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ABSTRACT

In the various laser-fusion concepts, an intense electmmagnetic
- wave (the laéer) mist propagate through an underdense plasma region
where it cuuld deecay, via the stimulated Raman instability, into a
Langmuir plasma wave and a scattered electromagnetic wave. This
process eould, therefore, scatter a significant fraction of the laser
energy before it ecould be deposited in the plasma. A density gradient,
in the direction of laser incidence, localizes the instabllity to a
narrow resonasnce zone where the local plesma wave fregquency approx-
imately equals the difference-frequency between the incident and
scattered electromagnetic waves. The narrowness of this zone can

strongly inhibit the growth of back- or oblique-scattered electro-

magnetic waves since they quickly propagate out of their resonance
reglon; however, the density gradient has a much weaker effect on
side-~scattered waves (which propagate perpendicular to the density
gradient ) since they remain in their resonance zone until refraction
bends them out or they exit through the side of the finite diameter
laser beam. Thus, we place particular emphasis on evaluating, in a

manner valid for the side scattered electromagnetic waves (which are
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at their turning poiﬁt) , the level of exponentiation at which the
growth is linearly saturated due to convection of the waves out of
their resonance zone. We also determine the general nature and pro-
pagation of the scattered electromagnetic waves and obtain approximate
values for the rescnance zone size and the time required for the above
saturation.

Our results are cbtained by evaluating the "Green's function"
response in time and space for the scattered electromagnetic waves
assuming they are initiated by a "delta-function" source. We con-
sider the case where the temporal growth dominates the plasma wave
convection. Then the scattered electromagnetic waves are governed
by a single second-order Helmholtz differentlal equation, in the
position variable along the density gradient. with a complex potential
having two simple zeros (turning points) and one simple pole. The
relative position of these three transition points depends on the
wave-vector perpendicular to the gradient and the complex freguency
of the scattered electromagnetic waves. Using phase-integral (WKBJ)
techniques, we obtaln for the above differential equation two approx-
imate solutions valid throughout the complex position plane except-
near the three transition points. These two solutions are used to
obtaln the spatial response at a given frequency; evaluating the
proper inverse Fourier transform of this (in the complex frequency
space) then gives the temporal evolution. Although by this method

we generally cannot look too close to the turning point, we can
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nevertheless follow the temporal evolution of the side-scattered
waves before and after they encounter their turning point and, thereby,
obtain the net growth.

The resulting Green's function response consists of two parts:
(1) propagating and refracting wave-packets growing only while they
are in their resonance zone; (2) eigenmodes localized along the
density gradient and growing in time. The eigenmodes do not dominate
the response until after the side-scattered wave-packets have satur-
ated their growth by refraction out of their resonance zone. » By
taking into account the convection of the waves perpendicular to the
density gradient, we show that the finite laser diameter can typically
forece an early saturation with the eigenmodes never appearing. This
may explain the lack of experimental evidence for Raman side-scat-
tering as opposed to its clear observation in computer simulations
with pefiodic boundary conditions (i.e., infinitely wide laser dia-

meter).
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I. INTRODUCTION

A. Past Work on Reman Instability

1. General Orientation

There are two gemeral approaches toward controlled thermonuclear
fusion which involve the use of lasers: (1) laser-pellet fusion where
lasers are used to heat and compress a solid fuel pellet; (2) laser
heating of a magneticé].‘[y confined plasma., Several reviews of these
approaches are listed under Ref. sec. A. In each approach, the in-
tention is for the incident laser to propagate into the plasma and
deposit its energy. In the first case above, the absorption takes
place primarily in the denser regions of the plasma via
classical inverse bremsstrahlung, resonant absorption,
or nonlinear absorptive instabilities - the plasmon-ion decay insta-
bility, the oscillating two-stream instability, and the two-plasmon
instability. For the second case above, the plasma typically remains
far underdense (to the laser), and classical inverse bremsstrahlung
is thought to dominate the absorption. However, an intense electro-
magnetic wave (the laser) propagating through a plasma is known to
be subject to two reflective instabilities - stimulated Raman and
Brillouin scattering - which could scatter a significant fraction of
the incident laser energy before it could be deposited in the plasma.
The density regions associated with these processes are shown in Fig.
I.1. We will restriet ourselves here to the density region below the

J quarter critical density point, at which the incident wave frequency



0, is twice the local plasme frequency tup. Ignoring the forward-
scattering modulational instebilities (filamentation, self-focusing),
we are left to consider stimulated Raman and Brillouin scattering.

Raman and Brillouin scattering derive their names from the
corresponding processes in solid state physics. The electromagnetic
pump wave scatters off an lionic disturbance into another electromag-
netie wave in Brillouin scattering (Ref. sec. B). If the disturbance
is electronic, rather than ionic, we have Raman scattering (Ref. sec.
C). Extended to a plasma, the above disturbance becomes an ion-
acoustic wave (Ref. sec. D) or a Langmuir electron-plasma wave (Ref.
sec. E), respectively. ‘

Brillouin scattering is usually considered to be the most
important (end most worried about) reflective instability for laser-
fusion experiments due to its theoretically high linear (i. e., con-
vective) and nonlinear saturation amplitudes (Refs. D V; G II, VIiI;
K I, II). However, laser plasma experiments have yet to observe this
as a dominent effect (Ref. sec. H), and several proposals have been
offered to explain this (Refs. A IV; D IV, Vi). Raman scattering has
a higher threshold but also a larger growth rate than Brillouin
scattering and therefore appears first in typical simulations where
both thresholds are ex;:eeded (Refs. K I, III). After nonlinear satu-
ration of the Raman instability by pump depletion and electron trap-
ping (leading to non-Maxwellian tail formation), the Brillouin scat~

tering dominates the simulation until it in turn is nonlinearly



saturated (Refs. D V; G VII; K I-IT]). However, if this above-mentioned
nonlinear pump depletion is due to scattering, and not absorption, then
this is not a desirable means of saturating the instability. Further-
more, saturation by Landau damping of the plasma wave (from the Raman
decay of the incident wave) would require an electron temperature

Te " 30 KeV (see Refs. A IV; D V) or equivalently an electron thermal
velocity vth/c "~ 1/4, and electron trapping would generate electron
velocities up to v/c v 1/2 (see Ref. K II). Thus, both of these latter
saturation mechanisms would lead to suprathermal electrons which can
detrimentally preheat the core of a pellet (Ref. J I). Hence, a linear
(i. e., convective) saturation mechanism would be desirable. In the
following work we will concentrate on Raman scattering and several
problems that have arisen concerning it. We note, however, that in
certain parameter regimes the equations deseribing Brillouin scattering
take on the same mathematical form as the equations used in the Raman
analysis (Refs. F VII; G IX) and, therefore, many of our results can
be extended to the Brillouin case.

To provide tue background for our work on the Raman instability,
we first review in detail what is already known (see Ref. sec. E) about
the instability in a uniform plasma (sec. I A 2) and how a density
gradient alters the behavior (sec. I A 3). For instance, it is known
(see Ref. secs., F, G) that a density gradieni, in the direction of
laser incidence, localizes the instability to a narrow resonance zoOne

where the iocal plasma wave frequency approximately equals the



difference-freq\_lency between the ineident and scattered electromagnetic
waves. ‘I"he narrowness of this zone can strongly inhibit the growth
of back- or obligue-scattered electromagnetic waves sinqe they
quickly propagate out of their resonance zone (position of zone depends
on the frequency of the scattered electromagnetic wave); however, the
density gradient has a much weaker effect on side-scattered waves
(which propagate perpendicular to the density gradient) since they
remain in their resonance zone {position of this zone depends on the
wavenunber, perpendieular to the density gradient, of the side-scat-
tered wave) until refraction bends them out or they exit through the
side of the fini't".e diameter laser beam. Thus, a density gradient may
not provide a sufficiently strong linear (i. e., convective) saturation
mechanism for keeping the side-scattered waves under control, and this
explains the attention we have given this particular case (e. g.,
note the title of this paper) even though our work here is valid also
for back- and oblique-scattered electromagnetic waves.

To motivate our work on the Raman instability, we next
(sec. I B) point out some problem areas (also discussed in sec. I A 3b)
where further work - our work here - was necessary for a more complete
understanding. To answer the questions we raise in sec. I B, we place
particular emphasis on evaluating, in a manner valid for the side-
scat_.tered electromagnetic waves (which are at their turning point),
' the level of exponentiation at which the growih is linearly saturated
due to ccmyection of the waves out of their résona.nce zone. We also

determine the general nature and propagation behavior of the

£
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scattered electromagnetic waves and obtain approximate values for the
resonance zone size and the time required for the above saturation.

We require (and later find, in secs. IIT, V) tha't our results correctly
reduce to the appropriate known results in the limits of early time
(before refraction can become important), zero pump strength (1. e.,
laser intensity), or infinite nonuniformity scale-length.

In sec. I C, we discuss the physieal process behind the Raman
instability and the particular model (e. g., lineur density profile,
fixed ions, no static magnetic field) we have assumed in studying it.
A nonuniform static magnetic field, varying along the density gradient
but directed along the laser polarization direction, could be included
with no change in the basic mathematical form of the equations we
solve; however, this is not done here (it was felt to be too distrac-
ting) but rather is postponed till a later paper. We further limit
our problem (to something manageable) by considering only the case
where the plasma wave convection is negligible (e. g., compared with
the temporal growth). Then, the scattered electromsgnetic waves
are governed by a single Helmholtz (or Schrodinger) differential
equa;,ion, in the position variable along the density gradient, with
a camplex potential having two simple zercs (i. e., turning points)
and one simple pole (see Refs. F VII; GXIIT). This differential
equation is also discussed in sees. I A 3b, II. The relative position
of these three complex transition points depends on the wave-vector
perpendicular to the density gradient ar 3 the complex frequency of

the scattered electromagnetic waves and also on the pump strength



(i. e., laser intensity ). One of the zeros corresponds to the usual
turning point for electromagnetic waves travelling in a nonuniform
plasma; the second turning point and the pole are introduced by the
presence of the pump (i. e., laser).

In gee. I D, we describe the mathematical procedure we follow
in the rest of this paper. Our results are obtained by evaluating
the "Green's function" response in time and space for the scattered
electromagnetic waves assuming they are initiated by a "delta-funetion"
source. Using phase-integral (WKBJ) techniques (except in the special
cases treated in sec. III, like no pump or a uniform plasma, where
exact solutions are available), we obtain for the above differential
equation two approximate solutions that are valid throughout the
complex position plane except near the three transition points. These
two solutions are used to obtain the spatial response at a given fre-
quency; evaluating the proper inverse Fourier transform of this .
(in the complex frequency space) then gives the temporal evolution.
Although by this method we generally camnot look too close to the
turning point, we can nevertheless follow the temporal evolution of
the side-scattered waves before and after they encounter their turning
point and, thereby, obtain the net growth.

In sec. IV, we review and summarize phase-integral theory
(Ref. sec. T) and present (in an easy-to-follow pictorial fashion)
a set ol rules that one can use in applying this approximation

technique. We also obtain (modified from Ref. T III) here the

<
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Stokes constant for a pole-zero combination as required for the
solution in sec. V.

In sec. V, we show that the resulting Green's function re-
sponse consists of two parts: (1) propagating and refracting wave-
packets growing only while they are in their resonance zone;

(2) eigenmodes (first discovered in Ref. F VII) localized along the
density gradient and growing in time (as discussed also in sec. I A 3b).
The eigenmodes do not dominate the response until after the side-scat-
tered wave-packets have saturated their growth by refraction out of
their resonance zone. By taking into account the convection of the
waves perpendicular to the density gradient, we show that the finite
laser diameter cen typically (see sec. V Dv) force an esrly saturation
with the eigenmodes never appearing. This may explain the lack of
experimental evidence (see Ref. sec. H) for the Reman side-scatter
instability as opposed to its clear observation (see Ref. sec. L) in
computer similations with periodic boundary conditions (i. e., effec-

tively an infinitely wide laser diameter).




2. Uniform Unbounded Plasma,
Infinite Extent Pump

The earliest work (Ref. sec. E) on the Raman instability as-
sumed a uniform unbounded plasme, a pump wave of infinite extent, and
typically only ong-dimensional variations (i. e., back- or forward-
scattering). The electromagnetic pump wave (frequency w , wave-
fector l_co) is propagating along 2z with linear polarization é‘o
along x. Above a certain threshold intensity, the pump wave (mo, lgo)
is unstable (stimula’:d, not spontaneous) with respect to deeay into
a scattered electromagnetic wave ("’1’111) and a Langmuir plasma wave
(@ = w, = W, - @, K= 1:_2 = 1_:0 - ]ﬁl)‘ This process is illustrated in
Fig, 1.2 for a backscattered electromagnetic wave with polarization
along x (the configuration with the largest growth rate). The
group velocities of the two scattered waves are !1 = l:_l( cz/ml) and

v, =X vih/ﬂ = 3K( cz/ﬂ)(Te/mez) where v is the thermal

th
velocity of the eleétron distribution with temperature Te.

We remove the fast time and space dependence of the scattered
waves Ej(f’t) = g—j aj(l,t) exp (igj cx- imJt) + c.c. in favor of
slowly varying amplitudes a .]'( %,t) (dimensionless and appropriately
normalized). The evolution of these amplitudes (subscript m"2v
always denotes the Langmuir wave while "1" denotes the scattered

electromagnetic wave) can be obtained from the coupled equations




sg+%+iA, +V,V|a,=%a]  (Ila)

a%“’,*iA,*\_/,'Y a,=a, (I.1b)

where v, and v, 2 v_ are phenomenological damping rates, A, =

1 2 P 1
2

s (2,22 _ 2 = = (2 2 2 2
= (mp * k] ml)/&n:L and A2 Ap (mp + 3vth X Q°)/2Q are
frequency mismatches of the scattered waves with respect to the ap-
propriate unpumped normal modes. See Refs, F VII, XI, and G XII for
equivalent forms of Eq. (I.1). For Raman scattering, the coupling

coefficient is |
L= Kvw/2) (wP/w')/zcos e (I1.2)

where 0 1is the angle between the polarization of the two electro-
magnetic waves and v, = eEo/nmo is the oscillation velocity of an
electron in the pump electric field. A third coupled equation giving
the reaction of 8y and a, back on the pump is ignored here, and

Yo is treated as a constant.
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Finite frequency mismatch Al or A2 will reduce the growth
rate of the instability, but a noise excitation with a broad spectrum
in w and k (such as a delta~function in time and space) will lead
to an asymptotic response which picks out the particular (ml,gl) wave-
packets having A} = A, =0 (see Fig. 1.3 for w5k diagram) and
the largest growth rates. We therefore consider only this resonant
case with Al = A2 = 0.

Bers, Chambers, and Hawryluk (Ref. E VIII), Bers (Ref. E IX),
and Chambers (Ref. G XII) have found that the time-asymptotic response
to a delta-function source (6(x)8(t)) comsist of pulses with

" dgifferent (mi’El) (but all having Al = A2 = 0), each being localized
along the straight line connecting the pulse edges X = !it and
X, = !ét (see Fig. 1.4). Therefore, the instability is generally
cbnvective (no temporally growing response at fixed position).
Their results indicete that, for fixed (ml’Ei)’ an obaserver moving
with velocity V=1V, + a(!2 - y_l), 0<a <1, and positioned on
the above line will see a temporally growing response with growth

rate

b
2%, (UU,) - (U, +U,)
U+,

V)= (13)
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where U = lv, - vl = mlw_r2 -~ gll and U, = |V, - V| = (1 -a)[Y, -7-

For given observer veloeity V, temporal growth is then found only

when the coupling coefficient (related to pump strength) Yo is greater
than a threshold value yc(y_) where
+3,U)
y ( V - (Vl UZ VZ [Jl
c\¥Y/) =

LU0 (1.9

This threshold is minimized for a particular observer veloeity such

that U]_/U2 =g/(1 -a) = \)l/\)2 which gives [Yc(!)]m‘.n Ty, = (vluz)% .
Far zbove this convective threshold (yo >> Yc), the growth rate

¥Y(V) in the moving reference frame is maximized for a different
observer velocity such that Ul/UZ =1(a=1/2) or¥-= (‘—’i +!2)/2
with (v(V) )!max = Y,5 mnote that the definition of Y, implies that

the maximum growth rate over all directions of E‘_L and E, occurs

1
for backscatter (K largest) with polarization parallel to _@0

(cos 8 largest).

For the one-dimensional case with -‘-’-l = Vl’z‘ and ‘_IQ = Vzﬁ,
the results are essentially the same; the only new feature occurs
for V,V, <0, in which case a stationary cbserver (V =0) will be
sitting on the line of pulse localization (-V;t < x = 0 < V,t), and
Eq. (I.4) predicts an absolute instability (temporal growth at

fixed position ) for Yo above a threshold value Ya where

v Vol +3% Vi
2 lv' VZI'/Z . (1.5)

Y
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'ﬁ1e absolute growth rate is then Y(V = 0) = [ZYOIV]_Vzl“-1r _
- (v1|v2| + v,V | )]/( [v;] + [V,]) which is usually much smaller
than v, since |‘J2| << |V1| except for very hot underdense plasmas
(Te/n large) or very near quarter critical demsity ( ky small).

So far we have discussed the response only in a uniform plasma.
We must now consider how this response is modified by a nonuniformity

in the plasma density.

3. Nonuniform Plasma

a. Backscatter
The situation is much different in a nonuniform plasma,

and again early work centered on one-dimensional variations (Ref.

sec. F). We now assume that the plasma density is linearly increasing

along the direction of incidence ({z) of the pump wave in the local

region of interest {see Fig. 5a). Going back to Eq. (I.1), we see

that the frequency mismatches, Al(ml,kl ,z) for the electromagnetic

wave and AZ(Q’ K, z) for the Langmuir wave, are now spatially

varying. Before ; in the uniform plasma, we could choose w.

1
such that Al = A2 = 0 everywhere, but this is no longer possible.

and 51

We can eliminste Al by using a geometrical-optics approach (some-
times called WKB because of the phase-integral El(z) * dx) and
defining a spatially varying El(z) by setting Al(ml, kl(z), z) = 0;

for fixed wy and 1:_11 = ﬁklx + 9k1y, this determines the spatial
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variation of the component of _]51 along the density gradient:

Y
ke @k, ,2)= [wf-f@-2K, ] /e, (14)

Note that we have included the perpendicular wave-vector ]51 n in order
to show how some of the quantities depend on this parameter; however,

we will concentrate in this section on the specific case kl 1 0

and defer to the next section any changes due to finite kl r The

pump wave also has a spatially varying wave-vector ko(z) =

=[mi - ms(z)]%/c. The resulting beat wave-vector K(z) = |§°(z)-£1(z)|
will still give a spatially varying lLangmuir wave frequency mismatch
Az(ﬂ, K(z), z) which will vanish at only one resonance density
position zo(ml, kl.l.)'

As the scattered electromagnetic wave (for fixed w , k .L)
propagates away from z,, the plasma wave beat disturbance (9,K)
becomes out of resonance with the local Langmuir normal mode, and
the plasma wave density perturbation grows in amplitude at a slower
rate than it would for a uniform plasma. This plasma wave density
perturbation, when coupled with the oseillating electron veloeity
in the pump' electric fleld, leads to a transverse current pertur-
bation at ( s _1_:_1) radiating a growing scattered electromagnetic
wave, which is slightly out of phase with the original scattered
electromagnetic wave which we assumed had propagated to this

position. As the wave propagation continues to positions far from
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B, the nonresonance of the longitudinal beat disturbance and the de-
phasing of the scattered wave w1th respect to the stimulated wave
it locally generates leads to a saturation of the amplitude of the
growing wave (see Fig. I.5b).+ We have considered this from the view-
point of the propagating scattered electromagnetic wave, but a similar
process also occurs for the propagating Langmuir waves.
In addition to this saturation of the amplitude of the con-
vecting pulse (the center of which moves with velocity ¥V =(\_Il + \_Iz)ﬁ),
due to propagation away from the resonance position By Rosenbluth
(Ref. F I1), and Rosenbluth, White, and Liu (Ref. F VI) have found
that for backscatter (klj. = 0), with V:LV2 < 0 and above the uniform ,
plasma absolute instability threshold Y, >Y,, the pulse amplitude Sd
at any fixed position also saturates (see Fig. I.5b), at essentially
the same level as the propagating part of the pulse. This saturation
at any fixed position is due to the arrival and destructive inter-
ference of waves generated at other positions. (Excellent discussions
about this effect and ways of preventing or reducing this destructive
interference, by ineluding density fluctuations or finite extent
pump or plasma, have been given by Nicholson (Ref. F X) and by
Chamhers (Ref. G XII). Rosenbluth, White, and Liu (Ref. F VI) find
T

The initial values are assumed to be a2( %t =0)=0 and

31(5’1" =0) = §(x)8(y)8(z - zo). According to Nicholson (Ref. F X),
immedlately following the propagating §-function is a pulse growing

linearly (rather than exponentially)in time. This effect presum-

ably disappears for a less "spiky" initial value.
- ]
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a fixed position saturation amplitude of expﬁ'[l —(4Y /Y )]’| ’
L a’ o f

provided T >> 1, where Y, is given by Eq. (I.5),

r=ny /(< IVWI) , (L.7)

Py
and = (4/dz)[K(2) -[92 - mz(z)]z//i' A (d/dz)[A (2)/V,| ic the
P th| 2 2
derivative (evaluated at zo(ml, kl.L)’ with le = 0 here) of
the wave-vector mismatch between the plasma wave beat disturbance
(2,K) and a Langmuir wave having frequency Q. On the other hand,

the saturation amplitude (for V1V2 <0 or V1V2 > 0) of the

T

convecting pulse center is just approximately e (Ref. F VI) and

could be much larger than the fixed position amplitude if Yo £ Y
(such as might happen with large damping but small group veloeity for
the Langmuir wave).

We have qualltatively discussed how the pulse response is
modified (from the uniform plasma case) by the propagation of the
waves along the density gradient; the wave amplitude saturates at a
level depending on the density scale length Ln = d[ln m;(z)]/dz.
For the backscatter case, we have presented the quantitative satu-
ration amplitudes, at fixed position or moving with the pulse center,
found by Rosenbluth, White and Liu (Ref. F VI). We next discuss
in more detail how the dencsity gradient affects oblique- and side-

scatter.
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b. Oblique- and Side-scatter

A similar picture applies to moderately oblique-scatter (see
Fig.Jéa) except that now no amplification occurs at a fixed position
(see Fig. I.6b). The saturation amplitude er of the convecting
pulse is given again by Eq. (I.7) with Vv, and V, replaced by

vlz and sz -— the group velocity components along the gradient
(Ref. F VII). From the definitions of «' (below Eq. (I.7)) and A2

(below Eq. (I.1)), we have
Nl ) Q)L €

where the density scale length L = d[ln n(z)]/dz. Equations (I.7-8)
indicate that T can be much larger for very cblique-scatter (Vlz <«<e)
than for back-scatter (VlZ R c).

In particular, if Vlz = -szﬂ/ml (at zo) we note that
k' vanishes and T diverges (Ref. F VII); these "side-scattered”
waves (see Fig. I.7a) have not only Az(Q,K,zo) =0 but also
dAz/dz = 0 at the resonance position zo(ml,kl 1(“’1))'1- The divergence
of T is a consequence of the lack of an effective linear (i. e.,
convective) saturation mechanism for these waves (see Fig. I.7b)
if Y-l and ‘—’2 are treated as z-independent in Eq. (1.1). The

time required for k' to saturate the growth is inversely proportional

+ kl.L(ml) or ml(kl l.) is determined by choosing a particular
klz(wl’klj_‘z) at the resonance position z = zo( ml,ku). For in-

such that vlz = —szu/wl.

stance, here we choose klz

ATy



N

1
to k and diverges as k' vanishes here (Ref. F VI). Furthermore,

finite «"

(or d2A2/'dz2) only slightly reduces the growth rate
at the constant density position =z = z, (Ref. F VII).

The possibility that side-scattered waves could grow to a
level requiring nonlinear saturation (as mentioned in Seec. I Al)
prompted considerable research {Ref. sec. G). The author, along with
Nicholson and Kaufman (Ref. G I), earlier proposed a local geometrical-
optics ray approach, in effect using Eq. (I.1) with Al(ml,kl(z),z)E o,
\_12 =0, and A2( Q,z) N mp(z) - @ (cold plasma approximation with
mp( zo) = Q); the proposed linear saturation mechanism was the con-
vection of the side-scattered waves out of the finite diameter laser
beam (the pump wave). In that work, we proceeded to calculate the
spatial amplification of the scattered waves above a steady-state
level of thermal noise and, using energy conservation,dtained a
pump attenuation coefficient.

The main objection to that work has been that geometrical
optics is not valid for a wave at itc turning point (here, the side-
scattered wave) and that a second derivative 32/ 322 "diffraction"
term must be included in the left-hand-side of Eq. (I.1b) in order
to properly treat the refraction of this wave. However, it was
implicitly assumed in that paper that the laser beam diameter D
(dI. in sec. V C-D) was sufficiently small that the side-scattered
waves d1d not have time to "feel" the density gradient; the refrac-
tion of these waves was therefore ignored, and their propagation was

treated as though the plasma were locally uniform (1;1 treated as a
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conatant). The back- and moderately oblique-scattered waves (for
which geometrical optics is valid) could propagate along the density
gradient sufficiently to "feel" the spatially varying Langmuir
frequency mismatch Az(ﬂ,z), but here too the slight change in K
over the' narrow resonance zone of height h = 411anp/mp along the
gradient (as found in Ref. G I) was ignored; the slight variation

of X(z) does mot affect A2 for a cold plasma. In swmmary, the
local ray-trajectories of the scattered e.m. waves were treated as
straight lines over the small resonance cylinder of diameter D and
height h.

Galeev, Laval, O'Neil, Rosenmbluth, and Segdeev (Refs. G II, III
e;nd later reported by Sagdeev in Ref. G IV) also used the geometrical-
optics approximation but implicitly assumed that the laser beam
diameter was effectively infinite; their prbposed linear saturation
mechanism was the refraction-bending of the side-scattered electro-
magnetic waves out of the narrow resonance zone (see Fig. I.7b and
imagine that the straight line now drawn through vt is curved
downward toward negative z). In one method of solution (Refs. G II,
I11), they integrated the local spatially dependent growth rate y(z)
along the curved ray-trajectory of the 90° side-gscattered wave until

the ray exited the resonance zone and Y(z) became negligible. For

the resulting saturation amplitude er , in a cold plasma, they found

r=8s (i) *@a)kL, , 09
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where we have taken one-half of their energy gain in Ref. G II and
have included the term ml/mo which can be found from their more
exact expression in Eq. (14) of Ref. G III. This exponentiation T
is much larger, by a factor of (mp/yo)%(l - mﬁ/mi)i (if not too
near quarter critical density where kl + 0), than the exponentiation
found in Egq. (I.7) for back-scatter.

In a second method of solution ®efs. G III, IV), they dropped
the time derivativgs and damping rates in Eq. (1) thereby leaving ther-
mal convection as the only means of removing the plasmons from the
resonance zone; the resulting exponentiation factor (Ref. G IV, and
Eq. (7) and Table I of Ref. G III), although comparable to Eq. (I.9)
for reasonéble plasma tamperatures, mathematically diverges for a
cold plasma. In all of our work which follows later in this paper,
thermal convection is assumed to be negligible compared with temporal
growth, and therefore we will eventually use Egq. (I.9) in com—
paring their work with ours (ef. Eq. (V.81d)).

Whatever objections one has to using geometrical opties in
analyzing side-scattering would seem to apply most strongly here,
where refraction of the 90° side-scattered wave is crucial in obtain-
ing the desired linear saturation of the instability. However, one
might expect that Eq. (I.9) would give approximately the correct
answer if the resonmance zone width h (along the gradient) is
sufficiently large that geometrical opties is valld along most of the

ray path; this requlres /dz| << 2 at the position
z z

z=zo-h/2 or
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h/z > Z = (c? L,,,/w,,z)'/:'l , (1.10a)

where 2 1s the Airy function wavelength at the turning point (and
resonance position) Z,- The resonance zone width h, to be used in
Eq. (I.10a), can be obtained by first using geometrical-optics to
determine the time ts needed for the side-scattered electromagnetic
wave of given El.l. (i. e., klz(ml,ku_,z) = 0 at the resonance
zone center z = zo(u\l,kl L)) to travel from the resonance zone edge
z, = h/2 'to the turning point at the resonance zone center z,

and then back‘ to z, - h/2 (see Fig. I.8). One finds

tg = 4@2"%/%0, and setting vt X T from Eq. (I.9) results
in the following expression for h:

hx oL, Y% /w ; (LI10k)

this is only approximate since the average growth rate over the reso-
nance zone is less than (~ half) Y, while the actual time in the
resonance zone is greater than (v twice) ts due to the reduced
group veloeity (V = 11/2 for a cold uniform plasma, sec. I A 2).

16 watt/cmz, Eq. (I.10a)

For a Nd:glass laser (Ao = 1.06 microns) of 10
is satisfied for a density scale length L = 100 microns (1aser-
fusion parameters from Ref. sec. J) but not for L = 10 microns
(present laser-fusion experiments in Ref. sec. H). Thus, for para-
meters of interest in explaining present experiments, the derivation

of Eq. (I.9) cannot be trusted because it relies on treating refraction
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by the approximation of geometrical-opties in a region (within a dis-
tance Z of the turning point) where such a treatment is never valid.
(In Ref. G I, on the other hand, the growth was assumed to be con-
vectively saturated by finite laser diameter before refraction became
important ).

Liu, Rosenbluth, and White (Ref. G V) abandoned the geometri-
cal-optics approximation and included a second derivative 32/3z2
"diffraction” term in the left-hand-side of Eq. (I.1b) while Fourier
transforming in the two remaining "perpendicular directions x and
¥y (giving El = ﬂlx + ?kly) Keeping our earlier terminology, but

with Al(z) = [wi(z) + czkil_ - mi]/Zml now, we modify Eq. (I.1) to

give

3, 3
serurid®+\ 5la, = af (Lla)

2
¥
ai+V+lA(E) qua a=ya, , (LIb)

which is equivalent to their Eqs. (I.3-4) if we use an appropriate
transformation on al-'_ and a, (and 1if we correct a sign error in

their Eq. (4)). There is no klz or Vlz appearing in Eq. (I.11b)

since this equation determines the entire z-dependence of a,.
then dropped the time derivatives, damping rates, and the Langmuir

They

wave frequency mismatch Az(z) and proceeded to calculate the ampli-
fication er, at the resonance zone Zo(ml’kl.l.(wl))’ above a steady-

. .2 2
state level of thermal noise; they found T = (_1TY0/V22)( 4w, L, n/3wp),
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which interestingly is just 2/3 of the value one would obtain from
Egs. (I.7-8) if V1Z = 0.

The proposed saturation mechanism in that paper was the
refraction of the 90° side-scattered wave out of a resonant-inter-
action' region of width Zint = (21th<:2/3'»§1‘ )1/ 3 , obtained by
comparing the diffraction term (cZ/Zml)dzal/dz? N (<:2/2u)1 )al/zint

with the coupling term Yoa;'\: Yia However, this =z

1210t/ V2z° 1nt
is independent of Ln, contrary to the kmown (see sec. I A 2) infinite
resonance region in a uniform (Ln + o) plasma! They also elaim that
stabilizing effects from the finite radius R of the laser beam (pump
wave) cen be neglected provided R >> R in = kozint » which again is
independent of Ln’ whereas in a uniform plasma any finite radius
would lead to a convective saturation of the instability before refrac-
tion could take place! It is, therefore, uncertain under what physical
and mathematical conditions their approximations remain valid. Since
their expression for T diverges in the mathematical 1limit of a cold
plasma, we will not be able to compare our later results in this paper
(where thermal convection is assumed to be negligible) with their
results.

In a later paper, Liu, Rosenbluth, and White (Ref. F VII)
and Liu (Ref. G XIII) again considered the same set of equations, Eq.
(I.11), conteining the refraction and diffraction of the side-scattered
electromagnetic waves; but, here they took the 1limit where the thermal
convection (V22 3/3z) of the Langmuir waves out of the resonance zone

is negligible compared with the Langmuir wave frequency mismatch A2(z)
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and the temporal growth (9/3t) of the waves. Fourier transforming
in time (drop 3/t in Eq. (I.11) and let w, be complex), they
obtalned a single second-order differential equation in 2z, equivalent

to

2 *
2‘2 2w A '(z)/cz +2W, X,Z/CZAZ(Z) a,=0, (1.12)

which they proceeded to solve for complex eigenvalues “‘Z;_n(]il .L) =
= Re(“’]'_n) + J'.YI'1 , with ah(win, 511., z) subject to evanescence for
large positive z (increasing plasma density) and outgoing wave
boundary conditions for large negative =z (no sources at z + =),
Equation (I.12) is a Helmholtz equation with a complex po-
tential having two roots and a singularity in the complex z-plane
(assuming a linear density gradient along the real z axls; ad-
ditional roots and singularities can appear for more complicated
density profiles). For W lying in a certain region of the complex
ml—plane, the two roots (turning points) are close together and far
from the singularity,reducing Eg. (I.12) to a harmonic oscillator
equation with eigenmodes & evanescent for large real 2z and

eigenvalues with imaginary part (growth rate) given by

/

¥,= Kvo-g-:- 1

- ) @p /K 0L13)
KLn@v. /)72 '
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where n = 0,1,2,...(Refs. F VII; G XIII). The condition for the
validity of this result (which depends on ignoring the singularity)
is that the second term in the square brackets be much smaller than
one; thus, Eq. (I.13) is not valid near threshold. At threshold
(Y1'1=0 = 0), the singularity lies between the two roots and Liu,

Rosenbluth, and White found (analytically and numerically)

(LS k)] =0z . we

hres.
For modes described by Eq. (I.13), the eigenmode width is approxi-

mately the distance between the two roots, or (see Refs. F VII; G XIII)

Az, = L, (V,,/c)l/"h(kaL,,).'/2 . (L.15)

These localized (along z) eigenmodes are, however, still generaily
convective along the "perpendicular" directions x and y; the
eigenmodes become absolutely unstable only at the quarter critical
density where ky, = O (Refs. F VII; G X, XIII). The perpendicular
convection of these modes out of a finite size plasma is the only
linear saturation mechanism that was mentioned in that work. These
same authors (Ref. G IX) later generalized their work to a spherical
nonuniform plasma.

