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Michael Alan Mostrom 

Lawrence Berkeley Laboratory 
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ABSTRACT 

In the various laser-fusion concepts, an intense electromagnetic 

wave (the laser) must propagate through an underdense plasma region 

where it could decay, via the stimulated Raman instability, into a 

Langmuir plasma wave and a scattered electromagnetic wave. This 

process could, therefore, scatter a significant fraction of the laser 

energy before it could be deposited in the plasma. A density gradient, 

in the direction of laser incidence, localizes the instability to a 

narrow resonance zone where the local plasma wave frequency approx­

imately equals the difference-frequency between the incident and 

scattered electromagnetic waves. The narrowness of this zone can 

strongly inhibit the growth of back- or oblique-scattered electro­

magnetic waves since they quickly propagate out of their resonance 

region; however, the density gradient has a much weaker effect on 

side-scattered waves (which propagate perpendicular to the density 

gradient) since they remain in their resonance zone until refraction 

bends them out or they exit through the side of the finite diameter 

laser beam. Thus, we place particular emphasis on evaluating, in a 

manner valid for the side scattered electromagnetic waves (which are 
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at their turning point), the level of exponentiation at which the 

growth is linearly saturated due to convection of the waves out of 

their resonance zone. We also determine the general nature and pro­

pagation of the scattered electromagnetic waves and obtain approximate 

values for the resonance zone size and the time required for the above 

saturation. 

Our results are obtained by evaluating the "Green's function" 

response in tine and space for the scattered electromagnetic waves 

assuming they are initiated by a "delta-function" source. We con­

sider the case where the temporal growth dominates the plasma wave 

convection. Then the scattered electromagnetic waves are governed 

by a single second-order Helmholtz differential equation, in the 

position variable along the density gradient, with a complex potential 

having two simple zeros (turning points) and one simple pole. The 

relative position of these three transition points depends on the 

wave-vector perpendicular to the gradient and the complex frequency 

of the scattered electromagnetic waves. Using phase-integral (WKBJ) 

techniques, we obtain for the above differential equation two approx­

imate solutions valid throughout the complex position plane except• 

near the three transition points. These two solutions are used to 

obtain the spatial response at a given frequency; evaluating the 

proper inverse Fourier transform of this (in the complex frequency 

space) then gives the temporal evolution. Although by this method 

we generally cannot look too close to the turning point, we can 



nevertheless follow the temporal evolution of the side-scattered 

waves before and after they encounter their turning point and, thereby, 

obtain the net growth. 

The resulting Green's function response consists of two parts: 

(l) propagating and refracting wave-packets growing only while they 

are in their resonance zone; (2) eigenmodes localized along the 

density gradient and growing in time. The eigenmodes do not dominate 

the response until after the side-scattered wave-packets have satur­

ated their growth by refraction out of their resonance zone. By 

taking into account the convection of the waves perpendicular to the 

density gradient, we show that the finite laser diameter can typically 

force an early saturation with the eigenmodes never appearing. This 

may explain the lack of experimental evidence for Raman side-scat­

tering as opposed to its clear observation in computer simulations 

with periodic boundary conditions (i.e., infinitely wide laser dia­

meter ). 

I 
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I. INTRODUCTION 

A. Past Work on Raman Instability 

1. General Orientation 

There are two general approaches toward controlled thermonuclear 

fusion which involve the use of lasers: (1) laser-pellet fusion where 

lasers are used to heat and compress a solid fuel pellet; (2) laser 

heating of a magnetically confined plasma. Several reviews of these 

approaches are listed under Ref. sec. A. In each approach, the in­

tention is for the incident laser to propagate into the plasma and 

deposit its energy. In the first case above, the absorption takes 

place primarily in the denser regions of the plasma via 

classical inverse bremsstrahlung, resonant absorption, 

or nonlinear absorptive instabilities - the plasmon-ion decay insta­

bility, the oscillating two-stream instability, and the two-plasmon 

instability. For the second case above, the plasma typically remains 

far underdense (to the laser), and classical inverse bremsstrahlung 

is thought to dominate the absorption. However, an intense electro­

magnetic wave (the laser) propagating through a plasma is known to 

be subject to two reflective instabilities - stimulated Raman and 

Brillouin scattering - which could scatter a significant fraction of 

the incident laser energy before it could be deposited in the plasma. 

The density regions associated with these processes are shown in Fig. 

I.l. We will restrict ourselves here to the density region below the 

quarter critical density point, at which the incident wave frequency 
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(i) is twice the local plasma frequency ai . Ignoring the forward-o P 
scattering modulatianal instabilities (filamentation, self-focusing), 

we are left to consider stimulated Raman and Brillouin scattering. 

Raman and Brillouin scattering derive their names from the 

corresponding processes in solid state physics. The electromagnetic 

pump wave scatters off an ionic disturbance into another electromag­

netic wave in Brillouin scattering (Ref. sec. B). If the disturbance 

is electronic, rather than ionic, we have Raman scattering (Ref. sec. 

C). Extended to a plasma, the above disturbance becomes an ion-

acoustic wave (Ref. sec. D) or a Langmuir electron-plasma wave (Ref. 

sec. E), respectively. 

Brillouin scattering is UFually considered to be the most 

important (and most worried about) reflective instability for laser-

fusion experiments due to it3 theoretically high linear (i. e., con-

vective) and nonlinear saturation amplitudes (Refs. D V; G II, VII; 

K I, II). However, laser plasma experiments have yet to observe this 

as a dominant effect (Ref. sec. H), and several proposals have been 

offered to explain this (Refs. A IV; D IV, VI). Raman scattering has 

a higher threshold but also a larger growth rate than Brillouin 

scattering and therefore appears first in typical simulations where 

both thresholds are exceeded (Refs. K I, III). After nonlinear satu­

ration of the Raman instability by pump depletion and electron trap­

ping (leading to non-Maxwellian tail formation), the Brillouin scat­

tering dominates the simulation until it in turn is nonlinearly 
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saturated (Refs. D V; G VII; K I-II]). However, if this above-mentioned 

nonlinear pump depletion is due to scattering, and not absorption, then 

this is not a desirable means of saturating the instability. Further­

more, saturation by Landau damping of the plasma wave (from the Raman 

decay of the incident wave) would require an electron temperature 

T "v- 30 KeV (see Refs. A IV; D V) or equivalently an electron thermal 

velocity v.. /c *v< 1/4, and electron trapping would generate electron 

velocities up to v/c ^ 1/2 (see Ref. K II). Thus, both of these latter 

saturation mechanisms would lead to suprathermal electrons which can 

detrimentally preheat the core of a pellet (Ref. J I). Hence, a linear 

(i. e., convective) saturation mechanism would be desirable. In the 

following work we will concentrate on Raman scattering and several 

problems that have arisen concerning it. We note, however, that in 

certain parameter regimes the equations describing Brillouin scattering 

take on the same mathematical form as the equations used in the Raman 

analysis (Refs. F VII; G IX) and, therefore, many of our results can 

be extended to the Brillouin case. 

To provide tue background for our work on the Raman instability, 

we first review in detail what is already known (see fief. sec. E) about 

the instability in a uniform plasma (sec. I A 2) and how a density 

gradient alters the behavior (sec. I A 3). For instance, it is known 

(see Ref. sees. F, G) that a density gradient., in the direction of 

laser incidence, localities the instability to a narrow resonance zone 

where the local plasma wave frequency approximately equals the 
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difference-frequency between the incident and scattered electromagnetic 

waves. The narrowness of this zone can strongly inhibit the growth 

of back- or oblique-scattered electromagnetic waves since they 

quickly propagate out of their resonance zone (position of zone depends 

on the frequency of the.scattered electromagnetic wave); however, the 

density gradient has a much weaker effect on side-scattered waves 

(which propagate perpendicular to the density gradient) since they 

remain in their resonance zone (position of this zone depends on the 

wavenumber, perpendicular to the density gradient, of the side-scat­

tered wave) until refraction bends them out or they exit through the 

side of the finite diameter laser beam. Thus, a density gradient may 

not provide a sufficiently strong linear (i. e., convective) saturation 

mechanism for keeping the side-scattered waves under control, and this 

explains the attention we have given this particular case . (e. g., 

note the title of this paper) even though our work here is valid also 

for back- and oblique-scattered electromagnetic waves. 

To motivate our work on the Raman instability, we next 

(sec. 1 3 ) point out some problem areas (also discussed in sec. I A 3b) 

where further work - our work here - was necessary for a more complete 

understanding. To answer the questions we raise in sec. I B, we place 

particular emphasis on evaluating, in a manner valid for the side-

scattered electromagnetic waves (which are at their turning point), 

the level of exponentiation at which the growth is linearly saturated 

due to convection of the waves out of their resonance zone. We also 

determine the general nature and propagation behavior of the 
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scattered electromagnetic waves and obtain approximate values for the 

resonance zone size and the time required for the above saturation. 

We require (and later find, in sees. Ill, V) that our results correctly 

reduce to the appropriate known results in the limits of early time 

(before refraction can become important), zero pump strength (i. e., 

laser intensity), or infinite nonuniformity scale-length. 

In sec. I C, we discuss the physical process behind the Raman 

instability and the particular model (e. g., linear density profile, 

fixed ions, no static magnetic field) we have assumed in studying it. 

A nonuniform static magnetic field, varying along the density gradient 

but directed along the laser polarization direction, could be included 

with no change in the basic mathematical form of the equations we 

solve; however, this is not done here (it was felt to be too distrac­

ting) but rather is' postponed till a later paper. We further limit 

our problem (to something manageable) by considering only the case 

where the plasma wave convection is negligible (e. g., compared with 

the temporal growth). Then, the scattered electromagnetic waves 

are governed by a single Helmholtz (or Schrodinger) differential 

equation, in the position variable along the density gradient, with 

a complex potential having two simple zeros (i. e., turning points) 

and one simple pole (see Refs. F VII; GXIII). This differential 

equation is also discussed in sees. I A 3b, II. The relative position 

of these three complex transition points depends on the wave-vector 

perpendicular to the density gradient ai i the complex frequency of 

the scattered electromagnetic waves and also on the pump strength 
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(i . e . , laser in tens i ty ) . One of the zeros corresponds to the usual 

turning point for electromagnetic waves t rave l l ing in a nonuniform 

plasma; the second turning point and the pole are introduced by the 

presence of the pump ( i . e . , l aser ) . 

In sec. I D, we describe the mathematical procedure we follow 

in the rest of th i s paper. Our results are obtained by evaluating 

the "Green's function" response in time and space for the scattered 

electromagnetic waves assuming they are i n i t i a t ed by a "delta-function" 

source. Using phase-integral (VIKBJ) techniques (except in the special 

cases treated in sec. I l l , l ike no pump or a uniform plasma, where 

exact solutions are avai lable) , we obtain for the above different ial 

equation two approximate solutions that are valid throughout the 

complex position plane except near the three t rans i t ion points. These 

two solutions are used to obtain the spat ia l response at a given f r e ­

quency; evaluating the proper inverse Fourier transform of t h i s 

( i n the complex frequency space) then gives the temporal evolution. 

Although by this method we generally cannot look too close to the 

turning point, we can nevertheless follow the temporal evolution of 

the side-scattered waves before and after they encounter the i r turning 

point and, thereby, obtain the net growth. 

In sec. IV, we review and summarize phase-integral theory 

(Ref. sec. T) and present ( i n an easy-to-follow pic tor ia l fashion) 

a set of rules that one can use in applying th i s approximation 

technique. We also obtain (modified from Ref. T I I I ) here the 
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Stokes constant for a pole-zero combination as required for the 

solution in sec. V. 

In sec. V, we show that the resulting Green's function re­

sponse consists of two parts: (1) propagating and refracting wave-

packets growing only while they are in tneir resonance zone; 

(2) eigenmodes (first discovered in Ref. F VII) localized along the 

density gradient and growing in time (as discussed also in sec. I A 3b). 

The eigenmodes do not dominate the response until after the side-scat­

tered wave-packets have saturated their growth by refraction out of 

their resonance zone. By taking into account the convection of the 

waves perpendicular to the density gradient, we show that the finite 

laser diameter can typically (see sec. V D) force an early saturation 

with the eigenmodes never appearing. This may explain the lack of 

experimental evidence (see Ref. sec. H) for the Raman side-scatter 

instability as opposed to its clear observation (see Ref. sec. L) in 

computer simulations with periodic boundary conditions (i. e., effec­

tively an infinitely wide laser diameter). 



8 

2. Uniform Unbounded Plasma, 
Infinite Extent Pump 

The earliest work (Ref. sec. E) on the Raman instability as­

sumed a uniform unbounded plasma, a pump wave of infinite extent, and 

typically only on^-dimensional variations (i. e., back- or forward-

scattering). The electromagnetic pump wave (frequency to , wave-

fector k ) is propagating along z with linear polarization e 

along x. Above a certain threshold intensity, the pump wave (u 0, k ) 

is unstable (stimula jd, not spontaneous) with respect to decay into 

a scattered electromagnetic wave (uL.k.) and a Langmuir plasma wave 

(fl = (o„ = a) - ai., K - kj, = k - k- ). This process is illustrated in 

Fig. 1.2 for a backscattered electromagnetic wave with polarization 

along x (the configuration with the largest growth rate). The 

group velocities of the two scattered waves are V. = k, (c /(o.) and 

Vg = 3K v^n/« = 3K(c2/£2)(T /ma2) where v t h is the thermal 

velocity of the electron distribution with temperature T . 

We remove the fast time and space dependence of the scattered 

waves E.(x,t) = E. a.(x,t) exp (ik. • x - iw.t) + c.c. in favor of 

slowly varying amplitudes a.(x_,t) (dimensionless and appropriately 

normalized). The evolution of these amplitudes (subscript "2" 

always denotes the Langmuir wave while "1" denotes the scattered 

electromagnetic wave) can be obtained from the coupled equations 



[£ + * • i A2 + V2?]a2 = yoa* (I.la) 

^ • ' V ¥,•?]«, = *<$ (1.1b) 

where v, and v ? - v are phenomenological damping rates, A. = 

= (nip + e 2k 2 - OJ^)/2u)1 and A 2 s A s (tu2 + 3v 2
f a K 2 - ii2)/2fi are 

frequency mismatches of the scattered waves with respect to the ap­

propriate unpumped normal modes. See Refs. F VII, XI, and G XII for 

equivalent forms of Eq. (I.l). For Raman scattering, the coupling 

coefficient is 

7. = (•<*o/2) (f^/oj^cos e (1.2) 

where 6 is the angle between the polarization of the two electro­

magnetic waves and v = eE /mo is the oscillation velocity of an 

electron in the pump electric field. A third coupled equation giving 

the reaction of a. and a_ hack on the pump is ignored here, and 

Y is treated as a constant. 
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Finite frequency mismatch A or A will reduce the growth 

rate of the instability, hut a noise excitation with a hroad spectrum 

in b) and k (such as a delta-function in time and space) will lead 

to an asymptotic response which picks out the particular (to. ,k,) wave-

packets having A, = A- = 0 (see Fig. 1.3 for ni,,k_ diagram) and 

the largest growth rates. We therefore consider only this resonant 

case with A. = A ? = 0. 

Bers, Chambers, and Hawryluk (Ref. E VIII), Bers (Ref. E IX), 

and Chambers (Ref. G XII) have found that the time-asymptotic response 

to a delta-function source (6(x)6(t)) consist of pulses with 

different (w^k-) (but all having A 1 = A„ = 0), each being localized 

along the straight line connecting the pulse edges x, = V t and 

Xp = V_t (see Fig. 1.4). Therefore, the instability is generally 

convective (no temporally growing response at fixed position). 

Their results indicate that, for fixed (<», ,k_, ), an observer moving 

with velocity V = V, + o^Vg - V ), 0 <. a <_ 1, and positioned on 

the above line will see a temporally growing response with growth 

rate 

-J . u, + u. 
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where V± = (^ - v| = a ^ - V j and U 2 = |V2 - V| = (l - <x)|V2 - V j . 

For given observer velocity V, temporal growth is then found only 

when the coupling coefficient (related to pump strength) y is greater 

than a threshold value y (V) where 

2(U,U,)! UY) 3 4 * ^ • 0. ̂  
This threshold is minimized for a particular observer velocity such 

that \/V2 = a/(l -a) = v x/v 2 which gives [ Y ^ V ) ] , ^ s Y e = ( v x V 

Far above this convective threshold (y » y ) , the growth rate 

Y(V) in the moving reference frame is maximized for a different 

observer velocity such that \ / ^ 2 = 1 (a = 1/2) or V =(T^ + V2)/2 

with (y(V)) = Y ; note that the definition of y implies that 
~™ inaX O O 

the maximum growth rate over all directions of k. and E. occurs 

for backscatter (K largest) with polarization parallel to E 

(cos 6 largest). 

For the one-dimensional case with V, = V z and V_ = V ?z, 

the results are essentially the same; the only new feature occurs 

for V̂ jV, < 0, in which case a stationary observer (V = 0) will be 

sitting on the line of pulse localization (-V.t < x = 0 < V„t), and 

Eq. (1.4) predicts an absolute instability (temporal growth at 
fixed position ) for Y above a threshold value Y where o a 

_ y,h4l+>tiv,l 
2|V,\4I * * E <> l \ / \ / l'/2 • 0-5) 
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1 1 
2Y 0|V 1V 2| 2 -

- (v |V | + v |V11)]/( |V | + |VJ ) which is usually much smaller 

than y since |V?| « |V-| except for very hot underdense plasmas 

(T /Q large) or very near quarter critical density (k_ small). 

So far we have discussed the response only in a uniform plasma. 

We must now consider how this response is modified by a nonuniformity 

in the plasma density. 

3. Nonuniform Plasma 

a. Backseatter 

The situation is much different in a nonuniform plasma, 

and again early work centered on one-dimensional variations (Ref. 

sec. F). We now assume that the plasma density is linearly increasing 

along the direction of incidence (z) of the pump wave in the local 

region of interest (see Fig. 5a). Going back to Eq. (i.l), we see 

that the frequency mismatches, A (u ,k..,z) for the electromagnetic 

wave and A_(J2, K, z) for the Langmuir wave, are now spatially 

varying. Before, in the uniform plasma, we could choose to. and k_ 

such that A 1 = A_ = 0 everywhere, but this is no longer possible. 

We can eliminate A by using a geometrical-optics approach (some­

times called WKB because of the phase-integral I k_( z) • dx) and 

defining a spatially varying k.(z) by setting A,(ui,, k_(z), z) = 0; 

for fixed (a. and k., = xlc, + yi. , this determines the spatial 



13 

variation of the component of k_ along the density gradient: 

Note that we have included the perpendicular wave-vector k . in order 

to show how some of the quantities depend on this parameter; however, 

we will concentrate in this section on the specific case k, , = 0 

and defer to the next section any changes due to finite k... The 

pump wave also has a spatially varying wave-vector k (z) = 

=|u - ID (z)J /c. The resulting beat wave-vector K(z) = Ik^Cz) -k^Cz)! 

will still give a spatially varying Langmuir wave frequency mismatch 

A2(£2j, K(z), z) which will vanish at only one resonance density 

position z (iiL, &.,). 

As the scattered electromagnetic wave (for fixed u , lc. ,) 

propagates away from z , the plasma wave beat disturbance (B,K) 

becomes out of resonance with the local Langmuir normal mode, and 

the plasma wave density perturbation grows in amplitude at a slower 

rate than it would for a uniform plasma. This plasma wave density 

perturbation, when coupled with the oscillating electron velocity 

in the pump electric field, leads to a transverse current pertur­

bation at (ii, k ) radiating a growing scattered electromagnetic 

wave, which is slightly out of phase with the original scattered 

electromagnetic wave which we assumed had propagated to this 

position. As the wave propagation continues to positions far from 
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z , the nonresonance of the longitudinal beat disturbance and the de-

phasing of the scattered wave with respect to the stimulated wave 

it locally generates leads to a saturation of the amplitude of the 

growing wave (see Fig. I.5b). We have considered this from the view­

point of the propagating scattered electromagnetic wave, but a similar 

process also occurs for the propagating Langmuir waves. 

In addition to this saturation of the amplitude of the con-

veeting pulse (the center of which moves with velocity V =(V-, + Vj/2), 

due to propagation away from the resonance position z , Roseribluth 

(Ref. F II), and Roseribluth, White, and Liu (Ref. F VI) have found 

that for baekscatter (k, . = 0 ) , with V.V_ < 0 and above the uniform 

plasma absolute instability threshold Y > Y„, the pulse amplitude 
o a 

at any fixed position also saturates (see Fig. I.5b), at essentially 

the same level as the propagating part of the pulse. This saturation 

at any fixed position is due to the arrival and destructive inter­

ference of waves generated at other positions. (Excellent discussions 

about this effect and ways of preventing or reducing this destructive 

interference, by including density fluctuations or finite extent 

pump or plasma, have been given by Nicholson (Ref. F X) and by 

Chambers (Ref. G XII). Rosenbluth, White, and Liu (Ref. F VI) find 
T ; 

The initial values are assumed to be a_(x_,t = 0) = 0 and 

a^Xjt = 0) = 6(x)6(y)fi(z - z ). According to Nicholson (Ref. F X), 

immediately following the propagating 6-function is a pulse growing 

linearly (rather than exponentially)in time. This effect presum­

ably disappears for a less "spiky" initial value. 
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a fixed position saturation amplitude of exp'Iji -(4.Y /iry )]/, 

provided T » 1, where y is given by Eq. (1.5), 

r S7 Ty ( >V(.c'|v,v i |) , (1.7) 
and K' S (d/dz)|K(z) -[fi2 - ii)p(z)]V/J vth> ^ (d/dz)JA2(z)/V2] ic the 

derivative (evaluated at z (w,, k.,), with k , = 0 here) of 

the wave-vector mismatch between the plasma wave beat disturbance 

(n,K) and a Langmuir wave having frequency fi. On the other hand, 

the saturation amplitude (for V..V- < 0 or V.Vp > 0) of the 

convecting pulse center is just approximately e (Ref. F VT) and 

could be much larger than the fixed position amplitude if v <, v 

(such as might happen with large damping but small group velocity for 

the Langmuir wave). 

We have qualitatively discussed how the pulse response is 

modified (from the uniform plasma case) by the propagation of the 

waves along the density gradient; the wave amplitude saturates at a 

level depending on the density scale length h = d|ln oi (z)j/dz. 

For the backseatter case, we have presented the quantitative satu­

ration amplitudes, at fixed position or moving with the pulse center, 

found by Rosenbluth, White and Liu (Ref. F VI). We next discuss 

in more detail how the denEity gradient affects oblique- and side-

scatter. 
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b. Oblique- and Side-scatter 

A similar picture applies to moderately oblique-scatter (see 

FigJ.6a) except that now no amplification occurs at a fixed position 
r 

(see Fig. I.6b). The saturation amplitude e of the convecting 
pulse is given again by Eq. (1.7) with TT, and V 2 replaced by 

V, and V„ — the group velocity components along the gradient lz 2z 
(Ref. F VTI). From the definitions of K 1 (below Eq. (1.7)) and A 2 

(below Eq. (1.1)), we have 

where the density scale length L = d[ln n(z)]/dz. Equations (1.7-8) 

indicate that T can be much larger for very oblique-scatter (V. « c) 

than for back-scatter (V. % c). 

In particular, if V. = -V_ fl/ni.. (at z ) we note that 

K 1 vanishes and V diverges (Ref. F VII); these "side-scattered" 

waves (see Fig. I.7a) have not only A2(fl,K,zo) = 0 but also 

dA2/dz = 0 at the resonance position z (<iL,k.,(ai.)). The divergence 

of r is a consequence of the lack of an effective linear (i. e., 

convective)saturation mechanism for these waves (see Fig. 1.7b) 

if V^ and V^ are treated as z-independent in Eq. (1.1). The 

time required for K to saturate the growth is inversely proportional 

t k_,((ii. ) or ^(k.,) is determined by choosing a particular 

k. ((o,,^.,z) at the resonance position z = z (u)..,k_, ). For in­

stance, here we choose k- such that V. = -V- Si/m.. 
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to K and diverges as K 1 vanishes here (Ref. F VI). Furthermore, 

finite K" (or d AP/dz ) only slightly reduces the growth rate 

at the constant density position z = z (Ref. F VII). 

The possibility that side-scattered waves could grow to a 

level requiring nonlinear saturation (as mentioned in Sec. I Al) 

prompted considerable research (Ref. sec. G). The author, along with 

Nicholson and Kaufman (Ref. G I), earlier proposed a local geometrical-

optics ray approach, in effect using Eq. (I.l) with A,(w. ,k.(z]̂ z) = 0, 

V_ = 0, and A-,(n,z) % M ( Z ) - Q (cold plasma approximation with 

w_(z ) = fi); the proposed linear saturation mechanism was the con­

vection of the side-scattered waves out of the finite diameter laser 

beam (the pump wave). In that work, we proceeded to calculate the 

spatial amplification of the scattered waves above a steady-state 

level of thermal noise and, using energy conservation, detained a 

pump attenuation coefficient. 

The main objection to that work has been that geometrical 

optics is not valid for a wave at its turning point (here, the side-

scattered wave) and that a second derivative 3 /3z "diffraction" 

term must be included in the left-hand-side of Eq. (I.lb) in order 

to properly treat the refraction of this wave. However, it was 

implicitly assumed in that paper that the laser beam diameter D 

(d-. in sec. V C-D) was sufficiently small that the side-scattered 

waves did not have time to "feel" the density gradient; the refrac­

tion of these waves was therefore ignored, and their propagation was 

treated as though the plasma were locally uniform (k, treated as a 
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constant), the back-and moderately oblique-scattered waves (for 

which geometrical optics is valid) could propagate along the density 

gradient sufficiently to "feel" the spatially varying Langmuir 

frequency mismatch A_(ft,z), but here too the slight change in k_ 

over the narrow resonance zone of height h = 4irL v_/<u along the 
° n p p 

gradient (as found in Ref. G I) was ignored; the slight variation 

of K(z) does not affect A- for a cold plasma. In summary, the 

local ray-trajectories of the scattered e.m. waves were treated as 

straight lines over the small resonance cylinder of diameter D and 

height h. 

Galeev, Laval, O'Neil, Roseribluth, and Sagdeev (Refs. G II, III 

and later reported by Sagdeev in Ref. G IV) also used the geometrical-

optics approximation but implicitly assumed that the laser beam 

diameter was effectively infinite; their proposed linear saturation 

mechanism was the refraction-bending of the side-scattered electro­

magnetic waves out of the narrow resonance zone (see Fig. I.7b and 

imagine that the straight line now drawn through V-t is curved 

downward toward negative z). In one method of solution (Refs. G II, 

III), they integrated the local spatially dependent growth rate y(z) 

along the curved ray-trajectory of the 90° side-scattered wave until 

the ray exited the resonance zone and Y ( Z ) became negligible. For 
p the resulting saturation amplitude e , in a cold plasma, they found 

r=8.8(X/*>p) fa A*) k„Ln , (1.1) 
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where we have taken one-half of their energy gain in Hef. G II and 

have included the term ui,/u) which can be found from their more 

exact expression in Eq. (14) of Ref. G III. This exponentiation V 

is much larger, by a factor of (u /y ) (1 - u u A O (if not too 

near quarter critical density where k. + 0 ) , than the exponentiation 

found in Eq. (1.7) for back-scatter. 

In a second method of solution (Refs. G III, IV), they dropped 

the time derivatives and damping rates in Eq. (l) thereby leaving ther­

mal convection as the only means of removing the plasmons from the 

resonance zone; the resulting exponentiation factor (Ref. G TV, and 

Eq. (7) and Table I of Ref. G III), although comparable to Eq. (1.9) 

for reasonable plasma temperatures, mathematically diverges for a 

cold plasma. In all of our work which follows later in this paper, 

thermal convection is assumed to be negligible compared with temporal 

growth, and therefore we will eventually use Eq. (1.9) in com­

paring their work with ours (cf. Eq. (V.81d)). 

whatever objections one has to using geometrical optics in 

analyzing side-scattering would seem to apply most strongly here, 

where refraction of the 90 side-scattered wave is crucial in obtain­

ing the desired linear saturation of the instability. However, one 

might expect that Eq. (1.9) would give approximately the correct 

answer if the resonance zone width h (along the gradient) is 

sufficiently large that geometrical optics is valid along most of the 

ray path; this requires |dk. /dz| « k. at the position 

z = z - h/2 or o 
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h/2 » Z H ( C 2 L > £ ) / 3 , (I.I0a) 

where Z is the Mry function wavelength at the turning point (and 
resonance position) z . The resonance zone width h, to be used in 
Eq. (I.10a), can be obtained by first using geometrical-optics to 
determine the time t needed for the side-scattered electromagnetic 
wave of given k (i. e., 1L (aiL.fc, ,Z ) = 0 at the resonance 
zone center z = z(oi.,k 1)) to travel from the resonance zone edge 
z - h/2 to the turning point at the resonance zone center z 
and then back to z - h/2 (see Fig. 1.8). One finds 
t = 4/Lil/Z'ti/nLe, and setting Y„*„ ̂  T from Eq. (1.9) results 
S ii J. p 0 3 
in the following expression for h: 

h s 10 L n yo/fcjp ; (i.lOb) 
this is only approximate since the average growth rate over the reso­
nance zone is less than (̂  half) y while the actual time in the 
resonance zone is greater than (•v twice) t due to the reduced 
group velocity (V = V./2 for a cold uniform plasma, sec. I A 2). 
For a Nd:glass laser (X = 1.06 microns) of 10 watt/cm , Eq. (1.10a) 
is satisfied for a density scale length L = 100 microns (laser-
fusion parameters from Hef. sec. J) but not for L =10 microns 
(present laser-fusion experiments in Hef. sec. H). Thus, for para­
meters of interest in explaining present experiments, the derivation 
of Eq. (1.9) cannot be trusted because it relies on treating refraction 
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by the approximation of geometrical-optics in a region (within a dis­

tance Z of the turning point) where such a treatment is never valid. 

