
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Providing Efficient Fault Tolerance in Distributed Systems

Permalink
https://escholarship.org/uc/item/0pb7p69t

Author
Zhuang, Siyuan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pb7p69t
https://escholarship.org
http://www.cdlib.org/

Providing Efficient Fault Tolerance in Distributed Systems

By

Siyuan Zhuang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Co-Chair
Professor Dawn Song, Co-Chair

Professor Matei Zaharia
Professor Danyang Zhuo

Spring 2024

Providing Efficient Fault Tolerance in Distributed Systems

Copyright © 2024

by

Siyuan Zhuang

1

Abstract

Providing Efficient Fault Tolerance in Distributed Systems

by

Siyuan Zhuang
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Ion Stoica, Co-Chair

Professor Dawn Song, Co-Chair

The exponential growth in data and computational demands is transforming
the approach to system design, particularly in tackling large-scale problems such
as training large language models. This shift necessitates the widespread adoption
of distributed systems. Simultaneously, systems and applications are becoming in-
creasingly heterogeneous and sophisticated. In this evolving landscape, a critical
challenge arises: supporting a wide range of distributed applications while simulta-
neously achieving computational efficiency and fault tolerance.

This thesis explores the development of universal distributed systems that pro-
vide efficient fault tolerance for modern applications. The key idea is to exploit the
semantics of workloads at all layers of distributed systems. At the communication
layer, we introduce Hoplite, a distributed object store that dynamically exploits data
transfer patterns and employs fine-grained pipelining to gain efficiency. Hoplite also
reschedules tasks to mitigate the effects of failures. At the task execution layer, Ex-
oFlow leverages the semantics of tasks and data passing between tasks to separate
execution and recovery units within workflow systems. This approach ensures exactly-
once failure recovery semantics while minimizing checkpointing overhead. Together,
these contributions demonstrate a full-stack approach to building universal, efficient,
and fault-tolerant distributed systems.

i

To my family.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Overview of Existing Distributed Systems 2
1.2 Overview and Contributions . 4

2 Hoplite 6
2.1 Introduction . 7
2.2 Background . 9

2.2.1 Task-Based Distributed Systems 9
2.2.2 Challenges in Collective Communication 11

2.3 Design . 12
2.3.1 Hoplite’s Workflow . 13
2.3.2 Object Directory Service . 15
2.3.3 Pipelining . 15
2.3.4 Receiver-Driven Collective Communication 16
2.3.5 Fault-Tolerant Collective Communication 21

2.4 Evaluation . 23
2.4.1 Microbenchmarks . 23
2.4.2 Asynchronous SGD . 28
2.4.3 Reinforcement Learning . 29
2.4.4 ML Model Serving . 30
2.4.5 Fault Tolerance . 30
2.4.6 Synchronous Data-Parallel Training 32

2.5 Discussion . 33
2.6 Related Work . 34
2.7 Conclusion . 35

iii

3 Exoflow 36
3.1 Introduction . 37
3.2 Motivation . 39

3.2.1 Overview of recovery strategies 39
3.2.2 Applications . 42

3.3 API . 44
3.3.1 Overview and requirements 44
3.3.2 Model . 47
3.3.3 Guaranteeing exactly-once execution 50
3.3.4 References . 51

3.4 Architecture . 53
3.5 Evaluation . 54

3.5.1 ML training pipelines . 55
3.5.2 Stateful serverless workflows 56

3.6 Related Work . 58
3.7 Discussion . 59
3.8 Conclusion . 60

4 Conclusion 61
4.1 Lessons Learned . 62
4.2 Limitations and Future Work . 62

Appendix 77

A Hoplite system design and evaluation 77
A.1 Implementation . 77
A.2 Microbenchmarks on Small Objects 77
A.3 Ablation Study on Reduce Tree Degree 78

B Exoflow system design and evaluation 81
B.1 Architecture . 81

B.1.1 Workflow execution . 81
B.1.2 Workflow recovery . 82
B.1.3 Execution backends . 84

B.2 Implementation . 84
B.3 Evaluation . 86

B.3.1 Online-offline graph processing 86
B.3.2 Microbenchmarks . 87

iv

List of Figures

1.1 A radar chart of existing distributed systems and where they fall short
regarding adaptability, efficiency and fault tolerance. 2

1.2 The distributed system stack that is composed of the communication
layer and task execution layer. 4

2.1 Pseudocode for a typical RL algorithm to learn a policy. (a) Dynamic
tasks with Ray. Each train loop waits for a single agent to finish,
then asynchronously updates the current policy. The new policy is
broadcast to a batch of finished agents. (b) Modifications to (a) to
enable Hoplite. Each step reduces gradients from a subset of agents,
updates the current policy, broadcasts the new policy. 10

2.2 Execution of a distributed RL algorithm. Each row is one agent. Boxes
represent computations, and arrows represent data transfers. g1-g4 are
the gradients produced by the agents. (a) Dynamic tasks (Ray). Gra-
dients are applied immediately. A batch of three gradients is applied
to the current policy before broadcasting. (b) Dynamic tasks but with
efficient collective communication, in Hoplite. To reduce the network
bottleneck at agent 2, agent 3 partially reduces gradients g3 and g4
(black box), and agent 3 sends the policy to agent 4 (black dot) during
the broadcast. 11

2.3 Example of a send and receive dynamic task program on a 2-node
cluster (N1 and N2). The task-based system consists of a pool of work-
ers per physical node and a scheduler. Hoplite consists of one local
object store per node and a global object directory service, which is
distributed across physical nodes. 13

2.4 An example of broadcasting an object (integer array {5, 1, 0}) from
a sender (S) in Hoplite, when the receivers (R1-R3) arrive at different
times. (a) - (d) show the broadcast process without failure. (c’) and
(d’) show the broadcast process when R1 fails after (b). 18

LIST OF FIGURES v

2.5 Examples of reduce where the objects arrive in the order of R1, R2,
..., R6. The numbers on the top of each node (and the numbers in
leaf nodes) represent the object to reduce and green blocks means the
fraction of the object that is ready. The numbers on the bottom of
each node represent the reduced result and yellow blocks means the
fraction of the object that has been reduced. Each intermediate node
is responsible to reduce the subtree rooted at it. (a) An example reduce
tree consists of 6 objects. (b) The reconstructed reduce tree after R2

fails. 20
2.6 Round trip latency for point-to-point data communication on Hoplite,

OpenMPI, Ray, and Dask. We also include the theoretical optimal
RTT (i.e. total bytes transferred divided by the bandwidth). 23

2.7 Latency comparison of Hoplite, OpenMPI, Ray, Dask, and Gloo on
standard collective communication primitives (e.g., broadcast, gather,
reduce, allreduce). To show the results more clearly, we split the results
of Allreduce into two groups: group (i) includes Hoplite, Ray, and
Dask, and group (ii) includes Hoplite, OpenMPI, and two different
allreduce algorithms in Gloo. 24

2.8 Latency of 1 GB object broadcast/reduce/allreduce on 16 nodes when
tasks start sequentially with a fixed arrival interval. Arrival interval
equals to 0 means that all the tasks start at the same time. The dashed
lines denote the time the last task arrives. 26

2.9 Training throughput (number of training samples per second) for asyn-
chronous SGD. 28

2.10 RLlib’s training throughput (number of training samples per second)
on Ray and Hoplite. 29

2.11 Ray Serve’s performance (queries per second) on Ray and Hoplite for
an ensemble of image classification models. 31

2.12 Latency when a pariticipating task fails and rejoins on (a) Ray Serve
and (b) async SGD. 31

2.13 Training throughput (number of training samples per second) for syn-
chronous data-parallel training. 32

3.1 (a) An example workflow with internal outputs (e.g., a out) and ex-
ternal outputs (e.g., put(key,val)). (b) The most efficient recovery
strategy depends on output visibility and nondeterminism. 41

3.2 (a) ETL workflow today, using external outputs for communication.
(b) The same ETL workflow with internal outputs only. (c) ML train-
ing workflow today, with external outputs and manual orchestration
within a task. (d) The same ML workflow with internal outputs only,
and orchestration is handled by the workflow system. Third-party
framework state (TF workers) can be passed between workflow tasks. 42

LIST OF FIGURES vi

3.3 Serverless workflow systems [94, 104, 52] guarantee exactly-once se-
mantics by interposing on all communication to external storage, e.g.,
through a transaction buffer, and explicitly managing visibility of these
external effects. 44

3.4 (a) Task annotations. Edge cuts represent checkpoint=True. (b)
Passing references (small boxes) in an ML workflow. Blue Refs are
actors that wrap TensorFlow worker state. (c) Passing an ActorRef

in an ETL workflow. B and C call read-only methods on the Spark
context actor. 47

3.5 Workflow architecture. The controller and executors are RPC-like ser-
vices built using Ray actors. Each invocation on these services returns
a distributed future (system-internal Refs). 53

3.6 End-to-end duration for the ML workflow application shown in Fig-
ures 3.2d and 3.4b. Left: End-to-end duration without failure. Right:
End-to-end duration with different failure types. The shadow repre-
sents the execution time without failure. 55

3.7 (a) Response latency percentile for a serverless travel reservation bench-
mark [38]. (b) Median latency of the trip reservation request from the
travel reservation benchmark. Error bar represents 99-percentile la-
tency. 57

4.1 A multi-agent architecture for efficient fault tolerance in AI agent-
based systems. 64

A.1 Latency comparison of Hoplite, OpenMPI, Ray, Dask, and Gloo on
standard collective communication primitives (e.g., broadcast, gather,
reduce, allreduce) on 1KB and 32KB objects. To show the results
more clearly, we split the results of Allreduce into two groups: group
(i) includes Hoplite, Ray, and Dask, and group (ii) includes Hoplite,
OpenMPI, and two different allreduce algorithms in Gloo. 78

A.2 Ablation study of reduce latency on the reduce tree degree d with
different object size and number of participants. 80

B.1 (c) Latency CDF of online-offline graph processing. 85
B.2 Microbenchmarks. (a) Triggering and data passing latency of Ex-

oflow and other workflow systems, using AWS Lambda (λ) and Ray
as execution backends. Missing bars indicate limitations in inter-task
communication. (b) End-to-end run time for the ETL workflow shown
in Figures 3.2b and 3.4c, compared with Airflow and native Spark. . 88

B.3 Microbenchmarks, cont. Maximum task throughput (a: 1 task/DAG;
b: 100 tasks/DAG) of 10k tasks, compared against Ray as an optimal
baseline, on 1 node and 4 nodes. 89

vii

List of Tables

2.1 Core Hoplite APIs. The application generates an ObjectID with a
unique string and can pass an ObjectID by sending the string. . . . 14

3.1 Workflow API. Top: API calls exposed to the application. Middle:
Task annotations specified by application or third-party library. Bot-
tom: Exoflow-internal Ref API, pluggable by execution backend. . . 45

viii

Acknowledgments

Behind this dissertation is the effort of many people, and I am very grateful to ev-
eryone for their contributions and support.

First and foremost, I would like to express my deepest gratitude to my co-
advisors, Ion Stoica and Dawn Song, for their invaluable guidance and unwavering
support throughout my PhD journey. Ion taught me the fundamentals of conducting
excellent research. I admire his sharp mind, which allows him to transform complex
real-world solutions into simple yet powerful ideas, and his determination to push
the boundaries of what he believes to have true value. During challenging times,
Ion has been incredibly helpful and supportive. Conversing with Dawn is always an
exciting experience, as she possesses the remarkable ability to quickly grasp novel
ideas. Throughout my Ph.D., Dawn consistently provided me with inspiring insights,
steadfast encouragement, and generously shared her extensive knowledge. Her vast
experience enriched our research discussions, making them truly invaluable.

I would like to thank my dissertation committee members, Danyang Zhuo and
Matei Zaharia. Danyang, who was previously a postdoc in our lab, helped me with
my first system paper, and I am very grateful for his mentoring. Matei is a very kind
advisor with flexible thinking. I am grateful to him for guiding me on the future
directions of my research.

I would like to thank Zhuohan Li, the co-author of my first paper and the person
with whom I have published the most papers. His positive mindset and helpful nature
have been invaluable to our work together.

I am also grateful to Stephanie Wang, one of the most experienced PhDs in our
lab at the time. Stephanie demonstrated her capability as a good mentor for students,
and some of my work would not have been possible without her patient guidance.

I would like to express my gratitude to the LM-SYS team, especially Wei-lin
Chiang and Lianmin Zheng, for collaborating on the Vicuna and Chatbot Arena
projects. I fondly remember the exciting days when we worked overnight to release
Vicuna, one of the first chatbots based on open LLMs, which resulted in the founding
of the LM-SYS team.

I also want to thank the vLLM team, particularly Zhuohan Li and Woosuk
Kwon, for our collaboration. I respect their efforts in making vLLM one of the most
popular and recognized open-source LLM serving frameworks.

My appreciation extends to the Skypilot team, especially Zhanghao Wu, for his
tremendous effort in helping me push and test a major update - the new provisioner
- to the SkyPilot project.

A special nomination goes to Michael Luo, a delightful cook, roommate, col-
league, and friend, whose companionship I have greatly enjoyed. I also want to give
a special thanks to Sijun Tan, a friend who shares common philosophical ideas and
always makes me feel encouraged and cheered up.

I am especially grateful to Jean Nguyen, our CS Graduate Advisor. Jean has

LIST OF TABLES ix

always been responsible and responsive to students’ requests. It’s been great having
you around all these years, and best wishes on your new journey!

The lab would not function effectively without the staff of RISELab & Sky
Computing Lab - Boban, Dave, Ivan, Jon, Kailee, and Kattt - who are the people
behind the scenes keeping the whole lab running. Thank you for organizing all the
events and helping us troubleshoot problems in the lab.

Thank you to all my brilliant collaborators. I have enjoyed our collaborations:
Frank Sifei Luan, Joseph Gonzalez, Hao Zhang, Dacheng Li, Ying Sheng, Cody Hao
Yu, Yonghao Zhuang, Zi Lin, Eric Xing, Shiyuan Guo, Zongheng Yang, Romil Bhard-
waj, Gautam Mittal, Scott Shenker, Tianle Li, Eric Liang, Robert Nishihara, Philipp
Moritz, Guanhua Wang, Zhuang Liu, Brandon Hsieh, Trevor Darrell, Zi Lin, Yi
Cheng, Kaiyuan Zhang, Ang Chen, Fangyu Wu, Kehan Wang, Alexander Keimer,
Alexandre Bayen, and Mitar Milutinovic.

Prior to my studies at Berkeley, I was very fortunate to be an undergraduate stu-
dent at the University of Science and Technology of China (USTC), where I developed
my knowledge and skills in computer science. I would like to thank my undergraduate
advisors, Chunsheng Li and Jia Xue, for their kind assistance during my four years
of study.

Finally, I want to thank my family. First to Xiaoyi He, my dear wife, for her
kindness, support over the years, and all the experiences and adventures we have
shared. Then to my parents, for their unconditional support, love, and sacrifice, and
for all their efforts in trying to provide me with a better environment for education.

1

Chapter 1

Introduction

In recent years, the exponential growth in data and computational demands has
been reshaping the landscape of system design. This trend is particularly evident
in tackling large-scale problems, such as training large language models, which re-
quire the widespread adoption of distributed systems. For example, in 2023, it cost
approximately 21 yottaFLOPs to train GPT-4 [10], which is based on the Trans-
formers architecture. This is 6 orders of magnitude higher than training the original
Transformer dated back to 2017. The fundamental limits in compute and memory
scalability of commodity hardware make the use of distributed systems inevitable for
horizontal scaling.

At the same time, the increasing heterogeneity of applications pose significant
challenges for the design and development of distributed systems. Modern applica-
tions span a wide range of domains, each with its unique requirements and characteris-
tics. For example, data analytics applications such as graph processing often require
a combination of batch and stream processing. Similarly, machine learning (ML)
workloads demand extraction, transformation, and loading (ETL) of data on CPUs,
as well as model training on GPUs. This heterogeneity creates complexity in the
underlying software systems, as they must adapt to support the diverse needs of dif-
ferent application domains. The differences between CPUs and GPUs, for instance,
introduce additional challenges in terms of resource management, communication,
and fault tolerance. To cope with this heterogeneity, a myriad of specialized dis-
tributed execution frameworks have emerged, each designed to support applications
within specific domains. While these frameworks provide tailored solutions for stan-
dalone applications that fit into their respective domains, they also introduce several
problems. First, the lack of interoperability between these frameworks hinders the
development of complex end-to-end applications that span multiple domains. Second,
different frameworks could have different recovery strategies for fault tolerance, which
could not be compatible when combined into an end-to-end application.

Last but not least, the increasing sophistication of applications further compli-
cates the design and development of distributed systems. In the past, distributed

CHAPTER 1. INTRODUCTION 2

Fault Tolerance

Efficiency

Adaptability

Gloo

Beldi

OPEN MPI

Figure 1.1: A radar chart of existing distributed systems and where they fall short
regarding adaptability, efficiency and fault tolerance.

applications often followed the Single Program, Multiple Data (SPMD) model or the
Bulk Synchronous Parallel (BSP) model, which had relatively simple and predictable
communication patterns. However, emerging applications like distributed reinforce-
ment learning and distributed machine learning model serving require dynamic task
scheduling and dynamic communication across multiple nodes in a cluster. The so-
phistication of these applications introduces new challenges in terms of efficient task
scheduling, communication, and fault tolerance. Traditional static collective commu-
nication may not be sufficient to handle the dynamic nature of these applications,
and fault tolerance mechanisms need to be more flexible and fine-grained to minimize
the overhead.

1.1 Overview of Existing Distributed Systems

Before delving into our contributions, we first overview some of our representative
distributed systems.

Distributed systems have evolved significantly over the years to cater to the
ever-growing demands of data processing, machine learning, and complex applica-
tion workflows. Among these systems, Apache Spark [103] and TensorFlow [8] have
emerged as popular choices for scalable distributed data processing and training.
Spark, with its resilient distributed datasets (RDDs) and rich set of APIs, has be-
come a go-to platform for big data analytics and batch processing. TensorFlow, on
the other hand, has gained widespread adoption in the machine learning community
due to its flexible architecture and extensive ecosystem for building and deploying
deep learning models. However, while these systems excel in their respective do-
mains, they fall short in achieving fault tolerance while maintaining efficiency in the

CHAPTER 1. INTRODUCTION 3

new landscape. Spark and TensorFlow are primarily designed as domain-specific dis-
tributed systems, focusing on specific applications such as data processing and model
training. This specialization limits their adaptability to emerging applications like
distributed reinforcement learning, which requires a more dynamic and interactive
execution model.

In the realm of distributed communication, Message Passing Interface (MPI) [42]
and Gloo [39] have been widely used for efficient communication in high-performance
computing and deep learning frameworks. MPI provides a standardized interface for
message passing between processes, enabling efficient point-to-point and collective
communication. Gloo, developed by Facebook, offers optimized collective communi-
cation primitives for machine learning workloads. While these systems excel in static
communication patterns, they struggle to support dynamic communication patterns
and lack the ability to recover from failures at runtime, which is crucial in modern
distributed applications.

Task-based distributed systems, such as Ray [66] and Dask [87], have emerged to
address the limitations of domain-specific systems. These systems provide a unified
framework for distributed computing, allowing users to define and execute tasks across
a cluster of machines. They support dynamic communication patterns and offer
runtime fault tolerance mechanisms. However, the trade-off is that they may not be
as optimized for efficient communication compared to specialized systems like MPI
and Gloo.

Workflow orchestration systems, such as Apache Airflow [3] and Beldi, have
gained popularity for managing complex and heterogeneous application pipelines.
These systems allow users to define and schedule workflows as directed acyclic graphs
(DAGs), enabling the orchestration of diverse tasks and dependencies. They provide
strong fault tolerance properties, ensuring the reliable execution of workflows even in
the presence of failures. However, this robustness often comes at the cost of efficiency,
as the overhead of coordination and checkpointing can impact the overall performance.

To illustrate the strengths and weaknesses of these systems, we present a radar
chart (Figure 1.1). The chart visually compares the systems across various dimen-
sions, such as fault tolerance, efficiency, adaptability to emerging applications. It
becomes evident that while each system excels in certain aspects, they struggle to
achieve a balance among adaptability, fault tolerance and efficiency in the new land-
scape of distributed computing.

In the following sections, we will introduce our contributions that aim to address
these limitations and provide a holistic approach to achieving fault tolerance and
efficiency in distributed systems across various application domains.

CHAPTER 1. INTRODUCTION 4

Task Execution

Communication

(distributed object store)

(task scheduling)

ExoFlow

Hoplite

Efficient and fault-tolerant collective communication
for task-based distributed systems

A universal workflow system that enables a flexible
choice of recovery vs. performance tradeoffs

Figure 1.2: The distributed system stack that is composed of the communication
layer and task execution layer.

1.2 Overview and Contributions

In this dissertation, we providing efficient fault tolerance for a wide category of dis-
tributed applications, by exploiting the semantics of workloads at all layers of dis-
tributed systems. Specifically, we divide distributed system into two layers: the
communication layer and task execution layer (Figure 1.2):

1. Communication Layer: This layer is responsible for the exchange of data
and messages between different nodes in a distributed system. Communica-
tion is the foundation of any distributed system, as it enables the coordination
and collaboration among distributed components. At this layer, we focus on
optimizing data transfer and communication patterns to achieve efficient and
fault-tolerant communication.

2. Task Execution Layer: This layer includes the actual execution of tasks
and computations within a distributed system. It encompasses the scheduling,
allocation, and management of resources, as well as the coordination and syn-
chronization of tasks across multiple nodes. At this layer, we explore techniques
that exploit the semantics of tasks and their dependencies to achieve efficient
and fault-tolerant execution.

At the communication layer, we develop Hoplite (Chapter 2). As a distributed
object store which is compatible with general task-based distributed systems, Hoplite
exploits the dynamic data transfer pattern on-the-fly and transfer data with fine-
grained pipelining to gain efficiency and enables fast data transfer reschedule upon
task failure to keep making progress. Hoplite speeds up asynchronous stochastic gra-
dient descent, reinforcement learning, and serving an ensemble of machine learning

CHAPTER 1. INTRODUCTION 5

models that are difficult to execute efficiently with traditional collective communica-
tion by up to 7.8x, 3.9x, and 3.3x, respectively.

At the task execution layer, we build ExoFlow (Chapter 3), a universal workflow
system. By exploit the semantics of tasks and data passing between tasks, ExoFlow
enables a flexible choice of recovery vs. performance tradeoffs. More specifically, the
key insight behind our solution is to decouple execution from recovery and provide
exactly-once semantics as a separate layer from execution, with task annotations that
specify execution semantics. For generality, workflow tasks can return references that
capture arbitrary inter-task communication. ExoFlow generalizes recovery for exist-
ing workflow applications ranging from ETL pipelines to stateful serverless workflows,
while enabling further optimizations in task communication and recovery.

