path in a mapped urban environment. The estimate can be computed

either before or during the actual walk. If the user (e.g. a runner) affixes the smart phone

facing frontward (e.g.: arm band) so that the sensor can measure the ambient light, fine

grain UV exposure can be tracked by feeding the sensor light measurements to a model

that maps light intensity to UV irradiance intensity. If the user (like many of us) keeps the

phone in their pocket or purse, then exposure is computed using a more elaborate model
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that correlates travel path, environmental context (i.e.: buildings, trees) and sample UV

irradiance readings. The latter method is also used to estimate exposure before the walk.

4.4 Prior Work

Our previous work [70] described a similar personal UV monitoring mobile application teth-

ered to a Bluetooth UV sensor device. The mobile application recorded UV exposure infor-

mation in the form of storing observed UVI readings taken per second as the pedestrian trav-

eled outdoors. The application also implemented an algorithm to recommend the amount of

time (in minutes) that the pedestrian should be outdoors before becoming over-exposed given

their skin type and applied SPF suntan lotion. However the algorithm does not consider envi-

ronmental properties that increase or reduce UV exposure time (eg: trees, buildings, pools).

Since [70], our application has been refactored to become predictive, providing recommenda-

tions based upon real-time exposure and considering environmental context information such

as indoors, outdoors and shade. To include, we leverage the QoI/VoI metadata data model

(see section 2.4) to upload crowdsourced UV irradiance readings to our Sensite platform.

UVG queries our Sensite sensor data platform (see chapter 3) in order to obtain the latest

UV irradiance information according to the geography of interest.

4.5 QoI/VoI Metadata for Ultraviolet Guardian

4.5.1 Crowdsourcing Sensor Data with Personal Smart Weather Stations

Recently, mobile app enabled personal smart weather stations such as BloomSky [71] (out-

door station for the home and office), CliMate [72] and StormTag [73] (compact station

carried on the person) are making headway into the market. These devices are designed

to be affordable around $20.00 and stream weather information such as temperature, UV,

humidity, rain and barometric pressure to arbitrary sources (including the mobile phone).

These devices are the realization of the semantic sensor web (SSW) platforms we discussed

in [18], and also in section 1.1.1. In the near future, these devices will become commonplace
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Figure 4.11: Source: www.bloomsky.com

Envisioned picture of crowdsourced SSW of weather sensors reporting local weather infor-

mation in their local environment, and streaming the sensor data to cloud based sensor data

platforms, such as Sensite and the end user.

(as depicted in Figure 4.11), and UVG will transition from a research study to a commer-

cially viable application that enables people to track their UV exposure and Vitamin D

intake in real-time. These devices can easily upload their various sensor data to our Sensite

platform by simply wrapping the data stream with our QoI/VoI data model format discussed

in section 3.4.

4.5.2 Implementation of the Ontology Based QoI/VoI Data Model

In order for UVG to properly estimate spatiotemporal UV dosage, the following QoI at-

tributes must accompany each UV irradiance datum point:

• Timeliness: Sensor data aggregated within 30 minute sliding window

• Completeness: Data must include GPS, UV irradiance and time

• Provenance: Transformation of UV Irradiance to UV Index (vice versa) (if applicable)

The format of the data is in Javascript Object Notation (JSON) and follows a similar struc-

ture as our dengue detector mobile application, described in Figure 5.15, with the exception

of the sensorType attribute set to “uv irradiance”.
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Figure 4.12: 1) UV irradiance measured by a UV sensor as the pedestrian travels. The

sample is transmitted to the UVG Android Mobile Application. 2) Periodically, the most

recent sample is uploaded to the Sensite sensor platform server from the mobile phone. 3)

Spatiotemporal UV Irradiance information is queried from Sensite for analytics and viewable

through website.

Volunteers wearing a UV sensor or users of the commercially available personal smart

weather stations, such as the devices mentioned in section 4.5.1 can upload instantaneous

sample UV irradiance information to the Sensite sensor platform. The UVG website performs

a spatiotemporal query for sample UV irradiance data and UVG constructs a real-time

UV irradiance map as a function of space and time relative to the Sun’s position through

participatory sensing, as shown in Figure 4.12.

Figure 4.13: 36km x 36km region of Los Angeles centered at Latitude 34.06064 / Longitude

-118.409271 is divided into 6km x 6km non-overlapping local habitats. Letters represent the

habitat type.
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The UV irradiance map is bounded and segmented according to the regions of interest

denoted by the colors shown in Figure 4.13. Pedestrians periodically upload a randomly

sampled GPS location, time-stamp, and UV irradiance reading as they travel outdoors using

an Android mobile device running the UVG mobile application tethered to a Bluetooth

enabled UV sensor. Later versions of the application leveraged a board with USB tethering

capability. The UV sensor is not required in order for UVG to estimate their personal

UV exposure, however users who carry the sensor contribute to constructing the global UV

irradiance map. Before UVG uploads the sample UV reading, the datum point is annotated

with QoI/VoI metadata (see section 2.4) to identify the data source, timestamp, location and

confidence of the reading with respect to the prior. For instance, if our environment classifier

algorithm identifies the environment as being “in doors” and a sample UV irradiance reading

is high, then the confidence will be low. Our experiments have shown that there is virtually

no UV indoors. Following data annotation, the crowdsourced UV irradiance data is uploaded

to a central server and aggregated within a time window until a certain tolerance is reached

based upon the maximum population density within the region of interest. The data is then

segmented according to the finite geographic region that the GPS location falls under to

produce a model that maps the average UV irradiance for the region as a factor of the time

of day. We also assume that the altitude angle of the sun is congruent with time. Factors

that may affect the veracity of our model are sudden atmospheric property changes or thick

clouds. However, the model will update itself as more real-time data is crowdsourced. In

this paper, collective regions will be referred to as “habitats”, and a particular region will

be referred to as a “local habitat” from this point forward.

4.6 System Model

Whether the pedestrian takes a short walk or a long jog, they are subject to receiving a

level of UV radiation proportional to their surrounding environmental properties. If two

pedestrians travel the same distance and velocity, however one chooses a path with heavy

vegetation and the other under direct sunlight. The pedestrian traveling under vegetation
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will receive less UV dosage.

In this thesis, we highlight a study performed in order to answer the following questions:

Can the pedestrians’ total UV irradiance traveling outdoors be reasonably estimated? To

answer this question environmental context information is required. This section discusses

the proposed algorithm for estimating pedestrian UV exposure along a path and its accuracy

compared to the observations.

Estimating UV exposure requires a massive amount of environmental context information

to be accessible to UVG. This includes information about the location and dimension of

streets, buildings, and vegetation cover. The pedestrians path can be represented as a

summation of line segments, where the total UV exposure Etotal along each segment is

defined by Equation 4.4 (in units mW/mm2).

Etotal =

∫
ω(s, t) dt (4.4)

The UV irradiance per unit time ω is a function of position s and time t (in seconds) relative

to the Sun’s position. The average UV irradiance per unit time ω̄ (in units mW/mm2 per

second) can be calculated by

ω̄ =

∫
ω(s, t)dt∫

dt
(4.5)

The pedestrians velocity is assumed constant and known. Environmental context informa-

tion, such as tree dimension and leaf cover density along the path are also assumed known.

Given these assumptions, Equation 4.4 can be represented by

Etotal =

∫
ω(s, t)

dl

V
(4.6)

where
∫
dl is the total walking distance. If the pedestrian travels a fraction of the total

distance under a tree Ltree and the remainder in direct view of the Sun Lopen, Etotal can be

expressed as:

Etotal = ωopen(s, t)
Lopen
V

+ ωtree(s, t)
Ltree
V

(4.7)

where ω is the average observed UV irradiance per unit time within the local habitat under

a tree ωtree(s, t) or the Sun ωopen(s, t).
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The error of the algorithms estimation can be calculated by

τ =
Etotal,obs − Etotal,est

Etotal,obs
(4.8)

where Etotal,obs is the pedestrians observed total UV exposure, and Etotal,est is the pedestrians

estimated total UV exposure by the algorithm. UVG assumes ω̄ to be a reasonable factor

for approximating the instantaneous UV dosage that a pedestrian receives per unit time

(per second), because the variance of the horizontal (ambient) instantaneous UV irradiance

follows a Poisson distribution centered around ω̄. Given this, the error τ in the algorithms

estimation is what we use as a way to express the deviation between our UV dosage estimate

vs. the actual measurement, and the accuracy is measured by the following equation

Acc = 1− τ (4.9)

We use the T-distribution to model the error distribution, because it is appropriate for

smaller sample sizes. Since integration time for calculating cumulative UV dosage is per

second, the unit for τ is also in seconds. In other words, τ is simply expressing the number

of seconds that our UV exposure estimation algorithm Etotal,est deviates from the actual

measurement.

4.7 Experiments

Our experiments were performed in two phases; In phase 1, described in section 4.7.1, random

samples were collected to understand how UV radiation varies across a 36km x 36km region

of Los Angeles centered at latitude 34.06064 / longitude -118.409271. We also collected

UV irradiance samples under randomly selected trees with canopies that provided shade

from the sun. Next, we used the collected data to perform experiments to gauge whether a

linear model can be applied to reasonably estimate UV irradiance for the top of the head

and shoulders given a travel path. In phase 2, described in section 4.7.3, we used the

digital dosimeter from Figure 4.9 due to its convenient size in order to measure cumulative

UV dosage along a travel path, then measured the correlation between UVG’s cumulative

dosage estimate and the digital dosimeter’s for estimating the body site UV dosage on the
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Figure 4.14: Roof platform at Biospherical Instruments, Inc with the top of the SUV-100

spectroradiometer on the left side and the board with all UV sensors on the right side. The

collector of the SUV-100 spectroradiometer is the round object protruding the white box,

which contains the SUV-100 instrument.

arm.

The typical user of UVG is a Sportsperson who is outdoors during the mid-day performing

an outdoor recreational activity, such as jogging, biking or hiking where the user typically

carries their phone. We began by shadowing these individuals and documenting where they

placed their cellphones as they performed their activity, and discovered that the majority

placed their phone on their arm and also had their arms exposed. The secondary benefit is

we can leverage the sensors on the phone. Given this we chose to initially validate whether

our algorithm can estimate UV dosage for the arm, and the output from the digital dosimeter

is the control. The NSF ICORPS Research Grant IIP-1340385 supported phase 2 of this

work.

The sensors used in our experiments were calibrated against a NIST certified SUV-100

spectroradiometer manufactured by Biospherical Instruments, Inc. Before calibration, their
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dynamic range was adjusted such that measurements would not be saturated when exposed

to UV radiation levels encountered in California (as shown in Figure 4.14). When comparing

the UVA and UVB sensors against each other respectively, each sensor reported consistent

readings with minimal differences between devices.