However, several questions immediately arise concerning
their work. What, for instance, is the connection of that work with
all the previous work which involved the concept of a wave-packet

growing convectively until saturated by the effects of refraction
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or finite laser-diameter? Is the previous work incorrect or in-
complete? Liu, Rosenbluth, and White (Ref. F VII) found eigenmodes,
but what happens in the limit of a uniform plasma where there are
no eigenmodes? From Eq. (I.13) we see that as Ln + =, the spacing
between the eigenvalues goes to zero and Y;l > VoKmp/“’o’ a finite
value which is always less than or equal to the known uniform plasma
growth rate, Yo from Eq. (I.2). Thus, as Ln + o, the eigenvalues
do not seem to disappear (the eigenvalue equation leading to Eq. (1.13)
appears to remain valid) nor do they approach exactly Yo (the agree-
ment between Yl; end Yo at one particular position, the quarter
eritical density point, is pot sufficient). For finite density scale
length L, sas the pump strength (e. g., vo/c) decreases, one
eventually approaches the threshold (Y;=O = 0) given by Eq. (I.14);
however, damping was ignored in their work, and no other physical ex-
planation was offered for this ‘hreshold behavior. In fact, in the
1imit of vanishing pump strength, there is no indication in their
work of how one recovers the known response (see see. III B) to an
electromagnetic perturbation in a nonuniform, unpumped plasma (for
which there are no eigenmodes).

In support of their work, we mention the clear observation
(Ref. sec. L) of Raman side-scattering in computer éimulations with
periodic boundary conditions along y (infinitely wide plasma and
laser-diameter); there is even some indication that the side-

scattered waves are localized along 2z for given ky (Ref. G XI).
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But, this makes all the more puzzling the lack of conclusive experi~
mental evidence (Hef. sec. H) for the Raman side-scatter instability;
evaluating Eq. (I.14) at one-ninth critical density (mo = jnp)
and using a steep density gradient with scale length Ih =10p mn.,
one obtains a threshold (Y;=0 = 0) intensity of I0 =1.6 x 1015
watt/cm? for a Nd:glass laser pump wave, exceeded in many laser-
fusion experiments (Refs. H III-VI, VIII-XI, XIII-XV). Thus, it
appears that their work and also computer simulations neglect some
effect relevant to observation of the instability in an actual laser-
fusion experiment.

We conclude this section by noting that the Raman side-scatter
instability is potentially important even in cases where the Raman
back-scatter instability is suppressed by a steep density gradient,
but that all the previous attempts at understanding Raman slde-scatter
have led to confusing or apparently contradictory results. Our
desire to resolve some of the questions we have raised in this section
on side-scattering motivates our present work; to simplify our task,
we restrict ourselves to the case considered by Liu, Rosenbluth,
and White (Ref. F VII): a cold plasms or a large pump approximation,
where the thermal convection of the Langmuir waves out of the resonance
zone is negligible. This case encompasses most of the questions

raised in this section.

o
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B. Motivation for Present Work

As mentioned above, we are motivated in this paper by our

desire to resolve certain questions that arise when one tries to

understand and relate past work on the Raman side-scatter instability.

In particular, we will address the following questions:

(1).

(2).

(3).

(4).

(5).

How are wave-packets and eigenmodes related to the
actual space-time response to a delta-function source,
and when, if ever, is one description dominant?

What form does the response take in the limits of uniform
density (Ln + @), gzero pump Strength (vo +0), early
time, or some combination of these limits?

In the absence of damping, what is the physical explan-
ation for the threshold behavior of the eigenmodes?
How does a finite radius for the laser pump wave affect
the response?

Why has the Raman side-scatter instability been clearly
observed in computer simulations, yet not at all in

actual laser-fusion experiments?

To answer these questions, we first reduce the problem to the

simplest physical model (e. g., linear density profile matched onto

uniform or vacuum region, fixed ions, either a cold plasma or a large

growth rate to make the plasma wave convection negligible, delta-

function electromagnetic noise) that contains the most essential fea-

tures (refraction, diffraction, space-time evolution, non-negative

density profile). The model is discussed in more detaill in the
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next section. The need to include refractlon and diffraction was
discussed in the previous section; refraction in the nonuniform
plasma can bend the side-scattered electromagnetic wave (for any
given li‘.l.l. = fklx + fkly) along =z and out of the resonance zone,
and diffraction must generally be inecluded since the side-scattered
wave is at its turning point. A linear density profile for all 2z
would lead to nonphysical results, as implied in see. I D 2. For
our simple model, the describing equations can be reduced (Ref. F VII;
G XIII) to a single Helmholtz (or Sehriidinger) second-order differential
equation in 2z for the (ull ) K .L) component of the electric field
El(z, w, _lgu_)-r of the scattered electomagnetic wave; thederivation of
this differential equation is given in sec. II. '

Since the Raman instability is a three-wave stimulated scatier
(of the electromagnetic pump wave, off a langmuir wave, and into a
lower frequency electromagnetic wave), at least one of the two pro-
duct waves (the Langmuir wave or the scattered electromagnetic wave)
must be present as noise at t = 0 1in order to initlate the process.
To give anawers to the above list of questions, it is sufficient (since
our problem is linear in El) t0 confine the initiating nolse to t = 0
and to a single position Zg elong the gradient (noise ~ §(t)8(z - zs)).
The Langmuir wave is nonpropagating in the cold plasma assumed here, so

our attentlon is primarily directed toward the scattered electromagnetic

+ See sec. I C for reduction of the vector problem to a scalar

problem.
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wave, which is taken to be initiated by the noise source (described
in more detail in the next section). Thus, there is still a finite
and reasonably well-known electromagnetic response even in the limit
of vo+ 0 (where the Langmuir wave becomes uncoupled from the
electromagnetlc wave, and has vanishing amplitude). This limiting
form for the response (to the delta~function source) must be contained
in our results for the Raman side-scatter instability in order to
answer question (2); this 1s accomplished by using a well-kmown
genaral mathematical procedure (see Ref. sec. P), outlined in seec.

I D, to obtain the Green's function solution Gl( Z,2.; 1.1,1(_11) for

El(z’ml’-lf-]_L) with the delta-function source located at z = zg, as
mentioned earlier.

The space-time response is then obtained by inverting the
Fourier transform gl(z B3y ,1_(1 L)+ with an integration along the
Bromwich contour in the complex ui—plane ; the result is the Green's
function g_l( 2,2 ;t 'Ell) representing the electromagnetic response
to the El 1 component of the electromagnetic noise (bremsstrahlung;
see Ref. sec. M) which is present at t = 0 and at position =z = Zgs
all of this oceuring in a nonuniform plasma pumped by an electro-
magne tic wave (mo,l_:0 = Qko). Since we are considering only the
linear (in El) problem, we ignore the nolse components present at

other times eand positions; in principle, the full solutlon could

1-
See sec. I C for discussion of the vector nature of 9-1‘
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.,

€

] 1
be obtained by integrating gr-l(z,zs ;t’ts;El .L) over some distribution

] r
of noise S(z_.t_,k

) ]
s s—l.l.) in space z_ and time t_ (Ref. sec. P). The

integration in klx and kly will be discussed later. Rather than
consider this complicated linear superposition, we just initiate the
instability in the simplest way (+the vdelta-—!‘unction source

§(t)s(z - zs)) and follow the space-time evolution of the response.

In the absence of the pump, the response slowly decays like
an inverse fractional power of time as the electromagnetic wave-
packets propagate and refract away from the source position 2 (see
Fiz. I.9 and sec. III B). Wave-packets of all freguencies are
produced due to the delta-function in time.

In the presence of the pump wave, some of these wave-packets RS
will encounter their resonance zone before they propagate out of the
nonuniform plasma or before they meet their turning point (see
Fig. 1.10); these wave-packets will grow while they are in their
resonance zone. Since all frequencies are present, we can simul-
taneously look at back-, oblique-, and side-scatter and compare their
saturation amplitudes with previous estimates discussed in seec. I A 3.
Since we have a differential equation with boundary conditions, we
can also expect the eigenmodes found by Liu, Rosenbluth, and White
(Ref. F VII). A mathematical procedure essentially identical to ours
was applied by Sedlacek (Ref. P III) to the problem of electrostatic
oscillations in a cold plasma; it is clear from his work (or

other references, such as Refs. P I-II, on sclving differential

P

equations and initial-value problems) that the eigenmodes are
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connected with the poles of Gl(z,zs Wy ,k J_) in the complex w,-plane,
while the wave-packets are associated with the branch-points {(and the
branch-cuts) of Gl(z,zs oy kg J_) in the complex w, ~plane. This im—
mediately answers the first part of question (1) and shows that the
actual space-time response consists simultanecusly of both wave-packets
and eigenmodes; the more detailed question of when one particular
deseription dominates over the other is the subject of much of the
rest of this paper.

One can, however, predict qualitatively many features of the
space-time response by applying crude physical arguments. At early
times, before the side-scattered wave-packet (for given El .l.) has been
able to refract out of its resonance zone (similar to the case of Ref.
G I, as discussed in sec. I A 3b), the effect of nonuniformity on side-
scattering should be negligible (for back- or oblique-scattering,
nonuniformity gives the saturation discussed in sec. I A 3a); thus,
the side~scattered eigenmodes (which have the largest growth rate in
Ref. F VII) should be negligible on this time scale (no eigemmodes
in the effective absence of nonuniformity). This requires that the
numerical coefficients multiplying the temporally growing exponentials
in the eigenmodes must be small; in fact, these coefficients nust
vanish in the limit of a uniform plasma (while the growth rate ap-
proaches a positive constant according to Ref. F VII, as discussed in
sec. I A 3b). Thus, one must wait some length of time before the
temporal growth of the eigenmodes can overcome these small coefficients

and lead to dominance over the transient wave-packets (which eventually
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- refract out of the plasma as shown in Fig. I1.10).-
To estimatqe this i’e_ngth of time, we first note that the maxi~
mally growing slde-scattered eigenmode must be localized within a
resonance zone width of the turning point position for the side-
scattered wave-packet; the wave cannot propagate past the turning
point to higher densities, and if it escaped out of the resonance zone
]:.t would become uncoupled from the Langmuir wave and propagate out
of the plasma without further growth. The eigenmodes must therefore
represent the result of a certain amount of reflection on the lawer-
density side of the resonance zone; this leads to the temporally
growing wave pattern represented by the eigenfunctions. The fact
that the pump wave introduces a second turning point (in the complex
z-plane ) was first pointed out by Drake and Lee (Ref. F III) for
Raman back-scatter (511. = 0) at the quarter-critical position ( klzr* 0),
and was later extended to side-scatter ( l}:_:u_l >> klz) by Liu, Rosen-
biuth, and White (Ref. F VII). Thus, the eigenmodes shoﬁld be expected
to establish themselves as the dominant response after their component
waves have underéohe several '"bounces" between the two turning points
and "communicated" the necessa:;'y knowledge about the nonuniformity
and thé boundary conditions; that is, provided the pump strength Yy =
=e Eo/m Wy is not so small that the waves lose more energy (through
damping or transmiséioh through the lower turning point) than they gain
by travé_lipg through the resonance zone. The dominance of the eigen-
modes should, therefore, be expected to begin a short time (.depending

on vV, andL n) after the side-scattered wave-packet has refracted

-4t
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out of its resonance zone {i. e., after the time ts( Zs’klj,)
shown in Fig. 1.10; this is minimized for the source at the resonance
zone edge in Fig. I.8).

Since we have Fourier transformed in the "perpendicular"
directions x ‘and y, all of the waves (wave-packets and eigenmodes
with given & _,_)are periodic and of infinite extent in the x-y plane
but, each of these standing waves in the x-y plane can be viewed
as a superposition of two traveling waves propagating parallel and
anti-parallel to El N = iklx + §k1y' If the noise source were also
localized in x and y (e. €., noise 3 (x)8(y)8(z - zs)ﬁ(t.)), an
integration of gl( z,zs;t,lﬁu_)exp (igll * x) over klx and le
would be required to obhtain the full three-dimensional Green's
function response gl(z,zs;t,x,y). It is not necessary, however,
to actually perform this integration in order to see qualitatively
that the effect will be to superpose traveling waves with nearly
the same _151 n and uy and form propagating wave-packets in the
x-y plane (Ref. F VII). That is, the previously discussed wave~
packets in the z-t response (for given 51 .l.) will now form three-
dimensional wave-packets moving along well-defined trajectories in
x-y-z-t space labelled by wave-packet frequemey w, (see Fq. (III.16)
for mlA) and perpendicular wave-vector (gl .L)A; for a given wave-
packet, propagation along 2z will change its loeal ]le, while at
a fixed z-position there will be no wave-packets with ( ky J.) a >
>[”.le -mi(z)]%/c (they would be evanescent). The localized eigen-

modes (Ref. F VII) in the z-t response (for given K .L) will now
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form localized (along z) two-dimensional wave-packets moving along
stralght-line trajectories in =x-y-t space labelled by wave-packet
perpendicular wave-vector (E‘.I. .L) , and elgenmode number n (see sec.
I A 3b); the eigenfrequency "’;.n(lil .L) is then determined for each
of these wave-packets.

The main point to be extracted from the qualitative arguments
in the preceding paragraph is that, although we will mainly discuss
and calculate the response in z-t space for fixed k

-1
packets and eigenmodes should nevertheless be viewed as convecting

the wave-

% simultaneously along x and y with a group velocity

s Yol pw)
( w replaced by u’]'.n(l‘-u) for the eigenmodes). If we calculate
i;h z-t space a certain behavior for the wave-packets or for the
eigenmodes (fixed 5.“.) during a time interval (0,%t), then this
beha—;):ior also occurs in the x-y plane within the spatial interval
(O,_Yg;'j;). In particular, if the eigenmodes are found to dominate
the reépcmse only after the time ts (at which refraction saturates
the groﬁh of the side-scattered wave-packet), then the eigenmodes
can domingte the response also only after the side-scattered wave-

packet haé_ convected a distance !LS =V perpendicular to the

t
g4 8
direction of incidence of the pump wave.

The pump wave is typically a focused laser with small focal
diameter d‘L (3 30 microns; see Ref. sec. H), so it is conceivable
that d.L < 25. In this case the waves would convect across and out

of the laser beam and, thereby, lead to an early saturation of the

side-scattered wave~packets and, more importantly, an end to the

34
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growth of the eigenmodes. At this eerly time (t ) the eigenmodes
are still negligible relative to the wave-packets, and with no fur-
ther growth the eigenmodes would remain negligible for all time.

The situation is somewhat analogous to that considered by
Goedbloed and Sakanaka (Ref. Q I), who pointed out that one may not
be so much interested in whether a certain plasma configuration is
strictly MHD stable as in whether the temporal growth rate is
small enough to lead to only negligible growth over the finite
containment time-scales necessary for fusion. Similarly, we may not
be so much interested 1n the temporal growth of eigenmodes of an
infinitely wide system in x and y (such as in past computer simu-
lations with periodicity along x and y) as we are in knowing the
linear (convection) saturation amplitudes of waves propagating
unstably only across a narrow focused laser beam.

) An estimate of tg based on Egqs. (I.9-10b), including the

reduced group velocity, indicates that
redl
w Ve

tx 12( ') ) =, (.16)

and using the reduced group velocity in the resonance zone (from

sec. I A2, V= !1/2 in a cold plasma) we have

Iy = ctgr2 117)



36

if not too near the quarter critical position where _!1 = 51 ' 0.
Using typical laser-fuslon experiment parameters from Ref. gec. H

16

(Nd:glass laser of 10 watt/cm% and a density scale length

L
n

10 microns) and choosing mo/mp = 3, Egs. (1.17, 9) give
R’s X 30 microns with a side-scattered wave packet saturation
exponentiation of [ = 4. Since for such high intenslty lasers the
focal diameter dL b 30 microns (Ref. sec. H), one might expect an
early saturation of the side-scattered wave-packets (at a level be-
low the above value of T = 4) and, more importantly, an early end
to the teuporal growth of the infinite medium (along x and y)
eigenmodes (at a level even below that of the wave-packets).

It should be emphasized that this conclusion cammot "
apply too near the quarter critical position since Vg " and R.s
vanish at that position. However, for density profiles n(z) with
a scale length Ln(z) increasing slower than nl/ 4(z) ( e. €.»
exponential with L = constant, or n = 3 with L = n1/3 ),
the eigenmode instability threshold is highest in the high-density
region near quarter critical (Rev. F VII).

In the rest of this paper, we describe in more detail the
model, matheﬁ:atical procedure, approximations, examples and calcu-
lations we have used to verify the qualitative picture we have as-

sembled in this section.
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C. Model and Physical Mechanism

for the Instability

The density (see Fig. I.11 for profile) is taken to be con-
stant for 2z <0, but it can linearly increase for 2z > 0. This is
the simplest (see secs. III B; V) non-negative nonuniform density
profile, and it allows our results to reduce easily to known results
(in terms of Airy functiops) in the limit of zero pump strength.
The plasma is assumed to be unmagnetized (i. e., no static magnetic
field).

The electromagnetic pump wave,

E °(>_<,t)= X Eoexp{i ] kz)dz —iwot}+c.c. , (LI8)

1s incident along z and linearly polarized along % (see Figs. I.11,
12), where ko(z) = [mi - u);(z)]%/c. We are far from the turning point
of the pump (the Raman instability only occurs at densities below
quarter-critical, as shown in Fig. I.1), so ko and Eo are slowly
varying along ; ; we will usually be interested only in the local
values of ko and Eo at the resonance zone center =z o(ml’lﬁl .L)

(see Figs. I.10, 12). In Fig. I.12 we illustrate the spatial orien-
tation of the side-scattered electromagnetic wave (“’1’51) ( shown at

its turning point insid= the resonance zone) and the Langmuir wave
(= W, - m;, K= k- _]5_1) which are coupled together by the pump

wave (mo’Eo)'



The Langmuir wave 1is coupled with the two electromagnetic

and v

waves through the two "nonlinear" forces v, X B. ¥y

N .
1 5, in

the Lorentz force equation

v=3gtv-Vy =-=(E+v xBse) , (L19)

where v is the velocity of a cold electron fluid element, and

Yz eEO/mmo and Y= egllmml are essentially the oscillation
velocities of electrons in the electric field of each of the two elec-
tromagnetic waves. Including only the lowest order nonlinearity

in the total electric field E , Eq. (I.19) gives (see sec. II)

d 2 A2
eemE g WUEL) - . G20 o

The second term asbove (the gradient of the ponderomotive potential)
represents a longitudinal nonlinear force which has a component at
frequency £ = mo - u.\; g:".\n'.r-.g rise to the longitudinal nonlinear
current iL(Q) and (through the continuity equation and Polsson's
equation) the density perturbation &n($) shown in Fig. I.12; this
process resonantly drives up the Langmuir wave if & x u\p(z).

We assume fixed ions throughout this paper since they do
not effectively respond at the high frequencies and short time-scales
of interest here. Inclusion of mobile ions would allow one to study

filamentation, self-focusing, and Brillouin scattering, as mentioned

in see. T A 1.
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We also assume a cold plasma, since a finite temperature is
not required by, but only complicaies, the Raman instability; a
finite temperature mathematically leads to a higher order differential
equation that must be solved, and physically leads to thermal con-
vection of the Langmuir wave out of the resonance zone. However,
if the pump strength is large enough, the temporal growth will
(as pointed out in Refs. F VII; G IX) dominate this convection
(1. e., if Yoh/vgz >> 1 the Langmuir wave will grow substantially
befaore 1t propagates out of the resonance zone of width h given by
Eq. (I.10b)).

The scattered electromagnetic wave is coupled with the Langmuir
wave and the pump wave through the transverse nonlinear current
lT(ml) (see Fig. I.12), given essentially by the product of the density
perturbation 6&n(9) at frequency £ with the electron velocity Y,
at frequency w - This current re;onantly radiates electromagnetic
waves at frequency ml =w - Q* and wavevector 51 = 1_(0 - K (if K

is such that mi = wlz)(z) + czki), as described by the wave equation

%-czv"'&— BJ-Wc Ve . (1.21)

The charge density p (at frequeney wy and wavevector 1:_1)
1s nongero only 4f ¥V * J(w,) # O which occurs only if k_=-K #0.
This term, y_p(ml), acts to cancel the longitudinal part of the

current J (ml) and leaves a transverse driving current ET(ml)
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acting along the direction of (x - klxgl/ki), where ki(z) =
£ 4 - o)

The zp(ui) also introduces an additional longitudinal
term proportional to (.]ﬁ gl(u\l) -V no(z))/ki (i. e., an electro-
magnetic wave with a polarization component along a density gradient
is not a purely transverse wave). Physically, this longitudinal term
allows the electromagnetic wave (ml’l‘-l.l.)’ as it reaches its turning
point zt(ml’kl.l_) where klz(z) = 0, to linearly drive a Langmuir
wave at the critical density position Zt(“i’kl L= 0) where mp(z) =
=W and kl(z) =0 (Ref. R II).

‘For the Ramun instability problem, this "resonance absorption"
of the scattered electromagnetic waves should be a small effect
( centered near mp(z) & m0/2) because the transverse current ET( ml)

(giving the instability) leads to scattered electromagnetic waves,

’Q-klxk. ki
((1—k2 /{ 2),,)2 , (122

which have vanishing E-component as klz(z) + 0. The "resonance

with polarization

é'(z, @, 1!(.,1_):

absorption" longitudinal term also introduces a shift in the turning

point position zt(ml’kl.l.) (Ref. R II); this shift is much smaller

than 2 (chn/wf;)l/ 3 (see also Eq. (I.10a)) if we restrict
leZ > 1 (i. e., wp(z) not too near too/2). Hence, we drop this

longitudinal term in Eq. (I.21).
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We have sc far discussed the process whereby the presence of
an electromagnetic wave of frequency & W - wp(z) can stimlate
the emission of another such wave and a Langmuir wave of frequency
v Np(z) (from a decay of the pump wave); that the phase rela-
tionship is such as to lead to a growth of these scattered waves
(rather than a decay or a frequency shift) must be determined from
the detailed derivation in sec. II. We must now decide how to
initiate this electromagnetic wave in order to start the stimulated
process.

The vector differential equation, Eq. (I.21), for

El( z,wl,l_:ll) can be written as

2 U
J lz “m W, w, f '2 -
the first term on the right comes from iT(wl) (e > 0 here),
§(z,m1,£1 .I.) represents the (u) k .L) component of a transverse
current noise source 8§ = (41T/c X a/dt)gn oise ’ and the term
kiz(z’ml’kl.l.) = [wi - wg(z) - czku] /e can also be written as
-2 Al(z)/c2 to compare with Eqs. (I.1l, 12). The equation for the

Langmuir wave charge demsity o(z,2,K = kl) can be written as

- wze KZ Eo : A
AE,0)pl)= m E (w)-x 1.24)
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where Ap = [ug(z) - (12 ]/252 is the frequency mismatch in a cold
plasma and the term on the right comes from EL(Q). As diseussed in
see, I B, we have ignored on the right of Eq. (I.24) any effects of
a longitudinal current noise source (i. e., longitudinal Cerenkov
as in Ref. N I, or bremsstrahlung as in Ref. N II).

A8 seen from Eqs. (I.23, 24), the induced scattered electro-
magnetic waves are polarized along 31, given by Eq. (I.22), pro-
vided S has a finite component along 81. The other orthogonal com-
ponent of 8 ( perpendicular to both €1 and kl) is in the direectlon
of (-k'.l.y Z+ k), )’(kl + kl )i and drives a component of E. (ml)
perpendicular to x; for this component, p(2) = 0 and no growth

occurs. Hence, we take only the e component of Eq. (I.23) and R

1
define El(z,ml,gll e El(z,ml,gll) and S(Z’wl’-]ill.) =
e, S(z,ml k). Using p(@) from Eq. (I.24), we have

E;\»Q(z,w.,ku)E(z w,k, )=SEw>k,,) (1_25a)

D/c?
W3 (@) - (s w)

Qewsk, )= k(?- 1ok, )+ (L.25b)

where the pump-strength parameter is

Dlw;sk,)= Ky, (-2 "'*) . (L25)
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We ignore the weak z-dependence of D and Just evaluate it

at the resonance zone center zo( ml,ku). The ebove expression for
Q is valid for Re (ml) > 0; the full expression for Q (see sec.
IT) is symmetric about the Im(w, )-axis.

Finally, for ocur model we choose S(z,ml,l_ill) = 8(z - zs),
as motivated in sec. IB, and rename El(z,ml,gll) the Green's
function Gl(z ,zs;ml,_k_u). In 2z-t space, this corresponds to the
source S(z,t,gl-L) = §8(4)8(z - zs). The weak w,-dependence of
gl(z’ml’ls-l.l.) can be included in determining Ql( Zy zs;t’£1.l.)’ from
an ml—integration of élGl( z,2g ;ml,lc_l 1), by evaluating gl at the
saddle~point frequencies and poles of Gl(z,zS ;m1’£1 .L) exp (-imlt).

In this section we have described the assumed model and physi-
cal instability-mechanism leading to Eq. (I.25), with S = 8(z - zs),
for Gl(z,zs;ml,gl .L)' In the next section we describe the general
procedure for solving this equation and obtaining (_}_l(z,zs;t,lﬁl j.)’
our final goal.

D. General Mathematical Procedure

In the previous section we briefly described how the Raman
instability problem (in a cold, nonuniform, unmagnetized plasma)
can be reduced to the mathematical problem of finding the Green's
f:mction solution, G]_(z,z‘s ;ml,ls_l .L) s to Eq. (I.25) with the source

8= §(z - zs). The standard solution is (Ref. sec. P)

( k ) \K(Z.vwl’-u)\fl(zﬂ’ "k'-'-)
B9 %y 305K, W(w,k,,) (1.26)
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where the Wronskian (or conjunct in Ref. P III) is defined as

wE ‘l’ld ‘1'2/dz - ‘l’2d ‘l’lldz and (zg,zz) are defined respectively

as the greater (g) or lesser (%) of the two positions (Z,zs).

The functions ‘l’l and ‘1’2 are solutions of the homogeneous Eg.

(1.25) (with S = 0) subject to the separate boundary conditions

is outgoing for z + = (1.27a)
‘l’l ) or
matches onto outgoing (I1.2m)

solution at z =0

is outgoing for 2z + = (1.282a)
‘1’2 < or

evanescent for 2z = +w . (1.28b)

Assuming for the moment that we know Gl( zg,zz;ml,g_l J_), we
obtain the 2z-t response by inverting the ml-transi'orm (Laplace)
by integrating in the complex ml-pla.ne along the Bromwich contour

(B) above all singulsrities and branch-points of the integrand

(see Ref. P ITT): C[.Z"I)
lw A
(3’ 25t kl.l-) jZTI G(ZS’ ¥ 'J-ku.)

where the polarization vector gl(z’ml’51 .l.) is given by Eq. (I.22).
The problem now is to determine ‘l’l and ‘1’2 , and to answer this
we consider first a uniform plasma (seec. I D 1) and then a non-

uniform plasma (sec. I D 2).
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1. Uniform Plasma

Assuming exp( -imlt) time dependenze as in Eq. (I.29), the
boundary conditions Eqs. (I.27a, 28a) and the homogeneous Helmholtz

equation Eq. (I.25) are satisfied by i

b
Y= expfi[0wok)] B} (@309
‘fé= exp {+ i[Q(w,,L(_u)]l/ZZS (1.30b)
W= 2i [Q(w.,ku)],/2 " (130)

provided we choose the branch-cuts (emanating from the branch-

points where Q = 0 or @ ) such that Re (/) >0 for Re (“’1) >0
and Re(vQ) <0 for Re ( tul) < 0 along the Bromwich contour gbove
the branch~points. In evaluating gl(zg,zl;t,gu) from Eq. (I.29),
the Bromwich countour (B) can be "depressed" (using Cauchy's theorem;
see Ref. S I) into a contour (B') only around the branch-cuts
(there are no poles of W_l) plus a negligible contour of infinite
radius (see Fig. I.13). For the uniform unpumped plasma (sec. ITI A),
Q(tul ok j.) is sufficlently simple that the wl-integration can be
performed exactly. For the uniform pumped plasma (sec. III C), the
saddle-point frequencies (Ref. sec. U) and time-asymptotic

(t[mlz)( z ) + <:2kﬂé >> 1) response can be obtained.
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2. Nonuniform Plasma

It is now generally desirable to transform variables from

z to a dimensionless varisble p(z,w. W,k 1) in terms of which Q has
a simple form (e. g., for the nonuniform unpumped plasma in sec.
III B we choose .= -Z% (2, wsk ) with do/ds =z "1, where

=2 (chn/u.\p)l/ 3 ). If we somehow know two linearly independent so-
lutions A and B of the homogeneous transformed version of Eq.
(1.25), then ‘1’1 and ‘1’2 can be written as appropriate linear com-
binations of A and B. Assuming that solution A already satis-

fies boundary condition Eq. (I.28b), we write

‘ﬁ-;‘a(wnku) A(&;w,;l_‘u)"i B(ﬁ)w 7_,1) (I.3|a)

A(ys,w,,ku) | (L31)
W(w,k )= -i (BA- AB) (L3lc)

1
where Py = p(z,, .‘L’kl.L)’ pg=p(zg,m1,gu_), A =dA/dp , and

12

= dB/dp.

The coefficient a(w. kl .L) is determined by the requirement
that ‘l’l satisfy boundary condition Eq. (I.27b): i. e., ¥, from
Eq. (I.31) must h'ave the same value and first z-derivative as ‘Pl
from Eq. (I.30) 'aift the boundary position 2z = 0 between the uniform

and nonmuniform plasma régions shown in Fig. I.11. We find -
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B(ﬂ,a i |.|.)dj’/JZ
[Q(Z"O: nku.) '/z
A(ﬁﬂ '?ku_)df/dz < Z)
A(S’ ’ l’-u.) [Q(Z-O, |7ku.)]

where P = o(z = O,tnl,_lgll) and dp/dz is evaluated at z = 0.

B k-

alw,k )=i

The coefficient a(ml,gl j_) has branch-points where Q(z = 0’“‘1’151 .L) =
=0 or = (the solutions A and B introduce no additional branch-
points). The complicated form of a(ml’!‘-u.) in Eq. (I.32) 1is
required in order for a(m1 ’£1 .L) to approach, far from its branch-
points, certain limiting forms (necessary if 21 in Eq. (1.31) is
to be essentially outgoing near =z = O for waves with turning point
positions zt(ml'kl .L) >> 7 = (chn/mg)l/ 35 0) and yet remain con-
tinuous across the Im (ml)-axis.

We have now specified ‘Pl and \P2 in terms of two linearly
independent (and still somewhat arbitrary)solutions A and B
(with A assumed evanescent as z + +°) of the homogeneous
transformed version of Eq. (I.25). For the nonuniform unpumped
plasma (see sec. III B), exact solutions are aveilable in terms of
the two Airy functions, and we choose A(p,ml,lgll) = Ai(p) and
B(D,ml,_l_c_ll) = Bi(p). For the nonuniform pumped plasma (see sec. V),
exact solutions are not currently availabie, and we instead use
phase-integral (or WKBJ) techniques (see sec. IV and Ref. sec. T)
in the complex p-plane to obtain approximate solutions A(p,ml,lgl .L)
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Although these approximate solutions are not valid too near
the transition points where Q(z,ml,gl 1.) =0 or =, they are valid
in regions completely encircling these points. Thus, although we
cannot use these approximate solutions to look at the side-scattered
wave right at its turning point, we can look at the side-scattered
wave slightly before and after it encounters its turning polnt
(and resonance zone) and ,thereby, obtain the side-scatter exponenti-
ation factor I (see sec. I A ), the saturation time tg (see sec.
I B), and the resonance zone width h (see sec. I 4 3b)." In
principle, if one desired more detailed information about the turning
point (and resonance zone) region, a Langer's transformation (Ref.
sec. T) or a series expansion (illustrated in sec. III B for a non-
uniform unpumped plasma ) could be used to obtain approximations
for A and B valid at the turning point; such calculations are

not carried out in this paper.
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IT. DERIVATION OF BASIC EQUATIONS

In deseribing the physieal mechanism for the Ramen instability
and displaying the form of the equation (i. e., Eq. (I.25a)) that is
to be solved later in secs. III and V, we have already outlin=d in
sec. I C the derlvation of the basic equations. We do not wish to re-
peat ourselves here but, rather, will concentrate on a few of the more
important intermediate steps and complexities that may not be obvious

from just reading sec. I C.

First of all, in going from Eq. (I.19) +to Eq. (I.20), we
approximate v= -( e/mf E dt' to first order in the total eleectric
field and use this in Eq. (I.19) to get an equation for 3v/3t valid
to second order in E. Using V x t E at' = -(1/¢) * 3B/t dt' = -B/e,
one term from v *+ ¥ Vv cancels with -(e/me)v X B while the remain-
ing term gives (e2/2m° )y_U * E dt -« * E dt"] resulting in Eq. (I.20).

The validity of this expansion requires ( vo/c) z (e Eo/m moc) << 1.

From Eq. (I.20), we can compute the current J = -env ,
n=n + 6n, which in turn gives the charge density p = -eén from
the contimuity equation 3°0/3t° = -V + 33/3t = e¥ * (n dy/3t) -

- %+ 3(pv)/2t or, using Eq. (I.20) and Poisson's equation,

2 2 2
5%2+w:(z) z-%’gvz(fgat') -
(I.1)

\_7'535(9\./) .
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We have made two approximations here: first, we dropped a term
-(e3 /2 )VE[E at')®. ¥ n_ which is valid provided kL > 1;
second, we dropped a term -(e /m)E * ¥ n, which (when computing

p(Q)) requires (y + vp)/mp» k°/2K2Ln or essentially koh >» 1

( Y= growth rate, \’p = plasmon damping, and h = resonance zone width)
and which (when computing D(wl) and El(wl)) requires

(v + v Yw o >> 21T(wp/l-°l) (el . z)/lt.’l(z)Ln (":L = damping of scattered
electromagnetic wave with polarization él and effective wave-
number lL_L(z) = (wi - w;( z))%/c). Since we later find

(D 2 _ 1R Al % ~L A 2 2
el (x k‘.l.x I—L.I./kl)/(:L klx/kl) or e1 ?' (klx/kl)k‘.l.z/(klz +khr)’
the above requirement will be no more difficult to satlsfy than our

. 2
earlier requirement on Y provided k‘.ly/ko z 8u( mp/wl )klxklz(z)/kly
(assuming klx/kly <<1 and k.l.z/k.l.y << 1); although the right-hand-
side of this inequality vanishes at the turning point, for fixed

ratios k]_x/kly and klz/kly this séis a lower bound on kly and
thus on how close we can be to the "quarter critical" position
(wp > wo/2) and still use our eguations.
We next Fourier transform Eq. (II.1) in order to obtain
p(Q) and p(ml) For p(9), we also drop the term -V - 3[p (ml)v ][Jt
since it turns out to be negllgible provided (y + \) )/m >>
>> (vo/e) (ml/wp)klx/kl(z) while, from Eq. (I.2), Yo/mp
pe %
n (vo/e)mo/(mpml) . The result is

ity

¥ g

.
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. € wd K

E@Q)= mo, [(ﬂ‘““if z(z)]

(I.2)
£ -Elu-0Y , ErEw)
W,-51 Wy +5L

X

where we have used E(8) = -14“0(9)Eﬂ(2 (assuming an exponential
variation exp(ijg . dﬁ) and kh >> 1) and also E*( -m*) = E(w)
from the reality condition on E(t) = f exp(-iwt )E(w)dw. For p(ml),
keeping both terms in Eq. (II 1),

ec} NACRHN et Elrw)]

f( )°.,_,meczkzv =0 Wy W, —o WFw,

ew, _ew v [E _P(“"“’) E f(w +w)] (IL.3)

mw,c2kZ

Equation (II.2) is appropriate for E(R) or p(2) whenever
|a] & s representing a longitudinal plasma wave; Eq. (II.3) is
the more geperal equation for p(w) and is valid even when |ml| ] mp,
representing an approximately transverse electromagnitic wave (the
transverse component of the electric field, El(ml) , 1s determined
from Eq. (I.21)).