In Chapter 4, we conclude by discussing future directions for research in this
space. We also present the lessons learned and explore alternative approaches for
build universal distributed systems that enables efficient fault tolerance. In summary,
this dissertation presents novel techniques and frameworks for providing efficient fault
tolerance by exploiting the semantics of workloads. The work presented here lays the
foundation for further research and development in this area, paving the way for
the creation of more efficient, robust, and fault-tolerant distributed systems that can
support the ever-evolving landscape of modern applications.

6

Chapter 2

Hoplite: Efficient and
Fault-Tolerant Collective
Communication for Task-Based
Distributed Systems

We start by investigating the communication layer of distributed systems. Col-
lective communication primitives, such as broadcast and reduce, are widely used in
distributed applications to efficiently exchange data among multiple nodes. However,
traditional collective communication libraries, such as MPI and Gloo, are designed
for static and synchronous workloads and are not well-suited for the dynamic and
asynchronous nature of task-based distributed systems.

Task-based distributed systems, such as Ray, Dask, and Hydro, have become
increasingly popular for developing and running distributed applications with asyn-
chronous and dynamic computation and communication patterns. These systems rely
on a distributed object store to transfer objects between tasks, which allows tasks
to be scheduled and executed dynamically based on the availability of resources and
data.

In this Chapter, we introduce Hoplite, an efficient and fault-tolerant collective
communication layer for task-based distributed systems. Hoplite addresses the chal-
lenges of supporting efficient collective communication in dynamic and asynchronous
environments by computing data transfer schedules on-the-fly and executing them
efficiently through fine-grained pipelining. Hoplite also provides fault tolerance by
dynamically adapting the data transfer schedule when failures are detected, allowing
live tasks to make progress while failed tasks recover.

We apply Hoplite to a popular task-based framework, Ray, and evaluate its
performance on a wide range of existing workloads, including asynchronous stochastic
gradient descent (SGD), reinforcement learning (RL), and serving an ensemble of

CHAPTER 2. HOPLITE 7

machine learning models. Our evaluations show that Hoplite can significantly speed
up these workloads, with improvements of up to 7.8x for asynchronous SGD, 3.9x
for RL, and 3.3x for model serving, while requiring only minimal code changes and
incurring negligible additional latency in failure recovery.

2.1 Introduction

Task-based distributed systems (e.g., Ray [66], Hydro [48], Dask [87], CIEL [70])
have become increasingly popular for developing and running distributed applications
that contain asynchronous and dynamic computation and communication patterns,
including asynchronous stochastic gradient descent (SGD), reinforcement learning
(RL), and model serving. Today, many top technology companies have started to
adopt task-based distributed frameworks for their distributed applications, such as
Intel, Microsoft, Ericsson, and JP. Morgan. For example, Ant Financial uses task-
based distributed systems to run their online machine learning pipeline and serve
financial transactions for billions of users [53].

There are two key benefits of building distributed applications on top of task-
based systems. First, it is easy to express asynchronous and dynamic computation
and communication patterns. A task-based system implements a dynamic task model:
a caller can dynamically invoke a task A, which immediately returns an object future,
i.e. a reference to the eventual return value. By passing the future as an argument,
the caller can specify another task B that uses the return value of A even before A
finishes. The task-based system is responsible for scheduling workers to execute tasks
A and B and transferring the result of A to B between the corresponding workers.
Second, fault tolerance is provided by the task-based system transparently. When a
task fails, the task-based system quickly reconstructs the state of the failed task and
resumes execution [99, 94]. Well-behaving tasks do not need to roll back, so failure
recovery is low cost.

As a growing number of data-intensive workloads are moving to task-based dis-
tributed systems, supporting efficient collective communication (e.g., broadcast, re-
duce) has become critical. Consider an RL application where the trainer process
broadcasts a policy to a set of agents that use this policy to perform a series of sim-
ulations. Without the support for collective broadcast, the trainer process needs to
send the same policy to every agent which causes a network bottleneck on the sender
side.

Efficient collective communication is a well-understood problem in the HPC
community and in distributed data-parallel training. Many collective communication
libraries exist today, e.g., OpenMPI [42], MPICH [68], Horovod [91], Gloo [39], and
NCCL [75]. However, there are two limitations of traditional collective communication
implementations that make them an ill fit for dynamic task-based systems.

First, a distributed application using traditional collective communication must

CHAPTER 2. HOPLITE 8

specify the communication pattern before runtime. This allows the library to com-
pute a static and efficient data transfer schedule (e.g., ring-allreduce). For example,
for synchronous distributed data-parallel training, the application specifies that all
workers participate in an allreduce communication, once per training round.

However, in task-based systems, the set of tasks or data objects participating
in the collective communication is not known before runtime. One approach would
be to wait until all the participating tasks and objects are ready and then compute
a static data transfer schedule. Unfortunately, this design misses the opportunity to
make partial progress before the entire set of participants are ready, which is critical
for the performance of modern asynchronous applications, e.g., distributed RL.

Second, because of the synchronous nature of collective communications, one
process failure can cause the rest of the processes to hang. Existing solutions leave
the recovery up to the application. A typical approach is to checkpoint the state of
the application periodically (e.g., every hour), and when a process fails, the entire
application rolls back to the previous checkpoint and restarts. Unfortunately, this
can be expensive for large-scale asynchronous applications, and does not exploit the
ability of tasks that are still alive in the same collective communication group as a
failed task to make progress.

This raises an important question: how can we bring the efficiency of collective
communication to dynamic and asynchronous task-based applications? There are two
requirements that are unique to this setting. First, the application must be allowed to
specify the participants of a collective communication dynamically (i.e., at runtime).
Second, the collective communication implementation must be asynchronous. This
would allow tasks to make progress even if other tasks in the same communication
group have failed.

We design and implement Hoplite, an efficient and fault-tolerant collective com-
munication layer for task-based distributed systems. Hoplite combines two key ideas:
(1) Hoplite computes data transfer schedule on-the-fly as tasks and objects arrive,
and Hoplite executes data transfer schedule efficiently using fine-grained pipelining.
Collective communication can make significant progress even if only a fraction of the
participants are ready. (2) Hoplite dynamically adapts the data transfer schedule
when a failure is detected to alleviate the effects of the failed task in collective com-
munication. This allows the live tasks to make progress. The failed task can rejoin
the collective communication after being restarted and complete the communication.

We apply Hoplite to a popular task-based framework, Ray [66]. This allows us
to evaluate a wide range of existing workloads on Ray. Our evaluations show that
Hoplite can speed up an asynchronous SGD by up to 7.8x, two popular RL algorithms
(IMPALA [36], and A3C [65]) on RLlib [62] by up to 1.9x, and 3.9x, respectively, and
improve the serving throughput time of an ensemble of ML models on Ray Serve [85]
by up to 3.3x, with only minimal code changes and negligible additional latency in
failure recovery.

This paper makes the following contributions:

CHAPTER 2. HOPLITE 9

• A distributed scheduling scheme for data transfer that provides efficient broad-
cast and reduce primitives for dynamic-task systems.

• A fine-grained pipeline scheme that achieves low-latency data transfers between
tasks located both on the same node or on different nodes.

• Algorithms to adapt the schedule of the data transfers for broadcast and reduce
operations which allows live tasks to make progress when other tasks that par-
ticipate in the collective communication have failed, and later allow those failed
tasks to rejoin.

• We demonstrate the benefits of Hoplite on top of a popular task-based dis-
tributed system using several applications, including asynchronous SGD, RL,
and serving an ensemble of ML models.

2.2 Background

We first describe task-based distributed systems and their benefits for developing
distributed applications. We then describe the challenges of integrating efficient col-
lective communication into them.

2.2.1 Task-Based Distributed Systems

The dynamic task programming model [17, 70, 66, 87, 48] allows applications to
express asynchronous and dynamic computation and communication patterns. For
instance, Figure 2.1a shows how to implement an asynchronous RL algorithm that
updates the policy with agent results one at a time, choosing them dynamically based
on the order of availability. Once a batch of agent results have been applied, the
resulting policy is sent to each finished agent to begin the next round of rollout.
This allows an agent that has a fast rollout not need to wait for a worker that has a
slow rollout (Figure 2.2a). Today, most RL algorithms [36, 65] leverage this type of
asynchronous execution for efficient training.

To support this type of asynchronous communication, task-based distributed
systems rely on a distributed object store to transfer objects between tasks. The
object store consists of a set of nodes, each of which buffers a (possibly overlapping)
set of application objects. Each node serves multiple workers, which can read and
write directly to objects in its local node via shared memory. A sender task stores the
output into the object store and exits, allowing it to release critical resources (e.g.,
CPU, GPU, memory) before the receiver tasks are even scheduled. When receiver
tasks are ready, they directly fetch the object from the distributed object store. As is
standard [70, 66], the object store enforces object immutability and uses a distributed
object directory service to map each object to its set of node locations. In addition,

CHAPTER 2. HOPLITE 10

def train(policy, num_agents, num_steps, batch_size):
Start some rollouts in parallel.
grad_ids = [rollout.remote(policy)

for _ in range(num_agents)]
for _ in range(num_steps):

for _ in range(batch_size):
Wait for the first rollout to finish.
ready_id = ray.wait(grad_ids)
Update the policy with one gradient.
policy += ray.get(ready_id) / batch_size
Remove this gradient from remaining gradients
grad_ids.remove(ready_id)

Once one batch of agents finish, broadcast updated
policy to finished agents and start new rollouts.
for _ in range(batch_size):

grad_ids.append(rollout.remote(policy))
return policy

(a) Dynamic tasks (Ray).

for _ in range(num_steps):
- for _ in range(batch_size):
- # Wait for the first rollout to finish.
- ready_id = ray.wait(grad_ids)
- # Update the policy with one gradient.
- policy += ray.get(ready_id) / batch_size
- # Remove this gradient from remaining gradients
- grad_ids.remove(ready_id)
+ # Reduce a batch of gradients
+ reduced_grad_id, unreduced_grad_ids = \
+ ray.reduce(grad_ids, num_return=batch_size, op=ray.ADD)
+ # Update the policy with the averaged gradient
+ policy += ray.get(reduced_grad_id) / batch_size
+ # Update remaining gradients
+ grad_ids = ray.get(unreduced_grad_ids)

Once one batch of agents finish, broadcast updated
policy to finished agents and start new rollouts.
for _ in range(batch_size):

grad_ids.append(rollout.remote(policy))

(b) Dynamic tasks + collective comm. (Ray + Hoplite).

Figure 2.1: Pseudocode for a typical RL algorithm to learn a policy. (a) Dynamic
tasks with Ray. Each train loop waits for a single agent to finish, then asyn-
chronously updates the current policy. The new policy is broadcast to a batch of
finished agents. (b) Modifications to (a) to enable Hoplite. Each step reduces gradi-
ents from a subset of agents, updates the current policy, broadcasts the new policy.

task-based distributed systems support fast failure recovery [99, 94] by reconstructing
the failed task. Well-behaving tasks do not roll back to keep recovery low cost.

However, if the gradients and the model are large enough in the above RL
example, task-based distributed systems incur significant overheads from inefficient

CHAPTER 2. HOPLITE 11

communication. For example, the trainer (agent 2) in Figure 2.2a can become a
network throughput bottleneck since it has to receive the gradient and also send the
new policy from/to each agent individually. This bottleneck becomes more severe
when the number of agents increases.

Policy
rollout

rollout rollout

rollout apply apply rolloutapply

rollout

g4

rollout

g3

a…

g11

2

3

4

(a) Dynamic tasks (Ray)

Policyg4

g3+
g4

…

g11

2

3

4

(b) Dynamic tasks + collective comm. (Ray + Hoplite).

Figure 2.2: Execution of a distributed RL algorithm. Each row is one agent. Boxes
represent computations, and arrows represent data transfers. g1-g4 are the gradients
produced by the agents. (a) Dynamic tasks (Ray). Gradients are applied immedi-
ately. A batch of three gradients is applied to the current policy before broadcasting.
(b) Dynamic tasks but with efficient collective communication, in Hoplite. To re-
duce the network bottleneck at agent 2, agent 3 partially reduces gradients g3 and g4
(black box), and agent 3 sends the policy to agent 4 (black dot) during the broadcast.

2.2.2 Challenges in Collective Communication

Efficient collective communication has well-known solutions in HPC community and
in distributed data-parallel SGD. Many traditional collective communication libraries
exist, including Gloo [39], Horovord [91], OpenMPI [42], MPICH [68], and NCCL [75].

CHAPTER 2. HOPLITE 12

They can use efficient data transfer schedule (e.g., ring-allreduce, tree-broadcast) to
mitigate communication bottlenecks in distributed applications.

There are two application requirements for using traditional collective communi-
cation libraries. First, the communication pattern has to be statically defined before
runtime. This is easy for applications that have a bulk-synchronous parallel model.
For example, in synchronous data-parallel SGD, all the workers compute on their
partitioned set of training data and synchronize the model parameters using allre-
duce. Second, when any worker fails, all the workers participating in the collective
communication hang, and applications are responsible for fault tolerance. For HPC
applications, this is typically solved by checkpointing the entire application periodi-
cally (e.g., per-hour), and when a process fails, the entire application rolls back to a
checkpoint and re-execute.

Unfortunately, these two assumptions are fundamentally incompatible with task-
based distributed systems. First, tasks are dynamically invoked by the task-based
system’s scheduler. This means it is possible that, when collective communication
is triggered, only a fraction of the participating tasks are scheduled. For example,
on existing task systems, broadcast is implicit: a set of tasks fetch the same object.
When only a subset of the receivers are scheduled, it is not possible to build a static
broadcast tree without knowing how many total receivers and where and when the
receivers will be scheduled. Therefore, a collective communication layer for a task-
based system should adjust data transfer schedule at runtime based on task and object
arrivals.

Second, fast failure recovery is an important design goal for task-based sys-
tem [99, 94], because many asynchronous workloads have tight SLO requirement
(e.g., model serving). In existing task systems, this is done by reconstructing and
re-executing failed tasks only. If traditional collective communication libraries are
used, a failed task causes the rest of the participating tasks to hang. Thus, a col-
lective communication layer for task-based systems has to be fault-tolerant: allowing
well-behaving tasks to make progress when a task fails and allowing the failed task to
rejoin the collective communication after recovery.

2.3 Design

Hoplite is an efficient and fault-tolerant collective communication layer for task-based
distributed systems. At a high level, Hoplite uses two techniques: (1) decentralized
fault-tolerant coordination of data transfer for reduce and broadcast, and (2) pipelin-
ing of object transfers both across nodes and between tasks and the object store.

We first present a send-receive example workflow using Hoplite’s core API (Ta-
ble 2.1). We then describe Hoplite’s object directory service, pipelining mechanism
to reduce latency, and fault-tolerant receiver-driven coordination scheme for efficient
object transfer in details.

CHAPTER 2. HOPLITE 13

2.3.1 Hoplite’s Workflow

def application():
x_id = send.remote()
recv.remote(x_id)

Task scheduler

Object store

Worker (send)

Object store

Worker (recv)

X

Object directory Object directory

1

3

1

3

44

Put(x) Get(x)

Node 1 Node 2

X

H
op

lit
e

2 25

Figure 2.3: Example of a send and receive dynamic task program on a 2-node cluster
(N1 and N2). The task-based system consists of a pool of workers per physical node
and a scheduler. Hoplite consists of one local object store per node and a global
object directory service, which is distributed across physical nodes.

Our example creates a send task that returns x id (a future), which is then
passed into a recv task. In Hoplite, we use an ObjectID to represent a future or a
reference to an object. During execution, the application first submits the tasks to
the task scheduler. The scheduler then chooses a worker to execute each task (step 1,
Figure 2.3), e.g., based on resource availability. According to the application, recv
cannot start executing until it has the value returned by send. Note that the task-
based system does not require the scheduler to schedule tasks in a particular location
or order, i.e. the recv task may be scheduled before send.

In step 2, the task workers call into Hoplite to store and retrieve objects. On
node 1, the send worker returns an object with the unique ID x id. This object must
be stored until the recv worker has received it. Thus, the send worker calls Put(x)

on Hoplite, which copies the object from the worker into the local object store (step
2 on N1, Figure 2.3). This frees the worker to execute another task, but incurs an
additional memory copy between processes to store objects.

Meanwhile, on node 2, the recv worker must retrieve the object returned by
send. To do this, it calls Get(x) on Hoplite, which blocks until the requested object
has been copied into the worker’s local memory (step 2 on N2, Figure 2.3). In step 3,
Hoplite uses the object directory service to discover object locations and coordinate

CHAPTER 2. HOPLITE 14

Core Interfaces: Description
Buffer buffer← Get(ObjectID object -
id)

Get an object buffer from an object id.

Put(ObjectID object id, Buffer buffer) Create an object with a given object id
and an object buffer.

Delete(ObjectID object id) Delete all copies of an object with a
given object id. Called by the task
framework once an object is no longer
in use.

Reduce(ObjectID target object id, int
num objects, {ObjectID source ob-
ject id, ...}, ReduceOp op)

Create a new object with a given object
id from a set of objects using a reduce
operation (e.g., sum, min, max).

Table 2.1: Core Hoplite APIs. The application generates an ObjectID with a unique
string and can pass an ObjectID by sending the string.

data transfer, in order to fulfill the client’s Put and Get requests. In the example,
the Hoplite object store on node 1 publishes the new location for the object x to the
directory (step 3 on N1, Figure 2.3). Meanwhile, on node 2, the Hoplite object store
queries the directory for a location for x (step 3 on N2, Figure 2.3).

Hoplite’s object directory service (§2.3.2) is implemented as a sharded hash table
that is distributed throughout the cluster (Figure 2.3). Each shard maps an ObjectID

to the current set of node locations. When there are multiple locations for an object,
the directory service can choose a single location to return to the client. The object
store also maintains information about objects that have only been partially created
to facilitate object transfer pipelining (§2.3.3). For example, in Figure 2.3, the object
store on node 1 publishes its location to the object directory as soon as Put(x) is
called, even if the object hasn’t been fully copied into the store yet. This allows node
1 to begin sending the object to node 2 while it is still being copied from the send

worker.
Finally, in step 4, the Hoplite object store nodes execute the data transfer sched-

ule specified by the object directory’s reply to node 2. Node 1 is the only location for
x, so node 2 requests and receives a copy from node 1 (step 4). Node 2 then copies
the object from its local store to the recv worker (step 5 in Figure 2.3), which again
can be pipelined with the copy over the network.

Hoplite provides two efficient collective communication schemes. Hoplite imple-
ments efficient broadcast through coordination between the object directory service
and the workers (§2.3.4), without an explicit primitive. For reduce, Hoplite exposes
an explicit Reduce call to the task-based system. It is necessary because this lets Ho-
plite know that these objects are indeed reducible (i.e., the operation is commutative
and associative). Because an ObjectID is a future that the object value may not be

CHAPTER 2. HOPLITE 15

ready yet, the Reduce call also has a num objects input in case the user wants to
reduce a subset of the objects, giving Hoplite the flexibility to choose which num -

objects objects to reduce given their arrival time in the future. Figure 2.1b shows
how to modify the RL example to use Hoplite. This allows the trainer to aggregate
gradients from a dynamic set of agents efficiently (Figure 2.2b).

Whenever a task fails, Hoplite recomputes a data transfer schedule to avoid
using the failed task in the collective communication, and all the rest of the tasks can
keep making progress (§2.3.5). Hoplite does not change how task-based distributed
system tolerate failures. The underlying task-based distributed system can quickly
reconstruct the state of the failed task using their built-in mechanism [99]. Once the
state of the task is reconstructed, the task resumes.

2.3.2 Object Directory Service

The object directory service maintains two fields for each object: (1) the size of the
object, and (2) the location information. The location information is a list of node
IP addresses and the current progress of the object on that node. We use a single bit
to represent the object’s progress: either the node contains a partial or a complete
object. We store both so that partial object copies can immediately act as senders,
for both broadcast and reduce (§2.3.4).

Hoplite’s directory service supports both synchronous and asynchronous location
queries. Synchronous location queries block until corresponding objects are created
and locations are known. Asynchronous location queries return immediately, and the
object directory service publishes any future locations of the object to the client.

A node writes object locations to the object directory service in two conditions:
when a local client creates an object via Put and when an object is copied from a
remote node. In each case, the node notifies the object directory service twice: once
when an object is about to be created in the local store and once when the complete
object is ready. We differentiate between partial and complete objects so that object
store nodes with complete copies can be favored during a broadcast or reduce (§2.3.4).

Optimization for small objects. Querying object location can introduce an ex-
cessive latency penalty for fetching small objects, and the overhead of computing
efficient object transfer schedule is usually not worthwhile for small objects in our use
cases. Therefore, we implement a fast path in the object directory service. For small
objects (¡64KB), we simply cache them in the object directory service, and when a
node queries for their location, the object directory service directly returns the object
buffers. Similar to object in the per-node stores, cached objects must be freed by the
application via the Delete call when no longer in use.

2.3.3 Pipelining

Hoplite uses pipelining to achieve low-latency transfer between processes and across

CHAPTER 2. HOPLITE 16

nodes for large objects. This is implemented by enabling a receiver node to fetch
an object that is incomplete in a source node. An object can be incomplete if the
operation that created the object, either a Put from the client or a copy between
object store nodes, is still in progress. To enable fetching incomplete objects, as
shown in the previous section (§2.3.2), the object directory service also maintains
locations of incomplete copies. Then, when an object store receives a Get operation,
it can choose to request the object from a store with an incomplete copy.

By pipelining data transfers across nodes using the object directory service as an
intermediary, it becomes simple to also pipeline higher-level collective communication
primitives, such as a reduce followed by a broadcast (Figure 2.2b). Within the reduce,
a node can compute a reduce of a subset of the input objects and simultaneously
send the intermediate result to a downstream node. The downstream node can then
compute the final reduce result by computing on the intermediate result as it is
received and simultaneously send the final result to any broadcast receivers that have
been scheduled. A broadcast receiver can then also simultaneously send the final
result to any other broadcast receivers.

Piplining between the task worker and local store on the same node is also
important to hide Put and Get latency for large objects (steps 2 and 5 in Figure 2.3).
The reason is that using the distributed object store requires two additional data
copies other than the minimum needed to transfer data over the network. The sender
task worker must copy to its local store, and then the receiving local store must also
copy to its local worker. Our observation is that the additional memory copy latency
can be masked by the network transfer if the memory copy is asynchronous. When a
sender task calls Put, Hoplite immediately notifies the object directory service that
the object is ready to transfer. A receiver can then fetch the object before the entire
object is copied into the sender node’s local store. The receiver side’s pipelining
mechanism is similar. When the receiver task calls Get, the receiver task starts to
copy the object from the local store before the local store has a complete object.

By combining cross-node and in-node pipelining, Hoplite enables end-to-end
object streaming between the sender and receiver tasks, even when there are multiple
rounds of collective communication in between.

Optimization for immutable get. Although Hoplite objects are immutable, the
receiver task still copies the object data from its local store during a Get, in case it
modifies the buffer later on. However, if it only needs read access to the object, then
Hoplite can directly return a pointer inside the local store. Read-only access can be
enforced through the front-end programming language, e.g., with const in C++.