(In Ref. G I, on the other hand, the growth was assumed to be con-

vectively saturated by finite laser diameter before refraction became 

important). 

Iiu, Roseribluth, and White (Ref. G V) abandoned the geometri-
2 2 cal-optics approximation and included a second derivative 3 /8z 

"diffraction" term in the left-hand-side of Eq. (I.lb) while Fourier 

transforming in the two remaining "perpendicular" directions x and 

y (giving k. = xk, + yk. \ Keeping our earlier terminology, but 

with A (z) = Fc(z) + c k 1 J L - (iCj/20̂  now, we modify Eq. (1.1) to 

give 

+ ,2 + iA^ + \^]a 2 =* o a? ( I l l o ) 

$ + V<+lAP-]£,£h--lal > (Hit) 
which is equivalent to their Eqs. (1.3-4) if we use an appropriate 

transformation on a. •' and a_ (and if we correct a sign error in 

their Eq. (4)). There is no k.. or V appearing in Eq. (I.lib) 

since this equation determines the entire z-dependence of a,. They 

then dropped the time derivatives, damping rates, and the Langmuir 

wave frequency mismatch A»(z) and proceeded to calculate the ampli-

fication e , at the resonance zone z (GL jk-.dn).)), above a steady-
? 2 

state level of thermal noise; they found Y = (ITY / V ^ X - I U L L / 3 < D ) , 
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which interestingly is just 2/3 of the value one would obtain from 

Eqs. (1.7-8) if V = 0. 

The proposed saturation mechanism in that paper was the 

refraction of the 90 side-scattered wave out of a resonant-inter-
2 2 1/3 action region of width z. . = (2irL c /3G) I") , obtained by xnij n p 

2 2 2 2 2 comparing the diffraction term (c /2a).. )d a../dz. ^ (c /2(0^)a./z. . 

•ih 2 with the coupling term y a„ "v Y a.,z. ./V_ . However, this z. . r ^ o 2 o 1 m t 2z int 
is independent of L , contrary to the known (see sec. I A 2) infinite 

resonance region in a uniform (L •* •) plasma! They also claim that 

stabilizing effects from the finite radius R of the laser beam (pump 

wave) can be neglected provided R » R . = k z. . , which again is 

independent of L , whereas in a uniform plasma any finite radius 

would lead to a convective saturation of the instability before refrac­

tion could take place! It is, therefore, uncertain under what physical 

and mathematical conditions their approximations remain valid. Since 

their expression for T diverges in the mathematical limit of a cold 

plasma, we will not be able to compare our later results in this paper 

(where thermal convection is assumed to be negligible) with their 

results. 

In a later paper, Liu, Rosenbluth, and White (Ref. F VII) 

and Liu (Ref. G XIII) again considered the same set of equations, Eq. 

(I.11), containing the refraction and diffraction of the side-scattered 

electromagnetic waves; but, here they took the limit where the thermal 

convection (V_ 3/3z) of the Langmuir waves out of the resonance zone 

is negligible compared with the Langmuir wave frequency mismatch A-(z) 
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and the temporal growth (3/3t) of the waves. Fourier transforming 

in time (drop 3/3t in Eq. (1.11) and let u. be complex), they 

obtained a single second-order differential equation in z, equivalent 

to 

K-2u lA 1feKc 2

+ 2w 12( )

2/c 2A*(^a |=0 , a.12) 
i 

which they proceeded to solve for complex eigenvalues -̂jr/lEi i) = 

= Re((o, ) + iy , with â  (cu,' , k_,, z) subject to evanescence for 

large positive z (increasing plasma density) and outgoing wave 

boundary conditions for large negative z (no sources at z •*• -«°). 

Equation (1.12) is a Helmholtz equation with a complex po­

tential having two roots and a singularity in the complex z-plane 

(assuming a linear density gradient along the real z axis; ad­

ditional roots and singularities can appear for more complicated 

density profiles). For oj. lying in a certain region of the complex 

ai.-plane, the two roots (turning points) are close together and far 

from the singularity,reducing Eq. (1.12) to a harmonic oscillator 

equation with eigenmodes a. evanescent for large real z and 

eigenvalues with imaginary part (growth rate) given by 

V'=Kv^£ KLn(2v0/c)% i- *r**!t'] a...) 
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where n = 0,1,2,.. .(Refs. F VII; G XIII). The condition for the 

validity of this result (which depends on ignoring the singularity) 

is that the second term in the square brackets be much smaller than 

one; thus, Eq. (1.13) is not valid near threshold. At threshold 

'y _ 0 = 0), the singularity lies between the two roots and Liu, 

Rosenbluth, and White found (analytically and numerically) 

(*/($W*] -™ • a.i4) 
"Hires. 

For modes described by Eq. (1.13), the eigenmode width is approxi­

mately the distance between the two roots, or (see Refs. F VII; G XIII) 

AHn s L n O f c / e ^ O a J * . (1.15) 
These localized (along z) eigenmodes are, however, still generally 

convective along the "perpendicular" directions x and y; the 

eigenmodes become absolutely unstable only at the quarter critical 

density where ^ , = 0 (Refs. F VII; G X, XIII). The perpendicular 

convection of these modes out of a finite size plasma is the only 

linear saturation mechanism that was mentioned in that work. These 

same authors (Ref. G IX) later generalized their work to a spherical 

nonuniform plasma. 

However, several questions immediately arise concerning 

their work. What, for instance, is the connection of that work with 

all the previous work which involved the concept of a wave-packet 

growing convectively until saturated by the effects of refraction 
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or finite laser-diameter? Is the previous work incorrect or in­

complete? Liu, Rosenbluth, and White (Ref. F VII) found eigenmodes, 

but what happens in the limit of a uniform plasma where there are 

no eigenmodes? From Eq. (1.13) we see that as L -> •», the spacing 

between the eigenvalues goes to zero and y -> v KUL/UI , a finite 

value which is always less than or equal to the known uniform plasma 

growth rate, y > from Eq. (1.2). Thus, as L -> °o, the eigenvalues 

do not seem to disappear (the eigenvalue equation leading to Eq. (1.13) 

appears to remain valid) nor do they approach exactly v (the agree-
o 

t ment between Y n snd Y a - b one particular position, the quarter 
critical density point, is not sufficient). For finite density scale 

length L , as the pump strength (e. g., v /c) decreases, one 

eventually approaches the threshold (y n = 0 = 0) given by Eq. (1.14); 

however, damping was ignored in their work, and no other physical ex­

planation was offered for this threshold behavior. In fact, in the 

limit of vanishing pump strength, there is no indication in their 

work of how one recovers the known response (see sec. Ill B) to an 

electromagnetic perturbation in a nonuniform, unpumped plasma (for 

which there are no eigenmodes). 

In support of their work, we mention the clear observation 

(Ref. sec. L) of Raman side-scattering in computer simulations with 

periodic boundary conditions along y (infinitely wide plasma and 

laser-diameter); there is even some indication that the side-

scattered waves are localized along z for given k (Ref. G XI), 
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But, this makes all the more puzzling the lack of conclusive experi­

mental evidence(Ref. sec. H ) for the Raman side-scatter instability; 

evaluating Eq. (1.14) at one-ninth critical density (ID = 311) ) 

and using a steep density gradient with scale length L = 10 u m., 

one obtains a threshold (y __ = 0) intensity of I = 1.6 x 10 
2 

watt/cm. for a Nd:glass laser pump wave, exceeded in many laser-
fusion experiments (Refs. H III-vT, VIII-XI, XIII-XV). Thus, it 
appears that their work and also computer simulations neglect some 
effect relevant to observation of the instability in an actual laser-
fusion experiment. 

We conclude this section by noting that the Raman side-scatter 

instability is potentially important even in cases where the Raman 

back-scatter instability is suppressed by a steep density gradient, 

but that all the previous attempts at understanding Raman side-scatter 

have led to confusing or apparently contradictory results. Our 

desire to resolve some of the questions we have raised in this section 

on side-scattering motivates our present work; to simplify our task, 

we restrict ourselves to the case considered by Liu, Rosenbluth, 

and White (Ref. F VII): a cold plasma or a large pump approximation, 

where the thermal convection of the Langmuir waves out of the resonance 

zone is negligible. This case encompasses most of the questions 

raised in this section. 
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B. Motivation for Present Yfork 

As mentioned above, we are motivated in this paper by our 

desire to resolve certain questions that arise when one tries to 

understand and relate past work on the Raman side-scatter instability. 

In particular, we will address the following questions: 

(1). How are wave-packets and eigenmodes related to the 

actual space-time response to a delta-function source, 

and when, if ever, is one description dominant? 

(2). What form does the response take in the limits of uniform 

density (L •+ °°), zero pump strength (v -*• 0), early 

time, or some combination of these limits? 

(3). In the absence of damping, what is the physical explan­

ation for the threshold behavior of the eigenmodes? 

(4-). How does a finite radius for the laser pump wave affect 

the response? 

(5). Why has the Raman side-scatter instability been clearly 

observed in computer simulations, yet not at all in 

actual laser-fusion experiments? 

To answer these questions, we first reduce the problem to the 

simplest physical model (e. g., linear density profile matched onto 

uniform or vacuum region, fixed ions, either a cold plasma or a large 

growth rate to make the plasma wave convection negligible, delta-

function electromagnetic noise) that contains the most essential fea­

tures (refraction, diffraction, space-time evolution, non-negative 

density profile). The model is discussed in more detail in the 
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next section. The need to include refraction and diffraction was 

discussed in the previous section; refraction in the nonuniform 

plasma can tend the side-scattered electromagnetic wave (for any 

given k,. = xk-, + tfk-, ) along z and out of the resonance zone, 

and diffraction must generally be included since the side-scattered 

wave is at its turning point. A linear density profile for all z 

would lead to nonphysical results, as implied in sec. I D 2. For 

our simple model, the describing equations can he reduced (Ref. F VII; 

G XIII) to a single Helmholtz (or Schrodinger) second-order differential 

equation in z for the (UL, It,,) component of the electric field 
t E.(z, ox., k_-jj) o f ' t h e scattered electomagnetic wave; the derivation of 

this differential equation is given in sec. II. 

Since the Raman instability is a three-wave stimulated scatter 

(of the electromagnetic pump wave, off a Langmuir wave, and into a 

lower frequency electromagnetic wave), at least one of the two pro­

duct waves (the Langmuir wave or the scattered electromagnetic wave) 

must be present as noise at t = 0 in order to initiate the process. 

To give answers to the above list of questions, it is sufficient (since 

our problem is linear in E..) to confine the initiating noise to t = 0 

and to a single position z along the gradient (noise >\.6(t)6(z - zj). 
s s 

The Langmuir wave is nonpropagating in the cold plasma assumed here, so 

our attention is primarily directed toward the scattered electromagnetic 
t See sec. I C for reduction of the vector problem to a scalar 

problem. 
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wave, which is taien to be initiated by the noise source (described 

in more detail in the next section). Thus, there is still a finite 

and reasonably well-known electromagnetic response even in the limit 

of v •* 0 (where the Langmuir wave becomes uncoupled from the 

electromagnetic wave, and has vanishing amplitude). This limiting 

form for the response (to the delta-function source) must be contained 

in our results for the Raman side-scatter instability in order to 

answer question (2); this is accomplished by using a well-known 

genaral mathematical procedure (see Ref. sec. P), outlined in sec. 

I D, to obtain the Green's function solution ft.(z,z ; ui ,k_ » for 

E..(z,a>.. ,k.. ) with the delta-function source located at z = z as 

mentioned earlier. 

The space-time response is then obtained by inverting the 

Fourier transform ft.(z,z ;ai,k, ,) with an integration along the 

Bromwich contour in the complex w.-plane; the result is the Green's 

function GL.(B,Z :t,k,,) representing the electromagnetic response 

to the k,, component of the electromagnetic noise (bremsstrahlung; 

see Ref. sec. M) which is present at t = 0 and at position z = z , 

all of this oecuring in a nonuniform plasma pumped by an electro­

magnetic wave (ti>0>k_ = zk: ). Since we are considering only the 

linear (in E_) problem, we ignore the noise components present at 

other times and positions; in principle, the full solution could 

See sec. I C for discussion of the vector nature of ft.. 
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be obtained by integrating G (z , z : t , t sk. .) over some distribution 
—"X S S —IX. 

I I I I 
of noise S(z .t .k.. .) in space z and time t (Ref. sec. P). The 

S S —IX S a 

integration in k. and k, will be discussed later. Rather than 

consider this complicated linear superposition, we just initiate the 

instability in the simplest way (the delta-function source 

6(t)S(z - z )) and follow the space-time evolution of the response. 

In the absence of the pump, the response slowly decays like 

an inverse fractional power of time as the electromagnetic wave-

packets propagate and refract away from the source position z (see 

Fig. 1.9 and sec. Ill B). Wave-packets of all frequencies are 

produced due to the delta-function in time. 

In the presence of the pump wave, some of these wave-packets 

will encounter their resonance zone before they propagate out of the 

nonuniform plasma or before they meet their turning point (see 

Fig. I.10); these wave-packets will grow while they are in their 

resonance zone. Since all frequencies are present, we can simul­

taneously look at back-, oblique-, and side-scatter and compare their 

saturation amplitudes with previous estimates discussed in sec. I A 3. 

Since we have a differential equation with boundary conditions, we 

can also expect the eigenmodes found by Liu, Rosenbluth, and White 

(Ref. F VII). A mathematical procedure essentially identical to ours 

was applied by Sedlacek (Ref. P III) to the problem of electrostatic 

oscillations in a cold plasma; it is clear from his work (or 

other references, such as Refs. P I-II, on solving differential 

equations and initial-value problems) that the eigenmodes are 
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connected with the poles of G-(z,z jWLjfc,.) in the complex w.-plane, 

while the wave-packets are associated with the branch-points (and the 

branch-cuts) of G,(z,z jw-jk,.) in the complex oa.-plane. This im­

mediately answers the first part of question (l) and shows that the 

actual space-time response consists simultaneously of both wave-packets 

and eigenmodes; the more detailed question of when one particular 

description dominates over the other is the subject of much of the 

rest of this paper. 

One can, however, predict qualitatively many features of the 

space-time response by applying crude physical arguments. At early 

times, before the side-scattered wave-packet (for given k, ) has been 

able to refract out of its resonance zone (similar to the case of Ref. 

G I, as discussed in sec. I A 3b), the effect of nonuniformity on side-

scattering should be negligible (for back- or oblique-scattering, 

nonuniformity gives the saturation discussed in sec. I A 3a); thus, 

the side-scattered eigenmodes (which have the largest growth rate in 

Ref. F VII) should be negligible on this time scale (no eigenmodes 

in the effective absence of nonuniformity). This requires that the 

numerical coefficients multiplying the temporally growing exponentials 

in the eigenmodes must be small; in fact, these coefficients must 

vanish in the limit of a uniform plasma (while the growth rate ap­

proaches a positive constant according to Ref. F VII, as discussed in 

sec. I A 3b). Thus, one must wait some length of time before the 

temporal growth of the eigenmodes can overcome these small coefficients 

and lead to dominance over the transient wave-packets (which eventually 
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refract out of the plasma as shown in Fig. I.10). 

To estimate this length of time, we first note that the maxi­

mally growing side-scattered eigenmode must be localized within a 

resonance zone width of the turning point position for the side-

scattered wave-packet; the wave cannot propagate past the turning 

point to higher densities, and if it escaped out of the resonance zone 

it would become uncoupled from the Langmuir wave and propagate out 

of the plasma without further growth. The eigenmodes must therefore 

represent the result of a certain amount of reflection on the lower-

density side of the resonance zone; this leads to the temporally 

growing wave pattern represented by the eigenfunctions. The fact 

that the pump wave introduces a second turning point (in the complex 

z-plane) was first pointed out by Drake and Lee (Hef. F III) for 

Raman back-scatter (k-, = 0) at the quarter-critical position (k, *• 0), 

and was later extended to side-scatter ( |k_., | » k. ) by Liu, Rosen-

bluth, and White (Ref. F VII). Thus, the eigenmodes should be expected 

to establish themselves as the dominant response after their component 

waves have undergone several "bounces" between the two turning points 

and "communicated" the necessary knowledge about the nonuniformity 

and the boundary conditions; that is, provided the pump strength v Q
 = 

= e E /m (i) is not so small that the waves lose more energy (through 

damping or transmission through the lower turning point) than they gain 

by traveling through the resonance zone. The dominance of the eigen­

modes should, therefore, be expected to begin a short time (depending 

on v and L ) after the side-scattered wave-packet has refracted 



33 

out of its resonance zone (i. e., after the time t (z .k..) 
s s 1J. 

shown in Fig. I.10; this is minimised for the source at the resonance 

zone edge in Fig. 1.8). 

Since we have Fourier transformed in the "perpendicular" 

directions x and y, all of the waves (wave-packets and eigenmodes 

with given k_i,)are periodic and of infinite extent in the x-y plane; 

hut, each of these standing waves in the x-y plane can he viewed 

as a superposition of two traveling waves propagating parallel and 

anti-parallel to k. . = xk. + yk. . If the noise source were also 

localized in x and y (e. g., noise ̂ 5 (x)S(y)6(z - z )S(t)), an 

integration of G.(z,z ;t,k. )exp (ik, , • x) over k. and k, 

would be required to obtain the full three-dimensional Green's 

function response Gn(z,z :t,x,y). It is not necessary, however, 

to actually perform this integration in order to see qualitatively 

that the effect will be to superpose traveling waves with nearly 

the same k. , and ui, and form propagating wave-packets in the 

x-y plane (Ref. F VII). That is, the previously discussed wave-

packets in the z-t response (for given k. ,) will now form three-

dimensional wave-packets moving along well-defined trajectories in 

x-y-z-t space labelled by wave-packet frequency ok. (see Eq. (Ill.16) 

for OL.) and perpendicular wave-vector (k. , ) . ; for a given wave-

packet, propagation along z will change its locafl k. , while at 

a fixed z-position there will be no wave-packets with (k, . ) , > 

>[*]?, -w (z)J /c (they would be evanescent). The localized eigen­

modes (Ref. F VII) in the z-t response (for given k, ,) will now 
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form localized (along z) two-dimensional wave-packets moving along 

straight-line trajectories in x-y-t space labelled by wave-packet 

perpendicular wave-vector (k,.). and eigenmode number n (see sec. 
f 

I A 3b)j the eigenfrequency <>>i_(kj •) i 3 t h e n determined for each 

of these wave-packets. 

The main point to be extracted from the qualitative arguments 

in the preceding paragraph is that, although we will mainly discuss 

and calculate the response in z-t space for fixed k_ ., the wave-

V packets and eigenmodes should nevertheless be viewed as convecting 
\ 
\ simultaneously along x and y with a group velocity V (k.. ,(u.) 

Xoi, replaced by ou (k^,) for the eigenmodes). If we calculate 

in z-t space a certain behavior for the wave-packets or for the 

eigenmodes (fixed k. ) during a time interval (0,t), then this 

behavior also occurs in the x-y plane within the spatial interval 

(0,V t). In particular, if the eigenmodes are found to dominate 

the response only after the time t (at which refraction saturates 

the growth of the side-scattered wave-packet), then the eigenmodes 

can dominate the response also only after the side-scattered wave-

packet has convected a distance 1 = V t perpendicular to the 
s gi_ s 

direction of incidence of the pump wave. 

The pump wave is typically a focused laser with small focal 

diameter d- (£ 30 microns; see Ref. sec. H), so it is conceivable 

that d. < & . In this case the waves would convect across and out 

of the laser beam and, thereby, lead to an early saturation of the 

side-scattered wave-packets and, more importantly, an end to the 
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growth of the eigenmodes. At this early time (t ) the eigenmodes 

are still negligible relative to the wave-packets, and with no fur­

ther growth the eigenmodes would remain negligible for all time. 

The situation is somewhat analogous to that considered by 

Goedbloed and Sakanaka (Ref. Q I), who pointed out that one may not 

be so much interested in whether a certain plasma configuration is 

strictly MHD stable as in whether the temporal growth rate is 

small enough to lead to only negligible growth over the finite 

containment time-scales necessary for fusion. Similarly, we may not 

be so much interested in the temporal growth of eigenmodes of an 

infinitely wide system in x and y (such as in past computer simu­

lations with periodicity along x and y) as we are in knowing the 

linear (convection) saturation amplitudes of waves propagating 

unstably only across a narrow focused laser beam. 

An estimate of t based on Eqs. (I.9-10b), including the 

reduced group velocity, indicates that 

and using the reduced group velocity in the resonance 2one (from 

sec. I A 2, V = V,/2 in a cold plasma) we have 

I, ~ c t * / 2 (1-17) 



if not too near the quarter critical position where V = t + 0. 

Using typical laser-fusion experiment parameters from Ref. sec. H 
16 2 (Nd:glass laser of 10 watt/cm. and a density scale length 

L = 10 microns) and choosing u /ai = 3» Eqs. (1.17, 9) give n o p 
fi. 1J 30 microns with a side-scattered wave packet saturation 

exponentiation of T = 4. Since for such high intensity lasers the 

fncal diameter dT *>» 30 microns (Ref. sec. H), one might expect an 

early saturation of the side-scattered wave-packets (at a level be­

low the above value of T = 4) and, more importantly, an early end 

to the temporal growth of the infinite medium (along x and y) 

eigenmodes (at a level even below that of the wave-packets). 

It should be emphasized that this conclusion cannot 

apply too near the quarter critical position since V and i 
gJ. s 

vanish a t that position. However, for density prof i les n(z) with 

a scale length L (z) increasing slower than n ( z ) (e . g . , 

-3 -1/3 

exponential with L = constant, or n <* r with L •* n ), 

the eigenmode ins tab i l i ty threshold i s highest in the high-density 

region near quarter c r i t i c a l (Rev. F VII). 

In the res t of t h i s paper, we describe in more detail the 

model, mathematical procedure, approximations, examples and calcu­

la t ions we have used to verify the qualitative picture we have as­

sembled in th is section. 
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C. Model and Physical Mechanism 

for the Instability 

The density (see Fig. I.11 for profile) is taken to he con­

stant for z < 0, hut it can linearly increase for z > 0. This is 

the simplest (see sees. Ill B; V) non-negative nonuniform density 

profile, and it allows our results to reduce easily to known results 

(in terms of Airy functions) in the limit of zero pump strength. 

The plasma is assumed to he unmagnetized (i. e., no static magnetic 

field). 

The electromagnetic pump wave, 

Efe,i)=xEoexp(iJko(2)dz-iw0t]+c.c. , (118) 

is incident along z and linearly polarized along x (see Figs. 1.11, 

12), where k Q(z) = [u£ - ufrz)] /c. We are far from the turning point 

of the pump (the Raman instability only occurs at densities below 

quarter-critical, as shown in Fig. I.l), so k and E are slowly 

varying along z; we will usually be interested only in the local 

values of k and E at the resonance zone center z J ^ i i ) 

(see Figs. I.10, 12). In Fig. 1.12 we illustrate the spatial orien­

tation of the side-scattered electromagnetic wave (w^k.) (shown at 

its turning point inside the resonance zone) and the Langmuir wave 

(fl = ai - cij, K = •£_ - ]^ ) which are coupled together by the pump 

wave (<o ,k ). o —o 
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The Langmuir wave is coupled with the two electromagnetic 

waves through the two "nonlinear" forces v * B, and v, * B in ^ ^ -o —1 —1 -o 
the Lorentz force equation 

Y=5f + Y.7y=-£(E + yxB/c) , CM) 
where v is the velocity of a cold electron fluid element, and 

v s eE /mio and y, = eK./mui. are essentially the oscillation 

velocities of electrons in the electric field of each of the two elec­

tromagnetic waves. Including only the lowest order nonlinear!ty 

in the total electric field E_ , Eq. (1.19) gives (see sec. II) 

|f=^E- 24v(/Ed tf +--. . (120) 
The second term above (the gradient of the ponderomotive potential) 

represents a longitudinal nonlinear force which has a component at 

frequency £2 = a> - OL giving rise to the longitudinal nonlinear 

current Jj(J2) and (through the continuity equation and Poisson's 

equation) the density perturbation 6n(J2) shown in Fig. 1.12; this 

process resonantly drives up the Langmuir wave if £2 i> u> (z). 

We assume fixed ions throughout this paper since they do 

not effectively respond at the high frequencies and short time-scales 

of interest here. Inclusion of mobile ions would allow one to study 

filamentation, self-focusing, and Brillouin scattering, as mentioned 

in sec. I A 1. 
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We also assume a cold plasma, since a finite temperature is 

not required by, but only complicates, the Raman instability; a 

finite temperature mathematically leads to a higher order differential 

equation that must be solved, and physically leads to thermal con­

vection of the Langmuir wave out of the resonance zone. However, 

if the pump strength is large enough, the temporal growth will 

(as pointed out in Refs. F VTI; G IX) dominate this convection 

(i. e., if Y h/V » 1 the Langmuir wave will grow substantially o gz 
bafore it propagates out of the resonance zone of width h given by 

Eq. (1.10b)). 

The scattered electromagnetic wave is coupled with the Langmuir 

wave and the pump wave through the transverse nonlinear current 

£T(dL ) (see Fig. 1.12), given essentially by the product of the density 

perturbation 6n(S2) at frequency £2 with the electron velocity v 

at frequency u . This current resonantly radiates electromagnetic 

waves at frequency WL = ID - SI and wavevector k-= k - K (if K 
2 2 2,2 is such that in. = u> (z) + c K, ), as described by the wave equation 

f^-Jv'g^M-^V? • (L2I) 
The charge density p (at frequency IIL and wavevector k.) 

is nonzero only if V̂  • £(<»>.,) f 0 which occurs only if k. = -K f 0. 

This term, 7p(iu ), acts to cancel the longitudinal part of the 

current £ (w.) and leaves a transverse driving current £T(<i),) 
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acting along the direction of (x - k_ k-A-, ), where k.(z) 

[uj- u£(z)]/c2. 
The Vp{ <u,) also introduces an additional longitudinal 

term proportional to (k. E_(<0.) • ̂ n (z))A-, (i. e., an electro­

magnetic wave with a polarization component along a density gradient 

is not a purely transverse wave). Physically, this longitudinal term 

allows the electromagnetic wave (<iL,k-,), as it reaches its turning 

point z.(iiL,L .) where k. (z) = 0, to linearly drive a Langmuir 

wave at the critical density position z. (w. ,k.. = 0) where uL(z) = 

= (̂  and k^z) = 0 (Ref. R II). 

For the Raman instability problem, this "resonance absorption" 

of the scattered electromagnetic waves should be a small effect 

(centered near "-(z) **» u /2) because the transverse current ^Ji^) 

(giving the instability) leads to scattered electromagnetic waves, 

with polarization 

which have vanishing z-component as k. (a) + 0. The "resonance 

absorption" longitudinal term also introduces a shift in the turning 

point position z.(u> ,k-,) (Ref. R II); this shift is much smaller 

than Z = (e2!, /i>?) ' 3 (see also Eq. (1.10a)) if we restrict 

k-,Z » 1 (i. e., ft) (z) not too near w /2). Hence, we drop this 

longitudinal term in Eq. (1.21). 



We have so far discussed the process wnereby the presence of 

an electromagnetic wave of frequency w. % w - u (z) can stimulate 

the emission of another such wave and a Langmuir wave of frequency 

fl ̂  til (z) (from a decay of the pump wave); that the phase rela­

tionship is such as to lead to a growth of these scattered waves 

(rather than a decay or a frequency shift) must he determined from 

the detailed derivation in see. II. We must now decide how to 

initiate this electromagnetic wave in order to start the stimulated 

process. 

The vector differential equation, Eq. (1.21), for 

E.(z,w k. ) can he written as , 
1 _ l x (123) 

the first term on the right comes from £T(U-,) (e > 0 here), 

S(z,tD ,k.,) represents the (w..,k.. ,) component of a transverse 
2 T current noise source S = (4ir/e )(3/3t)j . , and the term ~ —noise 

k^tz.o) ] L ) = [«) - id_(z) - cTcfj /c can also be written as 

-2u A (z)/c to compare with Eqs. (I.11, 12). The equation for the 

Langmuir wave charge density p(z,°.,K = k - k,) can be written as 

u> pe «-K*E 
V^^g^^E,^* a.24) 
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Q 

where A £ [UL(Z) - S?]/2Sl is the frequency mismatch in a cold 

plasma and the term on the right comes from Jj.(B). As discussed in 

sec. IB, we have ignored on the right of Eq. (1.24) any effects of 

a longitudinal current noise source (i. e., longitudinal Cerenkov 

as in Bef. N I, or bremsstrahlung as in Ref. N II). 

As seen from Eqs. (1.23, 24), the induced scattered electro­

magnetic waves are polarized along e\, given hy Eq. (1.22), pro­

vided Ŝ  has a finite component along e.. The other orthogonal com­

ponent of S_ (perpendicular to both e 1 and k,) Is in the direction 

of (-k. z + k y)/( ki T * \ ) and drives a component of JUdu.) 

perpendicular to x; for this component, p(S2) = 0 and no growth 

occurs. Hence, we take only the e.. component of Eq. (1.23) and 

define E^z.oi^k^) = e^ E ^ z ^ . k ^ ) and Stz.w^^j) = 

= e- • S(z,UL,kT, ). Using p(fl) from Eq. (1.24), we have 

^ + Q M 'UJE.M > ku)=S(z, *>• > k,J (I25a) 

where the pump-strength parameter is 

Dfol.kJ3 Kv„a ) >(l-|')* . a.2Sc) 
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We ignore the weak z-dependence of D and just evaluate it 

at the resonance zone center z (w,k_ ). The above expression for 

Q is valid for Re (10.) >. 0; the full expression for Q (see sec. 