Finally, we Fourier transform Eq. (I.21) and use Eq. (II.3)

to obtain (defining il to be the unit tensor):
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(@ +V ]E(w)-— AW, T4 k‘f(z)YY]‘

mciuw,

[E o wre®-Elplwprw)].  (14)

We have dropped & term on the right of Eq. (II.4) that 1s propor-
2 * *
tional to (15 + P9fE,« E'w, -0y - w)) + E
* *

+Hu, * w o + )] Using Ba. (I1.2) toget E(w - u;)=E(@)
and using Eq. (II.4) to get lkf + vzlglbl), this term effectively
only alters Eq. (II.4) by changing k;_z(z)ll to

-2 22 <
(1 +a)g™(2) LU where |of & (v /c) mp/2ml(y + vp) E
(VO/G)(wp/mo)( ub/wl)i« 1 (using Eq. (1.2) for y,). If
is replaced by -m; everywhere in Eq. (II.4), we get back the

complex conjugate of Eq. (II.4), for the quantity (-m*). Since
= 1

the complex conjugete of Eq. (II.4) for E;_‘(ml) 1s also a solution,
* #

this gives El( -ml) = El(ml) as required for reality. We therefore
consider for now only Re(wl) >0, and look at the terms p*(mo-m;)
and p{ w + ml).

Ifwetakem-*=ﬂ’¥w w + N 2w -w > 3w

s "% P’ o el o PT 7P
(mo > 2mp for the Ramen instability), and p(mo + ml) is non-
.resonant with a local Langmuir wave and is therefore negligible.
*

For p () we use Eq. (1I.2) which has two terms: the first term
involves ]_3_;( ml) which we are trying to calculate in Eq. (II.4);

the second term involves E( w, + Q) =K 2, - tu;) which corresponds

¥ s

.
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to0 the four-wave process where two photons ( wo,l_cc) are ineident on

. - * _ _ s
a Langmuir wave (2 = W, - w, K=k, 1_(1) and scatter into two
new waves (ml,_]_g__l_), which we are looking at in Eq. (II.4), and

* .

(2mo -, &k - E.I.)' If we assume that El(l.l) ig a resonant nor-
mal mode (i. e., an electromagnetic wave satisfying Eq. (II1.4))
with czki?(z) = wi - m2(z), and czkz(z) = - mz(z), then in order
P [ o P
for K 2w, - mI) to be a resonant electromagnetic wave with
2 2 S22 . v

c I.ZEQ - El' = (20 - w)° - mp(z) requires k. * Ik
=[m°m1 - wi(z)] /cz. This is impossible to satisfy except for forward
scattering (ﬁo' ‘{El = 1) at zero density (i. e., no scattering at
all of incident photons), so we drop the nonresonant term _F._:(mo + Q)
in Eq. (II.2).

%

The last step is to substitute our expression for p ()
into Eq. (II.4) and simplyfy. Assuming an exponential variaticr
exp i 1{_1 * dx, we replace V by igl(z) on the right of Eq. (II.4)

%
(ignoring variations of the resonant denominator in p (2), wvalid
for koh >> 1). Since E,=E J’E, the vector dependence of the right
side of Eq. (II.4) is givenby (x - £1k1__/ki) which results in
the polarization 31 given in Eq. (I.22). The vector K is ob-
tained by Fourier transforming Eq. (II.4) in the x and y direc-
tions and calculating El(ml) for each value of £u=klxx+ kly‘y‘
Whenever El is used on the right side of Eq. (II.4) (e. g., in
a =f2_ 2 2 ];
el), we use k_l_z(z) [ml mp(z) - czku /c from geometrical

opties; on the left side of Eq. (II.4), we keep the full second
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derivative d‘z/dz2 in order to determine accurately the gz varia-
tions, so that we replace ki(z) + 7 by kfz(z) + dz/dz'?. The

use of this kl_(z) in ‘31 is only meant as a rough approximation

and is not meant to be taken too seriously when klz(z) £ Z—1 =

= (c T, /u.\2 )i/ 3 , where Z is an effective minimum wavelength
from the Airy funection. After factoring 31
Eq. (II.4), ;1 will seldom be mentioned again. Our final

from both sides of

equation for E(zw k ) is then (H )

k(z) E )2 1- k

k k ke kl2 3
(wo-w,-%) -wg(z) (w W +iY )2. (z)

where the second term on the right here is from the second term on

the right in Eq. (7I.4) (i. e., the p(w +w ) term) and is
necessary when Re(w ) £0 in order to have E (z w , l.l.) =

= E(z ,-wl ,-_1 .L) from the reality condition. For Re(u.\l) >0, this
gives Eq. (I.25) which is the basic equation we will be working

with in later sectlons.

-~

P
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IIT. APPLICATION OF MATHEMATICAL

PROCEDUHE TQ SIMPLER CASES

Before applying the mathematical procedure outlined in sec.
I D to our main problem of interest (i. e., the nonuniform pumped
case in sec. V), we first "test" it on three simpler limiting cases
where either the pump vanishes, or the density scale-length becomes
infinitely large, or both. For these three cases, the results are
generally considered to be '"well-known" (at least qualitatively)
and will serve as checks on our procedure and on the results we
obtain later in sec. V,

A. Uniform Plasma, No Pump

For this case, Q(z,ml, ) in Eq. (I.25) becomes just

5y

.y 2
Ol k)= Kok, = A0 g

where u° = o + czki'_ , and using Eq. (I.30) in Eq. (I.26),
(.2

explinf-o* 24

[(w'+ i v,)z- wz] 72

Gl(zﬂ’zl;w"kl.l.)='i%

where the branch-cuts (emanating from the branch-points) are chosen
as in Fig. I.13. For this simple case, the ml-integration in Eq.
(I.29) can be performed exactly except for the él(m1’£1 J_) which

we evaluate at the saddle-point frequency found below. The

Wy
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~~
.

result is G (z ’zl’t’klj.) l(w ,511) exp(-vlt)Gl(‘P) where
G(¥)=- — J,(¥) (I.3a)

V= w|t (—Lzé) (I.3b)

if (zg - zg) <ct and Gl =0 1f et < (zg - zl) (this is just

the "light eone"), where Jo is the Bessel function of order zero.
2 _ 2

Since (zg - zy)° = (z - zs) , ¥ and G1 are symmetric about the

source position Zg (as expected for a uniform plasma). For large

phase ¥ >> 1, .Io(‘l’) can be expanded giving

G =-cm¥) % sin(¥+E) (@4

which can 8lso be chialned by using the saddle-point approximation
(Ref. sec. U) on Egs. (III.2 and I.29).

Our basic procedure from sec. I D1 was to depress the ori-
ginal Bromwich wl-integration eontour into a contour only around
our arbitrarily positioned branch-cuts; for the saddle-point approxi-
mation of this integral (Eq. (I.29)), however, we must deform this
"branch-cut" contour into a new contour which foliows the path
of steepest descent (see Ref. sec. U) for the integrand in Eq.
(1.29). Using Eq. (III.2), one can easily show that a saddle-

point (for the integrand) can only exist above the branch-cut in
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Fig., I.13. This is further discussed in sec. III C (in the paragraph
preceding Eq. (III.36)) and illustrated in Fig. III.6 which shows
1lines of constant real and imaginary part of the phase of the inte-
grand (here, the phase Y is given by Eq. (III.24b)).

The saddle-point frequency w = w, obtained this way, or
by just using w, = ¥/t with Y given by Eq. (III.3b), is

w,(n) = w/ (1"12)'/2 (I.5q)
(2-25)/ct (I1.5k)

so that trajectories of wave-packets of constant frequency Wy

are straight lines in t-z space. The wave-packet wavenunber along

z is just k = .9¥/9z or
A
(= 2 = (eael) (Wwe)

as expected. The lines of constant phase Y in t-z space are hyper-

bola with the light cone giving the asymptotes., The lines of constant
w, and ¥ are shown In Fig. III.1, while (2/c)Gl = -Jo(‘i’) is
plotted (but reduced by a factor of 0.0075) in Fig. IIl.4a as

described 1n see. III B.
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Finally, a brief comment may be in order concerning the choice

of Eq. (I.22) for gl

give a preferred polarization direction. Nevertheless, for any

since we have no pumped instability here to

wave with given w, and l_ﬁ p atany lceation Eq. (I.21) will
pick from the noise current En oise only the transverse component
(of proper w, eand _]_s_ll) which is perpendicular to 51 (where

klz is determined from Eq. (I.21)). Among all the polarizations in

the plane perpendicular to ]_Ll, we limit ourselves to e, in order

1
to compare our later pumped results in sec. IIT C and sec. V with

the known unpumped results of sees. III A, B.

B. Nonuniform Plasma, No Pump

For this case, Eq. (I.25b) gives

QG k)= Gk ) gz (@)

- 2 2 - 2 2 2 2 -
where p = -sz 2 K= [(ml + ivl) -uw (z)]/c , wi(z) =
=2 2 =20, 2y1/3 :

wp(z) + czkll, and Z = (¢ Ln/mp) . In terms of this new
dimensionless variable ¢, the homogeneous transformed version of

Eq. (I.25a) now reads

af pife)=0 (.8)
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which has the two solutions (Airy functions)

Alp) = Ai (p) (I.90)
B(p) = Bi(p) | (I 9k)

as discussed in sec. I D 2. Using Eq. (I.31), with W = i/12, Eq.

(1.26) becomes (]]Il O)
G, 2,50k, =-imZ{laAilg)-Bi) Ailgy

where the brunch-cuts and branch-points of & ml,kl j_) (at *w(z = 0)
now) are shown in Fig. I1.13, Py = p(zz), Pg = p(zg),‘ and a(ml’kll)
is given by Eq. (I.32).

To perform the ml-integration in Eq. (I.29), we depress the
Bromwich contour and change to an integration around each branch-
cut (as discussed in sec. I D1 and shown in Fig. I.13). Since
M(p) and Bi(p) are entire analytic functions, they do not
change across the branch-cuts of a(ml ’kl J_) and, therefore, the
term Bi( pg) Ai( pg) does not contribute to the integral. From the
form of a( w) sk J.) given in Eq. (I.32), we find thet in going from
a polnt ay to the corresponding point mi = m; around and on the

*
other side of a branch-cut gives a(m]'_ = I'kl.l-) = -a (ml'kl.l-);



but;since the direction of integrati‘on is then reversed, aduu1

at w]'_ equals the complex conjugate of aduu1 at uul Thus, we
can reduce our ui-integration to an integral along one side of each
bfanch-cut with a(ml’kll) replaced by 2Re(a); with Re(a) the
same but dml' in opposing directions on these two branch-cut sides,

and exp(—imlt) - exp(iu:_t) = 21 sin’ mlt, Eq. (I.29) reduces to

gl(zg,zl;t,_}_(_u) = el( mls’-lSlJ.)exP (—vlt )Gl(pg,py_;t,kll) where

G,=-2Z [dw, Rea) sin(w;t) Ai(g) Ai(p) .

w(Z=0)
In the above, we have evaluated e at the saddle-point frequency
W o that will be found below, and all tne effects of \)1 are in-

corporated in the single term exp( —\)lt) by transforming to a new
= +3 3 s s .

w (wl )old iv,. 'I'hg integration in Eq. (II1.11) is now along

the real axis (above the branch-cut in Fig. I.13) with p, and pg

real (the \)l now removed from the definitions of kiz and p).
The term Ai( pg) will be exponentially small unless pg <0
> = l =

or ml_mg = m(zg) and, since by 2w m(zs) (zg >z, by

definition), Wy provides an absolute lower bound on frequencies of

interest here. It is easy to show from Eq. (I.32) that, for

p{z = 0)<<-1 (or mi - o

cut (where cur integration lies). In order to use this here

(z =0) > 02/22), Re(a) ¥ 1 above the

. 2 2 2,2 . .
requires G - (0) >> e¢“/2° or g, >> % (i. e., the distance

from the boundary at z = 0 to the source at zZg must greatly

60

(i 11)

sk,
e

4
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exceed the effective minimum wavelength along z). As mentioned in
see. I D 2, this (Re(a) N1 and zg >> Z) mekes ‘l‘l(p) =a A(p) -
- iBi(p) essentially an outgoing (i. e., left-going) wave for z >0
and eliminate: waves refiected from the discontinuity in density
gradient at =z = 0O (see Fig. I.11).

We evaluate FEq. (III.11) asymptotically and take

Es ang /cmg = (st/c )3 >>1 as our large parameter. It is then

convenient to define new dimensionless variables 2z = mz(z)/mi =
=1+ (tus/c)(z - zs)/E , t= 6 t/E , and thl = ml/tus. It is also
convenient to divide t ~ Z space into eight regions, as shown in
Fig. III.2, even though Gl sometimes takes on the same form in
two different regions. In regions 1,3,4, and 6, pzé -1 and

pg % -1 so we use the appropriate asymptotic (or WKB) form for
Ai(p):

Ailp) = i (—y)-l4 sin [%(—f)g'é +{H : (m.12)
In regions 2 and 5, py §-1 but -1 < Py <O S0 we write

Ai( pg) = exp{!.n [Ai( pg)]} in Eq. (III.11) and use the series ex-
pansion .

Ai(fs) =Ai () (1+y:/5 R
+ K@ (g + gt /12 +)

(IL.13)
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where A1(0) = 0.3550 and A'i(0) = -0.2588. For © <<1 and
J1 - 2] << 1, our eventual solutions for G, in regions 1 eand
6 become just Eq. (III.4) while our solutions for G, in regions
2 - 5 approach in magnitude Eq. (III.4) for £ n 2/51/3« 1, so
in regions 0 and 7 we use Eq. (III.3) for Gl' The boundaries
for the various regions will be discussed below; the boundary at
z = 0, however, is now at 2(z = 0) which is constrained to lie
in the range O <%z = 0) <1 with 1 - &z = 0) >> 1/6/3 in
terms of our new variabies.

In regions 1 and 6, the saddle-point equation for

Eq. (III.11) 1is

~ ot o o D VB
t+2 w'(wlz-zs)é =2, (w,z- Zx) 2 (HI.144)

which for solution requires the condition

i {
te2@@)? @ 2" (W14Y)

since ﬁil > ﬁig = (Eg?%. In region 1, Eg =1 and ER, = & so that
Eq. (III.14b) with the equal sign gives the equation for the solid
line (Fig. III.2) in the center of region 2. Region 1 cannot
extend all the way up to this solid line, however, because along

thig solid line y =mg < wg (wl =dy = 1) and Pg = 0 invalidating
the use of Eq. (III.12) for Ai( pg) and thus invalidating Eq.

(III.14a). In region 6, Eg =% and %) =1 so that Eq. (I11.14b)
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with the equal sign now gives the equation for the solld line (Fig.
II1.2) in the center of region 5. Along this line w; = 0y = w(z)

(631=63g=(é)3) and pg=0 again. In regions 3 and 4, the

saddle-point equation for Eq. (III.11) is

v o2 Vb nrxd 5 VE
T -20@%-2)%=200-%,) (II.154)

which for solution requires the condition

) |
t22(2)%(32,)° (I.15h)

just the opposite of Eq. (III.1Zb). 1In region 3, Eg =1 and EE = 7,
while in region 4, Eg =z and EJZ, = 1. Although Eqs. (III.la

and 15a) give different wave-packet (constant (1'11) trajectories,
they both give the same formal solution for the saddle-point (wave-

packet) frequency ml
52 = 1+Z+<‘+Z ’“’02)1é
AT WI-a-278]

(Subseript distinguishes this solution from E’B’ used in regions 2

(I 16)

and 5). For future reference, we note here that a saddle-point for
Eq. (I.29), using Eq. (III.10), exists only above the branch-cuts
as chosen in Fig. I.13. This can be easily seen by using Eq. (III.12)

and looking at the phase of the integrand of Eq. (I.29) (e. g., the
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phase Y must vanish on the "light cone” boundary; also 3‘1’/aml =
=0 for a saddle-point).
In regions 2 and 5, the saddle-point equation for Eq.

(III.11) is

T g}éA'(S’s) 25 w-z)z (1%

t-IZw .
Ailpy)

where Eq. (III. 13) is now used for Ai(p ). In terms of our

new variables, we have p = 52/3(z-ml) and Py 52/3(2 -ﬁ)

and, since Eq. (III.13) isvalid onlyfor _j¢ pggo here, we set

the boundaries of regions 2 and 5 by requiring -1 ,f, o) 2 <0. If

we write uﬁ. u + 85, |6 <<m (z), -15p. 20 gives

g
0% & 1/2ng / 3; using Eq. (III.ll,a or 15a), although not
strictly valid here, we can relate 8@ to the T - Z plane and
obtain 8o R’[f - 20 ('z' -z )5]2/(26» )3 provided Eg - E R 1/§2/3
which is also the required condition for pz § -1 since we used

Eq. (III.12) for Ai( pz) in arriving at Eq. (III.17a). Substituting

this 6@ into the above inequality for | 6o results in
P 2,)%
E-2(8)t( 5 < 2 %}g (w171

glving the approximate boundaries for regions 72 and 5 (i. e.,
the pairs of dashed lines about regions 2 and 5 in Fig. III.2).

Using Eq. (III.13), we find that the solution to Eq. (III.17a),
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provided Eq. (III.i7b) is satisfied, is the saddle-point frequency

o &, + i¥, (valid for both regions 2 and 5):
Wy T v B
L

w§ Z,+ 2.361 €;§ [1470 Re(C)-1] (Ir.184)
V= 1736 £% Im(C)/%, (m.18k)
Cs= 11-1 (03586)5'3 2 ) %,
1

x [ - z(z,) (32 )’ﬁ] 2

where the branch-cut is chosen such that Re(C) > 0. In%erestingly,

(1r.18¢)

on the center lines (where € = 1) of regions 2 and 5, Eq.
(II7.18a) gives pg =-1,11 which already is pushing the limits

-1x pg 20 we used in obtaining the approximate boundaries given

by Eq. (III.17b)! However, even on the boundary lines given by

Eq. (III.17b), Be(C) is increased to only 1.059 and Pg .increased
tc only 1.31, so we continue to use Egqs., (III.13, 17a, and 18) within
the £ - Z space boundaries given by Eq. (III.17b).

Since we required Eg - Zﬂ. 2 1/£2/ 3 above, we must terminate
regions 2 and 5 when the upper dashed lines fail this condition
and this occurs when & % 4/?:;1/ 3 ;s at this time, the lower dashed
lines have reached the position Eg - Eﬂ. =1 - 9/E;2/3 and, for
convenience, we place a horizontal boundary here for reglons 2 and

5 separating them from regions O and 7 (see Fig. III.2). Each of



66

a4,

the dashed boundary lines pertaining to regions 2 and 5 reall,w}
should be viewed as a zone (of finite thickness) where the exaet Airy
function, rather then Egs. (III.12 or 13), should be used. In
particﬁlar, the above mention horizontal dashed line at € = 4/ él /3
was motivated as a 1imit to regions 2 and 5 and not as the
begiming of a region (0 and 7) where Eq. (II7.3) could be used
for G,. Our use of Eq. (IT1.3) up to £ = 1./51/3 is motivated
primarily by the agreement of our eventual solutions for regions
1 and 6 with Eq. (III.4) for € << 1 and |1 - Z| << 1 and,
hence, requires 51/3/4 >> 1 (this also assures 9/62/3 << 1).

Using the above saddle-point frequéncies, for large phase

¥ >> 1, we find asymptotically for Eq. (III.1l) in regions 1, 3, 4, ot
and 6: |/ (]]qud)
~e2)(ME) 2 sin(¥ +1/%)

B S DR T

where (m. 1 q b)
vefai-3lepakes @2

and

S= sanff -2t ()% | (1)
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The quantity S equals +1 in regions 3 and 4 and -1 in

regions 1 and ¢ Inregions 2 and 5 we find

Gx-047¢ (‘E 23)- £ (5’:' iximexf’ (-L.063 ﬁ% ZZ) *
<A; [gzé (3-32)] sin (¥+7) (I.200)

where

e vD o~ \3
y-efnt-2(@2-2)%} (20
Finally, in regions 0 and 7 we just use Eq. (III.3) or

Gl x - % Jo (¥) (M.Zla)

Y=g [{%- (1-27]% , (21b)

where this becames exact a8 T = 0 and z - 1 (but staying above
the "1ight cone" boundaries).

Qualitatively, Eqs. (III.14a, 158, 16, 19b, and 21b) glve
the results indicated in Fig. III.3 where we show wave-packet
(constant G’)A) trajectories (the solid lines starting at % =0

"and % = 1) and lines of constant phase ¥ (the roughly hyperbolie
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solid lines ). The wave-packet trajectory labeled = 1 (given by

W
the equal sign in Eq. (III.14b) with Zg =1 and 2, = Z) corres-

ponds to the trajectory labeled wy
line (given by the equal sign in Eq. (III.14b) but with zg =z

= w in Fig, III.1. The dashed

0) for waves

i

and EJL =1 now) is the line of turning points (pg
with different frequencies ('I)A; on this line 3¥/3z = O since
kZ = -9¥/dz must vanish at the turning point.
Quantitatively, we turn to Fig. (III.4) where we plot (2/c )Gl’
according to Egs. (III.19, 20, and 21), on the vertical axis (same
as ) at various fixed times % as a function of position z. By
using a small interval Af © 1/(:)AE between each plotting time, and
reducing (2/c )Gl by some overall multiplicative factor (0.0375 in \J
Fig. IIT.42 and 0.02 in Figs. III.4b~d) to eliminate overlap
between the plots at different ¥, +the lines of constant phase and
"the position of the line of turning points (where kZ = 0) can be
clearly seen. We have purposely left blank various time intervals
(of duration A% = 0.1) in order to periodically allow (i. e., at
the edges of these blank intervals) an entire trace of Gl
versus 7 (at fixed 1) to be clearly discernable from all the
other traces. These traces show that in regions of small ¥ or
near the "light cone" boundaries (where (TJA + =), where the uniform
plasma solution might be expected to be valid, -|(2/c )Gll rapidly
increases in magnitude in agreement with Egs. (III.3 or 21) as

Y+ 0. InFig. III.4, We chose £ = 300 giving E/3 = 6.69 and
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4/5]'/3 = 0.60, Thus, Fig. III.4a contains all of regions C and
7 and part of regions 1 and 6 for f 20.2. The agreement be-
tween ﬁqs. (I11.21a and 19a) is excellent for £ £ 10/351/3 = 0.5,
but only good to fair for 0.5 <& £ 0.6 =and clearly would be
nonexistent (at least for Z > 1) for € > 4/51/3 = 0.6. In Fig.
ITI./b, we deliberately lower the boundary between regions 2, 3,

4, and 5 and vegions 0 and 7 down to % = 10/363 just for
the sake of comparison: the mateching at the various boundaries

is not much better than before (e. g., regions 3 and 4 are out
of phase with regions 2 and 5). The phase matching of reglons

3 and 4 with reglons 2 and 5 does not become satisfactory
wtil £ 2 1 (roughly 7/6%?). The boundary lines can still be
seen faintly (sometimes only as gentle changes in shading, as in re-
gion 2) at % ~ 2; the sharp change in shading near the right-hand
"light cone" boundary in Figs. III.4b-d is fictiecious and due to

a sudden change in the density of plotting points used in the com-

puter generated figure.

C. Uniform Plasma, Pumped

For this case, Q(z,u.\l,ElL) in Eq. (I.25) becomes, for

RE(ml) >0, just (III_ZZ)

O/
wPZ- (w,-w-i x),,)z

Q(“’ul_(,“_ = k?z@)l’ku +


http://wv.iv
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. - 2 -
where again k%z = [("5.+ 1\)1)2 - mz]/c , m = w + czkll , and
D(ml,El J_) is defined by Eq. (I.25¢c). Note that the full expression
for Q is symmetric about the Im(ml)-axis, ag discussed in secs.

“IC and II. Using Eq. (I.30) in Eq. (I.26) gives (1[[23)

G,( & ,wpku_ --ZFGXPrI'P( ,'_f.,_,_)(zs'zx)]

where f = /J (an effective Ky ) has the branch-cuts and branch-
points {mb} = {mg, "’CI)I’ w(]?II’ wofI, m;H} indicated in any one of
Figs. V.6a-d. The superscript "o" 1Indicates a root of Q while
Yo" indicates a singularity of Q. The branch-point m % » cor-
responds to the branch-point found in see. IITI A and shown in Fig.
I.13.

' As in the previous examples, to perform the ml—integration
in Eq. (I.29) we first depress the Bromwich contour and change to
an integration around each (of the six) branch-cuts now indicated
in Fig. V.6. Since the resulting integral camnot be performed
exactly (unlike the case in see. III A), we use the saddle-point
approximation (Ref. sec. U). .This requires that the above
branch-cut" contours be again deformed until they follow the
paths of steepest descent through the saddle-point frequencies (if
more than one is found for our case here). As is clear from Fig.
III.6, even 1f a saddle-point lies on one edge (or side) of a

braneh-cut (the position of which is chosen arbitrarily), the
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corresponding path of steepest descent does not generally follow
the edges of the branch-cut.
If B, denotes the "branch-cut" contours (or their defor-

mation into paths of steepest descent) with Re(wl) >0, then Eq.
(I .29) becomes

G @256,k )= 8@k JexpEyt) GE,2,5t k)

= r—-—;—-— + c.c. (I.244)
Yeilonefs) o

ns A ([m24c)

We have evaluated é‘l at the saddle-point frequency Wy =y

(if more than one saddle-point is found, an appropriate summation is

needed here). As in previous examples, we have extracted an

exp( -vlt) term by transforming to a new w = (wl)old +iv, which
eliminates \)1 from kiz but not from the resonance denominator

2 . 2 .
mp - [wo -w - i( vp - \)1)] which appears in Q. The saddle-point
equation is B‘V/awl =0, or

dfw) _ 1 (m.25)
dw, oM
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from which we wish to obtain the saddle-point frequency W= ml( n)
(the £1 L—depencfenee will be suppressed inr the interest of simpler
notation).

Rather than use f(w ) in Eq. (IIL.25), we find it simpler
to invert this function to get (ul(f) and replace Eq. (III.25) by

the equivelent equation

dw,(f‘) _ ]]I.ZG)
aF (

(essentlally saying group velocity along 2z is cn) and solve for

f(n). Equetion (II1I.22) gives (m 2 7)

w,z - (w2+ Af 2)] w: -[wo-w'-i(yr_'vl )]2 + D2 =0

which has three solutions with He(ml) > 0: a solution near w ¥

1
¥ P+ PR,

a solution near w L D :i.(\)p - vl), and
one near w ¥ w, * wp - :|‘.(\)p - vl). Since w = (mf) + cakil)%, and
f 2 /§ is an effective k'.l.z’ the first solution is a modified ver-
sion of the usual electromagnetic wave normal mode: wusing it in

Eq. (111.26), with the pump strength parameter D set equal to
zero In the definition of f, would give the saddle-polnt frequency
wy in Eq. (III.5a). The second and third solutions result from the

"heat" of the plasma wave (density perturbation én) with the pump
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wave (velocity perturbation vo) which gives a contribution to the
transverse current in the electromagnetic wave equation (see sec. I C).
We can solve Eq. (III.27) approximately if we assume We are near at
most two of these frequéncies but far from the third. Since the

last solution has w o>, it is not of much interest here and will

be ignored for now.

Assuming O iRe(Q )8 W, Eq. (III.27) gives ml(f) = ml[Y(f)]
where

(V)26 + Y+ (1+YDE  (@ose)
Y(f)s-zii [(w2+c24‘2)!ﬁ_wa+i(»{,-v,)] (m.28k)

with wp = w, - mp and Yo the uniform plasma growth rate given by
Eq. (I.2). From Eq. (III.28),

do(FYAF = FRFCYY/ @Pe2fE @290
FON=[Y++Y2?] 20+Y2)% (2w

and using this in Eq. (III.26) gives
f (Y,'q) =

'V](.O

cFO[t-n/Fay)

(]]I.Z‘I ¢)
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as thé saddle-point equation. Equation (III.29¢) can now be used

in Eq. (iII.28b) to give (]]Iao)

=g

After solving this equation for Y(n), we obtain ml( n) and f£(n)

— W, +i (VP—)),)

from Eqs. (III.28a and 29¢c) for use in Eq. (III.24).
Note that the approximation under which Eq. (III.28a) was ob-
tained from Eq. (III.27) requires |m1 - up * 1(\)p - \)1)| >>

>> D /2w ml =Y /ml or equivalently

Y+ ary2)%| » 4/, (.31

and any solution Y(n) to Eg. (III.30) which violates this condition
must be discarded. All solutions satisfying Eq. (III.31) also
satisfy Re [(au2 + 02f2)§] = wﬁe[(l - nz/Fz)_élz 0, which we assumed
in solving Eq. (III.27) for Re(ml) 2 0, so this introduces no
branch-euté.

Now we must put in the branch-points (at Y =4#i) and
branch~cuts in the complex Y-plane for the function (1 + Y2 )i. Ir
we put in the branch-cut vertically fx:om -1 to +i, this defipes
two independeht Riemamnn sheets: we denote by lll the sheet on which
(1+ Y )% 4'+Y for |Y| >> 1, and we denote by l2] the other sheet

on whleh (1 + Yz)é ¥ Y for |Y| >> 1. It is also convenient to
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consider two other Riémann sheets composed of parts of the first two
sheets: sheet [3‘ consists of the right half-plane of [l] and
the left half-plane of [2], and (1+Y°R V41 for |¥] « 1
sheet [4] consists of the right half-plene of [2] end the zers
half-plane of [1], and (1 + Y3 ¥ -1 for |Y| << 1. The branch-
cuts on sheets [3] and [4] run vertically from +1 to +iwo
and from -1 to -iw,

On sheet [1] for Y| >>1, F=1+147¥+ ...
VP =1+1/2Y + ...,
w(Y)=wi6y v)+zn'Y+ i-14Y2 Y [Wsza)

FO0= e/t ][1+ 1Y 2 02) -] (m32s)

=i +ily~ U
Yozt |

On sheet [2] for |Y]>>1, 1/F=4¥°+3+ ..., 1/F° =

167% + 24Y% + ..., and

@ (Y)=w, i -it- Y20y oY (.330)

f)= [tme e (l- IGnZY")yzj[iw/‘rYz(i‘ terfY*)s |
i . (I 33k)
Y(fl)”’z'?[m TnriGER) ¢

12 ""Yz (r33c)
o T ]
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On sheet [3] for |Y| <<1, 1/F=21-Y+--2), 1P -

= 4(1 - 2Y + ...}, and

w(Y)=We-iGp) +iy, (1+Y+) ({340)
F0)=[enafel-+PE][1-Y/avp)e] @34

Y(")z-zlv {(1 :-OZT/z —ep +ilyy) -
A

Finally, on sheet [4] or Y] <<1, 1/F=21+Y+ -++), 1/F =

=4(1 +2Y + «+.), and

(I34c)

w(Y)= we-ily-1) -i%, (1-Y+-) (I.354)

= [onw/e (1-4m2 Y ][1+Y/(1-4m2) +--
£Y) = [2mw/e @) 2l Y/-4P)+] sy

Yoo~ gy a0
} (I1.35¢)
+ YY)

+:.rﬂ.«3__
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Using Egs. (III.32¢, 33e¢, 34c, 35¢, 31), one can find five
solutions YN(n): three on sheet [3] and two on sheett [4] as
shown in Figs. III.5a,b, respectively. We use sheets lB] and [4]
because two of the solutions (II and V), as n varles from 0
to 1, thread their way between the bramch-points at #i. It is not
too difficult to verify that these are the only valid éolutions to
Eq. (III.30). By rearranging the terms in Eq. (III.30), and squar-
ing twice, one can remove all square-roots and obtain a twelfth-order
polynomial equation {and, hence, twelve solutions) for the quan-
tity ¥(n). By comparing these solutions back to Eq. (III.30), one
finds three extraneous solutions (due to squaring the correct equation)
on sheet [1] and four solutions which violate Eq. (III.31) on
sheet [4]; this leaves only five valid solutions . However, we
are only interested in those solutions for which Im(¥) >0 in
Eq. (III.24), and this eliminates solutions III-V from further
consideration. -

As a final comment here on the general properties of the
solutions Yu(n), we note that if FEgs. (III.32-35) are used to
plot the saddle-point frequencies, wl(YN(n)), they all (even
solutions III-V) turn out to lie either above the branch-cut
from the turning point ch’ (e. g., see Fig. V.6a or b for the
branch-cuts) or on the continuation of this Riemann sheet reached by

crossing (1. e., traveling under) this branch-cut from sbove. This
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is in agreement with the location of the saddle-point frequency mA(n)
in the uniform umpumped case (sec. III A), as shown in Fig. III.6
where the saddle-point lies on the sheet composed of the upper-half-
plane {e. g., reéions e and c) of Fig. II1.6a and the lower half-
plane (e. g., regions a' and c') of Fig. III.6b. In Fig. 111.6,
the solid lines are contours of constent Re (¥) (with ¥ given by
Eq. (III.24b)) and the dashed lines are contours of constant Im(Y¥)
(becoming increasingly negative as y = Im(u.\l) + -»), In the steepest
descent saddle-point approximation (as opposed to the stationary
phase method), the contour of ml-integration is depressed until it
lies in the "valley" region along the curve marked with arrows. )
In the uniform pumped csse discussed in this section, we have just &j
found similar behavior but with five saddle-points rather than one.
Solutions III-V all lie roughly below or to the side of the branch-
point NOIOI = wp - i(\)P - vl) and on dashed lines for which

Im(¥) <0 for all n. Solution I starts approximately at

wy = w/(1 - nz)% for small n and lies on or slightly below the
"real w-axis for n>0. As n -1, ml(YI(n))->mR - i(\)p - V) -y,
(ignoring terms much smaller than Yo) and this solution ends.
Solution II starts approximately at wp —i(vp - vl) for n = 0,
rapidly gains an imaginary part vy Y, a 1 incresses, and then
approaches Wy = w/(1 - nz)é as n -+ 1. Thus, the'pump has essen-

tially split the umpumped saddle-point Wy into two saddle points,
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ml(YI(n)) and ml(YII(n)), and created an additional fvalley" for
the ull-integration contour to follow as it is depressed down to
Y -,

Having obtained the saddle~points (examples given below,, we
return to Eq. (III.24), deform the contours B, into contours fol-

lowing the paths of steepest descent, and obtain G ( n;t,kl J_) where
G==S_ 5 SPE eXp[Im(‘Y,)]Sm[ReOK) +6g + rr]
G gnyes (P 2w ydr?] 1% @se

with the subseript "s" denoting evaluation at one of the saddle-

points (I or II), and f d ml(f)/df Ifidzml/dleexp(izes). We
next cbtain the quantities appearing in Eq. (III.36), for the
saddle-points I end II, for ranges of n which give rela-
tively simple results.