2.3.4 Receiver-Driven Collective Communication

Hoplite’s receiver-driven coordination scheme optimizes data transfer using distributed
protocols. In Hoplite, data transfer happens in two scenarios: either a task calls Get
to retrieve an object with a given ObjectID, or a task calls Reduce to create a new

CHAPTER 2. HOPLITE 17

object by reducing a set of other objects with a reduce operation (e.g., sum, min,
max).

2.3.4.1 Broadcast

Broadcast in a task-based distributed system happens when a group of tasks located
on multiple nodes want to get the same object from its creator task. Specifically, a
sender task from node S creates an object with Put and a group of receiver tasks
R1, R2, ... fetches it using Get. For the receiver tasks that locate on different nodes
from the sender task, their corresponding receiver nodes will fetch the object from
sender node’s local object store to the receiver nodes’ local object store. To simplify
the description of our method, we assume that the sender task and the receiver tasks
locate on different nodes and use the sender S and the receiver R1, R2, ... to also refer
to the local object store on the nodes.

Broadcast in a task-based distributed system is challenging because we have
no knowledge of the tasks, including where these tasks are located and when these
tasks fetch the object. If all receivers simply fetch the object from the sender, the
performance will be restricted by the sender’s upstream bandwidth. Traditional col-
lective communication libraries can generate a static tree where the root is the sender
node to mitigate the throughput bottleneck. The goal of Hoplite’s receiver-driven
coordination scheme is to achieve a similar effect but using decentralized protocols.
Inspired by application-level broadcast [25, 26] in peer-to-peer systems that uses high-
capacity nodes to serve as intermediate nodes in the broadcast tree, we use receivers
who receives the object earlier than the rest as intermediates to construct a broadcast
tree.

When a receiver R wants to fetch a remote object, it first checks if the object
is locally available, or there is an on-going request for the object locally. If so, the
receiver just waits until it gets the completed object. This avoids creating cyclic
object dependencies. Otherwise, R queries the object directory service for the object’s
location. The object directory service first tries to return one location with a complete
copy. If none exist, then the object directory service returns one of the locations
holding a partial copy. This is so that partial objects can also act as intermediate
senders, but locations with complete copies are favored.

When the location query replies, R also removes the location returned from the
directory and immediately add itself to the object directory as a location with a
partial copy to enable pipelining. Once the data transfer is complete, the receiver
adds the sender’s location back to the object directory service and mark itself as a
location with a complete copy. This makes sure that, for each object, a node can only
send to one receiver at a time, thus mitigating bottlenecks at any single node.

Figure 2.4 shows an example of a broadcast scenario in Hoplite. In Figure 2.4a,
the first receiver R1 starts to fetch the object from the sender S. In Figure 2.4b, S is still
sending to R1, so it does not appear in the object directory when the second receiver

CHAPTER 2. HOPLITE 18

� � �5� � � �6 � � �5�

� � �5�

� � �6 �5�

� � �5�

�5�

� � �5�� � �5�

� � �6

�D� �E�

�F¶� �G¶�

� � � �

� � �6 � � �5�

� � �5�

� � �5�

� � �5�� � �5�

� � �6

�F� �G�

� �6 �

Figure 2.4: An example of broadcasting an object (integer array {5, 1, 0}) from a
sender (S) in Hoplite, when the receivers (R1-R3) arrive at different times. (a) - (d)
show the broadcast process without failure. (c’) and (d’) show the broadcast process
when R1 fails after (b).

CHAPTER 2. HOPLITE 19

R2 arrives. Thus, R2 fetches the object from R1, the partial copy. In Figure 2.4c, R1
has finished receiving, but is still sending to R2. Then, the object directory contains
S and R2 as a complete and partial location, respectively. In Figure 2.4d, R3 queries
the object directory, which chooses S over R2 as the sender because S has a complete
object.

2.3.4.2 Reduce

Reduce happens when a task in a task-based distributed system wants to get a reduced
object (e.g., summed or maximal object) from a list of objects. In Hoplite, this
happens via a Reduce call. Similar to broadcast, we assume that each object to
reduce is located on a separate node and we use R1, R2, ... to represent both the
object and the local object store on a node that stores the corresponding object.
Note that in a task-based distributed system, the objects to reduce can become ready
to reduce in any arbitrary order.

How to reduce objects efficiently to accommodate dynamic object creation is
more challenging than broadcast. Broadcast is simpler because a receiver can fetch
the object from any sender, and Hoplite thus has more flexibility to adapting data
transfer schedule. For reduce, we need to make sure all the objects are reduced once
and only once: when one object is added into a partial reduce result, the object should
not be added into any other partial results.

In Hoplite, we choose to use a tree-structured reduce algorithm, while the ques-
tion is what type of tree to use. Let’s think about reducing n objects. Without
the support of collective communication in task-based distributed systems, each node
sends the object to a single receiver. Let’s assume that the network latency is L
, network bandwidth is B, and the object size is S. This approach’s total reduce
running time is L + nS

B
. The L term is due to the network latency, and nS

B
is due to

the receiver’s bandwidth constraint, because every node has to send the object in to
it. This is a special kind of tree where the degree of the root is n. When object size
is very small (i.e., S

B
is negligible), the performance of this kind of tree is the best.

To mitigate the bandwidth bottleneck at the receiver, we can generalize this
n-nary tree to a d-nary tree. When we use a d-nary tree, the total running time
is L logd n + dS

B
. It reduces the latency due to the bandwidth constraint but incurs

additional latency because the height of the tree grows to logd n. If an object is very
large (i.e., S

B
≫ L), we can set d = 1. This means all the nodes are in a single chain,

and its running time is nL+ S
B

. Note that we only need to incur S
B

for transferring the
actual content of the object, because we use fine-grained pipelining, i.e., intermediate
nodes send the partially reduced object to the next node. As we can see here, the
optimal choice of d depends on the network characteristics, the size of the object, and
the number of participants (objects). In other words, we choose the d to minimize

CHAPTER 2. HOPLITE 20

5� 5�

5�

5�

5�

5�� � � � � � � � �

� � �
� � �

� � �
� � �

� � �
� � �

(a) Reduce Tree.

5� 5�

5�

5�

5�

5�� � � � � � � � �

� � �
� � �

� � �
� � �

� � �
� � �

5� � � �
� � �

(b) Reduce Tree with failure.

Figure 2.5: Examples of reduce where the objects arrive in the order of R1, R2, ..., R6.
The numbers on the top of each node (and the numbers in leaf nodes) represent the
object to reduce and green blocks means the fraction of the object that is ready. The
numbers on the bottom of each node represent the reduced result and yellow blocks
means the fraction of the object that has been reduced. Each intermediate node is
responsible to reduce the subtree rooted at it. (a) An example reduce tree consists
of 6 objects. (b) The reconstructed reduce tree after R2 fails.

CHAPTER 2. HOPLITE 21

the total latency:

T (d) =

{
nL + S

B
if d = 1;

L logd n + dS
B

otherwise.
(2.1)

During runtime, Hoplite will automatically chooses the optimal d based on an empir-
ical measure of these three factors.

Once the topology of the tree is determined, we need to assign nodes into the
tree. Here we want to allow Reduce to make significant progress even with a subset
of objects. To do so, we assign arriving objects with a generalized version of in-
order tree traversal. For a d-nary tree, for each node, we traverse the first child, the
node itself, the second child, third child, ..., and the d-th child. Figure 2.5a shows
an example for reducing 6 objects with a binary tree. Note that though MPI also
supports tree-reduce, our method is completely different: MPI’s tree is constructed
statically, and our tree is constructed dynamically taking the object arrival sequence
into consideration.

If a task only wants to reduce a subset of objects (i.e., num object is smaller
than the size of the source object list in Reduce), the tree construction process stops
when there are num object objects in the tree. For example, if the task wants to
reduce 6 out of 10 objects, then the earliest arriving 6 objects are in the reduce tree
structured as Figure 2.5a.

An application can also specify the inputs of a Reduce incrementally, i.e. by
passing the ObjectID result of one Reduce operation as an input of a subsequent
Reduce operation. The data transfer for composed Reduce operations will naturally
compose together. In particular, as soon as the first Reduce output is partially ready,
it will be added to the object directory service, where it will be discovered by the
downstream Reduce coordinator. The first output can then be streamed into the
downstream Reduce.

2.3.4.3 AllReduce

AllReduce is a synchronous collective communication operation that is useful for syn-
chronous data-parallel training. Optimizing allreduce is not our design goal: people
usually do synchronous data-parallel training on specialized distributed systems that
are optimized for bulk-synchronous workloads (e.g., TensorFlow [8], PyTorch [78])
rather than on task-based distributed systems. In Hoplite, a developer can express
allreduce by concatenating reduce and broadcast.

2.3.5 Fault-Tolerant Collective Communication

In the previous subsection, we assume that there is no task failures. However, task
failures can happen in a task-based distributed systems for various reasons, including
(1) the node that the task is running on crashes, (2) the node runs out of available

CHAPTER 2. HOPLITE 22

memory and has to kill the task, and (3) the task encounters a runtime error. Task-
based distributed systems already support transparent fault-tolerance to tasks [99],
but adding collective communication support requires us to dynamically change data
transfer schedule when a fraction of the tasks fail when participating in the collective
communication. This is because we do not want a failed task to block collective
communication, and we want to allow a recovered task to rejoin an existing collective
communication.

2.3.5.1 Broadcast

When a sender failure is detected by the receiver in broadcast, the receiver immedi-
ately locate another sender by querying the object directory again. The new sender
only needs to send the remaining object that the receiver does not have. A failed task
can rejoin broadcast transparently because the failed task can simply call Get on the
same ObjectID to fetch the object. Implementing this feature naively would cause
cyclic object transfer dependencies. For example, it is possible that two nodes try
to fetch the same object from each other. It is because when the a receiver locates
an alternative sender, the object directory can return the address of another node
which fetches the object from the receiver. To avoid cyclic dependencies, we need
to track the dependencies of Get if the sender is not the original task that creates
the object. If a sender fails, the receiver only resumes if it can find another sender
whose dependencies do not include the receiver itself. Figure 2.4c’ shows the previous
example if R1 fails. R2 resumes the fetch from S, and when R3 comes, R3 can fetch
from R2 (Figure 2.4d’).

2.3.5.2 Reduce

When a task fails during Reduce, this node is immediately removed from the tree by
the coordinator, and will be replaced by the next ready source object. The guarantee
is that to reduce n objects from m source objects, as long as at least n objects can be
created (i.e., m−n tasks can fail), Reduce will return successfully. Otherwise, Reduce
completes when enough failed tasks are reconstructed by the underlying task-based
system’s recovery mechanisms. A failed tree node causes its parent, its grandparent,
and all its ancestors to clear the reduced object. In the previous example, Figure 2.5b
shows the adapted tree after R2 fails. If the task Reduce 6 out of 10 objects and R2

is recovered after R7 arrives, R7 replaces R2’s position in the tree. (R7 can also be
the rejoined R2.) R4 has to clear all the current reduced the object, because the final
result should be the Reduce result of R1, R3, R4, ..., R7. Any intermediate result that
contains R2’s object has to be cleared. Overall, at most logd n nodes have to clear the
current object.

CHAPTER 2. HOPLITE 23

2.4 Evaluation

We first microbenchmark Hoplite on a set of popular traditional network primitives
(e.g., broadcast, reduce, allreduce). We then evaluate Hoplite using real applications
on Ray [66], including asynchronous SGD, reinforcement learning, and serving an
ensemble of ML models. We also test Hoplite with synchronous data-parallel training
workloads to estimate how much performance is lost if people choose to run these
static and synchronous workloads on task-based distributed systems. Each applica-
tion requires less than 100 lines of code changes, most of which are for object serial-
ization. All experiments are done on AWS EC2. We use a cluster of 16 m5.4xlarge
nodes (16 vCPUs, 64GB memory, 10 Gbps network) with Linux (version 4.15). We
run every test 10 times, and we show standard deviations as error bars.

Optimal
Hoplite

OpenMPI Ray
Dask

0.0
0.5
1.0
1.5
2.0
2.5
3.0

RT
T

(m
s)

1.7 μs

(a) 1 KB

Optimal
Hoplite

OpenMPI Ray
Dask

0

2

4

6

8

10

RT
T

(m
s)

(b) 1 MB

Optimal
Hoplite

OpenMPI Ray
Dask

0
1
2
3
4
5
6

RT
T

(s
)

(c) 1 GB

Figure 2.6: Round trip latency for point-to-point data communication on Hoplite,
OpenMPI, Ray, and Dask. We also include the theoretical optimal RTT (i.e. total
bytes transferred divided by the bandwidth).

2.4.1 Microbenchmarks

We use two popular task-based distributed systems, Ray [66] (version 0.8.6) and
Dask [87] (version 2.25), as our baselines. In addition, we compare Hoplite with
OpenMPI [42] (version 3.3) and Gloo [39]. We chose OpenMPI because OpenMPI
is the collective communication library recommended by AWS. We did not choose
Horovod because Horovod has three backends: OpenMPI, Gloo, and NCCL. We have
already tested OpenMPI and Gloo individually. We currently do not support GPU,
so we do not test NCCL.

CHAPTER 2. HOPLITE 24

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

Latency (s)
×1

0−2
Br

oa
dc

as
t 1

M
B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

×1
0−1

Ga
th

er
 1

M
B

02468

×1
0−2

Re
du

ce
 1

M
B

02468
×1

0−2Al
lre

du
ce

(i)
 1

M
B

0.
0

0.
5

1.
0

1.
5

×1
0−2Al

lre
du

ce
(ii

) 1
M

B

01234 Latency (s)

×1
0−1Br

oa
dc

as
t 3

2M
B

0123456

×1
0−1

Ga
th

er
 3

2M
B

0246

×1
0−1

Re
du

ce
 3

2M
B

0.
0

0.
5

1.
0

1.
5

Al
lre

du
ce

(i)
 3

2M
B

02468

×1
0−2Al

lre
du

ce
(ii

) 3
2M

B

4
8

12
16

Nu
m

be
r o

f N
od

es
0.

00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

Latency (s)

×1
01

Br
oa

dc
as

t 1
GB

4
8

12
16

Nu
m

be
r o

f N
od

es
0.

0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

×1
01

Ga
th

er
 1

GB

4
8

12
16

Nu
m

be
r o

f N
od

es
0123

×1
01

Re
du

ce
 1

GB

4
8

12
16

Nu
m

be
r o

f N
od

es
02468

×1
01Al

lre
du

ce
(i)

 1
GB

4
8

12
16

Nu
m

be
r o

f N
od

es
0.

0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Al
lre

du
ce

(ii
) 1

GB

Ho
pl

ite
Op

en
M

PI
Ra

y
Da

sk
Gl

oo
 (B

ro
ad

ca
st

)
Gl

oo
 (R

in
g

Ch
un

ke
d)

Gl
oo

 (H
al

vi
ng

 D
ou

bl
in

g)

Figure 2.7: Latency comparison of Hoplite, OpenMPI, Ray, Dask, and Gloo on stan-
dard collective communication primitives (e.g., broadcast, gather, reduce, allreduce).
To show the results more clearly, we split the results of Allreduce into two groups:
group (i) includes Hoplite, Ray, and Dask, and group (ii) includes Hoplite, OpenMPI,
and two different allreduce algorithms in Gloo.

CHAPTER 2. HOPLITE 25

2.4.1.1 Point-to-Point Data Communication

We first benchmark direct point-to-point transfer. On our testbed, writing object
locations to the object directory service takes 167 µs (standard deviation = 12 µs),
and getting object location from the object directory service takes 177 µs (standard
deviation = 14 µs).

Hoplite’s point-to-point communication is efficient. We test round-trip time for
different object sizes using OpenMPI, Ray, Dask, and Hoplite. Figure 2.6 shows the
result. We also include the optimal RTT, which is calculated by object size/bandwidth×
2.

For 1 KB and 1 MB object, OpenMPI is 1.8x and 2.3x faster than Hoplite. For
1 GB objects, Hoplite is 0.2% slower than OpenMPI. Ray and Dask are significantly
slower. OpenMPI is the fastest because MPI has the knowledge of the locations of
the processes to communicate. Ray, Dask, and Hoplite need to locate the object
through an object directory service. Hoplite outperforms Ray and Dask because (1)
Hoplite stores object contents in object directory service for objects smaller than
64 KB (§2.3.2) and (2) Hoplite uses pipelining (§2.3.3) to reduce end-to-end latency.
Ray does not support pipelining, so it suffers from the extra memory copy latency
in the object store. Our pipelining block size is 4 MB, and thus larger object (1 GB)
has better pipelining benefits. On 1 GB object, Hoplite achieves similar performance
as the underlying network bandwidth despite it has additional memory copies. This
is because fine-grained pipelining successfully overlaps memory copying and data
transfer.

2.4.1.2 Collective Communication

Next, we measure the performance of collective communication on OpenMPI, Ray,
Dask, Gloo, and Hoplite, with arrays of 32-bit floats and addition as the reduce
operation (if applicable). We measure the time between when the input objects are
ready and when the last process finishes. For both Hoplite and Ray, we assume that
the application uses a read-only Get to avoid the memory copy from the object store
to the receiver task (§2.3.3). Gloo only implements broadcast and allreduce. For
allreduce, Gloo supports several algorithms. We evaluated the performance for all
of them, and for presentation simplicity, we only show the two algorithms with the
best performance on our setup: (1) ring-chunked allreduce and (2) halving doubling
allreduce.

Figure 2.7 shows the results for medium (1MB) to large (1GB) objects.1 We
present the results for small objects (1KB, 64KB) in §A.2 because small objects are
cached in object directory service in Hoplite, and there is thus no collective communi-

1OpenMPI’s latency does not increase monotonically because OpenMPI chooses different algo-
rithms on different conditions (e.g., number of nodes, whether the number of nodes is a power of
two, object size).

CHAPTER 2. HOPLITE 26

0 0.1 0.2 0.3
Arrival Interval (s)

0
1
2
3
4
5
6

La
te

nc
y

(s
)

Hoplite
OpenMPI

(a) Broadcast

0 0.1 0.2 0.3
Arrival Interval (s)

0
1
2
3
4
5
6
7
8

La
te

nc
y

(s
)

Hoplite
OpenMPI

(b) Reduce

0 0.1 0.2 0.3
Arrival Interval (s)

0
1
2
3
4
5
6
7
8

La
te

nc
y

(s
)

Hoplite
OpenMPI
Gloo

(c) AllReduce

Figure 2.8: Latency of 1 GB object broadcast/reduce/allreduce on 16 nodes when
tasks start sequentially with a fixed arrival interval. Arrival interval equals to 0
means that all the tasks start at the same time. The dashed lines denote the time
the last task arrives.

CHAPTER 2. HOPLITE 27

cation to begin with. In summary, Hoplite achieves a similar level of performance as
traditional collective communication libraries, such has OpenMPI and Gloo. Hoplite
significantly outperforms Ray and Dask, because Ray and Dask do not support effi-
cient collective communication. Gloo’s ring-chunked allreduce is the fastest allreduce
implementation for large objects in our tests.

Broadcast. We let one node first Put an object, and after the Put succeeds, other
nodes Get the object simultaneously. The latency of broadcast is calculated from the
time all nodes call Get to the time when the last receiver finishes. Hoplite and Open-
MPI achieve the best performance for all object size and node configurations. This is
because Ray, Dask, and Gloo do not have collective communication optimization for
broadcast. Hoplite slightly outperforms OpenMPI because of fine-grained pipelining.

Gather. We let every node first Put an object, and after every node’s Put

succeeds, one of the nodes Get all the object via their ObjectIDs. The latency of
gather is the Get duration. OpenMPI and Hoplite outperforms the rest for all object
size and node configurations. This is because both Ray and Dask need additional
memory copying between workers and the object store. Hoplite also needs additional
memory copying, but the latency is masked by fine-grained pipelining between workers
and the object store.

Reduce. We let every node first Put an object, and after every node’s Put

succeeds, one of the nodes Reduce the objects via their ObjectIDs to create a new
ObjectID for the result. The node then calls Get to get the resulting object buffer.
The latency of reduce is calculated from the time the node calls Reduce to the time the
node has a copy of the reduce result. OpenMPI and Hoplite consistently outperform
the rest for all object size and node configurations since Ray and Dask do not support
collective communication. Hoplite can slightly outperform OpenMPI because of fine-
grained pipelining.

AllReduce. In Hoplite, we simply concatenate reduce and broadcast to imple-
ment allreduce. The latency of allreduce is calculated from the time a node starts to
Reduce all the objects to the last node Get the reduce result. We divide the results into
two groups in Figure 2.7. Hoplite significantly outperforms Ray and Dask because of
the collective communication support of broadcast and reduce in Hoplite. Note that
efficient allreduce is not our design goal since allreduce is a static and synchronous
collective communication operation. However, Hoplite still achieves comparable per-
formance with static collective communication libraries such as OpenMPI and Gloo.

2.4.1.3 Asynchrony

Hoplite’s performance is robust even when processes are not synchronized, which
is typical in task-based distributed systems. We measure broadcast, reduce, and
allreduce latencies when the participating tasks arrive sequentially with a fixed arrival
interval. For broadcast (Figure 2.8a), OpenMPI makes some progress before the last
receiver arrives (§2.6). However, the algorithm is static (i.e. based on process rank

CHAPTER 2. HOPLITE 28

[42]), while Hoplite achieves a lower latency with a dynamic algorithm that does
not depend on the particular arrival order. We do not include Gloo because it does
not optimize its broadcast performance (Figure 2.7). For reduce (Figure 2.8b) and
allreduce (Figure 2.8c), both OpenMPI and Gloo have to wait until all processes are
ready, while Hoplite can make significant progress before the last object is ready. This
allows Hoplite to even outperform Gloo’s ring-chunked allreduce when objects do not
arrive at the same time.

AlexNet VGG-16 ResNet500
250
500
750

1000
1250
1500
1750
2000

Th
ro
ug

hp
ut

(s
am

pl
es
/s
)

Hoplite
Ray

(a) Number of Nodes = 8

AlexNet VGG-16 ResNet500
250
500
750

1000
1250
1500
1750
2000

Th
ro
ug

hp
ut

(s
am

pl
es
/s
)

Hoplite
Ray

(b) Number of Nodes = 16

Figure 2.9: Training throughput (number of training samples per second) for asyn-
chronous SGD.

2.4.2 Asynchronous SGD

Asynchronous stochastic gradient descent (SGD) is one way to train deep neural net-
works efficiently, and it usually uses a parameter server framework [60, 59, 32, 60, 59]:
clients fetch the parameters from a centralized server, evaluate the parameters on its
own portion of data (e.g., performing forward and backward propagation on a neu-
ral network), and send the updates (e.g., gradients) back to the server independently.
The parameter server needs to broadcast parameters to and reduce from an uncertain
set of workers.