II) is symmetric about the Im(io. )-axis. 

Finally, for our model we choose S(z,(i)n,k_ .) = 6(z - z ) , 
j. —±i s 

as motivated in sec. IB, and rename E^z,!!!.,^. ,) the Green's 

function G1(z,z ;<o..,&. . ) . In z-t space, this corresponds to the 

source S(z,t,k_.. .) = 6(t)6(z - z ). The weak OL-dependence of 

e.fzjU ,k_ ) can be included in determining G.(z,z jt,k. , ) , from 

an w_-integration of e.G^ZjZgjoi. ,k,,), by evaluating e.. at the 

saddle-point frequencies and poles of G.(z,z jui.,k_ ) exp (-iu> t). 

In this section we have described the assumed model and physi­

cal instability-mechanism leading to Eq. (1.25), with S = 6(z - z ), 

for G.(z,z jui-jk.,). In the next section we describe the general 

procedure for solving this equation and obtaining Gn(z,z :t,k. . ) , 

our final goal. 

D. General Mathematical Procedure 

In the previous section we briefly described how the Raman 

instability problem (in a cold, nonuniform, unmagnetized plasma) 

can be reduced to the mathematical problem of finding the Green's 

function solution, G..(z,z :&).. ,k, . ) , to Eq. (1.25) with the source 
,_ J. 5 X ™^LX 
S'= 6(z - z ). The standard solution is (Ref. sec. P) 

<&*h*.lti- WfrfckJ (I. 
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where the WronskLan (or conjunct in Ref. P III) is defined as 
W = f.d 1"/dz - ILd ^/dz and (z ,z0) are defined respectively i d d ± g * 
as the greater (g) or lesser (£) of the two positions (z,z ). 

s 

The functions ¥. and V- are solutions of the homogeneous Eq. 

(1.25) (with S = 0) subject to the separate boundary conditions 

i s outgoing for z •*• -°° (1.27a) 

V, 1 or 
matches onto outgoing 
solution at z = 0 

(1.27b) 

is outgoing for z -*• +<=° (1.28a) 
V., S or 

evanescent for z •+ +=> • (1.28b) 
Assuming for the moment that we know G-i(z

s>zoJ(rti »£.i i )> w e 

obtain the z-t response by inverting the UL-transform (Laplace) 
by integrating in the complex UL-plane along the Bromwich contour 
(B) above all singularities and branch-points of the integrand 
(see Ref. P III): (L2l) 

B 
where the polarization vector e.fz,&)..,]£.. ,) is given by Eq. (1.22). 
The problem now is to determine V and V., and to answer this 
we consider first a uniform plasma (sec. I D l) and then a non­
uniform plasma (sec. I D 2). 
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1. Uniform Plasma 
Assuming exp(-ita.t) time dependence as in Eq. (1.29), the 

houndary conditions Eqs. (I.27a, 28a) and the homogeneous Helmholta 
equation Eq. (1.25) are satisfied by . 

y 

X= exp{-i [<?(<*.„ k j \] (L30a) 
Y2=exp {+i[Q(u,, ,k J \ ] (I.30b) 

W= 2i [Q(w„kj]^ (I30c) 
provided we choose the branch-cuts (emanating from the branch­
points where Q = 0 or °° ) such that Re (»^) > 0 for Re (ML) > 0 
and Re(i^) < 0 for Re (w ) < 0 along the Bromwich contour above 
the branch-points. In evaluating G.(z jEjjtjk,,) from Eq. (1.29), 
the Bromwich countour (B) can be "depressed" (using Cauchy's theorem; 
see Ref. S I ) into a contour (B ) only around the branch-cuts 
(there are no poles of W~ ) plus a negligible contour of infinite 
radius (see Fig. 1.13). For the uniform unpumped plasma (sec. Ill A ) , 
Q(w ,fc, ,) is sufficiently simple that the ID -integration can be 
performed exactly. For the uniform pumped plasma (sec. Ill C), the 
saddle-point frequencies (Ref. sec. U) and time-asymptotic 
(t[w (z ) + c T c J * » l) response can be obtained. 
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2. Nonuniform Plasma 
It is now generally desirable to transform variables from 

z to a dimensionless variable p(z,(H. ,1c, ,) in terms of which Q has 
a simple form (e. g., for the nonuniform unpumped plasma in sec. 
Ill B we choose p = -ZTc, (z,os ,k ) with dp/dz = Z~ , where 
Z = (cL A T ) ). If we somehow inow two linearly independent so­
lutions A and B of the homogeneous transformed version of Eq. 
(1.25), then ¥, and ¥_ can be written as appropriate linear com­
binations of A and B. Assuming that solution A already satis­
fies boundary condition Eq. (1.28b), we write 

X^Mu)A(£,"„y- i B(fi,<-„k,x) (I.3la) 

%= ACfj^O 0.311,) 
W(<o„k u)=-iCBA /-AB /)3f- G.3lc) 
where P̂  = ^zi>\»^j)> Pg

 = PUgj'V^y.)' A = d A^ d p ' a n d 

B* = dB/dP. 
The coefficient a( &>_,]£_ ,) is determined by the requirement 

that f satisfy boundary condition Eq. (1.27b): i. e., V. from 
Eq. (1.31) must have the same value and first z-derivative as f. 

i 
from Eq. (1.30) 'alt the boundary position z = 0 between the uniform 
and nonuniform plasma regions shown in Fig. 1.11. We find 



47 

where p = p(z = 0,UL,k- .) and dp/dz is evaluated at z = 0. 

The coefficient a(uL,lc-,) has branch-points where Q(z = 0,OL ,k .) = 

= 0 or <*> (the solutions A and B introduce no additional branch­

points). The complicated form of afm^kj,) in Eq. (1.32) is 

required in order for a( in. ,k...) to approach, far from its branch­

points, certain limiting forms (necessary if f, in Eq. (1.31) is 

to be essentially outgoing near z = 0 for waves with turning point 
2 2 l/*3 

positions z.(UL,k, ,) » Z 5 (c L /tu ) > 0) and yet remain con­
tinuous across the Im (w. )-axis. 

We have now specified V and V- in terms of two linearly 

independent (and still somewhat arbitrary) solutions A and B 

(with A assumed evanescent as z •* +°°) of the homogeneous 

transformed version of Eq. (1.25). For the nonuniform unpumped 

plasma (see sec. Ill B), exact solutions are available in terms of 

the two Airy functions, and we choose AfPjdLjk,,) = Ai(p) and 

B(p,UL,k, ,) = Bi(p). For the nonuniform pumped plasma (see sec. V), 

exact solutions are not currently available, and we instead use 

phase-integral (or WKBJ) techniques (see sec. IV and Ref. sec. T) 

in the complex p-plane to obtain approximate solutions A(p,m,,k,,) 

and Bfp.o^jk^). 



48 

Although these approximate solutions are not valid too near 
the transition points where Q(z,u.,,k, ) = 0 or » , they are valid 
in regions completely encircling these points. Thus, although we 
cannot use these approximate solutions to look at the side-scattered 
wave right at its turning point, we can look at the side-scattered 
wave slightly before and after it encounters its turning point 
(and resonance zone) andjthereby, obtain the side-scatter exponenti­
ation factor r (see sec. I A 3b), the saturation time t (see sec. 
I B ) , and the resonance zone width h (see sec. I A 3b). In 
principle, if one desired more detailed information about the turning 
point (and resonance zone) region, a Langer's transformation (Ref. 
sec. T) or a series expansion (illustrated in sec. Ill B for a non­
uniform unpumped plasma ) could be used to obtain approximations 
for A and B valid at the turning point; such calculations are 
not carried out in this paper. 
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II. DERIVATION OF BASIC EQUATIONS 
In describing the physical mechanism for the Raman instability 

and displaying the form of the equation (i. e., Eq. (1.25a)) that is 
to be solved later in sees. Ill and V, we have already outlinad in 
see. I C the derivation of the basic equations. We do not wish to re­
peat ourselves here but, rather, will concentrate on a few of the more 
important intermediate steps and complexities that may not be obvious 
from just reading sec. I C. 

First of all, in going from Eq. (1.19) to Eq. (1.20), we 
approximate v = -(e/m)/ E dt to first order in the total electric a)! E dt' 
field and use this in Eq. (1.19) to get an equation for 3v/3t valid 
to second order in E_. Using V_ * f E dt' = -(l/c)f 3B_/3t dt' = -B/c, 
one term from v • y_ v_ cancels with -(e/mc)v * B_ while the remain­
ing term gives (e 2/2m 2 )vTf Edt' »f E dt" resulting in Eq. (1.20). 
The validity of this expansion requires (v/c) = (el /mioc) « 1. 

From Eq. (1.20), we can compute the current £ = -env , 
n = n + <5n, which in turn gives the charge density p = -e6n from 
the continuity equation 3 2p/3t 2 = -V • 3J/3t = e\7 • (n 3v/3t) -
- V_ • 3(pv)/3t or, using Eq. (1.20) and Poisson's equation, 

v V i ( 1 U ) 
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We have made two approximations here: first, we dropped a term 
-(e3/2m2fr(fE dt') 2 • V_ n Q which is valid provided k Q L n » 1; 
second, we dropped a term -(e /m)E_ • V_n which (when computing 
p(fi)) requires (Y + v Vu » k / a A , or essentially k h » l p P o n ^p 
( Y= growth rate, v = plasmon damping, and h = resonance zone width) 
and which (when computing pfw.) and E-t00,)) requires 
(Y + v 2 . ) / % > : > 2v(u M^ (^ • z)/k^.z%^ (v i = damping of scattered 
electromagnetic wave with polarization eL and effective wave-

2 2 4 number k^z) = (u^ - u' (z)) /e). Since we later find 

\ = (* " *1* h ^ 1 " ki>?>4 °r *1 ' * = ( W V ^ z <>> 
the above requirement will be no more difficult to satisfy than our 

2 
earlier requirement on Y provided ^ l y ^ £ 8TT(W M ^ k ^ k ^ z J / k , 
(assuming Kyk « 1 and 1L A , << 1); although the right-hand-
side of this inequality vanishes at the turning point, for fixed 
ratios k. /k, and k- /k. this sets a lower bound on k and 
thus on how close we can be to the "quarter critical" position 
(a) •* <IL •*• u Q/2) and still use our equations. 

We next Fourier transform Eq. (II.l) in order to obtain 
p(Q) and p(ui,). For p(£2), we also drop the term -V • 8Jp (ui^vlAt 
since it turns out to be negligible provided (Y + ^ ) / % >:> 

» (vycJ^/WpJk^/k^z) while, from Eq. (1.2), Y 0A> p
 % 

% (v /c)o) /(a) (1),) . The result is o o p 1 
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2 1/ 

w„-n o>0+n. 
where we have used E_(fl) = -i^PC^iK/Ii (assuming an exponential 
variation exp(i/jC • dx) and k h » 1) and also E (-&> ) = E_(ui) 
from the reality condition on Eft) = / exp(-i(tft)E(uj)dw. For p(u.), 
keeping both terms in Eq. (II.l), ^ _ 

JL* - e "? fr2fc - E ( ( J ° ' ^ . r* £ ( a w ) -
^''~*7Tmto 0c 2kf V [-• ^ o ' w , & " H + W i 

Equation (II.2) is appropriate for E_(J2) or p(£2) whenever 
|fl| % w , representing a longitudinal plasma wave; Eq. (II.3) is 
the more general equation for p(ii)) and is valid even when |w, | ^ w , 
representing an approximately transverse electromagnitie wave' (the 
transverse component of the electric field, &.(<•>..)> is determined 
fromEq. (1.21)). 

Finally, we Fourier transform Eq. (1.21) and use Eq. (II.3) 
to obtain (defining I to be the unit tensor): 
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•[EofV^-CyH^)]. (i4) 

We have dropped a term on the right of Eq. (II.4) that is propor­

tional to [k 2 + v^vfe^ E*(u0 -w*)/((i)0 - i^) + E^-

)]. Using Eq. (II.2) to get E*(UJ0 - «*) = E*(«) 

and using Eq. (II.4) to get [k~ + V jEjt),), this term effectively 

only alters Eq. (II.4) by changing k (z)vv to 

(1 + o)k^2(z) £ V where |a| < (vQ/c ̂ ^ ( y + v ) £ 

(vo/c)(u /(o o)(o p/w L) i« 1 (using Eq. (1.2) for yQ). If ^ 

is replaced by -w1 everywhere in Eq. (II.4)# we get back the 

complex conjugate of Eq. (II.4), for the quantity E-,(-w_). Since 

the complex conjugate of Eq. (II-4) for E,(WL) is also a solution, 

this gives E_ (-UL) = £,(<»>,) as required for reality. We therefore 

consider for now only He((o.) >. 0, and look at the terms p (ID -ML ) 

and p(u + (d,). 

If we take u - OL = SI % u . o> + m, <\/ 2a>. -UL > 3u o T . p ' o T . ° P — p 
(to > 2u for the Raman instability), and p(u> + (*, ) is non-

resonant with a local Langmuir wave and is therefore negligible. 

For p (fl) we use Eq. (II.2) which has two terms: the first term 

involves E,(iiij) which we are trying to calculate in Eq. (II.4); 

the second term involves EJ[oi + ft) = E(2{i) -to.) which corresponds 
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to the four-wave process where two photons (<a ,k ) are incident on 

a Langmuir wave (ft = a) -<•),, IC = k - J O and sca t te r into two 

new waves (a) , k . ) , which we are looking at in Eq. ( I I . 4 ) , and 

(2(0 - (a., 2k - k_). If we assume that E,(i ' i ) i s a resonant nor­

mal mode ( i . e . , an electromagnetic wave satisfying Eq. ( I I . 4 ) ) 

with c k ^ ( z ) = &C - ID ( z ) , and cTc (z) = (D - w ( z ) , then in order 

for E( 2a) - to,) to be a resonant electromagnetic wave with 

c |2k - k j = (2(D - ID,) - (i)L(Z) requires k Q • k^ = 

[ p i p ii) (i)n - to (z) \ /a . This i s impossible to satisfy except for forward 

scat ter ing (k • k = 1) a t zero density ( i . e . , no scattering a t 

a l l of incident photons), so we drop the nonresonant term E(<») + ft) 

in Eq. ( I I . 2 ) . 

The last step is to substitute our expression for p (ft) 

into Eq. (II.4) and simplyfy. Assuming an exponential variatirr 

exp ilk, • dx, we replace \7 by ik,(z) on the right of Eq. (II.4) 

(ignoring variations of the resonant denominator in p (ft), valid 

for k h » 1). Since E = E x, the vector dependence of the right 
^ 2 

side of Eq. (II.4) is given by (x - i,L A , ) which results in 
—J. J.2T X 

A 

the polarization e.. given in Eq. (1.22). The vector k. is ob­

tained by Fourier transforming Eq. (II.4) in the x and y direc-

tions and calculating Kfu,) for each value of k,, = k, x+ l j . 

Whenever k. is used on the right side of Eq. (II.4) (e. g., in 

e ), we use Kj.%) = [w-, - (o (z) - e t J /c from geometrical 

optics; on the left side of Eq. (II.4), we keep the full second 
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2 2 derivative d /dz in order to determine accurately the z varia-
2 2 ^ 2 2 tions, so that we replace k,(z) + V by k. (z) * d /dz . The 

use of this k. (z) in e n is only meant as a rough approximation 
1Z J. 

and is not meant to be taken too seriously when k (z) & Z~ -
lz 2 2 "i/3 = (cL/(i) ) , where Z is an effective minimum wavelength 

from the Airy function. After factoring e, from both sides of 

Eq. (II.4). e, will seldom be mentioned again. Our final 

equation for E1(z,(o1 ,k, ,) is then /"IT |*\ 

JkM__ E 
I 

where the second term on the right here is from the second term on 

the right in Eq. (II.4) (i. e., the p(w + w ) term) and is 

necessary when Re(a>,) £ 0 in order to have E (z,io ,k. ,) = 

= E(z,-(D ,-k. ) from the reality condition. For Re(oi ) >_ 0, this 

gives Eq. (1.25) which is the basic equation we will be working 

with in later sections. 
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III. APPLICATION OF MATHEMATICAL 

PROCEDU11E TO SIMPLER CASES 

Before applying the mathematical procedure outlined in sec. 

I D to our main problem of interest (i. e., the nonuniform pumped 

case in sec. V), we first "test" it on three simpler limiting cases 

where either the pump vanishes, or the density scale-length becomes 

infinitely large, or both. For these three cases, the results are 

generally considered to be "well-known" (at least qualitatively) 

and will serve as checks on our procedure and on the results we 

obtain later in sec. V. 

A. Uniform Plasma, No Pump 

For this case, Q(z,ai ,k.,) in Eq. (1.25) becomes just 

Q M J s k ^ v U * * 3 1 ^ M 

OM 

v2 .2 

2 2 2.2 where w = <o + clt, , , and using Eq. (1-30) in Eq. (1.26), 

where the branch-cuts (emanating from the branch-points) are chosen 

as in Fig. 1.13. For this simple case, the ^-integration in Eq. 

(1.29) can be performed exactly except for the §,(a)..,k_ ,) which 

we evaluate at the saddle-point frequency <o, found below. The 
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result is ^ze'zl'x>l^_j} = K^A'hl* exP^-\t)a

1^) w h e r e 

G,(V = - f Jom (I.3«) 

y s w [ t 2 - ( - ^ Z ] 2 (Ob) 
if (z - z a) < ct and G = 0 if ct < (z - z%) (this is just 
the "light cone"), where J is the Bessel function of order zero. 

2 2 
Since (z - z £) = ( z - z ) , V and G.. are symmetric about the 
source position z (as expected for a uniform plasma). For large 

s 
phase V » 1, J (V) can be expanded giving 

G<0r)s-c(2JrY),fcsin(Y+£) 0M 
which can also be obiiained by using the saddle-point approximation 
(Ref. sec. U) on Eqs. (Ill.2 and 1.29). 

Our basic procedure from sec. I D 1 was to depress the ori­
ginal Bromwich UL-integration contour into a contour only around 
our arbitrarily positioned branch-cuts; for the saddle-point approxi­
mation of this integral (Eq.. (1.29)), however, we must deform this 
"branch-cut" contour into a new contour which follows the path 
of steepest descent (see Ref. sec. U) for the integrand in Eq. 
(1.29). Using Eq. (III.2), one can easily show that a saddle-
point (for the integrand) can only exist above the branch-cut in 
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Fig. 1.13. This is further discussed in sec. Ill C (in the paragraph 

preceding Eq. (III.36)) and illustrated in Fig. III.6 which shows 

lines of constant real and imaginary part of the phase of the inte­

grand (here, the phase V is given by Eq. (III.24b)). 

The saddle-point frequency u>, = w. obtained this way, or 

by just using <o. = Sf/St with "? given by Eq. (III.3b), is 

^A(rj) = a / C l - l 2 ) 4 0K.5a) 

1» (Z" z sV c t , (1.5 b) 
so that trajectories of wave-packets of constant frequency u, 

are straight lines in t-z space. The wave-packet wavenuniber along 

z is just k = -3Y/3z or z 

ty> = ̂  = % ^ 0H6) 
as expected. The lines of constant phase If in t-z space are hyper­

bola with the light cone giving the asymptotes. The lines of constant 

a>A and ¥ are shown in Fig. III.l, while (2/c)G1 = -Jj.1) is 

plotted (but reduced by a factor of 0.0075) in Fig. III.4a as 

described in sec. Ill B. 
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Finally, a brief comment may be in order concerning the choice 

of Eq. (1.22) for e1 since we have no pumped instability here to 

give a preferred polarization direction. Nevertheless, for any 

wave with given u and 1L ,, at any location Eq. (1.21) will 

pick from the noise current J . only the transverse component 

(of proper &.' and ]£•,,) which is perpendicular to k_ (where 

k.. is determined from Eq. (1.21)). Among all the polarizations in 

the plane perpendicular to t , we limit ourselves to e, in order 

to compare our later pumped results in sec. Ill C and sec. V with 

the known unpumped results of sees. Ill A, B. 

B. Nonuniform Plasma, Ho Pump 

For this case, Eq. (I.25b) gives 

where p ~ - Z 2 * 2 ^ , k 2
z = [ ( ^ + i ^ ) 2 - oj2(z)j/c2, w 2(z) = 

= u2(z) + c ^ 2 ^ , and Z = (c2L /a) 2) 1' 3. In terms of this new 

dimensionless variable p, the homogeneous transformed version of 

Eq. (I.25a) now reads 

[£-*]?w=o (m-8) 
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which has the two solutions (Airy functions) 

A(f) = Ai(y) (m/te) 

B(j>) = Bi(y) (Lib) 

as discussed in sec. I D 2. Using Eq. ( I .31) , with W = i/iiZ, Eq. 

(1.26) becomes (JIT \Qj 

G^^^^J-mzfLaAi^-iBi^lAKft)} 
where the branch-cuts and branch-points of a(u.,]c. .) (at ±u)(z = 0) 
now) are shown in Fig. 1.13, P^ 5 P^Zg), P_ 5 P^O' a n d ^ ' V 1 * ^ 
is given by Eq. (1.32). 

To perform the ox.-integration in Eq. (1.29), we depress the 
Bromwich contour and change to an integration around each branch-
cut (as discussed in sec. I D 1 and shown in Fig. 1.13). Since 
Ai(p) and Bi(p) are entire analytic functions, they do not 
change across the branch-cuts of a(&L,l£1 ) and, therefore, the 
term Bi(p.) Ai(p ) does not contribute to the integral. From the 
form of a((o ,t ) given in Eq. (1.32), we find that in going from 
a point ox, to the corresponding point ox, = ox, around and on the 
other side of a branch-cut gives a(ox, = ox, ,k, ,) = -a (ox,, It,,); 
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but since the direction of integration i s then reversed , adio 

at u equals the complex conjugate of adu at us . Thus, we 

can reduce our UL -integration to an integral along one side of each 

branch-cut with a((iL,k . ) replaced by 2Re(a'l; with Re(a) the 

same but duL in opposing directions on these two branch-cut s ides , 

and exp(-i(iL t ) - exp(iu)t) = -2i sin 'kLt, Eq. (1.29) reduces to 

- 1 ^ V z & ; t ' - l l ^ = e l ^ s ' - l i ? e x p ( _ v i t ^ G ] ^ P g ' P ! i ; t , k l ^ w h e r e 

• (M) 
G=-2H/dw, Re(a) sin (a>,t) Ai^AiCfo). 

In the above, we have evaluated e at the saddle-poim, frequency 

to. that will be found below, and all the effects of vn are in-ls 1 
corporated in the single term exp(-u. t) by transforming to a new 

oi. = (iii ) +iv . The integration in Eq. (III. 11) is now along 

the real axis (above the branch-cut in Fig. 1.13) with p„ and p 

real (the \L now removed from the definitions of k, and p). 1 lz 
The term Ai( p ) will be exponentially small unless p _< 0 

or m >. u = (u( Z ) and, s ince u .2. to = GJ( z ) (z >̂ z by i g g g s s g s 

definition), to provides an absolute lower bound on frequencies of 

interest here. It is easy to show from Eq. (1.32) that, for 

p(z = 0) «-l (or o3 - w2(z =• 0) » c 2/Z 2), Re(a) % 1 above the 

cut (where our integration l i e s ) . In order to uc.e this here 

requires uT - to (0) » c /Z*" or z » Z ( i . e . , the distance s s 
from the boundary at z = 0 to the source at z must greatly 
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exceed the effective minimum wavelength along z). As mentioned in 
sec. I D 2, this (Re(a) % 1 and z » Z) makes f n(p) = a Ai( p) -
- iBi(p) essentially an outgoing (i. e., left-going) wave for z > 0 
and eliminate" waves reflected from the discontinuity in density 
gradient at z = 0 (see Fig. I.11). 

We evaluate Eq. (III.11) asymptotically and take 
£ s L ar/cu) = (Z(o /c) » 1 as our large parameter. It is then n s p s 

~ — 2 2 convenient to define new dimensionless variables z = o> (z)/u = 

= 1 + (w /e)(z - z )/? , £ s w
a V E > a n d "\ = ( d i / ( 1 )

s - I* i s a l s o 

convenient to divide £ - z space into eight regions, as shown in 
Fig. III.2, even though G.. sometimes takes on the same form in 
two different regions. In regions 1,3,4. and 6, p„% -1 and 
O g * " 
Ai(p): 
p £ -1 so we use the appropriate asymptotic (or WKB) form for 

Afy* n*(jj*sin[f (-#+£]. (1.12) 
In regions 2 and 5, p„ £ -1 but -1 £ p < 0 so we write 
Ai(p ) = exp<ta.[Ai(p )H in Eq. (III.11) and use the series ex­
pansion 

Ai( f t)=Mo)(l+ j£/6 +.) • ( m i 3 ) 
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where Ai(0) = 0.3550 and A i(0) = -0.2588. For t « 1 and 

|l - z| « 1, our eventual solutions for G.. in regions 1 and 

6 become just Eq. (III.4) while our solutions for 6. in regions 

2 - 5 approach in magnitude Eq. (III.4) for £ ̂  2/£~'*« 1, so 

in regions 0 and 7 we use Eq. (III.3) for G.. The boundaries 

for the various regions will be discussed below; the boundary at 

z = 0, however, is now at z(z = 0) which is constrained to lie 

in the range 0 <. z(z = 0) < 1 with 1 - z(z = 0) » 1/ET in 

terms of our new variables. 

In regions 1 and 6, the saddle-point equation for 

Eq. (III.11) is 

I + 2 ajff-tj*=as, (ef-zj* (m.i4} 
which for solution requires the condition 

t < 2 (2/(1,-2,)* (1.144 
since w, 2. w = (z ) . In region 1, z = 1 and z\, = 5 so that 

Eq. ( I I I .14b) with the equal sign gives the equation for the solid 

l ine (Fig. I I I . 2 ) in the center of region 2. Region 1 cannot 

extend a l l the way up to t h i s sol id l ine , however, because along 

th i s sol id l ine co. =01 = u> (WL = w = 1) and p = 0 invalidating 

the use of Eq. ( I I I .12) for Ai(p ) and thus invalidating Eq. 

(111.14a). In region 6, z = z and z . = 1 so that Eq. ( I II .14b) 
g * 
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with the equal sign now gives the equation for the solid line (Fig. 

III.2) in the center of region 5. Along this line u^ = cu = LS(Z) 

(u = S = (z) 5), and p = 0 again. In regions 3 and 4, the 

saddle-point equation for Eq. (III.11) is 

i-tajft-dk*zal(s?-*ji (m.isa) 
which for solution requires the condition 

just the opposite of Eq. (III.14b). In region 3, z = 1 and z„ = z, 

while in region 4, z = z and z« = 1. Although Eqs. (III.14a 

and 15a) give different wave-packet (constant aL ) trajectories, 

they both give the same formal solution for the saddle-point (wave-

packet) frequency SL = 5.: 

~2 
CJ. = 

A " t[l-(i-2) 2/£ 2] 
(IDG) 

(Subscript distinguishes this solution from SL, used in regions 2 

and 5). For future reference, we note here that a saddle-point for 

Eq. (1.29), using Eq. (III.10), exists only above the branch-cuts 

as chosen in Fig. 1.13. This can be easily seen by using Eq. (III.12) 

and looking at the phase of the integrand of Eq. (1.29) (e. g., the 
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phase ¥ must vanish on the "light cone" boundary; also BV/atii = 
= 0 for a saddle-point). 

In regions 2 and 5 , the saddle-point equation for Eq. 
(III.11) is 

Ailft) 
where Eq. (III.13) Is now used for M(p ). In terms of our 
new variables, we have p = £T (2 - in,) and p = C {z - w.) 
and, since Eq. (III.13) is valid only for -1^ p <. 0 here, we set 
the boundaries of regions 2 and 5 by requiring -1 ̂  p < 0. If 

j g 

we write 5 = 3 + 65, |6w| « 5 = (z ) , -1 £ p £ 0 gives 1 g 6 6 e 
0 .5 65 £ 1/221 5 '^; using Eq. (III.14a or 15a), although not 
strictly valid here, we can relate 65 to the £ - z plane and 
obtain 65 *[i - 25(2 - zJ*]2/(25 ) 3 provided z - z. £ 1/£Z/3 

L g g * J g g x, 
which is also the required condition for p0 i» -1 since we used 
Eq. (III.12) for Ai(pA) in arriving at Eq. (III.17a). Substituting 
this 65 into the above inequality for 65 results in 

1^(^(2,-^1* 21£ faty 
giving the approximate boundaries for regions 2 and 5 (i.e., 
the pairs of dashed lines about regions 2 and 5 in Fig. III.2). 
Using Eq. (III.13), we find that the solution to Eq. (III.17a), 
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'2. 

(m.i8c) 

provided Eq. ( I I I . 17b) i s sa t i s f ied , i s the saddle-point frequency 

ui. = <iL + iY n (valid for both regions 2 and 5): 

rf = I q + 2.361 f* [1*70 Re(C)-l] 0L18a) 
D 3 

? B = 1.736 £% I m ( C ) / § j OH-1810 

CS [l-i (0.3686)^(2^ 

where the branch-cut is chosen such that Re(C) > 0. Interestingly, 

on the center lines (where C = 1) of regions 2 and 5, Eq. 