For wy far from the resonance frequency W, We have
‘YN( n)| >> 1 and we consider here situations (n sufficiently small
or 1eu;ge ) where we can drop the fd:i-:ll‘th term on the right side of

Eq. (III.32c) giving

Yn ”-—[w m-w +|(1{,-V,)} (I.37)

where w (n) = w/(l - nz)é as in Eq. (III.5a). If we define o =

K [1 - (m/mn)zli b;' setting mA(no) H wp, then Eq. (II1.37) is
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valld only if |Y(n)| >> (n"em/tfyo )1/3/(1 - !12)é which requires

0%n=<< Ny for solution I and n, << n X1 for solution II. In

the remainder of this section, we will assume w, >w and

(mR - m)/2x°x 2( nim/Byo) >> 1, but My << 1 still, in order to

have a well-defined range of n values over which solutions I and

IT are valid. Using Egs. (III.32a, b, and 37) we find

Re(Y)= wt (1-r)2 ~tfwm-w ] e[y o’ @mssd
In(§)= G0t/ Yol (w38
({f/qz)sz, /df? = w(t- .qz)'/z {1 ~

- [t P YD A Yo

where "s" denotes saddle-point I for 0 S n << n, and saddle-

(IL38¢)

point II for n, <<n 2 1. Note that Eq. (III.36), using Egs.
(111.38a-c), represents only a slight modification of the uniform
umpumped results of Eg. (III.4) with the agreement becoming
exact as Yo * 0.

For ml' near the resonance frequency wp, we have
|YII(r|)| << 1; the other two limiting cases, YI(n) ¥+i(ag n+1)
and [YH(n)I >> 1 (on sheet [2] as n +0), both give a damped

response(with a damping rate of (vp - vl)) and must, therefore, be
ignored in the presence of growing (or at least undamped) waves when
determining the asymptotic response. All the terms shown inBy.(ITI.34c)

P



)

must be kept now and give (for |Y| << 1)
y W (14722 - op + G0
[‘l-q w/t- lrrlz):’é +2|Y] .

Note that in the denominator of Eq. (III.39), the last term, 2iy ,

(I.39)

is much smaller than the first term by virtue of the assumption
made in the previous paragraph. If we now set w/(1 ~ li,rﬁ)é = s

we obtain Ny = no/2 ; 1. e., the actual trajectory of the resonant

maximally growing wave-packet has a group velocity along z of
only one-half the value that might have been predicted from Egs.
(I11.37 , 38b) or from Fig. III.1 by setting mA(n) = wpy for
the frequency matching condition. This agrees with the results ob-
tained by other authors (see sec. I A 2). Using Egqs. (III.34a, b,

and 39), we find

Re(¥)= i‘*-[w + w(i-'fnz)'é] +

_ (m.40a)
w Re ( ) \ 7
{nﬁ ¥ 2[}%2"] 21l Sz(n)J}

Im(‘{’)xt{ -2

1flaf-'-’ Img)Yss /2(’1)] Yo Re [YZ(,])]}

(.40L)
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2 2
s dW Lo (1oyn? ’/z{ _'é‘lﬂ__

+[1 X % :?' ]} (I.40c)

where the subseript "s" now denotes saddle-point solution II.
Equations(III.39, 40) are valid only for |n - Ng| <«< ng-

In Eq. (III.40b), the third and fourth terms can be combined

(1 41)

oo S R

where we have used /(1 - 4n°)f - Wy t dnge(n - np)A - 4713)3/2

and then replaced 1 - 4n§ ~ 1 everywhere since 4n§ = ni <1 by

and simplified to reduce Eq. (III.40b) +to the form

assumption. Equation (III.41) shows that Im( ‘!’s) is maximized at

n-= nM where’
n=n, (1+%3) | (L 420)

and

In[¥( )]t (4 552) (42t)
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and that Im( ‘PS) falls below zero for |n - nM| >[2 - (\)p -y )/yoli;
since this latter inequality cannot generally be satisfied and still
remain within the range of validity (|n - nR] << nR) of Egs.
(III.39-41), it is more useful to use the second derivative at

Ty [dZIm( ¥ )/an]M - —Yo/ng, when determining the width (in n )
of the growing wave-packets. Clearly, by expanding Eq. (III.36)

about the maximum growth trajectory Ty oOne obtains a growing and

expanding wave-packet traveling along iz at half the group velocity
that a wave of this frequency (ml X W, = w - mp) would normally
have in a uniform unpumped plasma - in agreement with see. I A 2.
Thus, we find general agreement with sec. III A in regions
of t - z space where one would not expect, from frequency matching
considerations, strong growth to occur. For n o ng = [l— (w/uh)'?]i/Z,
however, we find strong'iy growing wave-packets (over a range of n )
with properties in agreement with those discussed in sec. I A 2.
In concluding see. III, we note that in these simple cases
we have been able to use the mathematical procedure outlined in
sec. I D to obtain known or physically reasor'labie r;sults. Al though
nothing particularly new was discovered in this section, we have
developed sufficient confidence to move on to the somewhat more
complicated case of a nonuniform pumped plasma (sec. V). First,
however, we quickly review the phase-integral (or WKBJ) method
in sec. IV end also cbtain there some results that will be needed

later (in sec. V).
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IV. THE PHASE-INTEGRAL

(WKBJ ) METHOD

We recall from sec. I D 2 that our basic mathematical pro-
cedure (for solving the Raman instability problem) calls for obtain-
ing two linearly independent solutions (A and B) to Eq. (I.25)
with S = 0. We have already studied, in sec. III, three simple
limiting cases where this equation can be solved exactly; in generail
(i. e., in sec. V), however, exact solutions are not currently
available. We therefore turn to an approximate method of solution,
the phase-integral (or WKBJ) method, which is described and sum-
marized (with an example included in sec. IV C) in this section. {w}
This approximation method is capable of yielding accurate solutions
everywhere in the complex plane (of the position variable in Eq.
(I.25)) except near certain "transition" points where Q(z) = 0O or
», This ig sufficient for dealing with the questions we wish to
answer (see sec. I B) because we are primarily interested here in
the large-scale effects (e. g., growth and saturation of growth) in-
duced by these "transition" regions rather than on the precise de-
tails of how these effects were actually accomplished. In this
section (IV), we investigate the rules for tracing the phase-integral
(WKBJ) solutions around (but not too near) the above-mentioned
transition points( in Eq. (I.25), Q has one simple pole and two

simple zeros). In sec. IV C, we consider the special case where the
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pole and one of the zeros are "nearby” since this turns out to be

important in sec. V.
A, Introduction

The phase-integral (or WKBJ) method has been treated exten-
sively in the literature (Ref. sec. T). We particularly recommend
Heading (Ref. T I) as an introduction to the subject and Froman
and Fromen (Ref. T IV), a more rigorous treatment, to answer questions
the reader is likely to have after reading Heading. Skorupski (Ref.
T V) generalizes the work of Frdman and Frdman to the complex plane,
as required for our problem here. Finally, we mention Berry and
Mount (Ref.T VI) as a more recent survey of the literature. In
this section we will only briefly describe the method and those
concepts needed for applying the rules that are given in see. IV B.
Sections (A and B) represent our attempt at summarizing, in
cookbook" style, the essential results actually needed to apply
fhe method; we give here no derivations, details, or complete
error estimates, but instead refer the reader to references (T I,

IV, V) for such complicated and time-consuming matters .

Given an equation of the form

&+ ¥q@)f =0, (.1
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in the phase-integral method we loock for solutions of the form (com-

pletely general)

fe=a@f® + 0@ L6 {24

f@=(p,c)= q % ko) expli¥(p,c)] (¥.2b)

£ip)=(c,p)= iy‘*(p) exp[~i ¥(p,) (A¥.2¢)
£

Y0z M/ q2(pdp . (.24)

We have used Heading's notation in Eqs. (IV.2b,c) (in sec. V , we
multiply these functions by a convenient comstant), where c is

the "phase reference level" and is typically chosen to equal one of

the transition points T where q(T) *0 or = (thus, T also is

/4 and q&). The phase-integral ¥ gives

a branch-point of ql

the method its name, and the determination of the coefficients

al(p) and az(p) for all p, given thelr presumed known value at

some polnt or in some 1imit (é. g., p+=), 1is the goal of the method.
Although the coefficients al(p) and az(p) are often nearly

constant cver large regions of the complex p-plane, one or the other

of the coefficients will occasicnally change as p varies (the
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Stokes effect; see Ref. see. T); these changes, however, are found
to oceur in a predictable manner (both the region of change and the
amount of change suffered on crossing this region). When discussing
these changes, it is convenient to first define certain sets of

lines in the complex p-plane: the (generalized) Stokes lines are

contours of constant real phase
Re(¥)= constant , (N_3a)

and the (generalized) anti-Stokes lines are contours of constant

imaginary phase

Im(¥Y)= constanT . (N3b)

The (prineipal) Stokes and anti-Stokes lines are the particular

lines, out of the above two infinite sets, for which the above
constants are set equal to zero and for which the "phase reference
level" ¢ 1is successively set equal to each of the transition
points T. The adjectives "generalized" and "prineipal” are
placed in parentheses above since they are our own and such distine-
tions are not typically made in the literature (Heading and Fr&man
and Froman use only what we here call the 'brincipal” lines, while

Skorupskl uses all the 1lines but calls them all just Stokes and
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i a.nti-Stbkes lines). The Cauchy-Riemann equations (Ref. S I} can be
ﬁsed to show that the generalized Stokes and anti-Stokes lines are
mutually orthogonal except at the branch-points (i. e., transition
points T) where ql"(p) ceases to be analytic. Some examples are
shown in Figs. IV.1,2 and V.3-5.

Along the generalized anti-Stokes lines, the WKBJ solutions,
given by Eq. (IV .2b, ¢), are purely oscillatory and, assuming an
exponential timc-dependence of exp(-iwt) with Re(w) > 0 (for
instance), we can define a direction of propagation (indicated by
arrows In Fig. IV.1 and later figures) for these waves. Along
the generalized Stokes lines, these WKBJ solutions are purely
growing or decaying, and we can define a direction in which each
solution grows (again indicated by arrows in Fig. IV.1 and later
figures). At a non-branch-point intersection of a generalized
Stokes and anti-Stokes line, the directions of growth and propagation
are related (by the Cauchy~Riemarn equations) for each of the WKBJ
solutions. This relation has been called "Heading's rule", but
here we choose to more pictarially call it the "right-hand SAN
rule" which we state as follows: for each of the WKBJ solutions,
the direction of gl;owth (the Stokes 1ine a;-row) erossed into the
direction of propsgation (the anti-Stokes line arrow) is mormal
(up) to the complex p-plane. If the time-dependence had been

chosen as exp{iwt) with Re(w) > 0, we would call it a left-hand
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rule. With the directions of growth now presumed known, an additional
definition is typically used in the literature: a WKBJ solution is
termed dominant in a given region if, in that region, its direction
of growth is away from the "phase reference level” cj; it is termed
subdominant 1f its directlon of growth is toward c. Note that

the property of dominance or subdominance is dependent on the choice

of "phase reference level": in changing this level from P, to P

1
(for instance), we pick up Heading's "dominancy changing factor"

[5,,5,]= exp[i ¥ (og,)] (.4)

with the properties (p p,) = (9,91)[91’92]’ (0,0) =[92,91]-

2

*(py,p), and [pz,pll = [pl,pZ]-l. This factor could be large or
small if the path between Py and P, has a sufficiently long
projection along a generalized Stokes line. Finally, we note that
the dominance or subdominance of a WKBJ solution reverses upon
crossing the generalized anti-Stokes line that intersects the "phase
reference level" c.

Having defined the generalized Stokes and anti-Stokes lines
and discussed the general properties of the WKBJ solutions, Egs.
(IV.2b, c¢), we are now in a position to discuss the changes that
oceur in the coefficients al(p) and az(p) as p varies in the

complex plame. Essentially, the results found (in Ref. sec. T) are
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as follows: along a generalized antl-Stokes line, the relatlve
changes in both al(p) and az(p) are at wost on the order of

8 quantity called (by Skorupski) the "p-integral”,

p=A f fedede| @)

where the integration path p-e (lying only in the region where
one is trying to evaluate al and 52) is a part of the integration
path ¢ - p used in Eq. (IV.2d). The validity of the phase-integral
method requires u << 1; 1if one uses q(p) = (p - T) , thils gives

(over a seml-circle)

_ ,n(n+l+)l
p= 16\ l ? T,(n+z)/2

which (for n > -1) sets a minimum distance of approach to the tran-

«1, (Iz6)

sition point T(Ref. T V). Setting ¢ = T in Eq. (IV.2d),

Skorupski also shows that (for n 2 -1)

SR IR

the intuitively reasonsble result (see also sec. III B) +that the

phase must be large in order to use the phase-integral method. This
eliminates any paradoxes concerning the second major result: when

moving (p) along any generalized anti-Stokes line (or jumping
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between two principal anti-Stokes lines), 1if one crosses (in the
counterclockwise direction) a prineipal Stokes 1line ( radiating from
any transition point) then the coefficient as(p) of the subdom-

inant WKBJ solution (fs) changes acecording to

(as)new: (as)old + Sy, (.8)

where a d(p) is the coefficient (unchanged) of the daminant WKBJ
solution (f d) and S is the Stokes constant; if crossing in the
¢lockwige direction, replace S by -S5. In general, S should have
a subscript denoting which principal Stokes line of T 1is being
crossed (although S is often the same for all lines).

It should be emphasized here that, when & principal Stokes
line (from a transition point T) is encountered (when traveling
along a generalized anti-Stokes line), one must change the
"phase reference level" c¢ to the point T since the Stokes constant
S is generally tsbulated relative to only a transition point as the
"phase reference level™; using a different value for ¢ would intro-
duce different "dominancy changing factors" in each of Egqs. (IV.2b,
c), relative to what fl and f2 would be if ¢ = T, and this
difference would change the Stokes constants (Ref. T I). According
to the first result (above Eq. (IV.5)), one can apparently ignore
this principal Stokes line, but this is true only if one has no

intention of ever crossing the second principal anti-Stokes line from
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T +that lies on the other side of this prinecipal Stokes llne. (The
first principal anti-Stokes line from T can be crossed, but not the
seeond.because the direction of growth of the original dominant so-
lution would then be reversed on this path around T; see Ref. T II,
pages 226 ~ 227). Thus, to find solutions valid aroumd T, one
must change the "phase reference level"” to T and, if the resulting
"dominancy changing factor" 1s taken into acecount, then Eg.
(Iv.8) will give a negligible change (since |¥] ¥ 1) in a_
("subdominant™ here meaning relative to T) in agreement with the
first vesult (above Eg. {IV.5)).

The discussion in the preceding paragraph has presupposed
that we know a; and a, at some point on a generalized anti-

2

Stokes line. If instead, a, and B,

anti-Stokes line from T and we wish to know them on the next

are known on one principal

principal anti-Stokes line (around T in the counterclockwise direc-
tion), then we find, upon moving to a generalized anti-Stokes

line sufficiently far away from T as to satisfy |¢¥| R 1 (and

M << 1), that the subdominant solution fs is exponentially small
(smaller than the error in a; multiplied by fd) and its coeffi-
cient must be considered as unknown in the phase-integral method.

In Eq. (IV.8), however, we are supposed to use on the right-hand-
slde the known valueg of 8 and ;2
Stokes line. (Equation (IV.8) was actually originally derived

from the prineipal anti-
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(Ref. sec. T) for precisely this case, and we are merely generalizing
the rule to include generalized a.nti-Stolﬂzes lines on which 8
a.nd. a, are ¥known for some reason). The resulting discontinuity
in ag (as evaluated on the two principal anti-Stokes lines), there-
fore, does not violate our first rule (above Eq. (IV.5)) because
the actual coefficient ag is not known on the generalized anti-
Stokes line (which also mever reaches either of the principal anti-
Stokes lines, but only asymptotically approaches them with
Im(¥) % 1 held fixed) and, as implied asbove, this discontinuity in
asfs is smaller than the error in a df 4 evaluated on the generalized
anti-Stokes line.

Finally,we return to the fact that the transition point T
:

is also a branch-point of q* and q% and that branch-cuts must,
therefpre , be drawn in the complex p-plane. It is,therefore, necessary
to lmow how the coefficients and WKBJ solutions differ on the two
sides of a branch-cut (so that we cé.n cross it if necessary). The
general rule is that for a zero (of q) of multiplicity n, the exact
solutions to Eq. (IV.1) exhibit no branch-behavior (i. e., they are
entire analytic functions), so the continuity of Eq. (IV.2a)

must be preserved even if we must alter its form. Examples of this
will be given in the next section. For a first order pole, however,
such as appears in our problem in sec. V, the exact solutions to

Eq. (IV.1) do have an intrinéic branch-behavior. Examples of this

will be given in the next section and again in sec. IV C.
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B. Rules for Easy Application

We summarize here the procedure discussed in the previous

section and present some of the more useful quantitative results (e.

g., the Stokes constants) obtained from the literature (Ref. sec. T).

In general, when applying the phase-integral method, one must do

the following:

(a)

(b)

Fitrid the positions of all tramsition points, all prin-
cipal Stokes and ant’~Stokes lines, and a sufficient
number of generalized Stokes and anti-Stokes lines
(usuelly by inspection) to establish their trend.
Place branch-cuts (from the transition points) in
convenient positiona (typically so as to be avoided).
Apply the boundary condition that defines the first
of the two independent solutions (e. g., A and B)
of Eq. (IV.1) -- do this by drawing the appropriate
arrows (see sec. IV A and Fig. IV.1) on the Stokes
and anti-Stokes line that intersects this boundary
point Py (or limiting region, such as p + @) and
labeling these arrows with the local values of the
coefficients a, and 8y Relative to the first tran-
sition point T (i. e., setting the phase reference

level ¢ = T) that one encounters near () this

boundary solution A( po) must be either subdominant
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(a)

(e)
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or be applied on a prineipal anti-Stokes line from T.
Start outward from Py along some arbitrary path.
Continue this same solution (i. e., coefficients a;
and 82) to neighboring generalized Stokes and anti-
Stokes lines using similar arrows with labels, but stop
when encountering a principal Stokes line or branch-cut
from any transition point T. If none are encountered,
go to step (1).

If not already done, switch the old phase reference

level (c)old to (c)new =T and use nsw coefficients

(al)new = (al)old' [(c)old’ (c)newl

(8))ey = (25)01q * [(c)new’ (e)o14 l

to label similar arrows near T. If a princeipal Stokes
line is encountered first, go to step (e); if a branch-
cut is encountered first, skip down to step (g).

From the direction of the arrows, note which WKBJ
solution is subdominant and then cross the above men-
tioned principal Stokes line and change the subdominant
coefficient from the value obtained in step (d) (now

renamed "o0ld" again) to the new value (see Eq. (IV.8))
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(e)
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(a.)

énew = (as)old *5¢t e

a4 -
For an isolated treansition point with q(p) = (p - T)"

(n2-1), use
S = 2 cos['n/(n + 2)]

if going around T in the counterclockwise direction
and minus this (-S) if going in the clockwise direction.
For non-1lsolated transition points, one can often treat
them as merging into a single "compound" transition
point as in sec. IVC where S = T, (for further exam-
ples, see Heading, Ref. T I).

Having crossed the above mentioned principal Stokes line,
one should again put arrows on the generalized Stokes
and anti-Stokes lines for fl and f2 and label these
arrows with the new coefficients (ad unchanged )
obtained in step (e). Go to step (c¢).

If one wishes to cross the encountered branch-cut

in the sense of "jumping over" the cut or, equivaliently,
going around the transition point T to the correspon-

ding position on the other side of the cut, then, upon

erossing this branch-cut, the coefficlents obtained in
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step (d) (now renamed "old" again) are changed to new

values. If q(p) « (p - ), then for n >0 and odd

( 3 )new i(-1 )( w12, (a2 )old

(o)), =1 (D20

and the directions of the arrows corresponding to

fl and f2 are reversed; for n>0 and even

( 2 )new = (-1 )n/2 ( 8 )old
( 8 )new =(-1 )n/2( ) )old

and the direeticn; of the arrows corresponding to fl
and f2 are unchanged. As is apparent from the example
in Figs. IV.la, b, \as far as the arrows are concerned
the pattern remains exactly the same (upon crossing the
cut) but with the 1al?els multiplied by exp(-inw/2). The
above rules assume t}ixe cut is crossed in the counter-
clockwise direction; in the clockwise direction just
replace 1 by -iI. Note that the above rules maintain

the continuity of the full solution f = a,f; + af,
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(1)
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asrequired since the exact solution here has no branch-
behavior. For n = -1, however, the exact sclution
does have an intrinsic branch-behavior E;'ld, to preserve

the required discontinuity, one now must have

+2i ~a

(a,) = (85)04 a

s ‘new
with the dominsnt coefficient unchanged. Again this is
for counterclockwise crossing; for clockwise crossing
replace i by -i. If this branch-cut (intrinsiec) is
crossed in the sense of going through onto the contin-
uation of the Riemann sheet, then the continuity of the
full solution f = alfl + a2f > would once again have

to be maintained.

Having crossed the above mentioned branch-cut, one
should again put arrows on the generalized Stokes and
anti-Stokea 1ines for the WKBJ solutions fl and i‘z
and label these arrows with the new coefficients obtained
in Step (g). Go to step {(ec).

The solution f{p) = al(p)fl(p) + az(p)fz(p) is then
known along the chosen path. New paths can be taken
until the solution 1s known in every region (excluding

e small region around every transition point) of the

complex p-plane.
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C. Stokes Constant for

- Pole-Zero Combination

We assume here that, for small p (e.g., |o] << 2|X| in
Eq. (V.22)), our function q{(p) takes the special form (relevant to
sec. V)

q@)=2X + ¢ @)

where X is independent of p. Equation (IV.1) can then be solved
exactly (Ref. sec R) in terms of Whittaker functions, and Heading
(Ref. T III) has calculated the Stokes constants from the known asymp-
totic forms for the solution. The precise value of Heading's

"Phase reference level", c¢, is somewhat obscure, however, and we
prefer a more standard choice like setting e = -1/2X, the position
of the zero of q(p). As pointed out in seec. IV A, however,

changing "phase reference levels" also changes the value of the
Stokes constants, a.ndv we find that we must muitiply his result

(correcting a typographical error) by the factor (k/e )2 sk,

oexp[-iZTrsk(s - 1)] . Here k = -iA/Z(ZX)é, s (-1)n, and n
is an integer labeling the two effective principal Stokes lines on
the different Riemann sheets as shown in Fig. IV.2. Performing

this multiplication resuits in
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T-= 27 (

K260 exp[ :2nsk(n+s—1)]

as' the Stokes constant we use here (we keep Heading's symbol Tn).

This has the expected limit (in égreement with the Stokes constant

for en isolated first order zero at p = -1/2X), as |k| + =, of

T —>  +i (]I.Ha)
lkl"w :

on the principal Riemann sheet (n = 0, 1), 1if we use the asymptotic
form for the gamma function TY( gk) with arg(sk) < 7 and
-1 £ arg{k) £ 0 (this requires setting s = exp(imn) with n =0

or 1 only). In the opposite 1imit, |k| + 0, we t'ind

T — omik (&) (1+12k+--~) (W 11h)

"o (Nllc)
T I —l-»—zm k(—E-) exp(-lZNk)(l-I 2k+-"
ki-0

Although T~ has the proper limiting form in Eq. (IV.1la),
considering the complexity of Eq. (IV.10) further verification is

always ﬁelcome. This comes easily if one uses the rules in sec. IV B
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to irace the solutions corresponding to the two cases of a wave in-
coming from the right or the left. The boundary condition in both
cases is that the wave be outgoing on the far opposite side. In
both cases the branch-cuts should be directed upward and the solu-
tions traced across the 1_ovE-ha1f-p1ane using To for the Stokes
constent (finite wave damping would shif't the pole above the real
axis if exp(-iwt) time dependence with Re(w) > 0 is used). For
the wave incident from the left and encountering the turning point

(zero of q) first (Fig. IV.2a), we find for the reflection R and

(.12a)

-2miexp(ink) () 4,12 b
Ty TR @0

F=expCink) | (w.12b)

For Re(k) = 0, this gives

IT| = exp [-IT |Im (k)” GYJZC)
Rl =1-171° (T 124)

~
transmission T coefficients

R
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in exaet agreementwith Budden(Ref.RTI). For the wave incident from the
right (Fig. IV.2b) and encountering the resonance (pole of gq), we

find

! ﬁ:O (N13d)

T=expCimnk) (I 13b)

go that our results are again in exact agreement with Budden for
Re(k) = 0.

k We mentioned earlier that a first order pole glves =
solution to Eq. (IV.1) with an intrinsic branch-cut. Teking this
case (or ietting X+ 0 in Eq. (IV.9)), the two independent

exact solutions are (see Ref. sec, R)

A@=15 H(@p) (I7.140)
B@)= 15 H,”(227F) (. 141)

where. Hg_l) and (2) are Hankel functions. These two solutions
both have Intrinsic branch~behavior due to the square root. Their

asymptotic forms (for Alpl‘“’ >> 1) are just
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A~ expCigm) 1(p) (I 154)
B—exp(tizm) £ (p) (Z.15k)

where f, and f, are given by Eq. (IV.2b, ¢). It is interesting

to note that the particular combination

A+B =215 J (20p) (Ir.16)

has no branch-behavior, as can be verified from Figs. IV.le, d or
by expanding the Bessel function Jl. The branch-behavior of this
isolated pole will, of course, continue in the presence of other
transition points such as in Eqs. (IV.9 and V.2¢).

This concludes our discussion of the phase~integral method.
We have outlined the basic concepts, presented a list of rules to
follow when applying the method, and have investigated certain details
of the solution in the neighborhood of a pole and one nearby zero
of q(p) such as we will find in part of the complex p-plane in
sec., V., Therefore, we move on to sec. V and our main problem we

are Investigating —the nonuniform pumped plasma.
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V. NONUNIFORM PLASMA, PUMPED

For a linesr density profile (z > 0), we see from Eq.
(I.25b) that Q(z,ml,gl J_) generally hss two roots and one pole in
the complex z-plane. We simplify the form of Eq. (I.25) by trans-
forming to the new dimensionless posltion variable

2 .\
Wi @) - (w,-w,-iy)

f(z7w| 7.ku_) = D ) (Y 1)

where the pump strength parameter D(wl’;k-‘.L .I.) is defined by Eq.

(1.25¢), and vp 18 a phenomenological damping rate for the Lang-
muir waves. The homogeneous transformed version of Eq. (I.25a)

(valid only for Rewl > 0; seesec. II) now reads

LeteXfign=o @2

. (T.2k)

(Y.2¢)

__-2)G-p) |
P
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p00= X+ (x2'+1)"2 29
p0D=X - (X% 1)'/2 , ®2f)

and vy is a collisional damping rate for the electromagnetic waves.
We have transformed our old Q(z,ml,_lg_l_ 1_) into a dimensionless po-
tential q{p,X), where the roots (of @ and q) are now at o,
and p_, and the pole is now always at p = 0. We have replaced the
two parameters ml and 31 n by the single dimensionless parameter
x(ml,l_L_L 1-), which we will treat as essentially a frequency parameter
since El L is generally treated as fixed here (see sec. I B). Note
that the positions of p +(X) and p_(X), . relative t.o each other and
to p =0, depend on the value of the complex parameter X. The
branch-cuts (in the complex X-plare) for Egs. (V.2e,f) are chosen
(see Fig. V.1) such that |p | 21 and |p_| 21 (see Fig. V.2)

on the prinecipal Riemann sheet. If we had not chosen a linear density

profile (for z > 0), we would have the more complicating features
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-that A (and X, if a nonuniform static magnetic field B = ;:\B(z)

were included, as mentioned in see. I A 1) would be z-dependent and

’ dfl d2 a 2
there would be an additional term a5 (—%) (—p on the left
dz dz

of Eq. (V.2a).

According to the procedure outlined in sec. I I'2, we must
now find two solutions A(p,X) and B(p,X) of Eq. (V.2) valld for
arbitrary complex X (X depends on oY which must be integrated
over). In the absence of known exact solutions, we use phase-inte~
gral (or WKBJ) techniques (Ref. T) in the complex p-plane to obtain
approximate solutions valid in overlapping regions of the complex
X- or ml—plane (excluding the transition-points where p = 0,p,
or p_).

In applying these techniques (see sec. IV), the first
step (sec. V A 1)is to obtain the generaiized Stokes and antl-Stokes
lines in the complex p-plane and determine how these lines change
as X changes. The next step (sec. V A 2) is to make a convenient
choice for the branch-cuts which must emerge from the three transition-
points (0,p,, sand p_) in the complex p-plane. Finally (seec.

V A 3), we start in a region of the complex p-plane far from all
transition points (where a convenient choice for the solution A

or B is made) and then travel through the complex p-plane,
addi_ng‘and modifying terms (according to the rules given in sec. IV B)
as we crose the Stokes and anti-Stokes lines, thereby construecting

the WKBJ solutions.
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A, Application of Fhase-Integral Method

1. Stokes and Anti-Stokes Lines

0 As defined in sec. IV, a principal anti-Stokes line has

Im f T Vg dp =0 where T denotes one of the transition points
(0,p+, or p_ here); along such a line the WKBJ solutions are purely
oscillatory (we recall that the WKBJ solutions behave essentially
Uke exp (i) . ¥ dp), as described in sec. IV A). A principal
Stokes line has Re|] /g'dp = 0, and along such a line the WKBJ
solutions are purelyTgruwing ‘or decaying.

The potential q(p,X), given by Eq. (V.2e), has two roots
(p+ and D_) and one pole (p = 0), all first order. In sec. IV A
we discussed the patterns of Stokes and anti-Stokes 1ines about
isolated transition points and, in Fig. IV.2, illustrated the dis-
tortion induced in these patterns by the presence of neighboring
transition points. In our case, we must determine how tc connect
the three localized patterns (about the three transition points
p,,p_, and Q) if we are to later (sec. V A 3) trace the WKBJ
solutions across the complex p-plane.

To do this, one can expand [q(p,}()-]é about each transition
point T (T =p,p_, or 0) in terms of “l';he small complex distance
50T Z poT, evaluate the phase-integral [q(T + GpT,X)]ideT

o
to various orders in GDT, and determine (to each order) where the
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. real or imsginary parts of the phase-integral vanish. Tp lowest order
" (independent of G(JT) one obtains the angles at which the principel
vS_tokes ‘and anti-Stokes lines radiate from the transition point T.
The next order. term gives a SpT—dependence to these angles and indi-
. cates the curvature.of the lines near the point T. The behavior of
. the lines in regions intermediate between the transition points
can then usually be determined by interpolation.

Actually, for our potential given by Eq. (V.2¢), the phase-
integral cen be evaluated exactly in terms of elliptic integrals of
the first and second kind with complex amplitude and modulus. The
generalized Stokes and anti-Stokes lines can then be obtained from
a conﬁour- plot of the real and imaginary parts of the phase-integral.

The easiest technique to use, and one which is completely
general, is to start at some arbitrary small distance 6pT = IG&IeMT
from a transition point T and evaluate the phase angle ¢q of the

idg

camplex potential q(T + 8p.,X) = |qle We then use standard

root-finding methods to obtain solutions ¢, to the equation
T

4+ B ND =0 (7.3)

_for ffxed';lﬁpﬂ , where N=0 or #2 for an anti-Stokes line and

N=%1 _or 13 fot a Stokea line (more than one solution can corres-

'pimrl to a given N). These solutions ¢T are the angles at which
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the lines radiate from the point T. Starting at a position
P=T4+ |50T|e1¢T on one of these principal Stokes or anti-Stokes
lines, we repeatedly step along the line by an amowmt GQT = BDT] olfT

(pneW‘ pol g * %Pp), where the local value of 4>T(D X) (the

old,
orientation of the 1ine) is determined by the local value of
q(Pold,X) = Iqlei'pq and Eq. (V.3).

Using this latter technique, we plot the prineipal Stokes
(dotted) and anti-Stokes (solid) lines in Figs. V.3-5 for various
values of ‘vhe éomplex parameter x(wl,gl .L)' The generalized lines
can then be found by inspection. Note that the simple pole is always
at p= 0, while the positions of the two simple roots
(lJp,] 21 and ]p_| £ 1) depend on the complex parameter X. Near
each of the transition points {(p = 0, p,,p_) in Figs. V,3-5, the
pattern of Stokes and anti-Stokes lines approaches that of an isolated
transition point, as illustrated in Fig. IV.1l. All of the transition
points (P = 0,p+,p_) are also branch-points, and branch-cuts
should be drawn from them, as discussed in the next sectionm.

2. Branch-Cuts

In the previous section, we determined the generalized
Stokes and anti-Stokes lines (lines of constant real and imaginary
part of T /q dp, the phase-integral) for the potential q(p ,X)
given in Eq. (V.2¢). Due to the square-root of g, we have branch-

points wherever g =0 or =, and these branch-points must be
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connected by branch-cuts in order that the phase-integral be single-
valued in the cut complex plane. In the complex p-plane, the tran-
gition-points T and the point at infinity are the branch-points,
but in Figs. V. 3-5 ‘We did not draw in the connecting branch-cuts
since their position can be chosen arbitrarily.