4.7.1 Phase 1 - How does UV Radiation vary across a Large Geographic Area?

In [74] we studied the variation of UV irradiance levels across local habitats (ie: geographic

regions). A two-stage cluster sampling method was applied to collect sensor data. The UV

sensor used in this experiment was two pairs of Bereich Mikrotechnik JIC 119 UVA and

JIC 129 UVB sensors. The sensors were connected to a uIceBlue2 Bluetooth programmable

micro-controller and were programmed to report a single UV irradiance measurement per

second once activated. The UV irradiance measurement is produced by averaging a total of

10 readings taken within the first 500ms, while holding the UV sensor parallel to the ground

(ie. hemispherical view) in direct sunlight.

How does UV irradiance vary across local habitats? A two-stage cluster sam-

pling method was applied in order to answer this question. At the first stage, a 36km x

36km region of Los Angeles centered at 34.06064 (latitude), -118.409271 (longitude) was

divided into 6km x 6km non-overlapping clusters of local habitats as shown in Figure 4.13.

In general, larger cluster sizes typically possess more heterogeneous elements and require

larger samples to accurately estimate the population parameter. Conversely, smaller clus-

ter sizes contain more homogeneous elements and require smaller sample sizes to estimate

the population parameter. Significant changes in UV irradiance occur on an hourly basis,

therefore the boundary size of the local habitats and the number of samples collected were

chosen based upon the time to reach the sample locations within a reasonable timeframe.

Experiments were performed to measure the variance of UV irradiance under direct sun

light at the pedestrian level both within and across the local habitats. The following nuisance

factors in the environment were omitted; trees, pavement, and buildings. At the first stage,

habitats 8, 15, 20, 21, and 23 were randomly chosen for observation. At the second stage, five

62



Table 4.1: Observed average UV irradiance from the Sun and deviation across randomly

sampled local habitats

Habitat Wave ω̄ σsample

8
UVA 610.4222 5.055988

UVB 705.8477 0.5335854

15
UVA 612.8682 3.485185

UVB 706.059 0.1255518

20
UVA 608.8371 6.360273

UVB 705.824 1.382525

21
UVA 608.8753 7.759923

UVB 707.268 0.722

23
UVA 610.5026 1.883543

UVB 707.2613 1.380255

Table 4.2: Overall average UV irradiance and deviation across the sampled habitats

Wave µpop σpop

UVA 610.3011 1.644800

UVB 706.452 0.747468

clusters were randomly chosen from each of the selected local habitats for sampling. Since

the average UV irradiance measured within the sampled clusters were small, the cluster

samples were treated as a collection of random samples in order to estimate the average UV

irradiance per unit time ω̄ (see section 4.6) within the local habitat. The ideal minimum

number of pedestrians equipped with the UVG application that is required to estimate ω̄

within ±2mW/mm2 for both UVA and UVB, with 95% confidence are approximately 58

and 2 respectively. These values were obtained by using a Z score of 1.96 (95% confidence

level), and taking the largest observed value of σsample for UVA and UVB in Table 4.1.
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Figure 4.15: Quartile ranges of observed UV irradiance rates from the Sun across the ran-

domly sampled habitats

Table 4.1 shows ω̄ and the sample deviation σsample of the observed UVA and UVB wave-

lengths for the local habitats. Table 4.2 shows the population mean µpop and the deviation

σpop of UVA and UVB irradiance across the sampled habitats. Results show that the 95%

confidence bounds for the estimate of µpop for UVA and UVB are 610.3011±3.2896mW/mm2

and 706.452± 1.494936mW/mm2 respectively. Figure 4.15 shows the quartile ranges for the

sampled local habitats, and the “Overall Population” quartile denotes the quartile ranges of

ω̄ across all sampled habitats.

For UVA, results show a larger sample variance both within and across the local habi-

tats, where the “Overall Population” quartile and the confidence bounds of the estimate

µpop does not encompass the majority of the sampled observations. For UVB, results show

a smaller variance within the local habitats. Moreover, the “Overall Population” and confi-

dence bounds of the estimate µpop encompasses the majority of points, with the exception of

habitat 20. Therefore, we conclude that UVB irradiance has a relatively “uniform” distribu-

tion across the sampled habitats, and that the UV intensity level does not vary significantly

across the 36km2 area. For UVA, the variance is large both within and across the sampled

local habitats, therefore can be considered “non-uniform” and readings must be readings
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must be taken in close proximity to be valid. UVA light is present throughout the day and

there are many factors that could possibly attribute to causing this variance, such as changes

in atmospheric properties or cloud thickness causing attenuation and/or light refraction.

For purposes of this application, “uniform” UV irradiance within a population is defined

when σsample < 1.5 and σpop < 1. If this criterion is not met, the population is considered

“non-uniform”. Justification for this metric is as follows:

• If deviation σsample < 1.5, then within the local habitat ω̄ lies around the mean, which

in effect increases confidence in the UV exposure estimation.

• If deviation σpop is small across the population, then the assumption can be made

that ω̄ will be normally distributed around the population mean no matter where the

pedestrian travels.

4.7.1.1 Pedestrian UV Exposure Estimation

We restate that the aforementioned experiments was performed by holding the sensor hori-

zontal to the ground (assuming a hemispherical view of the sky) as the pedestrian traveled

outdoors. This sensor orientation is equivailant to measuring UV dosage at the top of the

head and shoulders when the pedestrian is standing upright. The algorithm estimates the

pedestrians’ UV exposure while traveling under direct sunlight and under trees assuming

sunny days with very little cloud cover. The experiment begins by estimating the pedestri-

ans’ UV exposure under a single tree, and then expands to a complex case that considers

walking under multiple trees and direct sunlight.

4.7.1.2 UV Exposure Model for Trees

The experiments discussed in this section focus particularly on the samples collected in

habitats 15 and 21. Trees with tall trunks (such as palm trees), small canopies (ie: crowns),

or little leaf cover were omitted from this study because they do not provide shade to the

pedestrian. The estimate ω̄ for the respective local habitats were used by our algorithm
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Figure 4.16: The total amount of UV radiation hitting the pedestrian level is comprised of

incident and diffuse energy. Incident UV travels directly from the sky, and diffuse UV is

scattered by reflection and refraction from atmospheric particles, clouds and objects in the

environment such as buildings.

to estimate Etotal. The UV dosage that the pedestrian receives under the tree canopy is

proportional to the leaf cover density and diffuse component of UV [75]. We studied the

UV radiation absorbance properties of leaves. We found that the UV radiation under the

tree canopy is not only affected by the incident UV but also by the diffuse component.

Dermatologists and skin cancer researchers alike have recommended that pedestrians seek

shade under trees during the mid-day in order to avoid sunburn [76–78]. However, it is not

recommended to seek shade under trees in the morning and afternoon due to the scattering

of UV light as the wavelengths pass through more atmosphere [79]. On the contrary, the

most damaging UVB wavelengths are not strongly present in the morning so sunburn is

not a major concern (except those with photosensitive skin). Yang et. al. [75] studied the

spectral reflectance and transmittance of UV radiation for different species of leaves in a

laboratory environment and Yoshimura et. al. outdoors [80]. Yoshimura also compared

the absorbance, reflectance, and transmittance of UV across leaves as they turn different

color shades during their lifecycle (green, yellow, red and death). Results show that the UV

transmittance through leaves is negligible for both the UVA and UVB wavebands, and UVA

is the primary waveband that passes through leaves due to its longer wavelength. However,

the UVB component is the strongest during the mid-day and seeking shade under a tree

provides shelter from the incident component, but not from the diffuse (see Figure 4.16).

Given this, we apply Grant’s [81] equation to model the below-canopy relative irradiance on
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a horizontal surface Ip at the pedestrian level

Ip =
(Ib0 ∗ P0) + (Id0 ∗ P ‘

0)

Ib0 + Id0

(4.10)

where Id0 is the diffuse radiation on a horizontal surface, Ib0 is the direct beam radiation

on a horizontal surface. P0 is the probability that a direct beam of solar radiation will pass

through the canopy unintercepted from the source (inside or outside the canopy) to any

given point in the array of sub-canopies and is defined by

P0 = e−G(Ω(φ,θ))ρS (4.11)

where Ω is the direction of radiation (with zenith angle θ and azimuth angle φ), G(Ω) is

the fraction of foliage that is projected toward the radiation source (ie: percentage of leaves

in the canopy with the surface facing the Sun), ρ the foliage density (foliage area per unit

canopy volume), S is the distance through the canopy that the ray must pass, and P ‘
0 is the

probability that sky diffuse radiation will pass through the crown unintercepted, given by

P ‘
0 =

∫ 2π

0

∫ π/2
0

N(φ, θ)P0cosθsinθdθdφ∫ 2π

0

∫ π/2
0

N(φ, θ)cosθsinθdθ dφ
(4.12)

where N is the isotropic sky radiance energy. In order to study the effective UV irradiance

under a tree canopy, we conducted a test varying the parameters of ρ, and found .8 to be

sufficient considering the trees near UCLA and adjacent neighborhoods have sufficient leaf

cover density with leaves facing the Sun.

This model is reasonable to estimate UV irradiance under a tree canopy, however the

next question is can the model’s parameters be tuned to account for all trees planted within

an urban neighborhood. In order to prove this we performed an experiment to estimate the

pedestrian’s UV exposure walking in the Sun and under trees. Two factors of interest were

the following:

1. Factor 1 - Leaf cover negligible: UVB light is blocked, therefore we assume that

the amount of UV irradiance the pedestrian receives under a tree canopy within any

local habitat follows a Poisson distribution centered around the average UVA irradi-

ance samples collected during our control experiments. In other words, we assume
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that a pedestrian will receive the same UV irradiance energy standing under any tree

outdoors.

2. Factor 2 - Leaf cover not negligible: We assume knowledge a priori of the exact

amount UVA irradiance under the canopy of all trees within the local habitat along

the pedestrian’s travel path. To do this, measurements must be taken under the tree

canopies along the walking path beforehand. In other words, we assume that trees

offer varied levels of shade that must be quantified in order to reasonably estimate the

pedestrians’ exposure under the canopy.

With respect to our experiments: For Factor 1, we used measurements from 13 randomly

sampled trees that provide various levels of shade and found ω̄tree to be 9.7 and 0 mW/mm2

respectively for UVA and UVB, and fitted ρ to be .8. Measurements of these trees were taken

as we performed the experiment described in section 4.7.1. Therefore, we assumed that the

UV irradiance level under all tree canopies that the pedestrian can possibly walk under is

ω̄tree for UVA and UVB respectively. For Factor 2, we took exact measurements of the UV

irradiance under each tree canopy for all trees along the path. We chose trees with dense tree

canopies that let in minimal light, therefore ρ was set to 1 (ie: no sunlight passes through)

and actual UV irradiance measurements show 0 for UVA and UVB irradiance under the

canopy.

4.7.1.3 Single Tree Path Walk Results

Figure 4.17: Single tree selected for the single tree path walk experiments in habitat 21.
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Figure 4.18: Single Tree Path Walk - Accuracy of the UV exposure estimates in Table 4.3.

Five experiments were conducted during a sunny day between the hours of 12pm and 2pm

with the tree shown in Figure 4.17. The total walking distance was 86ft, with the pedestrians

average walking velocity 3.15ft/sec and no stopping along the path. The tree is located in

habitat 21 at latitude 34.052098 and longitude -118.454799. The canopy dimensions are 34ft

x 33ft, and the tree’s foliage completely blocks UV light penetration (ie ρ = 1).