(111.18a) gives p =-1.11 which already is pushing the limits 

-1 i P i 0 we used in obtaining the approximate boundaries given 

by Eq. (III.17b)! However, even on the boundary lines given by 

Eq. (III.17b), He(C) is increased to only 1.059 and p increased 

to only 1.31, so we continue to use Eqs. (III.13, 17a, and 18) within 

the E - z space boundaries given by Eq. (III.17b). 
> 2/3 Since we required z - z_ £ 1/5 above, we must terminate 

regions 2 and 5 when the upper dashed lines fail this condition 
l/"3 

and this occurs when ? % 4/? , at this time, the lower dashed 
2/3 lines have reached the position z - z„ = 1 - 9/C and, for 

g * 
convenience, we place a horizontal boundary here for regions 2 and 

5 separating them from regions 0 and 7 (see Fig. III.2). Each of 
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the dashed boundary lines pertaining to regions 2 and 5 really 
should be viewed as a zone (of finite thickness) where the exact Airy 
function, rather than Eqs. (III.12 or 13), should be used. In 
particular, the above mention horizontal dashed line at 
was motivated as a limit to regions 2 and 5 and not as the 
beginning of a region (0 and 7) where Eq. (III.3) could be used 
for G... Our use of Eq. (III.3) up to 

« = 4 / ^ is motivated 
primarily by the agreement of our eventual solutions for regions 
1 and 6 with Eq. (III.4) for £ « 1 and |l - z| « 1 and, 
hence, requires £~ /4 » 1 (this also assures 9/t « 1). 

Using the above saddle-point frequencies, for large phase 
¥ » 1, we find asymptotically for Eq. (III.11) in regions 1, 3, 4, 

«* 6 : , (EI. 11a) 

where . 

and 

S=S3n[t-2(?3)'4(23-i/] . fcllc) 
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The quantity S equals +1 in regions 3 and 4 and -1 in 

regions 1 and 6 In regions 2 and 5 we find 

6,3-0.17 c £ S^* (^-i/expfl.063 * * ?/> 

*A[? % (V a B 2 ) ] s in (Y + £) 011.20a) 
where 

Finally, in regions 0 and 7 we just use Eq. (III.3) or 

G,~-|J0W to) 
with 

Y=S[t z-(i-2) 2]' / 2, fern) 
where this becomes exact as ? •+• 0 and i •+ 1 (but staying above 

the "light cone" boundaries). 

Qualitatively, Eqs. (ill.14a, 15a, 16, 19b, and 21b) give 

the results indicated in Fig. III.3 where we show wave-packet 

(constant 5.) trajectories (the solid lines starting at ? = 0 

and 2 = 1) and lines of constant phase ¥ (the roughly hyperbolic 



68 

solid lines ). The wave-packet trajectory labeled St. = l (given by 

the equal sign in Eq. (111.14b) with z = 1 and z. = z) corres-

ponds to the trajectory labeled iu. = u in Fig. III.l. The dashed 

line (given by the equal sign in Eq. (III. 14b) but with z = z 

and z. = 1 now) is the line of turning points (p = 0) for waves Jt g 

with different frequencies 5.; on this line 3¥/3z = 0 since 

k ~ -Wt/'dz. must vanish at the turning point. 

Quantitatively, we turn to Fig. (III.4) where we plot (2/c)G , 

according to Eqs. (III.19, 20, and 21), on the vertical axis (same 

as %) at various fixed times £ as a function of position z. By 

using a small interval A? °» 1A)«E between each plotting time, and 

reducing (2/c)G1 by some overall multiplicative factor (0.0075 in 

Pig. III.4a and 0.02 in Figs. III.4b-d) to eliminate overlap 

between the plots at different t, the lines of constant phase and 

the position of the line of turning points (where k = 0 ) can be 

clearly seen. We have purposely left blank various time intervals 

(of duration At = 0.1) in order to periodically allow (i. e., at 

the edges of these blank intervals) an entire trace of G 

versus 2 (at fixed t) to be clearly discernable from all the 

other traces. These traces show that in regions of small £ or 

near the "light cone" boundaries (where (3, -+ ">), where the uniform 

plasma solution might be expected to be valid, |(2/c)G.| rapidly 

increases in magnitude in agreement with Eqs. (III.3 or 21) as 

f + 0. In Fig. III.4, we chose 5 = 300 giving f L / 3 = 6.69 and 
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4/5 = 0.60. Thus, Fig. III.4a contains all of regions C and 

7 and part of regions 1 and 6 for E ̂ .0.2. The agreement be­

tween Eqs. (III.21a and 19a) is excellent for t <£ 10/3? 1 / 3 =0.5, 

hut only good to fair for 0.5 < £ £ 0.6 and clearly would be 

nonexistent (at least for z > 1) for £ > 4/r =0.6. In Fig. 

III.4b, we deliberately lower the boundary between regions 2, 3, 

4, and 5 and regions 0 and 7 down to t = 10/3ET just for 

the sake of comparison: the matching at the various boundaries 

is not much better than before (e. g., regions 3 and 4 are out 

of phase with regions 2 and 5). The phase matching of regions 

3 and 4 with regions 2 and 5 does not become satisfactory 

until % X, 1 (roughly ). The boundary lines can still be 

seen faintly (sometimes only as gentle changes in shading, as in re­

gion 2) at £ o. 2; the sharp change in shading near the right-hand 

"light cone" boundary in Figs. Iir.4b-d is ficticious and due to 

a sudden change in the density of plotting points used in the com­

puter generated figure. 

C. Uniform Plasma, Pumped 

For this case, Q/ZJULJIL. ,) in Eq. (1.25) becomes, for 

BeU^iO, just (BL2Z) 

wv.iv k^„Klx; z . ^ ^ 2 

http://wv.iv
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where again k^ = !(w,+ iu,) - uij/e , u = ui + c k l x , and 

D(w,,k, ,) is defined by Eq. (1.25c). Note that the full expression 

for Q is symmetric about the Im(ai. )-axis, as discussed in sees. 

I C and II. Using Eq. (1.30) in Eq. (1.26) gives /_. A . \ 

Gl(a3,a,;a)1,kli)=-Jpexp[if(a,,k|x)(z3-z|)] 

where f = v^ (an effective k, ) has the branch-cuts and branch­

points Jail = <(i)j, wS-r, WTTJJ UJJ> "illl i n |i i c a' f c e |i in any o n e o f 

Figs. V.6a-d. The superscript "o" indicates a root of Q while 

"°°" indicates a singularity of Q. The branch-point iu_ % ia cor­

responds to the branch-point found in sec. Ill A and shown in Fig. 

1.13. 
As in the previous examples, to perform the OL-integration 

in Eq. (1.29) we first depress the Bromwich contour and change to 

an integration around each (of the six) branch-cuts now indicated 

in Fig. V.6. Since the Resulting integral cannot be performed 

exactly (unlike the case in sec. Ill A), we use the saddle-point 

approximation (Ref. sec. U). This requires that the above 

"branch-cut" contours be again deformed until they follow the 

paths of steepest descent through the saddle-point frequencies (if 

more than one is found for our case here). As is clear from Fig. 

III.6, even if a saddle-point lies on one edge (or side) of a 

branch-cut (the position of which is chosen arbitrarily), the 



71 

corresponding path of steepest descent does not generally follow 

the edges of the branch-cut. 

If B denotes the "branch-cut" contours (or their defor­

mation into paths of steepest descent) with Re(u)) J> 0, then Eq. 

(l.29) becomes 

where 

Gr-ikfa2*^11*"- 0n.24o) 
Yst(w,-cfi|)' Cnr.24b) 
r\* ^ • 0tt.24c) 

We have evaluated e" at the saddle-point frequency u. = ox, 

( i f more than one saddle-point i s found, an appropriate summation i s 

needed here) . As in previous examples, we have extracted an 

exp(-v t ) term by transforming to a new u. = (to,) . . + iv . which 

eliminates v. from k. but not from the resonance denominator 

a,2 r<o - u - i(v - v.,)! which appears in Q. The saddle-point 

equation is S^/aw = 0, or 

dfM = JL , (m.25) 
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from which we wish to obtain the saddle-point frequency u. = di.(n) 

(the k, .-dependence will be suppressed in the interest of simpler 

notation). 

Rather than use f(w ) in Eq. (111.25), we find it simpler 

to invert this function to get (a.(f) and replace Eq. (III.25) by 

the equivalent equation 

dq>,tf) . „ 
- — r — = CT) 

(m.26) 

(essential ly saying group velocity along z i s en) and solve for 

f (n ). Equation ( I I I . 22) gives /^TT £ 7 ) 

[ wf-( U

2

+c?f 2)]^-[ U ( )-a» r i (»j,-V ()fJ +C?=0 
which has three solutions with fie(ai. ) _> 0: a solution near ux, % 

*• (a) + c f ) s , a solution near UL ̂  u) - a) - i(v - v. ), and 

one near <o, * u + u> - i(v - v n ). Since u) = (w + e"Tc. .) , and 1 o p p 1' p 11' ' 
f = i^ is an effective k, , the first solution is a modified ver­

sion of the usual electromagnetic wave normal mode: using it in 

Eq. (III.26), with the pump strength parameter D set equal to 

zero in the definition of f, would give the saddle-point frequency 

u. in Eq. (III.5a). The second and third solutions result from the 

"beat" of the plasma wave (density perturbation 6n) with the pump 
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wave (velocity perturbation v ) which gives a contribution to the 

transverse current in the electromagnetic wave equation (see sec. I C). 

We can solve Eq. (III.27) approximately if we assume we are near at 

most two of these frequencies but far from the third. Since the 

last solution has u. > u , it is not of much interest here and will 

be ignored for now. 

Assuming 0 <• Re(u), ) £ in , Eq. (III.27) gives u,(f) = wj^f)] 

where 

<q(Y>«*-i6M>+itY+r t fc+W 1 (m.Z8«) 

Y( f )=-^ [(a.2

+c2f2) ! i-a,R+i^-v,)] 0H28b) 

with (iv, = a) - a) and y the uniform plasma growth rate given by 

Eq. (1.2). From Eq. (ill.28), 

d<o,(f)/df = c zf RY)/(cAc z f * )* 01.21a) 

F<XU[Y+(l+Y2J*]/z(l+YzJ/:i <M2%) 
and using t h i s i n Eq. ( I I I .26) gives 

" cRYJfl-rf/F^f 
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as the saddle-point equation. Equation (III.29c) can now be used 

in Eq. (III.28b) to give QS..30) 

After solving this equation for Y(n), we obtain ai.(n) and f(n) 
from Eqs. (III.28a and 29c) for use in Eq. (III.24). 

Note that the approximation under which Eq. (III.28a) was ob­
tained from Eq. (III.27) requires |UL - ov, + i(v - v,)| » 
» D /2(i) (î  = Y 2 / ^ or equivalently 

| Y +(1 +Y 2)^| »*„/«, , 011.31) 
and any solution Y(n) to Eq. (III.30) which violates this condition 
must be discarded. All solutions satisfying Eq. (III.31) also 
satisfy Re[(u>2 + c 2 f 2 r j = iuRe[(l - T^/F2)'*]>. 0, which we assumed 
in solving Eq. (III.27) for Ee(oL ) i o , so this introduces no 
branch-cuts. 

Now we must put in the branch-points (at Y = ±i) and 
2 4 branch-cuts in the complex Y-plane for the function (l + Y ) . If 

we put in the branch-cut vertically from -i to +i, this defines 
two independent Riemann sheets: we denote by II the sheet on which 
( l + y 2 ) * % + Y for |Y| » 1, and we denote by [2] the other sheet 
on which (l + Y^) ^ -Y for |Y| » 1. It is also convenient to 
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consider two other Riemann sheets composed of parts of the first two 

sheets: sheet 31 consists of the right half-plane of |l and 

the left half-plane of [2], and (1 + Y 2 ) * £ +1 for |Y| « 1; 

sheet LI consists of the right half-plane of 12 and the left 

half-plane of [l], and (1 + Y 2 ) * £ -1 for |Y| « 1. The branch-

cuts on sheets 131 and [4] run vertically from +i to +i°° 

and from -i to -i<=°. 

On sheet fl| for JY | » 1, 1/F = 1 + 1/4 Y 2 + ..., 

1/F2 = 1 + 1/2 Y 2 + ..., and 

«,(Y)=«R-i6irM)+2i V0Y+ i ( l - l A Y 2 + - ) £ / 2 Y fltt.32a) 

fcr)=[ricyc(i-f/2][i+iAY2a-f) +•••] j ^ b ) 

<jl.32c) 
On sheet [2| for |Yl » 1, 1/F = 4Y 2 + 3 + ..., 1/F2 = 

16Y4 + 24Y 2 + ..., and 

«,a)="R-i(^,)-i(i-iAY2+-)yo/2Y 0l.33a) 
f«=[^^Yyc(i-16 n

2Yffl +3AY 2(l.lGr,^J +--] 
i r u, 0n.33b) 

a-ntfY*}** • • ] . 
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On sheet fa] for |Y| « 1, 1/F = 2(1 - Y + -- - ) , 1/F2 = 

= 4(1 - 2Y + •••), and 

W - i f f l ^ ^ * ^ -

Finally, on sheet [4] for |Y | « 1, 1/F = 2(1 + Y + • • • ) , 1/F2 = 

0n.34c) 

4(1 + 2Y + • • • ) , and 

w,(Y)= w „ - i 6 { , - > | ) - i t & - Y - ) (to.35<>) 

f (Y) = h co/c (l-^J[l+Y/(Hf)+'"], 
(E35t>) 

Y ^ = - i l F ^ F " W B + i ( v , , , ) + 

+jta!Y±L.+4 
QH.35c) 
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Using Eqs. (III.32c, 33c, 34c, 35c, 31), one can find five 

solutions Y M(n): three on sheet j31 and two on sheet [4] as 

shown in Figs. III.5a,b, respectively. We use sheets Ml and [4] 

because two of the solutions (II and V), as n varies from 0 

to 1, thread their way between the branch-points at ±i. It is not 

too difficult to verify that these are the only valid solutions to 

Eq. (III.30). By rearranging the terms in Eq. (III.30), and squar­

ing twice, one can remove all square-roots and obtain a twelfth-order 

polynomial equation (and, hence, twelve solutions) for the quan­

tity Y(n). By comparing these solutions back to Eq. (III.30), one 

finds three extraneous solutions (due to squaring the correct equation) 

on sheet 111 and four solutions which violate Eq. (III.31) on 

sheet [4!; this leaves only five valid solutions . However, we 

are only interested in those solutions for which Im( V) >. 0 in 

Eq. (III.24), and this eliminates solutions III-V from further 

consideration. 

As a final comment here on the general properties of the 

solutions Y M(n), we note that if Eqs. (III.32-35) are used to 

plot the saddle-point frequencies, W,(Y,.(TI)), they all (even 

solutions III-V) turn out to lie either above the branch-cut 

from the turning point u_ (e. g., see Fig. V.6a or b for the 

branch-cuts) or on the continuation of this Riemann sheet reached by 

crossing (i. e., traveling under) this branch-cut from above. This 
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is in agreement with the location of the saddle-point frequency u.(n) 

in the uniform umpumped case (sec. Ill A), as shown in Fig. III.6 

where the saddle-point lies on the sheet composed of the upper-half-

plane (e. g., regions a and e) of Fig. III.6a and the lower half-
i t 

plane (e. g., regions a and c ) of Fig. III.6b. In Fig. III.6, 

the solid lines are contours of constant Re (¥) (with ¥ given by 

Eq. (III.24b)) and the dashed lines are contours of constant Im(¥) 

(becoming increasingly negative as y = Ini( <">,)-»• -°°). In the steepest 

descent saddle-point approximation (as opposed to the stationary 

phase method), the contour of ^.-integration is depressed until it 

lies in the "valley" region along the curve marked with arrows. 

In the uniform pumped case discussed in this section, we have just 

found similar behavior but with five saddle-points rather than one. 

Solutions III-V all lie roughly below or to the side of the branch-

point a)_T = ai_ - i(v - v.) and on dashed lxnes for which 

Im(1') < 0 for all n. Solution I starts approximately at 

a), = d)/( 1 - n ) 5 for small n and lies on or slightly below the 

real u -axis for n > 0. As n •* 1, w^Y (n)) -+• (Dj, - i(v - v,) -y 

(ignoring terms much smaller than y ) and this solution ends. 

Solution II starts approximately at ou -i(v -v.) for r\ = 0, 

rapidly gains an imaginary part y £ y as n increases, and then 
2 £ 

approaches u. = u/(l - n ) as n •+ 1- Thus, the pump has essen­
tially split the umpumped saddle-point w. into two saddle points, 
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fci,(YT(ri)) and (DjCYj-j-di)), and created an additional "valley" for 

the <&-integration contour to follow as it is depressed down to 

Y "*" -00. 

Having obtained the saddle-points (examples given below , , we 

return to Eq. (III.24), deform the contours B + into contours fol­

lowing the paths of steepest descent, and obtain G-.fnjtjk. ,) where 

-e T exp[lm(X>]sin[Re«p+95 + f ] 

*-*&? [dvY)|fs

2dWd f 2l]'^ * * 
with the subscript "s" denoting evaluation at one of the saddle-

points (I or II), and f^d^ff)/df 2 = IfVuyaf^expCiaeg). We 

next obtain the quantities appearing in Eq, (III.36), for the 

saddle-points I and II, for ranges of n which give rela­

tively simple results. 

For UL far from the resonance frequency ax,, we have 

|Y N(n)| » 1 and we consider here situations (n sufficiently small 

or large ) where we can drop the fourth term on the right side of 

Eq. (III.32c) giving 

2 h 

where u,(n) = w/(l - n ) as in Eq. (III.5a). If we define n = 

= [l - (aj/Ujj)2]* by setting " A ( n Q ) = o^, then Eq. (III.37) is 



80 

valid only if |Y(n)| » (n2u)/&Y ) 1 / 3/(l - n 2 ) 4 which requires 
0 — n <K 1 for solution I and n « n — 1 for solution II. In 

the remainder of this section, we will assume UL > ui and 
(UJJ - ufi/ZyJk, 2(no<i)/8Yo) » 1, but n o « 1 still, in order to 
have a well-defined range of r\ values over which solutions I and 
II are valid. Using Eqs. (III.32a, b, and 37) we find 

ReCjp t̂d-rf)* -tfw/r,)-^^)) 2 ^ 

Im(%)« OirSMA |Y6p| 2 OUN) 

-MVWH^JAYW)} 
where "s" denotes saddle-point I for 0 £ r\ « n and saddle-
point II for n o « 1 — 1. Note that Eq. (III.36), using Eqs. 
(III.38a-c), represents only a slight modification of the uniform 
umpumped results of Eq. (III.4) with the agreement becoming 
exact as v "*" 0. o 

For (a, near the resonance frequency top, we have 
|Y__(TI)I « 1; the other two limiting cases, YJn) ̂  + i (as n •+ l) 
and lY-jdi)! > > ! ( ° n sheet I2] as n. •+ 0), both give a damped 
response(with a damping rate of (v - v, )) and must, therefore, be 
ignored in the presence of growing (or at least undamped) waves when 
determining the asymptotic response. All the terms shown inEq.( III.34c) 
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must be kept now and give (for |YJ « 1) 

Y ^Sfc&piM . (1.3.) 
Note that in the denominator of Eq. (III.39), the last term, 2iY , 
is much smaller than the first term by virtue of the assumption 

2 i made in the previous paragraph. If we now set 01/(1 - 4ITD) S %> 

we obtain n„ = n /2 ; i. e., the actual trajectory of the resonant 
maximally growing wave-packet has a group velocity along z of 
only one-half the value that might have been predicted from Eqs. 
(III.37 , 38b) or from Fig. III.l by setting aiA(n) = a^ for 
the frequency matching condition. This agrees with the results ob­
tained by other authors (see sec. I A 2). Using Eqs. (III.34a, b, 
and 39), we find 

ReCy s)»|-[wR+Kl-f-T| 2)^ + 

L.ny st{t-- J£L + 

CDT.40a) 

On.40b) 
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where the subscript "s" now denotes saddle-point solution II. 

Equations (III.39, 40) are valid only for |n - n R| « n R. 

In Eq. (III.40b), the third and fourth terms can he combined 

and simplified to reduce Eq. (III.40b) to the form v « 

0H.41) 

where we have used u/(l - 4n ) - OL % 4nRn)(n - nR)/(l - 4n R) 

and then replaced 1 - 4n D ^ 1 everywhere since 4rC = n « 1 by 
it K O 

assumption. Equation (III.41) shows that Im(H' ) is maximized at s 
n = a. where 

%\(l*W 0H.4Z-) 
and 

i - f tM-tf t- 1^) 0n.42t) 
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and that Imf* ) fa l ls below zero for |n - r^i >[2 - (v - ^ J / Y ] ; 

since th i s l a t t e r inequality cannot generally be sa t is f ied and s t i l l 

remain within the range of va l id i ty (|p - n R | « In) of Eqs. 

( I I I .39-41) , i t i s more useful t o use the second derivative a t 

[ 2 2l 2 

d Im(f )/dn J M = -y / n R , when determining the width ( in p ) 

of the growing wave-packets. Clearly, by expanding Eq. ( I I I .36) 

about the maximum growth t rajectory Tkr, one obtains a growing and 

expanding wave-packet traveling along ±z at half the group velocity 

that a wave of th i s frequency (u. ^ UL, = w - u ) would normally 

have in a uniform unpumped plasma - in agreement with sec. I A 2. 

Thus, we find general agreement with sec. I l l A in regions 

of t - z space where one would not expect, from frequency matching 

considerations, strong growth to occur. For n i> n R = | l-(w/(iiJ I / 2 , 

however, we find strongly growing wave-packets (over a range of n ) 

with propert ies in agreement with those discussed in sec . I A 2. 

In concluding sec. I l l , we note that in these simple eases 

we have been able to use the mathematical procedure outlined in 

sec. I D to obtain known or physically reasonable r e s u l t s . Although 

nothing par t icu lar ly new was discovered in th is section, we have 

developed sufficient confidence to move on to the somewhat more 

complicated case of a nonuniform pumped plasma (sec. V). F i r s t , 

however, we quickly review the phase-integral (or WKBJ) method 

in sec. IV and also obtain there some resul ts that w i l l be needed 

la ter ( in sec . V). 
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IV. THE PHASE-INTEGRAL 

(WKBJ) METHOD 

We recall from sec. I D 2 that our basic mathematical pro­

cedure (for solving the Raman instability problem) calls for obtain­

ing two linearly independent solutions (A and B) to Eq. (1.25) 

with S = 0. We have already studied, in sec. Ill, three simple 

limiting cases where this equation can be solved exactly; in general 

(i. e., in sec. V), however, exact solutions are not currently 

available. We therefore turn to an approximate method of solution, 

the phase-integral (or WKBJ) method, which is described and sum­

marized (with an example included in sec. IV C) in this section. 

This approximation method is capable of yielding accurate solutions 

everywhere in the complex plane (of the position variable in Eq. 

(1.25)) except near certain "transition" points where Q(z) = 0 or 

". This is sufficient for dealing with the questions we wish to 

answer (see sec. I B ) because we are primarily interested here in 

the large-scale effects (e. g., growth and saturation of growth) in­

duced by these "transition" regions rather than on the precise de­

tails of how these effects were actually accomplished. In this 

section (IV), we investigate the rules for tracing the phase-integral 

(WKBJ) solutions around (but not too near) the above-mentioned 

transition points( in Eq. (1.25), Q has one simple pole and two 

simple zeros). In sec. IV C, we consider the special case where the 
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pole and one of the zeros are "nearby" since this turns out to be 

important in sec. V. 

A. Introduction 

The phase-integral (or WKBJ) method has been treated exten­

sively in the literature (Ref. sec. T). We particularly recommend 

Heading (Ref. T I) as an introduction to the subject and Froman 

and Froman (Ref. T IV), a more rigorous treatment, to answer questions 

the reader is likely to have after reading Heading. Skorupski (Ref. 

T V ) generalizes the work of Froman and Froman to the complex plane, 

as required for our problem here. Finally, .we mention Berry and 

Mount (Ref. T VI) as a more recent survey of the literature. In 

this section we will only briefly describe the method and those 

concepts needed for applying the rules that are given in sec. IV B. 

Sections (A and B) represent our attempt at summarizing, in 

"cookbook" style, the essential results actually needed to apply 

the method; we give here no derivations, details, or complete 

error estimates, but instead refer the reader to references (I I, 

IV, V) for such complicated and time-consuming matters . 

Given an equation of the form 

[& + H& = °> (El) 
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o 
in the phase-integral method we look for solutions of the form (com­

pletely general) 

f(f) =a,( f )ffy) +«2(f)f2(y) 02.2a) 
where 

fj(j>)=(j>,c)s <^(y) exP[iy( f,c)J 02.2t) 

f 2( f)i(c, f)= ^ ( f ) exP[-i Y(yjC)J CEj>c) 

VfyiU\}f(pty . 02.2J) 
We have used Heading's notation in Eqs. (IV.2h,c) (in sec. V , we 

multiply these functions hy a convenient constant), where c is 

the "phase reference level" and is typically chosen to equal one of 

the transition points T where q(T) -»• 0 or °° (thus, T also is 

a hranch-point of q '* and q ). The phase-integral ¥ gives 

the method its name, and the determination of the coefficients 

a_(p) and a_(p) for all p, given their presumed known value at 

some point or in some limit (e. g., p-*-°°), is the goal of the method. 

Although the coefficients a..(p) and a„(p) are often nearly 

constant over large regions of the complex p-plane, one or the other 

of the coefficients will occasionally change as p varies (the 
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Stokes effect; see Ref. sec. T); these changes, however, are found 

to occur in a predictable manner (both the region of change and the 

amount of change suffered on crossing this region). When discussing 

these changes, it is convenient to first define certain sets of 

lines in the complex p-plane: the (generalized) Stokes lines are 

contours of constant real phase 

R c 010= constant , (ffi.3a) 

and the (generalized) anti-Stokes l ines are contours of constant 

imaginary phase 

ImOF) = constant . (ft^) 

The (principal) Stokes and anti-Stokes lines are the particular 

lines, out of the above two infinite sets, for which the above 

constants are set equal to zero and for which the "phase reference 

level" c is successively set equal to each of the transition 

points T. The adjectives "generalized" and "principal" are 

placed in parentheses above since they are our own and such distinc­

tions are not typically made in the literature (Heading and Froman 

and Froman use only what we here call the 'principal" lines, while 

Skorupski uses all the lines but calls them all just Stokes and 
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anti-Stokes lines). The Cauchy-Hiemann equations (Ref. S I) can be 
used to show that the generalized Stokes and anti-Stokes lines are 
mutually orthogonal except at the branch-points (i. e., transition 
points T) where q (p) ceases to be analytic. Some examples are 
shown in Figs. IV.1,2 and V.3-5. 

Along the generalized anti-Stokes lines, the WKBJ solutions, 
given by Eq. (IV 2b, c), are purely oscillatory and, assuming an 
exponential time-dependence of exp(-iwt) with Re(u) > 0 (for 
instance), we can define a direction of propagation (indicated by 
arrows in Fig. IV.l and later figures) for these waves. Along 
the generalized Stokes lines, these WKBJ solutions are purely 
growing or decaying, and we can define a direction in which each 
solution grows (again indicated by arrows in Fig. IV.l and later 
figures). At a non-branch-point intersection of a generalized 
Stokes and anti-Stokes line, the directions of growth and propagation 
are related (by the Cauchy-Riemann equations) for each of the VIKBJ 
solutions. This relation has been called "Heading's rule", but 
here we choose to more pictorially call it the "right-hand SAN 
rule" which we state as follows: for each of the WKBJ solutions, 
the direction of growth (the Stokes line arrow) crossed into the 
direction of propagation (the anti-Stokes line arrow) is normal 
(up) to the complex p-plane. If the time-dependence had been 
chosen as exp(ib)t) with Re(w) > 0, we would call it a left-hand 
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rule. With the directions of growth now presumed known, an additional 

definition is typically used in the literature: a WKBJ solution is 

termed dominant in a given region if, in that region, its direction 

of growth is away from the "phase reference level" ej it is termed 

subdominant if its direction of growth is toward c. Note that 

the property of dominance or subdominance is dependent on the choice 

of "phase reference level": in changing this level from P. to P p 

(for instance), we pick up Heading's "dominancy changing factor" 

with the properties (p P 2) = (p^p^jp^pj, (p2,p) = [ P 2 » P 1 ] ' 

'(ppP)* and [pp'Pj = fpi'p2l~ • T h i s f a c t o r could be large or 

small if the path between p. and p p has a sufficiently long 

projection along a generalized Stokes line. Finally, we note that 

the dominance or subdominance of a WKBJ solution reverses upon 

crossing the generalized anti-Stokes line that intersects the "phase 

reference level" c. 

Having defined the generalized Stokes and anti-Stokes lines 

and discussed the general properties of the WKBJ solutions, Eqs. 