Here we evaluate Hoplite with Ray’s example implementation of an asynchronous
parameter server [84]. We use three widely-used standard deep neural networks,
AlexNet [55] (model size = 233 MB), VGG-16 [92] (model size = 528 MB), and
ResNet-50 [44] (model size = 97 MB). We test two cluster configurations: 8 p3.2xlarge
nodes and 16 p3.2xlarge nodes on AWS. p3.2xlarge instance has the same network
performance as m5.4xlarge instance but with an additional NVIDIA V100 GPU to
accelerate the execution of the neural networks. The asynchronous parameter server
collects and reduces the updates from the first half of worker nodes that finish the
update and broadcast the new weights back to these nodes.

CHAPTER 2. HOPLITE 29

We show the results in Figure 2.9. Hoplite improves the training throughput
of the asynchronous parameter server. Comparing to Ray, it speedups training on
asynchronous parameter server for 16 nodes by 7.8x, 7.0x, and 5.0x, for AlexNet,
VGG-16, and ResNet-50, respectively. Ray is slow because the parameter server has
to receive gradients from each worker and send the updated model to each worker
one by one. This creates a bandwidth bottleneck at the parameter server. In Hoplite,
these operations are optimized by our broadcast and reduce algorithms.

2.4.3 Reinforcement Learning

RL algorithms involve the deep nesting of irregular distributed computation patterns,
so task-based distributed systems are a perfect fit for these algorithms. We evaluate
Hoplite with RLlib [62], a popular and comprehensive RL library on Ray. Distributed
RL algorithms can be divided into two classes: In samples optimization (e.g., IM-
PALA [36], Asynchronous PPO [90]), a centralized trainer periodically broadcasts a
policy to a set of workers and gather the rollouts generated by the workers to update
the model. In gradients optimization (e.g., A3C [65]), the workers compute the gradi-
ent with their rollouts, and the trainer updates the model with the reduced gradients
from the workers.

8 16
Number of nodes

0
50

100
150
200
250
300

Th
ro

ug
hp

ut
(s

am
pl

es
/s

)

Hoplite
Ray

(a) IMPALA

8 16
Number of nodes

0

20

40

60

80

100

Th
ro

ug
hp

ut
(s

am
pl

es
/s

)

Hoplite
Ray

(b) A3C

Figure 2.10: RLlib’s training throughput (number of training samples per second) on
Ray and Hoplite.

We evaluate two popular RL algorithms, IMPALA [36] and A3C [65], one from
each class. We test two cluster configurations: 8 nodes (1 trainer + 7 workers) and 16
nodes (1 trainer + 15 workers). The trainer broadcast a model to the first half workers
that have finished a round of simulation (in IMPALA) or gradient computation (in
A3C). We use a two-layer feed-forward neural network with 64 MB of parameters.
Figure 2.10 shows the training throughput. Training throughput is calculated by
the number of simulation traces (in samples optimization) or gradients (in gradients
optimization) the RL algorithm can process in a second.

CHAPTER 2. HOPLITE 30

Hoplite significantly improves the training throughput of both IMPALA and
A3C. Hoplite improves the training throughput of IMPALA by 1.9x on an 8-node
cluster and 1.8x on a 16-node cluster. The reason Hoplite outperforms Ray is because
IMPALA has to broadcast a model of 64 MB frequently to the workers. We expect
more improvement when the number of nodes is higher, but we already achieve the
maximum training throughput: IMPALA is bottlenecked by computation rather than
communication using Hoplite with 16 nodes (15 workers). For A3C, Hoplite improves
the training throughput by 2.2x on the 8-node configuration and 3.9x on the 16-node
configuration. Unlike IMPALA, A3C achieves almost linear scaling with the number
of workers. A3C on Ray cannot scale linearly from 8 nodes to 16 nodes because of
the communication bottleneck.

2.4.4 ML Model Serving

Machine learning is deployed in a growing number of applications which demand
real-time, accurate, and robust predictions under heavy query load [31, 15, 77]. An
important use case of task-based distributed system is to serve a wide range of machine
learning models implemented with different machine learning frameworks [66].

We evaluate Hoplite with Ray Serve [85], a framework-agnostic distributed ma-
chine learning model serving library built on Ray. We set up an image classification
service with a majority vote-based ensemble of the following models: AlexNet [55],
ResNet34 [44], EfficientNet-B1/-B2 [96], MobileNet V2 [88], ShuffleNet V2 x0.5/x1.0
[63], and SqueezeNet V1.1 [49]. We test two cluster configurations: 8 p3.2xlarge nodes
and 16 p3.2xlarge nodes on AWS. For 8 nodes setting, we serve a different model on
each node. For 16 nodes setting, each model is served by two different nodes and the
two nodes serve the model with two different versions of weight parameters. Each
query to the service includes a batch of 64 images of size 256×256. During serving,
the service will broadcast the query to all the nodes to evaluate on different models,
gather the classification results, and return the majority vote to the user.

We visualize the results in Figure 2.11. Hoplite improves the serving throughput
for serving an ensemble of image classification models. Comparing to Ray, it speedups
the serving throughput by 2.2x for 8 nodes and 3.3x for 16 nodes. This shows that
the optimized broadcast algorithm in Hoplite helps Ray Serve to improve the serving
throughput.

2.4.5 Fault Tolerance

We evaluate the failure recovery latency before and after we apply Hoplite to Ray.
We rerun our model serving with 8 models and async SGD workloads with 6 workers,
and we manually trigger a failure. We do this experiment 10 times. Figure 2.12 shows
one particular run. The y-axis shows the latency per query (in model serving) or per
iteration (in async SGD), and the x-axis shows the index of the query or the iteration.

CHAPTER 2. HOPLITE 31

8 16
Number of nodes

0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
(q

ue
rie

s/
s)

Hoplite
Ray

Figure 2.11: Ray Serve’s performance (queries per second) on Ray and Hoplite for an
ensemble of image classification models.

0 10 20 30 40 50 60 70
Queries

0.0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
)

Ray
Hoplite
Worker Failed
Worker Rejoined

(a) Ray Server latency.

0 5 10 15 20 25 30
Iterations

0.00
0.25
0.50
0.75
1.00
1.25
1.50

La
te

nc
y

(s
)

Ray
Hoplite
Worker Failed
Worker Rejoined

(b) Async SGD latency.

Figure 2.12: Latency when a pariticipating task fails and rejoins on (a) Ray Serve
and (b) async SGD.

CHAPTER 2. HOPLITE 32

Hoplite significantly improves Ray’s performance. Ray’s failure detection latency is
0.58± 0.13 second, and after we apply Hoplite to Ray, Ray’s failure detection latency
increases to 0.74± 0.05 second. The additional 28% latency introduced by Hoplite is
because Hoplite has a different failure detection mechanism. Ray detects failure by
monitoring the liveness of the worker process. Hoplite detects failure by checking the
liveness of a socket connection.

After the failure, Ray Serve’s latency drops because it only needs to broadcast
to less receivers. The latency comes back to normal after the failed worker rejoins.
For Hoplite, the latency difference is negligible because of the efficient broadcast al-
gorithm. Hoplite takes more queries between the task fails and the task rejoins. This
is because Hoplite is efficient and has processed more queries during the recovery
window (the time between the failure and task rejoin). In async SGD, latency for
training each iteration increases in the recovery window because of the temporary
loss of a worker. The difference in recovery latency (duration of the recovery win-
dow) between Ray and Hoplite is negligible because both use Ray’s mechanism to
reconstruct the failed task.

AlexNet VGG-16 ResNet500
500

1000
1500
2000
2500
3000

Th
ro
ug

hp
ut

(s
am

pl
es
/s
)

Hoplite
OpenMPI
Gloo
Ray

(a) Number of Nodes = 8

AlexNet VGG-16 ResNet500
500

1000
1500
2000
2500
3000

Th
ro
ug

hp
ut

(s
am

pl
es
/s
)

Hoplite
OpenMPI
Gloo
Ray

(b) Number of Nodes = 16

Figure 2.13: Training throughput (number of training samples per second) for syn-
chronous data-parallel training.

2.4.6 Synchronous Data-Parallel Training

Synchronous data-parallel training involves a set of workers, each runs on a partition
of training data, and the workers synchronize the gradients each round using allre-
duce [41]. Speeding up synchronous data-parallel training workloads is not our design
goal, and they do not require the flexibility provided by task-based systems. Instead,
they can run directly on specialized distributed systems that are optimized for static
and synchronous workloads (e.g., TensorFlow [8], PyTorch [78]). These systems rely
on efficient allreduce implementations in traditional collective communication frame-
works (e.g., OpenMPI, Gloo).

CHAPTER 2. HOPLITE 33

However, an interesting question to ask is how much performance developers have
to pay if they choose to run these static and synchronous workloads on task-based
distributed systems. Our cluster setup is the same as the asynchronous parameter
server experiment. In addition to Ray, we evaluate Gloo and OpenMPI. We evaluate
the Gloo baseline through PyTorch, which chooses ring-chunked allreduce as its choice
for Gloo’s algorithm.

We show the results in Figure 2.13. Hoplite significantly improves the syn-
chronous data-parallel training for Ray. Ray is slower than Hoplite, OpenMPI, and
Gloo, with the similar reason as in asynchronous parameter server. Hoplite achieves
similar speed with OpenMPI. However, Hoplite is 12-24% slower than Gloo. This is
expected because ring-allreduce is more bandwidth efficient than the tree-reduce plus
broadcast in Hoplite.

2.5 Discussion

Garbage collection. Hoplite provides a Delete call (Table 2.1) that deletes all copies
of an object from the store. This can be used to garbage-collect an object whose
ObjectID is no longer in scope in the application. However, it is still the task frame-
work or application’s responsibility to determine when Delete can and should be
called, since only these layers have visibility into which ObjectIDs a task has refer-
ences to. The guarantee that Hoplite provides is simple: when Put is called on an
ObjectID, the object copy that is created will be pinned in its local store until the
framework calls Delete on the same ID. This guarantees that there will always be at
least one available location of the object to copy from, to fulfill future Get requests.
Meanwhile, Hoplite is free to evict any additional copies that were generated on other
nodes during execution, to make room for new objects. The overhead of eviction is
very low, since Hoplite uses a local LRU policy per node that considers all unpinned
object copies in the local store.

Framework’s Fault tolerance. Hoplite ensures that collective communication can
tolerate task failure. A task-based distributed system has a set of control processes
that can also fail, and they usually require separate mechanisms to tolerate failures.
For example, the object directory service can fail and requires replication for durabil-
ity. These failures are handled by the underlying framework independent of whether
Hoplite is used.

Network Heterogeneity. The design of Hoplite assumes that the network capac-
ity between all the nodes is uniform. Accommodating heterogeneous network can
achieve higher performance (e.g., using high bandwidth nodes as intermediate nodes
for broadcast, fetching objects from a node which has lower latency). This can be
done by monitoring network metrics at run time. We do not need this feature for our
use cases because our cloud provider ensures uniform network bandwidth between
our nodes.

CHAPTER 2. HOPLITE 34

Integration with GPU. Hoplite currently does not support pipelining into GPU
memory. If training processes need to use GPU, the application has to copy data
between GPU and CPU memory. In the future, we want to extend our pipelining
mechanism into GPU memory.

2.6 Related Work

Optimizing data transfer for cluster computing. Cluster computing frameworks, such
as Spark [103] and MapReduce [33], have been popular for decades for data processing,
and optimizing data transfer for them [29, 30, 28, 80, 56] has been studied extensively.
AI applications are particularly relevant because they are communication-intensive,
and traditional collective communication techniques are widely-used [98, 91, 39].
Pipelining is also a well-known technique to improve performance [74, 79]. Our work
focuses on improving task-based distributed systems [66, 87, 48]. Applications on
these frameworks have dynamic and asynchronous traffic patterns. To the best of
our knowledge, Hoplite is the first work to provide efficient collective communication
support for task-based distributed systems.

Using named objects or object futures for data communication. Using named
objects or object futures for data communication is not new. In serverless computing,
tasks (or functions) cannot communicate directly. As a result, tasks communicate
through external data stores [81], such as Amazon S3 [11] or Redis [86]. There,
the storage and compute servers are disaggregated, and computer servers do not
directly communicate. We target a standard cluster computing scenario, where data
is directly transmitted between compute servers. Object futures are a useful construct
for expressing asynchronous computation. Dask, Ray, Hydro, and PyTorch [78] all
use futures to represent results of remote tasks. Our work is complementary to them,
showing that efficient collective communication can co-exist with named objects or
object futures.

Asynchronous MPI. MPI supports two flavors of asynchrony. First, similar to a
non-blocking POSIX socket, MPI allows an application to issue asynchronous network
primitives and exposes an MPI Wait primitive to fetch the result. Second, depending
on the MPI implementation, some collective communication primitives can make
some progress with a subset of participants. For example, in MPI Bcast, the sender
generates a static broadcast tree. If the receivers arrive in order from the root of the
tree to the leaves of the tree, the receivers can make significant progress before the last
receiver arrives. If not, then a receiver must wait until all its upstream ancestors are
ready before making any progress (evaluated in Figure 2.8). In Hoplite, the broadcast
tree is generated dynamically at runtime, so the arrival order does not matter. In
addition, asynchronous MPI primitives still require applications to specify all the
participants before runtime. In Hoplite, the communication pattern can be expressed
dynamically and incrementally, allowing Hoplite to work with existing task-based

CHAPTER 2. HOPLITE 35

distributed systems.
Collective communication in other domains. Optimizing data transfer has been

studied extensively in other domains. Application-level multicast [25, 26] for stream-
ing video on wide-area networks. IP multicast [50] enables a sender to send simultane-
ously to multiple IP addresses at the same time. These work mostly focus entirely on
multicast rather than general-purpose collective communication in distributed com-
puting frameworks.

2.7 Conclusion

Task-based distributed computing frameworks have become popular for distributed
applications that contain dynamic and asynchronous workloads. We cannot directly
use traditional collective communication libraries in task-based distributed systems,
because (1) they require static communication patterns and (2) they are not fault-
tolerant. We design and implement Hoplite, an efficient and fault-tolerant communi-
cation layer for task-based distributed systems that achieves efficient collective com-
munication. Hoplite computes data transfer schedules on the fly, and even when tasks
fail, Hoplite can allow well-behaving tasks to keep making progress while waiting for
the failed tasks to recover. We port a popular distributed computing framework, Ray,
on top of Hoplite. Hoplite speeds up asynchronous SGD, RL, model serving work-
loads by up to 7.8x, 3.9x, and 3.3x, respectively. Hoplite’s source code is publicly
available (https://github.com/suquark/hoplite). This work does not raise any
ethical issues.

https://github.com/suquark/hoplite

36

Chapter 3

Exoflow: A Universal Workflow
System for Exactly-Once DAGs

Moving up to the task execution layer of distributed systems, we observe that
existing frameworks often impose a fixed recovery strategy, such as synchronous check-
pointing of all task outputs, to ensure exactly-once semantics. While this approach
guarantees correctness, it can lead to significant performance overheads, especially
for data-intensive applications. Moreover, it fails to leverage the diverse recovery
requirements and semantics of different tasks within a workflow.

In this chapter, we argue that distributed systems should provide a flexible
choice of recovery strategies, enabling applications to optimize the tradeoff between
performance and fault tolerance based on their specific requirements. To this end,
we introduce ExoFlow, a universal workflow system that decouples execution from
recovery and allows applications to specify task semantics through annotations.

ExoFlow employs a novel architecture that is able to scale recovery and execution
independently, and to make the storage and execution backends pluggable. This
allows ExoFlow to support a wide range of execution environments, from serverless
functions to distributed data processing frameworks, while providing consistent and
efficient recovery guarantees.

To enable flexible recovery strategies, ExoFlow introduces two key interfaces:
references and task annotations. References allow tasks to efficiently pass large and
distributed data as internal outputs, without materializing them or involving the
workflow system in the physical communication. Task annotations, such as determin-
ism and rollback behavior, enable the workflow system to make informed decisions
about checkpointing and recovery, minimizing unnecessary overheads.

We demonstrate the benefits of ExoFlow on a diverse set of applications, includ-
ing an ML pipeline, serverless transactions, and graph processing that mixes stream
and batch execution. Compared to existing workflow systems, ExoFlow achieves sig-
nificant performance improvements, such as a 5x speedup for Spark data processing

CHAPTER 3. EXOFLOW 37

workflows and a 51% reduction in latency for transactional serverless workflows, while
maintaining exactly-once semantics.

3.1 Introduction

A key requirement for distributed applications is fault tolerance, i.e. the appearance
of execution without failures even when failures occur. In general, there is a tradeoff
between recovery and run-time overhead. For example, logging generally adds higher
execution overhead but reduces recovery time by allowing the system to only re-
execute computations that failed [35]. Meanwhile, checkpointing reduces execution
overhead but can impose higher recovery overhead as the system must roll back
additional computation after a failure.

Current distributed systems often choose different tradeoff points between re-
covery and performance based on the application. For example, Apache Spark uses
lineage-based logging for batch processing [102], and Apache Flink uses checkpointing
for stream processing [23].

However, it is becoming increasingly common for different applications to be
composed into heterogeneous pipelines. For example, a machine learning pipeline
might use batch ingest to build a training dataset, then stream the data to a batch
distributed training job to reduce latency and memory overhead. If we use a single
recovery strategy for the entire pipeline, performance and recovery may be suboptimal
because different recovery strategies are suited to different applications. Thus, to
optimize end-to-end performance and recovery, we need to compose different recovery
strategies.

Implementing multiple, interoperable recovery techniques within the same sys-
tem, let alone a single one, is challenging. For example, Spark introduced “continuous
processing” to reduce performance overheads for stream processing applications, but
this mode does not yet provide exactly-once semantics during failures [12]. On the
other hand, Flink has added a batch processing mode, but this required building an
entirely separate recovery system from the streaming path [24].

Overall, these challenges have led to patchy support for applications that have
diverse requirements in the recovery-performance tradeoff space. Users must choose
between: (1) building on a single system, and face a fixed choice of performance
vs. recovery overheads, or (2) stitching together multiple systems that offer differ-
ent application-specific tradeoffs. The latter, however, is challenging and requires
coordinating the flow of data, control, and recovery across disparate systems. This
is true even in a single system, if using disparate execution modes such as batch
vs. streaming.

In this chapter, we propose a universal workflow system that enables a flexible
choice of recovery vs. performance tradeoffs, even within the same application. A
workflow is a directed acyclic graph (DAG) of tasks, where each task encapsulates

CHAPTER 3. EXOFLOW 38

a function call and edges between tasks represent data dependencies. Workflows
are used to orchestrate execution across systems and thus prioritize generality. The
DAG API is popular because it allows arbitrary application code in each task, from
submitting a Spark job to invoking a microservice.

In contrast to other workflow systems, however, we decouple the unit of execu-
tion from the unit of recovery. In particular, Exoflow guarantees fault tolerance by
durably logging the workflow DAG and coordinating task checkpoint and recovery,
while execution of the DAG is handled by a generic “backend”. This has three key
benefits. First, it enables heterogeneous application pipelines that need multiple re-
covery strategies for performance. Second, it augments existing distributed execution
frameworks that provide only at-most-once or at-least-once semantics with strong
exactly-once semantics. Third, it disaggregates the execution backend from recovery,
allowing independent deployment and scaling.

Previous workflow systems provide exactly-once semantics but with significant
limitations. For generality, workflow systems such as Apache Airflow [3] assume that
each task is nondeterministic and may have side effects on external systems that
in general cannot be rolled back. Thus, each task must synchronously checkpoint
its outputs before they can be made visible to any downstream tasks. Otherwise,
the system may have to re-execute the task in case of a failure. If the re-execution
produces a different result, this can cause an inconsistent view among downstream
tasks and external systems.

Thus, by assuming the worst, the workflow system has only one option of en-
suring fault tolerance: no task can start before its upstream tasks have finished
checkpointing all of their outputs. This limits the workflow system’s ability to in-
corporate key optimizations often employed by application-specific frameworks that
exploit the application’s semantics. For example, large datasets passed between tasks
can often be deterministically regenerated, making checkpointing unnecessary. In ad-
dition, while some tasks may indeed have external effects, e.g., starting a transaction
on an external database, some effects can also be rolled back, e.g., by aborting the
transaction.

Our goal is to hand control over recovery to Exoflow and ultimately the end
user. Thus, we use two key interfaces to enable awareness of application semantics.
First, we extend the typical workflow DAG API with pluggable first-class references
to enable more flexible workflow-internal communication. A workflow task can re-
turn references to its outputs, which the workflow system then passes to downstream
tasks. In contrast, current workflow systems require the application to pass data by
explicitly copying and checkpointing, which can be expensive for large data, or im-
plicitly through external storage, which makes it difficult to guarantee exactly-once
semantics. By using references to capture arbitrary data movement between workflow
tasks, Exoflow leverages third-party systems’ existing communication and recovery
mechanisms while retaining control over workflow-level recovery.

Second, we introduce user annotations that specify relevant task semantics, i.e.

CHAPTER 3. EXOFLOW 39

whether to checkpoint a task, whether the outputs are deterministic, and whether the
task has externally visible outputs. Before execution, Exoflow checks the safety of
the user’s specification. During execution, Exoflow synchronizes task execution and
checkpointing. During recovery, Exoflow coordinates rollback, e.g., deletion of outputs
from a previous execution, and task replay. For example, before executing a task with
an externally visible output, Exoflow will first synchronize upstream checkpoints to
commit any nondeterministic outputs, i.e. ensure they will never be rolled back. This
allows the user to flexibly and safely optimize the recovery technique.

Exoflow is built on Ray [67] and consists of a per-workflow centralized con-
troller, a pluggable checkpoint storage, and a pluggable execution backend. Central-
izing controller logic makes it simple to guarantee recovery correctness. Meanwhile,
checkpointing and execution are fully disaggregated, allowing these to be scaled in-
dependently of the controller.

We demonstrate the benefits of Exoflow with two execution backends, the Ray
framework and AWS Lambdas, both distributed frameworks that provide at-most-
once or at-least-once tasks. We show that references can enable ∼5× speedup for
Spark data processing workflows compared to Apache Airflow, while task annota-
tions enable 51% lower latency for transactional serverless workflows compared to
Beldi [104]. These optimizations are possible because correctness is ultimately guar-
anteed by Exoflow. These results also demonstrate Exoflow’s universality, as the
system is not specific to data processing or serverless environments. In summary, our
contributions are:

1. Decoupling execution from recovery to enable a flexible tradeoff between per-
formance and fault tolerance.

2. Designing a universal workflow system that guarantees exactly-once DAG exe-
cution.

3. Demonstrating benefits for a diverse set of applications, including an ML pipeline,
serverless transactions, and graph processing that mixes stream and batch ex-
ecution.

3.2 Motivation

3.2.1 Overview of recovery strategies

We use exactly-once semantics as our correctness condition. This condition often im-
plies application-specific correctness properties, such as global consistency in message-
passing systems [35] or linearizability in storage systems [46].

More precisely, exactly-once semantics require all outputs to appear consistent
with a physical execution where all inputs were processed without failures. In a
workflow setting, the inputs are the DAG and the root task arguments. Outputs are
values produced by a task that are viewed by others.