Figure 4.21, shows the quartile ranges of τ for the observations collected in the experi-

ment. Remember that the error τ (described in section 4.6) is measured in seconds because

our algorithm estimates UV dosage on a per second basis, therefore multiplying by ω̄ gives

you Etotal, the estimated cumulative UV dosage. The dosage received under the tree canopy

is a secondary expression in linear model with its own separate value for ω̄tree. Please refer

to section 4.7.1.2 for more information. Experiments show that for the majority of points,

the values of τ lies between 0.705 to 1.36 seconds for UVB. For UVA, results of the factor

1 experiment show that for the majority of points, τ lies between 2.05 to 13.044 seconds,

and between -6.01 to 0.52 seconds for factor 2. Factor 2 clearly minimizes error the most for

UVA exposure experiments.

The accuracy of the total UV exposure estimates provided by the algorithm against the

values observed for each test is shown numerically in Table 4.3 and graphically in Figure

4.18. Factor 2 was used to measure the total UVA exposure. For the majority of the tests,

the total UVB exposure estimates provided by the algorithm are 94% accurate. For UVA,

the estimates provided by the algorithm are 68% accurate. As shown in section 4.7.1, these

results are explained by the efficiency of the sampling method that the algorithm uses to

69



Table 4.3: Percent accuracy of UV exposure estimates for the single tree path walk experi-

ment

Etotal,obs Etotal,est ω̄ Acc. %

UVA

1 14926.79 22700.36 617.13 0.48

2 17113.83 20142.39 613.87 0.82

3 14026.36 21743.80 612.24 0.45

4 14671.54 18729.32 614.62 0.72

5 16226.99 15276.34 617.13 0.94

UVB

1 16226.99 17395.27 704.98 0.93

2 14827.36 15518.34 706.12 0.95

3 15435.71 16757.48 706.63 0.91

4 14671.54 14399.46 706.00 0.98

5 14827.36 15518.34 706.12 0.95

estimate the UV irradiance within the local habitat.

4.7.1.4 Multiple Tree Path Walk Results

The next day experiments were performed in habitat 15 on a sunny day between 12-2pm.

Figure 4.19: Location in Bel-Air selected for multiple tree path walk experiments.
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The path shown in Figure 4.19 is located at latitude 34.086999 and longitude -118.44313.

Five experiments were performed walking a distance of 100.5ft under five equally sized

spherical tree canopies roughly 7.5ft x 7.5ft in diameter. UV light penetration is completely

blocked by the foliage for each tree along the path. The pedestrians average walking velocity

was 3.35ft/sec. Figure 4.22, shows the quartile ranges of τ for the observations collected in

the experiment. Remember that the error τ (described in section 4.6) is measured in seconds

because our algorithm estimates UV dosage on a per second basis, therefore multiplying by

ω̄ gives you Etotal, the estimated cumulative UV dosage. The dosage received under the

tree canopy is a secondary expression in linear model with its own separate value for ω̄tree.

Please refer to section 4.7.1.2 for more information. For the majority of points, the values of

τ lies between -1.47 to -0.70 seconds for UVB. For UVA, results of the factor 1 experiment

show that for the majority of points, τ lies between 4.07 to 7.29 seconds, and between -4.75

to -2.57 seconds for factor 2. Factor 2 clearly minimizes error the most for UVA exposure

experiments.

Figure 4.20: Multiple Tree Pathwalk - Accuracy of the UV exposure estimates in Table 4.4.

The accuracy of the total UV exposure estimates provided by the algorithm against the

values observed for each test is shown numerically in Table 4.4 and graphically in Figure

4.20. Factor 2 was used to measure the total UVA exposure. For the majority of the tests,

the total UVB exposure estimates provided by the algorithm are 94% accurate. For UVA,

the estimates provided by the algorithm are 74% accurate. The significant findings of this

experiment are in agreement with findings stated in the previous section.
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Table 4.4: Percent accuracy of UV exposure estimates for the multiple tree path walk ex-

periment

Etotal,obs Etotal,est ω̄ Acc. %

UVA

1 14026.36 11205.08 616.96 0.80

2 13400.36 18523.04 618.12 0.62

3 14087.89 18415.05 615.40 0.69

4 12881.35 10792.45 617.44 0.84

5 15020.16 11524.57 613.80 0.77

UVB

1 13649.27 12824.62 708.42 0.94

2 14471.68 13769.12 709.23 0.95

3 13147.02 12310.77 708.99 0.94

4 14087.89 14187.10 707.42 0.99

5 15020.16 13244.86 707.74 0.88

4.7.1.5 Discussion

For all pedestrian path walk experiments conducted, results show that the proposed algo-

rithm estimates the pedestrians UVB exposure with 94% accuracy. The algorithm estimates

UVA exposure with 71% accuracy. Results also show that the error in the proposed UV

exposure estimation algorithm for the majority of points is no larger than ±1.5 seconds for

UVB and ±7.29 seconds for UVA. These results are achieved due to the efficiency of the two

stage cluster random sampling method that the algorithm uses to estimate the UV irradiance

within the local habitat under direct sunlight. Results also show that tree canopies provide

different levels of shade and knowing the leaf cover density for each tree canopy reduces error

when estimating exposure under the tree.

In Los Angeles (LA), the Department of City Planning maintains a GIS database (DB)
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Figure 4.21: Results for single tree path

walk in habitat 21.

Figure 4.22: Results for multiple tree

path walk in habitat 15.

of the location of all trees planted in LA since 1990. If this DB were made publicly accessible

we could identify where a tree is located along the path, but information such as the tree’s

height and canopy thickness is omitted, making it not useful for UVG. Moreover, leafs fall

off the tree seasonally and residents prune trees, making it hard to scale our proposed tree

model so we dropped it. In the next section, we discuss an alternate approach to understand

environmental context.

4.7.2 Identifying Outdoor Environmental Context (Sun, Shade, or Indoors)

It is imperative to know whether the user is indoors, in shade, or in direct sunlight. Typically,

when indoors the user receives no UV radiation unless standing in front of a window or under

a UV emitting light source such as a fluorescent light bulb (which emits a negligible amount

of UVA). In outdoor environments, the amount of UV radiation that the pedestrian receives

is a factor of the atmospheric properties and the objects in the environment that can either

decrease or increase the pedestrian’s UV exposure level. Trees and buildings provide shade

during mid-day, however a single tree with a large dense canopy or multiple trees with

overlapping canopies (typically found in neighborhoods) provide virtually no UV exposure

(similar to an indoor environment), and shade from buildings simply scale down the energy.
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We seek to design and implement a classifier algorithm that identifies the environment

that the pedestrian is in by studying the characteristics of ambient light intensity levels

within the aforementioned environments in order to discriminate against the instantaneous

UV irradiance energy received within the direct sun, shade and indoor environments.

Figure 4.23: A data collector Android application that we used to collect light intensity

readings under various outdoor and indoor lighting conditions.

The light sensor on the cellphone has a dynamic range (between 0 - 60,000 lux) that can

differentiate between the radiant flux levels within each environmental context (eg: indoors

vs outdoors). For example, the cellphone screen brightens or dims as a factor of radiant

flux (ie: light intensity). Over a one month period, we performed experiments between

8:30am-6pm to collect light intensity data under the following environmental conditions:

• Indoors

• Shade

• Cloudy

• Sun

using our data collector mobile application shown in Figure 4.23. Initially, we also affixed

a light sensor on each shoulder to learn whether placing sensors on the shoulder provided

74



better discrimination in-case the cellphone’s light sensor was not sufficient. Light sensor

measurements were sampled between 60hz and 100hz for the Arduino and Android phone

respectively, and readings were grouped into non-overlapping windows of 42 and 60 readings

respectively. We eventually abandoned the shoulder study since the phone’s light sensor had

sufficient dynamic range and we did not want to burden the user with auxiliary devices that

they would not naturally carry.

Next, we investigated various methods that could provide the best discrimination between

environments, such as the mean, mean absolute deviation, standard deviation, the maximum

and minimum values. Figure 4.24 shows a subset of the data collected. We found that

taking the maximum value within a window works best because the intensity flux for each

environment is vastly different and do not overlap. We also found that distinguishing between

shade and cloudy conditions was not possible due to there being many different levels of cloud

thickness that overlap with other shade values. For instance, thick clouds (similar to rainfall

clouds) can produce a similar intensity flux as shade conditions. As a result, we limited our

environmental condition options to indoor, shade, and sun. Therefore, we use the following

environment classifier algorithm for environmental discrimination on the Samsung Galaxy

S4

Environment =


Indoors if x ≤ 200Lux

Shade if x > 200Lux && x ≤ 4800Lux

Sun if x > 4800Lux

(4.13)

enabling real-time UV exposure estimation.

Next, rather than considering objects such as buildings and trees as factors for grouping

UV irradiance measurements, as previously done in section 4.7.1.2, we grouped UV irradiance

measurements according to the measured ambient light intensity for that environment, and

assign ω̄environment accordingly. This means that if the pedestrian travels under a tree with a

large dense canopy that blocks virtually all UV light, then the environment will be considered

indoors and ω̄ will be set to 0 for that reading. As the user exits the tree canopy back into

the direct sun ω̄ will assume the crowdsourced average UV irradiance value.
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Figure 4.24: A subset of sample light intensity data used to train our environment classifier

algorithm.
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4.7.3 Phase 2 - Can Anatomic Body Site Ultraviolet Exposure be Estimated

Comparable to a Dosimeter?

Since our primary objective is to provide proactive recommendations to protect pedestrians

from erythema, and UVA contributes the least towards it, we chose to focus our algorithm on

the UVB wavelengths in the phase 2 experiments. Moreover, most digital dosimeters are only

sensitive to UVB since its the spectrum primarily responsible for causing skin damage. The

UVB polysulfone dosimeters, described in section 4.2.6 were the golden standard adopted by

the research community to quantify body site specific cumulative UV exposure. However,

recently digital dosimeters retrofitted with flash memory to store exposure history overtime

are becoming the new standard. Leveraging crowd sourced sample UV irradiance readings

from digital dosimeters streamed to our Sensite platform, we performed experiments to

validate whether our algorithm can estimate UVB exposure for the arm comparable to the

dosimeter assuming the user is standing upright.

4.7.3.1 Setup

The smartphone device used in this experiment was the Samsung Galaxy S4 Active mobile

phone running the UVG mobile application for Android. Once the UV exposure tracker is

activated (see Figure 4.10B) UVG periodically performs a spatiotemporal query for sample

UV irradiance data and uses it as input into a model that estimates the pedestrian’s UV

dosage as they travel outdoors. The mobile device was affixed to the subject’s arm using an

arm band and the NIWA UVB dosimeter used for comparison was wrapped around the arm

band as shown in Figure 4.25. The dosimeter’s small size made it feasible to measure UV

irradiance for vertical body parts.