(IV.2b, c), we are now in a position to discuss the changes that 

occur in the coefficients a 1(p) and a?(p) as p varies in the 

complex plane. Essentially, the results found (in Ref. sec. T) are 
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as follows: along a generalized anti-Stokes line, the relative 
changes in both a.(p) and a„(p) are at most on the order of 
a quantity called (by Skorupski) the "u-integral", 

r^f\i\i^p/¥hi OILS) 
where the integration path p. - p (lying only in the region where 

one i s t rying to evaluate a and a_) i s a part of the integration 
1 *-

path o - p used in Eq. (IV.2d). The validity of the phase-integral 

method requires u « 1; i f one uses q(p) = (p - T) , th is gives 

(over a semi-circle) 

which (for n i - 1 ) sets a minimum distance of approach to the tran­

s i t ion point T(Ref. T V). Sett ing c = T in Eq. (lV.2d), 

Skorupski a lso shows that (for n — -1) 

m-^^yfn, 027) 
8(n+2) [A p 

the intuitively reasonable result (see also sec. Ill B) that the 
phase must be large in order to use the phase-integral method. This 
eliminates any paradoxes concerning the second major result: when 
moving (p) along any generalized anti-Stokes line (or jumping 



91 

between two principal anti-Stokes lines), if one crosses (in the 

counterclockwise direction) a principal Stokes line (radiating from 

any transition point) then the coefficient a (p) of the subdom-

inant WKBJ solution (f„) changes according to 
s 

where a.(p) is the coefficient (unchanged) of the dominant WKBJ 

solution (f.) and S is the Stokes constant; if crossing in the 

clockwise direction, replace S by -S. In general, S should have 

a subscript denoting which principal Stokes line of T is being 

crossed (although S is often the same for all lines). 

It should be emphasized here that, when a principal Stokes 

line (from a transition point T) is encountered (when traveling 

along a generalized anti-Stokes line), one must change the 

"phase reference level" c to the point T since the Stokes constant 

S is generally tabulated relative to only a transition point as the 

"phase reference level"; using a different value for c would intro­

duce different "dominancy changing factors" in each of Eqs. (IV.2b, 

c), relative to what f, and f_ would be if c = T, and this 

difference would change the Stokes constants (Eef. T I). According 

to the first result (above Eq. (IV.5)), one can apparently ignore 

this principal Stokes line, but this is true only if one has no 

intention of ever crossing the second principal anti-Stokes line from 
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T that lies on the other side of this principal Stokes line. (The 

first principal anti-Stokes line from T can be crossed, but not the 

second because the direction of growth of the original dominant so­

lution would then be reversed on this path around T; see Hef. T II, 

pages 226 - 227). Thus, to find solutions valid around T, one 

must change the "phase reference level" to T and, if the resulting 

"dominancy changing factor" is taken into account, then Eq. 

(IV.8) will give a negligible change (since |f | ̂  1) in a 

("subdominant" here meaning relative to T) in agreement with the 

first result (above Eq. (IV.5)). 

The discussion in the preceding paragraph has presupposed 

that we know a 1 and a„ at some point on a generalized anti-

Stokes line. If instead, a. and a_ are known on one principal 

anti-Stokes line from T and we wish to know them on the next 

principal anti-Stokes line (around T in the counterclockwise direc­

tion), then we find, upon moving to a generalized anti-Stokes 

line sufficiently far away from T as to satisfy |v| £ 1 (and 

u « 1), that the subdominant solution f is exponentially small 

(smaller than the error in a, multiplied by f.) and its coeffi­

cient masz be considered as unknown in the phase-integral method. 

In Eq. (IV.8), however, we are supposed to use on the right-hand-

side the known values of â  and a ? from the principal anti-

Stokes line. (Equation (IV.8) was actually originally derived 
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(Ref. sec. T) for precisely this case, and we are merely generalizing 

the rule to include generalized anti-Stokes lines on which a. 

and a_ are known for some reason). The resulting discontinuity 

in a (as evaluated on the two principal anti-Stokes lines), there­

fore, does not violate our first rule (above Eq. (IV.5)) because 

the actual coefficient a is not known on the generalized anti-

Stokes line (which also never reaches either of the principal anti-

Stokes lines, but only asymptotically approaches them with 

InO) "fc 1 held fixed) and, as implied above, this discontinuity in 

a f is smaller than the error in a.f, evaluated on the generalized 

anti-Stokes line. 

Finally^we return to the fact that the transition point T 

is also a branch-point of q and q and that branch-cuts must, 

therefore, be drawn in the complex p-plane. It is,therefore, necessary 

to know how the coefficients and WKBJ solutions differ on the two 

sides of a branch-cut (so that we can cross it if necessary). The 

general rule is that for a zero (of q) of multiplicity n, the exact 

solutions to Eq. (IV.1) exhibit no branch-behavior (i. e., they are 

entire analytic functions), so the continuity of Eq. (IV.2a) 

must be preserved even if we must alter its form. Examples of this 

will be given in the next section. For a first order pole, however, 

such as appears in our problem in sec. V, the exact solutions to 

Eq. (IV.l) do have an intrinsic branch-behavior. Examples of this 

will be given in the next section and again in sec. IV C. 



B. Rules for Easy Application 

We summarize here the procedure discussed in the previous 

section and present some of the more useful quantitative results (e. 

g., the Stokes constants) obtained from the literature (Ref. sec. T). 

In general, when applying the phase-integral method, one must do 

the following: 

(a) Find the positions of all transition points, all prin­

cipal Stokes and anti-Stokes lines, and a sufficient 

number of generalized Stokes and anti-Stokes lines 

(usually by inspection) to establish their trend. 

Place branch-cuts (from the transition points) in 

convenient positions (typically so as to be avoided). 

(b) Apply the boundary condition that defines the first 

of the two independent solutions (e. g., A and B) 

of Eq. (IV.1) — do this by drawing the appropriate 

arrows (see sec. IV A and Fig. IV.l) on the Stokes 

and anti-Stokes line that intersects this boundary 

point p (or limiting region, such as p •+ <*>) and 

labeling these arrows with the local values of the 

coefficients a. and a ?. Relative to the first tran­

sition point T (i.e., setting the phase reference 

level c = T) that one encounters near p , this 

boundary solution A(p ) must be either subdominant 
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or be applied on a principal anti-Stokes line from T. 

Start outward from p along some arbitrary path. 

(c) Continue this same solution (i. e., coefficients a. 

and a.) to neighboring generalized Stokes and anti-

Stokes lines using similar arrows with labels, but stop 

when encountering a principal Stokes line or branch-cut 

from any transition point T. If none are encountered, 

go to step (i). 

(d) If not already done, switch the old phase reference 

level ( c ) , to (c) W
= T and use new coefficients 

( al }new " ( a l W * | ( c )old' ( c )new| 

t^new = ^ o l d ' ( C W ( c )old 

to label similar arrows near T. If a principal Stokes 

line is encountered first, go to step (e); if a branch-

cut is encountered first, skip down to step (g). 

(e) From the direction of the arrows, note which WKBJ 

solution is subdominant and then cross the above men­

tioned principal Stokes line and change the subdominant 

coefficient from the value obtained in step (d) (now 

renamed "old" again) to the new value (see Eq. (IV.8)) 



( a

s U = ( l

s U + s ' a d 

For an isolated t rans i t ion point with q(p) •* (p - T) n 

(n ^. - 1 ) , use 

2i cos [n/(n + 2)) 

if going around T in the counterclockwise direction 

and minus this (-S) if going in the clockwise direction. 

For non-isolated transition points, one can often treat 

them as merging into a single "compound" transition 

point as in sec. IV C where S = T (for further exam­

ples, see Heading, Ref. T I). 

Having crossed the above mentioned principal Stokes line, 

one should again put arrows on the generalized Stokes 

and anti-Stokes lines for f. and f 3 and label these 

arrows with the new coefficients (a, unchanged) 

obtained in step (e). Go to step (c). 

If one wishes to cross the encountered branch-cut 

in the sense of "jumping over" the cut or, equivalently, 

going around the transition point T to the correspon­

ding position on the other side of the cut, then, upon 

crossing this branch-cut, the coefficients obtained in 



97 

step (d) (now renamed "old" again) are changed to new 

values. If q(p) = (p - T ) n , then for n > 0 and odd 

/ \ • / -1 \(n+l)/2 / > 
old 

i \ • i i \(n+l)/2 , ., 

and the directions of the arrows corresponding to 

f_ and f„ are reversed; for n >. 0 and even 

<-iU - ( - i ) n / 2 K W 

<aAew "(-AW 
and the direeticns\ of the arrows corresponding to f. 

and f„ are unchanged. As is apparent from the example 

in Figs. IV.la, b, \as far as the arrows are concerned 

the pattern remains exactly the same (upon crossing the 

cut) but with the labels multiplied by exp(-imr/2). The 

above rules assume the cut is crossed in the counter­

clockwise direction; in the clockwise direction just 

replace i by -i. Note that the above rules maintain 

the continuity of the full solution f = a.f.. + aJT-
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as required since the exact solution here has no branch-
behavior. For n = -1, however, the exact solution 

a 

does have an in t r ins ic branch-behavior and, to preserve 

the required discontinuity, one now must have 

(a ) = (a ) , + 2i • a , 
v s new s old d 

with the dominant coefficient unchanged. Again this is 
for counterclockwise crossing; for clockwise crossing 
replace i by -i. If this branch-cut (intrinsic) is 
crossed in the sense of going through onto the contin­
uation of the Hiemann sheet, then the continuity of the 
full solution f = a.f. + a_f_ would once again have 
to be maintained. 
Having crossed the above mentioned branch-cut, one 
should again put arrows on the generalized Stokes and 
anti-Stokes lines for the WKBJ solutions f and f 2 

and label these arrows with the new coefficients obtained 
in Step (g). Go to step (c). 
The solution f(p) = a^pjf^p) + a2(p)f2(p) is then 
known along the chosen path. New paths can be taken 
until the solution is known in every region (excluding 
a small region around every transition point) of the 
complex p-plane. 
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C. Stokes Constant for 

Pole-Zero Combination 

We assume here that, for small p (e.g., |p| « 2|x| in 

Eq. (V.2c)), our function q(p) takes the special form (relevant to 

sec. V) 

<l<f)=2X+^- > (12.1) 

where X is independent of p. Equation (IV.l) can then he solved 

exactly (Ref. sec R) in terms of Whittaker functions, and Heading 

(Ref. T III) has calculated the Stokes constants from the known asymp­

totic forms for the solution. The precise value of Heading's 

"Phase reference level", c, is somewhat obscure, however, and we 

prefer a more standard choice like setting c = -1/2X, the position 

of the zero of q(p). As pointed out in sec. IV A, however, 

changing "phase reference levels" also changes the value of the 

Stokes constants, and we find that we must multiply his result 

(correcting a typographical error) by the factor (k/e) • 

.exp[-i2irsk(s - l)]. Here k = -iX/2(2X)*, s = (-l)n, and n 

is an integer labeling the two effective principal Stokes lines on 

the different Riemann sheets as shown in Fig. IV.2. Performing 

this multiplication results in 
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2sk 
T " = I k f % ) - ^ exp[-i2nsk(n+s-i)] 

frv.ro) 
as the Stokes constant we use here (we keep Heading's symbol T ). 

This has the expected limit (in agreement with the Stokes constant 

for an isolated first order zero at p = -1/2X), as |k| •*• <*>, of 

T — - +i CE.H-) 
' |k|-*°° 

on the principal Riemann sheet (n = 0, 1), if we use the asymptotic 

form for the gamma function F(sk) with arg(sk) < IT and 

-ii — arg(k) £ 0 (this requires setting s = exp(iim) with n = 0 

or 1 only). In the opposite limit, |k| •+ 0, we find 

2k 
T0 — wikfly (i+i.2k--) (fcllk) 

| k H

 2 k « 

T _ _ 2 n i k ( f - ) exP(-i2nk)(l-1.2k+»i). 
1|k|.-o 

Although T has the proper limiting form in Eq. (IV.11a), 

considering the complexity of Eq. (IV.10) further verification is 

always welcome. This comes easily if one uses the rules in sec. IV B 

http://frv.ro
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to trace the solutions corresponding to the two cases of a wave in­

coming from the right or the left. The boundary condition in both 

cases is that the wave he outgoing on the far opposite side. In 

both cases the branch-cuts should be directed upward and the solu­

tions traced across the lower-half-plane using T for the Stokes 

constant (finite wave damping would shift the pole above the real 

axis if exp(-ioit) time dependence with Re(u) > 0 is used). For 

the wave incident from the left and encountering the turning point 

(zero of q) first (Fig. IV.2a), we find for the reflection R and 

transmission T coefficients - . 

(SSAZa) 

f=exp(-i7rk) . (E.12fc>) 
For He(k) = 0, th is gives 

| f | = exp[-n|l»(k)|J (E.lZc) 
| R | = l - l f | 2 0E12J) 



102 

in exact agreement with Budden(Ref. RI). For the wave incident from the 
right (Jig. IV.2b) and encountering the resonance (pole of q), we 
find 

F? = 0 (E.13a) 

f=exp(-i7rk) (ffi.l3b) 
so that our results are again in exact agreement with Budden for 
He(k) = 0. 

We mentioned earlier that a first order pole gives a 
solution to Eq. (IV.l) with an intrinsic branch-cut. Taking this 
case (or letting X •*• 0 in Eq. (IV.9)), the two independent 
exact solutions are (see Ref. sec. R) 

A( f)=Vf HfteaVf) (K14a) 

B(f)=Yp Hl"(ZXif) (Jff.l4k) 
where IC ' and H: ' are Harikel functions. These two solutions 

both have in t r ins ic branch-behavior due to the square root. Their 

asymptotic forms (for A|p| > : > !) are J u s t 



103 

A-exp(-i£jr) fj(j>) (El 5 a ) 

B-exp(+i|n) f2(f) QyjSb) 
where f. and f„ are given by Eq.. (IV.2b, c). It is interesting 

to note that the particular combination 

has no branch-behavior, as can be verified from Figs. IV.lc, d or 

by expanding the Bessel function J.. The branch-behavior of this 

isolated pole will, of course, continue in the presence of other 

transition points such as in Eqs. (IV. 9 and V.2c). 

This concludes our discussion of the phase-integral method. 

We have outlined the basic concepts, presented a list of rules to 

follow when applying the method, and have investigated certain details 

of the solution in the neighborhood of a pole and one nearby zero 

of q(p) such as we will find in part of the complex p-plane in 

sec. V. Therefore, we move on to see. V and our main problem we 

are investigating —the nonuniform pumped plasma. 



V. NONUNIFORM PLASMA, PUMPED 

For a linear density profile (z > 0), we see from Eq. 
(1.25b) that Q(z»w> ,k. ) generally has two roots and one pole in 
the complex z-plane. We simplify the form of Eq. (1.25) by trans­
forming to the new dimensionless position variable 

J>(2><"i>y= — D > (1.1) 
where the pump strength parameter lXw-jt,,) is defined by Eq. 
(1.25c), and v is a phenomenological damping rate for the Lang-
muir waves. The homogeneous transformed version of Eq. (I.25a) 
(valid only for Rem. i O j see sec. II) now reads 

<j(f,X),2X-P + f = 
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where 

X(<"„ k t J)= 2 D P2* 

J > + ( X ) H X + ( X Z + I / 2 fr.2e) 

and v is a collisional damping rate for the electromagnetic waves. 

We have transformed our old Q( z,io ,t .) into a dimensionless po­

tential q(p,X), where the roots (of Q and q) are now at p + 

and p , and the pole is now always at p = 0. We have replaced the 

two parameters OL and k, by the single dimensionless parameter 

Xf&LjlL ), which we will treat as essentially a frequency parameter 

since k is generally treated as fixed here (see sec. I B ) . Mote 

that the positions of p +(X) and p (X), relative to each other and 

to p = 0, depend on the value of the complex parameter X. The 

branch-cuts (in the complex X-plare) for Eqs. (V.2e,f) are chosen 

(see Fig. V.l) such that |p +| -i 1 and |p_| 1 1 (see Fig. V.2) 

on the principal Riemann sheet. If we had not chosen a linear density 

profile (for z > 0), we would have the more complicating features 
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-that X (and X, i f a nonuniform s t a t i c magnetic f ie ld B_ = xB( a) 

were included, as mentioned in sec. I A 1) would he z-dependent and 

there would be an additional term l - j ^ l I ̂  i / l ^ ) on the lef t mm 
of Eq. (V.2a). 

According to the procedure outlined in see. I D 2 , we must 
now find two solutions A(p,X) and B(p,X) of Eq. (V.2) valid for 
arbitrary complex X (X depends on w. which must be integrated 
over). In the absence of known exact solutions, we use phase-inte­
gral (or wKBJ) techniques (Ref. T) in the complex p-plane to obtain 
approximate solutions valid in overlapping regions of the complex 
X- or OL-plane (excluding the transition-points where p = 0,p+ 

or p_). 
In applying these techniques (see sec. IV), the first 

step (sec. V A l)is to obtain the generalized Stokes and anti-Stokes 
lines in the complex p-plane and determine how these lines change 
as X changes. The next step (sec. V A 2) is to make a convenient 
choice for the branch-cuts which must emerge from the three transition-
points (0,p +, and p ) in the complex p-plane. Finally (sec. 
TA3)i we start in a region of the complex p-plane far from all 
transition points (where a convenient choice for the solution A 
or B is made) and then travel through the complex p-plane, 
adding and modifying terms (according to the rules given in sec. IV B) 
as we cross the Stokes and anti-Stokes lines, thereby constructing 
the WKBJ solutions. 
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A. Application of Phase-Integral Method 
1. Stokes and Anti-Stokes Lines 

As defined in sec. IV, a principal anti-Stokes line has 
Im I /j* dp = 0 where T denotes one of the transition points 
(0,P+, or p here); along such a line the VJKBJ solutions are purely 
oscillatory (we recall that the WKBJ solutions behave essentially 
like exp (±iXI if dp), as described in sec. IV A). A principal 

J T rP 
Stokes line has Re) /j* dp = 0, and along such a line the WKBJ 

T 

solutions are purely growing or decaying. 
The potential q(p,X), given by Eq. (V.2c), has two roots 

(p + and p ) and one pole (p = 0), all first order. In sec. IV A 
we discussed the patterns of Stokes and anti-Stokes lines about 
isolated transition points and, in Fig. IV.2, illustrated the dis­
tortion induced in these patterns by the presence of neighboring 
transition points. In our case, we must determine how tc connect 
the three localised patterns (about the three transition points 
p+,p , and 0) if we are to later (sec. V A 3) trace the WKBJ 
solutions across the complex p-plane. 

To do this, one can expand [q.(p,X)| about each transition 
point T (T = p ,p , or 0) in terms of the small complex distance 

+ 6o T T1 r l i 
6p T = p - T , evaluate the phase-integral I lq(T + fipT,X)JzdfipT Jo 
to various orders in 6p T , and determine ( to each order) where the 
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real or imaginary parts of the phase-integral vanish. To lowest order 
(independent of Sp_) one obtains the angles at which the principal 
Stokes and anti-Stokes lines radiate from the. transition point T. 
The next order term gives a <5p_-dependence to these angles and indi­
cates the curvature of the lines near the point T. The behavior of 
the lines in regions intermediate between the transition points 
can then usually be determined by interpolation. 

Actually, for our potential given by Eq. (V.2c), the phase-
integral can be evaluated exactly in terms of elliptic integrals of 
the first and second kind with complex amplitude and modulus. The 
generalized Stokes and anti-Stokes lines can then be obtained from 
a contour plot of the real and imaginary parts of the phase-integral. 

The easiest technique to use, and one which is completely 
general, is to start at some arbitrary small distance 6p_ = |6a,|e ^ 
from a transition point T and evaluate the phase angle 4> of the 
complex potential q(T + fip_,,X) = )q|e 1 . We then use standard .Hi 
root-finding methods to obtain solutions <j>T to the equation 

»t + J + Nf = 0 (£.3) 
for fixed |<5pJ, where M = 0 or ±2 for an anti-Stokes line and 
N - ±1 or ±3 for a Stokes line (more than one solution can corres­
pond to a given N). These solutions $_ are the angles at which 
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the lines radiate from the point T. Starting at a position 
on one of these principal Stokes or anti-Stokes 

lines, we repeatedly step along the line by an amovmt 6p = (Sp_| e^T 

^ Pnew = Pold + 6 f V ' w h e r e t h e l o o a l v a l u e o f V P o l d X^ ^ t h e 

orientation of the line) is determined by the local value of 
q( p

o l d,X) = Iqle^q and Eq. (V.3). 
Using this latter technique, we plot the principal Stokes 

(dotted) and anti-Stokes (solid) lines in Figs. V.3-5 for various 
values of \,he complex parameter X(<» ,kj,). The generalized lines 
can then be found by inspection. Note that the simple pole is always 
at p = 0, while the positions of the two simple roots 
(|p+| 2 1 and |p | <, 1) depend on the complex parameter X. Near 
each of the transition points (p = 0, P +>P_) in Figs. V.3-5, the 
pattern of Stokes and anti-Stokes lines approaches that of an isolated 
transition point, as illustrated in Fig. IV. 1. All of the transition 
points (P = 0,P+,P ) are also branch-points, and branch-cuts 
should be drawn from them, as discussed in the next section. 
2. Branch-Cuts 

In the previous section, we determined the generalized 
Stokes and anti-Stokes lines (lines of constant real and imaginary 

P 
part of f/q dp , the phase-integral) for the potential q(p ,X) 
given in Eq. (V.2c). Due to the square-root of q, we have branch­
points wherever q = 0 or °°, and these branch-points must be 
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connected by branch-cuts in order that the phase-integral be single-
valued in the cut complex plane. In the complex p-plane, the tran­
sition-points T and the point at infinity are the branch-points, 
but in Figs. V. 3-5 we did not draw in the connecting branch-cuts 
since their position can be chosen arbitrarily. 

Preliminary to making this choice of branch-cut positions, 
we note that the function Iq(p,X)j = |Q(z,«> ,k )J a/J5 has branch­
points in more than one space (e. g., in the complex w -plane for 
given z and k, ., in the complex z-plane for given OL and kj,, 
and in the complex P-plane for given X ) . We denote these sets 
of branch-points (for Hew > 0, and k, , fixed) as 

{f^{wQ0,j».00,j»j0D=o} 0L4c) 
with typical re la t ive positions shown in Figs. V.6-7. 

The branch-point fl)-(z) corresponds in the unpumped case 
p 

(sec. I l l B) t o the root of Q obtained by sett ing k, (z,w.,,k, ,) = 0 

in Eq. (1.25 b ) ( in the pumped case there i s a s l ight z-dependent 

shif t from t h i s w - iv = J iAz) + o^jrj - 1 ^ ) . The equivalent 
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branch-point in the complex z- or p-plane i s Z + (UL) or P+(X), 
2 2 ? ? 

respectively. In the unpumped case, mJ~z+) = (<\ + i \ ) - ° K • 
and p + = 2X (obtained by letting D * 0 or X •+ °°), and there 
is a slight w.- or X-dependent shift from these values in the 
pumped case. 

The remaining branch-points in Eq. (V.4) have no corres­
pondence in the unpumped case (i. e., a singularity and a root of 
Q merge as D •+ 0). The branch-points ^ ( z ) = <o - ft) (z) - iv 
and «V T T(z) = o> + (i) (z) - iv are singularities of Q, 
separated from their associated neighboring roots of Q, the 
branch-points (U-^z) and UU-JJCZ), by a small distance proportional 
to D or D (depending upon the value of z). In the complex 
z- or p-plane, there is only one equivalent singularity of Q 

2 2 
(i. e., branch-point), Z ^ U L ) (where ^(z^) = (<D - OL ) ) or 
Pra(X) = 0, respectively; note that we have renamed the resonance 
position (z of sec. I A 3) to explicitly indicate a pole of Q . 

The branch-point z (u ) or p_( X) is the equivalent neighboring 
root of Q. 

Having located the branch-points {oi (z)},{z.(tl)1)} , and {a(X)} 
in the complex ctf.-,z-, and p-planes, we now consider the branch-cut 
locations in the o> -plane. We choosp some convenient prescription 
(e. g., straight lines between pairs of branch-points) such that, 
for any fixed complex position z, the branch-cut from any one of 
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the branch-points w. = ia (z) is determined: 

«/= Ft(z,aj (3L5) 
i 

where w , a point on the branch-cut, is determined by choosing F. , 

a complex function of the parameter z and the real distance 

variable a . ( 0 < s < " ) along the branch-cut. For instance, for 

the branch-point ttL(z) we choose the horizontal branch-cut u = 

= F_(z,a) = UL.(Z) + a; between the branch-points i^-Xz) and 

ui-Jz), we choose the straight line branch-cut u = FjJz,a) = 

~ ^ T ^ 2 ^ 1 " a ) + a V r ( z ) a vi^h ° — a — 1» between the branch-points 

oij-jjCz) and <VrT(z), W « similarly choose u = F-._(g,a) = 

= (i£.-(z)(l - a) + dijj-CzJa with 0 <. a <. 1. These branch-cuts are 

shown in Fig. V.6. 

We must now consider the branch-cut locations in the complex 

z-plane. Given our arbitrary choice of branch-cuts in the complex 

to.-plane, we have no freedom of choice left in the z-plane. This is 

because we are considering the branch-behavior of a single function 

JQfzjUL.kj, r, which happens to have more than one variable. The 

function t/f} has the same value regardless of whether we choose 

z = z in the complex z-plane with u. = w fixed or choose 

UL = (i) in the complex w. - plane with z = z fixed; if, for 

fixed z = z , the point ID. = o> lies on the branch-cut in the a j. a 
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complex (UL-plane, then^for fixed O L = u> , the point z = z must 

lie on the branch-cut in the complex z-plane. 
From Eq. (V.5), w(a) = F (z ,a) is a point on the branch-

cut emanating from the branch-point to = ui (z ) in the complex 
UL-plane, for fixed z = z . From another point of view, in the 
complex z-plane the equation u) = F,(z ,a) determines a point 
z = z (a) on the branch-cut emanating from the branch-point z = 
= zJ.®a)> for fixed u = u . If a = 0, ID = F,(z ,0) = tiv(z ) and 
z = z.((o ). Formally we can write 

as the equation for a point (z (a) above) on the branch-cut from 
the branch-point z = z.(u).,) in the complex z-plane, for fixed OL. 
The branch-cuts in the complex z-plane, as determined by Eq. (V.6), 
are shown qualitatively in Fig. V.7, for several typical values of 
u) that are indicated in Fig. V.6. We have also drawn In Fig. V.7 
the coordinate system for the complex p-plane since, for fixed w. 
(and a linear density profile), p and z are linearly proportional: 

z = Z A% (p-jO (¥7) 
2 2 1/3 where p = p( z , ^ , ^ ) , p Q = p(z = 0,(1^,^), Z = (c L/<»p) , and 

X is defined in Eq. (V.2b). 
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As can be seen from Fig. V.7, the branch-cuts in the complex 

p-t.ine (where we will map out the form of the WKBJ solutions in the 

next section) are relatively complicated in appearance compared with 

our simple choices of branch-cuts in the complex u,-plane. We have 

been forced into dealing with this complication because the WKBJ 

solutions change form across the branch-cuts in the complex p-plane, 

and we must determine how this translates into a change in form 

across the branch-cuts in the complex u -plane (where we must even­

tually perform the integration indicated in Eq. (1.29)). Fortunately, 

to answer such a question, very little information about the branch-

cuts is needed (e. g., if the point OJL = ID lies on a certain side 

of the branch-cut in the UL-plane, for fixed z = z , then we need 

to know on which side of the corresponding branch-cut in the z-

plane the point z = z lies, for fixed 14. = u ; this is answered a x a 
by Figs. V.6a, 7e, f, g). 

The coefficient a(w ,k . ) , given by Eq. (1.32), has 

branch-cuts shown in part (only those due to the [Q(Z = 0,u ,k. ,)]*) 

in Fig. V.6a with the remaining branch-cuts (not shown) due to the 

intrinsic branch-behavior of the functions A(p,<i),,k, ) and 

B(p,w1,k.,). As discussed in sec. IV C, the functions A and B 

have an intrinsic branch-point at p( z,u ,k.,) = 0 and, therefore, 
00 CO 

in t r ins ic branch-points at ui^Jz) and ai---( z)-' in the complex 
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(0 -plane, life a rb i t ra r i ly choose the corresponding in t r ins ic 
I 00 

branch-cuts to extend ve r t i ca l ly downward ( i . e . , ID = ML. (z) - i a 
I 00 

and ^ = w (z) - ia, 0 < o < " ) from these points in the com­
plex (IL-plane, and these intrinsic branch-cuts must be superimposed 
on those of Fig. V.6a to completely define a(tiL,k. , ) . In determin­
ing the behavior of A and B in the complex p-plane, we must 
include the corresponding intrinsic branch-cut, also extending 
essentially (for Hew. < u ) vertically downward (from p = 0 ) ? in 
addition to those branch-cuts (across which the WKBJ form changes 
but the value of A and B remains continuous) already shown in 
Fig. V.7. 

Having obtained the Stokes and anti-Stokes lines (sec. V A 1), 
and having decided on the positions of all the branch-cuts (sec. 
V A 2), we are now able to apply the rules of sec. IV B for tracing 
the WKBJ solutions throughout the complex p-plane. This will 
be carried out in the next section, sec. V A 3. 
3- WKBJ Solutions 

From the discussion at the end of the previous section, and 
from the form of Eqs. (1.26, 31), we see that, to perform the OL-
' integration in Eq. (1.29), we must take into account the branch-
cuts (in the complex UL-plane) shown in Fig. V.6a as well as ad­
ditional branch-cuts extending vertically downward from branch-points 
at uijjXz = 0), Wj n(z = 0), Wjjtzjj), "njfzjj), ^ ( Z g ) ' "iii^g)' 
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and similar ly for Befui.) < 0. Our original Bromwich integration 

contour (see see. I D) can be depressed, leaving an integral around 

a l l the branch-cuts plus a summation over a l l the residues ( i f there 

are any poles of the integrand corresponding to temporally growing 

eigenmodes). Thus, we are primarily interested in knowing A(p,X) 

and B( p,X) for values of (a, in the vicini ty of the branch-cuts 

i n the complex UL-plane. 