Preliminary to making this choice of branch-cut positlons,
we note that the function [q( D,X)]J" = [Q( z,ml;_l_c_l l)]ic/ﬁ has branch-
points in more than one space (e. g., in the complex ml-pla.ne for

given z and _151 in the complex =z-plane for given oy and k,,,

L 1L
and in the complex ¢0-plane for given X). We denote these sets

of branch-points (for Rew > 0, and k fixed) as
il £

11

{wb(Z)} = {wI(Z), wg(‘:’), w;(z) ) w;(z), w;;(z )} (Y 4a)
(e} {2,00, 2., 2.0)) (4

(r 00} {00, 200, p.C0=0}  (T4o)

with typieal relative positions shown in Figs. V.6~7.

The branch-point mI(z) corresponds in the unpumped case
(sec. III B) to the root of Q obtained by setting k2 (z,u .k =0
in Eq. (T.25 b) (in the pumped case there is a slight =z-dependent
shift from 'l‘;his 0w - ivl ] Img(z) + czkil i ivl). The equivalent
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branck-point in the complex 2z- or p-plane 1s z+(tnl) or p+(X),
respectively. In the unpumped case, mIZ)( z+) = (wl + :l\)l )2 - czki L
and p_= 2X (obtained by letting D +0 or X + =), and there
is a slight ul— or X-dependent shift from these values in the
pumped case.

The remaining branch-points in Eq. (V.4) have no corres-
pondence in the unpumped case (i. e., a singularity and a root of
Q merge as D -+ 0). The branch-points m;I(z) 2 w - wp(z) - ivp
and m;n(z) = w, + wp(z) - ivp are singularities of Q,
separated from thelr assocliated nelghboring roots of @, the
branch-points m?I(z) and u?II(z), by a small distance proportional
to D or D° (depending upon the value of z). In the complex
z- or p-plane, there is only one equivalent singularity of @

(i. e., branch~-point), zm(wl) (where wg(zw) = (wo - u.\l)z) or
p{X)

0, respectively; note that we have renamed the resonance
position (zo of sec. I A 3) to explicitly indicate a pole of Q .
The branch-point z ( wl) or p(X) is the equivaient neighboring
root of Q.
Having located the branch-points {mb(z)},{zb(ml)} , and {pb(x)}
in the complex ml-,z-, and p-planes, we now ccnslder the branch-cut
locations in the ml-ple.ne. We choose some convenient prescription

(e. g., straight lines between palrs of branch-points) such that,

for any fixed complex position 2z, +he branch-cut from any one of
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the branck-points W = u\,(z) is determined:

W'= F &) (¥.5)

where w' , a point on the branch-cut, is determined by choosing Fb 3
a complex funetion of the parameter 2z and the real distance
variable a. (0 < a < ®) along the branch-cut. For instance, for
the branch-point u{[(z) we choose the horizontal branch-cut m' =

= FI( Z,0) = mI(z) + a; between the branch-poihts mcI’I(z) and
u.;?[(z), we choose the straight l1ine branch-cut m' = FII(z,a.) =

= u.EO[I(z)(l -a)+ m;I(z)u with 0 £ a <1; between the branch-points
tuf[’n(z) and m:II(z), we similarly choose w' = III(z,a) =

= mc]’:n(z)(l -a)+ m;n(z)u with 0 < a <1. These branch~cuts are
shown in Fig. V.6.

We must now consider the branch-cut locations in the complex
z-plene. Given our arbitrary choice of branch-cuts in the complex
tul-plane, we have no freedom of choice left in the z-plane. This is
because we are considering the branch-behavior of a single function
[Q( z!“‘]_!.l.‘.u?’ which happens to have more than one varisble. The
fmction vﬁ has the same value regardless of whether we choose
z =3z, in the ;:omplex z~plane with w o= fixed or choose
W= ma in the complex w - plane with z = z, fixed; if, for

fixed z = Zgs the point w = wy lies on the branch-cut in the
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complex ml-pla;ue, then,for fixed u)l = wa , the point 3z = z, must
1lie on the branch-cut in the complex z-plane.

From Eq. (V.5), wa(a) = F,u( za,a) is a point on the branch-
cut emsnating from the branch-point w = mb( za) in the camplex
wl-plane, for fixed z = Zg- From another point of view, in the
complex z-plane the equation w, = Fb( za,a) determines a point
z = za(a) on the branch-cut emanating from the branch-point z =
= zb(ma), for fixed W oS W If a=0,u = Fb(‘za,o) = mb(z&) ant

z, = zb( ma). Formally we can write

2= F'(w, o) (V.6)
as the equation for a point (za(a) above) on the branch-cut from
the branch-point z = zb(wl) in the complex z-plane, for fixed ml.
The branch-cuts in the complex =z-plane, as determined by Ea. (V.6),
are shown qualitatively in Fig. V.7, for several typical values of
wy that are indicated in Fig. V.6. We have also drawn in Fig, V.7
the coordinate system for the complex p-plane since, for fixed ml

(and a linear density profile), p and 2z are linearly proportional:

= Z X% (p-p) a)

- = 1
where p = p(z,0,k) ), P, =0(z = 0,0,k ,), Z= (°2Ln/“’§) /3, ana
A is defined in Eq. (V.2b).
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Ae :can be seen from Fig. V.7, the branch-cuts in the complex
p-r.ane (vhere wé will mep out the form of the WKBJ solutions in the
next secﬁon) are relatively complicated in appearance compared with . -
our simple choices of branch-cuts in the complex ull-pléne. We have
been forced into dealing with this complication because the WKBJ
solutions change form across the branch-cuts in the complex p-plane,
and we must determine how this translates into a change in form
across the branch-cuts in the complex wl—plane (where we must even-
tually perform the integration indicated in Eq. (1.29)). Fortunately,
to answer such a question, very little ‘information about the branch-
cuts is’_ needed (e. g., if the point w = 1lies on a certain side
of the branch-cut in the wl—plane, for fixed z = Zy» then we need
to know on which side of the corresponding branch-cut in the z-
plane the point 2z = z, lies, for fixed ull =uj this is answered
by Figs. V.6a, 7e, £, g).

The coefficient a(wl’El.L)’ given by Eq. (I.32), has
branch-cuts shown in part (only those due to the [Q(z = 0’“’1’51 _L)]%)
in Fig. V.6a with the remaining branch-cuts (not shown) due to the
intrinsic branch-behavior of the functions A(p,u,,k;,) and
'B( Pyt oKy ). As discussed in sec. IV-C, the functions A and B
have aﬁ’.ixl;ltrinsic branch-point at D(z,wl,ii_l 1) =0 and, therefore,

"v ;intrinsi;'c branch-points at: tunInI(z) and wIII(z)' in the complex
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ml-plane. We arbitrarily choose the corresponding intrinsie
1
branch-cuts to extend vertically downward (i. e., w = m;I(z) - ia

N:H( 2z} - 10, 0 <£a <) from these points in the com-

and w =
plex ml—plane, and these intrinsic branch-cuts must be superimposed
on those of Fig. V.6a +to completely define a(ml,g_.l .L)' In determin-
ing the behavior of A and B in the complex p-plane, we must
include the corresponding intrinsic branch-cut, also extending
essentially (for Reu.\l < mo) vertically downward (from o = 0)7 in
addition to those branch-cuts (across which the WKBJ form changes
but the value of A and B remeins continuous) already shown in
Fig. V.7.

Having obtained the Stokes and anti-Stokes lines (sec. V A 1),
and having decided on the positions of all the branch-cuts (sec.
V A 2), we are now able to apply the rules of see. IV B for tracing
the WKBJ solutions throughout the complex p-plape. This will
be carried out in the next section, sec. V A 3.

3. WKBJ Solutions

From the discussion at the end of the previous section, and
from the form of Egs. (I.26, 31), we see that, to perform the w, -
" integration in Eq, (I.29), we must take into account the branch-
cuts (in the complex ml-plane) shown in Fig. V.6éa as well as ad-
ditional branch-cuts extending vertically downward from branch-points

at “’;I(z =0), “"’1:'11(z = 0), “’;x(zn)’ mquII(zl)’ N;I(zg)’ m;II(zg)’
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.and similarly for Re(ul) < 0. Our original Bromwich integration

contour (see see. I D) can be depressed, leaving an integral around
all the branch-cuts plus a summation over all the residues (if there
are any poles of the integrand corresponding to temporally growing
eigenmodes). Thus, we are primarily interested in knowing A(p,X)
and B(p,X) for values of w in the vieinity of the branch-cuts
in the camplex ml-plane.

It is now useful to note the similarity between the unpumped
nonuniform plasma (sec. III B} sand the pumped nommiform plasma
considered here. As the pump strength parameter D(ml,gu) goes
to zero, the solutions A(p,X) and B(p,X) become continmuous across
the vertieal branch-cuts (see sec. IV C), and the branch-cuts
between m"I"I(o) and mgI( 0) and between m';n( 0) and up(0)
shrink to zero; +this leaves only the integral around the horizontal
branch-cut extending to the right of mI(O), so this integral gives
the wave-packets found in sec. III B. We recall that in sees. III
A-C we found no time-asymptotic contribution to the integral (i. e.,
no saddle~points) below this branch-cut. For finite I “‘1’51 .L)
here, we still expect to find saeddle-points only above this branch-
cut or on the continuation of the Riemann sheet reached by passing
through this branch-cut from above (e, g., in Fig. V.6a, passing
from the point "a" down through the branch-cut onto the next sheet
below). These saddle-points will again determine the wave-packets
(but modified by the pump).
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In Figs. V.8-10, we construct the WKBJ solutions for
A(p,X) and B(p,X) for three representative choices of frequency
(m', m", and m"') along the horizontal branch-cut from mI(z =0)
shown in Fig. V.6a. These frequencies can be either above ("a")
or below ("b") +this branch-cut in the complex ml-pla.ne (Fig. V.6a),
with the choice determining whether the point 2z = O (and hence the
entire real z axis) is below or above the branch-cut in the complex
p-plane (see Fig., V.7e, £, g). Again, by "below" we mean to inelude
also the continuation of the Riemann sheet reached by passing through
the branch-cut from below, and s:i.milarly "above" includes the sheet
reached from asbove the branch-cut. We mention here that the intrinsie
branch-cut (sec. VA 2, IV C), along the negative imaginary axis
(for Reml < mD) in the complex p-pla.ﬁe, has been deliberately
left out in Figs. V.8-10 in order to not further confuse the already
complicated figures. It would have to be taken into acecount if
ane tried to continue the solutions across the negative ilmaginary
axis (the Stokes constants Tn also depend upon which sheet one
is on, as discussed in see. IV C).

The solutions A(p,X) and B(p,X) in Figs. V.8-10 are
given in terms of the WKBJ solutions using Heading's notation
(Ref. T I),
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(j’»f+ - '(; T exr[*""fcf%xﬁ'f] (17 f)

z (Z.8h)
(f+7f)- (1)%,_ exp [ ‘Af 1 (f 7X)JfJ

where, g{p,X) and A are defined in Eq. (V.2). The particular

choice for the above constant 'coeffieient is motivated by the
self-imposed requirement (in order to show agreement with sec. III B)
that A and B approach the two Airy functions Ai and Bi,
respectix}ely, as the pump strength D vanishes. The relevant

linear combinations of (p,p,) and (p,,p) (for A and B),

valid in the indicated reglons of the complex p-plane in Figs. V.8-10,
are given below. In each region "™a" (n =1,2,---,9), the total

solution (A or B) is fn * g where

F=Gp)  3=iGup (%)

f=ikp)  9,=G.p VRTY

- ’ )
il Tiep) 95726
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B 9l lnd e oo

) (V9¢)
Ef-ilppd TIen)  g-op)

f=f g {HilpT T 0
f=1, 37={2-i[ﬁafj2"ﬁ}(f+vf) Y
il Ten 5y, T
f=fy 979, - (V)

Here ,

ﬁ. )
[p.p.]= explti J}F\Lf 14(9',)()#’] (.10



120

is the "dominancy changing factor" used by Heading (Ref. T I)to change the
rhase reference levelof a WKBJ solution (e.g., {p ,0,) = (D,D_)[D ,D+]:(O+yp) =

- . T ‘]_1
= [p+, p_]( p_,p), with [p+, p_] ol (RN ). Theconstant T, is one of the

1
Stokes canstants Tn for the pole-zero combination, treated as a "compounc®
transition point, in sec. IV C.

The WKBJ solutions for A and B, given in Eq. (V.9) and Figs.
V.8-10, can be easily followed if one uses the rules outlined in sec.
IV B. Since (p,p+) and (g, p) are purely oscillatory along the anti-
Stokes lines (by definition), we can multiply these functions by exp( —imlt) .
and consider them as traveling waves along these lines; the arrows onthe
anti-Stokes lines indicate the direction of propagation of the indicated
function (f n OF gn). Also, every regionof the complex p-planeis inter-
sected by Stokes lines (perpendicular to the anti-Stokes lines eicept at a
transition point), and along these Stokes lines (p, p+) and ( p,sp) are
purely growing or decaylng; we occasionally drawarrows on the Stckes lines
to indicate the direction in which the indicated function ( £, or gn) in-
cresses. If the function increases as one moves (along a Stokes line)
away from a transition point, it is called dominant with respect to that
transition peint and is labeled with a subscript "d"; otherwise it is
called subdominant and lebeled with a subscript "s". The arrows on the
Stokes and anti-Stokes lines are related by the "right-hand SAN rule" of

sec.~ﬂ B: the §'tokes' arrow crossed into the anti-Stokes arrow is
normal (up) to the complex plane.

It is important to determine the dominancy or subdominancy of

(ps ) and (p,,p) since only the coefficient of the subdominant term
is changed upon crossing a principal Stokes line ( one which
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is the "dominaney changing factor" used by Heading (Ref. T I) to
change the phase reference level of a WKBJ solution (e. g.,
(psp,) = (p,p_)[p_,p+] +(p,,0) = [p+,p_J(p_,p), with [p,,p_] =
= [p_,p +|-1 ) The constant Tl is one of the Stokes constants Tn
for the pole-zero combination, treated as a "compound” transition
point, in sec. IV C.

The WKBJ solutions for A and B, given in Eq. (V.9)
and Figs. V.8~10, can be easily followed if one uses the rules
outlined in sec. IV B. Since (p,p+) and (p+,p) are purely oscil-
latory along the anti~Stokes lines (by definition), we can multiply
these functions by exp( —itult) and consider them as traveling waves
along these lines; the arrows on the anti-Stokes lines indicate
the direction of propagation of the indicated function ( fn or gn)
increases. If the function increases as ome moves (along a Stokes
line) away from a transition point, it is called dominant with
respect to that transition point and is labeled with a subscript "d";
otherwise it is called subdominant and labeled with a subscript "s'.
The arrows on the Stokes and anti-Stokes lines are related by the
"right-hand SAN rule" of sec. IV B: the Stokes arrow crossed into
the anti-Stokes arrow is normal (up) to the complex plane.

It is important to determine the dominance or subdominancy
of (p,p+) and (p+,p) since only the coefficient of the subdominant

term is changed upon croasing a principal Stckes line (one which
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originates at a transition point) while the amount of change depends
on the coefficient of the dominant term (see sec. IV). When cross~
ing a principal Stokes line, one must remember to first change the
phase reference lex;el to the position of the transition point from
which the principal Stokes line emerged (otherwise one cannot use the
standard Stokes constants for that transition point, given in sec. IV
B, C); after crossing the principal Stokes line, one can switch back
to whatever convenient phase reference level one started with.

Note that the pole-zero "compound" transition point (see sec.
IV C) is viewed as having only itwo principal Stokes lines: one
emerging from the pole (p = 0), and the other (in roughly the opposite
direction) emerging from the zero (p_). The remaining two Stokes
lines emerging from ¢_ are not viewed as having distinet Stokes
constants unless the pole and zero are treated as separate and distant
trensition points; the problem here is that for |X] >> 1 the pole
and zero (p_) are not dlstant since p_ ¥ ( 2X)-1. In order to ac-
curately obtain the eigenvalues and a nonzero threshold pump strength,
it 1s neceasary that one use Stokes constants (e. g., the Tn) valid
for arbltrarily small separation between the pole and the zero (p_).

The solution A (p,X), shown in Figs. V.8a, 9a, and 10a,
is distinguished by demanding the bdundary condition (abbreviated
"b.c.") that A be evanescent (subdominant) as p + 4»; thus,

ApX) = fl as p + +° ., This form remains valid until one crosses
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one of the principal Stokes lines from p, in a region where fl
is dominant; then A changes form to A{ ,X) = fli g depending
on whether p is above or below the branch-cut from p . In Fig.
V.10a we encounter the pole-zero "compound" transition point to the
left of p,, and the form of A must again change upon crossing
the principal Stokes line from p; A(p,X) =f 4 +g 4 above the

branch-cut from p_ and A(p,X) = £ + g5 below. The latter solu-

5
tion can be obtained by using the rule in sec. IVB for crossing
branch-cuts or by using the solution A = fl - & valid below the
branch-cut from p,_, and extending this solution onto the contin-
uation of the Riemann sheet reached from below the branch-cut, going
around the pole-zero combination again using the Stokes constant T1
(never crossing the intrinsic branch-cut along the negative imaginary
axis), and finally emerging across and below the branch-cut from p_.
The solution B(p,X), shown in Figs. V.8b, 9b, and 10b, is
distinguished by demanding the boundary condition that, as p --» -,
B = f2 + g, above the branch-cut extending to the left and B =
= -f2 + 8, below. In Figs. V.8 and 9b, the first trensition
p(_)int encountered when traveling toward the right is p ,» and B
changes form upon crossing any of the three prineipal Stokes 1:i.nes~
radiating from p + B= f2 + 2g2 above the principal Stokes line
extending to the right (and curving around the pole at p = 0) and

B = -f2 + 2g2 below (but not crossing the principal Stokes line from
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the pole). For Imp >0, B =1, + 2g, Temains valid until one
crosses the other (of the two)prineipal Stokes line of the pole-zero

Yeompound" transition point; then we must change to B = f In

3" By
Fig. V.10b, we first encounter the pole-zero "compound" transition
point F-“d: for Imp >0, B= f6 + B¢ after crossing the principal
Stokes line but remaining above the branch-cut from p ; B = f9 * Eg
‘below this branch-cut, as can be determined by applying the rule
of sec. IVB for crossing branch-cuts or by following the solution
around Py- The solution again changes form upon crossing any of the
. three principal Stokes lines radiating from. p,; B = £, + g, above
the prine%pal Stokes 1line extending to the right and B =fg+ Eg below.
) Having obtained the solutions A and B, we are now in
a position to evaluate the "boundary" coefficient a(X), given by
Eq. (I.32), and the Wronskian W(X) and solutions ¥, and ¥,
by Eg. (I.31). We then know the Green's function G1(°g’°1‘x) =

given

= ‘l’l( pl,x)‘l’z( pg,x)/w(x) s, from Eq. (I.26), which is the desired
integrand for Eq. (I.29). Note that p, = p( zl""l’kll) and
p e =vp(zg,u\1,§1 TL). where z, and Zg are respectively the lesser
and greater of the two positions z and sz (the source position),
and Y@ = AVg (dp/dz).

For the case depicted in Figs. V.8-9 where mIR(z = Q) <

Tl ’" B

<wpsw (pp3ip=0 X % 0, with subscript "R" denoting

is below the branch-cut

*real part of"), we find: (1) if 0y
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from mI(z = 0) and, conssquently, p(z = O,uw k]_L) ig above

the branch-cut from @, then for p(z =0 wl’kl_L) s pz < p <p,
(o S zg < zg < z,; see Eq. (V.4b) for z, and z_) we find
A=(p,p,)* i(p,,p) and B =1i(p,p,) + (p,,p), and (with

a(p,p,)/dp = iM/a(p,p,) and d(p,,p)/dp = -iMg(p,,p)) we have

a(X)=-1 GZ.Ha)
WX)= i dif- (Z11h)

G-2iW Gp)lupd+iGop s (@t

(2) if W, is above the brapnch-cut from mI(z = 0) and, conse-

quently, p(z = 0, ,k; j_) is below the branch-cut from p,, then

for p(z = O’NI’E.LL) ey b Py <p, we find A = (p,p,) - i(p,,p)

and B = -i(p,p,) + (p,sp), and we have

a(X) = + 1 (V124)

;‘f{— W 126)

= | %%

W)=

G =-2iW + ' [(.PS’ f+)—' (f+’ fﬂ)] (YJZC)
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There are no eigenvalues (1. e., no poles of Gl) for either case.

Fc?- the case depicied in Fig, V.10 where m; <uyp <u,
(p+R > p50,xR> 0) and oz = 0,01,511_) is to the left of the
principal Stokes line from p_, we find: (1) if wy is below
the branch-cutA from mI(z = Q) and, consequently, p(z = 0,@1,5“_)
is sbove the branch-cut from p_» then for p(z = 0’“‘1’]514_) <p<
<p <0 (0<z <2_<z,) wefind A=(p,p) +{1 +[p_,'p+]—2Tf-
. (p+,p) and B = i(p,p,) +(P,,p), while for p_X p < p,

(z $2z<2,) we find A= (p.p,) + i(p,,p) and B = i(p,p,) +

+{1 - 1[p_,p+] Tl}(p+, D); and we have

a®=-1 (T.134)
WOO=i2 2 {-Hep TT) @y

(V13c)
-2i\fsf
Glz iz% (§—P 2)[3"&) {I ..7f+] T}(f_,_:j’s)]

valid for p(z=00ik11)_<_p2_fpg<p_(0 zZ <zg<z), and

G' . -'i' (ﬁ,&) [(fs TARLCY; 3 ] (7139

<
valid for p_ '6 Pg < p, end p(z "0'“’1'5 )< plf_ Pg (z_% By
and 0= zy h zg);z (2) ir w is above the branch-cut from mI(z = Q)

and, 'conéeduently, 7'?p(z = O,ml,gu) is below the branch-cut from g ,

then for p(z = °""1'k1.|.) <p<p_ <0(0<= < Z_< z,) we find

=1{1- i[p_;p+] 1}(psp+) - 1(p+;p) and B = ‘i(px p,,,) +(p+1b))
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while for p_%p <p, (z_ Sz <z) we find A =(p,p,) - i(p,,p)

and B = - +[p_,p+]'2T1} (p,0,) *+ (p,sp), and we have

a(X)=+1/{t-ilp,p T T} (T 1)
W)= l,“,j‘; {l-z[g,y,,] T} (L.14b)

G= -2|(P+’Pz) [{1 -ilp ’f+] T (fs’f+) '(f+’ﬁs)]
| n dz {1 '[fsj’.,.] T} (V.14¢)

valid for p(z=0mlk1 pz pg

p_{0Zs Eizg<2)

‘- —2:(&’&)[(?; 271Gl gy
n dz {1 '[f’f’+] T}

valid for po(z 0m1k11£p2<p"‘pg<p

(022 <z gz, <z,), end &143)
. -z.[(f+,ﬁ> 3 T(fuﬁ)] feypd-iGosy)]
| Tf dz {1 '[f ’f+] -1;}

valid for p_ 6p£ P

< <

g < Ps (z "’E—Z z,). There are
no eigenvalues (1. e., poles of G, ) for case (1); there are
e:lgenvaluea for case (2) when {1 - 1[p P l -2 T,} =0, and

this will be further dilscussed in sec. V B. -
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For the case similar to Fig V.10 but with ml sufficiently

large (w ] W ) that p(z = 0;u 10K, ) is to the right of the prin-

cipal Stokes line from p_, we find: (1) if wy

' braneh—cut from mI(z =0) and, consequently, plz = 0,uy 5k ) is

is below the

above the branch-cut (now passing sbove p =0 and on to p + —o) ,
. B < _ <
from p,, then for p_& olz = O,u,k ) <oy Zp, <o,

(2. 50525 2,<3,) we find A=(p,p,)+ilp,,p) and

B =i(p,p,) + {1 - i[p_.p,,]‘le}(p,,,p), and we have

WCO=i# dz{ zleapd T} (158)

G= %%*}_;ﬁi[(& ’, p*i(gap) (¥ 15¢)

(2) it wy is above the branch-cut from (z = 0) and, con-

sequently, p(z = O,uxl,k ) is below the branch-cut from p,,

then for p_ 'ﬁp(z-Ouxl, 1_’_)_%_ pg

= (ps0,) - i(p,-p) and B = —{i +fo_se,]” }(o,p+ (p,sp), and

a(X) "’{ ’|[P7f+] T} &.16(.\)
woo 2L ir 0 T°T)  (Wiew

< p+ we find A =
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G| _i' (‘?,P‘) (fjaﬁl_) (ﬁ,_: PS)] (ch)
mdz

Note that G, is identical in Egs. (V.lle and V.15¢) and also in
Eqs. (V.12c and V.léc); again there are no eigenvalues for either

case.

In sec. VC we will integrate Gl over w,, as indicated

in Eq. (I.29); the forms for G, found above, although valid only
in limited regions of the complex u.\l- and z-planes, are suf-

ficient for our purposes (as outlined in sec. I B). First, however,
we will investigate in more detail the eigenvalues due to the poles

of Gl.

B. Eigenvalues
1. Threshold

In the previous section, we found poles of Gl (1. e., eigen-

values ) when

{-ilpp, ] T}=0. (¥17)

For the special case where |k| >>1, k= -ix/z(zx)é, we showed in
gec. IV C that
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T — +i (V.18)

Jkl+co

exactly what one would expect since, for fixed X and A + =, the
two transition points p, =0 and p_ can then be treated as "dis-
tant” and the Stokes constant for an isolated first order root

(e. g., p_) is +i. Thus, Eq. (V.17) reduces to

[p.p,]=ti = exp[iZ@N+D]  (¥19)

where N = 0,1,2,---, and we see that the transition points p_ and
p, are comnected by an anti-Stokes line (see Figs. V.3a-b, 4b-c,
4d-e, 5e, 5g) the length of which increases as N increases.

For (2N + 1)/A << 1, the transition points p_ and p, are

centered about p = +1 with a separation

X %
spzprp = 2e'® (BN (g0

and the elgenvalues, expressed in terms of x('ml’l-c-l .L) (see Egq.
(v.2d)), are

X 2 i-ﬁ@‘—;‘—%;) ; (.21)
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the eigenmodes fall off exponentially outslde this narrow region

between p_ and p,, so the eigenmode localization width (in the

real z space) is (Y.Z 2)
-l iy )
(Az) = j—f (AP)reu.l r.:22(2N+1)'é )\/6

rea

using Eq. (V.7). These results (cf. Egs.([.13-15)) were first
obtained by ILiu, Rosenbluth, and White (Ref. F VII; note that
our definitionof A,Eq. (V.2b), differs from theirs).

At threshold, Im wy 2y =0 for the fastest growlng mode
and, from Eq. (V.2d), Im X = 2[_"’1\’1 + (mO - m]_)\)P 5 thus, in
the absence of damping we take X to be real snd positive (see
discussion at beginning of paragraph containing Eq. (V.14)). For
A >> 1, the eigenvalues XN start out at X % +i and come down
at a 45° angle toward the positive X-axis as N increases (see Eq.
(v.21)); for N & A, Eq. (V.21) is invalid, but a numerical evalu-
ation of Eq. (V.17) in sec. VB 2 (as well as an analytic calcula-
tion carried out below) indicates that the elgenvalue chain XN
eventually crosses the real axis at some large pesitive value of
X. As A decreases, xo comes down from +i and the value of

X at crossing (the real axis) decreases. For both of these cases

x| 21 for all N. Finally, for some A, i1, X, comes all
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thé wey down to the axis, and ore might guess xo ¥ 1; AO is the
desired threshold value of the pump strength parameter.

To determine Ao’ we caymot use Eg. (V.19) beceuse for
Im X = O (see Figs. V.3a, 4a, 5a) I[p ,p+]l [p ,0] 1; in fact,
for X3 1 we find from sec. IV C that [p ,O] =" =
= exp[-m\/h(zx)ﬂ which is equal to one only if k = 0, in viola-
tion of the assumption used in cobtaining Eqs. (V.18, 19). In order
to obtain the value of X at crossing (the real axis) as a function
of A, and in partlecular to obtain the threshold value of A and
X , it is therefore essential to use a Stokes constant T

[} 1
valid even when p_ and p = 0 are "near” in the WKBJ sense

that is

(either because of large X or small 1A); thus, we use Tl as
determined in esec. IV C, and we next consider its value in the
Limit |k| << 1.

For the sf)ecial case where |k| << 1, we showed in sec. IV.C

. (7.23)
) k@-im) -
T;(k)=-27“k e2 teim) ka (1-12k+-)

so that IT | = 2nfx] <1 (if [x| << 1) as required if we

want |[D_,p+‘ -2y 1| = 1. We must next evaluate [p_,p+] 2 but
fortunately the phase integral can be evaluated exactly in terms of
complete elliptic integrals of the first and second kind, F and E,

glving
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ﬁ. )

+[(ﬁ,.+ﬁ) E@ -pF (F)]} (V.24)

where = [-0_/(o, - p_)]* and $ = [0,/ (p, - p_ )|?. Expanding
the complete elliptic integrals, assuming X 3 1, we find

[f’-’ﬁ«]-Z: exp{i -l:_%)\(ZX):gé [1 + (£.25)
+ (240 (8X) +1-g-n;)/«fxz+...]} _

Using Eqs. (V.23, 25), Eq. (V.17) reduces to

(V.26a)
1-2 [5552775]8*1*{[2(2}()/2 +ie}=0

where

. %
O=-z +3AEXT (7.265)
A

- [1+62n (XY +--

+1
t3 (2X)'/
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For ImX =0, 8 is real and the solution to Eq. (V.26) is

A
E—(—:-)-ayz =0.352 (Y 272)

©= 271N , (V.27h)

which together determine the value of ) and XN as each elgenvalue

crosses the real X-axis. For N = 0, we flnd the threshold values

Xo ~ 0.8 (Y.284)

)\oz 0.3 . (V.28h)

These values are only approximate since Eg. (V.25) is accurate only
if X >> 1; nevertheless, they do compare favorably with the
results (xo =0.92, A, = 0.32) obtained in sec. VB 2 by
numerleally evaluating Eq. (V.17) andwith the result (Eq. (I.14) is
equivalent to AO = (0.34) obtained by Liu, Rosenbluth, and White
(Ref. F VII). Equation (V.27a) glves X = 9.97 225> 1 if 2] 1,
and using this in Eqs. {V.27b, 26b) results in
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19 ) (¥.29)

as the approximate number of eigenmodes with Im XN >0 (Im mlN =
=Yy > 0 in absence of damping) for any A,

In the next section, we will present the results of the numer-
ical analysis of the eigenvalue equation. In see. VB 3, we will
offer a physical explanation for the threshold behavior of the eigen-
modes and for various constraints that must be placed on the eigenvalue

equation.

2. Numerical Evaluation

In the previous section, we investigated the eigenwalue
equation, Eq. (V.17), analytically under approdmations of |k| << 1
and |k| >> 1 where k = -iA/2/2X. In this section, we make no
restriction on }k|, but rather use the full expression for T
(found in sec. IV C) and write Eq. (V.17) as

[ d

20
2N (o f_
u FZ(m) ( ) e =0 (YSO)

where f(x) = Zikj [q( P ,X)]%dp is determined from Eq. (V.24),
a=-k, and I'(a) n'is the gamma function. .The solutions, Xﬁ(k), of
Eq. (V.30) are obtained numerieally and plotted in Fig. V.1l for

several values of the pump strength parameter A.
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From Fig. V.11 several interesting results can be obtained.
For A 21, the solutions Xy for email N (i.e., 24 + 1 X 2)
have !XNI X1 and approsch the solutions given by Eq. (V.21); this
1s better illustrated in Fig. V.12a where X (1) is plotted for
several values of A. In Fig. V.12a, xo( A) 1lies on a line 450
from horizontal for A & 1 (as predicted from Eq. (V.21)) and ap-
proaches a line 60° from horizontal for A << 1 (as can be pre-
dicted from Eq. (V.26a, b) with X complex now). The solution

xo(x) erosses the real axis ( the threshold condition) at

X (\,)=0.42 (V.31a)
), = 0.32 (V.31b)

as determined from Fig. V.12a, b. Finally, we note from Fig. V.11
that the number of elgenmodes with Im Xy >0 (Im We =Yy > 0 in
absence of damping) rapidly increases, approximately as N X 19X4,
as ) inecreases (for A 3 1), 1in agreement with Eq. (V.29).

In the previous section and here, we investigated analyti-
cally aﬁd numerically the elgenvalue equation, Eg. (V.17 or 30),
but we found in see. V A 3 (see paragraph containing Eq. (V.14))
that the eigenvalue equation (and therefore any eigenvalue obtained
here) 1s only valid in a particuler region of the complex ml-plane:
. namely for w satisfying
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32)

3

Zkz
- iy
W =5 w +

o

W< W,

above the branch-cut from mI(z = 0) in Fig. V.6a. In the next
section, we will offer a physieal interpretation for the above con-

straints on wl for the eigenvalues.

3. Physical Meaning of Constraints

In sees. VA 3, B1l, 2, we have found the eigenvalues
xN( wl’!:-l N )} subject to the constraints on wy given by Eq. (V.32).
These constraints have a simple physical interpretation in terms of
the relative positions of z =0, z_, 2z, and z; as indicated
in the paragraph containing Egq. (V.14), the constraints are equi-

valent to

0<(@) <(2.), <(z,) (Z.33)

where the subscript "R" denotes "real part of" (sometimes omitted if
meaning is clear).

For a > w2 (0 + o2 fw )2

or a frequency wyp > wp = (w +ec 1.1./“'0 ’
0< z..(ml) < zw(ml) < z( wl) and the wave is trapped between the
two turning points z_ and z, @and near the resonance position z_

(remember Zeo"~ Zg of sec. I A 3), precisely what one would expect
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for growing eigenmodes. The turning point 2, can be identified as
the reflection point present even in an unpumped nonuniform plasma
(sec. III B); if z+(wi) were less than q,,(wl), the wave {of
frequency w‘lR < tu;_.’l for this case) would reflect before reaching
its resonance position and, hence, before growing. For an Wa
slightly greater than m;, the wave is closely trapped about the
resonance position and has the largest growth rate. Of course,
there must be a constru:tive interference between the waves reflected
from z_ and z,, and this gives the discreteness of the eigenmodes
(see Eq. (V.l9’)). As . increases (for fixed A ), the spacing
between the turning polnts increases (see Eq. (V.22) where N 1s
increasing) and the wave spends less time at the resonance position,
thereby decreasing the growth rate (see Eq. (V.21)).