4.7.3.2 Method

Many researchers [82–84] performed experiments to estimate how much radiation that each

anatomic body site receives when standing outdoors. The total amount of UV radiation

received per unit area of the skin is a factor of the total body surface area directly exposed
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Figure 4.25: UVG mobile application running on Samsung Galaxy S4 phone affixed to the

arm. The light sensors affixed to the participant’s shoulders were used to gauge whether the

shoulder is an appropriate place to gauge whether the user is in the sun, shade or indoors.
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Figure 4.26: An image denoting the typical body sites for exposure to ultraviolet radiation.

to the sky. Figure 4.26 demonstrates a picture of the human body. Typically, our forearm,

hands, neck and face are always exposed to the sun and that roughly represents about 1.5,

1, and 2.5% of our total body skin surface area [85]. It is also apparent that the horizontal

areas of the body receive a higher level of exposure than the vertical (non-sky facing) body

parts such as arms and legs. We use the ratios provided by Downs et. al [86] to estimate UV

exposure for each body site relative to the sampled horizontal UV irradiance since it agrees

with other prior works.

In other words we assume that anytime our classifier algorithm discovers that the user is

in the shade, we apply a ratio algorithm to estimate the amount of exposure each anatomic

body part will receive with respect to the horizontal ω̄. One could argue that there is different

levels of shade that affects UV intensity, however it is not possible to obtain knowledge of

the instantaneous UV irradiance in all locations. Therefore, we have placed sensors both in

the shade and sun and found that on average the amount of shade provided by any vertical

object tall enough to eclipse the sun from the pedestrian (such as a building) follows a general

sin ratio with respect to altitude angle θ (see section 4.2.3).

In our experiments, we gauged whether our algorithm could reasonably estimate UV

exposure comparable to the dosimeter, when the dosimeter is placed directly over the phone’s
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armband. Doing so places both the phone and the dosimeter’s sensor in plain sight of (we

assume) roughly the same light angle measurements. It should be noted that rays from the

Sun travel in a straight line towards the ground rather than spreading outward as a typical

light source close to us does due to the Sun’s distance.

4.7.3.3 Experiments

Our participant performed a roughly 1 mile jog around the outskirts of UCLA’s campus

(as shown in Figure 4.10)C during mid-day with a digital dosimeter and the UVG mobile

application affixed to their arm. Affixing the device to their arm provides an estimate of the

UV dosage that the pedestrian would receive on their arm. The participant was asked to

run as they naturally would observing all traffic rules, walk and/or take breaks as necessary.

The neighboring area of UCLA has sidewalks in front of buildings that provide partial shade

in some areas, and trees on some streets. Therefore, there are a variety of lighting conditions

affecting the pedestrian’s UV dosage.

Figure 4.27: Participant performed a roughly 1 mile jog from Weyburne terrace to UCLA’s

campus during mid-day, with a digital UV dosimeter and the UVG mobile application affixed

to their arm.

Figure 4.27 plots the estimated instantaneous UV exposure that UVG assumes the pedes-

trian received on their arm (denoted by the blue line) vs. the recorded UV dosage of the
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dosimeter (denoted by the red line). The black square on the blue line represents the as-

sumed ω̄ indoors, the yellow circle represents the assumed ω̄ in the shade, and the blue

diamond represents ω̄ in the Sun.

In this experiment, we measure UV exposure for the arm in order to gauge how well

our algorithm can estimate UV exposure for a vertical facing body part. The amount of

UV exposure that the arm receives is a factor of arm position. Readings were taken every

1 second for the digital dosimeter. Since readings for the arm are cyclical in nature due to

arm swing, we used the Pearson correlation to measure the linear correlation between the

dosimeter’s reading and our estimate. A correlation closer to 1 denote the functions are close

to each other, values closer to 0 denote the functions have a weak correlation. Results show

for our experiments a correlation coefficient of .09 with a significance (P-Value) of .0247,

proving that our algorithm cannot accurately estimate UV dosage for the arm due to the

cyclical nature of the exposure levels as the arm moves. This would also be an issue if we

tried to measure leg exposure.

4.8 Discussion

The reason for such a weak correlation is that the intensity level of UV irradiance on the

arm varies as the arm swings given the user’s natural gait. Our algorithm assumes that the

user will receive an average UV irradiance integrated over time for a time period. Therefore,

the variance in the readings due to natural arm swing is not accounted for introducing

large error. Possible solutions that would improve the correlation would be to account for

angular changes in the arm’s position using the phone’s accelerometer or gyro sensor. This

information can be provided in real time, and an algorithm could be used to interpolate the

instantaneous UV intensity level that the arm would receive in natural gait. We were unable

to perform further experiments due to time limitations.

To explain the contrast in the experiments performed in phases 1 vs. 2. The phase 1

experiments were performed to understand the following:
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• How does UV irradiance vary across a large geographic area

• How does UV irradiance vary under tree canopies

• Can our proposed algorithm be used to estimate UV dosage for body parts exposed to

hemispherical UV irradiance, such as shoulders and the vertex of the head

The results from phase 1 experiments show that it is possible for UVG to accurately estimate

UV dosage for sky facing body parts (assuming the pedestrian stands upright). Therefore,

UVG is comparable to most commercial UV exposure estimation applications on the market

such as Netatmo June [87]. In phase 2, we performed experiments to gauge whether our

algorithm can accurately estimate UV dosage for each anatomic body part. To do this,

we studied prior research and amended our UV exposure estimation algorithm. Next, we

performed experiments and discovered that our algorithm is not capable of estimating UV

dosage for vertical moving body parts. Prior explanation was given in the first paragraph.

Our studies prove that our application can estimate the pedestrians’ UV dosage for

body parts that are exposed to the sun (assuming the individual is standing upright) with

sufficient accuracy (for most applications), such as the vertex of the head, shoulders and feet.

This information can also be used to estimate vitamin D intake. The amount of vitamin D

naturally produced by the skin is a factor of how much skin is exposed to the sun. Figure

4.10A shows the widget that users can use to select their clothing that they are wearing.

If the user chooses not to select cloths we will assume an outfit for them based on the

temperature, activity and time of day.

UVG is a mobile application that tracks your fine grain UV exposure without needing

a UV sensor, provides recommendations to protect the user from Sun over-exposure, and

allows the user to compare their relative exposure to others in their social circle. This fine

grain spatiotemporal information is valuable for Epidemiologists to provide new insights

about skin cancer, to influence Dermatologists, so that they can provide better care to their

patients. We envision this app to be ported to devices such as Google Glass, and worn as

the user travels outdoors during a sunny day.
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CHAPTER 5

Use Case: Dengue Detector Mobile Application for

Health & Wellness

5.1 Introduction

Dengue is a virus transmitted through the bite of an infected mosquito (also referred to as

aedes aegypti). Innovative solutions have been developed to combat outbreaks, but these

solutions are not affordable or easily accessible in developing countries. Additionally, tra-

ditional approaches are slow to diagnose and treat the virus. We present Dengue Detector

Mobile Application (DDMA) [88–90], a mobile application that uses the vision sensors in

cellular phones, a lightweight object identification algorithm to diagnose the dengue virus,

and the QoI/VoI data model proposed in section 2.4 in order to crowdsource accurate dengue

outbreak information for healthcare providers and the Center for Disease Control (CDC) to

take action. DDMA leverages a novel microfluidic paper-based analytical device (mPAD)

technology developed by researchers at the Harvard University Department of Chemistry [91],

but was never commercially released.

This work shows what is possible when SSW enabled dengue diagnosis solutions are made

available. Our approach improves the quality of life in developing countries by rapidly and

economically detecting dengue and providing data to the CDC for monitoring of epidemics.

5.2 Facts about the Dengue Virus

The pathway into the body is from the bite of a mosquito with dengue infected blood. The

virus infects nearby skin cells called keratinocytes, the most common cell type in the skin.
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The dengue virus also infects and replicates inside of the dendritic cells. The infected cells

display dengue viral antigens on their surface, which activate the innate immune response

by alerting two types of white blood cells, called monocytes and macrophages to fight the

virus. Normally, monocytes and macrophages ingest and destroy pathogens, but instead of

destroying the dengue virus, both types of white blood cells are targeted and infected by the

virus. As the infected monocytes and macrophages travel through the lymphatic system, the

dengue virus spreads throughout the body. In another adaptive immune response, cytotoxic

T cells, or killer T cells, recognize and kill the cells that are infected with the dengue

virus. Together, the innate and adaptive immune responses attempt to neutralize the dengue

infection, however if the ratios of these antibodies become low the patient risks getting dengue

fever.

As the adaptive immune response starts fighting the dengue infection, B cells produce

antibodies called IgM and IgG that are released in the blood and lymph fluid, where they

specifically recognize and neutralize the dengue viral particles. Generally, it takes a few

days for the virus to become detectable using a PCR based NS1 antigen. Over the next few

days, the affected individual will experience “dengue fever”. Early diagnosis is important for

rapid dengue control measures. NS1 and/or PCR testing is vital in early cases of suspected

dengue, because the antibody may not be present. The following week, the risk of shock or

hemorrhage occurs placing the individual in danger of “dengue hemorrhagic fever”, which

may lead to death if not diagnosed early. Dengue IgM testing is of limited use very early in

the illness, as it only becomes detectable between about day 3 and day 7. IgG rises steeply

a few days after onset, often with minimal or transient IgM [92].

Each year, there are approximately 100 million cases of dengue fever or dengue hem-

orrhagic fever worldwide [93]. Dengue is also the most common arthropod-borne infection

worldwide with 50 to 100 million cases annually [94]. This mosquito born viral disease spread

in developing countries due to sub-standard housing, inadequate waste and water man-

agement, immigration, airborne travel, and deteriorating disease prevention programs [95].

Disease prevention and control measures have been established for the early detection and

monitoring of outbreaks. However, the lack of organized resources and capital in some coun-
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Figure 5.1: Interaction between mPAD, DDMA, and DDMA-WS resource for patch analysis.

Architectural overview of dengue detection mobile application (DDMA) dengue detection

for 1) dengue template 2) embedded system platform 3) central server at Center for Disease

Control

tries has resulted in a number of increasing dengue viral outbreak cases [96]. Cost effective

measures to accurately identify dengue can be combined with rigorous efforts to adequately

treat patients and reduce the number of mosquito breeding sites. Accurate diagnosis of in-

fection and effective preventive measures can reduce the number of outbreaks by as much as

30% [97].

We address the challenge of rapid and affordable detection of dengue disease in countries

with limited resources through a combination of low cost hardware and an innovative medical

bioassay patch developed by researchers at Harvard University Department of Chemistry [91].

Our approach leverages optical sensors on a cellular phone to analyze the patch results with

a color identification algorithm that uses reference color shades to classify the level of dengue

infection. The results of the test are displayed to the healthcare provider. An architectural

diagram that shows the relationship between the medical patch, camera phone, and CDC is

shown in Figure 5.1.