I t i s now useful t o note the similari ty between the unpumped 

nonuniform plasma (sec. I l l B) and the pumped nonuniform plasma 

considered here. As the pump strength parameter D(UL , k . , ) goes 

to zero, the solutions A( p,X) and B( p,X) become continuous across 

the ver t i ca l branch-cuts (see sec. IV C), and the branch-cuts 

between n>rr(0) and Uj-^O) and between <»>TTT(0) and " l l l ^ 

shrink to zero; th is leaves only the integral around the horizontal 

branch-cut extending to the r ight of (0,(0), so t h i s integral gives 

the wave-packets found in sec. I l l B. We reca l l tha t in sees. I l l 

A-C we found no time-asymptotic contribution to the integral ( i . e . , 

no saddle-points) below t h i s branch-cut. For f i n i t e DfoLjk,,) 

here, we B t i l l expect t o find saddle-points only above th is branch-

cut or on the continuation of the Riemann sheet reached by passing 

through th i s branch-cut from above ( e . g . , in Fig. V.6a, passing 

from the point "a" down through the branch-cut onto the next sheet 

below), these saddle-points wi l l again determine the wave-packets 

(but modified by the pump). 
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In Figs. V.8-10, we construct the WKBJ solutions for 
A(p,X) and B(p,X) for three representative choices of frequency 

i it ii I {to , (i) , and (u ) along the horizontal branch-cut from uiJz = 0) 
shown in Fig. V.6a. These frequencies can be either above ("a") 
or below ("b") this branch-cut in the complex w.-plane (Fig. V.6a), 
with the choice determining whether the point z = 0 (and hence the 
entire real z axis) is below or above the branch-cut in the complex 
p-plane (see Fig. V.7e, f, g). Again, by "below" we mean to include 
also the continuation of the Riemann sheet reached by passing through 
the branch-cut from below, and similarly "above" includes the sheet 
reached from above the branch-cut. We mention here that the intrinsic 
branch-cut (sec. V A 2, IV C), along the negative imaginary axis 
(for Reu. < u> ) in the complex p-plane, has been deliberately 
left out in Figs. V.8-10 in order to not further confuse the already 
conrplicated figures. It would have to be taken into account if 
one tried to continue the solutions across the negative imaginary 
axis (the Stokes constants T also depend upon which sheet one 
is on, as discussed in sec. IV C). 

The solutions A(p,X) and B(p,X) in Figs. V.8-10 are 
given in terms of the WKBJ solutions using Heading's notation 
(Ref. T I), 
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(Mb) 

where. q(p,X) and X are defined in Eq. (V.2). The particular 
choice for the above constant coefficient is motivated by the 
self-imposed requirement (in order to show agreement with sec. Ill B) 
that A and B approach the two Airy functions Ai and Bi, 
respectively, as the pump strength D vanishes. The relevant 
linear combinations of (p,p+) and (p+,p) (for A and B), 
valid in the indicated regions of the complex p-plane in Figs. V.8-10, 
are given below. In each region "n" (n = 1,2,•••,9), the total 
solution (A or B) is f + g L , where 

$= <f »f*> 3,= i(f+>?) QMO 

-2 CE«W 



i-: ^ 3^={i +Ej> ,j>J' 2 T ; } (W) (THJ) 

* • {l-i^Al^j (¥.1e) 
3 6

=- ' 'W 
i-• * vO-'W ̂ ^ 

frif) 

V ̂ %~4-'k>fJ 2 * J > > 
<fcty 

V : -{ i + tp- ,j>J T,}(f,f +) 3s=37 
OZL1K) 

<v =f. °i~ 32 • (7.10 
Here 

-M-
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i s the "dominancy changing factor" used by Heading (Hef. T I ) to change the 

phase reference level of a WKBJ solution (e .g . , (p , p + ) = (p,p)[p ,p"l,(p+ fp) = 

= rp+jp_](p_.p)» with /P + »P_J = fR.»P+l~ )• The constant T., i s one of the 

Stokes constants T for the pole-zero coabination, t reated as a "oojnpound" 

t ransi t ion point , in sec. IV C. 

The WKBJ solutions for A and B, given in Eq. (V.9) and Figs. 

V.8-10, can be easily followed i f one uses the rules outlined in sec. 

IV B. Since (p,p+) and (p+j p) are purely oscillatory along the ant i -

Stokes l ines (by defini t ion), we can multiply these functions by exp(-i(i>,t) 

and consider them as traveling waves along these l ines ; the arrows on the 

anti-Stokes l ines indicate the direction of propagation of the indicated 

function ( f o r g ). Also, every region of the complex p-plane i s in te r ­

sected by Stokes l ines (perpendicular t o the anti-Stokes l ines except at a 

t ransi t ion po in t ) , and along these Stokes l ines ( p, p. ) and (p , p) are 

purely growing or decaying; we occasionally draw arrows on the Stokes l ines 

to indicate the direction in which the indicated function (f or g ) in-
n n — 

creases. If the function increases as one moves (along a Stokes line) 
away from a transition point, it is called dominant with respect to that 
transition point and is labeled with a subscript "d"; otherwise it is 
called subdominant and lebeled with a subscript "s". The arrows on the 
Stokes and anti-Stokes lines are related by the "right-hand SAN rule" of 
sec. IV B: the Stokes arrow crossed into the anti-Stokes arrow is 
normal (up) to the complex plane. 

It is important to determine the dominancy or subdominancy of 
(p, % ) and (p +,p) since only the coefficient of the subdominant term 
is changed upon crossing a principal Stokes line ( one which 
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is the "dominancy changing factor" used by Heading (Hef. T I) to 

change the phase reference level of a WKBJ solution (e. g., 

(p,P+) = (P»P_)[p_.P+l >(P+>P) = [p+JP_](P_.P)» with [p+,P_| = 

= P_>P+| )• The constant T. is one of the Stokes constants T 

for the pole-zero combination, treated as a "compound" transition 

point, in sec. IV C. 

The WKBJ solutions for A and B, given in Eq. (V.9) 

and Figs. V.8-10, can be easily followed if one uses the rules 

outlined in sec. IV B. Since (p,p+) and (p+,p) are purely oscil­

latory along the anti-Stokes lines (by definition), we can multiply 

these functions by exp(-iux.t) and consider them as traveling waves 

along these lines; the arrows on the anti-Stokes lines indicate 

the direction of propagation of the indicated function (f or g ) 

increases. If the function increases as one moves (along a Stokes 

line) away from a transition point, it is called dominant with 

respect to that transition point and is labeled with a subscript "d"; 

otherwise it is called subdominant and labeled with a subscript "s". 

The arrows on the Stokes and anti-Stokes lines are related by the 

"right-hand SAN rule" of sec. TV B: the Stokes arrow crossed into 

the anti-Stokes arrow is normal (up) to the complex plane. 

It is important to determine the dominance or subdominancy 

of (p,p+) and (p ,p) since only the coefficient of the subdominant 

term is changed upon crossing a principal Stokes line (one which 
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originates at a transition point) while the amount of change depends 
on the coefficient of the dominant term (see sec. IV). When cross­
ing a principal Stokes line, one must remember to firat change the 
phase reference level to the position of the transition point from 
which the principal Stokes line emerged (otherwise one cannot use the 
standard Stokes constants for that transition point, given in sec. IV 
B, C); after crossing the principal Stokes line, one can switch hack 
to whatever convenient phase reference level one started with. 

Note that the pole-zero "compound" transition point (see sec. 
IV C) is viewed as having only two principal Stokes lines: one 
emerging from the pole (p = 0), and the other (in roughly the opposite 
direction) emerging from the zero (p_). The remaining two Stokes 
lines emerging from P_ are not viewed as having distinct Stokes 
constants unless the pole and zero are treated as separate and distant 
transition points; the problem here is that for |x| » 1 the pole 
and zero (p ) are not distant since p_ * (2X)~ . In order to ac­
curately obtain the eigenvalues and a nonzero threshold pump strength, 
it is necessary that one use Stokes constants (e. g., the T ) valid 
for arbitrarily small separation between the pole and the zero (p ). 

The solution A (p,X), shown in Figs. V.Sa, 9a, and 10a, 
is distinguished by demanding the boundary condition (abbreviated 
"b.c") that A be evanescent (subdominant) as p •* -w; thus, 
A(p,X) = f. as &•*••**•'. This form remains valid until one crosses 
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one of the principal Stokes lines from p + in a region where f 1 

is dominant; then A changes form to A(p ,X) = f + g 1 depending 
on whether p is above or below the branch-cut from p +. In Fig. 
V.lOa we encounter the pole-zero "compound" transition point to the 
left of p , and the form of A must again change upon crossing 
the principal Stokes line from p_; A(p,X) = f/ + 5/ above the 
branch-cut from P_ and A{ p,X) = f, + g ? below. The latter solu­
tion can be obtained by using the rule in sec. IV B for crossing 
branch-cuts or by using the solution A = t^ - g^, valid below the 
branch-cut from P , and extending this solution onto the contin­
uation of the Riemann sheet reached from below the branch-cut, going 
around the pole-zero combination again using the Stokes constant T. 
(never crossing the intrinsic branch-cut along the negative imaginary 
axis), and finally emerging across and below the branch-cut from p_. 

The solution B(p,X), shown in Figs. V.gb, 9b, and 10b, is 
distinguished by demanding the boundary condition that, as p + -<«>, 
B = f + g„ above the branch-cut extending to the left and B = 
= -f_ + g, below. In Figs. V.8b and 9b, the first transition 
point encountered when traveling toward the right is p +, and B 
changes form upon crossing any of the three principal Stokes lines 
radiating from p +; B = f_ + 2g_ above the principal Stokes line 
extending to the right (and curving around the pole at P = 0) and 
B = -f 2 + 2g_ below (but not crossing the principal Stokes line from 
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the pole). For Im P > 0, B = f„ + 2g_ remains valid until one 

crosses the other (of the two)principal Stokes line of the pole-zero 

"compound" transition point; then we must change to B = f, + g . In 

Fig. V.lCfb, we first encounter the pole-zero "compound" transition 

point and, for Im p > 0, B = f , + g, after crossing the principal 

Stokes line but remaining above the branch-cut from p +; B = f_ + g» 

below this branch-cut, as can be determined by applying the rule 

of sec. IV B for crossing branch-cuts or by following the solution 

around p . The solution again changes form upon crossing any of the 

three principal Stokes lines radiating from p +; B = f„ + g_ above 

the principal Stokes line extending to the right and B =fg + go below. 

Having obtained the solutions A and B, we are now in 

a position to evaluate the "boundary" coefficient a(X), given by 

Eq. (1.32), and the Wronskian W(X) and solutions ¥. and ¥_, given 

by Eq. (I.31). We then know the Green's function G.(p ,p.;X) = 

= *-(p,,,X)«-(p ,X)/W(X) , from Eq. (1.26), which is the desired 1 * ^ 6 
integrand for Eq. (1.29). Note that p. = pfz.jtii-jkj,) and 

P_ =P(z *uli»ii 1) where z« and z are respectively the lesser 

and greater of the two positions z and z (the source position), 

and J§ = X/i (dp/dz). 

For the case depicted in Figs. V.8-9 where (»>„,( z = 0) < 

< «)„ < OJL ( p + R K p = 0, Xj, "v- 0, with subscript "R" denoting 

"real part of"), we find: (1) if to. is below the branch-cut 
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from w_(z = 0) and, consequently, p(z = 0,ID ,L.) is above 
the branch-cut from p +, then for p(z = O.u^.k^) £ p^ 1 p < P + 

(0 - z„ 1 z < z +j see Eq. (V.^b) for z + and z_) we find 
A = (p,P+) + i(p+,p) and B = i(p,p+) + (p +,p), and (with 
d(p,P+)/dp = i\/i(p,p+) and d(p+,p)/dp = -iXi/q"(p+,p)) we have 

°(X)=-1 0T.Ha) 

wao-i^J- Cziii} 
6 , - 2 ! W*(&,&[(%,&+•* <fc,fij ; (E.llc) 
(2) i f UL i s above the branch-cut from Wj.(z = 0) and, conse­

quently, p(z = OjfcLjk, .) i s below the branch-cut from p + , then 

for p(z = 0 , 0 ^ , ^ ) 1 pj 1 p < p + we find A = (p ,P + ) - i ( p + , p ) 

and B = - i ( p , p + ) + (p + , p ) , and we have 

aOO = +1 G?.12<0 

G,= -2 i W ^,6%,^-i ( f + ) f j . fcl2c) 

http://0T.Ha
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There are no eigenvalues (i. e., no poles of G ) for either case. 
Fcr the case depicted in Fig. V.10 where o>R < U L R <u 

(p+n > P~ 0 , X R > °) a n d (J(z = °'°i'^Lj) i s t o t h e l e f t o f t h e 

principal Stokes line from p _, we find: (1) if u, is below 
the branch-cut from WjCz =0) and, consequently, p(z = Ojdujk^,) 
is above the branch-cut from p_, then for p(z = 0,m-,kj,) <_ p < 

< p <0 ( 0 £ z < z _ < z j we find A = (p , p+) + { i + [ p _ , p + ] " T^. 

• (p + ,p ) and B = i ( p , p + ) +(P + ,p) , while for p_ ^ p < p + 

(z_ £ z < z + ) we find A = (p ,p + ) + i ( p + , p ) and B = i ( p , p + ) + 

+ { l - i f p . ^ P + l ' ^ H p ^ . , p), and we have 

a(X)=-l CST.13-0 
W ( X ) = i 4 ^ { i - i [ f . , f J 2 T 1 } QD30 

' 7T dz 
valid for p(z = 0,<^,k_1JL) <. p% < p < p_ (0 1 z^ 1 z g < z_), and 

G. = - A ^ [(p,,ft) + • (f+,f3)] frl3d) 
valid for p_ ̂  p < p + and P(z = OjU^k^) _< p^ £ p g ( z _ ^ z g 

and 0 — z, — z ); (2) if UJ. is above the branch-cut from u-fz = 0) 
and, consequently, \p(z = 0,0),,̂ ,,) is below the branch-cut from p_, 
then for p(z = 0,<i),,k, ,) £ p < p _ < 0 ( 0 _ < z < z _ < z j we find 
A = (l- 1[p_,P+]"2T1}(p,p+) - i(p+,p) and B = -i(p,p+) +(p +,p), 
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while for p_ -6 p < p + (z_ £ z < z +) we find A = (p,p+) - i(p+,p) 

and B = -{i + [ P _ » P + ] " 2 T 1 > (P,P+) + (P +»P). <""* we have 

c -2i(enfe)[{t-'fe'fJ Tjfe.^-i^fiJI 
'" ^^{l-itf/Tj (¥.14c) 

valid for p(z = 0 , 0 ^ , ^ ) £ p 4 1 p < p_ (0 _, z^ 1 z g < z_), 

_ -2i(fr»A)[<fe»PJ-'(Pt>A)] / W U A 
G'~ jA4_./i.ir. .1*1-1 
valid for p(z = O.ia^k^) - p

l < P_"i P g < P+ 

(0 < H < z_ < z g < z + ) , and CZ".14e) 

fSG-WTl 
valid for p_ < p^ 1 p < p + (z_ £ z^ 1 z K z +). There are 
no eigenvalues (i. e., poles of CL) for case (l); there are 
eigenvalues for ease (2) when {1 - ifp_.P4.J~ \ } = 0, and 
this will be further discussed in sec. V B. 

http://ifp_.P4.J~
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For the case similar to Fig. V.10 but with ID sufficiently 
large (uVj, $ ID ) that p(z = 0;w, ,lgj_) is to the right of the prin­
cipal Stokes line from p , we find: (l) if to. is below the 
branch-cut from <D T(Z = 0) and, consequently, p(z = O.ULjk,,) is 
above the branch-cut (now passing above p = 0 and on to p -* -«°) , 
from p +, then for p j p(z = 0 , ^ , ^ ) < pj 1 p < p + 

(z_ £ 0 1 z.l z < z +) we find A = (p,p +) + i(p+,p) and 
—2 B = i(p,p+) + {1 - i[p_,p+] l^Kp^p), and we have 

^i^fe^WJi tew 
(2) if (IL is above the branch-cut from u)_(z = 0) and, con­
sequently, p(z = 0,(iL,k-,) is below the branch-cut from p +, 
then for p_ ̂  p( z = 0,(iL,k, ,) i p < p < p + we find A = 
= (p,p+) - i(p+,p) and B = -{i + [P_>P +]~ 2T- L}(P>P +) + (p +,p), and 
we have 
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Note that G is identical in Eqs. (V.llc and V.15c) and also in 

Eqs. (V.12c and V.l6c); again there are no eigenvalues for either 

case. 

In sec. V C we will integrate G1 over u) , as indicated 

in Eq. (1.29); the forms for G found above, although valid only 

in limited regions of the complex to.- and z-planes, are suf­

ficient for our purposes (as outlined in sec. I B ) . First, however, 

we will investigate in more detail the eigenvalues due to the poles 

of G r 

B. Eigenvalues 

1. Threshold 

In the previous section, we found poles of ft, (i. e., eigen­

values) when 

For the special ease where |k[ » 1, k = -iX/2(2X) , we showed in 

sec. IV C that 
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T.(k)-p +" . (S.18) 
1 Ik \-*oo 

exactly what one would expect since, for fixed X and X * a>, the 
two transition points p =0 and p can then be treated as "dis­
tant" and the Stokes constant for an isolated first order root 
(e. g., p_) is +i. Thus, Eq. (V.17) reduces to 

[f../.+] = ±i =exP[i£(2N + l)] &l<0 

where N = 0,1,2,•••, and we see that the transition points p and 
p + are connected by an anti-Stokes line (see Figs. V.3a-b, 4b-c, 
4d-e, 5e, 5g) the length of which increases as N increases. 
For (2N + 1)/A « 1, the transition points p and p + are 
centered about p = +i with a separation 

Aps?-r_~_ze'Z(l^f! cz.2o) 
and the eigenvalues, expressed in terms of X((IL ,]£..,) (see Eq. 
(V.2d)), are 

X - + • 
N M#] 01.21) 
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the eigenmodes fall off exponentially outside this narrow region 

between P and p +, so the eigenmode localization width (in the 

real z space) is \ J L . / - £ ) 

using Eq. (V.7). These results (cf. Eqs. (1.13-15)) were first 

obtained by Iiu, Rosenbluth, and White (Ref. F VII; note that 

our definition of X, Eq. (V.2b), differs from theirs). 

At threshold, Im to = y = 0 for the fastest growing mode 

and, from Eq. (V.2d), Im X = 2[ii> u, + (too - IL)VJJ thus, in 

the absence of damping we take X to be real and positive (see 

discussion at beginning of paragraph containing Eq. (V.14)). For 

X » 1, the eigenvalues X^ start out at X ^ +i and come down 

at a 45 angle toward the positive X-axis as N increases (see Eq. 

(V.21)); for N * X, Eq. (V.21) is invalid, but a numerical evalu­

ation of Eq. (V.17) in sec. V B 2 (as well as an analytic calcula­

tion carried out below) indicates that the eigenvalue chain X-. 

eventually crosses the real axis at some large positive value of 

X. As X decreases, X comes down from +i and the value of 

X at crossing (the real axis) decreases. For both of these cases 

|xj £ 1 for all N. Finally, for some X •»» 1, X comes all 
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the way down to the axis, and one might guess X * 1; X is the 

desired threshold value of the pump strength parameter. 

To determine A , we cannot use Eq. (V.19) because for 

Im X = 0 (see Figs. V.3a, 4a, 5a) |[P_.P +]| = [p_>°] < 1; in *"aet, 

for X £ 1 we find from sec. IV C that fp_,oJ = e" i l f l £ = 

= exp[-irA/2(2X) J which is equal to one only if k = 0, in viola­

tion of the assumption used in obtaining Eqs. (V.18, 19). In order 

to obtain the value of X at crossing (the real axis) as a function 

of A, and in particular to obtain the threshold value of A and 

X . it is therefore essential to use a Stokes constant T, that is o 1 
valid even when p_ and p = 0 are "near" in the WKBJ sense 

(either because of large X or small A); thus, we use T.. as 

determined in sec. IV C, and we next consider its value in the 

limit )k| « 1. 

For the special case where |k| « 1, we showed in sec. IV C 

(¥.23) 

T^)=-2nike 2 k f l~ i n )k- 2 k(i-i.2k+--.) 
so that |T,| = 2ir|k| < 1 (if |k| « 1) as required if we 

want |[p_>p+| T | = 1. We must next evaluate [p_»P+l~ , but 

fortunately the phase integral can be evaluated exactly in terms of 

complete elliptic integrals of the first and second kind, F and E, 

giving 
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ft 
J 

+ 

(fa*W - ffcfi {i fat) E(\) 7/# 
fe+f.)E(p)-f.F(p)]j m ) 

where q = [-P_/(P+ - P_)l an* P •= [P+/ (P + - P_)J . Expanding 
the complete elliptic integrals, assuming X ̂  1, we find 

+ (|An(8X) + l-f^)/ < cX 2 +-]} . 
Using Eqs. (V.23, 25), Eq. (V.17) reduces to 

(5T.26a) 

where 

e~S + *A<»0* + ^ 
^ [ l + 6 i n ( 8 X 3 + -
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For Im X = 0, 8 is real and the solution to Eq. (V.26) is 

7TA 
2(ZX)* = 0.3SZ (£27a) 

9=2TTN , 0?.27b) 
which together determine the value of \ and TL, as each eigenvalue 
crosses the real X-axis. For N = 0, we find the threshold values 

X o ~ 0 . 8 (7.28a) 

\ ~ 0.3 • Q?.28b) 
These values are only approximate since Eq. (V,25) is accurate only 
if X » 1; nevertheless, they do compare favorably with the 
results (X = 0.92, A = 0.32) obtained in sec. V B 2 by 
numerically evaluating Eq. (V. 17) andnrith the result (Eq. (1.14) is 
equivalent to X =0.34) obtained by Liu, Rosenbluth, and White 
(Hef. F VII). Equation (V.27a) gives X = 9.97 X 2 » 1 if X « 1, 
and using this in Eqs. (V.27b, 26b) results in 
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N~ H X (¥.21) 

U1N as the approximate number of eigenmodes with Im Xj, > 0 (Im 

= Y M
 > 0 i"1 absence of damping) for any X. 

In the next section, we will present the results of the numer­

ical analysis of the eigenvalue equation. In sec. V B 3, we will 

offer a physical explanation for the threshold behavior of the eigen­

modes and for various constraints that must be placed on the eigenvalue 

equation. 

2. Numerical Evaluation 

In the previous section, we investigated the eigenvalue 

equation, Eq. (V.17), analytically under approximations of |k| « 1 

and |k| » 1 where k = -iX/2v̂ JT. In this section, we make no 

restriction on |k|, but rather use the full expression for T.. 

(found in sec. IV C) and write Eq. (V.17) as 

1 + ^ ( t ) e f = o &30) 
where f(X) 5 2iX I [q( p,X)]*dp' is determined from Eq. (V.24), 

o = -k, and T(a) is the gamma function. The solutions, X„(X), of 

Eq. (V.30) are obtained numerically and plotted in Fig. V.ll for 

several values of the pump strength parameter X. 
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From Fig. V.11 several interesting results can be obtained. 
For A £ 1, the solutions X„ for small N (i.e., 2N + 1 £ A) 
have JXJJ £ 1 and approach the solutions given by Eq. (V.21); this 
is better illustrated in Fig. V.12a where X (A) is plotted for 
several values of A. In Fig. V.12a, X (A) lies on a line 45° 
from horizontal for A £ 1 (as predicted from Eq. (V.21)) and ap­
proaches a line 60° from horizontal for A « 1 (as can be pre­
dicted from Eq. (V.26a, b) with X complex now). The solution 
X (A) crosses the real axis ( the threshold condition) at 

Xo(Xo)=0.12 (Y.3la) 

A= 0.32 (231$ 
as determined from Fig. V.12a, b. Finally, we note from Fig. V.ll 
that the number of eigenmodes with I m X H > 0 (Im OL„ = Y H > 0 in 
absence of damping) rapidly increases, approximately as N % 19 A , 
as A increases (for A £ 1), In agreement with Eq. (V.29). 

In the previous section and here, we investigated analyti­
cally and numerically the eigenvalue equation, Eq. (V.17 or 30), 
but we found in sec. V A 3 (see paragraph containing Eq. (V.14.)) 
that the eigenvalue equation (and therefore any eigenvalue obtained 
here) is only valid in a particular region of the complex ok-plane: 
namely for <u- satisfying 
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R 2 \ ° w o / 1R ° 

(¥.32) 

above the branch-cut from w (z = 0 ) in Fig. V.6a. In the next 
section, we will offer a physical interpretation for the above con­
straints on w for the eigenvalues. 

3. Physical Meaning of Constraints 
In sees. V A 3J B 1, 2, we have found the eigenvalues 

Xj.t&Ljk. ) subject to the constraints on in. given by Eq. (V.32). 
These constraints have a simple physical interpretation in terms of 
the relative positions of z = 0, z , zm, and z +; as indicated 
in the paragraph containing Eq. (V.14), the constraints are equi­
valent to 

o<0OR<(zjR <(z+)R $-33) 
where the subscript "R" denotes "real part of" (sometimes omitted if 
meaning is clear). 

" - 2. 2 For a frequency u 1 H > uu = (u + cT:. /w )/2, 
0 < z_((0-) < z^u.) < z+(u.) and the wave is trapped between the 
two turning points z_ and z + and near the resonance position z^ 
(remember z = z of sec. I A J), precisely what one would expect 
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for growing eigenmodes. The turning point z + can be identified as 
the reflection point present even in an unpumped nonuniform plasma 
(sec. Ill E); if 2s+(«, ) were less than %,(«,), the wave (of 
frequency w < (it, for this case) would reflect before reaching 
its resonance position and, hence, before growing. For an OL_ 

II slightly greater than w_, the wave is closely trapped about the 
resonance position and has the largest growth rate. Of course, 
there must be a constructive interference between the waves reflected 
from z_ and z +, and this gives the discreteness of the eigenmodes 
(see Eq. (V.19)). As w increases (for fixed X ), the spacing 
between the turning points increases (see Eq. (V.22) where N is 
increasing) and the wave spends less time at the resonance position, 
thereby decreasing the growth rate (see Eq. (V.21)). 

We are new able to offer a physical interpretation for the 
threshold behavior of the eignemodes, as we promised to do in sec. 
I B (question number 3). We fix our attention on the fastest growing 
eigenmode (N = 0) and note that, as X decreases, the separation 
Az between the two turning points (z_ and z +) decreases at a 
rate slightly faster than given by Eq. (V.22) until Az % Z at 

r\, I 
threshold (X ^0.32); and,the eigenmode growth rate y„ n (see 

O / N-U 

Eq. (1.13) or Eqs. (V.21, 35b)) decreases faster than the uniform 
plasma growth rate Y (defined in Eq. (1.2)) until Y N = 0

 = ° a t 
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threshold (while Y is still finite). We conclude that, as the 

turning points come together for decreasing pump strength X, the 

lower turning point becomes less effective in reflecting the waves 

back toward the resonance position z^; also, the separation Az 

approaches (or becomes less than) the minimum effective wavelength 
_{c\\1/3 

1 = I A I (from the Airy function) which is insufficient to 

As 01 increases from au (for fixed X again ) p the 

boundary position p = p(z = 0,iiL,k, ,) becomes less negative (see 

Figs. V.7-10) and, for to1R "v w - <u (Z = 0) % ui , p crosses 

the principal Stokes line from p ; as pointed out in the paragraph 

containing Eqs. (V.15,16), for an o).R equal to or greater than 

this value there are no eigenvalues. This corresponds essentially 

to z_ < 0 and the lower turning point (derived assuming a strictly 

linear density gradient) wants to be at a lower density than the 

uniform region z < 0; that is, the turning point z and typically 

even the resonance position z^) no longer exists in our system 

(see Figs. 1.9-11 and remember z a = z ), and there is nothing to 

prevent a wave with « „ ^ u - u (z = 0) from escaping the 

resonance region (if indeed it even exists) by refracting out to 

the uniform region. 

Some confusion may arise now because, for 
U1H £ u>o

 + <Di (z = 0), the boundary position p again crosses one 
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of the two principal Stokes lines from P_, and 0 < z_ < z
m • 

however, there are still no eigenvalues. To understand this mathe­

matically we note that, for u, = u , p is positive real and the 
l£l O O 

intrinsic branch-cut (see sees. IV C, V A 2, 3) from the pole 
(of q(p,X)) now lies along the negative p-axis. As io._ increases, 
p curves around p = 0 in a clockwise direction and the intrinsic o 
branch-cut from p = 0 also rotates in a clockwise direction until 
it lies along the positive imaginary p - axis. For 
u _ £ us + ui (z = 0), p is to the left of the Stokes line extend­
ing downward from p (similar to Fig. V.IO but with the real z-axis 
below p = 0), but now the WKBJ solutions must be traced below 
p = 0 (rather than above.as in sec. V A 3) using the Stokes constant 
T when crossing the principal Stokes line (see sec. IV C); Eq. 
(V.17) is not valid for this situation and there are, in fact, no 
eigenvalues for w._ £o> - u (z = 0). Physically, we would not lit o p 

expect eigenvalues here since the resonance (that again exists in the 
plasma for ui._ > w + to (z =0)) now corresponds to 
WlR = U ) o + a ) p ( z J ' 

To be completely accurate, there is an additional constraint 
on the eigenvalues which was not explicitly pointed out in the 
earlier sections. Eq. (V.32) gives the constraint on the real 
part of a frequency oi. lying above the branch-cut from mJ.z = 0) 
in Fig. V.6a; there is also a constraint on the imaginary part of 
to., in particular an upper and lower bound. 