We are now able to offer a physical interpretation for the
threshold behavior of the eignemodes, as we promised to do in sec.
I B (question number 3). We fix our attention on the fastest growing
eigenmode (N = 0) and note that, as A decreases, the separation
Az between the two turning points (z_ and z ) decreases at a
rate slightly faster than given by Eq. (V.22) until Az~ Z at
threshold (A_ % 0.32); and,the elgenmode growth rate Yy, (see
Eq. (I.13) or Eqs. (V.21, 35b)) decreases faster than the uniform

plasma growth rate Y, (defined in Eq. (I.2)) until Yr'¢=o =0 at
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threshold (while Y, is still finite). We conclude that, as the
turning points come together for decreasing pump strength A, +the
lower turning point becomes less effective in refleeting the waves
back toward the resonance position z,; also, the separation Az

approaches (or becomes less than) the minimum effective wavelength

oo, \ 173

Z = ( n) (from the Alry function) which is insufficient to
give the required constructive interference necessary for eigenmodes.

As Yo increases from m; (for fixed A again), the
boundary position R = p(z = 0’“’1’511.) becomes less negative (see
Figs. V.7-10) and, for W N w - mp(Z = 0) A w, P, crosses
the principal Stokes line from p_; as pointed out in the paragraph
containing Eqs. (V.15,16), for an W equal to or greater than
this value there are no eigenvalues. This corresponds essentially
to z_ <0 and the lower turning point (derived assuming a strictly
linear density gradient) wants to be at a lower density than the
uniform region =z < 0; that is, the turning point z_ and typically
even the resonance position zm) no longer exists in our system
(see Figs. I.9-11 and remember z = zo), and there is nothing to
prevent a wave with Wp R W, - mp( z = 0) from escaping the
resonance region (if indeed it even exists) by refracting out to
the uniform region.

Some confusion may arise now because, for

wp R w, * mp(z = 0), the boundary position Py again crosses one
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of the two principal Stokes lines from P, and O <z_< 2%, ;

however, there are still no eigenvalues. To understand this mathe-
matically we note that, for wm =0, Do is positive real and the
intrinsic branch-cut (see sees. IV C, V A 2, 3) from the pole

(of q(p,X)) now lies along the negative p-axis. 4s Yp increases,
p, curves around p = 0 1in a clockwise direction and the intrinsic
branch-cut from ¢ = 0 also rotates in a clockwise direction until
it 1ies along the positive imaginary p - axis. Fbr

Yn R W + mp(z =0), P, is to the left of the Stokes line extend-
ing downward from p_ (similar to Fig. V.10 but with the real z-axis
below p = 0), but now the WKBJ solutions must be traced below

p = 0 (rather than above,as in sec. V A 3) using the Stokes constant
T, when crossing the principal Stokes line (see sec. IV C); Eg.
(v.17) is not valid for this situation and there are, in fact, no
eigenvalues for Wp %u(!) - wp(z = 0). Physically, we would not
expect eigenvalues here since the resonance (that again exists iIn the
plasma for w‘.lR > mo + u.\p(z = 0)) now corresponds to

Wyg = U * wp(2).

To be completely accurate, there is an additional constraint
on the eigenvalues which was not explicitly pointed out in the
earlier sections. Eq. (V.32) gives the constraint on the real
part of a frequency , lying above the branch-cut from mI(z = 0)
in Fig. V.6a; there is also a constraint on the imaginary part of

@, in particular an upper and lower bound.
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The lower bound can be seen from Fig. V.10 and the definition
of p(z = 0’“’1’£1.L) uwsing Eq. (V.1). TFor wyp % w - mp(z =0)
and y = Im w < Y the boundary position p(z = O,ml,l_L_u_) is below
the real p-axis and to the left of the principal Stokes line ex-
tending downward from p . Most importantly, the real z-axis passes
below p =0 and through the intrinsic branch-cut (extending verti-
cally downward from p = 0, as discussed in seecs. IVC, V 4 2, 3)
onto the continuation of the Riemann sheet reached from the left.
After applying the boundary conditions along the real z-axis, we must
then trace the WKBJ soluticns across the lower-half p-plane using
ths Stokes constant T, (see sec. IV C). Equation (V.17) is not
valid for this situation and, in fact, there is no possibility of
elgenvalues here. This constraint requires all eigenmodes to grow
in time or at least damp no faster than the effectively non-propa-
gating plasma wave (in sec. T C we required yoh/ng >> 1; that
is, growth dominates convection of the plasma wave out of the resonance
zone of width h).

The upper bound can be determined from Green's theorem

ot 2
;[I,E{JifE EndzE dz = lale EudzE

Eq. (I.25) for E (z ) 11. » 3nd the boundary conditions in Egs.

o

(I.27b, 28b) both of which must be satisfied by an eigenmode B
together these imply '
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JIEF T QGegok )= = [, Ret@] <O.
° _ 2=0 (134,9

Far from resonance, Im Q@ +* 2mm(Y v )/c2 which is positive if

Y >-v;. Thus, at resonance (where Im O has a minimum)

ImQ = 2w (Y + v )/c2 - D2/2wp(z =z Ny + vp) must be negative in
order to satisfy Eq. (V.34), and this is only possible if y < vy,
the uniform plasma growth rate given by Eq. (I.2). Physically, we
would expect ¥y < Y, because the wave in a nonuniform plasma does
not remain at the point of exact rescnance but rather is locallzed
between the ttvo turning points z_ and z,. The eigenvalues given
by Eq. (V.21 or I.13) setisfy this condition since Yl:l=O/Yo <

< 2(uulmp)3‘t/m0 <1.

We summarize and conclude our analysis of the eigenvalues by
showing, in Fig. V.13, a typical plot of the eigenvalues “‘J'N in
the complex ml-pla.ne (symmetric about the imaginary axis) along
witl the boundaries representing the constraints discussed in this
section., The real and imaginary parts of m_.;_N and XN are

related through Eq. (V.2d), which gives (for Re(ml) >0)

7Y o Wo 2 D+Czk?.|.
(“’m)az ‘; * [ (XN);w, l

(7 350)
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=, + [(XN);D; @iatn)] e 3s)

where D= Kvomp( z N1 - kfx/ki )% (from Eq. (I.25¢)) has a
slight w, -dependence through wp( z )= w, - w and ki(wl) =
E[mi - w:( zm)] /c2.

In the next section, we will evaluate the Green's funetion
gl( z g’zﬂ.;t’£1 J_) by performing the integration over w, indicated
in Eq. (I.29). As a result, we will be able to determine the ampli-
fication experienced by the transient wave-packets and the time at
which the eigenmodes first dominate over the wave-packets. We will
then be able to answer more clearly and quantitatively the

questions raised in sec. I B.

C. Green's Function

We finally come to the calculation that we have been
pointing toward since sec. I D: +the caleculaticn of the Green's
funetion Ql( zg,zz;t,gll) from Eq. (I.29). We use the expressions
obtained in sec. V A 3 for the integrand Gl( z g’zﬂ.’ml’gl .L) and
divide the calculation into three parts: (1) a saddle-point
evaluation of the integration around the branch-cuts of Gl in the
camplex w,-plane (see Fig. V.6a and the discussion at the
beginning of seec. VA 3); (2) the contribution from the poles of

6, in the complex w,-plane (see Fig. V.13 and sec. V B);
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(3) a comparison of the magnitude of these two contributions (wave-

packets and eigenmodes) to the asymptotic space-time response.

1. Contribution from Saddle-points

Including the exponential factor exp( -iult), the integrand
in Eq. (I.29) is a rapidly verying function of ) similar to the
situation in see. 1II. Thus, we again look for saddle-points and,
as expected early in sec. VA 3, find them only for Wy above
the branch-cut extending horiz-ontally from mI(z = 0) 1in Fig. 6a
{(or on the continuation below the branch-cut of the Riemann sheet
reached from above). Using Eqs. (V.l2c, l4e, 14d, l4e, and lée),

we can write the branch-cut contribution to Eq. (I.29) as (Y 3 6)

-vt xi A
cht fclw I(z:p ,wHht)€,

2, ) Fa w2

where w = w * ivl, él is the polanzatlon from Eq. (I1.22)

+cC.C.

t - 1
evaluated at the observation position 2z, f(z,w ) = [Q(z,m - :1\)]_)]é
is an effective wavenumber kZ with Re(f) > 0 above the cut
(as indicated in Fig. V.6a), and the phase integrand I +takes on

one of four possible forms:

as exp(iL+6) (737)
b = exp(ez) (Y-37l’)
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a= =5 <Y3 70.’)

Yo b (V375)

where

%9
gz -iw't +i[f(z,w)dz (V.380)
2y

Zy
6,= 6, +2i[fzw)dz . (V381)
z

We have simplified the phase integrand I by dropping terms that
have no saddle-points. The rules, for choosing one of the four pos-
sible forms of I, are summarized in the space-time plot drawn in
Fig. V.14.

The similarity between Fig. V.14 and the figures in sec.
III B is not surprising since early in sec. V A 3 we expected the
pump to only modify the saddle-point result obtained in the nonuni-
form umpumped case. In fact, other than the pump modification in
the function f = /§, the only modification (due to the pump) in

the form of the result is in the "eigenvalue" denominator that
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:zappe;u"é in the "primed" functions a and b of Eq. (V.37a', b').
We note from Fig. V.14 that the phase integrand I +takes on the
form a' or b' only in space~time regions where the corresponding
response wave-~packets have either traveled through or will travel
through their resonence zones (see also Fig. 1.10) before exiting
the nonuniform plasma region 2z > 0. In the remaining regionms,
where I equals a or b, the corresponding wave-packets have

not or will never travel through thelr resonance zones; the space-
time response here (except for possible eigenmodes, as in seec.

VG 2) is essentially identical to that found in sec. III B for

a nonuniform unpumped plasma and will not be further discuased here.
In the remainder of this section, we will determine the saddle-

points of the phase integrand I in the regions where I equals

1] ]
a or b.

We first evaluate the phase function 61 by expanding
f =/ (using Eq.(I.25b)) in powers of the pump strength and
keeping only the terms up to order D° (we will check the validity

of this later in this section): - (Y 3 q)

Fa{t+ o] e
- 2 ’Z—wz(z)] [wzcz)— wz(E,,)] c ’
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- '
where mz(z) = m;(z) + czki‘_ and m2(zw) = [mo -0 - i(vp - vl)]2+

+ czki s Upon integrating, we find

3
g x-iwt + 12 (w:z) [(w,z_ " % (o 9’2] .
i DL/eR) | [ac,)
L n/_*f ' 9 (Y_40a
+ 2¢ Ew,z_ w0 (Zm)]/z n & (ZL) )

where
2 2
S(2)= - (Z)] “lo wz(z‘”)] ,  ([40h)
[w’z— wz(z)] + [w’ —wz(zw)] 2
mg = 2(zg), and mi = m2( ZE)' Next, the saddle-point frequency

]
is written as w = wy + 8w, where 6w is the modification due to
the pump and Wy is the saddle-point frequency found previously
for the nonuniform unpumped plasma (see. III B). Using this

2

]
and viewing 91 as a function of w and D%, Eq. (V.40) can be

put in the convenient form
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2

QW) 6,60+ 5 T, 0 () +
_J_g'_. (w’ o) DZ (Y.41a)

) =-iat + 18 (L) fez-up%-
_(w:'-wg 3/2] ,
sa:;e as for the nonuniform unpumped plasma (sec. III B),
'ﬂ‘a‘%z'(wmo)= 2‘:;" %2: M| ) (Y41¢:)
AG. ( ) ( ) ﬂn'_};‘(zﬂ)/&( ]
077072 e e

208~ w,, _ 2wE-wk

= = ot (wz wzyz ’ (T41e)

and the coefficient — (m ,0), which would appear in the term
dm

(V41d)

linear in 8w, vanishes by the definition of the saddle-point Wy
(see see. 11T B). The form given by Eq.{V.4la) is only valid if
|mi - :I >> 2mA|6m|, a condition also required for the validity

of Eq. (V.39); however, this is not too restrictive sinece the WKBJ
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solutions of see. VA 3 are also invalid near the turning point

(see sec. III B, where W = mg gives the equation of the "line

of turning points", also shown in Fig. V.14 as the line w = mg).
The saddle-point frequency (for 61) is defined (see Ref.

] '
sec. U) as the solution to the equation del(m,Dz)/dw = 0, which

J v ] ) (Z42a)
Z el el
TRy A AT

where (420
de, _ i[ i ]( )lnﬁ"(zs)/“(zl,)]
dodd~ °© P2 z[w'Z Wz )]3/2
w’(L,, 1 1
é'[;,-;g——%[(w,z wzyz (w?- wz)l/z]
i [wtirn] Ly ) 2-wi)t  (wRuf)?
Yooz 3] Eu:z Wiz m)] (wz {[wz wz(z ] [ Wl (zm)]

This same equation can alsc be cbtained from Eq. (V.38a) by differ-

glves, from Eq. (V.41),

fwx -~

1
entiating with respect to ® and performing the integral of

ar 2 2. 2 2
dw’' over =z. For mg<w(zm) or wy >m(zm),Eq. (V.42)

gives 8w pure real (if ignore damping) and Eq. (V.41) gives 8,
pure imaginary; that 1s, no growth. This is as expected since,

for zg < g, or .7} >z, the wave-packet has not yet reached its
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resonance zone; and, if tu'z < tuz(zw) (essentially same as z.< z)
the wave-packet will never reach its resonance zone before it
refracts out of the plasma. We will therefore concentrate, in the
remainder of this sectipn, on the case where Interesting growth has
occured; in the region a' of Fig. V.14 (where we are dealing with
the function el), this requires wy < wz,) < tug < m'.
A

We will first assume |u® (z,) - u | << ltu - (i. e.,

Zg is much closer to the resonance position gz m.) than to the
turning point z+(tu')) and also Iwz(zm) - “’:' << Imz(zm) - cuil

(1. e., |z, - zg| << |z, - z5|) =0 that we can approximate

Eq. (V.42b) by %eeping only the term proportional to

2!\{5( 2 g)/t’:'t( 21)] and the term proportional to [m: - w2( zm)]-l .

We also separate out the Ow-dependence of l'wz - m2( zm)] by
writing [wz - wg(zm)] f 2((»o - mA)Gw + mé - tu2( Zw(mA))’ valid for
|6w) << (mo - w,), where z,{w,) is the resonance position cbtained
using the "unpumped" saddle-point frequency Wy Eq. (V.422) can
then be written as

(P o) (6w + g)= A2, &.43a)

(V43b)
ot(S (Dz/ l"") [w l(v V)] ln [06( )/DC(ZE)]
[e2-oea]% M)
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RACECN)
Z(wo—wA)

(07+)
(M )| "G <w>)]’2

and M1 is given by Eq. (V.4le). Under the stated assumptions
~ 2 2 2

here, a(zg)/'('i(zl) N - lmg - (zm)l /4(mA - mZ) and

lo(6w + 8)| << A2,

P ) W 43.)

A2

(V434d)

Of the two solutions to Eq. (V.43), only one satisfies our
' 1
requirement for growth, mg >uw(z,) with z (w ) evaluated at
]

W o= W+ Sw. This solution takes three forms: (1) for

zg < z{w,) and |B| >> 24,

2
o= -p -G+ x-p ; (7 440)

(2) for |B| << 2A (zgR"Zm(NA)),

?

Sw:A-—D—L;—'B+‘--~A; (Z44b)

(3) for z, >z(w) and [B] >> 24,

T SRS S
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In all three cases, Re(Sw +g) >0 snd Re(Sw) > 0. Using
8 B mp( zg) - ( w - wA) , in case (1) Sw increases the saddle-point

LW
frequency to w v w

o = u)p( zg), the frequency of the wave whose

resonance position 1z w') colneides with Zg For cases (2)
and (3), 6w is small and uL)l B W,. Bef'ore interpreting these
results, we will go on to determine the remaining saddle-points
connected with Sl.

Now assuming |w2(zm) - m’;:I << Iu)'z - i| and
lwz(zm) - m‘zl << L;Z(zm) - wzl , Eq. (V.42b) can be approximated
by keeping only the term proportional to En[?i( zg)/&'( zz)] and the
term proportion:’ to [u)z( z,) - w‘E]—l. Writing [wi - u)2( zm)]%
4] 2((4»o - u)A):Su) + wi - 2(zm(uuA)), Eq. (V.42a) takes the form

(fw+0)(fo+p) = -7 (T 45)

where B' 1s similar to f but with u)z replaced by mi, o and 2?
have the same form as in Eq. (V.43), and now &(zg)/&(zz) B
& 4(w§_ - wi)/[wi - wz(zm)] and Jof6w + B')] << A2,

Only one solution to Eq. (V.45) can satisfy our requirement
for growth, w,< w(zy) with zm(m') evaluated at m' =W, + Sw,
and then only if gz, < zm(mA) (i. e., Re(B') < 0). The solution

]
takes the forms: (1) for |B | >> 24,
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S K
bw=-Z vz 5 (V46d)

(2) for |B| << 28 (24 ¥ 2(w,)),

S = iA - 9‘—5—’1 . (Z 46b)

In both cases, Re(dw + Bl) <0 and Re(Sw) >0 since 2y < zw(mA);
also, 6w 1is small so m' N Wy -
To interpret the above results (concerning the function el),
we look at Figs. (I.10, V.14) and consider a fixed position z = Zg >
>z =2y (recall that zg is the source positlon) with time
increasing. After passing the light-cone, the saddle-point fre-
guency m' EH Wy of the wave-packets decreases until w' is
sufficiently small that the resonance position z,( m') has moved

in from the left to coineide with z (assuming z_( ws) >z,

s
w, = m(zs)). Until now, there has been no growth and the response
is essentially identical to that in see. III B for a nonuniform
umpumped plasma. For z( w') > 2, hawever, the waves from the
source have passed through their resonance zones at z.( m') and
grown (exponentiation factor caleulated later in this section) before

t
reaching z,. For (|8 | or |B| ) >> 24, these wave-packets

correspond to 6w given by Eq. (V.46a or 44c) (depending upon
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whether z,, is closer to z, or zg), and o & W, still. This
is the only solution (corresponding to growth) found in the region
zg = zg < 2 { mA) < Zg? and 1t ceases to be valid outside this
region. Provided z{ ms) > zg, we eventually reach a time when
z{ wA) = zg; for all later times, z( mA) > zg (corresponding to

1
crossing the line 2z (w ) = Zg in Fig. V.14) and wave-packets with

tn

W v, traveling from the source (at zs) to the position

Z g > zEI , cannot pass through thelr resonance zones at zm( “’A) and
grow. Equation (V.44c) then ceases to be valid, and we lock for
a new saddle-point.

As discussed above Eq. (I.3) and in seec. III C and
shovm in Fig. I.4, for a uniform pumpec plasma the resonent
( m' =uw - wp) response is localized in 2z between the trajectory
of the w' wave-packet in an unpumped plasma and the trajectory of
the Langmuir wave (which remains at a fixed position here since we
have assumed a cold plasma). Thus, in a nonuniform pumped plasma
we expect a Langmuir wave disturbanee to remain at the reaon.a.nee
position sz ( tu') = zg
stimulating electromagnetic waves of this frequency (cbserved

]
where w =w - mp( zg) and to continue

1
here at zg > zs) even at later times such that mA(z ) < =
g
= - mp(zg) and zQ(mA) > Zge This corresponds to the Sw
)
glven by Eq. (V.44a). Since z(w ) < Zg for this saddle~point,

provided zw(tuA) > zg (Re(B) < 0), we never cross the line
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. ]
zfw) = Zg indicated in Fig. (V.14); also, we never cross the

1 1
line @ = mg (line of turning points) since w = w - wp( zg) is

fixed for all time (provided =z( wA) > zg) and we earlier (below
1
Eq. (V.41)) restricted ourselves to w > mg (i. e., not too close
¥
to the turning point for waves with frequency w ). Thus, for this

saddle-point (given by Eq. (V.44a)) +the lines drawn in Fig. V.14

are not accurately placed (they were drawn assuming w n Wy, as

T
in Eqs. (V.44c or 46a)); instead, the line segment z (w ) = Zg

should essc-in'l;:l.xa.‘l.la,r be moved vertically upward to infinity with our
1]
above saddle-point (and region a ) valid for all times above
the line zw(wA) = Zge
We now shift to the other side of the source and consider

a fixed position z = zy < 7y = 2 2’ again with time increasing.
]
Af'ter passing the light-cone, the saddle-point frequency w v

A
T
of the wave-packets decreases until w 1is sufficiently small that

. 1
the resonance position zm( w ) has moved in from the left to coin-

T
cide with zy (assuming zm(ms) > ZJZ.)' For zw(m <z the

o’
response is the same as found in see. III B for a nonuniform
unpumped plasma, for zm( m') > 2,, the waves from the source have
passed through thelr resonance zone at zm(w') and grown before
reaching z,. For (IB'[ or |B| ) >> 2A, these wave-packets
correspond to Sw given by Eq. (V.46a or 44c) (éepending upon

r
whether 2z, is closer to z, or zs), and w %"’A still.
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This is the only solution (corresponding to growth) found in the
reglon 3z, <z mA) <z = Zg (and it ceases to be valid outside this
region). Finally, at still later times w, decreases umtil 7, mA) >
>z = zg (assuming 1z ms) > zg) prohibiting wave-packets of

this frequency (or lower) from growing as they travel from z, to
zj, and the saddle-point given by Eq. (V.44c) ceases to be valid.
However, the saddle-point given by w' ] mo - wp( zg), from Eq.
(V.44a), now becomes valid. This is similar to our results for

For all of the saddle-points we have found in connection with
01, ((iw)2 is either negligibly small or real so that the exponen-
tiation factor I‘1 = vRe( 91) iz given only by the real part of the
last term in Eq. (V.41a). Since in all cases where growth has
occurr}‘ed, zg < 7, m') <z and '&(zg)/&'(zl) is essentially
real and negative (in general, the complex argument of & zg)/&'( Zl)

changes from 0 to -m as the wave-packet crosses the resonance

zone), we have Im En[E(zg)/E(zl)] = - and from Eq. (V.41)

o) et

1 1
At the resonance position z (w ), ®w is the actual wave-packet
frequency while wf ~zm) is the frequeney of a wave whose turning

1 [}
point (essentially z+(w )) 1lies at z (w ); thus,
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[m'z - m2( zm)]é =c kz( z,) , the effective z-wavevector measured at z.
Therefore, Eq. (V.47) gives exactly the same exponentiation factor
as given by Eas. (I.7,8) with V,, =0 (the result obtained by
Rosenbluth, White, and Liu in Ref. F VI) and as given by one-half
the energy exponentiation factor I‘]3 of Ref. G I. Equation (V.47)
is valid only for back- or oblique-scattered waves since our approxi-
mations break down near the turning point where kZ + 0.

A11 of the alove results, starting with Eq. (V.40), were based
on tﬁe approximation given by Eq. (V.39) which breaks down if
m'2 - mz(z) + 0 (i. e., essentially if z approaches the turning
point z+(m')) or “Z(Zm) - m2(z) +0 (i. e., essentially if =
approaches the resonance position zm( w )). Provided
lmi - wél >> ZmAIGw], the saddle-points given by Egs. (V.44b, ¢
or 46a,b) (depending upon whether z_ is closer to Zg or zy,
respectively) satisfy Eq. (V.39). For the saddle-point given by
Eq. (V.44a), the term proportional to D2 in Eq. (V.39) remains
a small correction only if |Zm(mA) - Zgl << |z+(wA) - zg[.

However, it is not necessary to impose the approximation

of Eq. (V.39) since the phase integral function Bl (and also 62)

can be written exactly in terms of elliptic integrals. We find
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+
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%
~_ [ J¥
p= (_E{._ 3 ? 62-48":‘)
> V2

8,')'_:_ ﬂ___ f_ ’ (Y48 3)

F and E are elliptic integrals of the first and second kind,
respectively, and F(4) = F(7/2, q) and E(4) = E(m/2, §)

are the corresponding complete elliptic integrals. We have previously
defined the quantities A (see Eq. (V.2b)), Z (see Eq. (I.10a)),
£(z) = A (see above Egs. (V.37 and 39)), the turning points p,
and p_ (see Egs. (V.2e, f)), and Py = p(zg) and p, = p(zl)
(from Ea. (V.1)). Equation (V.48) can be put in many forms
using the various elliptic integral transfamations, but the form
shown is convenient for expanding in powers of the pump strength
parameter D2 (similar to what was done in Eq. (V.39), but now
after the integration in Eq. (V.38a) rather than befare).

Viewing the pump as modifying the saddle-point of the
unpumped nonuniform plasma (sec. III B), we expand the elliptic
integrals and the other terms (except for - £( ZSL) and f(= g))
in Eq. (V.48) in the limit of |§] << 1 and |p_| << 1

(equivalent to small D° and |X] >> 1 in Eq. (V.2d)) and find
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6,x-iwt + L %(Tl;g—)[c% (zz)—cg’F (23)]+

Lﬂ) cf(2,) C'F(Z') }

where

4
1]

and T, is given by Eq. (V.47). In writing down Eq. (V.49), we
have assumed 3z, b z (w') = Zg < z+(w' ), which explains the appear-
ance of the exponentiation factor I‘l. Equation (V.49) agrees very
well with Eq. (V.40), if f(z) is approximated by Eq. (V.39), and
is valid even when Eq. (V.39) cannot be used; this further
Justifies our earlier results of Egs. (V.40 - 47), but, more

importantly, Eq. (V.49) can be used in an essentisl part of our
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next (and most interesting) calculation: the phase function 62
and the side-scatter exponentiation factor.

We now concentrate on the region bl of Fig. V.14, where
the wave-packets have already reached their turning point 2z ( w')
and are in the process of refracting toward lower densities. We

1 ]
assume zg = zg <z (w) = z+( w ) so that the wave-packets have

once again (and for the final time) traveled through their rescnance
T s
zone at z (w ) and grown (see Fig. I.10, but with z {w ) > zs).

From the definition of 62, by Eq. {V.38b), we see that we must

t
evaluate the integral ( f(z,w )iz between the end-points Zg

1 1
and z+(m ), where z,,W ) = 0; therefor2, the approximation
given by Eq. (V.39) cannot be used for this integral. However,
1
we can use Eq. (V.49) (without the -iw t term) if we replace

zg by zg and zg by =z, in that equation. For 62, we also

i 1
need the integral :'f( %z, )dz between the end-points z, and
J

1
2z and for this we can use Eq. (V.40), with z, izg <z(w)=

g,
1
<z (w), and expand assuning |z, - z_| << |z, - zg| (i. e.,

|w'2 - mz(zm)| << Iw'z - w§| A Iw'2 - wi] ). Adding the two

integrals together gives

L n & 2Y2 — 2
e~_|wt+__._‘(w ) +{w 0.)3
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where I'l( ml) is given by Eq. (V.47). Note that this reduces to
the correct vnpumped nonuniform plasme result (seec. III B) in
the 1limit D2 -+ 0.

Writing the saddle-point as w = wy + B ( |m - W |>>
>> 2w |6m| ), as we did earlier in this section, 62 can be put
in a form similar to what was done in Eq. (V.41) for 01, and
the saddle-point (from dez(m|,D2)/dm' = 0) can be put in a form
analogous to Eq. (V.42). We are mainly interested in the exponen-

tiation factor I'2 = Re (02), and we find

L=Relel ~ tEgM, 6uf]  (5La)

2
zw wf Zw -y

M, = W (wT)’Z’ (510

1]
with the complex saddle-point frequency w = w, + 6w determined

from the equation

2
Swz—iﬂ @o D 3
2M, 2 A

]
where w ° - wz(zm) % 2w, Sw+ mﬁ - mz(zm(wA)).

¥ 52)
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There are five solutions to Eq. (V.52), three of which
(with Re(gw) < 0) have Re[w'2 - mz(zm)}'< 0 (i.e., essentially
z,, > z+), contrary to our assumption used in obtaining Eq. (V.50).
Of the remaining two solutions (with Re(g§w) > 0), one solution
(with Im(Sw) > Q) has T 5, < 0 and corresponds to an exponentially
small contribution to Eq. (V.36). The remaining solution (with
Re(Sw) >0 and Im(Sw)< Q) has P2 >0, and we have two simple
limiting forms: (1) for ‘Li - “’Z(Zw(“’A))» 2w0|6m|, Sw is given
by Eq. (V.52) with w? - u?(zw) replaced by uﬁ - ﬂfz(zw(wA)) on
the right-hand-side, and 1‘2 = 21‘l ( a straight-forward extension
of our previous back-and oblique-scatter results); (2) .for

mi - o z{wy))< < 2w0|6w| , 6w increases to the value

Swx e -ig D’g( )5(2w )'5 M /5 (534)

where M, is defined in Eq. (V.51b), and F2 increases to the value

%
L= &% cos(Z) M2 (52 —P";g‘-' (753)

1] ] 1
Case (2), where z{a )% z{w) and w % w,, corresponds to side-
scatter since the resonance zone and turning point coineide, and

Eq. (V.53b) gives the side-scatter expomentiation factor. Imn
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gee. V € 3, we will return to a discussion of Eg. (V.53b), which
depends weakly on the observation position z = Zg through the
function M2

Having found the phase integrand I and the saddle-point
m' =, * 6w 1in the regions aI and b' of Fig. V.14, we approxi-
mte G . from Eq. (V.36) by expanding I about the saddle~point
and evaluating 61, f(zz,w'), f('zg,m'), end {1 - i[p._,p+ '2T1}

at the saddle-point. This gives (see Ref. see. U), for region a ,

G2l ) fe

=% 2
x|- de'(w,D) i-i[f’.’ﬂ.]T, x

« exoliX _ut 54

P('? +6,-Y ) * e
end, for region b', a similar form but with 61 replaced by 62
everywhere and the term im/2 dropped from the exponent.

The term dze]_/a:lm'2 can be replaced by its unpumped

(D2 + 0) value, given by Eq. (V.41c), for the saddle-point given
by Eas. (V.44e or 46a). However, as the observation position
approaches the resonance position, =z ( ), and the saddle-point
takes on the form given by Eqs. (V.44b or 46b), dzel/dm'z becomes

twice its unpumped value; this corresponds tothe group velocity
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decreasing tp half its unpumped value when the wave-packet is travel-
ing through its resonance zone (as discussed below Eq. (I.4) and
in sec. III ¢ and shown in Fig. I.4, with !2 =0 here). For
the saddle-point given by Eq. (V.44a), dzel/dm'2 increases to
82/A2 times its unpumped value, thereby decreasing the contribution
of this saddle-point to Eq. (V.54).

The term d262/dm'2, used in Eq. (V.54) when we are con-
sidering region b' of Fig. V.14, can be replaced by its unpumped

value

dez( L

w0)=2{2IM, (Z55)

when the saddle-point is given by the limiting form (1), wvalid

for mi - uX z{w,)) > 2u [8w| and discussed above Eq. (V.53a).
However, as the resonance position z_{ mA) approaches the turning
point = +( mA), and the saddle-point takes on form (2) given by
Eq. (V.53a), d262/dm'2 becomes 5/2 times ité unpumped value.
The factor 5/2 has no apparent significance and does not seem to
correspond to any change in the wave-packet group velocity since Eq.
(V.53a) is valid along the entire =z-t trajectory (for t 3 ts)
defined by w, = constant and z{w,) = z,(w,) and shown as line
"a" in Fig. I.10; along this trajectory, the group velocity must

be the same as in the unpumped case.
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In the next section, we will determine the coniribution of
the poles (i. e., eigenmodes) to Eq. {(I.29). Finally, in sec. V C 3

we will compare the magnitude of our two contributions to El'

2. Contribution from Poles

We remind the reader that we are in the process of calcula-
ting the Green's function gl(zg,zz;t,kll), from Eq. (I.29), using
the integrand C'l( zg,zl,ml,_lgll) obtained in sec. VA4 3. In the
previous section, we determined the contribution from the branch-cuts
of C'l' In this section, we will calculate the contribution from
the poles of Gl in the complex ml-pla.ne (see Fig. V.13, sec. V B,
and Eq. (V.32) for the position of the eigenvalues wiN).

- This contribution, can be written in the same form

Epoles’
as Eq. (V.36), where the integration is now around the poles of

' ~ - R ~
I( zg,zz,m ,t) = 1/{1 - i[p_,p+] 2Tl} with I given by one of

1 t
three possible forma: (1) for 2y < Zq Sz (w)c< z,(w ),

I=exp®) ; (7.564)

] 1
(2) for zlrf. z_{w )X Zg <zfuw),

1= exp(i% +6) + exp(8,) ; (Z.56L)
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(3) for z_(m') R TS zg < z+(m'),
op(Er) sop@) s o
e 560
+ exp(n L +6,)-exp(8,) .

The functions 01 and 62 are defined in Eqs. (V.38 a, b), while

03 and © 4 are similarly defined by

Z
3
6,= —iw'b —iff‘(z,w’)dz 57a)
Zz ‘
. Z+
6,5 6,-2 lfF(z,w’) dz . (Z57b)
Z
PFrom the residue at the poles, we obtain 580.)