Our proposed system can have a significant impact on how dengue is treated in countries

85



with limited resources. The main contributions of our system are:

• a light weight image processing algorithm that uses a $0.20 USD medical patch and a

cellular telephone camera to rapidly diagnose the level of dengue infection

• real time crowd-sourced dengue outbreak statistics intended for the CDC and other

prevention and control agencies for surveillance and additional testing purposes lever-

aging the QoI/VoI data model proposed in section 2.4 in order to ensure high quality

outbreak statistics

The overall goal of mobile dengue detection is to improve the quality of life in developing

countries through providing disease diagnosis and surveillance on-site rather than waiting a

few days with the conventional dengue diagnosis kits. In this study, we describe our approach

for dengue detection using the mobile phone and a lightweight image processing algorithm.

Lastly, we summarize with an analysis of our process and conclusion.

5.3 Diagnostic Support for the Dengue Virus

Dengue and dengue hemorrhagic fever are viral diseases transmitted by mosquitoes that

have the potential to cause significant illness, particularly if undetected. The mosquito has

a predilection for urban areas, particularly in developing nations where breeding regulations

may be lacking. The incidence of dengue infections is increasing. It is estimated that there

are 100 million infections annually. Five million of these infections are serious enough to

require hospitalization [93]. No vaccine is currently available for the disease. Treatment

consists of early identification of the disease combined with intensive surveillance and fluid

support as necessary. Significant morbidity occurs when the disease is not detected in a

timely fashion to allow for resuscitation efforts to proceed.

5.3.1 Conventional Diagnostic Support

The workflow in Figure 5.2 describes the conventional methodology for treatment of a patient

suspected of having the dengue virus. The process involves an initial clinical assessment
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Figure 5.2: Workflow diagram of how dengue is traditionally treated.

where the physician admits the patient in for initial testing. A sample blood specimen

is then taken for testing and a PCR based assay test would be administered to extract the

viral components of dengue from the patient’s serum sample. The test would be administered

multiple times each test isolating a different viral strand to gauge the level of infection. This

process can take as long as five days to identify the level of infection. Following this process,

if the physician has suspicion of illness, the patient is immediately admitted to the hospital

where further tests and viral antibodies are administered to fight the virus.

The apparent problem with this methodology is there is no concise way to diagnosis the

level of infection quickly to prescribe the necessary treatment. With each day that passes,

the level of viral infection can grow worse, so a more accurate and timely system is needed to

save lives. Our proposed DDMA system rapidly and economically diagnoses dengue and can

provide valuable information to healthcare providers within a few minutes by transmitting
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valuable information on location and quantity of detections rapidly to the Center for Disease

Control (CDC).

5.3.2 Mobile Diagnostic Support for Dengue Detection with DDMA

Figure 5.3: Workflow diagram of our proposed system with DDMA.

We propose a new workflow described in Figure 5.3. An ill patient suspected to have

dengue infection is identified and a small blood sample is taken from the patient. The sample

would be applied to the microfluidic paper-based analytical patch (mPAD) manufactured by

Diagnostics For All (shown in Figure 5.4A). The analytes in the patients blood are allowed

to diffuse into the different chambers of the patch. Reaction occurs with the reagents in each

well and the device is inspected after half an hour. Gross abnormalities in the patients blood
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Figure 5.4: (A) Microfluidic paper-based analytical patch manufactured by Diagnostics For

All. (B) Mock-up of envisioned patch design for DDMA using reference colors for image

analysis.

sample can be detected by inspecting the color shades of the patch with the unaided eye.

However, individuals interpret color shades differently which may lead to bias and incorrect

diagnosis. Therefore, we propose the mockup patch (shown in Figure 5.4B) adding reference

color shades to the patch for an image processing algorithm to provide a non-biased dengue

diagnosis by analyzing the color shades of the patch. This image is then processed and the

color levels in each of the wells are compared to the reference ranges, yielding a quantitative

result of the analyte levels. Based upon the results, the patient can be triaged and given

appropriate treatment. Proper treatment may include fluids, additional interventions, and

admission to the hospital for more intensive care and follow-up.

The image processing algorithm that we are using was developed using Matlab and later

implemented on a cellular phone. The resolution of the image used for testing was 240 x 320.

As the image scaled the picture clarity was reduced, so until we receive the actual patch, we

are unable to perform in depth analysis of the patch detection errors. However, the photo

suffices as a basis for algorithm development.

We propose the use of reference colors because ambient light conditions may degrade

the richness of the original colors in the patch (see Figure 5.5A). In order to solve this, we

propose the usage of reference color shades above each well. The degradation of the reference

color shades will be uniform enabling fast color matching.
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Figure 5.5: (A) Image of Mock-up mPAD taken with Windows Mobile camera. (B) Mock-up

patch design. Distortion of color in A vs original image B validates need for reference colors.

5.4 Mobile System Platform

Figure 5.6: HTC Mogul 6800 cellular platform with embedded optical sensor.

The HTC Mogul 6800 Windows Mobile Smartphone device is one of the HTC Company’s

flagship smart phones (Figure 5.6). The mobile device is small, lightweight and uses the

Qualcomm 400 MHz MSM750 ARM Processor. The device has 64 MB of RAM and 512 MB

of flash memory. The device operates under the Windows Mobile 6.1 Operating System, and

contains a 2.0 Megapixel CMOS camera embedded in the device. The image of the device

is shown below. The software used to program the Dengue Detector Mobile application
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(DDMA) is written in C#.

5.5 Light-weight Image Processing Algorithm

In the past decade, cell phones have transformed from simple mobile communication de-

vices to mid-range scalable computing devices. The processing power of cellular phones

has increased dramatically enabling many technological innovations. The cellular phone

has increased processing capability, memory, and external sensors (camera, accelerometer,

gyroscope, etc.).

In this work, we discuss the algorithms implemented on the cell phone. In addition, we

analyze several object identification algorithms in the challenges section that are constrained

by limited memory and low processing power.

5.5.1 Greedy Scanning

Figure 5.7: Direction of scan lines to define localized area of patch where highest average

pixel value is encountered.

The first step of our algorithm is to isolate the patch from background noise. We assume

that the patch is clearly identifiable in the foreground so that a binary copy of the image

can be reproduced (see Figure 5.7). To localize the patch, a greedy scan is applied beginning

with a vertical scan of every ten pixels across the X axis, then a horizontal scan across the Y

91



axis in the image. The scan starts from the outside moving inward until the highest average

pixel value is obtained in each respective scan direction. Once the two columns (from the X

axis) and rows (from the Y axis) are obtained for that respective scan area, the first two high

gradient edge points encountered are stored. Figure 5.7 shows the horizontal and vertical

scan directions. The following algorithm identifies the gradient points:

• X axis scan gradient points obtained by a scan beginning outward starting at the top

position. Then the scan moves inward and downward on the patch. The scan stops at

the first largest gradient encountered in each scan direction.

• Y axis scan gradient points obtained by a scan beginning outward starting at the left

position. Then, the scan moves inward to the right. The scan stops at the first largest

gradient encountered in each scan direction.

These points are obtained as the average pixel value and are calculated for each scan line.

The two points are then used to form a line segment that cuts through the patch. The figure

below marks the direction of the scan lines as they cut through the patch area. The red

lines from Figure 5.7 correspond to the index where the greatest average pixel value was seen

from respective scan directions. Given this information, we now have a localized area where

the patch resides. Our implementation has the two following assumptions.

• There exists stronger edge approximation accuracy when the patch orientation is a few

degrees within the ranges of 0, 90, 180, or 270 degrees.

• The mobile phone camera is parallel to the patch to avoid skewed areas.

For example a patch oriented around a 45◦ angle will reduce the algorithms ability to

accurately identify edge regions. In most cases, the patchs edges will be unidentifiable

because the edge points will form a V shape instead of a straight line. The distorted shape

would invalidate the algorithms ability to predict an approximate line segment.
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5.5.2 Approximating Patch Edges

Now that the scan lines have identified a local area of the patch, the edges must be identified

in order to approximate the location of the corner points. To approximate the edges we trace

the line segment formed between the gradient points as shown below.

Figure 5.8: Shows gradient points marked from each respective scan and stencil scan to

define the edge. The blue circle represents a strong gradient point, Gi(x,y), that forms a line

segment cutting through patch. The green arrow represents the stencil scan direction to the

approximate edge of the patch.

Figure 5.8 gives a visual picture of the algorithm used to estimate the edge regions of the

patch. The blue oval represents the gradient points selected for each scan area containing

the highest average pixel value. The edge detection stencil scan extends outward, depicted

by the green arrow towards the outer edges of the patch. The next section describes the

edge region approximation algorithm in more detail.

5.5.3 Edge Region Approximation

The below algorithm is the weighted neighboring stencil equation that we developed. A

stencil is used to find the sharp gradient point that represents the location where the image

section stops being white and sharply changes to black.

Sx = [(L(xi, yj−2) + 2L(xi, yj−1))− (2L(xi, yj+1) + L(xi, yj+2))]/4 (5.1)
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Sy = [(L(xi−2, yj) + 2L(xi−1, yj))− (2L(xi+1, yj) + L(xi+2, yj))]/4 (5.2)

L(xi, yj) = (1− t)G1 + tG2, t = [0..1] (5.3)

Sx is the stencil equation used for scans across the X axis (Eq. 5.1). Sy is used for scans

across the Y axis (Eq. 5.2). In Eq. 5.3, the scan begins at a starting point, L(xi, yj). The

starting point lies along the line segment between gradient points, G1G2, defined by the blue

oval for each respective line scan. The gradient points extend perpendicular to the segment

in the direction of the associated green arrow until a sharp gradient is found. Each initial

starting point L along G1G2 comes from the line equation:

If an edge is not found, the next intermediary point along the line segment is evaluated.

We chose to use a weighted four point stencil to assign higher weights to adjacent pixel

points.

Figure 5.9: Shows edge point traces of outward stencil scan.

Figure 5.8 shows the direction of the stencil scan, and Figure 5.9 above shows the resultant

edge points marked to outline the approximated edges of the patch. Figure 5.10 shows pseudo

code of the stencil scan algorithm. Following the line segment scan, a trend line algorithm

such as the Least Squares Fitting can be used to construct a trend line for each side. Only

three sides are necessary to identify the patch. Those sides are the ones that form perfect

straight lines. The side tracing the well area will contain points that do not construct a
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Figure 5.10: Pseudo-code for algorithm to obtain highest average pixel rows/columns and

gradient points.

perfect line and reveal the orientation of the patch. Once a line equation is constructed for

each of the three sides, the two corner points connecting each side to form the square can

be identified by finding the intersection points from the segments.

5.5.4 Patch Orientation

Our approach assumes the side with the highest margin of error given the trend line to be

where the wells reside. Another enhancement that provides further accuracy is to split the

square into four quadrants. Then, the top two highest average pixel values are the top half

of the patch. The two quadrants with the lowest values are mostly black and contain the

wells.

5.5.5 Well Identification and Detection

Given that the patch is square, we know the length of the sides by measuring the distance

between the two approximated coordinate points. This distance measurement is then used

as a scaling factor for our reference point measurements. To identify the location of each

well, we manually measured the distance between each well and our chosen reference point.