141 

The lower bound can he seen from Fig. V.10 and the definition 

of p(z = O.w^k^) using Eq. (V.l). For o>1R *• % ~ <^z = °) 

and y = Im w, < -v , the boundary position p(z = 0,{IL,]L .) is below 

the real p-axis and to the left of the principal Stokes line ex­

tending downward from p_. Most importantly, the real z-axis passes 

below p = 0 and through the intrinsic branch-cut (extending verti­

cally downward from p = 0, as discussed in sees. IV C, V A 2, 3) 

onto the continuation of the Riemann sheet reached from the left. 

After applying the boundary conditions along the real z-axis, we must 

then trace the WKBJ solutions across the lower-half p-plane using 

ths Stokes constant T„ (see sec. IV C). Equation (V.17) is not 

valid for this situation and, in fact, there is no possibility of 

eigenvalues here. This constraint requires all eigenmodes to grow 

in time or at least damp no faster than the effectively non-propa­

gating plasma wave (in sec. I C we required y **/V » 1; that 

is, growth dominates convection of the plasma wave out of the resonance 

zone of width h). 

The upper bound can be determined from Green's theorem 

o 
Eq. (1.25) for E-tzjOi-.k. ) , and the boundary conditions i n Eqs. 

(1.27b, 28b) both of which must be sa t is f ied by an eigenmode E,; 

together these imply 
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/I 
00 

E/LQi^.yJE = -|E,|2ReV?) <o. 
° 2=° (J.3f) 

o Far from resonance, Im Q •*• 2<I).J,(Y * v. )/c which is positive if 
Y > -v. • Thus, at resonance (where Im Q has a minimum) 

2 2 Im Q = 2O). D(Y + V-. )/c - D /2<o (z = z )(Y + v ) must be negative in lxl J. p c o p 
order to satisfy Eq. (V.34), and this is only possible if y < y , 

the uniform plasma growth rate given by Eq. (1.2). Physically, we 
would expect Y *• Y because the wave in a nonuniform plasma does 
not remain at the point of exact resonance but rather is localized 
between the two turning points z_ and z +. The eigenvalues given 
by Eq. (V.21 or 1.13) satisfy this condition since Y M = Q / Y 0 < 
< 2(^0) )*/w0 S i . 

We summarize and conclude our analysis of the eigenvalues by 
showing, in Fig. V.13, a typical plot of the eigenvalues m.„ in 
the complex m.-plane (symmetric about the imaginary axis) along 
wit) the boundaries representing the constraints discussed in this 

1 section. The real and imaginary parts of UL.. and X„ are 
related through Eq. (V.2d), which gives (for ReCoO > 0 ) 



where D S Kv o&) p( Z < x ))(1 - k ^ A * ) * (from Eq. (1.25c)) has a 

sl ight lu.-dependsnce through w ( Z M ) = u - IIL and JL(OJ.) = 

, 2 
fa . =[wi - <;( z J]/ c 

In the next section, we will evaluate the Green's function 

—l^Z6,zV^'—n) ^ performing the integration over OL , indicated 

in Eq. (1.29). As a result, we will be able to determine the ampli­

fication experienced by the transient wave-packets and the time at 

which the eigenmodes first dominate over the wave-packets. We will 

then be able to answer more clearly and quantitatively the 

questions raised in sec. I B. 

C. Green's Function 

We finally come to the calculation that we have been 

pointing toward since sec. I D: the calculation of the Green's 

function Gj.z .Zjjt.k.. ,) from Eq. (1.29). We use the expressions 

obtained in sec. V A 3 for the integrand G
1( z

Bi zii | iiiiu) a n d 

divide the calculation into three parts: (1) a saddle-point 

evaluation of the integration around the branch-cuts of G. in the 

complex u>..-plane (see Fig. V.6a and the discussion at the 

beginning of sec. V A 3); (2) the contribution from the poles of 

G. in the complex u).-plane (see Fig. V.13 and sec. V B); 
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(3) a comparison of the magnitude of these two contributions (wave-
packets and eigenmodes) to the asymptotic space-time response. 

1. Contribution from Saddle-points 
Including the exponential factor exp(-iuLt), the integrand 

in Eq. (1.29) is a rapidly varying function of OL similar to the 
situation in sec. III. Thus, we again look for saddle-points and, 
as expected early in sec. V A 3, find them only for UL above 
the branch-cut extending horizontally from 01.(2 = 0) in Fig. 6a 
(or on the continuation below the branch-cut of the Riemann sheet 
reached from above). Using Eqs. (V.12c, 14c, 14d, 14e, and 16c), 
we can write the branch-cut contribution to Eq. (1.29) as vt-«. ***\\ 

itzn If^OK^)]^ cut L'v-/>-"V3' 
1 

where a) = UL + i v , , e\ I s the polarization from Eq. (1.22) 

evaluated a t the observation posit ion z, f(z,oo ) = IQ(Z,II) - iv , ) j 

i s an effective wavenumber k with Re(f) > 0 above the cut 
z 

(as indicated in Fig. V.6a), and the phase integrand I takes on 
one of four possible forms: 

a = e x P ( i f + e , ) (237a) 

fc>=exp(e

2) (Z37L) 
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b'= ^ — (?37b') 

where 

Z3 
9 = -i w't + i / f (z,«')dB 0?.38Q) 

' zx 

We have simplified the phase integrand I by dropping terms that 

have no saddle-points. The rules, for choosing one of the four pos­

sible forms of I, are summarized in the space-time plot drawn in 

Fig. V.14. 

The similarity between Fig. V.14 and the figures in sec. 

Ill B is not surprising since early in sec. V A 3 we expected the 

pump to only modify the saddle-point result obtained in the nonuni­

form umpumped case. In fact, other than the pump modification in 

the function f = /§, the only modification (due to the pump) in 

the form of the result is in the "eigenvalue" denominator that 
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appears in the "primed" functions a and b of Eq. (V.37a , b ). 
We note from Fig. V.14 that the phase integrand I takes on the 

1 1 form a or b only in space-time regions where the corresponding 
response wave-packets have either traveled through or will travel 
through their resonance zones (see also Fig. I.10) before exiting 
the nonuniform plasma region z 2. 0. In the remaining regions, 
where I equals a or b, the corresponding wave-packets have 
not or will never travel through their resonance zones; the space-
time response here (except for possible eigenmodes, as in sec. 
V C 2) is essentially identical to that found in sec. Ill B for 
a nonuniform unpumped plasma and will not be further discussed here. 
In the remainder of this section, we will determine the saddle-
points of the phase integrand I in the regions where I equals 
1 1 a or b . 

We first evaluate the phase function (L by expanding 
f = /Q (using Eq.(l.25b)) in powers of the pump strength and 
keeping only the terms up to order D (we will check the validity 
of this later in this section): (irr Qti\ 

ZyZ-a>2&)][of&- coZ(zj] C 
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where o>2(z) s to (z) + c 2 ] ^ and u (z^) = U - ai - i(v - v )1" 

+ c K. , . Upon integrating, we find 

2C [^-<A*„f Isfe/ + ' fe4O<0 
where 

Xte) = f - i , , °\ , &.40I.) 
[c^-u> 2(zf^-<o 2(z„f 

ID = a) (z ), and a). = u (z/,). Next, the saddle-point frequency 
i 

is written as m = u>. + 6u, where 6u) is the modification due to 

the pump and w. is the saddle-point frequency found previously 

for the nonuniform unpumped plasma (sec. Ill B). Using this 
i o 

and viewing 8 as a function of w and D , Eq. (V.40) can be 

put in the convenient form 



us 

•few* , tt41a) 

where 

e,(v)-i».fi!^)k-^) , i-

game as for the nonuniform unpumped plasma (sec. Ill B) , 

0M=2i^M,, Gr.4ic) 
Jft fey.)- i /U\ ln|fo 3>/^] ( V . . . 

d8 
and the coefficient — r (u.,0), which would appear in the term 

du> A 

linear in fioi, vanishes by the definition of the saddle-point at. 
(see sec. Ill B ) . The form given by Eq. (V.-Ua) is only valid if 
|o), - m | » 2u.|6(i)|, a condition also required for the validity 
of Eq. (V.39); however, this is not too restrictive since the WKBJ 



149 

solutions of sec. V A 3 are also invalid near the turning point 

(see see. Ill B, where u, = ID gives the equation of the "line A g 
i 

of turning points", also shown in Fig. V.14 as the line 10 = u ). 

The saddle-point frequency (for 9.) is defined (see Ref. 
' 2 ' sec. U) as the solution to the equation d&A<i> ,D )/d(i) = 0, which 

gives, from Eq. (V.41), 

2 
dco'dOr) 

G?.42a) 

GZ42Q 

i rffLtf) f_ i L_| 

where 

+ 
J/ 

This same equation can also be obtained from Eq. (V.38a) by differ-

du' over 2. For at < ^{zj or OK x / t z j , Eq. (V.42) 

entiating with respect to w and performing the integral of 
df 

gives fim pure real (if ignore damping) and Eq. (V.41) gives 6-, 

pure imaginaryj that is, no growth. This is as expected since, 

for a < z m or z^ > z^, the wave-packet has not yet reached its 
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'2 2 resonance zone; and, if oi < oi (z^,) (essentially same as z < zj) 

the wave-packet will never reach its resonance zone before it 
refracts out of the plasma. We will therefore concentrate, in the 
remainder of this section, on the case where interesting growth has 

i occured; in the region a of Fig. V.14 (where we are dealing with 
i 

the function 8^), th is requires IO^ < <4.zm) < w < ID . 

We wi l l f i r s t assume \ta2(zm) - u£\ « |di ' 2 - u?\ ( i . e . , 
i 

z is much closer to the resonance position zjiw ) than to the 
turning point z +(u )) and also |o> (z^) - u | « |oi (z^) - tû | 
(i. e., Iẑ , - z | « Iz^ - Zg\) so that we can approximate 
Eq. (V.42b) by keeping only the term proportional to 
faij5(z Vofz^)] and the term proportional to [u - u (z^)]" . 

u) - ui (z^)! by 
writing [u - (J (z^)] * 2(u - u A)6w + u - ID (z 0 0(u A)), valid for 
16u>| « (ID - to.) , where syCiu,) is the resonance position obtained 
using the "unpumped" saddle-point frequency w,. Eq. (V.42a) can 
then be written as 

where &43b) 

0d(4co;= — p — — 7577 : 
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and M. is given by Eq. (V.41e). Under the stated assumptions 

here, S(zg)/3(zA) % - f (u2 - a)2(Zoo)|/4(<^ - <D2) and 

|a(6u) + 0 ) | « A 2. 

Of the two solutions to Eq. (V.43)j only one satisfies our 
i 

requirement for growth, u> > <4.zm) with 2̂ (01 ) evaluated at 
i 

(j = (1). + 60). This solution takes three forms: (l) for 

z g < ^ A 5 a n d ' B ' > : > 2 A ' 

* « = - £ - 7 - + " * - £ ' ; (¥.44a) 

(2) for | 6 | « 2A (z % z j u ^ ) ) , 

iw = A - - ^ | £ - +... - A ; (^44^ 

( 3 ) f o r z g > Z o o ( w A ) and | B | » 2A, 

\2 
Sa>=£ -cd+. . - « ^ - . (£.44c) 
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In all three cases, Re(fiti) + fj) > 0 and Re(6u>) > 0. Using 

6 ̂  u (z ) - (o) - iii ), in case (1) <5u) increases the 3addle-point 
P g O A 

frequency to oi ^ w - w (z ), the frequency of the wave whose o p g 
i resonance position zj^in ) coincides with z . For cases (2) 

and (3), 6u) is small and w "̂  o>.. Before interpreting these 

results, we will go on to determine the remaining saddle-points 

connected with 6. . 

Now assuming |ID (Z,,,) - wJ « |u - ŵ l and 

I"1 ( O - (»oI « |u> (z ) - (fl_| , Eq. (V.42b) can be approximated 

by keeping only the term proportional to £n|3(z )/a(z,,)] and the 

term proportion; to [̂ (Zo,) - Un]~ . Writing [ID. - u (z,,,)]̂  
2 2 

% 2(d) - ID )6d) + 0)^ - 0) (zju) )), Eq. (V.42a) takes the form 

1 2 2 2 where B is similar to f5 but with to replaced by ID., a and A g *• 
have the same form as in Eq. (V.43), and now 5(z )/fi(z„) "\< 

£ 4(io^ - ">j|)/[4 - " ^ O ] ^d l a ( 6 w + * )l <<c A 2 -
Only one solution to Eq. (V.45) can satisfy our requirement 

1 1 

for growth, iu.< u)(zoo) with z^w ) evaluated at u = u, + 6io, 

and then only if z„ < a^Cw.) (i. e., Re(3 ) < 0). The solution 

takes the forms: (l) for |0 | » 2A, 
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2 2 

(2) for | B ' | « 2A ( z a * z J a ) A ) ) , 

Xeo = i A - - * § ^ + - . &46t>) 
i 

In both cases, Re(6w + 8 ) < 0 and Re(Sw) > 0 since z. < z^oi,); 
1 % also, 6<i) is small so ui *v> <o.. 

To interpret the above results (concerning the function 6.), 

we look at Figs. (1.10, V.14) and consider a fixed position z = z > 

> z = z„ (recall that z is the source position) with time s )6 s 
increasing. After passing the light-cone, the saddle-point fre-

1 -\, ' 
quency u *v» u. of the wave-packets decreases until a> is 

i 
sufficiently small that the resonance position zOT(w ) has moved 
in from the left to coincide with z (assuming z„(u> ) > z , 

s °° s s 
(0 = u(z )). Until now, there has been no growth and the response 

is essentially identical to that in sec. Ill B for a nonuniform 
i 

umpumped plasma. For zj.w> ) > z , however, the waves from the 
T 

source have passed through their resonance zones at zjitii ) and 

grown (exponentiation factor calculated later in this section) before 

reaching z . For (|B | or |B| ) » 2A, these wave-packets 

correspond to 6w given by Eq. (V.46a or 44c) (depending upon 
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whether z is closer to z or z ), and (u * u. still. This 
S g A 

is the only solution (corresponding to growth) found in the region 
z „ = z < ! j » . ) < a , and it ceases to be valid outside this Z s o* A g 
region. Provided zj[ w ) > z , we eventually reach a time when 
zj[u>,) = z ; for all later times, zj[(i).) > z (corresponding to 
crossing the line zj[<i) ) = z in Fig. V.14) and wave-packets with 
u) "^ (1)., traveling from the source (at z ) to the position 
z > z , cannot pass through their resonance zones at zj[ u.) and 
grow. Equation (V.44c) then ceases to be valid, and we look for 
a new saddle-point. 

As discussed above Eq. (1.3) and in sec. Ill C and 
shown in Fig. 1.4, for a uniform pumped plasma the resonant 
(a) = a, - a;1 ) response is localized in z between the trajectory 

1 of the (1) wave-packet in an unpumped plasma and the trajectory of 
the Langmuir wave (which remains at a fixed position here since we 
have assumed a cold plasma). Thus, in a nonuniform pumped plasma 
we expect a Langmuir wave disturbance to remain at the resonance 
position z„(w ) = z„ where 10 = I D - w ( z ) and to continue 0 0 g o p v g 
stimulating electromagnetic waves of this frequency (observed 
here at z > z ) even at later times such that d).(z ,t) < u = 
= ft)1 - 1 (z ) and zjiuy.) > a . This corresponds to the 8m 

given by Eq. (V.44a). Since z^w ) < z for this saddle-point, 
provided z^fu.) > z (Ee(3) < 0 ) , we never cross the line 
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ZJ.® ) = z indicated in Fig. (V.14); also, we never cross the 
line (i) = di (line of turning points) since a) = <u - w_(z ) is 
fixed for all time (provided z (o)) > z ) and we earlier (below 

A g 
Eq. (V.41)) r e s t r i c t ed ourselves to co > a) ( i . e . , not too close 

to the turning point for waves with frequency u> ). Thus, for th is 

saddle-point (given by Eq. (V.44a)) the l ines drawn in Fig. V.14 

are not accurately placed (they were drawn assuming u) *v> u)., as 
1 

in Eqs. (V.44c or 46a)); instead, the line segment z^w ) = z 
should essentially be moved vertically upward to infinity with our 
above saddle-point (and region a ) valid for all times above 
the line zja^) = zg. 

We now shift to the other side of the source and consider 
a fixed position z = z 0 < z = z , again with time increasing. 
— — — — — ^ — x, s g ———— — — — — — 

1 % After passing the light-eone, the saddle-point frequency u t» u. 
T 

of the wave-packets decreases until oi is sufficiently small that 
the resonance position z^u ) has moved in from the left to coin-

t cide with z. (assuming Z^UJ ) > z_). For zj.ui ) < z., the 
response is the same as found in sec. Ill B for a nonuniform 
unpumped plasma; for z (u ) > z., the waves from the source have 

™ Ml 
I 

passed through their resonance zone at z (a) ) and grown before 
reaching z-. For (|g | or |g| ) » 2A, these wave-packets 
correspond to 6OJ given by Eq. (V.46a or 44c) (depending upon 
whether z_ is closer to z„ or z ), and ui % u. still. 00 Z s A 
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This i s the only solution (corresponding to growth) found in the 

region z„ < z j [u . ) < z = z (and i t ceases to be valid outside th is 

region). Final ly, a t s t i l l l a te r times to. decreases un t i l zjjio.) > 

> z = z (assuming zj[u ) > z a ) prohibiting wave-packets of 

th i s frequency (or lower) from growing as they travel from z to 

z . , and the saddle-point given by Eq. (V.44c) ceases to be val id. 

However, the saddle-point given by u> % u - w (z ), from Eq. 

(V.44a), now becomes valid. This i s similar to our resul ts for 

H = zs < Y 
For all of the saddle-points we have found in connection with 

8 , (6(o) is either negligibly small or real so that the exponen­
tiation factor n. = Re(8 ) is given only by the real part of the 
last term in Eq. (V.41a). Since in all cases where growth has 

\ , 
occurred, z„ < z„(w ) < z„ and 5(z )/S(z<,) is essentially 

Xr °° g g Jt 
real and negative (in general, the complex argument of 5(z )/5(z0) 

g *-
changes from 0 to -IT as the wave-packet crosses the resonance 
zone), we have Im J!n|o(z )/6I(Zn)I = -n and from Eq. (V.41) 

r;=%)(l)/p-^->f2. w> 
At the resonance position z^u ), u is the actual wave-packet 
frequency while w^z^) is the frequency of a wave whose turning 
point (essentially z+(m )) lies at zjim ); thus, 
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[ '2 2 1 ^ w - < u ( z „ ) l = c k ( z „ ) , ' t n e effective z-wavevector measured at z 
x OO ' | IT CO * J QO 

Therefore, Eq. (V.47) gives exactly the same exponentiation factor 

as given by Eqs. (1.7,8) with V_ = 0 (the result obtained by 

Rosenbluth, White, and Liu in Ref. F VI) and as given by one-half 

the energy exponentiation factor V of Ref. G I. Equation (V.47) 

is valid only for back- or oblique-scattered waves since our approxi­

mations break down near the turning point where k -• 0. 

All of the atove results, starting with Eq. (V.40), were based 

on the approximation given by Eq. (V.39) which breaks down if 
to o a) -<i>(z)-»-0(l. e., essentially if z approaches the turning 

2 2 point z+(<o')) or to (z,,,) - (<) (z) •+ 0 (i. e., essentially if z 
i 

approaches the resonance position zro(w )). Provided 

|u). - (0 | » 2w |6w|, the saddle-points given by Eqs. (V.44b, c 
A g A 

or 46a,b) (depending upon whether z^ is closer to z or z, , 

respectively) satisfy Eq. (V.39). For the saddle-point given by 

Eq. (V.44a), the term proportional to D in Eq. (V.39) remains 

a small correction only if |z (u.) - z | « |z (<o ) - z |. 
A g + A g 

However, i t i s not necessary to impose the approximation 

of Eq. (V.39) since the phase in tegral function 8. (and also 6 ? ) 

can be wri t ten exactly in terms of e l l i p t i c in tegrals . We find 
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e I=-'" ,t+if%/iVj'> 

fA%Z(jiY-)Kf(V-<r3f(E3)] 
where 

or fr.48c) 
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(?.48f) 

fc483) 

F and E are elliptic integrals of the first and second kind, 

respectively, and F(q) = F(V2, q) and E(5) = E(ir/2, q) 

are the corresponding complete elliptic integrals. We have previously 

defined the quantities X (see Eq. (V.2b)), Z (see Eq. (1.10a)), 

f(z) = vtT (see above Eqs. (V.37 and 39)), the turning points p + 

and p_ (see Eqs. (V.2e, f)), and p g
 s p(z ) and p^ = p(z^) 

(from Eq. (V.l)). Equation (V.48) can be put in many forms 

using the various elliptic integral transformations, but the form 

shown is convenient for expanding in powers of the pump strength 
o 

parameter D (similar to what was done in Eq. (V.39), but now 

after the integration in Eq. (V.38a) rather than before). 

Viewing the pump as modifying the saddle-point of the 

unpumped nonuniform plasma (sec. Ill B), we expand the elliptic 

integrals and the other terms (except for f(z.) and f(z )) 

in Eq. (V.48) in the limit of |q| « 1 and |p | « 1 

(equivalent to small D and |X| » 1 in Eq. (V.2d)) and find 
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e,*-^ +ij(kP^-c3^ 

^ 

where 
(£.4%) 

* = rr-^ -•- jr > 
2 ^/ftjM«W]* [^""if 

and T is given by Eq. (V.47). In writing down Eq. (V.49), we 
have assumed z„ — z(ID 1) — z <. z (<o ), which explains the appear-
ance of the exponentiation factor I".. Equation (V.49) agrees very 
well with Eq. (V.40), if f(z) is approximated by Eq. (V.39), and 
is valid even when Eq. (V.39) cannot be used; this further 
justifies our earlier results of Eqs. (V.40 - 47), but, more 
importantly, Eq. (V.49) can be used in an essential part of our 



161 

next (and most interesting) calculation: the phase function 8 

and the side-scatter exponentiation factor. 
i 

We now concentrate on the region h of Fig. V.14, where 
1 

the wave-packets have already reached their turning point z (w ) 

and are in the process of refracting toward lower densities. We 

assume z„ _ z < zĵ fc) ) _ z (u ) so that the wave-packets have 

once again (and for the final time) traveled through their resonance 

zone at zjjw ) and grown (see Fig. 1.10, but with zjjui ) > z ). 

From the definition of 6p, by Eq. (V.38b), we see that we must 

evaluate the integral j f(z,w )dz between the end-points z 
J g 

1 J 1 

and z+(oi ), where f(z ,u> ) = 0; therefore, the approximation 

given by Eq. (V.39) cannot be used for this integral. However, 

we can use Eq. (V.49) (without the -ioi t term) if we replace z„ by z and z_ by z. in that equation. For 0_, we also 8, •- g g + 2' 
f 1 

need the in tegra l ; f(z,iu )dz between the end-points z. and 
J ' 

z , and for t h i s we can use Eq. (V.40), with z . _ z < Z^UJ ) 5. 
i 

<. z+(u) ) , and expand assuming | z + - z^l « | z + - z | ( i . e . , |(D 2 - u 2 (z ) | « |(o' 2 - w 2 | 1 |o)' 2 - w 2 | ). Adding the two 00 g ^ 

integrals together gives 

9 s-iw't + z i^-4<^-4\ 
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**D%^r**2':. too 
where r (a> ) is given by Eq. (V.47). Note that this reduces to 

the correct vnpumped nonuniform plasma result (sec. Ill B) in 

the limit D 2 •* 0. 
r i 2 2i 

Writing the saddle-point as <o = ID. + 6(i) ( |u>, - u_|» 

» 2(D. |6(i)|), as we did earlier in this section, 6„ can be put 

in a form similar to what was done in Eq. (V.41) for 6., and 

the saddle-point (from d9?((i) ,D )/du> = 0 ) can be put in a form 

analogous to Eq. (V.42). We are mainly interested in the exponen­

tiation factor r„ = He (9 ?), and we find 

r 2=Re[2r;4(^)M 2w 2] &si«o 

with the complex saddle-point frequency u> = ID, + 6<i) determined 

from the equation 

where w - o) (z m) ̂  2u 6a> + ID. - u (zm(o),)). 



163 

There are five solutions to Eq. (V.52), three of which 

(with Re(6"u) < 0) have Re[w - tu (Z O T)J< 0 (i. e., essentially 

z M > z ), contrary to our assumption used in obtaining Eq. (V.50). 

Of the remaining two solutions (with Re(6w) > 0), one solution 

(with Im(S(ij) > 0) has T < 0 and corresponds to an exponentially 

small contribution to Eq. (V.36). The remaining solution (with 

Re(Sw) > 0 and Im(i5aj)< o) has T„ > 0, and we have two simple 

limiting forms: (l) for "-̂  - " U z j w ))» 2ui |6u)|, 6u is given 

by Eq. (V.52) with oi'2 - o£( zJ replaced by ^ - ^(zjin^)) on 

the right-hand-side, and r = 2T ( a straight-forward extension 

of our previous back-and oblique-scatter results); (2) for 

ii). - u (zj. 0)A))< < 2ID |6M| , 6w increases to the value 

where It, is defined in Eq. (V.51b), and f increases to the value 

8/ 

• o 

Case (2), where zjw ) "k, z+( ̂  ) and w % &>., corresponds to side-

scatter since the resonance zone and turning point coincide, and 

Eq. (V.53b) gives the side-scatter exponentiation factor. In 
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sec. V C 3, we will return to a discussion of Eq. (V.53b), which 

depends weakly on the observation position z = z through the 

function HL. 

Having found the phase integrand I and the saddle-point 
i i i 

to = a>. + 6d) in the regions a and b of Fig. V.14, we approxi­
mate G j. from Eq. (V.36) by expanding I about the saddle-point 

—cut 
and evaluating e\,, f(Zj,<o ), f(z ,w ), and {1 - i p_,p+ T^} 

1 
at the saddle-point. This gives (see Ref. sec. 0), for region a , 

X 

exp(i-ljr + e , - ^ t ) +c.c. CK4) 

and, for region b , a similar form but with 9 replaced by 0 p 

everywhere and the term iir/2 dropped from the exponent. 
2 '2 The term d 9,/diD can be replaced by its unpumped 

o 

(D •*• 0) value, given by Eq. (V.41c), for the saddle-point given 

by Eqs. (V.44c or 46a). However, as the observation position 

approaches the resonance position, zjio,), and the saddle-point 
2 * 2 takes on the form given by Eqs. (V.44b or 46b), d Q./Ata becomes 

twice its unpumped value; this corresponds to the group velocity 



165 

decreasing to half its unpumped value when the wave-packet is travel­

ing through its resonance zone (as discussed below Eq. (1.4) and 

in sec. Ill c and shown in Fig. 1.4, with V_ = 0 here). For 

the saddle-point given by Eq. (V.44a), d"9./da) increases to 
2 2 B /A times its unpumped value, thereby decreasing the contribution 

of this saddle-point to Eq. (V.54). 
2 f2 The term d 9p/dw , used in Eq. (V.54) when we are con-

i 
sidering region b of Fig. V.14, can be replaced by its unpumped 

value 

^<V)=2i&K CZ.55) 
when the saddle-point is given by the limiting form (l), valid 

for M. - at (z^w.)) » 2w 16u) | and discussed above Eq. (V.53a). 

However, as the resonance position z (a).) approaches the turning 

point z (io,), and the saddle-point takes on form (2) given by 
2 !2 Eq. (V.53a), d 9?/du) becomes 5/2 times its unpumped value. 

The factor 5/2 has no apparent significance and does not seem to 

correspond to any change in the wave-packet group velocity since Eq. 

(V.53a) is valid along the entire z-t trajectory (for t £ t ) 

defined by u>. = constant and zj, w,) = z (u.) and shown as line 

"a" in Fig. I.10; along this trajectory, the group velocity must 

be the same as in the unpumped case. 
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In the next section, we will determine the contribution of 

the poles (i. e., eigenmodes) to Eq. (1.29). Finally, in sec. V C 3 

we will compare the magnitude of our two contributions to (J,. 

2. Contribution from Poles 

We remind the reader that we are in the process of calcula­

ting the Green's function G.(z jZnjtjk.,), f r o l n Eq.- (1-29), using 

the integrand G.(z ,z,,,(i) ,1c-,) obtained in sec. ? A 3. In the 

previous section, we determined the contribution from the branch-cuts 

of t . In this section, we will calculate the contribution from 

the poles of G. in the complex uj.-plane (see Fig. V.13, sec. V B, 
t 

and Eq,. (V.32) for the position of the eigenvalues <J>1N). 

This contribution, G . , can be written in the same form 

as Eq. (V.36), where the integration is now around the poles of 

I(z ,Z£,w ,t) = I/{1 - i[p_,p+j~ 1 } with I given by one of 
T t 

three possible forms: (l) for z„ £ z ^ z (u ) < z (ui ), 
x, g — ' + 

I=exP(e £) ; (£ 5 6 a ) 
(2) for z^ <\, z_((D ) £ z < z+(w ), 

I = exp(if + 0,) + exp(9 2) • (E56b) 
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(2-.56c) 

(3) for z_(u> ) < z^ 1 z g < z+(u) ), 

I=exp(if+ 0,) +exp(02) + 
+ exp(i4jr+e3)-exp(eij_) . 