CHAPTER 3. EXOFLOW 40

Output visibility can be internal or external. For example, values passed be-
tween tasks in Figure 3.1a are internal because they are viewed only by other tasks.
Meanwhile, (key,val) is external because it is sent to a key-value store. Once out-
puts are made external, the workflow system no longer has control over how they will
be used, e.g., via reads from external key-value store clients. Outputs can also be
either deterministically or nondeterministically generated.

Output visibility and determinism are important because together they de-
termine the recovery procedures that will guarantee exactly-once semantics (Fig-
ure 3.1b). For example, consider the cases if A is nondeterministic and we do not
checkpoint a out in Figure 3.1a. Suppose C views an initial value a out1 and pro-
duces c out1, but we lose a out1 due to a failure. If we re-execute A to produce a out2
and pass this to B, the outputs of B and C will not be consistent with a failure-free
execution. To handle this case, we also need to “rollback” c out1 and re-execute C

on a out2.
We encounter additional problems in the opposite case where B finishes and we

then lose a out1. B has already made (key,val) external and these values may de-
pend on a out1. If we execute C on a out2, c out will be inconsistent with (key,val).
Thus, the only way to guarantee correctness in this case is to either: (1) “commit”
a out1 before executing B, e.g., by checkpointing it, or (2) gain application semantics
about how to roll back visibility of (key,val).

Meanwhile, deterministic outputs are safe to view as long as the task can be
replayed on its original inputs and recomputed outputs can be deduplicated. The
external output in Figure 3.1a can for example be deduplicated by attaching a deter-
ministic req id.

Solution space. Handling nondeterministic outputs is generally done in two ways:
(1) global checkpointing and rollback on failure, or (2) logging and deterministic
replay on failure [35]. Both “commit” a prefix of a failure-free execution by saving
the outputs of a task frontier, allowing recovery to resume execution from a consistent
set of intermediate outputs. Global checkpointing advances this frontier several tasks
at a time and upon failure, rolls back to the last frontier to undo partially visible
nondeterministic outputs. For outputs that cannot be rolled back, however, upstream
nondeterministic outputs must first be committed by taking a global checkpoint.
Logging-based methods advance the frontier one task at a time by committing each
nondeterministic output before making it visible, thus avoiding additional rollback
on failure.

Note that rollback and durability options vary based on output visibility. Ex-
ternal outputs may be impossible to roll back, e.g., a transaction commit cannot be
undone, or make durable, as third-party system context is not always serializable.

Current workflow systems guarantee exactly-once semantics by: (1) durably
checkpointing each internal output before making it visible, and (2) requiring the
developer to make external outputs idempotent and durable. This one-size-fits-all

CHAPTER 3. EXOFLOW 41

A(args) B(a_out)

C(a_out)
args

a_out

D(args,
b_out, c_out)

c_out
d_out

External state

root()

b_out

put(key, val)

(a) Workflow DAG
Internal External

Nondeterministic Commit output OR on failure, roll-
back visibility

Commit output before visibility OR
if possible, rollback visibility on fail-
ure

Deterministic Replay failed task(s) on previous in-
puts, dedupe outputs

Also dedupe external outputs

(b) Recovery strategies for workflow DAGs

Figure 3.1: (a) An example workflow with internal outputs (e.g., a out) and external
outputs (e.g., put(key,val)). (b) The most efficient recovery strategy depends on
output visibility and nondeterminism.

approach does not leverage application-specific recovery methods (Figure 3.1b). Fur-
thermore, existing workflow systems have fundamental limits on internal outputs,
usually because they must be sent between tasks through the workflow controller.
Apache Airflow uses a database to coordinate tasks, which imposes a maximum out-
put size on the order of MBs [3], and direct task communication in FaaS is limited [37].
Together, these force developers to use external outputs for much of their task com-
munication [37, 82].

Our goal is to support different recovery methods in a single workflow system and
even within a single application. The key insight behind Exoflow is that knowing the
DAG structure makes it simple to identify a consistent execution frontier, allowing the
recovery methods before and after the frontier to be decoupled. For example, a out

is internal to the outlined sub-DAG in Figure 3.1a and thus its recovery method can
be chosen flexibly as long as the inputs (args) and outputs (b out,c out,key,val)
are consistent.

Thus, our solution consists of two parts. First, references enable Exoflow to
capture a broader range of inter-task communication as internal outputs, without
being involved in the physical communication. This encourages recovery flexibility
within a sub-DAG and recovery independence across sub-DAGs. References enable
efficient passing of task outputs of any size and location as well as outputs that may
not be serializable.

Second, we support annotations to specify task semantics (checkpointing, non-
determinism, output visibility). These allow the system to determine recovery cor-

CHAPTER 3. EXOFLOW 42

A

table_name C

write(RDD,
 table_name)

External DB
RDD = read(
 table_name)

B

(a)

External DB

A
B

C

Sharing a cached Spark RDD
across workflow tasks

● Use an actor to hold Spark
context

● Async actor checkpoint,
which internally uses Spark
API to materialize to
external DB (or use native
checkpoint API)

● B and C can share the RDD
cached in-memory

● Mark execB and execC
tasks as idempotent, so
rollback is not required on
recovery.

RDD

(b)

Ingest

Dataset augmentation

Distributed training
pathname

Distributed FS

write(dataset,
 pathname)

dataset = read(pathname)

(c)

Distributed
FS

dataset
1

dataset
2

dataset
3

TF workers

TF workers

Ingest augmentData

augmentData

augmentData

train

train

train

model
1

model
2

model
3

dataset

(d)

Figure 3.2: (a) ETL workflow today, using external outputs for communication. (b)
The same ETL workflow with internal outputs only. (c) ML training workflow today,
with external outputs and manual orchestration within a task. (d) The same ML
workflow with internal outputs only, and orchestration is handled by the workflow
system. Third-party framework state (TF workers) can be passed between workflow
tasks.

rectness before execution. The system “commits” the application to this specification
by durably logging the DAG before execution, then coordinates and synchronizes task
checkpoints during execution. The annotations are set to a safe default, i.e. each task’s
output(s) must be checkpointed, is assumed to be nondeterministic, and any exter-
nal outputs must be made idempotent. This produces write-ahead logging behavior
equivalent to that of a workflow system such as Apache Airflow.

3.2.2 Applications

We use three representative applications to show the value of: (1) making workflow-
internal outputs more flexible, and (2) exposing application semantics to the workflow
controller:

1. Extract-transform-load (ETL) pipelines: Using references to pass large data as
internal outputs.

2. Machine learning (ML) pipelines: Using references to pass large data and lever-
aging application semantics.

3. Serverless workflows: Leveraging application semantics to reduce recovery over-
heads, in a way that is agnostic to external systems.

CHAPTER 3. EXOFLOW 43

ETL pipelines. Workflow systems such as Apache Airflow are commonly used to
orchestrate extract-transform-load (ETL) pipelines composed of data processing jobs.
Figure 3.2a shows an example in which a Spark job A performs batch data cleaning
and writes the data to an external database, e.g., Delta Lake [13]. Jobs B and C then
load the data for querying.

Current practice for exactly-once workflow execution requires all of A’s outputs
to be made durable before executing B and C. Synchronous checkpointing adds high
overhead for large and distributed data. In addition, B and C must each reload the
data, imposing an unnecessary memory copy. This is of course unnecessary if A is
deterministic. Execution systems such as Spark leverage this property to natively
support distributed in-memory caching. Ideally, A should pass its output as a cached
RDD [102] to B and C (Figure 3.2b), avoiding the round trip to external storage,
allowing B and C to share physical memory, and enabling asynchronous checkpointing.

Building such optimizations into a workflow system would enable orchestration
of arbitrary DAGs and third-party frameworks. However, even with awareness of task
determinism, current workflow systems cannot execute Figure 3.2b due to limitations
in workflow-internal data passing.

ML pipelines. Machine learning (ML) pipelines are similar to ETL pipelines, but
with an ML application as the end consumer. This requires composition of traditional
ETL systems with distributed ML frameworks for training and inference. Figure 3.2c
shows a typical ML training workflow, in which training data is extracted and trans-
formed in the Ingest task, then consumed by a distributed training job. Loading
data into the training job may itself require complex and possibly distributed data
processing, with computations such as random transforms to augment datasets [72].
Furthermore, datasets are often large enough that preprocessing must be pipelined
with training to maximize GPU utilization.

Current workflow systems cannot effectively orchestrate within the training task,
as training data and worker state must be passed through distributed memory. Ex-
panding workflow-internal outputs would enable workflows such as Figure 3.2d. To
reduce the overhead of recovery, however, the workflow system also requires appli-
cation semantics, such as whether dataset augmentation is deterministic. Also, the
model output can be consumed in a variety of ways, from local one-off testing during
development to deployment on an ML serving system during production. All of these
factors affect the optimal correct recovery strategy.

Serverless workflows. In the functions-as-a-service (FaaS) model, the user breaks
their application into small functions that can be transparently executed and scaled
without explicit resource provisioning. Serverless functions have a limited lifetime,
all local state is transient, and failure handling is usually limited to function retries.
This makes it challenging to build fault-tolerant nontrivial applications directly on

CHAPTER 3. EXOFLOW 44

beginTxn commitOr
Abort(txn)

reserve(hotel)

reserve(flight) reserved?

placeOrder(
hotel, flight)

ok?txn: {id, …,}

Transaction buffer
or write-ahead log

Figure 3.3: Serverless workflow systems [94, 104, 52] guarantee exactly-once semantics
by interposing on all communication to external storage, e.g., through a transaction
buffer, and explicitly managing visibility of these external effects.

FaaS [45].
Recently, serverless workflow systems [20, 94, 104] have gained popularity as

a solution, especially for stateful applications. A common strategy for guaranteeing
exactly-once execution is to provide fault-tolerant APIs to capture external outputs.
For example, Figure 3.3 shows an example of a trip reservation workflow [38] that
places the order if and only if both the hotel and flight were successfully reserved.
Systems such as Aft [94], Beldi [104], and Boki [52] guarantee exactly-once semantics
by providing a transactional key-value store to manage external output visibility.

However, each system offers different isolation levels that require different recov-
ery strategies. Aft buffers uncommitted writes, which are safe to rollback, while Beldi
and Boki use write-ahead logging. Thus, each system implements their own recovery
procedures, e.g., durability and task re-execution.

Exoflow factors out workflow recovery to enable flexibility and optimizations.
Instead of providing opinionated APIs for external outputs, we treat external sys-
tems such as the transaction buffer in Figure 3.3 as a black box. Exoflow does not
interpose on the communication to this external system and instead requires that
the application can specify task semantics such as whether the external effect can be
rolled back. These semantics can be specified by a particular transaction system, i.e.
Aft or Beldi.

3.3 API

3.3.1 Overview and requirements

Exoflow is a general workflow layer that abstracts a workflow backend, i.e. a dis-
tributed framework providing at-least-once and/or at-most-once remote function in-
vocation. We overview the application-facing API (Table 3.1) and requirements. The
application must be able to: (1) differentiate deterministic tasks, and (2) for tasks
with external outputs, ensure that the task is idempotent or specify an idempotent
rollback function.

CHAPTER 3. EXOFLOW 45

Workflow API Semantics

f.options(Opts).bind(Value

| WorkflowDAG) →
WorkflowDAG

Create a workflow task f. Creates and returns a WorkflowDAG, whose
value is lazily evaluated. The caller may pass the WorkflowDAG to
another task. The return value of f can be a WorkflowDAG, i.e. a
nested workflow.

run(WorkflowDAG w, str

name) → Value

Run the workflow w and return the result. Optionally take a string
identifier for this workflow.

run async(WorkflowDAG w,

str name) → Fut

Run the workflow w asynchronously and return a future that can be
used to retrieve the result.

Ref.get() → Value Used by the application to dereference to a value. Ref construction
is backend-specific.

bool Opts.checkpoint=True True if the task’s output should be saved.
bool

Opts.deterministic=False

True if outputs are deterministically generated.

bool Opts.can -

rollback=False

True if task has no external outputs, or if they can be rolled back.
If False, the task must be idempotent.

Fn Opts.rollback=null If external outputs can be rolled back, a function to do so. The
function must be idempotent, and any WorkflowDAG arguments must
be a subset of the original workflow task f’s arguments.

Ref. id() → ID Used by the workflow system to compare equality.
Ref. checkpoint() →
Fut[Value]

Used by the workflow system to coordinate checkpointing. The
Value is the checkpoint data or metadata.

Ref. restore(Value) Used by the workflow system to reload from a saved checkpoint.

Table 3.1: Workflow API. Top: API calls exposed to the application. Middle: Task
annotations specified by application or third-party library. Bottom: Exoflow-internal
Ref API, pluggable by execution backend.

DAG interface. The application invokes workflow tasks and specifies arguments
using f.bind (Table 3.1). The caller receives a WorkflowDAG that represents the task’s
output and that can be passed to other tasks as dependencies. Workflow execution
is lazy : to evaluate a WorkflowDAG, the developer must run it. This is to simplify
recovery, as the workflow system can check DAG-level properties before executing it.

The workflow backend should implement an RPC-like interface. Within a task,
the application can invoke arbitrary local or distributed execution. For greater gen-
erality, we also adopt the dynamic task model [71]: tasks can dynamically invoke
exactly-once nested workflows by returning a WorkflowDAG.

Task annotations. The application specifies semantics relevant to recovery at task
invocation time (Table 3.1). The workflow system uses these to ensure correctness
of: (1) coordination of distributed workflow checkpoints during execution, and (2)
output rollback and task re-execution upon failure.

First, the application specifies whether to skip checkpointing a task’s output.

CHAPTER 3. EXOFLOW 46

Note that the workflow system guarantees correctness, so this can be considered an
optimization hint, e.g., to avoid recomputation for long tasks,

Next, the application can specify whether a task’s outputs (both internal and
external) are deterministic. This allows the workflow system to minimize rollback
during recovery.

Finally, the application specifies whether a task can be rolled back and if yes,
how to do so. Tasks with no external outputs, such as the data processing tasks in
Figure 3.2, should set can rollback=True. Tasks that have external outputs that
cannot be rolled back should set can rollback=False and ensure idempotence, as
recovery may require re-execution.

Non-idempotent tasks with external outputs that can be rolled back should
set can rollback=True and the rollback callback. On failure, Exoflow executes
these rollback “tasks” in reverse dependency order before resuming execution. The
rollback task can take any arguments available to the original workflow task, but the
application must additionally guarantee that the rollback task is idempotent. For
example, to implement the transaction in Figure 3.3, rollback for the beginTxn and
reserve tasks could simply abort.

On run, Exoflow checks the WorkflowDAG for specification errors and throws
an exception if any are found. In particular, correctness requires the application to
set checkpoints between each nondeterministic task and each downstream task with
external output. Section 3.3.3 makes this precise.

Internal outputs. Direct task outputs are subject to limits of the execution back-
end. For greater flexibility, Exoflow allows outputs to include Refs created by the
task. Refs are (optionally) pluggable by the execution backend. They are intended
to capture volatile outputs that would be expensive or complex to natively support
in Exoflow, e.g., large distributed data or third-party framework context. For an
AWS Lambdas backend, for example, values can be stored in an external (volatile)
key-value store and the key can be passed in a Ref. Other tasks can dynamically get

the value, which can throw an error if the value is irretrievable due to failure.
Refs are uniquely identifiable objects typically containing backend-specific meta-

data. A task can only return Refs that it created or that were passed to it by an
upstream task. Then, upon failure, Exoflow can either restore the Ref from a check-
point, or trace the DAG back to the creating task. On re-execution, the task need
not return the same Refs as its original execution. For example, with the annotation
deterministic=True, it is only necessary that the value of a returned Ref is deter-
ministic; the Ref itself may have a nondeterministic ID. This is safe because Exoflow
simply cancels tasks using the previous Refs and re-executes with the new Refs.

By default, Ref values are immutable. This improves recovery efficiency, as
it simplifies checkpointing and minimizes task rollback. To capture task outputs
that are expensive or impossible to materialize, we also support stateful references,
i.e. actors [47]. An ActorRef extends Refs with application-defined methods that

CHAPTER 3. EXOFLOW 47

beginTxn
acquire(txn,

hotel) commitOr
Abort(txn)acquire(txn,

flight)

reserve(txn,
hotel)

reserve(txn,
flight)

acquired?

reserved?

placeOrder(
hotel, flight)

ok?

txn: {id, …,}

Deterministic, no external outputs
Nondeterministic

External outputs can be rolled back
External outputs cannot be rolled back

rollback_acquire(txn, hotel)

rollback_acquire(txn, flight)

Rollback tasks. Only
executed if acquire tasks
must be rolled back

Examples of acceptable vertex cuts that, when their outputs are
checkpointed, “commit” the workflow’s nondeterministic outputs

(a)

dataset
2

dataset
1

…

Ingest

augmentData train

augmentData

model
2

…

TF workers

train

(b)

init generate_df

Spark DF

A

Bexec(B)

Cexec(C)

(c)

Figure 3.4: (a) Task annotations. Edge cuts represent checkpoint=True. (b) Pass-
ing references (small boxes) in an ML workflow. Blue Refs are actors that wrap
TensorFlow worker state. (c) Passing an ActorRef in an ETL workflow. B and C call
read-only methods on the Spark context actor.

execute on the actor’s state (Listing 1). However, mutable state is more complex to
recover efficiently and correctly. Thus, compared to Refs, we limit how ActorRefs

can be passed between workflow tasks (Section 3.3.4).

3.3.2 Model

We present a formal model of workflows to more precisely capture the API and
assumptions. A workflow G = (V,E) is a directed acyclic graph with vertices V and
edges E. Each vertex vi has:

• Fi: An associated function
• Ni: A function representing a (potential) source of nondeterminism
• Ri: An optional rollback function

CHAPTER 3. EXOFLOW 48

• The set of annotations described in Table 3.1.

A workflow execution produces one internal and one external output per vertex,
both optional. For brevity, the presented model only considers tasks with single
outputs, although the system in reality supports multiple outputs.

We denote an execution’s outputs by OInt and OExt. O is a mapping from
vertex to a single output value o, and the subscripts Int and Ext denote internal and
external outputs, respectively. Fi outputs oExt by adding it to a global set W , which
can be read by other tasks and by external processes.

Each Fi takes as inputs:

• argsi: Direct arguments, one for each vertex with an edge to vi.
• wi: A set of external outputs.
• ni: A nondeterministic value. If Fi’s output does not depend on ni, then Fi is

deterministic.

In other words, an edge (vi, vj) indicates that vi’s internal output is passed to
task vj. Internal outputs passed between vertices are analogous to messages passed
between processes in a message-passing model [35], except that the application must
declare the “messages” (dependencies) before execution.

Ni captures nondeterministic inputs. For example, if Fi depends on the current
time, then Ni returns the current time. We assume that if Ni reads some external
state, the external state will not be rolled back (unless Fi is also rolled back via Ri).

We define a failure-free execution of G as one where the individual output of
each task vi corresponds to an execution of Fi over inputs such that:

• The direct arguments are the internal outputs produced by vertices with an
edge to vi. Formally, this can be written as argsi = {OInt [j] | (vj, vi) ∈ E}.

• The set of external outputs is equal to the external outputs of all tasks that
precede vi in G. Formally, this can be written as wi = {OExt[j] | vj <G vi}.

• The nondeterministic value is one returned by Ni, i.e. ni = Ni().

The correctness condition says that to an external process, it must appear as if
the DAG has executed failure-free. Thus, we also define W : a sequence of snapshots
of the external outputs produced so far by the DAG execution. W represents a series
of reads of W made by an external process during execution. Then, we just need to
make sure that once an external output is visible, i.e. it appears in a snapshot w in
W , it should be visible in all following snapshots in W . In other words, W must be
monotonic.

This definition is analogous to global consistency in message-passing [35], i.e.
that every visible output has a corresponding task that created it. The goal is to
provide a consistent execution under a crash failure model. Formally, we can define
this as:

CHAPTER 3. EXOFLOW 49

Definition 3.1 (Consistency). OInt, OExt are consistent with a workflow G = (V,E)
if for all possible W , W is monotonic and the outputs OInt and OExt correspond to a
failure-free execution of G.

The application assumptions are as follows. For each vi:

1. We assume that if vi and vj cannot be ordered in the graph, then they cannot
read each other’s external outputs. Formally, if vi ̸<G vj and vj ̸<G vi, then
Fi(IInt, wi, ni) = Fi(IInt, wi \ {OExt[j]}, ni). If the application requires vi to
depend on a task vj’s external output, then the ordering should be specified as
part of the task graph. If this is not possible, then to ensure consistency, vj’s
external output should be considered part of vi’s nondeterministic input, and
the application must set can rollback=False for vj.

2. Tasks that set deterministic=true must produce outputs that are a deter-
ministic function of their internal and external outputs, i.e. Fi is not dependent
on the value returned by Ni.

3. If the oExt returned by Fi is not null, then either can rollback=False or Ri is
not null.

(a) If can rollback=False, then Fi is idempotent. That is, if an invocation
of Fi produces an external output oExt, and Fi is run again on the same
internal outputs and a later snapshot of W , then Fi should still produce
the same external output.

(b) If Ri is provided, then it is a deterministic and idempotent function of the
task’s internal inputs only. Intuitively, R removes the previous external
output from the external world. Formally, this means that if the first
invocation of Fi(IInt, w, ni) produces (oInt, oExt), then Ri(IInt) removes
oExt from all past reads of W .

Regarding (3b), note that the meaning of removing oExt from past reads is
application-dependent. For example, suppose Fi executes a transaction andRi aborts
the transaction; if uncommitted reads are allowed, then Ri does not need to roll back
the reader.

Nested tasks and references. While not explicitly captured in the above model,
nested tasks can be thought of as tasks that expand into a sub-workflow. Refs and
ActorRefs are native data types that can be returned in a function’s internal output.
Because actors are mutable, ActorRefs are versioned: if a caller writes to an actor
by calling a method on its ActorRef, the caller’s resulting ActorRef is of a different
version. This becomes relevant in Section 3.3.4, which discusses the rules that the
application must follow to ensure exactly-once semantics when ActorRefs are passed
between workflow tasks.

CHAPTER 3. EXOFLOW 50

3.3.3 Guaranteeing exactly-once execution

Task annotations simplify the decision of when to commit task outputs. To illustrate
this, we use Figure 3.4a, a modified version of the workflow described in Figure 3.3.
We show the annotations for a workflow using an external two-phase locking (2PL)
transaction system. beginTxn generates a transaction context with a random txn id.
The acquire tasks each attempt to acquire a lock on an external table row. If this
is successful, we attempt to reserve the flight and hotel if available, then finally
commit the transaction and place the order if both succeed. The cuts in Figure 3.4a
indicate checkpoint=True.

As an example, we first consider the acquire and commitOrAbort tasks. ac-

quire tasks are nondeterministic because they depend on the run-time state of the
external table. commitOrAbort has can rollback=False because it is impossible to
abort a committed transaction and vice versa. Although acquire can be rolled back
(e.g., by aborting the transaction and releasing the lock), once we have started the
commitOrAbort task, it is no longer safe to do so because the transaction may already
be committed. Thus, we must ensure that both acquire outputs are saved before
commitOrAbort starts. We can generalize this rule for the application as follows:

Invariant 3.1 (External output commit). For each workflow task vi with deter-

ministic=False, let G be the minimal subgraph that contains vi and all downstream
tasks (tasks for which there is a path from vi). Then, for each workflow task vj with
can rollback=False in G, there must exist a vertex cut that partitions vi from vj
such that all tasks in the cut have checkpoint=True.