A scaling factor of how many pixels corresponded to one unit of measure. We chose our

reference point to be the top left of corner of the patch opposite of the wells was created.
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Given the reference point measurements, our length scale measurements, and our scaling

factor we have all the information we need to process the patch on the mobile phone very

quickly.

5.5.6 Patch Angle Transformation and Well Identification

Given an acceptable patch orientation within range of the accepted degree values mentioned

above, we applied the Jacobian Transform to identify the wells given any slight offset of the

patch from the normal and a measurement. We found the offset from the normal angle by

taking the arctan of the two corner points.

θ = arctan(y2 − y1/x2 − x1) (5.4)

Once the offset is found the Jacobian Theorem can be applied. For our equation, we used

the following theorem to identify the well location given our reference point.

B = cos2θ − sin2θ (5.5)

1/B =

 cosθ −sinθ

−sinθ cosθ


x′

y
′

 =

x
y

 (5.6)

(x
′
, y

′
) represents the original pixel distance from the reference point to a desired well. (x,

y) represents the new x, y coordinates given the angle offset θ. Given this equation, we can

plug in our reference measurements for each well and find the exact location in the image.

5.5.7 Well Color Detection

Our implementation assumes that a certain amount of infrastructure is available. Below is

a list of our assumptions:

• The CMOS optical sensor is fairly sensitive enough to produce a good quality image
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• There are no variations in illumination

• The image is a taken at an angle parallel to the patch

After locating a well, its color can be contrasted with corresponding reference template

colors by comparing their luminosity. Luminosity analysis analyzes the intensity of the pixels

Figure 5.11: Image partitioning and template color segmentation and matching. a) Image

partitioning by square template matching. b) Luminosity analysis by pixel intensity. c)

Maximum color size by cluster.

while maintaining the original colors (Figure 5.11a). Figure 5.11b shows the image after the

luminosity analysis. After luminosity, the colors are further segmented into red green and

blue yellow planes. Then, the colors are clustered so that colors that are the closest to each

other are grouped together. A range metric is also used to reduce noise by ensuring that

there is a minimum distance between colors in a cluster. Figure 5.12 shows the pseudo code

Figure 5.12: Pseudo-code for image partitioning and template color segmentation and match-

ing.

97



for well color detection.

Some reference colors are error colors that appear in the well but are not the valid test

result. If the maximum cluster color is an error color, then the algorithm searches for the

next maximum cluster size. The result of the maximum cluster color is shown in Figure

5.11c.

5.6 Image Processing Challenges

One of the biggest challenges encountered during this project involved patch localization

algorithms. Due to having a very restricted execution environment in terms of memory and

processing power, this section describes the challenges faced with analyzing images on the

camera.

5.6.1 Grayscale versus Binary

Processing an image given an intensity scan, also known as gray scaling is a common tech-

nique in image processing. Intensity scans work well to transform the dimensions of a color

image into a single dimension of gray shades. The intensity then can be used by edge

detection algorithms such as Sobel to find the gradient of images.

What we found during experimentation was that although gray scaling works well to

normalize images, this technique alone does not get rid of background noise. To create a

simplified image with virtually no background noise, a binary image must be constructed.

The binary image that we constructed classifies the inner area of the patch area as pure

white, and removes virtually all background noise. A binary image simplifies the images

color scheme, and makes it easier to identify the patch. Please see Figures 5.9 and 5.13 for

reference.
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Figure 5.13: Gradient image of patch with weak edge definition from an intensity scan (gray

scale).

5.6.2 Sobel Edge Detection

The first approach was to use grayscale image techniques to identify the patch using intensity

scans, followed by edge detection algorithms to isolate the edge regions of the patch. The

algorithm used was the Sobel Algorithm defined below.

Gx = A ∗


1 0 −1

2 0 −2

1 0 −1

Gy = A ∗


1 2 1

0 0 0

1 −2 −1

 (5.7)

G(x, y) =
√
Gx +Gy (5.8)

The goal was to utilize the edge map produced from the gradient edges to identify and

isolate the outer corner region of the patch. However, we found that in certain instances edges

were not clearly defined to have an influence on our bounding box localization algorithm.

For example, the image shown in Figure 5.13 is a result of the Sobel algorithm using a

3 x 3 convolution kernel in both the X and Y direction. Gx and Gy produced the gradient
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image G. The variable A corresponds to a 3 x 3 subsection of the image to be masked. When

the subjects skin color resembles the color of the outer edges of the patch, the edges were

less defined. In addition, if a picture was taken of the patch at certain angles, the edges were

also less defined.

5.7 Dengue Outbreak Webpage

An important aspect of our application is to perform a complete diagnosis on the cellular

phone. The real-time tracking of outbreak information enables individuals and organizations,

such as the Center for Disease Control (CDC), to act accordingly to prevent further outbreak

occurrences. We provide real-time tracking of outbreaks following the users decision to

upload information to the web service. The DDMA Web Service (DDMA-WS) was developed

with two major goals in mind.

The first goal is to enable real-time tracking of dengue outbreaks. The second goal

is to facilitate monitoring and record keeping of test results. The purpose of the Dengue

Outbreak Tracker webpage is to display the latest dengue outbreak information in real-time

to interested parties. The dengue website consists of the following features:

Search for outbreaks : The Google Maps API allows data retrieval based upon unique

location facts. The search bar widget enables querying of the latest dengue outbreak infor-

mation according to a particular location of interest. The resultant information returned

from the query will be the total number of individuals diagnosed as infected with the dengue

virus within a 3 month timeframe. Additionally, a search widget enables querying of the

latest dengue outbreaks within a radius of a given location.

Dengue outbreak tracker : The Dengue Tracker Google Maps Application, shown in Figure

5.14, displays graphically the impact factor of the outbreak in a region of interest. The

impact factor is represented by a marker containing information about the total number of

reported infections in the area. The information only relays the sum and does not provide

information on individuals on a case by case basis. Additionally, a headline news feed column

gives periodic updates of the latest reported news regarding dengue outbreaks.
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Figure 5.14: Screenshot of the dengue tracker webpage. Users are able to query the number

of dengue outbreak cases within a three month window and view a news feed of latest dengue

news.

Real-time data dissemination An important property of our DDMA system is that it can

perform a complete diagnosis on the cellular phone. The real-time tracking of diagnoses

enables individuals and organizations, such as the Center for Disease Control (CDC), to

act accordingly to prevent further outbreak occurrences. We provide real-time tracking of

outbreaks following the users decision to upload information to the web service. During the

diagnosis, DDMA retrieves the GPS location where the test was administered. We assume

that the reported GPS location corresponds to or is in close proximity to the location of

the actual infection. These data is annotated with QoI/VoI metadata (see section 2.4) that

describe the following:

• Relevance: Conventionally there are 3 phases of dengue infection with a specific diag-

nosis test for each phase

• Completeness: Sensor data must include location and time
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5.7.1 Implementation of the Ontology Based QoI/VoI Data Model

In [89], we described the envisioned usecase for DDMA, where a team of Physicians are

deployed to regions of interest where high incidences of dengue are reported. The Physicians

are equipped with: (a) numerous Microfluidic paper-based analytical devices (mPADs) capa-

ble of diagnosing dengue infection, (b) a Windows Mobile phone with the Dengue Detector

Mobile Application (DDMA) to analyze the mPAD, and (c) a vehicle equipped with network

access. Since [89], the DDMA Web Service (DDMA-WS) has been replaced with our Sensite

data platform due to the platform performing the same function.

Sensite (see chapter 3) is designed to be a generic sensor data platform. Therefore, no

logic exists to discriminate or perform custom actions based on the content of the metadata.

It simply stores any uploaded sensor data. It is the role of the DDMA-WS to perform a

RESTFul query against Sensite to obtain the relevant sensor data, then filter these sensor

data according to a radius based region of interest. The data is returned in JSON format

like the following in Figure 5.15.

Figure 5.15: QoI/VoI metadata that is created from DDMA and uploaded to the Sensite

platform for sensor data storage.

The QuantitativeMetric attribute stores the dengue diagnosis information in either string

or decimal format. The website receives a JSON array containing the sensor data results,
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then filters out the complete tests and displays the latest outbreak information to the user

on the dengue outbreak tracker website (see Figure 5.16). The goal is to use web services

for a medical mobile health infrastructure at the point of testing.

5.7.2 Social Networks

Social networking has become a widely popular medium to create and build relationships.

Research has shown that social networks can describe relationships on many levels, play a

critical role in determining various options for solving problems, and determine the value

that one may gain from the relationship [98–100]. We leverage social networking concepts to

build a website user profile that models the connections made between the following entities.

These entities represent the key elements necessary to facilitate patient diagnosis, treatment,

and patient monitoring.

• Patient

• Physician

• Epidemiologist

5.7.2.1 Patient

The Patients profile is comprised of basic information for representing a person using the

Dengue patch for purposes of diagnosis. General information under this profile includes the

patients name, sex, weight, age, home address, and their diagnosis history. On the Dengue

mobile application, test results are anonymous and only reveal the presence of an infection

in the region (Figure 5.16). In a developing country, the patients likely will not have access

to a cellular phone. While kiosks have been proposed in developing countries, the patient

functionality is a feature that more likely to be used in more industrialized countries.
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Figure 5.16: Screenshot of the Personal Diagnosis History webpage. This webpage enables

the user to view their latest dengue diagnosis history and optionally recommended treatments

from a physician.

5.7.2.2 Physician

The Physicians profile is used to display information about the physician, such as his/her

name, medical practice, specialty, and location of practice. The Physicians profile has the

careGiverOf relationship that allows the physician to seamlessly interact with the Patient,

identifies the physician as the caregiver, and allows the physician to upload information on

the Patient. For each test result, a physician has the ability to create a dialogue with the

patient for recommended treatment under the patients profile.

5.7.2.3 Epidemiologist

The Epidemiologists profile was created to allow the analysis of the frequency and distri-

bution of dengue in a population or region. Epidemiologists identify disease outbreaks and

recommend public health policy. These recommendations may include approaches to main-
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tain an outbreak. The information stored under this profile is reports and alerts from analysis

of data on the dengue outbreak webpage. Also, a forum for epidemiologists will be present

for analyst to discuss patterns in detections.

5.8 Results and Analysis

Our image partitioning and color segmentation and matching algorithm allows a camera

phone to diagnose dengue in a patient. Diagnosis is done by matching the color results to

reference colors for a respected well on the medical patch. We discuss the methodology used

to create the metrics used for the processing delays and power consumption of images of the

following resolutions (VGA, 1MP, 2MP).

5.8.1 Image Processing Delay

Figure 5.17: Diagram of the average time variation between end-to-end process completion

of web server versus phone local processing time.