& 1E2,90t)
Y. [P, ) Fpr,)] 2
y

Vet {-ilp ITH sy

t N
where the summation is over all the elgenvalues Win- We will next

+C.C.

oot
onles_'.ze Z

determine the derivative term Y, that appears in Eq. (v.58).
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We obtain an approximate form for Y,, by ignoring the

N
slow m'—dependence of the Stokes constant, Tl and writing
Zy
. rdf
Yoz-2i) G2, (59)

Z

where we have used the eigenvalue equation, Eq. (V.17), and
1 ]
f(z_,w ) =0 and f(z,,w )=0. The phase integral in Eq. (V.59)

can be evaluated exactly in terms of elliptic integrals, similar

(Z60)

to Eq. (V.24), giving

 dX )
Y, =-+iA 3o Gp )
IEQ@-8* F@I+[E@-F )| »

&
where § and D are defined in Eqs. (V.24 and 48), and A and
X are defined in Eq. (V.2). In the limit of |q| << 1 and

lp] <1 (equivalent to small pump strength parameter D2, and

Jx] >> 1 in Eq. (V.2d)'), Eq. (\;60: reduces to (Y.GI)
) vz .
Y, == i @X)% () 2 [wri05)]

with Z = (chn/me )1/3; in the opposite limit of p_ % P, By

and A 3 1 (i. e., far above the threshold found insec. VB 1),
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we find the same form as Eq. (V.61) bu. with the replacements
X+ +4 and 4vY2 » 27, This latter result is most easily obtained
by using p ¥ p_% p N+ tosimplify f = MG (see Eq. (V.2¢))

and taking the m'—derivative of the approximation
z, ) )
-Zlff'alz ~-TmA(1+X%).
zZ_

The physical interpretati- of the three forms of I
is as follows: form (1), Fa. . 4a}, consists of a single
left-ge®ug (toward decreasiug density) wave for all z & z_( “’I:.N)
since the source is to the left of the resonance region, zg 3 z_(miN),
while all growing waves must come from the region z_(m]'_N) 5
£z< z+(m:'m) and be outgoing to the left of the lower turning-
point z_ (the left~and right-going waves, corresponding to 61
and emitted directly from z,, are ignored here since they will
never or have not yet reached the resonance region and g_rown) H
form (2), Eq. {V.56b), consists of a right-going wave (61)
reflected from the turning-point z_ and a left-going wave (62)
" 'reflected from the tunﬁngfgpint %, 4for the case g g a_ Sz<g +
(i. e., the waves from the source have entered the resonance
region and are at least partially trapped between the two turning
pointsﬂ), and it consiste of two left-going waves (61 directly

from the source z_, and B, reflected from z+), for the case
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. z&z_ L zg <2, (i. e., all -waves which eScape past the turning
point 2z  must be out-going in the region =z £z ); form (3),
Eq. (V.56¢), consists of left- and right-going waves (el) emitted
from z_, a left-going wave (02) corresponding to the reflection
of Bl at the tui‘ning—point z,, & right-going wave (9 4)
corresponding to the reflection of 61 at the turning-point z_,
and right- and left-going waves (03) corresponding to the
reflection of 02 and © 4 at z_ and sz, respectively. Note
that all of the above waves, observed at a fixed position 3,
grow exponentially in time at the rate Y;‘ of Eq. (V.35p) (inclu-
ding the above waves directly emitted from the source position z g’

provided z_ lies within the resonance region &z Sz, <z,

s
where the responding density perturbation is also exponentially

growing).

3. Compa}ison
In comparing the magnitudes of Egs. (V¥.54 and 58a),
we first consider the coefficients in front of the exponentials.
Using Egs. (V.4l-¢, e or 55 and 51b) and Eq. (V.39) with
D + 0 (valid since we required lmi - m§| >> 2(uA|6m| N c2>.2/3/z2 =

=D 1in obtaining Eq. (V.53a); see also discussion after Eq. (V.41)),

" . the coefficient in front of the exponential in Eq. (V.54), for

]
region b , becomes approximately

4
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Gct

exp(6b) 2 C(né) il
62)

where we have ignored {hhe term {1 - i'p_, o, -2T1} ,

£y © max[f(zg,miN), f(zm,wiN)J, and & = (Ln/wf))wB(zs)/c >> 1
is the large parameter required in a nonuniform plasma in order

to use the geometrical optics deseription of the wave-packets

far from their turning points (see sec. ITII B). Using Eq. (V.61),
the coefficient in front of the exponential in Eq. (V.58a)

becomes approximately

Fexolnt)|x S 3 % [0

,IexM:'t) T 2ng '><N| W, |

y I(Zs) w (z":s) )
V-D- 2‘F( Z,) 1N)'F(Zsyw11N) ’ (Y,G3)

In order to use the WKB (or phase integral) approximation,
T

—Poles

however, the phase integral must satisfy [)\' vq dp! R 1 where
P
T = p, or p_. Otherwise, we must write the solution to Eq. (V.2a)

near the turning points in terms of the two Airy functions (ef.

e not

\-2/3

ec. III B). For the wave-packets, where p, and p_ apr
exceptionally close, the above condition gives |T - pj kA
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Using £ =40 =+ 7z z: (e"Ln/mi)l/B, and Bq. (V.2¢),

this gives a lower bound on f for the wave-packets,

NE¥4 (764)

and, hence, Eq. (V.62) gives the maximum value of

| (Y 654)
e xP @) 5 8

in the region where the WKB approximation is valid. We have already

gcut

shown in sec. IIT B that, for an unpumped nonuniform plasma,
[G,¢| attalns the above value at the very early time ¥ =
= A ‘l/ 3

wf Z Yt/ v 2¢ for z &% z, and that I-G-cutl continues

to increase as time decreases until

(—;cutl max: —g- | (YGEB)

at t=0 and z=z_. For this early time range 0 ° % r€'2€-1/3

and z ~ zg, We showed in secs. III B, C that we can apply the
uniform plasma results for which there are no eigenmodes (i. e.,
they have negligible amplitude compared to the wave-packets &t

early times); for +t a 25—1/ 3 however, nomuniformity of the
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plasma is important and our present analysis (including this
nonuniformity ) does give eigenmodes. Next, we will ealculate

'flmin and |G assuming we are in a space-time region

—poles Imax’
where nonuniformity is important (giving the eigenmodes).
Assuming A 3 1, so that P, and p_ are close together

for the eigenmodes, the above condition for the validity of the

VKB approximation becomes |T - p| 3 (2N + l)—é )\"% (T =p, or
p_) while, from Eq. (V.20), |T - i N(an + l)% )\_%. Thus,

for the lower N eigenmodes. the WKB approximation is just barely
valid. Setting p = +i for the closest approach to both Py

and p_, and using Eq. (V.2¢) and f = Q=4 )\1/3/2, the

minimum value of f{ then becomes

[
cf | _ |GN+H) wE) % (766)
w<z$) min~ t(; D ’ -

and Eq. (V.63) gives (Y67a)
I % /% W)
,onles,max/,:[exp(-)}'t), ~ _Z%T_ é; 3AA (] C(zdoz

-1
which is =« ° A l/6m( zZg )/m0 smeller than Eq. (V.65a). However,
p = +i is only possible at "quarter-critical" density (where
w, = ml) since, from Eq. (V.1 and 35b), Imp = 2mp/m0; at
lower densities (mp 5 m1/2) it is more typical to take |qf ™1,



174

and then |ef/«f ZS)'min a b7 z,) which is VA larger than

Eq. (V.66), thereby further decreasing Eq. (V.672) by an additional

faetor of A-i. Thus, in the limit of a uniform plasma,

Eq. (V.2b) and gpoles vanishes,

In the opposite 1imit A << 1, the condition

j/_dpr\,l gives |p -p|£}‘ and Iflmin%Z_J'

in Bq. (V.64). From Eqs. (V.26a, b) with X complex,

A+ o from

as,

lo,| %

¥ |2x| > NGES (leaving plenty of room to use our WKB results).

Then Eq. (V.63) gives (Y,67b)

W(Zs)

/liexp(—x{t), « -ﬁ%z— g—%

onles

which is much smaller than Eq. (V.65a). Of course for ) < A = 0.32

from Eq. (V.31 b), the eigenmodes are decaying exponentially in

time and are therefore negligible,

The conclusion thus far in this section, considering only

the coefficients in frontof the exponentials, is that the wave-

packets are intrinsically much larger than the eigenmodes (ef.

Egs. (V.62 and 63) with cf/m(zs) n 1). This remains true

(although only marginally)even at early times with f » 0 for

both z, and Zg (ef. Egs. (V.65a and 67a or b)). Thus, the

L

eigenmodes will remain negligible until their exponential term suf-

ficiently dominates the exponential term of the wave-packets so as

to overcome this intrinsic weakness of the eigenmode coefficient.
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We will next consider in detail these exponential terms in

Egs. (V.54 and 58a). We rewrite the functions 01 through 94,
given in Egs. (V.38 a, b, and 57 a, b), as

o=-iw't +9 -39, (7.680)
6,= —iwt + g, +9,+ 9, (V.68b)
67 -iw't ~ g, +g, (7.68¢)
oF-iwt -3 -3,-3, , (68

where

j A
q=iA[vq dp (Z68e)

q=i A dp (T csf)

9= i2 Migde . | (V68)
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In the discussion below Eq. (V.34) (see also Egs. (V.35b and I.2)),
we showed that the eigenmode growth rate Y& is always less than
the uniform plasma growth rate Y, but that the ratio approaches
its limiting maximum value 2(mpm1)£/mo €1 for N=0 and A + o,
We therefore evaluate g, and g, only for A %1 and N = 0, since
for A<<1l or N > 1 the eigenmodes remain negligible (compared
with the wave-packets) for a longer time (we are interested here in
determining the minimum time necessary for the eigenmodes to
dominate). For A A4 1, we showed in Eq. (V.19) that an anti-Stokes
line connects the transition poiﬂts p_ and p+,(for N not
too large) so that g3 is pure imaginary and does not contribute
to the magnitude of Eq. (V.58a).

We calculate g, assuming A a1, p_%p

g
for now |pg - i[ << 1. Using g~ (p, = p)Xp - p_)/i end

<p,, and

setting Re(pg) =0 (i. e., z_ = Re zw), we find Re(gz) %

g

v (1 - 2mp/m°)2/2/2_<< A valid only for |Imp_ - 1| =

g
1 - 2mp/m0|<< 1. For the eigenmodes, an anti-Stokes line connects

p_ and p,, and another anti-Stokes line starts at p = 0 and
curves off toward the right, while one Stokes line from each of p_
and p, curves down and around the right~hand-side of p = O

(see Figs. V.3a-b, 4b-c, 4d-e, 5e, 5g). Thus, Re(gz) =0
everywhere along the anti-Stokes line connecting p_ and p, and

monotcnically increases as we approach the anti-Stokes line from
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p=0: the maximum value (assuming Imp 20 or W 2Q0) of

Re (gz) can then be obtained at Oy = Q. writing g, in terms
of elliptic integrals of the first and second kind and expanding in
inverse powers of A & 1 results in g, o (2N + 1)2m/3 +(1) +

+ (9’()\)_é at Py = 0. Thus, for p_n P

g
can be ignored in evaluating the magnitude of the exponential

<p,, |Re g2| $1 and

term I in Eq. (V.58a); of course, the same holds for g, when
P_& Py <P,
We next calculate g, assuming A 41 and Py & P_-

For 1z lo_ - oyl % Ip, - o_] ¥ 2028 + 1)}//% , we obtain

2
Re(@ )=~ 525 le2 ], ¥ 69)

gimilar to our result in the above paragraph for g, except for
the sign (we are now on the left-hand-side of the anti-Stokes line
that comes down from p and curves around p = 0 and off to

the right in Figs. V. 3a-b, 4b-c, 4d-e, 5e, 5g). For |p_ - p2| >>
>» 1> |p, ~p_|, we can write g in terms of elliptic integrals
of the first and second kind and, expanding this assuming

logl >>1 and X >>1, we find

, Y

Re(ﬂ)Z-Z)\(w{:)N)R ‘Re(f) 4
b : o 79

+O’(1) + 6[‘Re<fe)] 2,
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1
where (“’J.N)R is given by Eq. (V.35a). The same results apply
<
to gy when pg TP
We will compare the exponential terms in Eqs, (V.54 and 58a)

for 2, = %y & Re(z_) < zg = Re( z+) and at a time corresponding to

t
the line of turning points in Figs. III.3 and V.14 : i.e., w =wg

or N 2(%’g2 - E)£ (from sec. IIT B), which reduces to

|
tr2[Zu? ctoel? ¥71)

for the case here with &z = Ty = By = Re(z ) - z, and Z 3

= (c2Ln/u.§)l/3. If we had chosen Zg ~ Re(z_), the eigenmodes
would have been exponentially smaller since Re( g2) ~ -1 (as well

as for gl) in 8,. If we had chosen Re(z_) X Z, = Zg s Re(z+),

both g and 8, would have been negligible, but the small

value of &z % Re(z+ -z_)

2(2N + 1)5 3767 ana t n 2/ 2N+ 1)E.
. \1/12;2/3 o,

(i.e., 13  wgt/E& 35'1/3) would give
essentially uniform plasma behavior over this small space-time
region and, since the ratio of the uniform plasma wave-packet growth
rate Yo to the growth rate Yl<l=0 of the fastest growing eigen-
mode is always greater than o a/2(4.upm1 )% 21, the term Re( —im’t) =
= Y]:l=0t in Eq. (V.68) coannot overcome the corresponding term yot
of the wave-packets (see sec. III C). In view of the intrinsie

weakness of the eigenmode coefficient (shown earlier in this
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section), +the eigenmodes would still be negligible compared to the
wave-packets for this choicé of 2y and zg with t given by

Eg. (V.71). However, if we choose z, =z, s Re(z_) < 2y = He(z+),
with t still given by Eq. (V.71), the side-scattered wave-packet
resonance position z = Re(z,) (which lies between z_ and z+)
is now to the right of the source position Zg. Hence, the side-
seattered wave-packet must travel for some distance and time (see
Eq. (V.71)) before it can reach the resonance zone where 1t can

1
start growing, while the particular term Re(-iw t) = t 1n Eq.

'
Yy=0
(V.68) for the eigenmode (with N = 0) starts growing at t = 0.
The only remaining question is whether the large negative value

of Re(gl) (g2 negligible here) can overcome this apparent initial
temporal growth advantage of the eigenmodes, and this will be con-

sidered next.

82/22°/3

anl

Writing Eqs. (V.69, 70) in terms of &p

1.
with 8z = Re(z+) -zg = Zg - 2y, we have for 1 R 8p R 202N+ 1)°A 3

Re(g) =~ 575 (&) (2.720)

and for 6&p >> 1

Re'(jl)z—m%%)ﬂ(sf)yz + o), (W72h)
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where we have assumed A >> 1. For A >> 1, we also have Yl;l=0 X
N 3 _ ,2/3 2,2 . _ 1/3 172 2,2
~ 270( mpui) /mo ¢“/Z°w, and using t = 2X (8p) wgZ /e

from Eq. (V.71) gives

ReCiart)=Y =222 ()2 . (773)

In comparing Eqs. (V.72b and 73), note that (wJ'.N)R n
X (mo + czkiL/mo)/Z = w (zo) = {[mo -w (zo)]2 + <:2ki'.}é is just
the frequency of the side-scattered wave and, by assumption, is
greater than or equal to wg (zo = Re( zw)) since waves of
lower frequency than ms are evanescent (see sec. III B).
Thus, for &p >> 1, the large negative value of Re(gl) is more
than sufficient to overpower the term Re{ -im't), for t given
by Eq. (V.71), and we conclude Re( el) A Re( 62) Lo

On the other hand, the total side-scatter exponentiation
factor T, (including growth both before and after the wave-
packet encounters its turning point at =z +) was earlier given in
Eq. (V.5%b). The term M, defined in Eq. (V.51b) is z-dependent
(as mentioned below Eq. (V.53b)) but is not valid right at the turn-
ing point =z + (whefe we would like to compare the wave-packets wiih
the eigenmodes, as decided above Eq. (V.71)) since we required above
Eq. (V.51a) that |uf - m§| 5> 2, || (Tecall that g = wy

at zg = z,). We will return to this polnt below, but for now we
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3 = = % =
Just set Zg zg z assume W, ms wy

M2 N Zmi/[wi - mzs ] = Zmi/( GpD)% for use in Eq. (V.53b). We

= wg, and obtain

]
N

then take one-half of I‘2 since we are really only interested for
now in the growth accumulated up to the time the wave-packet en-

counters its turning-point at z_ = z and find

g 2 ©74)
E - '1-(2 /gcos 7\‘) 6‘)A (S ) :o

10

where, for the side-scattered wave-packet, wy < W (zo) =
_ 2
= (mo + czkll/mo)/Z.

We can use Eq. (V.74) for Re( 92), to go along with

. . s . 2 2

Eq. (V.62) in determining Igcut[’ provided [mA - wsl =
= 6pD >> 2w |6m| Using &w from Eq. (V.53a) and M, found above,

this inequality becomes

T ‘/2. ) l/‘f-
fp >> (L) 2(22) = 1. 75

This is essertially a requirement, for the use of Eq. (V.74),

) that the source be outside the resonance zone; i. e., Zg <<z ~ h/2
in Figs. I1.8,10 (for the side-scattered wave, the resonance
position z, = Re(z_) coincides with the turning point Re( z+)).

For smaller values of &p, so that z - h/25z = z,» the

s
slde-scattered wave-packet does not travel the full width (h/2) of
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its growing region before it reaches its turning point at Re( z+) =
=z, and, therefore, Re( 92) is smaller than I'2/2. We can

estimate the proper value of Re( 92) by noting that, for &p b 1,
the wave-packet temporal growth rate remains at nearly the uniform

2/3 2

Plasma value Y, c /Z L2( )}%, W, = w, -, over most

P o
of the wave-packet trajectory so that Re( 62) % Yot. Using Eq.

(V.71), this gives

!
Re(6,) % A( oy 62, (@76

valid for 6&p X 1. Setting Eq. (V.76) equal to r,/2 for

2/3 - - . ~ n
A“'“2 6p = 8z = h/2, and using we X wy here (zsr\.z+),

- 4, 5 2 5&7 7)
e W52 23 o BT (5"

1

as an estimate of the resocnance zone size. As explained in a similar
discussion concerning Eq (I.10b), this simple calculation can

give only an approximate form for h since the average growth rate
over the entire rescnance zone is less than (v half) Yo while

the time spent-in the resonance zone is greater than (v twice)

that given by Eq. (V.71) due to the reduced group velocity

there (secs. I A 2 and ITI ¢ give ‘-’g = (Y-l + ‘_72)/2 X 21/2).
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Roughly canceling these two effects again gives Eq., (V.77) for
h. This corresponds to a value of &p = h/2 32/3g ~ 1, as expected,
and roughly agrees with our earlier estimate h X ).2/ 32 5(mp/mA)%
from Eq. (I.10b).

We summarize our results concerning the exponential terms
(in Egs. (V.54 and 58a)) in Fig. V.15. The top curve is HE(SZ)
vs, 6p for the side-scattered wave-packet where we use Iq. (V.76),
for Sp X1, and Eq. (V.74), for &p >> 1. The bottom curve is
Re( 62) vs. &p for the N =0 eigenmode where we use Eqs. (V.72a
“and 73), for ats §p %1, and Egs. (V.72b and 73), for
8p >> 1, in evaluating Eqs. (V.68a, b and 56 b) (g2 and g,
negligible here). These two curves of the exponentiation factor
Re( 62) are evaluated at the turning point time, given by Eq. (V.71),
as a function of the distance &z = Re(z, ) - z_ between the source
z, and the turning point =z, (sp = 62/12/32). We previously showed
in this section that the side-scattered wave-packet is intrinsically
dominant (ceonsidering only the coefficients in fromt of the
exponentiale ) over the eigenmodes, and Fig. V.15 shows that it
remains dominant (including the expnnential terms) over the
eigenmodes even up to and past the time the waves reach the turning
point 2z , Tregardless of the distance between z, and the source .

.

~— %" Since the side-scattered wave-packet continues to grow while

it is in its resonance zone, and its growth rate here is greater

o~
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than that of ‘the eigenmodes, it also remains dominant at the
tgide-gcatter saturation time" ts when it exists its resonance zone
(as shown in Fig. I.10). As shown in Fig. I.8, the minimum
value of ts occurs for the source located at the rescnance zone
edge and, assuming no pump modification in the group veloeity,
would be given b& twice Eq. (V.71) with &6z = h/2. However,
the reduced group veloeity in the resonance zone (see. I A 2 and
III C) increases t; by en additional factor of 2 for a given
value of h, 1. e., Eq. (V.77). The minimum value of tg is
thus approximately
2 5
%4 %
ts':.'. 8("275‘ [—E— cos %)] 6

78

Y 5 2
(2) (e oy G2
Wo) \@, c2 )

The temporally growing eigenmodes will begin to dominate over the
saturated side-scattered wave-packet shortly thereafter, or at a
time on the order of 2 ts'

We have so far discussed the response only at a given -151.1.'
as indicated in Eq. (I.29). This would be sufficient if the plasma
and pump wave Were of infinite extent and the sourece periodic

along X and y, but if our source delta-function in Eq. (I.25a)
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had also been proportional to &(y), for example, an integration
over k1y would also be necessary in Eq. (I.29). As discussed
earlier in the middle of seec. I B, such an integration converts the
periodic behavior in y into a "wave-packet" behavior in y

with all the waves (both the old wave-packets from Eq. (V.54) and
the eigenmodes from Eq. (V.58a)) now moving with a group velocity
ng along t-y trajectories 1abé1ed by a saddle-point (i. e.,
wave-packet ) k‘.l.y Usually, ng = k‘.l.y c2/ml ag in an unpumped
plasma; however, in the resonance zone the pumped uniform plasma
theory (secs. I A2 and III C) predicts a reduced group velo-
city Ig = (11 + Y_Q)/Z or ng = (cz/ml - BVih/Q)klyjz % k].ycz/zml'
Thus, by time ts all of the W{aves will have convected along ¥

a distance

_ bk, 2
%% oo @79

We have so far ignored variations along y in our system (plasma
and pump wave intensity), but if, for instance, the pump wave
( e. g., a laser) has a finite diameter dI.’ we have a new
effect: all waves stop growing when they have convected along ¥
a distance greater than dL! Since we have already concluded that

at time t, the eigenmodes are negligible compared with the
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gide~scattered wave-packet, provided some nonlinear process has
not earlier saturated the wave-packet growth (i. e., I'2 3 Zn(n ABD)
the "Coulomb logarithm" as mentioned in Ref. G IiI), +the eigen-

modes will forever remain negligible if

Yo 2 d, . .80)

The eonditions necessary for experimentally observing the
eigenmodes are, therefore, as follows: for dominance over the
slde-seattered wave-packet we must have an observation time or

pump wave {(i. e., laser pulse) duration
2
t 221, (V81a)

and a pump wave (1laser focal) diameter

d 22y ; (V81b)

for observation above thermal noise we must have a sufficiently

large exponentiation

[, 2 ]'; >» 1, (¥81c)



)
where I‘2 (typically set equal to 10 here) is some arbitrarily
set lower bound of growth below which we consider the waves to be
negligible. We obtain TI's from Eg. (V.74) evaluated at

8§p = h/2 ).2/32 using Eq. (V.77); this gives a side-scattered

wave-packet exponentiation factor & 81 d)

ZF [‘rc s(lo (wA (wA)‘(ZA

or equivalently

L=~ 0‘16((‘)“)5'2(8’)'2 K") A (}Lm)]

o

x I__n(}Lm)[Io(10I7W°TTS/C"‘Z)] % ~ (U8le)

Note that Eq. (V.81d) is equal to Eq. (I.9) multiplied by the

small factor (w (") /u) )l/ 6, so the agreement between the two
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exponentiation factors is very good. Equation (V.8la) is shown in

the next section to b easily satisfied; however, Eq. (V.81b) is
much more restrictive.
The lower bound on dL (for eigenmode observation)

glven by Eq. (V.81b) depends on both pump wave intensity



—
—

I = (v /c‘)zmi‘aipchzﬁe\anﬂw scale length L but we

can approximately eliminate either one of these variables (see
Eqs. (V.82 a, b, e, f) below) by using Eq. (V.8lc). Equation

(V.8lb) then takes on one of two forms: (1) if for given Ln
=
@)
2 .
(Z.824)

the 1ntensity satisfies
-8
Vo / AN 4 (Tl'
)> 2 ( ) [ =—CCS 10

R OBE

or equlvalently

5

I (10 Wc:l"l's/cmz) > 2 3( 2) (w:)’ﬁ (%)'%lx

_ 2
x !E):) [Ln(pm)] S[AoC}‘"‘)] /37 (.82k)

then: (for eigenmode cbservation) 4, must satisfy
12 @) e @A ()
L,
(wA ( )/ < Wy )(C“’P) -~ (782¢)
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or equivalently

d (pm) 2 10(%,)%@:)% (ZJ%)%"

(CJ): ) U—nﬂ“")]% D) g

(2) from another point of view, if for given I, the density

(7.824)

or equivalently
’ 5 )
L)/ w, {2 W, \12
LG 2 10 () (2)12 ()
-3

-3 _l
(gg)é ) Gu)] : [T (10" watts/en?)] 4

then (for eigenmode observation) d; must satisfy

189
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d 2 H;’(g:)'é (c ai’) (_\ég)-'K" (V829)
o vttty

A\ faouNb 82k
dum) 2 48 &) @@~ @By

~t%
x C_:)(_,_z KC) [I /10 Wa'H's/cmz)]

A

Equations (V.82¢c, d, g, h) =agree exactly with Eq. (V.81b)

only if I‘; = 1‘2, but the sense;(or direction) of the inequality
is still preserved if we use the smaller constant T é assuming
I‘; 'fnf‘z. Again, Eqs. (V.82a, b, e, £ ) are just different ways
of writing the same candition given by Eq. (V.81lc). In Egs.
(v.82b, d, £, h) the pump wavelength Ao’ Ln, and dL are all

17

in units of microns, and I0 is in units of 10 watts/cmz.

]
From previous definitions, we recall that w, = uw - W, = w (zo) =

- 2 c k. -k, =
=( w, * czku_/mo )/2 for the side-scattered wave and K = IEO 1_(1 _1|

_ 7.2 2\
-(ko+k1_|_) ..
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The usefulness of Eqs.{V.82a - h) can be demonstrated
as follows: 1if the density scale length Ln of our plasma was
fixed, Ey.(V.82b) would give the minimum laser intensity I,
and Eq. (V.82d) an absolute minimum laser focel dlameter d; needed
to observe the elgenmodes; if, instead, our laser had a fixed in-
tenaity I,, then Eq. (v.82f) would give the minimum density
scale length Ln that must be arranged in the plasma and Eq.
(V.82h) again an absolute minimum laser focal diameter dL
needed to observe the elgenmodes. Multiplying the intensity Io
(either given by Eq. (V.82b) or fixed ) by di (using either Fq.
(v.82d) or Eg. (V.82h), respectively), results in a single

expression for the absolute minimum laser power Po B Iod12' needad

for eigenmode observation:

2 2 2003\ (6 Kiy 12
(@4 2166 D) 5 K (7.830)
or equivalently

(10 waﬁ's) 223 rz ._6

were. ™

with P expressed in units of 1042 watts. Again Eq. (V.83)

1
agrees exactly with Eq. (V.81b) only if I‘2 = I‘2. We note, however,
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that the condition dL 2 2y, 1s required only along ¥y (the
gide-scatter direction) and not along x (the polarization direction,
_E_:o = on). Since we usually set klx

Egs. (I.2 or 25e¢)), the only requirement for the validity of our

= 0 for maximum growth (see

results is that the plasma and pump wave be relatively uniform

compared with the resonance zone width h from Eq. (V.77); if

Ax.L is the focal width of the laser along x, we require

Ax.L>>h (note that koh >> 1 was assumed in see. II). Thus, by

using a noneircular focal cross-section flattened along x, we can

now write the power as Po = IodLAxL and reduce our power require-

ment from Eq. (V.83) by the factor Ax.L/dL (typically << 1).
These expressions for the minimum necessary dp (which

do not 1n general agree with each other) and Po are only approx-

imate since we have used I'; (a constant) rather than I".2 (a

function of Io and Ln proportional to Ig/ 4 Ln) in Egs. (V.82¢c,

d, g, h and V.83a, b); the expressions are correct only if we

replace I';_ by I‘z. For instance, if I‘; = I'2/2 then Eq. (V.82d)

. (as written) is a factor of (1/2)1/3

smaller and Eq. (V.82h)
(as written) a factor of 1/2 emaller than the correct minimum
dL’ and Eq. (V.83b) is a factor of (1/2)2 smaller than the
correct minimum Po' That is why we used the word "absolute"
above, since the correct minimum (i. e., the greatest lower

bound) is generally larger. Since the correct expressions for
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the lower bounds on d‘L and P0 require using I‘2 in place
of I‘; in Eq. {V.82 ¢, d, g, h and V.83 a, b), the correct
minimim dL and Po are not independent of the exponentiation
factor 1‘2 but rather Increase with 1‘2. Thus, once we have
reached I‘2 = I‘; and satisfied Egs. (V.82d or h), a further
increase in I0 or Ln will increase 1‘2 past I‘; é.nd increase
the necessary dL past the forms given by Eq. (V.82d) or Eg.
(V.82h), respectively, if the eigenmodes are to be cbserved; this
makes the observation of the eigenmodes more difficult (in
spite of the large 1'2) because the condition on dL from
Egs. (V.82d or h) (or equivalently on PO) is generally already
restrictive. The eigenmodes cannot be observed if I‘2 < I‘é ,
because of insuffieient growth, and generally they cannot be
observed if I‘2 >> I‘; (unless nonlinear saturation occurs),
because of the restrictive condition on dL or Po for the
eigenmodes to dominate over the side-scattered wave-packet; the
most favorable conditions for eigenmode observation thus occur
at I‘2 = I’; (the equality in Egs. (V.82b or f)), provided
Egs. (V.82d or h, or V.83b) can be satisfied.

In the next three sections, we will apply these results
to three situations where one might try to look for the Raman insta-
bility: a typical laboratory theta-pinch, laser-fusion experiments,

and computer simulations.
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D. ZExamples

1. Theta-Pinch Parameters

We do not wish to go into a long discussion of various

theta-pinch experiments and fusion proposals (see Ref. A VI), but

rather just take as typical parameters a density n % 10 en™3 , a

density scale length Ln N 10 cm along the axis, and a radius

<

I3 .
rp 1 cm. Using a 002
w =2 X 10t4 sec_l, we then have the following additional

laser with )‘o = 10.6 mm and
A, n " a
relations: mo/mp v 10, mA/mp ~v9, K /2-'ko,‘ Kc/mp v 14,

Ck'.lyij B 0.99.

1
Taking I‘?_ =10, Eq. (V.82b) then gives

q
Io'?' 9.3 x 10 wa""l's/cmz ’ &84:1)
Eq. (V.82d) gives

d 233em .84b)

. . - 2
while Eq. (V.83b) gives (Po- IOdL)

P2 10« 10" watts (Z.84¢)
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as the conditions that must be satisfied in order to observe the
eigenmodes (assuming no nonlinear saturation). While Eq. (V.84a)
gives an easily obtainable intensity, the required dL is much
larger than even the typical theta-pinch plasma radius! Even if

Ln were decreased significantly in order to reduce the brequirement'
on d; (although thereby increasing the required Io)’ the power
requirement from Eq. (V.84c) remains unaltered and prohibitively
large (equivalent to 10 kilo~joules delivered in 1 nano-second).
From Eq. (V.81a), the required laser pulse duration is tL%

e (dL/c)/(akly/mA) or *{',L'c 1.1 nano-sec. From Egs. (V.81d, e),

10

at an intensity of I0 = 10 watts/cm2 we have A~ 3.0 and

A\
FZ v 10.9. However, the side-scattered wave-packet requires a

n, "
distance ys"' 16.5 em to saturate at the level I'z’\' 10.9,

<
whereas the plasma radius is only rp 1 em;  thus, the wave-

) X
2’actual

N (10.9) 2rp/ys) X1 or even less if the actual laser focal

packet will saturate early at a level of only (T

diameter dL < 2rp so that the v .ive-packet would exit the

cumped region before leaving the plasma. For the sake of com~
pPleteness, the growth rate of the wave-packet (at the center of
the resonance zone) is given by Eq. (I.2) as yo/mp =

- 3 17 2 ]é " -3

= 0.067(mp/w1) (Kc/wp)[Io(lo w/cm”) Ao(um) an 1.1 x 10

10

at I0 = 10 w/cm2 wiiile the resonance zone width is given by
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Eq. (V.77), with 2 = (czl‘n/“’i)lla X 0.28m, as h¥4.922%/3.
. (mA/wo)Z/B(mP/wA)W"’ B1.5Z%0.43m using A = 3.

Ye conclude that the ohservation of the eigenmodes in a
plasma w11.h theta-pinch parameters and an axially directed laser
is highly ﬁllikely: it would require an extremely high power
laser (Po ] 1013 watts for 1 mnsec.) and a density scale length
somehow reduced much below 1 cm. However, by firing the laser
in perpendicular to the theta-pinch axis rather than along the
axis, 'Ln << 1 cm can be achieved, and with Ln =1 mm

the requirements are Io R 4.3 % 1012

watts/cm2 and dL R L5cm;
moreover, with h X 0.090 mn (using A = 3) we can take
AxL = 0.5 mm >> h (as discussed below Eq. (V.83)) and reduce the

. _ > 11
power requirement to Po = IodLAxL A 3.3 x10

watts (e. g., 15
joules delivered in tL % 50 pico-secs) by using a noncircular
focal cross-section with the polarization perpendicular to the
theta-pinch axis (now the side-scatter direction). We finish this
section by no'ting that, from Eq. (V.8% ), we roughly have the
required Po( 1012w) N 2 ck._w/mA)Z( wA/mp), which decreases as

wp + wy +> w°/2: this motivgtes considering a lower frequency
laser or a higher density plasma (e. g., a laser-pellet fusion

experiment, as in the next section).
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2. Laser-Pellet Fusion Parameters

a. Slab Plasma

In present experiments (see Ref. sec. H) using high inten-

sity short duration laser pulses such as from a Nd:glass laser

? sec1, typical parameters

20

with A = 1.06 wn and © = 2 x 10"
in the underdense plasma region are a density n Y10 cm-3

and a density scale length Ln %10 pm. Since our power require-
ment from Eq. (V.83b) (necessary for observing eigenmodes)

is minimized for wp > uw, wo/2, we pick a value of w
reasonably close to mo/2 {and yet not so close as to violate
approximations made in sec. II): we take mo/urp = 3, mA/mp =2,
K=k 11/8)%, Kc/wp = (1 )%, and ckly/mA = /3/2.