Intuitively the vertex cut (green shaded box in Figure 3.4a) of the sub-DAG
defines a commit point for the nondeterministic output of vi. There may exist mul-
tiple such cuts. For example, another acceptable specification in Figure 3.4a is the
righthand vertex cut, which instead checkpoints the reserve outputs.

Exoflow guarantees that at least one task frontier is fully checkpointed by the
time commitOrAbort (vj) starts. Interestingly, this also tells us that we do not need to
commit the acquire outputs synchronously. In particular, the reserve tasks in this
case are deterministic, as their outputs depend only on whether the lock was acquired
and the value stored in the external table, which cannot be modified while locked.
Furthermore, their external outputs are not visible while the lock is held. Thus, in this
case, it is safe to annotate the reserve tasks with deterministic=True and can -

rollback=True. Together, these annotations allow Exoflow to overlap the checkpoint
of acquire’s outputs with execution of the reserve tasks, as long as the checkpoints
are synchronized before commitOrAbort.

There is a similar requirement for rollback tasks. The rollback tasks in Fig-
ure 3.4a are conditionally invoked by the workflow system to undo external outputs
of the acquire tasks. We must ensure that all inputs to the original acquire task
are recoverable before execution. Otherwise, if the rollback task and its inputs fail

CHAPTER 3. EXOFLOW 51

simultaneously, it will be impossible to finish rollback. Thus, in Figure 3.4a, the
application must set checkpoint=True for beginTxn, and Exoflow synchronizes this
checkpoint before executing the acquire tasks.

Invariant 3.2 (Rollback durability). For each path beginning at a task vi with de-

terministic=False and ending at a task vj that has a rollback function Rj, there
must exist at least one vertex along the path with checkpoint=True.

Unlike Invariant 3.1, here we only require checkpointing a single task to handle
nondeterminism, as the availability of a rollback function Rj means that we do not
need to commit to the original output. The checkpointed task can also be a task
other than vi or vj. For example, if there were additional deterministic tasks between
beginTxn (T) and rollback acquire (R), then checkpointing any is sufficient.

Both invariants can be easily checked by walking the DAG passed to run. If
an invariant is not met, the system throws an exception to the user. Annotations
do therefore require user cooperation, but note that a user with minimal perfor-
mance needs can use the defaults in Table 3.1. This specification trivially satisfies
the invariants and indeed corresponds to current workflow systems that commit all
task outputs. Section 3.4 describes how Exoflow leverages the invariants to improve
run-time performance for more sophisticated specifications.

Note that the system will not durably record a nested workflow returned by
a task with checkpoint=False. To simplify recovery, we disallow sub-tasks with
checkpoint=True, as we may lose all references to these checkpoints upon failure.
We also disallow can rollback=False and rollback, as these are challenging to
recover without workflow durability.

3.3.4 References

Immutable Refs enable efficient passing of large and distributed data between
workflow tasks. For example, Figure 3.4b shows how the Ingest task from Figure 3.2d
can use Refs to return distributed in-memory data. Exoflow tracks inter-task Ref

dependencies for recovery purposes, while the execution backend handles intra-task
execution (e.g., get).

Some cases require stateful actors for performance. For example, the blue boxes
passed between train tasks in Figure 3.4b are ActorRefs representing a training
worker’s state, e.g., a Distributed TensorFlow session. This helps avoid expensive
materialization, such as the worker’s local model copy.

Guaranteeing exactly-once semantics for state is challenging. If one task writes
the ActorRef’s state, the output is visible to any other task holding a reference to
the same actor. This can cause cascading rollbacks on failure depending on how Ac-

torRefs are passed. Furthermore, checkpointing is more challenging if multiple tasks
write concurrently to the actor, as the system must ensure that the actor checkpoint
is consistent.

CHAPTER 3. EXOFLOW 52

@ray.remote

class SparkActor:

def __init__(self):

self.spark_context = connect(); self.df = None

def generate_df(self):

self.df = generate_df(self.spark_context).cache()

@const

def exec(self, seed: int) -> int:

return exec(self.df, seed=seed).count()

def _checkpoint(self):

return self.spark_context.save(self.df)

def _restore(self, path):

self.df = self.spark_context.load_df(path)

Listing 1: Psuedocode for passing a Spark DataFrame by actor. The execution backend
implements the actor. Public methods are user-defined. Methods prepended by are called
internally by Exoflow.

To simplify recovery, we limit ActorRef passing to two patterns, analogous to
a read-write lock. By default, the ActorRef is in “write” mode. In this mode, only
one workflow task may have a reference to the actor at a time. That task can call
any actor methods as long as they finish before the task returns. For example, in
Figure 3.4b, only one train task refers to each actor at a time. Exoflow can then
checkpoint the actors’ state between tasks, and on failure, roll back the actors with
the workflow. This pattern is useful for abstracting and checkpointing distributed
workers in third-party frameworks such as Distributed TensorFlow [9] and Flink [24].

If there are multiple concurrent workflow tasks with a reference to the same
actor, however, the tasks are restricted to read-only methods annotated by the user,
as shown in Listing 1. Figure 3.4c shows an expanded Figure 3.2b in which we use
an ActorRef to capture a Spark DataFrame. Initially, A has the only ActorRef, so it
can write to the actor’s state (generate df). B and C share the actor concurrently,
however, and so they are limited to read-only methods (exec). Invoking a write
method such as generate df would throw a run-time error.

Similar to a read-write lock, Exoflow can only provide correctness if the applica-
tion respects certain conditions. In particular, the workflow tasks must explicitly pass
ActorRefs through their outputs and arguments. Any other ActorRefs cannot be
tracked by Exoflow and exactly-once semantics is not guaranteed, similar to reading a
variable without holding the lock. Also, while methods may be called asynchronously
on an ActorRef, a workflow task must synchronize any outstanding calls to an actor
before returning.

CHAPTER 3. EXOFLOW 53

a b

c

Persistent storageWorkflow controller

Ex
ec

ut
or

 1

Ex
ec

ut
or

 2

A()
B(a)

C(a)
D(b,c)

x x

ID Args Output Placeholders Ckpted?

A [] Ref(be5) {} False

B [a] Ref(d1a) { :Ref(e02)} True

C [a] Ref(1bf) - PENDING

D [b,c] - - -

C(a)

Ckpt loc Value

/w0/A/spec …

/w0/B/spec …

/w0/B/output

/w0/B/x

… …

b

ID Value

B

x

b

Execution backends

Custom
application
checkpoints

Workflow storage

x

Figure 3.5: Workflow architecture. The controller and executors are RPC-like services
built using Ray actors. Each invocation on these services returns a distributed future
(system-internal Refs).

3.4 Architecture

The Exoflow architecture (Figure 3.5) comprises a logically centralized workflow con-
troller, a pluggable execution backend, and a pluggable persistent storage system.

The Exoflow controller is a long-running service that can be sharded by work-
flow (Figure 3.5). Persistent storage can be implemented by any durable blob storage
supporting puts and gets with read-after-write consistency, such as Amazon S3. The
execution backend should implement a remote function invocation interface, used by
the controller to scale checkpointing and task execution. The backend should provide:
(1) ability to detect and report task and Ref failures, and (2) guarantee no resource
leaks for failed task execution and Refs.

The controller runs as an event loop with the following events: task or checkpoint
completes, and task or checkpoint failed. All critical workflow state, such as the
workflow DAG, is cached by the workflow controller and written-through to persistent
storage, making it simple to also recover the workflow controller. Checkpointing is
carried out asynchronously by background threads on the executors, enabling parallel

CHAPTER 3. EXOFLOW 54

and distributed checkpoints that are not bottlenecked by the centralized controller.
The Exoflow controller coordinates checkpoint synchronization during execution as
needed, according to the user-defined annotations. Then, on restart, the controller
simply scans the storage for any unfinished workflows, coordinates rollback as needed,
and re-runs to completion.

See Appendix B for a full description of the execution and recovery procedures,
including correctness arguments and implementation details.

3.5 Evaluation

Our evaluation covers the following questions:

1. How can applications leverage first-class references and task annotations to have
greater flexibility in recovery?

2. How does this flexibility in recovery strategy affect performance during execu-
tion and recovery?

Appendix B includes additional end application evaluation, as well as microbench-
marks evaluating:

1. What overheads does Exoflow add to at-least-once or at-most-once execution
backends?

We compare primarily against these baselines: (1) exactly-once workflow sys-
tems: Airflow [3], “standard mode” AWS Step Functions [18], and the serverless
workflow system Beldi [104]; and (2) at-least-once distributed DAG systems: “ex-
press mode” AWS Step Functions [18] and Ray [67].

Given the high execution overheads of exactly-once workflow systems such as
Airflow (Appendix B.3.2), to fairly address questions (1) and (3), we also compare
against the following Exoflow modes:

1. SyncCkpt: Task outputs are synchronized before executing downstream tasks.
This is used to simulate the recovery strategy of exactly-once workflow systems
such as Airflow.

2. NoCkpt: All task outputs except the final are skipped. This is used to simulate
the recovery strategy of an at-least-once or at-most-once system. The applica-
tion must guarantee that all tasks are deterministic and idempotent to achieve
exactly-once semantics.

3. AsyncCkpt: The default mode of Exoflow. Task outputs are only synchronized
where necessary, to provide exactly-once semantics.

We conduct all of the experiments using the AWS cloud, specifically in the us-
east-1 region. Exoflow and execution backends are hosted on EC2 and use Amazon
S3 (or EFS in Section 3.5.2) for persistent storage.

CHAPTER 3. EXOFLOW 55

1x 2x 3x 4x
Dataset Size

0
200
400
600
800

1000
D

ur
at

io
n

(s
)

Cluster Ingest data Train actor Aug. task Aug. data
Failure Type

0
250
500
750

1000
1250

D
ur

at
io

n
(s

)

Selective AsyncCkpt NoCkpt AsyncCkpt SyncCkpt Workflow Tasks

Figure 3.6: End-to-end duration for the ML workflow application shown in Fig-
ures 3.2d and 3.4b. Left: End-to-end duration without failure. Right: End-to-end
duration with different failure types. The shadow represents the execution time with-
out failure.

3.5.1 ML training pipelines

We show how Exoflow enables a flexible recovery-performance tradeoffs for the work-
flow in Figure 3.2d. We use an image classification example adapted from Azure
MLOps [4]. An ETL Ingest task (1 r3.2xlarge node) downloads the compressed data
from S3. “1×” in Figure 3.6 indicates one data copy with 569 raw image files and
total size 225MB. The task loads the images into memory, and performs data clean-
ing and normalization with at-least-once parallel Ray tasks. The dataset (1.4GB of
memory per data copy) is partitioned and passed using Refs to the dataset augmen-
tation tasks, via Ray’s shared-memory object store. Dataset augmentation again uses
Ray at-least-once tasks to apply random cropping, flipping, and color adjustments
to the base dataset, once per epoch. Dataset augmentation requires repeatedly pro-
cessing the same dataset in a tight loop with training. Therefore, the dataset aug-
mentation stage accumulates a total intermediate and checkpoint size of 67GB and
18GB respectively, per data copy. Training tasks are colocated and pipelined with
dataset augmentation (1 g4dn.12xlarge node, 4 NVIDIA T4 GPUs). We use PyTorch
data-parallel distributed training and the ConvNeXt Tiny (28.6M parameters) model.
PyTorch workers are passed using ActorRefs.

Figure 3.6L shows end-to-end duration of 25 epochs without failures of different
Exoflow recovery modes, as a function of dataset size. Here, we also include Selec-

tive AsyncCkpt (skip checkpointing dataset augmentation outputs) and Workflow

Tasks (include at-least-once Ray tasks for data processing in the workflow DAG in-
stead of passing volatile Refs).

Duration predictably grows approximately linearly with the dataset size for all
strategies. The overhead of Workflow Tasks is high because each data processing
task is durably (and unnecessarily) logged as part of the workflow. For the same
workflow graph, the overhead for larger data varies depending on the recovery strat-
egy. NoCkpt represents the best possible performance, where only the final model is

CHAPTER 3. EXOFLOW 56

checkpointed. SyncCkpt represents existing workflow systems (Figure 3.2c) and its
overhead grows the most because checkpointing overhead grows faster than computa-
tion overhead. AsyncCkpt’s overhead grows less because checkpointing of augmented
datasets is overlapped with training tasks. Selective AsyncCkpt has nearly identi-
cal duration as NoCkpt because the Ingest checkpoint is perfectly overlapped with
training tasks.

Meanwhile, Figure 3.6R shows end-to-end duration in different failure scenar-
ios compared to normal run-time execution (dark): whole cluster failure (including
the Exoflow controller); in-memory ingest data lost; PyTorch worker actor lost; aug-
mentation task lost; and in-memory augmented data lost. Here, we see the tradeoff
between recovery and performance. SyncCkpt has similar or better recovery time over-
head than NoCkpt for cluster and ingest data failures because it avoids re-executing
the Ingest task, but overall it does worse because of high normal run-time overhead.
Selective AsyncCkpt checkpoints the Ingest data asynchronously, so recovering
from cluster and ingest data failures is fast because it simply restores the Refs from
the checkpoint. Together, Figure 3.6L and R demonstrate how the developer can
flexibly choose the best recovery strategy.

Figure 3.6R also demonstrates Exoflow’s broad failure coverage and ability to
integrate with Ray’s built-in recovery : Ray automatically reconstructs deterministic
data processing results but does not handle persistence or actor recovery [100]. Thus,
Exoflow handles the first four failures, while Ray handles the last. Recovery for the
last two failures is fast because rollback and checkpoint restore are unnecessary.

3.5.2 Stateful serverless workflows

We compare Exoflow on a travel reservation benchmark [38] to Beldi [104], a recent
system for fault-tolerant and transactional stateful serverless workflows that uses
intent logging to ensure exactly-once semantics. Our implementation uses Beldi’s
APIs for reading and writing state but the Exoflow controller with an AWS Lambdas
backend for workflow execution and recovery. We use a single m5.16xlarge instance
to host Exoflow and EFS for persistent storage, which provides lower latency than S3.
The benchmark procedure follows [104], and we report response latency in Figure 3.7a.

Exoflow achieves about 51% lower p50 latency than Beldi for request rates up
to 400, despite using the same execution system (AWS Lambdas) and state APIs
(Beldi). This is because most of the workflows have deterministic computation and
no external effects (i.e. read-only), so the additional logging used by Beldi is unnec-
essary for correctness. Furthermore, Beldi schedules an additional Lambda function
to orchestrate others, while Exoflow directly schedules Lambdas1. When requests/s
is higher than 700, Exoflow’s median latency is greater than Beldi’s. This is due to

1Note that unlike Beldi, Exoflow requires a server. However, because Exoflow’s controller is
fault-tolerant and horizontally scalable, it would be straightforward to deploy Exoflow as a serverless
system using any autoscaling container orchestrator.

CHAPTER 3. EXOFLOW 57

100 200 300 400 500 600 700 800 900 1000
Throughput (request/second)

0

200

400

600

800

1000

1200

1400

1600
La

te
nc

y
(m

s)
ExoFlow 50p
ExoFlow 99p
ExoFlow 50p w/ failure
ExoFlow 99p w/ failure
Beldi 50p
Beldi 99p

(a)

Method
0

100

200

300

400

500

600

La
te

nc
y

(m
s)

Beldi
-WAL
+parallel
+async
-async

(b)

Figure 3.7: (a) Response latency percentile for a serverless travel reservation bench-
mark [38]. (b) Median latency of the trip reservation request from the travel reser-
vation benchmark. Error bar represents 99-percentile latency.

the Lambdas invocation bottleneck at the Exoflow controller node and can be easily
removed through sharding across workflows. The Lambdas gateway used in Beldi is
likely sharded internally.

The use of Exoflow as a Lambdas gateway has benefits in recovery time. Fig-
ure 3.7a also shows latency with a 10% failure rate for all Lambdas. Exoflow directly
invokes Lambdas, so it can detect failures and recover virtually instantaneously, re-
sulting in 0-31% extra overhead in p99 latency. In contrast, Beldi is fully decentralized
and relies on timeouts for recovery correctness. Thus, although Beldi-style logging
may reduce re-execution on recovery, the actual recovery time would be lower-bounded
by a timeout ([104] evaluates 1min as a possible lower bound).

Figure 3.7b further demonstrates the performance benefit of exposing application
semantics to the workflow system. We report latency of the most complex workflow
in the benchmark, the trip reservation request described in Figure 3.3. Beldi imple-
ments the transaction using two-phase locking (2PL). We demonstrate progressive
improvement over the original solution by varying the execution and recovery strat-
egy. First, we eliminate Beldi logs for dynamic task invocation, as the DAG can be
easily specified upfront, reducing p50 and p99 latency by 17% and 25% respectively
(-WAL). Next, we parallelize the hotel and flight reservation tasks, further reducing
p50 and p99 latency by 17% and 15% respectively (+parallel). Beldi executes these
tasks sequentially because asynchronous invocation does not allow retrieval of the
reply. Finally, we split each reservation task into two steps: lock acquisition and

CHAPTER 3. EXOFLOW 58

reservation, as seen in Figure 3.4a. -async shows that with synchronous checkpoints,
this actually increases latency due to the added task. However, +async shows that by
overlapping checkpointing with execution, we can further reduce p50 and p99 latency
by 34% and 16% respectively, without compromising correctness.

3.6 Related Work

Workflow systems. Industry workflow systems [6, 3, 5, 18] orchestrate execution
and recovery for distributed applications by durably logging the workflow, check-
pointing task outputs and replaying failed tasks. However, they require external
outputs to be idempotent and significantly limit how tasks can pass data to each
other (Section 3.2).

Many workflow systems for FaaS focus on stateful serverless workflows. Several
provide a fault-tolerant transactional key-value store interface [104, 94, 93]. Exoflow
is agnostic to external state APIs and implementation and factors out execution and
recovery orchestration from such systems.

Some stateful workflow systems offer a fault-tolerant actor programming model [20,
7, 19]. A common recovery technique is event sourcing, i.e. durably logging non-
deterministic events. However, this requires the developer to use special APIs for
nondeterministic code and can add higher overheads than necessary when determin-
istic replay is not required for application correctness [35, 69]. Exoflow also supports
pluggable actors but only with coarse-grained logging (i.e. recording the workflow
DAG) and checkpoint-based recovery (Section 3.3.4). This is intentionally minimal,
as it enables composition of both log- and checkpoint-based actor implementations.

Exoflow is similar to DARQ [61]: both use composable atomic steps (tasks) and
asynchronous checkpointing. Unlike DARQ, Exoflow exposes references and annota-
tions to avoid materializing and/or persisting outputs where possible.

Dataflow systems. Many dataflow systems use the DAG model [34, 51, 102]. Sev-
eral use lineage reconstruction for recovery, a form of logging that records the DAG
but not the data, to reduce run-time overhead. CIEL [71, 73] also introduces dynamic
tasks, which we adopt. However, these systems target data processing applications
in which all tasks are stateless and deterministic. Ray proposes a unified API for
DAGs and actors [67], which we also adopt, but cannot support exactly-once seman-
tics or persistence [100]. Tachyon [58] proposes a method of optimizing checkpoints
for lineage-based systems; this could be applied to a future version of Exoflow.

Other systems such as Naiad [69], Apache Flink [22] and Canary [83] implement
both batch and streaming dataflow with message passing and global checkpoints
at run time for recovery. This produces lower latency but requires more rollback
on failure; it can also add more overhead for applications with frequent external

CHAPTER 3. EXOFLOW 59

outputs [35]. Exoflow augments log- and checkpoint-based systems by orchestrating
recovery across systems with different internal strategies (Appendix B.3.1).

Falkirk Wheel [40] targets efficient and flexible recovery for batch and streaming.
It uses logical message timestamps to transparently determine the minimum to roll
back on failure. Exoflow provides practical recovery for black-box functions (tasks)
by asking semantics from the developer through references and task annotations.

Actor systems. The actor model is a distributed programming model where pro-
cesses communicate through asynchronous method calls [47]. Most systems do not
guarantee exactly-once semantics [14, 2, 21, 100]. Exoflow provides a limited exactly-
once actor model to support workflows that pass actors between tasks. Meanwhile,
the application has full flexibility of existing actor systems within a task.

Message-passing systems. Message-passing systems are a generalization of actors
in which processes communicate through message sends and receives. There is a
large body of work on recovery for message passing, primarily focusing on logging
vs. checkpointing [35]. Our work adapts these techniques to the distributed workflow
setting and aims to compose log- and checkpoint-based applications.

3.7 Discussion

References for framework interoperability. Like other dataflow systems, Ex-
oflow captures the logical data movement in an application. Exoflow also aims to
enable interoperability across distributed execution frameworks, unlike data process-
ing abstractions such as RDDs [102] or timely dataflow [69] that are tightly coupled to
a specific execution framework. This motivates some of the differences between Refs

and ActorRefs vs. other dataflow abstractions: they can be used to capture third-
party data and context, they are serializable, and they do not impose a particular
model of parallelism.

These decisions are intentional. Pluggability for data movement is important for
allowing applications to decide the best way to move data from one place to another.
Actors are important because many execution frameworks have some type of context
that should be passed between logical steps of an end-to-end workflow, e.g., the driver
state in Spark. Neither of these is necessary in an execution framework that natively
handles all worker communication and process state.

Serializability is of course important for moving any type of data across process
boundaries. Supporting serializable references further allows moving large and po-
tentially distributed data by reference instead of needing to first copy the values into
one central location. In contrast, serializing an RDD or timely dataflow graph makes

CHAPTER 3. EXOFLOW 60

little sense; the deserialized copy may be useless if the receiver is not in the same
cluster.

Finally, using a generic task parallelism model allows references to be flexibly
passed between applications. In contrast, consuming data within a typical dataflow
system often requires the consumer to be expressed as part of the dataflow graph, or
else for the system to provide special data connectors to third-party systems.

Limitations. Using Exoflow effectively requires developer effort. Exoflow offers
recovery flexibility but the developer must choose the right tradeoff for their appli-
cation. For example, the developer must decide how large a workflow task should
be, and whether checkpointing the output is desirable. Currently task annotations
are also very coarse-grained, which makes the system general-purpose but also makes
it more challenging for an application to achieve optimal performance and recovery
overheads.

There are a number of future directions towards improving Exoflow’s interfacing
with external systems. First, while Refs allow the application to efficiently pass
data between workflow tasks, reading and writing a Ref’s data may still require data
movement to or from an external framework. Second, currently Exoflow does not
support transactions, i.e. there is no way to specify that a task should be rolled back
if another task fails. In this case, the developer must manually roll back the effects
of both tasks, e.g., in a final commitOrAbort task. Finally, for cases where tasks
read and write external state, capturing more fine-grained semantics could reduce
developer burden and improve performance. For example, native support for popular
types of external state (e.g., a database) could be added.