To gain an estimate of the average processing time for images of various resolutions, we

ran the algorithm ten times for images of various resolutions, and then recorded the average

processing time for both experiments. In Figure 5.17, the average time of both resources

(smart-phone and web service) spend performing actual image processing is shown. From the

chart it is clear that the laptop performs orders of magnitude faster than the smart-phone

in terms of processing speed, which makes the laptop processor a golden resource to the
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smart-phone. However, although processing capability varies greatly between devices, there

are more important factors to consider before deciding to offload processes to an external

resource. Smart-phones are often equipped with proximity accelerometer, CMOS light, and

GPS sensors. However what still remains conventional is battery lifetime. If these sensor

devices are used simultaneously, the battery life of the phone is decreased more rapidly. In

addition, overhead incurred to invoke the web service is also a detail to consider, which we

studied further in [89] and developed PowerSense, an extensible module for DDMA that

proactively facilitates the management of processes for web service assisted mobile applica-

tions. We omit discussion of PowerSense for sake of brevity. The intent is to obtain minimal

power consumption by leveraging an adjacent web service infrastructure for processing if the

resource results in a smaller resource footprint on the smart-phone device.

5.8.2 Power Consumption

Figure 5.18: Diagram of the average power consumption on phone given images of various

resolutions.

Physicians have preference of several resolutions and the ability to use a web service as

an extra resource for processing thus minimizing the power consumption on the smart-phone

device. We took the average runtime to process an image under a certain resolution. Images

of VGA and 1MP quality show a minimal power savings difference if processed via the web

service versus locally. Thus, if the user prefers high quality the tradeoff is time (which the
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user has the ability to manipulate). For example, if the user has preference for faster image

processing time, then they can offload processing to the web service. However, if the user is

using an image of lower quality resolution, the benefits of a web service are negligible and

the transmission overhead consumes more energy. Our experiments show that under WIFI

wireless operating conditions, images above 1 MP gain greater time and energy savings by

using the web service. Images of 1 MP resolution have generally equal power consumption

assuming ideal wireless network conditions (Figure 5.18).

5.8.3 Implications

There are several important implications on how this would affect dengue diagnosis in de-

veloping countries. Due to the portable nature of the cell phone diagnosis can be done at

the patients home. Mobile diagnosis aids in the treatment of patients in rural areas. Sub-

sequently, patients will be provided with the recommended treatment for dengue to prevent

death. The mobile diagnosis will have the largest impact on children who are the most

susceptible to the serious side effects of dengue.

The transmission of positive test results to the CDC can also aid in the control and

prevention of dengue. The cellular communication also contains information on the corre-

sponding tower of the transmission. This location information can be used to determine

areas that are susceptible to epidemics. If various agencies have accurate information on the

number, location, and type of dengue outbreaks, they can work on improving the waste and

water management in those particular regions. These prevention and control techniques can

mitigate the further spread of the disease and improve the quality of peoples lives in the

developing country. Additionally, affected travelers will be aware of their condition and be

advised not to travel to aid in recovery and prevent propagation of the disease.

When a new technology is introduced into the healthcare arena, it is important to note

its limitations as well as its capabilities. The portable nature of the cell phone and medical

patch can also raise difficulties in maintaining the equipment. In developing countries with

high crime, cellular phones may be susceptible to thieves. The cellular phone is a valuable

107



resource in developing countries and could be used for other purposes. However, a key

factor that should be considered that contributes to the effectiveness of our solution is the

wavelength sensitivity of the CMOS optical sensor. The sensors level of sensitivity does play

a role in the quality of an image.

Additionally, the cost of the cellular service was not put into the cost analysis. The

assumption that the cellular network is functioning in the remote region also may not be a

valid assumption for some developing countries. The cost of using the cellular service and

the availability of the service can vary greatly depending on the countrys resources.

5.9 Future Directions

To further enhance the capabilities of our application, we are continuing research on better

image processing algorithms to effectively identify the patch given background noise. The

active contouring algorithm is very effective at identifying objects within images. However,

the algorithm involves many complex sets of operations to bind an object of interest. Further

research will involve taking into account general concepts of how the algorithm works to

create a hybrid version given that the only object of interest is our patch in an image.

Lastly, an area of special interest resides in the security and authenticity of data from

the cellular phone. Ensuring the integrity of a patients medical record is a very important

consideration in addition to ensuring that a patients medical data remains safe if the patients

cell phone is stolen or lost. Researchers at the Wireless Health Institute at UCLA have

developed a medical device called a Gateway, which serves as a secure data warehouse for

medical data, in addition to a communication controller device for medical information

uploads to a third party. This device is small enough to clip on the belt or reside in their

pocket of a patient. This device can ensure data integrity by facilitating the upload of

dengue outbreak information to the CDC, and encrypting a patients medical information

before uploads to ensure integrity.
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5.10 Discussion

In conclusion, we have presented a novel approach for detecting dengue using the processing

power of mobile phones. This approach provides a method for detecting dengue that is

highly cost effective. Using light weight image processing algorithms, the cell phone is used

to analyze the patch and accurately determine the disease state with limited processing

capabilities and memory. Our system requires no off board processing and provides the user

with simple and timely feedback. Additionally, a web service displays spatial information of

outbreaks and facilitates the monitoring and diagnosis of outbreaks. However, in order for

maintain a high level of accuracy for the information presented, QoI/VoI metrics must be

followed so that the information processor (DDMA-WS) can provide accurate information

to the user. We envision that our patch and similar real-time mobile diagnosis systems

will be affordable and available in large quantities at local retailers. The availability and

affordability of these systems will allow testing to be performed quickly and efficiently when

a patient experiences symptoms of an infectious disease.
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CHAPTER 6

Conclusion

6.1 What do Dengue and UV have in Common?

Both Dengue and Skin Cancer are prevalent issues facing our society, and we have pre-

sented two health and wellness monitoring applications that crowdsource sensor data feeds

in order to measure a phenomenon of interest (namely Dengue and UV irradiance). These

applications are designed with a narrow focus on specific types of sensor data feeds, and

QoI is important. In the simple case, DDMA would leverage three separate sensors each

diagnosing a specific phase of the dengue virus and returning a boolean value (assuming the

commercially available sensors), and in the complex case UVG can leverage different types of

sensors: One that reports the UVI and the other UV irradiance. The UVI can be converted

into a truncated UV irradiance value, but with lesser precision.

Rather the traditional practice of developing a “closed” SSW platform where applications

such as the aforementioned operate using closed data storage with coupled analytics for

a single domain, these applications can publish their sensor data streams to our Sensite

platform, and be presented with a manifest list of relevant sensor data streams to bind to.

These applications can then use our QoILibrary to associate sensor data analysis algorithms

on the fly, and they can simply re-use their views (eg. using portlets) to display analytics

without bringing down their system to refactor code.
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6.2 General Purpose Extensible Framework for SSW Developers

Traditionally, WSNs were designed, deployed and operate in rather “closed” set-ups, where

WSNs are intimately tied to their applications. The recent Internet of Things (IoT) and

Web of Things (WoT) standard took the first step enabling a more “open” setup, provided

the applications have knowledge of the communication protocol that the SSW device uses

to stream data. These solutions do not address the challenge of providing the right sensor

data that the information processor needs in order to make better decisions. What if SSW

developers could be presented with a manifest list of relevant sensor feeds to bind to ordered

by Relevance or Resolution and they simply extend processing algorithms to a library (such

as our QoI Library) to process the feeds that they choose to bind to? This type of solution

solves the problem that we described in [18], enabling general purpose extensibility for SSW

developers using IoT enabled sensors in an open deployment to build applications that may

search, select and bind (and unbind) dynamically to sensor data streams that can best

support their current information needs.

6.3 Other Applications

Figure 6.1: Cumulative number of EVD deaths in West Africa as of 1 July 2014 [1].
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In 2013, the recent outbreak of Ebola virus disease (EVD) that started in West Africa

has spread to other territories such as Guinea, Liberia and Sierra Leone. In August 2014,

the death toll in those countries has reached roughly 844 EVD confirmed deaths [1, 101],

with a projected rate of infection slated to continue rising (see Figure 6.1).

More recently, outbreaks have been confirmed in the USA [102]. The same dengue out-

break application that we presented in chapter 5 can be modified with minimal overhead in

order to track EVD outbreaks. Our Sensite sensor data platform can be leveraged to store

relevant QoI/VoI attributes to assess the confidence of the diagnosis, and Physicians can be

deployed strategically to key outbreak sites in order treat patients and save lives by treating

patients early.
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CHAPTER 7

Related Work

7.1 Ontology Based Models for Sensor Data

The structure of our QoI library framework leverages technologies developed for SSW [103].

These are recast and extended to serve the specific purpose of our framework. In SSW,

sensing systems and tasks are described through domain specific ontologies and sensor data

are enriched with metadata annotations. The purpose of the SSW is to create manage-

able and extensible frameworks that use semantic technologies (such as the OWL semantic

language [15]) to facilitate human computer and machine-to-machine interactions and rea-

soning pertaining the abundance of sensory data and processes. This is an active research

area with forums exclusively dedicated to it. Regarding sensor metadata, the SensorML is

an XML-based language that describes sensing platforms, data, and processes [17].

Researchers in [104,105] consider leveraging concepts from OWL and SensorML to create

an ontology for representing the capabilities of sensors, their operational platforms, and

their operating environment. In [104], the authors develop an ontology based language for

dynamically assigning predefined tasks, such as detecting, distinguishing, and identifying

predefined objects (e.g., buildings or vehicles) of interest to available sensors. In [105], the

authors use similar concepts as in [104], however they create an interaction layer between

humans and sensors by defining a semantic model to fuse and consume information from

various sensors, in addition to defining a language for managing resources connected to

sensor platforms.

Finally, regarding quality computations for localization [106] studies the quality of tri-

lateration based localization and proposes an iterative technique the localization accuracy.
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7.2 SSW Data Publishing Platforms

Madden et. al. [107] developed Tiny Aggregation (TAG), a web based sensor data aggre-

gation platform for ad hoc networks of TinyOS motes. TAG provides a web interface for

publishing, and an SQL based language for querying sensor data. Sensor data queries are

performed by a root node and distributed across a closed sensor network of TinyOS motes.

Their contribution shows that an SQL-like query syntax can offers greater flexibility for

retrieving sensor and can enrich the capabilities of Senite if integrated.

Central Nervous System for the Earth (CeNSE) [28], developed by Hewlett Packard

is a closed setup enterprise sensor data platform that consists of a network of nano-scale

sensors designed to feel, taste, smell, see, and hear what is going on in the world. When

deployed, these sensors will collect and transmit these sensor data to information operators,

which will analyze and act upon the information in real time. Example scenarios for CeNSE

include smelling a gas leak, monitoring traffic conditions (eg: speed and volume of traffic

flow), infrastructure wear and tear, or tracking the spread of viruses. CeNSE’s web interface

enables users to perform queries for phenomena of interest and receive annotated sensor

data. This is the exact thing that Sensite does. However, our platform does not operate in

a closed environment. Sensite embraces openness where sensing agents can publish any type

of sensor data, and our knowledgebase will associate sensor with all of the phenomena that

the sensor is qualified to provide information about.