Using I'; = 10, Eq. (V.82b) then gives

> 45 x10" watts/em? 854)
I, 2 45 x10 wafts/cm?, (SZ a
Eq. (V.82d) gives

d 2 80 pm o, (7.85k)

) . - 2
while Eq. (V.83b) gives (Po = IodL)
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R223 x10° watts (285¢)

as the conditions that must be satisfied in order to observe the
eig wodes (assuming no nonlinear saturation). . The intensity
given by Eq. (V.85a) has been exceeded or approached in many
experiments, but only by reducing the fozal diameter dL
30 um or less (see Ref. sec. H). All of the conditions listed

to

in Eq. (V.85) will undoubtedly soon be exceeded: the power require-

pent of 3 x 1042

watts is equivalent to 300 joules delivered in
100 pico-seconds, and the pulse duration requirement of only

tL 0.3 pico-sec is no problem. In raising the power to this
level with short duration pulses, however, the dens;i.ty scale
length may be reduced below 10 ym thereby further increasing

the intensity requirement (perhaps past 1017

watts/cmz) , and
unless the actual focal width dL is correspondingly reduced
according to Eq. (V.82d) this would increase the power
requirement past that given by Eq. (V.8%b). Thus, in trying to
observe the eigenmodes, it mey be a losing battle if one tries
to attain the necessary power by compfessing the pulse duration

and, if the power requirement is not reached, it does no good to

inerease I0 by strong focusing because Eq. (V.82d) would
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eventually be violated. Also, although at an intensity of

16

Io =5 x 10 watts/cm2 we have A = 3.8 and T ~ 11, the

2
side-scattered wave-packet requires a distance ¥q N 40 um
to saturate at the level 1'2 % 11 and this distance may exceed

the actual laser focal width d if this happens, the convec-

L
tive saturation will occur early at a level of only (I‘2 )actual %
¥ 11( dL/yS), and this may explain the lack of experimental
evidence for the side-scattered wave-packet (although there are
other possible explanations such as an unexpectedly small Ln’
or density fluctuations cSn/nO R h/2Ln along y over a distance
scale y < Vg corresponding to an effective density scale length
Ly g ZySLn/h). For the sake of completeness, the growth rate
of the wave-packet (at the center of the resonance zonme ) is
given by Eq.(I.2) (see also seec. VD 1) as Yo/mp = 0.12 at
Io =5x 1016w/cm2 while the resonance zone width is given by
Eq. (V.77) (see also sec. VD 1), with Z = (chn/u';)l/J -
=1.3mum, as h%¥512%6.4um using A= 3.8,

For a laser-pellet fusion reactor, a density scale length
L ¥ 100pm is generally thought to be typical in the under~
dense plasma region (see Ref. sec. J). Equation (V.82b)

then gives
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I 221x10° watts/em? ,  (2864)

Eq. (v.82d) gives

AL?' 370 pm o, (Y8GL)

while the power requirement (Po = Iodi) remains at PR

< 2.9 x 1012 watts as the conditions required for eigenmode ob-
servation (again assuming no nonlinear saturation). The intensity
given by Eq. (V.86a) is exceeded in typical proposed laser-
pellet reactors (Ref. sec. J) and in many present laser-fusion
experiments(Ref. sec. H). However, the focal width requirement,
given by Eq. (V.86b), is scmewhat restrictive for a single laser
beam (reactor proposals envision using multiple over-lapping

laser beams to cover a spherical pellet surface, but this case
will be looked at in the next section); this is especially true
in present experiments where d % 100 at this power. If

a density seale-length of Ln ¥ 100 um is reached (e.g., by
using a laser pre~pulse in present experiments), the resonance
zone wldth would be h % 5.1 Z% 14 ym using Z = (czr,n/ml'f)l/3 %
¥ 2.8 um and A= 3.8 (equivalent to I, %11 and Yoty =

= 2,5 % 10_2). Thus, by using a noncircular foeal eross-section,
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with the width along the polarization reduced to Ax X 30 m > h
and the width along the side-scatter direction increased to d R
£ 370um, we could satisfy Egs. (V.86a, b) and yet reduce the
power requirement to only P E I 4 b R 2.3 x 10 watts
(equivalent to 23 Jjoules delivered in 100 pico-seconds). This
is within present laser capabilities, although this type of
focusing would be extremely difficult (the sIit-like focal

spot would have to be straight within 30 um over the entire
length of 370 Mm).

In conclusion, it appears to be very difficult to arrange
all the parameters (plasma and laser) in a manner satisfactory
for the observation of the eigenmodes in a slab profile laser-
fusion experiment. Generally, this requires a laser power
Po T3 x 1012 watts, although this power requirement can be
reduced somewhat (v AxL/dL) by using a noncircular focal
cross-gsection; for this purpose, a density scale length L11 &
~ 100 pm  seems best since the required dL is then sufficiently
large that one can adjust AxL to satisfy dL >> AxL 3 30 um
(also, larger dL allows the laser power to be delivered over
a longer pulse duration before the laser ponderomotive force

énd local plasma heating have a chance to create density gradients
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over the focal iiameter dL; at 1 keV temperature, sound waves
take 3 plcu-sec to travel 1 um). Thus, this appears to be one
possible explanation for the lack of experimental evidence for
these eigenmodes. In the next section, we will consider the

modifications introduced by a spherical pellet-plusma.

b. Spherical Plasma

The eigenmode calculation has been extended to the case
of a spherical nonuniform plasma n = n{r) by Liu, Rosenbluth,
and White (Ref. G IX). They reduced the problem down to two
dimensions by considering a cross-section of the spherical pellet
containing both the incident laser fo = z and the scattered
electromagnetic wave f(l = §. Expanding n = no[l - (r - T, )/Ln]
about the resonance position (1. e., radius) r,, and taking the
center of the sphere at (z = T, Y < 0), they then used the
approximation r N To-3z* }'2/21‘0 in n(r) (valid for
Iz/rol <<1 and |y/r°| <<1). By dropping the 32/3y2
term in Eq. (I.21) (valid for Iy/ro| << 1), and factorizing
ne v @) Byl e ) edfin, w1 s Pre)]
+ ;:;e. with z' £z~ y2/2ro, they obtained an equation for
El(z', W, kly) identical in form to Eq. (I.25a) with =z
replaced by z' but with the additional term - Zkfy z'/ro

]
added to Q(z , w, kly)' This in turn gives an eguation
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identical in form to Eq. (V.2) but in terms of a variable

T

v o_ ' _ t
p Zap(z, w, k paremeters A = A/VE and X =

\
= . 21(21 W . LR I,
B ":x + ?1(: ly('Y + \)p)Ln/mproD]/a, and the function q (z ,X ) =
2X -p +1/p, vwhere Yy =1Im w is the growth rate and
a=(1+ 2c2k§yLn/w§ro )%. Thus, all of our results obtained in
sec. V A-C are still valid provided we substitute p’ for p,
1' for A, and X' for X everywhere. ‘We do not wish to go
into this in any more detail here but rather just point out that
the spherical plasma modifications, to our previous slab
plasma results, are small whenever 2( °k1y/mA)2( mA/(up )2Ln/ro g 1.
For proposed laser-pellet fusion reactors {Ref. sec. J),
typically L % 100 um and T ¥ 600 ym giving 2( ckly/mA)2 .
. (mA/uup)2Ln/r0 o1 for mA/mp = 2. Thus, Egs. (V.86a, b) and
Po 23 x 1012 watts are still approximately correct in giving
the necessary conditions for observing the eigenmodes. Equation
(V.86b) can be checked another way by noticing that the back-
and side-scatter wave-packet saturation is due to suffering a
density change corresponding to a change in position of half the
resonance zone width, or h/2, and that a corresponding density
change in the spherical case with 2z held fixed requires =
distance along y of (roh)i. Thus, an effective resonance zone
width along y is hy X ( roh )i, and the maximum required laser

focal diameter (i. e., an upper bound on the quantity that



204

appears on the right in Eqs. (V.81b, 86b, etc.)) is necessarily
2hy EAT roh )é (it is an upper bound because refraction will not
allow 2z to remain fixed, but will cause anearlier saturation than
predicted by hy alone and, thus, an earlier appearance of

the elgenmodes and a less stringent requirement on dL for their
observation). We can, therefore, believe Egqs. {(V.81b and 86b)

L
whenever they give an smaller requirement on 4, than 4( roh );

L
otherwise, the curvature of the spherical plasma has a major effect
on the side-scattered wave-packet saturation. In our present case
with h® 14 um, both estimates give 370 ym.

The intensity given by Eq. (V.86a) is exceeded in typical
proposed laser-pellet reactors (Ref. sec. J). However, dL/2 v
~ 200Fm does. not very well satisfy |y/ro| << 1 ( a requirement
in the extension of the eigenmodes to a spherical plasma), and
this may lead to an early saturation of the eigenmodes at a
level comparable to that of th;a side-scattered wave-packet,
Also, although in a laser-pellet reactor the intensity is required
to be highly uniform (multiple over-lapping laser beams), the
polarization will not be uniform but rather will change on a
distance scale dpol comparable to the spacing of the individual
laser beam focal centers. This spacing or d

pol
exceed 370 um, and if dpol < 370 pm the eigenmodes would saturate

may or may not

early before they could be observed above the side-scattered
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n
wave-packet. For the side-scattered wave-packet, Ye o185 pm,
so its convective saturation would remain at I'2 except for very
16

At an intensity of I_ =10 watts/em®, T %

small d.L or d 5

pol”
& 32 and yS ~ 270 ym, and even if dpol were reduced to

150 mm T, % 18 would still be sufficiently large that the side-
scattered wave-packet and eigenmodes would probably saturate
together and at an earlier nonlinear level. Since growth suf-
ficiently large as fo require nonlinear (as opposed to linear
convective) saturation is undesirable (as discussed in sec. I A1),
and an intensity as high as 1016 watts/cm2 is typical, this
indicates possible future problems (in spile of the previously
discussed, and expected, lack of present experimental evidence for
the Raman instability) that may be encountered as laser-fusion
experiments approach the parameters typical of proposed laser-
pellet fusion reactors. It should be pointed out, however, that
random density flucturations (Sn/n0 < h/2Lrl ~ 0,1 over a density
scale y < ¥q u ZOOP.m would tend to decrease the growth rate
over the refraction saturation distance g and thus reduce I‘2
below our expression. Also, going to an appropriate noncircular
foeal eross-section (shortened .perpendicular to the polarization),
for each separate laser beam incident on the pellet, would reduce

dL.
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3. Computer Simulation

In computer simulations (see Ref. sec. L) with periodicity
typically assumed along y, there is no finite resonance region
along y to convectively saturate the growing eigenmodes. The
response will therefore continue to evolve until at least the
eigenmodes saturate by nonlinear processes; the side-scattered
wave-packet will saturate convectively (by refraction) at an
exponentiation l"2 above noise unless T

2
(z in(n 112)) , the coulomb logarithm) that nonlinear processes have

is so large

also caused an early saturation here too. Thus, in such simulations
the response always evolves eventually (provided A > Ao ¥ 0.3,

the eigenmodz threshold from Eq. (V.31b)) to a nonlinear

stage where the eigenmodes are dominant over -- or at least
comparable with -- the side-scattered wave-packet; the time
required for this to oceur is given roughly by Eq. (V.8la). This
would correspond to an experimental situation where either dL
satisfies Eq. (V.81b) and Io exceeds the threshold given

by A>A_ % 0.3 or, although d. may not satisfy Eq. (V.81b),
(o) A

L

1’2 from Eq. (V.8le) is so large that the side-scattered wave-
packet -- and possibly even the eigemmodes -- have nonlinearly
saturated at an exponentiation below I‘2. In order to suppress

this automatic nonlinear evolution in periodic plasma simulations,
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one could simulate a pericdic array of plasma blocks separated

by a distance y ] Y (in an attempt to disperse the waves forming
the eigenmode before they reach the next plasma block with its
corresponding resonance zone). Of course, one would need only

one plasma block centered on the gpatial grid and surrounded on
both sides by a vacuum region (width 2 ys); the pericdic

boundary conditions would then simulate automatically the other
plasma blocks. Or, one could use ab.'orbing boundaries to end

the eigenmode growth and thereby simulate the effects of finite dL.
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VI. CONCLUSION

We have investigatcd the electromagnetic "Green's function"
response to a delta-function transverse current source in a
plasma which can be nonuniform and pumped by a laser driving the
Raman instability. The precise meaning of these terms, the
configuration used, and basic approximations and restrietions
have been given in the introductory section. We have considered
the four basic cases —a. Uniform, No Pump; b. Nonuniform, No
Pump; c. Uniform, Pumped; d. Nonuniform, P@ed -~ with particular
emphasis placed on mathematical similarities and differences
among the four cases. By applying the same mathematical
procedure to all four cases, we have been able to demonstrate
that the Green's function for case (d) reduces to the appropriate
Green's function for cases (a) - (¢) as the pump strength goes
to zero or the nonuniformity scale length goes to infinity. In
particular, the eigenvalues found to occur in case (d) either
vanish or require an infinitely long time to observe as one
approaches cases (a) ~ (c).

The response in cases (a) - (¢) consistsof wave-packets
(possibly growing) of different frequency, each traveling along
a well-defined space-time (z - t) trajectory labeled by the
saddle-point frequency. The response in case (d) consists of

such wave-packets with the addition of localized growing eipenmodes.
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These eligenmodes dominate at late times over the transient
refracting wave-packets. However, for very early times case (d)
reduces to case (c¢) and the wave-packets predominate. In fact,
in the section on case {d), we have shown that the eigenmode
response does not dominate until after refraction has saturated
that convectively growing wave-packet whose turning point coincides
with its resonance zone. This "side-scattered" wave-packet has
the largest saturation amplitude of any wave-packet since it
remains within its resonance zone the longest time. In applying
the results obtained here to any experiment, one must first
compare the temporal duration of the laser pulse with the
side-scatter wave-packet saturation time" to determine whether
one is in the "transient" or “eigenmode" regime., This discussion
is for the model assumed here (i. e., periodic in x and y,
with the response given in the 2z~t plane); for a more realistic
model (i. e., a source localized in y as well as in 2z and t,
and a laser of finite extent along y), one should alsc compare
the spatial width of the laser beam pulse with the "sldescatter
wave-packet saturation distance" obtained by multiplying the
agbove time by the wave-packet group velocity along y. Here we
are assuming that the Integration of our periodie Green's function
over ky merely introduces a convective behavior along ¥y with

wave-packet trajectories, extending into y-z-t space, labeled
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by a saddle-point frequency and 'y wavevector.

For parameteré t&picﬁl of a fheté—pinch, we found a refraction
saturation time of a few nanoseconds and a refraction.saturation
distance of tens of centimeters — much larger than either typical
laser beam diameters or theta-pinch plasma diameters. Therefore,
we expect a negligible effect from the eigenmodes and that a
local convectively growing wave-packet approach neglecting
refraction would be more appropriate. Backscattered waves would
be saturated by passing out of the resonance zone, and sidescattered
waves would be saturated by passing out of the finite diameter
laser beam. For parameters typical of a laser-fusion experiment,
we found a refraction saturation time on the order of a picosecond —
much smaller than the laser pulse duration. However, the re-
fraction saturation distance was found to be 40 microns or more —
marginally greater than typical focal spot diameters for a single
intense laser beam. Our above conclusion then usually applies here
also. For a laser-fusion computer simulation, however, the
gystem is periodic along y,— infinitely wide plasma and laser
beam, and a discrete set of ky values — and, afteruthe
reffaction saturation time (on the order of a picosecond), the
temporally. growing eigenmodes will dominate. The convective

nature of the eigenmodes along y 1s lost due to the periodieity.
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FIGURE CAPTIONS

Chapter 1

Density regions associated with various instabilities.

Raman instability 'in' a uniform plasma (backscatter shown).

Vl and V2 are group velocities of the scattered waves.
Diagram of (wl,El) for resonance Al = A2 =0. Fora

cold plasma, resonance shell in El—space is a sphere and
tul(l:_l) =u - mp is independent of fl.

Space-time response for given ( u)l,.lgl).

(a). Back-scatter; (b). Oblique-scatter.

(a). Back-scatter (V:LV2 < 0) 1in a density gradient.

(b). Pulse growth and saturation.

(a). Oblique-scatter in a density gradient.

(b). Pulse growth and saturation,

(a). Side-scatter in a density gradient.

(b). Pulse growth (!1 and V, z-dependence ignored).
Refraction of side-scattered wave-packet (+turning point coin-
cides with resonance zone center at zo) for given 51 v
Growth oceurs only for 05t = tgs while wave-packet is

in resonance zcne.
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Several representative wave-packets for the space-time
response with given 1:_1 n and no pump. The lowest frequency
non-evanescent wave-packet is (a) which has its turning
point at the source position z_. Both wave-packets (b)
have the same frequency but initially propagate in opposite
directions along =z. The wave-packets (c) have very high
frequency, propagate with essentially the speed of light
along =z, and define the light-cone below which there is

no response.

Representative wave-packets for the pumped space-time response
with given 1_(_1 T The side-scattered wave-packet (a) en-
counters its resonance zone at its turning polnt position.
The temporally growing eigenmodes (with maximum growth rate)
are localized within the resonance zome (a). A wave-packet
of lower frequency than (a) encéunters its turning point
before its resonance zone and does not grow. The two
oblique (or back)-scattered wave-packets (b) enounter

their resonance zone (b) (at different times) in the
underdense region to the left of the source position 2.

A wave-packet, of much higher frequency than (b), encounters
the uniform plasma or vacuum to the left of z =0

before its resonance zone (e. g., ® > mo) and does not

grow.
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I.11 Density profile showlng boundary at 2z = O between
- yniform (or vacuum) and nonuniform plasma regions. The
density gradient dmg(z)/dz E mﬁ/Ln is taken to be constant.
The electromagnetic pump wave is incident along the density
gradient. The delta-function source &(z ~ zs), for the
scattered electromagnetic waves, 1s located at position Zg

1.12 Orientation of the three waves, the electromagnetic fields,
and the nonlinear currents and charge densities for the
special case of slde-scattering with klx = 0, The longi-
tudinal current iL(Q) drives 6n(9) (i. e., the Langmuir
wave). The transverse current iT(wl) drives E-l and
El of -the side-scattered electromagnetic wave. The electron
osci]_'l.atj.on velocities v, and v, are used in obtaining
currents‘and v x B forces.

I.13 The complex ml-plane showing the Bromwich contour B and
the depressed contour B' . The semi-circle of radius R
(dashed line) gives negligible contribution to the integral
as R + «, The branch-points and branch-cuts shown are for
the uniform unpumped plasma. w = (mlz) + czki ‘_)é, and v,
represents damplng.
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FIGURE CAPTIONS

Chapter III

Trajectories of wave-packets of constant frequency wy
(straight lines) and lines of constant phase Y (hyperbolas),
for uniform unpumped plasma. The source is at position Zgs
and m2 = mg + czki 1 Outslde the light-cone, the response
is zerol.

Space-time diagram, for nonuniform unpumped plasma, showing
the eight different regions used in calculating the asymptotic
response Gl' The dimensionless variables are t= mst/g

and z wz(z)/“’is where “‘2(2)‘; m;(z) ¥ czkil.' by =

E m(zs), and £ = ang/cms. The source 1z, is at zZ=1,
while the boundary 2z = O (between uniform and nonuniform
plasma) 1s at Z(z = 0) and lies between z =0 and 2 = 1.
Trajectories of wave-packets of constant frequency ﬁiA = uul_\/mS
(lines ending at the point Z =1, % =0) and lines of
constant phase VY (hyperbola-like lines). The dashed line

is the line of turning points for wave-packets with different
@,. See Fig. ITI.2 for further definitions.

Plot of Green's funetion (2/c )Gl on vertical axis (same

as t), at various fixed times %, as a function of

position Z. Various time intervals (of duration A% = 0.1)
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have been purposely left blank. We have multiplied (2/c )G1
by 0.0075 in Fig.III.4a and by 0.02 in Figs. III.4b-d,
and have used £ = 300. Note change of plotting scale in
going from Figs. III.4a to b.

The complex Y-plane showing the branch-cuts between +i

and -i and the five saddle-point solutions YN(n), with
n= Iz - zsl/ct. This is for the uniform pumped plasma.
Fig. ITI.5a shows the sheet labeled [3] in sec. III C
with the solutions I - III. Fig. III.5b shows the sheet
labeled [4] with solutions IV and V. b = (wp - w)/2y,
and a = (b/2 )1/ 3 , where Y  is the uniform plasma growth
u.\2

: =2 2 —_—
rate given by Eq. (I.2), = mp + czku, end wp S -w.

P
Contours, in the complex w, -plane, of constant Re(y)
(solid 1lines) and constent Im(Y¥) (dashed 1lines), for the
uniform unpumped plasma (but discussed also in sec. III C).
The saddle-point frequency mA(n) , NE |z - zsl/ct , is
shown as well as the contour of steepest descent, passing
through w,, which lies partially on both of the two
Riemann sheets shown in Figs. IIT.6a, b. The branch-cuts
extend from iw to infinity along the real ml-a.xis.

22 2 2
() -(l.\p"'czkll-
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FIGURE CAPTIONS

Chapter IV

Generalized Stokes (dashed) and anti-Stokes (solid) lines,
with arrows indicating direction of propagation (on
anti-Stokes lines) and growth (on Stokes lines). The
arrows are labeled (e. g., +i, -2i) according to the value
of the WKBJ coefficient (a; or a,) for that WKBJ solution
corresponding to that arrow (if no label is present for an
arrow, the coefficient is taken to equal 1). For cases

(a, b), the transition point is a first order zero, and
two different boundary conditions (designated b. c.) are
taken: incoming wave (a) or outgoing wave (b). For cases
(c,d), the transition point is a first order pole, end

the boundary conditions are incoming (c) or outgoing (d).
Generalized Stokes and anti-Stokes lines for the pole (p) -
zero (z) combination. The intrinsic branch-cut is chosen
to lie .m the upper-half-plane. The solution (arrows and
labels) is obtalned by the procedure given in sec. IV B.
Case (a): incoming wave from left is partially reflected,
with outgoing wave on the right (boundary condition b. c.).
Case (b): incoming wave is not reflected if one uses an
outgoing wave on left (b. e¢.). Large circle indicates that

the pole-zero pair can be treated as a "compound" transition
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point, with Stokes constanis Tn' One reaches T2 by
going through the intrinsic branch-cut in a counterclockwise

direction.
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FIGURE CAPTIONS

Chapter v

The complex X-plane, showing the branch-cut used in defining
2 x+ (X2 +1)" and p =x- (X +1) such tnat

le,l 21 ana [p_| 1.

The complex p-plane, showing the positions of p (x) and
p_(X), for three values of IxI (2, 1, 0.5), as

0 = arg(X) varies from 0 to 180 degrees. The positions
are symmetric about the real p-axis for ImX S0 and

ImX 2 0.

The positions of the Stokes (dotted) and anti-Stokes

(solid) lines for |X| = 4/3 and various values of

8 = arg(X):

(a). 8 =0; (b) 6 =1/8; (c) 6 =m/4; (d) © = 31/8;

(e) 8 =m/2; (£) 6 =51/8; (g) O = 31/4;

(h) ®

i

71/8; (1) 6 = m. There are two roots of q(p),

at p(X) and p (X), =and one pole, at p = O.

The positions of the Stokes (dotted) and anti-Stokes (solid)
lines for ]|X| = 0.93 and various values of @ = arg(X):
(a) 8=0; (b) 8 ="m/8 (c)O=74; (d) 6 = 31/8;

(e) ©
(1) o

w/2; (f) 6 =51/8; (g) 6 = 3n/4; (h) 6 = 7n/8;

]

m.



V.5

V.6

v.7

221

The positions of the Stokes (dotted) and anti-Stokes (solid)
lines for |X] = 0.80 and various values of @ = arg(X):

(a) ©
(a) o

(g) ©

0; (b) 6 =m/16; (c) 6 = m/8;

3n/16; (e) 6 =w/4; (f) 0 = 51/16;

3n/8; (h) 0 =71/16; (i) 6 = m/2,

The positions of the roots (mI(z), w(]):I(z), and m(I)H(z))
and poles (m;I(z) and m;n(z)) of Q(z, w, 5 ]_L_I_l) =

= J\z( dp/dz )2'11( p,X), and the branch-cuts in the complex
ml-pla.ne used in defining /@, for several typical values
of 2z (shown in Fig. V.7) along the real z-axis:

(a) =z
(d) =

1 1 T
0; (b) 2=2 >0; (e) z=z'>z;

LR} ”"
z > 2z . The roots, poles, and branch-cuts are

symmetric about the imaginary ml-axis. The solutions
A(p,¥) and B(p,X) have intrinsic branch-cuts (not
shown) which we take to extend vertically downward from
® @ 2 - 2 2
mII(z) and from mIII(z). w —wp(z) + czli_.
The positions of the roots (z_(ml) and z+(m1)) and the
2 2
pole (z(w)) of Qz, w, k) = X(dp/dz)"a(p,X), and
the branch-cuts in the complex z-plane used in defining
vQ, for several typical values of uy (shown in Fig. V.6):
] 1"
() w =wlz=0) () w =uwlz); (c) w =ulz);
"t ] n
=uflz ) (e) wy=w; (f) w=uw;

~~
[=7)
~—
=
il

int
(e) w, =w . Also shown is the relation between the
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complex 2z- and p-planes, with the corresponding points
being (z,,P, = 0), (2z_,7 ), and (z,p,).

The WKBJ apbreximation for the solutions A(p,X) and B(p,X)
in the complex p-plane (compare with Fig. V.7e), for
x(ml’lilj.) evaluated at w = w' shown in Fig, V.6a.

The imposed boundary conditions (b. e.) are : (a) A= fl

as p *+»=; (b) B = f2 + g sbove or below the branch-

2.
cut as p + -», The solutions fn and g, are given in

Eq. (V.9). The solutions A and B have an intrinsic
branch-cut {not shown) extending essentially (for Re w < wo)
vertically downward from p = O.

Same as Fig. V.8, but with wl = w" shown in Fig, V.6a. See
also complex p-plane in Fig. V.7f.

Same as Fig. V.8, but with w = w"' shown in Fig. V.6a.

See also complex p-plane in Fig, V.7g.

The complex X-plane, showing the eigenvalues XN(A),

N =0,1,2..., for several values of the pump strength
parameter A: (a) A =0.30; (b) A =0.60; (c) A = 0.90;
(d) A =1.20; (e) A =1.50.

(a) The complex‘ X-plane, showing the position of the eigen-
value Xo()‘) for the values of A used in Fig. V.11;

(b) The imaginary part of XO(A) vs. A, showing the cross-
over (Imxo =0) at Ao = 0.32 corresponding to threshold

(in absence of damping). From part (b), XO(AO) = 0.92.



V.13

V.14

223

The complex tul-plane, showing the eigenvalues u)l'N( A},

N =0,1,2,..., (corresponding to the XN()\) of Fig. V.11)

for A =0.6 and \JP A YO/B, where the uniform plasma growth
"

rate Y, (see Eq. I.2) is evaluated at W = =

= (mo + czkiL/wo)/Z. The drawing is only qualitative, with

the imaginary axis expanded by a factor of two and Y, =

= wo/ZO chosen for convenience to illustrate the detail.

Also shown are the boundaries (dashed lines) representing

the constraints on the eigenvalues, as discussed in séc.

VB 3 -y, Stm(w,) <Y, end w <Re(uy) Su - az = 0).

Space-time plot showing the regions where the saddle-points

. 1 1
have diffe're.nt forms. The symbols a, b, a , b correspond

to the functions defined in Eq. (V.37). The boundaries
between the various regions are formed by the following
lines: +the wave-packet trajectories (lines of essentially
constant saddle-point frequency u)') where 3z +( m') =g

s
' =[2 2.2 . .
and @ =u = [mp( zs) +c k];l-F ( the minimum possible saddle-
L}
point frequency, where z, = source position ), where w + o
1
(the light-cone), and where the resonance position 2z (w )
L
equals zero, Zgs O the turning point position z+(m );

1
the line of turning points where z+(m =12 e and
1

-w =[P 2;]* ;
w W, [mp(zg) + (:21(l (zg equals greater of z or Zs)’

the line of points on the wave-packet trajectories where
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1
Zg = z (0 ) (not same as line where gz = z,

t
lines depend upon the saddle-point frequency ® - =and have

). The boundary

been drawn assuming the special case m' N s the unpumped -
soiution (seec. III B).

The exponentiation factor Re( 92) , evaluated at the turning
point time given by Eq. (V.71), ae a function of the distance
82 = Re( z,) - z_, between the source zg and the turning point
z,. 8p= 62/7\2/ 37, and h is the resonance zone width from

Eq. (V.77). I'2 is the side-scatter exponentiation factor
given by Eq. (V.74).
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LIST OF FREQUENTLY USED SYMBOLS

boundary coeffieieﬁt

solution of Egs. (I.25, 28b)

WKBJ coefficient

WKBJ coefficient

solution (linearly independent of A) of Eg.
(1.25)

pump (laser ) magnetic field

scattered electromagnetic wave magnetic field
speed of 1ightsor phase reference level

= 8 -8
o 1

voKub(l - kix/ki) = a pump

strength parameter

laser diameter

electronic charge (> 0)

£ = polarization of incident laser
polarization of scattered wave

pump (laser) electric field

scattered electromagnetic wave electric field

4Ef = an effective klZ

WKBJ solution in see. IV, or a particular

WKBJ term in sec. V

Eq. (I.32)

Eq.

(1.31)

BEg. (I1.31)

Eq.

Eq.

Eq.

Eq.

Eq.

(Iv.24)

. (1.2)

(1.25¢)

(1.22)

. (I11.23)

(I11.29)

(1v.2)
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f2 = WKBJ solution in see. IV, or a particular
WKBJ term in sec. V Eq. (IV.2)

91 = Green's function for scattered electromagnetic

wave

h = resonance zone width

J = current density Eq. (I.21)

K = k -k = beat wave-vector

_k0 = wave-vector of incident laser *

_15_1 = wave-vector of scattered electromagnetic

wave

kl('Z)E[mi - mf)(z)]%/c Eq. (I.22)

]-51.1. = sa'klx * ?kly

k.l.z = [mi - mf)(z) - czkillé/c Eq. (I.6)

L, ® d[inn(2)]/dz = density scale length Eq. (I.8)

23 =y, = refraction saturation distance Eq. (I.17)

m = electron mass

n = electron density

N = eigenmode label Eq. (V.19)

n, = unperturbed plasma density

q = dimensionless Helmholtz potential (Q) Eq.{(1v.1)
and Eq. (V.2)

Q = Helmholtz potential Eq. (I.25b)

S = source Eq. (I.25a)

or Stokes constant Eq. (IV.8)
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7 =

Z =

z+(wl) = root of Q(z,ml)

z_(ml) = root of Q(z,ml)

time

transition point

wst/!;' = dimensionless time
electron temperature-

Stokes constants (n = 0,1,2 used)
refraction saturation time

= eE’__)/mm0

ky(c?/u))
2
3K vip/t

electron thermal velocity

Wronskian

dimensionless frequency parameter

position varisble perpendicular to z and &

position variable along density gradient

(02L n/mf) )]'/3 = effective minimum wavelength

2

2, . . . ers
w(z Wy = dimensionless position
greater of z or EN

lesser of z or Zg

source position

[+
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EBq. (III.14a)

Eq. (IV.10)
Eq. (1.16)
Eq. (1.2)
Eq. (I1.1)

Eq. (I.1)

Eg. (I.26)
Eqs. (IV.9;V.2)

Eq. (II1.28)

Eq. (I.10a)
Eq. (II1.16)
Eq. (I.26)
Eq. (1.26)

Eq. (v.4b)

Eq. (V.4b)
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Zo( ml) = resonance position, mp( zo) SICRERY sec. I 4 3a
Zm(wl) = zo( lul) = resonance position, pole of

Az, ) Eq. (V.4b)
s = 2,2
zg = mg/mS Eq. (III.1l4a)
Zp = wp/uW Eq. (III.1l4a)

Y= Im(ml) = growth rate

I' = exponentiation factor Eq. (I.7)
Y, = (K v /2)(w /) cos @ Eq. (I.2)
I'l = exponentiation factor (back- or oblique-
scatter) Eq. (V.47)

I'2 = exponentiation factor (side-scatter) Eq. (V.51a)
Yl:l = eigenmode growth rate . Eq. (V.35b)
Sw = w' - w Eq. (V.41a)
A = (mf, S S Ve Eq. (I.1)
8, %4, % (m§ + 3K - 0P)/20 Eq. (I.1)
n =(z- zs)/ct or Eq. (I1I.5)

= (24 - 7g)/ct Eq. (II1.24)
8= cos™( & &)
61 = a particular phase-integral Eq. (V.37a)
62 = @ particular phase-integral Eq. (V.37b)
63 = a particular phase-integral Eq. (V.57a)

8 L= @ particular phase-integral Eq. (V.57)
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WKBJ large parameter : Eq. (IV.1)
or a dimensionless pump strength Eq. (V.2)

(Te/l,'nn ez)% = Debye length

WKBJ ‘“"u-integral" Eg. (IV.5)
damping rate of electromagnetic waves Eq. (I1.1)
vp = damping rate of Langmuir plasma waves Eg. (I.1)
Lo cud Eq. (III.17a)
ns’" p
dimensionless position variable; Ea (I1.31;V.1)
also used for charge density Eg. (1.21)
D(zl) = dimensionless position Eq. (I.31)
p(zg) = dimensionless position Eq. (I.31)
= root (zero) of q(p,X) Eq. (V.2e)
= poot (zero) of q{p,X) Eq. (V.2f)

0 dimensionless resonance position, pole

of a(p,X) Eq. (V.4c)
wave-packet phase Eq. (III.3)
or phase at arbitrary frequency Eq. (III.24)
or phase-integral Eq. (IV.2) .
solution of Eqs. (I.25, 27) Eq. (I.26)
solution of Eqs. (I.25, 28) Eq. (I.26)
[) + A, = wia) Eq. (III.1)

wo -u = w, = beat frequency.
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w(z)

saddle-point (wave-packet) frequency for
uniform unpumped plasma

or nonuniform unpumped plasma

«( zg) = frequency of wave with turning
oint at 2

poin g

Wz 1) = frequency of wave with turning

point at zg

(4w neZ/m)ll = plasma frequency

mo - wp = resonance frequency

w(zs) = frequency of wave with turning
point at 2z,

frequency of incident laser

frequency of scattered electromagnetic wave
2 = beat frequency

= root of Q(z,wl)

o -
mII(z) = root of Q(z,u)l)

m(I)II(z) = root of Q(z,ml)

[+<]
wp(z

)

pole of Q(z,wl)

mIII(z) = pole of Q(z,ml)

“R

v
w

Re( wy )

W + ivl = an integration variable,
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Eq. (II11.5a)

Eq. (III.16)

Eq. (I11.28)

Eq. (V.4a)
Eq. (V.4a)
Eq. (V.4a)

Eq. (V.4a)

Eq. (V.4a)

Eq. (V.36)

sometimes taken to be a saddle-point frequency
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(wo * c?‘kiL/ Yo )2

eigenmode frequency
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Eq. (V.32)
Eq. (V.35a)

“’A/“’s = dimensionless saddle-point frequency Eq. (III.16)

mB/ms = dimensionless saddle-point
frequency

mg/mB

m!./ B

ml/ms = dimensionless frequency

[wo - m' - i(\:p - "1)]2 + czkil_

Eq. (III.18a)

Eq. (ITT.14a)
Eq. (V.39)
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