3.8 Conclusion

Many existing distributed systems provide specialized, efficient, and transparent re-
covery for specific application domains. Exoflow has an orthogonal and complemen-
tary goal. To unify heterogeneous applications, we must provide general and inter-
operable recovery methods. The greatest challenge is to gain sufficient application
semantics without sacrificing flexibility. Exoflow presents one approach that strikes
a balance between usability (minimal annotations, compile-time safety checks) and
functionality (flexible Refs, automatic recovery). In doing so, we hope to provide
universal recovery that matches a universal API: the workflow DAG.

61

Chapter 4

Conclusion

In this dissertation, we have addressed the challenge of providing efficient fault
tolerance for a wide range of distributed applications by exploiting the semantics of
workloads at all layers of distributed systems. We have focused on two key layers:
the communication layer and the task execution layer.

At the communication layer, we introduced Hoplite, a distributed object store
that exploits the dynamic data transfer patterns on-the-fly and transfers data with
fine-grained pipelining to gain efficiency. Hoplite also enables fast data transfer
rescheduling upon task failure to keep making progress. We demonstrated that Ho-
plite significantly speeds up applications like asynchronous stochastic gradient de-
scent, reinforcement learning, and serving an ensemble of machine learning models,
which are difficult to execute efficiently with traditional collective communication.

At the task execution layer, we presented ExoFlow, a universal workflow system
that decouples execution from recovery by allowing applications to specify task se-
mantics through annotations. By exploiting the semantics of tasks and data passing
between tasks, ExoFlow enables a flexible choice of recovery strategies, optimizing
the performance-fault tolerance tradeoff for heterogeneous applications. We showed
that ExoFlow generalizes recovery for existing workflow applications ranging from
ETL pipelines to stateful serverless workflows, while enabling further optimizations
in task communication and recovery.

The techniques and systems presented in this dissertation demonstrate the po-
tential of a semantics-aware approach to building efficient and fault-tolerant dis-
tributed systems. By leveraging a general set of application-specific knowledge at
both the communication and task execution layers, we can achieve significant perfor-
mance improvements while maintaining strong fault tolerance guarantees, for a wide
range of emerging distributed applications.

In building these systems, there are some lessons I would like to share. Also I
will discuss some future directions for universal, efficient and fault tolerant distributed
systems.

CHAPTER 4. CONCLUSION 62

4.1 Lessons Learned

Choosing the right application semantics is crucial Throughout this disser-
tation, we have demonstrated the importance of leveraging application semantics to
optimize performance and fault tolerance in distributed systems. However, deciding
which semantics to utilize in a system is both tricky and interesting. Incorporating
too many semantics can complicate the system design and limit its universality, while
using too few semantics leaves little room for optimization. From my experience, a
helpful approach is to compare with existing systems and consider the minimal set of
semantics to inherit or add, enabling key optimizations. In Hoplite, we compared with
peer-to-peer (P2P) networking systems and object stores, inheriting the semantics of
data transfer from P2P systems and the put/get semantics from object stores. We
then added a reduce operation to enable efficient optimization for other types of collec-
tive communication. Similarly, in ExoFlow, we inherited the data passing semantics
of previous workflow or DAG systems, such as internal and external outputs, while
introducing non-determinism and rollback semantics for optimizing checkpointing.

Focusing on systems rather than specific techniques or applications Ini-
tially, ExoFlow targeted only data-intensive workloads, making it challenging to dif-
ferentiate from existing works that focus on checkpoint optimization. However, as we
shifted our focus to workflow systems, we gained a broader perspective. Despite sig-
nificant differences in programming interfaces, we realized that data workflow systems
like Apache Airflow were not fundamentally different from serverless workflow sys-
tems, as both are based on dataflow graphs and provide exactly-once semantics. This
realization led to the introduction of user annotations, resulting in a more universal
system applicable to a wider range of applications.

Collaborating with other system builders is invaluable When I was a first-
year PhD student, deciding on a research direction was challenging. Besides reading
papers, I struggled with finding real problems to solve. The answer came from col-
laborating with the Ray team. By investigating and addressing issues in the Ray
project, I learned that some challenges go beyond mere engineering efforts and are
worthy of research exploration. Both Hoplite and ExoFlow were partially inspired
by the real challenges I encountered while working with the system builders of Ray.
This collaboration provided invaluable insights and helped shape the direction of my
research.

4.2 Limitations and Future Work

Automating application annotation One common limitation for both Hoplite
and ExoFlow is their requirement of manual annotations, which hinders the adoption

CHAPTER 4. CONCLUSION 63

of the systems. For example, Hoplite requires explicit declaration of the reduce col-
lective communication pattern, while common distributed object stores only support
get and put operations. In ExoFlow, users have to manually annotate whether a task
is deterministic or not. Automating application annotations is an important area for
future research.

There are several potential approaches to automating application annotations.
One approach is to use static program analysis to identify and match corresponding
patterns in the application code. By analyzing the code structure, data dependencies,
and communication patterns, it may be possible to infer the appropriate annotations
automatically. Another promising direction is to leverage the recent advancements in
large language models (LLMs) and AI agents to predict annotations for new applica-
tions. AI agents could also be employed to interact with the application, observe its
behavior, and infer the necessary annotations based on the observed semantics.

Currently, the task annotations in Hoplite and ExoFlow are quite coarse-grained,
which makes the systems general-purpose but limits the opportunities for optimiza-
tion. With automated annotation, it becomes feasible to support more fine-grained
annotations, enabling further performance improvements. For example, instead of an-
notating an entire task as deterministic or not, automated annotation could identify
specific parts of the task that are deterministic, allowing for more targeted opti-
mizations. Fine-grained annotations could also capture more detailed information
about data dependencies, communication patterns, and resource requirements, en-
abling more efficient scheduling and resource management.

Efficient fault tolerance for AI agents The emergence of large language model
(LLM) based AI agents has opened up new possibilities for intelligent autonomy in
distributed systems. These AI agents are capable of interacting with the environ-
ment, reasoning about complex tasks, and collaborating with other agents to solve
problems [101, 105]. As the scale and complexity of these systems grow, ensuring
their reliability and fault tolerance becomes increasingly important. However, the
failure scenarios in AI agent-based systems differ from traditional distributed sys-
tems. In traditional systems, failures are typically associated with clear system-level
events, such as node crashes or network partitions, and the recovery strategies are
well-defined, such as checkpoint-restart or state machine replication. In contrast, fail-
ures in AI agent-based systems often manifest as semantic errors in the outputs of the
LLMs. These errors can be subtle, context-dependent, and difficult to detect using
traditional failure detection mechanisms. Detecting and correcting semantic errors
in AI agent-based systems is a challenging problem. The outputs of LLMs are often
probabilistic and can vary based on the input context and the underlying training
data. Defining what constitutes an error can be subjective and application-specific.
Moreover, the complexity and scale of these systems make it infeasible to manually
inspect and verify the correctness of every output.

One promising approach to address this challenge is to exploit the semantics of

CHAPTER 4. CONCLUSION 64

the workloads and use them to verify the correctness of the LLM outputs. This could
involve using another set of domain experts specifically designed for error detection
and correction in specific areas. Figure 4.1 illustrates our proposed architecture. On
the left side, we have an AI agent application where we have access to the outputs
of internal LLMs and the application semantics during interactions, such as using
tools. On the right side, we have a verification leader for checking the correctness
of the output. Our design is inspired by meta-prompting [95], where we have a
task-agnostic leader (“verification leader”) that automatically chooses experts that
match the application semantics for verifying the AI agent output. The verification
leader and domain experts combined form a multi-agent architecture. The insight
behind this architecture is that we can leverage AI agents to unleash the potential
of LLMs, which can have stronger capabilities than a single LLM and may be better
at verifying the output than the LLM that generated it in the application. This
multi-agent framework naturally introduces sparsity, making the entire process more
efficient. By distributing the verification tasks among multiple specialized agents, we
can achieve a higher degree of parallelism and reduce the computational burden on any
single agent. Each domain expert can focus on a specific aspect of the application
semantics, allowing for more targeted and efficient error detection and correction.
The verification leader acts as a coordinator, dynamically assigning tasks to the most
suitable domain experts based on the nature of the input and the application context.

memory tools planning …

Verification leader

application semantics &
model output

LLM-based AI agent
math

coding

fact check

…

in
te

ra
ct

io
n interaction

Domain experts

Figure 4.1: A multi-agent architecture for efficient fault tolerance in AI agent-based
systems.

Recently, there have been a few closely related works that can be integrated with
the AI agent approach. Prometheus 2 [54] trains models with a new dataset that
enables a more powerful evaluator LM than its predecessor, closely mirroring human
and GPT-4 judgments with custom evaluation criteria. Similarly, we can train our
agents on the expected semantics of the workloads and use this knowledge to identify
anomalies or inconsistencies in the outputs of the primary agents. PoLL [97] evaluates
LLM generations with a panel of diverse models to reduce costs and intra-model bias.

CHAPTER 4. CONCLUSION 65

We can achieve the same goal by comparing the outputs of multiple agents and cross-
referencing them with the expected semantics.

Developing efficient fault tolerance mechanisms for AI agent-based systems is
an exciting area for future research. It requires a deep understanding of the char-
acteristics of LLMs, the semantics of the workloads, and the unique failure modes
in these systems. Collaboration between researchers in distributed systems, machine
learning, and natural language processing will be essential to address these challenges
and build reliable and fault-tolerant AI agent-based systems.

In conclusion, we believe that in the future, heterogeneous distributed systems
running sophisticated tasks will be the norm, with the exponential growth of compu-
tational demand. This dissertation demonstrates the power of exploiting application
semantics for efficient fault tolerance, while keeping the system universal. We hope
the insights and lessons learned from this dissertation will serve as valuable resources
for researchers and practitioners and play a crucial role in shaping the future of the
field.

66

Bibliography

[1] Airflow XComs. https://airflow.apache.org/docs/apache-airflow/
stable/concepts/xcoms.html. Accessed: 2022-12-13.

[2] Akka. https://akka.io/.

[3] Apache Airflow. https://airflow.apache.org/.

[4] End-to-end mlops pipeline example on azure. https://github.com/
microsoft/MLOps/tree/master/examples/KubeflowPipeline.

[5] Google Cloud Composer. https://cloud.google.com/composer.

[6] Kubeflow. https://www.kubeflow.org/.

[7] Temporal. https://temporal.io/.

[8] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and
et al. Tensorflow: A system for large-scale machine learning. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’16, page 265–283, USA, 2016. USENIX Association.

[9] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Savannah, Georgia, USA, 2016.

[10] EPOCH AI. Training compute of notable machine learning systems over
time. https://epochai.org/data/epochdb/visualization, 2024. (Accessed
on 05/08/2024).

[11] Amazon s3. object storage built to store and retrieve any amount of data from
anywhere. https://aws.amazon.com/s3/, 2020.

[12] Michael Armbrust. SPARK-20928: Continuous Processing Mode for Structured
Streaming. https://issues.apache.org/jira/browse/SPARK-20928, 2017.

https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://akka.io/
https://airflow.apache.org/
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://cloud.google.com/composer
https://www.kubeflow.org/
https://temporal.io/
https://epochai.org/data/epochdb/visualization
https://aws.amazon.com/s3/
https://issues.apache.org/jira/browse/SPARK-20928

BIBLIOGRAPHY 67

[13] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu,
Mukul Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja
 Luszczak, et al. Delta lake: high-performance acid table storage over cloud
object stores. Proceedings of the VLDB Endowment, 13(12):3411–3424, 2020.

[14] Joe Armstrong. Making reliable distributed systems in the presence of software
errors. PhD thesis, Mikroelektronik och informationsteknik, 2003.

[15] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Za-
karia Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. Tfx:
A tensorflow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1387–1395, 2017.

[16] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin.
Orleans: Distributed virtual actors for programmability and scalability. Tech-
nical Report MSR-TR-2014-41, March 2014.

[17] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiser-
son, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. Journal of parallel and distributed computing, 37(1):55–69, 1996.

[18] Jyothi Prasad Buddha and Reshma Beesetty. Step functions. In The Definitive
Guide to AWS Application Integration, pages 263–342. Springer, 2019.

[19] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless workflows. Proceedings of the
VLDB Endowment, 15(8):1591–1604, 2022.

[20] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S Meiklejohn. Durable functions: semantics for
stateful serverless. Proc. ACM Program. Lang., 5(OOPSLA):1–27, 2021.

[21] Sergey Bykov, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya, and
Jorgen Thelin. Orleans: Cloud computing for everyone. In Proceedings of the
2nd ACM Symposium on Cloud Computing, page 16. ACM, 2011.

[22] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and
Kostas Tzoumas. State management in Apache Flink: Consistent stateful dis-
tributed stream processing. Proc. VLDB Endow., 10(12):1718–1729, August
2017.

[23] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.
Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603, 2015.

BIBLIOGRAPHY 68

[24] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[25] M. Castro, P. Druschel, A. . Kermarrec, and A. I. T. Rowstron. Scribe: a
large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications, 20(8):1489–1499, Oct 2002.

[26] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: High-bandwidth multicast in
cooperative environments. SIGOPS Oper. Syst. Rev., 37(5):298–313, October
2003.

[27] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph:
taking the pulse of a fast-changing and connected world. In Proceedings of the
7th ACM european conference on Computer Systems, pages 85–98, 2012.

[28] Mosharaf Chowdhury and Ion Stoica. Efficient coflow scheduling without prior
knowledge. In Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, page 393–406, New York, NY,
USA, 2015. Association for Computing Machinery.

[29] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion
Stoica. Managing data transfers in computer clusters with orchestra. SIG-
COMM Comput. Commun. Rev., 41(4):98–109, August 2011.

[30] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow schedul-
ing with varys. In Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 443–454, New York, NY, USA, 2014. Association for
Computing Machinery.

[31] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gon-
zalez, and Ion Stoica. Clipper: A low-latency online prediction serving system.
In 14th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 17), pages 613–627, 2017.

[32] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large
scale distributed deep networks. In Advances in neural information processing
systems, pages 1223–1231, 2012.

[33] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. volume 51, page 107–113, New York, NY, USA, January 2008.
Association for Computing Machinery.

BIBLIOGRAPHY 69

[34] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[35] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[36] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architec-
tures. In International Conference on Machine Learning, pages 1407–1416.
PMLR, 2018.

[37] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Chris-
tos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda:
Outsourcing everyday jobs to thousands of transient functional containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 475–
488, 2019.

[38] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al.
An open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 3–18, 2019.

[39] Collective communications library with various primitives for multi-machine
training. https://github.com/facebookincubator/gloo, 2020.

[40] Ionel Gog, Michael Isard, and Mart́ın Abadi. Falkirk wheel: Rollback recov-
ery for dataflow systems. In Proceedings of the ACM Symposium on Cloud
Computing, pages 373–387, 2021.

[41] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

[42] Richard L Graham, Timothy S Woodall, and Jeffrey M Squyres. Open mpi:
A flexible high performance mpi. In International Conference on Parallel Pro-
cessing and Applied Mathematics, pages 228–239. Springer, 2005.

[43] gRPC. https://grpc.io/, 2020.

https://github.com/facebookincubator/gloo
https://grpc.io/

BIBLIOGRAPHY 70

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[45] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back. In 9th Biennial Conference on Innovative
Data Systems Research (CIDR 2019), 2019.

[46] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[47] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, IJCAI’73, pages 235–245, San Francisco,
CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[48] Hydro. https://github.com/hydro-project, 2020.

[49] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[50] Ip multicast technology overview . https://www.cisco.com/c/en/us/td/docs/
ios/solutions docs/ip multicast/White papers/mcst ovr.html, 2020.

[51] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: Distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007, EuroSys ’07, pages 59–72, New York, NY, USA, 2007.
ACM.

[52] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing with
shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 691–707, 2021.

[53] Keynote: Building a fusion engine with ray. https://ray2020.sched.com/
event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-

he-chief-architect-of-storage-and-compute-ant-group, 2020.

[54] Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin,
Sean Welleck, Graham Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo.
Prometheus 2: An open source language model specialized in evaluating other
language models. arXiv preprint arXiv:2405.01535, 2024.

https://github.com/hydro-project
https://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/ip_multicast/White_papers/mcst_ovr.html
https://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/ip_multicast/White_papers/mcst_ovr.html
https://ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group
https://ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group
https://ray2020.sched.com/event/eGOL/keynote-building-a-fusion-engine-with-ray-dr-charles-he-chief-architect-of-storage-and-compute-ant-group

BIBLIOGRAPHY 71

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[56] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Baner-
jee, Joon-Myung Kang, and Puneet Sharma. Application-driven bandwidth
guarantees in datacenters. SIGCOMM Comput. Commun. Rev., 44(4):467–478,
August 2014.

[57] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[58] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In Proceed-
ings of the ACM Symposium on Cloud Computing, pages 1–15, 2014.

[59] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14),
pages 583–598, 2014.

[60] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and
Alexander Smola. Parameter server for distributed machine learning. In Big
Learning NIPS Workshop, volume 6, page 2, 2013.

[61] Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel Madden.
Darq matter binds everything: Performant and composable cloud programming
via resilient steps. In Proceedings of the ACM on Management of Data, 2023.

[62] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstrac-
tions for distributed reinforcement learning. In International Conference on
Machine Learning, pages 3053–3062. PMLR, 2018.

[63] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV), pages 116–131, 2018.

[64] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph process-
ing. ACM Computing Surveys (CSUR), 48(2):1–39, 2015.

[65] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim
Harley, Timothy P. Lillicrap, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In Proceedings of the 33rd

http://snap.stanford.edu/data

BIBLIOGRAPHY 72

International Conference on International Conference on Machine Learning -
Volume 48, ICML’16, page 1928–1937. JMLR.org, 2016.

[66] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and et al. Ray: A distributed framework for emerging ai applications. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, page 561–577, USA, 2018. USENIX Association.

[67] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. Ray: A distributed framework for emerging AI applica-
tions. In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), Carlsbad, CA, 2018. USENIX Association.

[68] MPICH. https://www.mpich.org/, 2020.

[69] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Mart́ın Abadi. Naiad: A timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 439–455, New York, NY, USA, 2013. ACM.

[70] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand. Ciel: a universal execution engine for
distributed data-flow computing. 2011.

[71] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand. CIEL: A universal execution engine for
distributed data-flow computing. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, NSDI’11, pages 113–126,
Berkeley, CA, USA, 2011. USENIX Association.

[72] Derek G. Murray, Jǐŕı Šimša, Ana Klimovic, and Ihor Indyk. Tf.data:
A machine learning data processing framework. Proc. VLDB Endow.,
14(12):2945–2958, jul 2021.

[73] D.G. Murray. A Distributed Execution Engine Supporting Data-dependent Con-
trol Flow. University of Cambridge, 2012.

[74] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia.
Pipedream: Generalized pipeline parallelism for dnn training. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, page
1–15, New York, NY, USA, 2019. Association for Computing Machinery.

https://www.mpich.org/

BIBLIOGRAPHY 73

[75] The nvidia collective communication library (nccl). https://

developer.nvidia.com/nccl, 2020.

[76] Numpy. https://numpy.org/, 2020.

[77] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril
Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
Tensorflow-serving: Flexible, high-performance ml serving. In Workshop on
ML Systems at NIPS 2017, 2017.

[78] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[79] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,
Chuan Wu, and Chuanxiong Guo. A generic communication scheduler for dis-
tributed dnn training acceleration. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, page 16–29, New York, NY, USA,
2019. Association for Computing Machinery.

[80] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. Low latency geo-distributed data ana-
lytics. In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM ’15, page 421–434, New York, NY, USA,
2015. Association for Computing Machinery.

[81] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages 193–206,
Boston, MA, February 2019. USENIX Association.

[82] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In 16th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 19), pages 193–
206, 2019.

[83] Hang Qu, Omid Mashayekhi, David Terei, and Philip Levis. Canary: A
scheduling architecture for high performance cloud computing. arXiv preprint
arXiv:1602.01412, 2016.

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://numpy.org/

BIBLIOGRAPHY 74

[84] Parameter server. https://ray.readthedocs.io/en/latest/auto examples/

plot parameter server.html, 2020.

[85] Ray serve. https://docs.ray.io/en/master/serve/, 2021.

[86] Redis. https://redis.io/, 2020.

[87] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and
task scheduling. In Proceedings of the 14th python in science conference, number
130-136. Citeseer, 2015.

[88] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 4510–4520, 2018.

[89] Salvatore Sanfilippo. Redis: An open source, in-memory data structure store.
https://redis.io/, 2009.

[90] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[91] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed
deep learning in tensorflow, 2018.

[92] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[93] Vikram Sreekanti, Chenggang Wu Xiayue Charles Lin, Jose M Faleiro, Joseph E
Gonzalez, Joseph M Hellerstein, and Alexey Tumanov. Cloudburst: Stateful
functions-as-a-service. arXiv preprint arXiv:2001.04592, 2020.

[94] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E Gonzalez,
Joseph M Hellerstein, and Jose M Faleiro. A fault-tolerance shim for serverless
computing. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–15, 2020.

[95] Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language
models with task-agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024.

[96] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International Conference on Machine Learning,
pages 6105–6114. PMLR, 2019.

https://ray.readthedocs.io/en/latest/auto_examples/plot_parameter_server.html
https://ray.readthedocs.io/en/latest/auto_examples/plot_parameter_server.html
https://docs.ray.io/en/master/serve/
https://redis.io/
https://redis.io/

BIBLIOGRAPHY 75

[97] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra
Piktus, Arkady Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis.
Replacing judges with juries: Evaluating llm generations with a panel of diverse
models. arXiv preprint arXiv:2404.18796, 2024.

[98] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur,
Jorgen Thelin, and Ion Stoica. Blink: Fast and generic collectives for distributed
ml. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 172–186, 2020.

[99] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval
Misra, Alexey Tumanov, and Ion Stoica. Lineage stash: Fault tolerance off
the critical path. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 338–352, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[100] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hindman, Frank Sifei Luan,
Audrey Cheng, and Ion Stoica. Ownership: A distributed futures system for
Fine-Grained tasks. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pages 671–686, Virtual, April 2021. USENIX
Association.

[101] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong,
Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and
potential of large language model based agents: A survey. arXiv preprint
arXiv:2309.07864, 2023.

[102] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2–2. USENIX Association, 2012.

[103] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J. Franklin, and et al. Apache spark: A unified engine for big data
processing. Commun. ACM, 59(11):56–65, October 2016.

[104] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. Fault-tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pages 1187–1204, 2020.

BIBLIOGRAPHY 76

[105] Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert
Csordás, Anand Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Ham-
moud, Vincent Herrmann, Kazuki Irie, et al. Mindstorms in natural language-
based societies of mind. arXiv preprint arXiv:2305.17066, 2023.

77

Appendix A

Hoplite system design and
evaluation

A.1 Implementation

The core of Hoplite is implemented using 3957 lines of C++. We provide a C++
and a Python front-end. The Python front-end is implemented using 645 lines of
Python and 275 lines of Cython. We build the Python front end because it is easier
to integrate with Ray [66] and other data processing libraries (e.g., Numpy [76],
TensorFlow [8], PyTorch [78]). The interface between the Python front-end and the
C++ backend is the same as Hoplite’s API (Table 2.1).