GeoSense [108] from the MIT Media Lab is an open sensor data publishing platform for

the visualization, social sharing and analysis of sensor data. Cosm [24] is a company that is

dedicated to providing a platform for users with internet enabled Geiger radiation detectors

to upload sensor data in real-time. BISHAMON [109] aims to provide an web based platform

for individuals and communities to visualize and assess pre-processed Geiger detector sensor

data logs that are provided by a remote controlled vehicle-mounted radiation monitoring

system.

These applications provide a platform for storing specific or arbitrary types of sensor

data, however does not provide a comprehensive set of contextually related classifiers that
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describe the heterogeneous environmental contexts that the sensor data may be applicable

to. In other words, these sensor data may be applicable to measuring and/or describing many

other types of phenomena (eg: shooter localization, nuclear radiation, etc.), however there

is no clear model that enables the user and/or application to obtain as much information as

possible to make an informed decision about a certain phenomenon of interest without having

to perform multiple queries for the different types of applicable sensor data, and implement

algorithms to fuse the data. Moreover, having sufficient subject matter knowledge of the

applicable types of sensor data is also a requirement. We have developed an ontology based

model that enables a community of users to publish sensor data, extend algorithms to assess

the QoI and VoI of the sensing agent and/or its sensor data. In addition, enabling subject

matter experts to classify the qualified sensing agents that are capable of providing applicable

context related information to describe a phenomenon.

7.3 Applications Related to Dengue Detector Mobile Application

There is a wide and diverse body of related research that investigates computational ap-

proaches to detect, model, and prevent the spread of contagious diseases and explores

lightweight approaches to image processing on resource constrained embedded systems. We

restrict our attention only on the most directly related research and developmental results in

the detection of dengue in countries with limited resources and image processing on mobile

systems.

Lensless Ultra-wide-field Cell monitoring Array platform based on Shadow imaging (LU-

CAS): Recently, Ozcan et al. developed a novel blood analysis tool to detect HIV and

Malaria with the Lensless Ultra-wide-field Cell monitoring Array platform based on Shadow

imaging (LUCAS) and a cellular phone [110]. Researchers introduced a small blood sample

to three individual stacked trays placed on top of the CMOS sensor of a cell phone. The light

from a Light Emitting Diode (LED) exposes distinctive signatures of blood cells by filtering

the wavelength of light that passes through the trays. After light filtering, images of the

shadows cast from blood cells are then uploaded to the LUCAS processing platform server
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and processed using template matching algorithms to identify certain signatures of diseased

blood cells. Previous approaches involve a tedious process of using expensive microscopes to

analyze blood cells and examining each tray one by one to detect anomalies.

LUCAS provides a novel approach to viral detection through microscopy. However further

research has found that polymerase chain reaction (PRC) assays are far more effective for

detecting specific types of dengue viral strands. This is evident through the ability to

construct specialized primer sequences, based upon the genomic sequence of specific types

of dengue viral strands. These primers anneal to their respective viral genome sequence

to isolate a specific dengue type [111]. LUCAS can reveal dengue viral strands on the cell

surface in addition to sometimes inside the cell, however is not able to classify the viral

strand types as efficiently as our dengue patch. This enables our patch to distinctly diagnose

the level of dengue infection.

CMUcam: Another area of research that has been gaining attention is image processing on

mobile devices. Researchers at Carnegie Mellon have spearheaded a project called CMUcam.

The objective of this project is to provide a framework for image processing with a small

CMOS color camera module, coupled with a high speed embedded ARM processor. The

embedded device is a fully programmable open source library tailored for general image

processing tasks [112].

This device provides high speed processing, but lacks networking capability. The cost of

this device is roughly $100.00, which is comparable to the cost of a cell phone. CMUcam

provides a good foundation for robotics and artificial intelligence frameworks [112]. However,

the solution may not be viable in a developing country due to the need for an additional

computer to program the interface. In contrast, our simple algorithm is capable of performing

analysis of the patch without an additional processor.

Dengue Testing Kits : A number of groups have attempted to develop accurate dengue

tests to detect the presence of dengue antibodies or electrolyte abnormalities indicating the

presence of a serious disease [113]. However, many of these tests are unavailable to developing

nations due to their high cost or the requirement for complicated electronics and machinery.

To overcome this limitation, researchers are developing a novel, low-cost patch to detect
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the presence of infection and associated abnormalities [?, 91, 93, 111, 113]. This paper-based

sensor utilizes colorimetric detection schemes to note the presence of abnormalities in the

patients blood.

Martinez developed a chromatography paper with a hydrophobic, UV-sensitive polymer

pattern to detect biomarkers in small samples as low as 5µl. The hydrophobic pattern

directs the flow of the sample along the hydrophilic paper to regions within the overlay

that has enzymatic detecting reagents. The paper detects glucose and protein biomarkers

and has small pores that prevent the contamination of foreign substances such as sediment

or dirt [91, 114–117]. The techniques described in this paper use the mPAD prototype as

input to detect clinically relevant concentrations of glucose and protein in artificial urine.

The authors state that they envision their current process of using Physicians to manually

analyze the color shades of the patch to eventually be replaced by mobile phones scanning

the patch and diagnosing the patient [114]. Our work builds upon their study by providing

a solution that removes the manual process of analyzing the color shades of the patch using

a lightweight image processing algorithm on the cellphone.

Dengue fever rapid test devices, also known as one-step dengue tests, are typically PCR

or immuno-chromatographic based assays for the rapid, qualitative and differential detection

of dengue IgG and IgM antibodies to dengue fever virus in human blood [118]. A medical

kit developed in India adopts a version of PCR bioassay methodology to detect common

strands of Dengue. This novel invention is called Erba Den-GO [118]. Transasia Bio-Medical

developed this kit to detect strands of dengue in India. Erba Den-GO is a simple testing

kit that uses PCR based assays, which is a process where the viral strands in the DNA are

separated by synthesis of oligonucleotide primers (genomic sequences designed to anneal to

their respective viral genomes), amplified and then analyzed to detect dengue viral strands.

The box includes a small hand held testing device with a small reservoir in the center. In

this reservoir, the user mixes approximately 10µl of blood with a few drops of a chemical

compound used to isolate the viral strands. After about 15 min, the patch reveals lines to

reflect the stage of dengue.

Rapid detection kits are a good solution for detecting dengue, however kits such as these
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are priced between $200 (Dengue Fever Rapid DipStick Test) to $700 (Dengue Fever IgG/IgM

Card Test Kit). The above methodologies offer a good approach to dengue detection. How-

ever, our solution provides a methodology to detect dengue that is more affordable to third

world countries. In addition to performing diagnosis on the cell phone, the paper based

patch that can cheaply be manufactured in bulk. The current cost estimate for the patch is

20 cents.

Mobile Image Processing : Our assumption is that medical personnel in the developing coun-

try have at least a cell phone device with an integrated CMOS camera. The algorithm that

we use to analyze the patch does not require heavy processing power. Our algorithm is also

simple enough to run on cell phone devices with limited processing capability.

Our research presents an easy method to detect dengue using the processing power of

a cell phone and a small medical patch that turns different color shades. Our solution

involves a bio-assay based test, and a lightweight image processing algorithm to diagnose

the level of disease. Alternative solutions typically involve traditional tests using bio-assays,

in addition to using microscopy to detect the viruses. Further detail regarding traditional

dengue detection methods are defined in later sections.

7.4 Applications Related to Ultraviolet Guardian

In 1995, Diffey et. al. [69] proposed an embedded device that incorporates a miniature UVB

sensitive sensor and a data logger that could be clipped to the lapel or on a waste belt in order

to estimate cumulative UV exposure. To our knowledge this is the first proposed personal UV

exposure monitoring device capable of recording exposure on a per second basis. Their goal

was to better understand the outdoor activities of humans in Sunlight. The controller itself

could be placed in the pocket or clipped to a belt buckle. The device has a cosine weighted

angular response, therefore making it comparable to Polysulfone dosimeters. Erythemal

irradiance samples were taken every two seconds for up to two hours max.

Herlihy et. al. [84] conducted a series of experiments to quantify the percentage of

UV irradiance that each anatomical body site receives with respect to horizontal irradiance
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measurements. The 94 participants wore polysulfone badges on their cheek, hand, shoulder,

back, chest, thigh, and calf. In addition, the same badge, denoted as a surface badge, was

used as a control in order to correlate the site specific badges against the horizontal (ie:

ground) measurements. This work contributes useful information in order to understand the

exposure percentage at relative body sites after the activity is performed, however they lack

information about the SZA at the time the measurements were taken. For instance, if the

SZA is at 0◦ (ie: solar noon) then 0% of the torso is exposed to the visible sky, compared to

a SZA of 70% (ie: sun nearing horizon morning/late afternoon). UV radiation at the later

SZA is more direct as the rays hit a smaller vertical body surface area. Therefore, its not

possible to accurately use their body site relative exposure percentage estimates for body

site exposure estimation.

Vernez et. al. [119] UVSimEx is a simulation tool developed by et. al. that applies

computer graphics algorithm to generate a 3D model of UV exposure sites given information

about the environment, the Sun’s position, and the user. Assuming certain general proper-

ties, their algorithm estimates cumulative body exposure over the whole body by integrating

slices of the body in order to calculate the total energy per unit area that the skin has re-

ceived. Our work differentiates from theirs by using sensors and a light weight UV exposure

estimation model capable of running on a cellphone. This enables our algorithm to provide

real-time estimates.
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CHAPTER 8

Future Work

This work lays the foundation for an unsupervised learning algorithm that discovers the

relationships between sensors and phenomena without users having to annotate sensor data

with a bag of terms. There is still many areas that the research community can build on top

of to further improve our algorithm.

SQL-like Queries : The contributions of [107, 120, 121] has proven that an SQL-like query

syntax is an effective method for querying sensor data using complex queries. Currently,

the Sensite platform implements a simple query language that enables the user to recall a

single phenomenon that instantaneously occurred at a given spatiotemporal moment. The

SQL query language has evolved to a multifaceted set of commands that can be combined

in such a way to retrieve a range of events. Therefore, integrating a structured query engine

into the Sensite platform will enable information operators to perform complex sensor data

queries.

Complete Sentence Prediction: Due to the size limitation of our dataset, we were unable

to train our N-gram based algorithm to predict the likelihood of a complete sentence us-

ing words. However, our algorithm still achieved 87% correct predictions. The research

community can contribute by applying a larger and more comprehensive training dataset.

Companies such as Microsoft and Google [122–124] have implemented N-Gram based algo-

rithms for sentence prediction and have access to a large corpus of unstructured text that

can greatly improve the accuracy of our algorithm. The accuracy of our algorithm can be

vastly improved if a more comprehensive training data set is applied.

Context Recognition by Semantic Similarity: We have laid the groundwork for a knowledge-

base that learns the relationships between sensors and the many phenomena that they are
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qualified to provide information about by using semantic similarity algorithms to interpret

the meaning of unstructured text. Our list contains only a small percentage of the many

possible sensor types and worldly phenomena. The research community can extend this

work by applying an algorithm capable of automatically learning the names of terms that

describe a sensor or phenomenon. This will enable Sensite to cover a broader spectrum of

relationships.
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