We implement the object directory service using a set of gRPC [43] server pro-
cesses distributed across nodes. Each directory server can push location notifications
directly to an object store node. Each object store node in Hoplite is a gRPC server
with locally buffered objects. Upon a transfer request from a remote node (e.g., dur-
ing Get), the node sets up a direct TCP connection to the remote node and pushes
the object buffer through the TCP connection.

In our experiments, we observe that setting d to 1, 2, or n in the tree reduce
algorithm is enough for our applications. When a task calls Reduce, Hoplite picks
d from 1, 2 and n that minimizes the estimated total latency based on the network
latency L, bandwidth B, and the object size S. §A.3 shows the effect of different
choices of d.

A.2 Microbenchmarks on Small Objects

We present the microbenchmarks for multiple collective communication primitives for
small objects (1KB, 32KB) in Figure A.1. Note that Hoplite stores object contents
in object directory service for objects smaller than 64 KB (§2.3.2), so there is no
collective communication for Hoplite. Again, we compare with Ray, Dask, OpenMPI,

APPENDIX A. HOPLITE SYSTEM DESIGN AND EVALUATION 78

0

1

2

3

4

La
te

nc
y

(s
)

×10−3
Broadcast 1KB

0.0

0.5

1.0

1.5

2.0

×10−2
Gather 1KB

0.0

0.5

1.0

1.5

2.0

×10−2
Reduce 1KB

0

1

2

3

4

5
×10−2
Allreduce(i) 1KB

0.0

0.5

1.0

1.5

2.0

×10−2
Allreduce(ii) 1KB

4 8 12 16

Number of Nodes
0

1

2

3

4

5

La
te

nc
y

(s
)

×10−3
Broadcast 32KB

4 8 12 16

Number of Nodes
0.0

0.2

0.4

0.6

0.8

1.0

×10−1
Gather 32KB

4 8 12 16

Number of Nodes
0

1

2

3

4

5

6

7

8

×10−2
Reduce 32KB

4 8 12 16

Number of Nodes
0

1

2

3

4

5

×10−2
Allreduce(i) 32KB

4 8 12 16

Number of Nodes
0.0

0.2

0.4

0.6

0.8

1.0

1.2

×10−2
Allreduce(ii) 32KB

Hoplite
OpenMPI

Ray
Dask

Gloo (Broadcast)
Gloo (Ring Chunked)

Gloo (Halving Doubling)

Figure A.1: Latency comparison of Hoplite, OpenMPI, Ray, Dask, and Gloo on stan-
dard collective communication primitives (e.g., broadcast, gather, reduce, allreduce)
on 1KB and 32KB objects. To show the results more clearly, we split the results of
Allreduce into two groups: group (i) includes Hoplite, Ray, and Dask, and group (ii)
includes Hoplite, OpenMPI, and two different allreduce algorithms in Gloo.

and Gloo. We do not compare with Horovod for the same reason that Horovord
has three backends: OpenMPI, Gloo, and NCCL. We have already compared with
OpenMPI and Gloo. NCCL is for GPU, and Hoplite currently does not support GPU.

Hoplite is the best or close to the best among all these alternatives. Gloo has the
best performance for broadcast and allreduce. Hoplite is more efficient than Ray, and
Dask because Hoplite uses stores the object data directly in object directory service.

A.3 Ablation Study on Reduce Tree Degree

Here we study the choice of d in the AWS EC2 setting (§2.4). The best choice of d
depends on network characteristics, the size of the object to reduce, and the number

APPENDIX A. HOPLITE SYSTEM DESIGN AND EVALUATION 79

of participants. We compare three choices of d: 1 (a single chain), 2 (a binary tree),
and n (a root connects everyone else). The results are in Figure A.2. As expected
from our analysis in (§2.3.4), when the object size is small, d = n is the best because
the main bottleneck is the network latency. When the object size is medium (256KB,
1MB), d = n becomes unstable for reduce. We suspect that this is due to incast or
due to gRPC characteristics. When object size is 4MB or 8MB, we need to choose
between d = 1 and d = 2 based on the number of participants. This is because both
network latency and network throughput can be a bottleneck in tree reduce. When
object size is 16MB or larger, we choose d = 1 to mitigate the throughput bottleneck
in reduce.

APPENDIX A. HOPLITE SYSTEM DESIGN AND EVALUATION 80

1234 Latency (s)

×1
0−3

4K
B

123456
×1

0−3
32

KB

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

×1
0−2

25
6K

B

0123456
×1

0−2
1M

B

8
12

16
20

24
28

32
36

40
44

48
52

56
60

64
Nu

m
be

r o
f N

od
es

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Latency (s)

×1
0−2

4M
B

8
12

16
20

24
28

32
36

40
44

48
52

56
60

64
Nu

m
be

r o
f N

od
es

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

×1
0−2

8M
B

8
12

16
20

24
28

32
36

40
44

48
52

56
60

64
Nu

m
be

r o
f N

od
es

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

×1
0−2

16
M

B

8
12

16
20

24
28

32
36

40
44

48
52

56
60

64
Nu

m
be

r o
f N

od
es

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

×1
0−1

32
M

B

d=
1

d=
2

d=
n

Figure A.2: Ablation study of reduce latency on the reduce tree degree d with different
object size and number of participants.

81

Appendix B

Exoflow system design and
evaluation

B.1 Architecture

We further describe the Exoflow design and the requirements of the pluggable execu-
tion backend and persistent storage.

B.1.1 Workflow execution

The workflow control layer is implemented using the system Ray [67]. Ray provides
remote task invocation, distributed immutable memory, and distributed actors. How-
ever, Ray only provides at-most-once or at-least-once guarantees and lacks built-in
persistence for memory and actors. Thus, Ray tasks and actors are distinct from
workflow tasks and actors, which execute exactly-once and can be natively check-
pointed.

We use Ray actors to implement the workflow controller and task executors (Fig-
ure 3.5). The controller uses Ray’s distributed futures [100] to coordinate task execu-
tion and checkpointing. Distributed futures are an asynchronous extension of RPC
where each invocation returns a future pointing to the eventual and possibly remote
return value. Ray actors and distributed futures also directly implement application-
facing references (Section 3.3).

We build on Ray for three reasons: (1) futures make it simple for the controller
to manage concurrent task execution and checkpointing, (2) passing remote values by
reference avoids bottlenecks from large task outputs being passed directly through the
centralized controller, and (3) the RPC-like interface straightforwardly and efficiently
wraps other execution backends. For example, the Lambdas backend is implemented
by wrapping a synchronous Lambda invocation in a Ray task.

The controller is a state machine where the state describes the current execution
status of a workflow DAG and is persisted in storage. On run, the controller logs the

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 82

workflow DAG specification (arguments, Opts, etc.) to durable storage and triggers
execution. On each iteration of the event loop, the controller may select a workflow
task whose inputs are ready and submit the task to an executor. For example, in
Figure 3.5, the controller submits C to executor 1 and immediately receives back the
distributed future Ref(1bf). The controller uses this system-internal Ref to wait for
task completion, and then passes it to downstream workflow tasks (e.g., D).

Checkpointing is carried out asynchronously by background threads on the ex-
ecutors, enabling parallel and distributed checkpoints that are not bottlenecked by the
centralized controller. To checkpoint an output, the executor asynchronously writes
a copy to a deterministic storage location (e.g., w0/B/output in Figure 3.5). The
controller considers the checkpoint done once it is fully written. For convenience,
the controller can also synchronize the checkpoint by requesting a signal from the
executor (controller to executor 2 in Figure 3.5).

Checkpoint synchronization is required: (1) at the end of a workflow, (2) before
executing a task with can rollback=False, and (3) before executing a task with a
rollback option. Section 3.5 evaluates a simple policy that synchronizes all pending
checkpoints for a workflow in any of these cases and shows that this provides sufficient
performance for key applications. A more sophisticated policy may synchronize only
the minimum necessary.

Exoflow handles passing and checkpointing application references (Section 3.3.4).
When a task finishes, the executor replaces any Refs and ActorRefs appearing in
the task’s output with placeholders, e.g., x in Figure 3.5. When passing the output
to another task, the controller also passes a list of concrete references (Ref(e02) for
x) used by the executor to fill the placeholders. Task checkpoints include a list of
Ref checkpoint locations, which are written in parallel and distributed fashion. The
controller restores and swaps Refs after a failure.

If a workflow task returns a WorkflowDAG as its output, the controller simply
records the sub-workflow (if checkpoint=True), points the output of the parent task
to the output of the sub-workflow, then resumes execution.

B.1.2 Workflow recovery

The controller handles task and checkpoint failures. In both cases, the protocol rolls
back any previous outputs as needed, then rolls “forward” by re-executing workflow
tasks.

The first step is to determine the re-execution task frontier. For example, sup-
pose C in Figure 3.5 fails because we lost A’s cached output Ref(be5). Then, we walk
the DAG backwards from C and add each visited task node to the re-execution set.
For each task, we check argument availability, i.e. whether the value has a checkpoint
or a live Ref. If all arguments are available, then we terminate. Else, we add the
tasks that create the arguments (A) to the re-execution set. If a visited task has
deterministic=False, then we also add all tasks downstream to the re-execution

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 83

set. Thus, if C fails and we need to re-execute A, we also re-execute B, even though
it has a checkpoint.

From the re-execution task set, we carry out rollback. In reverse-topological
order of the re-execution set, we first clear any cached output Refs and output check-
points, e.g., /w0/B/output and /w0/B/x for B. If it has a rollback task, then we
re-execute this task, using the same protocol as normal task execution. Finally, we
resume workflow execution as normal, starting from the earliest task frontier of the
re-execution set.

Critical controller state is persisted, so recovering from controller failure is
straightforward. On failure, all in-memory controller state (the table in Figure 3.5) is
wiped, including any Refs. On restart, the controller simply scans persistent storage
for incomplete workflows, rebuilds its in-memory table, then re-executes them using
the described protocol.

Correctness. We provide informal proofs that the final outputs are consistent (Def-
inition 3.1). During normal execution, this follows from the execution protocol: start-
ing from a consistent prefix of outputs, executing a task will produce another consis-
tent prefix.

For recovery, we first consider reconstruction of internal outputs, i.e. values
returned by workflow tasks. If the task is deterministic, then the reconstructed output
will match the original. If the task is nondeterministic, then the described rollback
procedure returns execution to a consistent prefix that does not include any results
downstream to the original output.

Next, we consider external outputs: tasks with can rollback=False or roll-

back defined. For a task T with can rollback=False, the application guarantees
idempotence, so it is enough to show that once T begins, the failure-free execution will
include the same inputs for T . To show this, we rely on Invariant 3.1 (Section 3.3.3)
and checkpoint synchronization (Appendix B.1.1). The system synchronizes the par-
tition provided by Invariant 3.1 before submitting T ; thus once T begins, any future
recovery procedure will never add T to the rollback set.

If T instead has rollback defined, we must show that if T fails, rollback

will complete with the same view of inputs as T ’s previous execution, before re-
executing T . Invariant 3.2 and checkpoint synchronization guarantee that we can
deterministically and idempotently recreate rollback’s original inputs.

Correctness also requires preventing conflicts between different executions of the
same task. For task checkpoints, if the backend’s failure detection for executors is
reliable, then by the time we re-execute T , we can be sure that there is no concurrent
checkpoint in progress. Under unreliable failure detection, the Exoflow controller
assigns unique checkpoint locations to prevent races between concurrent executions.
This requires one extra durable write before each task execution to record the expected
checkpoint location.

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 84

For a task that returns Refs or ActorRefs, the execution backend can provide
reliable failure detection for references by killing all copies of a Ref before reporting
failure to Exoflow. Alternatively, a safe and efficient method that works for both
crash and fail-stop failures is to generate unique references for each execution.

B.1.3 Execution backends

Integration. Exoflow references are compatible with existing third-party mecha-
nisms for task communication and recovery. For example, Ray does not provide
exactly-once semantics, but it does automatically reconstruct Refs created by deter-
ministic (at-least-once) tasks [100]. Exoflow encourages hierarchical recovery, wherein
the execution backend can attempt to handle Ref failures first, then throw unrecov-
erable errors up to the workflow controller.

Exoflow is compatible with backends that use logging and checkpointing. In gen-
eral, log-based tasks would use deterministic=True and can rollback=False an-
notations, while checkpoint-based tasks would use deterministic=False and can -

rollback=True. The backend can also directly leverage Exoflow for checkpointing
instead of supplying a user-defined rollback function; this shifts the responsibility
of checkpoint coordination to Exoflow and automatically enables optimizations such
as overlapping with execution.

Preventing leaks. The workflow layer ensures that previous Refs and pending
checkpoints do not leak; invalid Refs and checkpoints are dropped during rollback.
The execution backend must additionally prevent resource leaks for dead Refs. Dead
Refs can be deleted via reference counting (the controller calls back to the backend
once a Ref goes out of scope) or garbage collection (the backend scans the controller’s
in-memory state for dead Refs).

B.2 Implementation

Exoflow is built on Ray v2.0.1, which uses gRPC [43] for tasks and actors and a
custom shared-memory object store for Ref storage [67]. Exoflow is implemented as
a Ray Python program in 4k LoC.

We implemented two execution backends for Exoflow: Ray itself (“Exoflow-
Ray”) and the serverless FaaS offering AWS Lambdas (“Exoflow-Lambdas”). In each
case, a typical deployment would use one Ray node to host the Exoflow controller.
In Exoflow-Lambdas, the controller node takes the place of the gateway provided by
AWS for their proprietary serverless workflow offering (Step Functions).

We chose to implement Exoflow on Ray for three reasons:

1. Support for first-class references to immutable data, which we use to implement
Refs.

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 85

0 1 2 3 4 5
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

ExoFlow AsyncCkpt
ExoFlow SyncCkpt
ExoFlow NoCkpt

Figure B.1: (c) Latency CDF of online-offline graph processing.

2. Support for actors (stateful workers), which we use to implement ActorRefs.
3. Low task and actor overhead, similar to pure RPC.

We also use Ray actors to implement executors. Workflow tasks are stateless,
but we use actors to store execution state about checkpoints that are pending after
task completion.

To build Exoflow on another actor system such as Akka [2] or Orleans [16], we
must implement Refs. This is straightforward for workloads that only pass small
data. For data-intensive workflows, one can build a custom in-memory store that
is tightly coupled to executors, as in Ray, or use an external key-value store. The
latter requires low implementation effort, but may result in poor locality. It is ideal
if the execution backend cannot be modified, e.g., to support values larger than the
Lambdas response size in Exoflow-Lambdas.

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 86

B.3 Evaluation

B.3.1 Online-offline graph processing

Distributed graph processing systems can be generally divided into stream vs. batch
processing [64]. Streaming systems can handle continuous updates and produce timely
results, but may not offer the same precision as batch systems.

We use references in Exoflow to link stream and batch graph processing, produc-
ing a single application that can both handle online queries and produce periodic exact
results. We use Ray actors to implement a version of Kineograph [27], a streaming
graph processing system that uses distributed snapshots for consistency. Each work-
flow task ingests one epoch of incoming graph updates to compute a graph snapshot
and an online approximate result, and we periodically pass the snapshot in-memory
to another workflow task that uses Spark to compute the full result.

We evaluate on the SNAP Twitter follower network dataset [57] (41M nodes
and 1.5B edges), with each input record representing an edge insert event. We run
the push-model TunkRank algorithm used by Kineograph to compute Twitter user
influences on a 3-node r3.8xlarge cluster, 1 for streaming and 2 for the Spark cluster.
We use two Ray actors to process the input stream and use Exoflow to checkpoint and
pass the ActorRefs between streaming tasks. Each streaming task represents a 10-
second epoch and also returns 4 Refs that represent the partitioned graph snapshot.
These Refs are passed to a Spark task every 20 epochs. Latency is reported for
200 epochs, after an initial warmup of 150 epochs. The average digestion rate is
44.94k tweets per second with our dataset. Kineograph achieves about 40k tweets per
second with 2 ingest node + 48 graph nodes with a similar setting. We outperform
Kineograph likely because we utilize shared memory for data passing, with more
powerful hardware, which significantly reduces overhead of data pushing.

Figure B.1 shows a CDF for latency from input event to the earliest time that
the event is reflected in a streaming task’s output (although inconsistent results can
be returned earlier by querying the ingest actors directly). AsyncCkpt allows the
snapshot to be viewed before it is checkpointed. NoCkpt has impractical recovery
overhead, but we use it as a performance baseline. AsyncCkpt achieves similar la-
tency as NoCkpt, meaning that checkpointing overhead remains stable as the graph
grows larger; this is because streaming tasks pass through previous Refs that are
already checkpointed, so Exoflow only checkpoints new data on each epoch. Sync-

Ckpt is similar to Kineograph, checkpointing the snapshot before making it visible,
and adds less than 1s latency. Finally, the error rate of the online results and the
batch processing task duration both grow linearly over time, confirming the tradeoffs
between batch vs. stream processing.

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 87

B.3.2 Microbenchmarks

Latency. With equivalent backends, Exoflow matches or reduces execution over-
heads of existing workflow systems while enabling more flexible inter-task communi-
cation. Figure B.2a (1 m5.8xlarge instance) shows the latency of workflow execution
(“Trigger”) and task execution with different size arguments. We use exactly-once
systems (Airflow [3], AWS Standard Step Function [18]) and at-least-once systems
(AWS Express Step Function [18], Ray [67]) as baselines. Airflow is an industrial
custom-built workflow system while Step Functions are the AWS-native workflow
offering for Lambdas.

First, with the Lambdas backend, Exoflow has similar trigger latency as AWS
Standard Step Function. Airflow has generally high overhead due to coordinating
execution through a database, which can easily lead to inefficient scans.

“1B” in Figure B.2a compares minimum task execution latency. Exoflow-Lambdas
achieves comparable latency as AWS Step Functions, as the primary overheads for
exactly-once and at-least-once execution come from durability and Lambdas invoca-
tion, respectively. Exoflow-Ray improves upon the latter as it uses Ray for execution.

Finally, we compare the ability to pass large data between tasks. AWS Step
Functions limit data passing to 256KB, but plain Lambdas have a size limit of
6MB. Thus, Exoflow-Lambdas can actually support larger data sizes. This could
be improved further with Refs, e.g., with Redis [89] for distributed memory. Air-
flow’s XCom [1] can support slightly larger data but is fundamentally limited by its
database-centric design. Meanwhile, Exoflow-Ray uses Ray Refs for efficient data
passing. The gap between AsyncCkpt and NoCkpt latency is small but grows with
data size; although the checkpoint is asynchronous, Exoflow synchronously copies the
data to guard against concurrent writes.

In summary, Exoflow’s low execution overheads make it a practical replacement
for existing workflow systems, and it enables greater flexibility in task communication
and recovery.

Data sharing for ETL. We evaluate Exoflow against Airflow for a Spark workflow
similar to Figure 3.2b (1 m5.8xlarge instance, 4GB Spark memory). Figure B.2b
measures total run time for a workflow that uses Spark to generate a 1GB random
dataset, followed by multiple downstream tasks that consume the data with data
sampling Spark jobs. Such a workflow requires orchestration across Spark jobs, which
Spark does not provide, and is therefore often run on a workflow orchestrator such as
Airflow.

Airflow run time grows proportionately with the number of consumers because
they cannot share data in-memory. Meanwhile, Exoflow scales well even with syn-
chronous checkpointing because consumers share data via Spark’s native cache. Fur-
thermore, Exoflow runs as fast as native Spark alone, while facilitating composition
with other systems as well.

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 88

Trigger 1B 128KB 1MB 32MB 128MB
Operation

10−3

10−2

10−1

100

101

La
te

nc
y

(s
)

Airflow
AWS Std.SF-λ

AWS Exp.SF-λ
ExoF.-λ SyncCkpt

ExoF.-λ AsyncCkpt
ExoF.-λ NoCkpt

ExoF.-Ray SyncCkpt
ExoF.-Ray AsyncCkpt

ExoF.-Ray NoCkpt
Ray

(a)

1 2 4 8
Number of Consumers

0

20

40

60

80

D
ur

at
io

n
(s

)

Airflow
Spark

ExoFlow + SyncCkpt
ExoFlow + NoCkpt

(b)

Figure B.2: Microbenchmarks. (a) Triggering and data passing latency of Exoflow
and other workflow systems, using AWS Lambda (λ) and Ray as execution backends.
Missing bars indicate limitations in inter-task communication. (b) End-to-end run
time for the ETL workflow shown in Figures 3.2b and 3.4c, compared with Airflow
and native Spark.

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

1000

2000

3000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

5000

10000

15000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(b)

Figure B.3: Microbenchmarks, cont. Maximum task throughput (a: 1 task/DAG;
b: 100 tasks/DAG) of 10k tasks, compared against Ray as an optimal baseline, on 1
node and 4 nodes.

APPENDIX B. EXOFLOW SYSTEM DESIGN AND EVALUATION 90

Throughput and Scalability. We measure maximum throughput with varying
numbers of controllers, (AWS m5.2xlarge) nodes, and tasks per DAG. We use Ray as
the optimal baseline, as Ray is also the execution backend.

Figure B.3a (1 task/DAG) shows that Exoflow and Ray both reach saturation
after 4 controllers on one node. With 4 nodes, scalability continues, and the gap
between Exoflow and Ray narrows at around 16 controllers. Figure B.3b (100 parallel
tasks/DAG) shows that throughput overall improves via task batching. Again, with
four nodes, both Exoflow and Ray scale linearly with the number of controllers.
Exoflow achieved roughly 50% of Ray’s throughput, due to additional overhead from
workflow orchestration and ensuring exactly-once semantics.

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of Existing Distributed Systems
	Overview and Contributions

	Hoplite
	Introduction
	Background
	Task-Based Distributed Systems
	Challenges in Collective Communication

	Design
	Hoplite's Workflow
	Object Directory Service
	Pipelining
	Receiver-Driven Collective Communication
	Fault-Tolerant Collective Communication

	Evaluation
	Microbenchmarks
	Asynchronous SGD
	Reinforcement Learning
	ML Model Serving
	Fault Tolerance
	Synchronous Data-Parallel Training

	Discussion
	Related Work
	Conclusion

	Exoflow
	Introduction
	Motivation
	Overview of recovery strategies
	Applications

	API
	Overview and requirements
	Model
	Guaranteeing exactly-once execution
	References

	Architecture
	Evaluation
	ML training pipelines
	Stateful serverless workflows

	Related Work
	Discussion
	Conclusion

	Conclusion
	Lessons Learned
	Limitations and Future Work

	Appendix
	Hoplite system design and evaluation
	Implementation
	Microbenchmarks on Small Objects
	Ablation Study on Reduce Tree Degree

	Exoflow system design and evaluation
	Architecture
	Workflow execution
	Workflow recovery
	Execution backends

	Implementation
	Evaluation
	Online-offline graph processing
	Microbenchmarks