The functions 0 and 9 2 are defined in Eqs. (V.38 a, b), while 

9_ and 6. are similarly defined by 

0^ e3-Z\ff(z,"')te . (Z.57t) 
z 3 

CZ58a) Prom the residue at the poles, we obtain 

+ C.C. 

X'&HfcrA} (K58L) 
« , IN 

where the summation is over all the eigenvalues w 1 M. We will next 

determine the derivative term Y M that appears in Eq. (V.58). 
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We obtain an approximate form for Y M by ignoring the 
! 

slow u -dependence of the Stokes constant T and writing 

z_ 
where we have used the eigenvalue equation, Eq. (V.17), and 

i i 

f(z_,(D ) = 0 and f(z+,to ) = 0. The phase integral in Eq. (V.59) 

can be evaluated exactly in terms of elliptic integrals, similar 

to Eq. (V.24), giving 

»{i[E(|)-p2F(^]H-[E(p)-fF(p)]}. 
where q and p are defined in Eqs. (V.24 and 48), and X and 

X are defined in Eq. (V.2). In the limit of |q| « 1 and 

| p_ | « 1 (equivalent to small pump strength parameter D , and 

|X| » 1 in Eq. (V.2d)), Eq. (V.60) reduces to / w * A 

YN^-H-i(2X)!'2(|-/^K-i(^)] 
with Z = (o2Ln/i/)1/3; in the opposite limit of p_ * p + * X % +i 

and X £ 1 (i. e., far above the threshold found in sec. V B 1), 
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we find the same form as Eq. (V.61) bul with the replacements 

X •*• +i and 4*£ •+ 2ir. This latter result is most easily obtained 

by using p ̂  p_ * p + *> +i to simplify f = Xvxi (see Eq. (V.2e)) 
i 

and ta3ring the w -derivative of the approximation 

z+ 

-2i/fdz s-/TrrA(l + X 2 ) . 
z_ 

The physical interpretati of the three forms of I 

is as follows: form (l), Eq. ' 6a), consists of a single 

left-go-"Lig (toward decreasiiig density) wave for all z £ z_(u>,N) 

since the source is to the left of the resonance region, z ^ z_(u1H)> 
i . 

while all growing waves must come from the region z (ŵ v,) ^ 

i 

£ z < z (u 1 H) and be outgoing to the left of the lower turning-
point z (the left-and right-going waves, corresponding to 9.. 
and emitted directly from z , are ignored here since they will 
never or have not yet reached the resonance region and grown); 
form (2), Eq. (V.56b), consists of a right-going wave (8 ) 
reflected from the turning-point z and a left^going wave (8 ) 
reflected from the turning-point z+Jfor the case z S z £ z < z + 

(i. e., the waves from the source have entered the resonance 
region and are at least partially trapped between the two turning 
points), and it consists of two left-going waves (6, directly 
from the source z and 8- reflected from z ), for the case 
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z £ z> £ z < z (i. e., all waves which escape past the turning 

point z" must be out-going in the region z £ z_); form (3). 

Eq. (V.56c), consists of left- and right-going waves (8 ) emitted 

from z , a left-going wave (6„) corresponding to the reflection 

of 8.. at the turning-point z +, a right-going wave (9.) 

corresponding to the reflection of 8.. at the turning-point z_, 

and right- and left-going waves (8-) corresponding to the 

reflection of 6- and 6 . at z_ and z +, respectively. Note 

that all of the above waves, observed at a fixed position z, 
t 

grow exponentially in time at the rate y N
 o f Eq- (V.35b) (inclu­

ding the above waves directly emitted from the source position z , 
s 

provided z lies within the resonance region z £ z < z 
s — s "*• 

where the responding density perturbation is also exponentially 

growing). 

3. Comparison 

In comparing the magnitudes of Eqs. (V.54 and 58a), 

we first consider the coefficients in front of the exponentials. 

Using Eqs. (V.41 c, e or 55 and 51b) and Eq. (V.39) with 

D * 0 (valid since we required |ta, - u | » 2io. |6o>| >u c A / Jyz = 
A g A 

= D in obtaining Eq. (V.53a); see also discussion after Eq. (V.4.1)), 

the coefficient in front of the exponential in Eq. (V.54)» for 

region b , becomes approximately 

/ 
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Scutl /l«p(%-^«f^"*6sf. 
QZ62) 

where we have ignored the term {l - i p_, p+ T } , 
fmax = " ^ V V ' f ( z * ' V ] ' a n d ^ ( L n / a , 2 ) a , 3 ( Z s ) / c » l 
is the large parameter required in a nonuniform plasma in order 
to use the geometrical optics description of the wave-packets 
far from their turning points (see sec. Ill B). Using Eq. (V.6l), 
the coefficient in front of the exponential in Eq. (V.58a) 
becomes approximately 

iM^\^K\"m 
q&s) 
LVD" 

c/fc) 
(¥.63) 

In order to use the WKB (or phase integral) approximation, 
T 

however, the phase integral must satisfy |X: v/q dp| £ 1 where 
TJ = p + or p . Otherwise, we must write the solution to Eq. (V.2a) 
near the turning points in terms of the two Airy functions (cf. 
sec. Ill B ) . For the wave-packets, where p + and p are not 
exceptionally close, the above condition gives |T - p| % X . 
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Using f s ^ = i/q X 1 / 3 / Z , Z s ( c ^ / i / ) 1 / 3 , and Eq. (V.2c), 

th is gives a lower bound on f for the wave-packets, 

If I > Z"' &64) 
and, hence, Eq. (V.62) gives the maximum value of 

CZ.65a) 

in the region where the WKB approximation is valid. We have already 

shown in sec. Ill B that, for an unpumped nonuniform plasma, 

|G . | attains the above value at the very early time t = 

= u(zs)t/C % 2£~ 1 / 3 for z % zg and that 12,, t | continues 

to increase as time decreases until 

at t = 0 and z = z . For this early time range 0 — % £ 2£~ 

and z <\» z , we showed in sees. Ill B, C that we can apply the 

uniform plasma results for which there are no eigenmodes (i. e., 

they have negligible amplitude compared to the wave-packets at 

early times); for t ^ 2 ? , however, nonuniformity of the 
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plasma is important and our present analysis (including this 

nonuniformity) does give eigenmodes. Next, we will calculate 

|f| . and |G , | , assuming we are in a space-time region 

where nonuniformity is important (giving the eigeninodes). 

Assuming X <\< 1, so that p + and p are close together 

for the eigeninodes, the above condition for the validity of the 
i i 

WKB approximation becomes |T-p|<)(2N + l ) A 2 ( T = p + or 

p ) while, from E<i. (V.20), |T - i| £ (2N + l ) 2 A~ Thus, 

for the lower N eigenmodes, the WKB approximation is just barely 

valid. Setting p = +i for the closest approach to both p + 

1/3 and p_, and using Eq. (V,2c) and f = ,/Cj = ,i/§" X /Z, the 

minimum value of f then becomes 

£ 
*&,) mm 

(2N+3) cJg5> 
1% 

YD &G6) 
and Eq. (V.63) gives 

|5poles| 

(¥.67a) 

which is TT 2 X u(z )/u smaller than Eq. (V.65a). However, 

p = +i is only possible at "quarter-critical" density (where 

a) = a) ) since, from Eq. (V.l and 35b), Imp = 2a) A) ; at 

lower densities (w £ <ik/2) it is more typical to take |q| ̂  1, 
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and then |cf/(D(Z )| . i> \/D/iiiz ) which is J\~ larger than 
Eq. (V.66), thereby further decreasing Eq. (V.67a) by an additional 
factor of X . Thus, in the limit of a uniform plasma, A -»• » from 
Eq. (V.2b) and G ^ vanishes. 

In the opposite limit A « 1, the condition 
X J ~k dp £ 1 gives |p + - p| * A ~ 2 / 3 and |f ̂  % Z _ 1 , as. 
in Eq. (V.64). From Eqs. (V.26a, b) with X complex, |p +| % 

% |2X| » A~ '•* (leaving plenty of room to use our WKB results). 
Then Eq. (V.63) gives (jZ.(o7k) 

which is much smaller than Eq. (V.65a). Of course for X < \ = 0.32 
from Eq. (V.31 b ) , the eigenmodes are decaying exponentially in 
time and are therefore negligible. 

The conclusion thus far in this section, considering only 
the coefficients in front of the exponentials, is that the wave-
packets are intrinsically much larger than the eigenmodes (cf. 
Eqs. (V.62 and 63) with cf/u)(z ) "u 1). This remains true 
(although only marginally)even at early times with f •+ 0 for 
both z„ and z (cf. Eqs. (V.65a and 67a or b)). Thus, the 
eigenmodes will remain negligible until their exponential term suf­
ficiently dominates the exponential term of the wave-packets so as 
to overcome this intrinsic weakness of the eigenmode coefficient. 
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We will next consider in detail these exponential terms in 

Eqs. (V.54 and 58a). We rewrite the functions 6 through 6 
J- 4 

giien in Eqs. (V.38 a, b , and 57 a, b ) , as 

0 | = - i a / t + 9 ( - 3 z Qjgg^ 

e 2 =-icyt + 9, + 3 2 + 3 3 (v.G8k) 

G 3 = _ i a ) / t " 3 , + 3 2 $Z-.G8c) 

0 t = - i a / t - 3 | - 3 £ " 33 > CM&O 
where _ 

f-

-ft 

3a3i2yVfJp . &68g) 
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In the discussion below Eq. (V.34) (see also Eqs. (V.35b and 1.2)), 
i 

we showed that the eigenmode growth rate Y N is always less than 

the uniform plasma growth rate y but that the ratio approaches 

its limiting maximum value 2(o) OJ. ) A) £ 1 for N = 0 and X -* =°. 

We therefore evaluate g, and g_ only for X ̂  1 and H = 0 . since 

for X « 1 or N » 1 the eigenmodes remain negligible (compared 

with the wave-packets) for a longer time (we are interested here in 

determining the minimum time necessary for the eigenmodes to 

dominate). For X £ 1, we showed in Eq. (V.19) that an anti-Stokes 

line connects the transition points p_ and p + (for N not 

too large) so that g. is pure imaginary and does not contribute 

to the magnitude of Eq. (V.58a). 

We calculate g_ assuming X <\, 1, p_ £ p < p , and *- — g 
for now |p - i| « 1. Using q >v> (p + - p)(p - p_)/i and 

setting Re(p) = 0 (i. e., z = Re z ), we find Ee(g0) % 

g g °° £. 

£ (1 - 2OJ /(0 o) 2/2/f« X valid only for |lm p - l| = 

= |l - 2o) A) |« 1. For the eigenmodes, an anti-Stokes line connects 

p and p +, and another anti-Stokes line starts at p = 0 and 

curves off toward the right, while one Stokes line from each of p 

and p curves down and around the right-hand-side of p = 0 

(see Figs. V.3a-b, 4b-c, 4d-e, 5e, 5g). Thus, Re(g2) = 0 

everywhere along the anti-Stokes line connecting p and p and 

monotonically increases as we approach the anti-Stokes line from 
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p = 0: the maximum value (assuming Im p i 0 or u t. 0) of 
Re (g 2) can then be obtained at p = 0. Writing g_ in terms 
of elliptic integrals of the first and second kind and expanding in 
inverse powers of A £ 1 results in g ^ (2N + 1)2TT/3 *<5{1) * 

+ C(A) at p = 0 . Thus, for p £ p < p , |Re g | £ 1 and 
g — g + c. 

can be ignored in evaluating the magnitude of the exponential 
term I in Eq. (V.58a); of course, the same holds for g. when 
P_ ̂  P £ < P+-

We next calculate g,, assuming A X, 1 and p. £ p_. 
For 1 £ |p_ - p^l <t |p+ - p_| £ 2{2N + l ) V A , we obtain 

similar to our result in the above paragraph for g p except for 
the sign (we are now on the left-hand-side of the antl-Stokes line 
that comes down from p and curves around p = 0 and off to 
the right in Figs. V. 3a-b, 4b-c, 4d-e, 5e, 5g). For |p - p. | » 
» 1 » |p+ - p j, we can write g. in terms of elliptic integrals 
of the first and second kind and, expanding this assuming 
|p,| » 1 and A » 1 , we find 

1/ 

+0-(l) + <5[-Re(p)]^ > 
(270) 

>£ 
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where (<i*iH)R
 i s given by Eq. (V.35a). The same results apply 

to g_ when p %> p_. 
c. g — 

We will compare the exponential terms in Eqs. (V.54 and 53a) 
for a = z „ 4 Re( z ) < z = Re( z ) and at a time corresponding to 

i 
the line of turning points in Figs. III.3 and V.14 : i. e., a) =u 

or £ ̂  2(z - z) (from sec. Ill B), which reduces to 

tS2[Z3*£c*fc]* (Y.71) 
for the case here with <5z = z - z„ = Re(z,) - z and Z = 

g X, + s 
= (c L /to ) . If we had chosen z £ Re(z_), the eigenmodes 

would have been exponentially smaller since Re(g„) £ -1 (as well 

as for g.) in 62- If we had chosen Re(z_) < z = z $ Re(z +), 

both g. and g„ would have been negligible, but the small 

value of 6z £ Re(z + - z_) = 2(2N + l ) 4 A.1/6Z and t ^ 2,/3(2N + l ) i . 

• X 1 / 1 2 5 2 / 3 / w s (i.e., t = ' Ugt/e £ 3 C _ 1 / 3 ) would give 

essentially uniform plasma behavior over this small space-time 
region and, since the ratio of the uniform plasma wave-packet growth 

the rate y *° the growth rate yC=n of the fastest growing eigen-

mode is always greater than ID /2(OI IU ) — 1, the term Re(-io) t) = 
o p 1 

t = Y N = 0t in Eq. (V.68) cannot overcome the corresponding term y t 
of the wave-packets (see sec. Ill C). In view of the intrinsic 

weakness of the eigenmode coefficient (shown uarlier in this 
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section), the eigenmodes would still be negligible compared to the 

wave-packets for this choice of z0 and z with t given by 
* S 

Eq. (V.71). However, if we choose z_ = z„ £ Re(z ) < z = Re(z, ), 
S X. - g + 

with t still given by Eq. (V.71), the side-scattered wave-packet 

resonance position z = ReCz^) (which lies between z and z ) 

is now to the right of the source position z . Hence, the side-

scattered wave-packet must travel for some distance and time (see 

Eq. (V.71)) before it can reach the resonance zone where it can 
i i 

start growing, while the particular term Re(-id) t) = Y H_ nt in Eq. 
(V.68) for the eigenmode (with N = 0) starts growing at t = 0. 

The only remaining question is whether the large negative value 

of Re(g.) (g„ negligible here) can overcome this apparent initial 

temporal growth advantage of the eigenmodes, and this will be con­

sidered next. 

Writing Eqs. (V.69, 70) in terms of 6p = Sz/ZX2'''3 

with <5z = Re(z, ) - z = z - z„, we have for 1 £ 6p K 2(2N + l)2X~* 
4- S g X> 

Re(g,)=-^(S f ) 2 , (2.72*) 

and for 6p » 1 

R e ( 3 ) s - 2 * ^ ( S / 2 + (3(1), &72t>) 
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where we have assumed A » 1. For A » 1, we also have Y N _ Q °" 

% 2v (» w. )*/<» = X 2 / 3c 2/Z 2o) , and using t = 2X1/3{ 5p ) 1 / 2w aZ 2/c 2 

O p X O O o 
from Eq. (V.71) gives 

Re(-i«'t)= VN'= t = 2 * g ( S / 2 . &73) 
In comparing Eqs. (V.72b and 73), note tha t (whM)o ^ 

£ (« + e 2 * 2 / a ) ) / 2 = w (z ) = {L> - w (z ) 1 2 + o 2 ^ 2 } * i s j u s t o JJL o o L o o J ± i 

the frequency of the side-scattered wave and, by assumption, i s 

greater than or equal to w (z = Re(z )) since waves of 
5 O co 

lower frequency than uj are evanescent (see sec. Ill B). S 
Thus, for 6p » 1, the large negative value of Re(g..) is more 

i 
than sufficient to overpower the term Re(-i(j t), for t given 

by Eq. (V.71), and we conclude Re(e1) % Re(e2) £ 0. 

On the other hand, the total side-scatter exponentiation 

factor Tp (including growth both before and after the wave-

packet encounters its turning point at z +) was earlier given in 

Eq. (V.53b). The term UL defined in Eq. (V.51b) is z-dependent 

(as mentioned below Eq. (V.53to)) but is not valid right at the turn­

ing point z (where we would like to compare the wave-packets with 

the eigenmodes, as decided above Eq. (V.71)) since we required above 

Eq. (V.51a) that |u 2 - M
2 | » 2U)A|6ID| (recall that o) = u>A 

at z = z +). We will return to this point below, but for now we 
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just set z 0 = z = z , assume u. * u = d). = u_, and obtain 
* g S A § A g 

h^ -v 2oî /fiî  - (/ ] * = aii^/CSpD)* for use in Eq. (V.53b). We 
then take one-half of T ? since we are really only interested for 
now in the growth accumulated up to the time the wave-packet en­
counters its turning-point at z = z +, and find /_ _- JI\ 

where, for the side-scattered wave-packet, u. = u (z ) = 

= ( u )o + ^u/^/2-
We can use Eq. (V.74) for Re(e 2), to go along with 

2 2 Eq. (V.62) in determining (G . |, provided [w. - w I = 
= fipD » 2u.|6u|. Using 6u from Eq. (V.53a) and fcL found above, 
this inequality becomes 

This is essentially a requirement, for the use of Eq. (V.74), 
that the source be outside the resonance zone; i. e., z « z - h/2 

' ' s o 
in Figs. 1.8,10 (for the side-scattered wave, the resonance 
position z = Re(zoo) coincides with the turning point Re(z )). 
For smaller values of 6p, so that z - h/2 ̂  z £ z , the 
side-scattered wave-packet does not travel the full width (h/2) of 
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its growing region before it reaches its turning point at Re(z+) = 

= z and, therefore, Re(8 ) is smaller than r_/2. We can 
O £ £. 

estimate the proper value of Re(S ) by noting that, for 6p <v 1, 

the wave-packet temporal growth rate remains at nearly the uniform 
2/3 2 2 r t£ plasma value Y = X c /Z [2(u).u )j , u = IU - ui,, over most 

of the wave-packet trajectory so that Re(9_) % y t. Using Eq. 

(V.71), this gives 

valid for 6p £ 1. Setting Eq. (V.76) equal to r2/2 for 

X / 3 Z 6p = 6z = h/2, and using hi « ui. here (z -v z j , 
S A s + 

results in (£77) 

as an estimate of the resonance zone size. As explained in a similar 

discussion concerning Eq. (1.10b), this simple calculation can 

give only an approximate form for h since the average growth rate 

over the entire resonance zone is less than (-\. half) y while 

the time spent-in the resonance zone is greater than {^ twice) 

that given by Eq. (V.71) due to the reduced group velocity 

there (sees. I A 2 and III C give V = (^ + V^)/2 % Vj/2). 
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Roughly canceling these two effects again gives Eq. (V.77) for 
p In 

h. This corresponds to a value of 6p = h/2 A ' JZ £ 1, as expected, 
and roughly agrees with our earlier estimate h ̂  X Z 5(u A). ) a 

P A 

from Eq. (1.10b). 

We summarize our results concerning the exponential terms 

(in Eqs. (V.54 and 58a)) in Fig. V.15. The top curve is Re(92) 

vs. Sp for the side-scattered wave-packet where we use Eq. (V.76), 

for Sp £ 1, and Eq. (V.74), for 6p » 1. The bottom curve is 

Re(0„) vs. Sp for the N = 0 eigenmode where we use Eqs. (V.72a 

and 73), for 2A"* £ <Sp £ 1, and Eqs. (V.72b and 73), for 

Sp » 1, in evaluating Eqs. (V.68a, b and 56 b) (g_ and g_ 

negligible here). These two curves of the exponentiation factor 

Re(8?) are evaluated at the turning point time, given by Eq. (V.71), 

as a function of the distance Sz = Re(z ) - z between the source 
2/3 z and the turning point z + (Sp = 6Z/A Z). We previously showed 

in this section that the side-scattered wave-packet is intrinsically 

dominant (considering only the coefficients in front of the 

exponentials••) over the eigenmodes, and Fig. V.15 shows that it 

remains dominant (including the exponential terms) over the 

eigenmodes even up to and past the time the waves reach the turning 

point z regardless of the distance between z and the source . 

z . Since the side-scattered wave-packet continues to grow while 

it is in its resonance zone, and its growth rate here is greater 
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than that of the eigenmodes, it also remains dominant at the 

"side-scatter saturation time" t when it exists its resonance zone 
s 

(as shown in Fig. 1.10). As shown in Fig. 1.8, the minimum 

value of t occurs for the source located at the resonance zone s 
edge and, assuming no pump modification in the group velocity, 

would he given by twice Eq. (V.71) with 6z = h/2. However, 

the reduced group velocity in the resonance zone (sec. I A 2 and 

III C) increases t by an additional factor of 2 for a given 
s —^^—— 

value of h, i. e., Eq. (V.77). The minimum value of t is 
thus approximately 

6 x 
(Y.78) 

c 2 

The temporally growing eigenmodes will begin to dominate over the 

saturated side-scattered wave-packet shortly thereafter, or at a 

time on the order of 2 t . 
s 

We have so far discussed the response only at a given k, , 

as indicated in Eq. (1.29). This would be sufficient if the plasma 

and pump wave were of infinite extent and the source periodic 

along x and y, but if our source delta-function in Eq. (1.25a) 



185 

had also been proportional to <5(y), for example, an integration 

over k_ would also be necessary in Eq. (1.29). As discussed 

earlier in the middle of sec. I B , such an integration converts the 

periodic behavior in y into a "wave-packet" behavior in y 

with all the waves (both the old wave-packets from Eq. (V.54) and 

the eigenmodes from Eq. (V.58a)) now moving with a group velocity 

V along t-y trajectories labeled by a saddle-point (i. e., 
&J 

2 
wave-packet) 11. . Usually, V = t c /UL as in an unpumped 
plasma; however, in the resonance zone the pumped uniform plasma 

theory (sees. I A 2 and III C) predicts a reduced group velo-

city Zg = (^ + Vg)/2 or 1 & = (c 2/^ - 3v 2
h/f2J^/Z * k^c 2/^-

Thus, by time t aU of the waves will have convected along y 

a distance 

We have so far ignored variations along y in our system (plasma 

and pump wave intensity), but if, for instance, the pump wave 

( e. g., a laser) has a finite diameter d., we have a new 

effect: all waves stop growing when they have convected along y 

a distance greater than d T! Sinca we have already concluded that 
ii 

at time t the eigenmodes are negligible compared with the 
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side-scattered wave-packet, provided some nonlinear process has 
not earlier saturated the wave-packet growth (i. e., r % Sn(n A _) 
the "Coulomb logarithm" as mentioned in Hef. G III), the eigen-
modes will forever remain negligible if 

y s > d L . &80) 

Hie conditions necessary for experimentally observing the 
eigenmodes are, therefore, as follows: for dominance over the 
side-scattered wave-packet we must have an observation time or 
pump wave (i. e., laser pulse) duration 

t L * 2t s & 8 l a ) 

and a pump wave (laser focal) diameter 

for observation above thermal noise we must have a sufficiently 
large exponentiation 

r2 > r/ » i , &8ic) 
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where V ( typical ly set equal to 10 here) i s some a rb i t r a r i l y 

set lower bound of growth below which we consider the waves to be 

negligible. We obtain ?2 from Eq. (V.74) evaluated a t 

6p = h/2 X ' 3 Z using Eq. (V.77); t h i s gives a side-scattered 

wave-packet exponentiation factor fXT Oi \\ 

XLn(|ini)[lo(l0 ,7w«tV:m9|^ (£g l e ) 

Note that Eq. (V.Sid) i s equal to Eq. (1 .9) multiplied by the 
2 1 /A small factor (a) w./tu ) ' , so the agreement between the two p A o 

exponentiation factors i s very good. Equation (V.8la) i s shown in 

the next section to bo easily sa t is f ied; however, Eq. (V.8lb) i s 

much more r e s t r i c t i v e . 

The lower bound on i, (for eigenmode observation) 

given by Eq. (V.81b) depends on both pump wave intensity 
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I = (v /c) m tiTc /2ne-—and density scale length L , but we 
can approximately eliminate either one of these variables (see 
Eqs. (V.82 a, b, e, f) below) by using Eq. (V.Slc). Equation 
(V.81b) then takes on one of two forms: (l) if for given L 
the intensity satisfies | f t 

or equivalently 

I>^ t V ^> 2 3© 3 (^ ( f ) -

then (for eigenmode observation) d. must satisfy 

j >?^f4i-vii*coifii.)i^^r/rx 

&.82c) 
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or equivalently 

d. lum) i. lUlTT-i \—T-\ I — ) X 

. c 
x 

(2) from another point of view, if for given I the density 

scale length satisfies 

-4 r c /TT\T -£ 

2 M iSnWS)] 'r; 
fc. .-*/,, c i -, & 8 2 e ) 

or equivalently 

'A' V~P' 

•M1 k(r)]\(iow43t 
then (for eigenmode observation) d. must satisfy 
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\i/ck,J\A/o\ I/" 
L ^ @ ) a g # K Cruzj) 

or equivalently 

Equations (V.82c, d, g, h) agree exactly with Eq. (V.Slb) 
i 

only if T_ = r_, but the sense (or direction) of the inequality 
i is still preserved if we use the smaller constant T assuming 

Tp ^T . Again, Eqs. (V.82a, b, e, f ) are just different ways 
of writing the same condition given by Eq. (V.8lc). In Eqs. 
(V.82b, d, f, h) the pump wavelength A , L , and d. are all 

17 2 in units of microns, and I is in units of 10 watts/cm . 
From previous definitions, we recall that u>. = a) - b ) = u ) ( z ) = 

A o p o 

= (u + cTcji/w )/2 for the side-scattered wave and K = |k - k ̂ 1 = 

= <*o + kl/' 
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The usefulness of Eqs.(V.82a - h) can be demonstrated 
as follows: if the density scale length L of our plasma was 
fixed, Eq. (V.82b) would give the minimum laser intensity I 
and Eq. (V.82d) an absolute minimum laser focal diameter d- needed 
to observe the eigenmodes; if, instead, our laser had a fixed in­
tensity I , then Eq. (V.82f) would give the minimum density 
scale length L that must be arranged in the plasma and Eq. 
(V.82h) again an absolute minimum laser focal diameter d_ 
needed to observe the eigenmodes. Multiplying the intensity I 

o (either given by Eq. (V.82b) or fixed ) by d (using either Eq. 
I* 

(V.82d) or Eq.. (V.82h)j respect ively) , resul ts in a single 
2 expression for the absolute minimum laser power P = I d. needed 

for eigenmode observation: 

or _enuivalently 

*'\2 •9tf W • &83b) 

12 with P expressed in units of 10 watts. Again Eq. (V.83) 
1 agrees exactly with Eq. (V.8lb) only if r„ = r ?. We note, however, 
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that the condition d. £ 2y is required only along y (the 
side-scatter direction) and not along x (the polarization direction, 
E = E x). Since we usually set k, = 0 for maximum growth (see 
Eqs. (1.2 or 25c)), the only requirement for the validity of our 
results is that the plasma and pump wave be relatively uniform 
compared with the resonance zone width h from Eq. (V.77); if 
Ax. is the focal width of the laser along x, we require 
A x . » h (note that k h » 1 was assumed in sec. II). Thus, by 
using a noncircular focal cross-section flattened along x, we can 
now write the power as P = I dj-Ax. and reduce our power require­
ment from Eq. (V.83) by the factor Axj/d,. (typically « l). 

These expressions for the minimum necessary d. (which 
do not in general agree with each other) and P are only approx­
imate since we have used T (a constant) rather than r_ (a 
function of I and L proportional to I L ) in Eqs. (V.82c, 

d, g, h and V.83a, b); the expressions are correct only if we 
i t 

replace I" by T For instance, if V2 = r /2 then Eq. (V.82d) 
1/3 (as written) is a factor of (1/2) ' smaller and Eq. (V.82h) 

(as written) a factor of 1/2 smaller than the correct minimum 
d_, and Eq. (V.83b) is a factor of (1/2) smaller than the 
correct minimum P . That is why we used the word "absolute" 
above, since the correct minimum (i. e., the greatest lower 
bound) is generally larger. Since the correct expressions for 
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the lower bounds on d. and P require using V in place 
i 

of T in Eq. (V.82 c, d, g, h and V.83 a, b), the correct 

minimum 6- and P are not independent of the exponentiation 

factor T bu t rather increase with V . Thus, once we have 
i 

reached V = T and satisfied Eqs. (V.82d or h ) , a further 
i 

increase in I or L will increase T„ past T. and increase o n 2 r 2 
the necessary dT past the forms given by Eq. (V.82d) or Eq. 

Li 

(V.82h), respectively, if the eigenmodes are to be observed; this 

makes the observation of the eigenmodes more difficult (in 

spite of the large I" ) because the condition on d. from 

Eqs. (V.82d or h) (or equivalently on P ) is generally already 

restrictive. The eigenmodes cannot be observed if T < r„, 

because of insufficient growth, and generally they cannot be 

observed if V » T- (unless nonlinear saturation occurs), 

because of the restrictive condition on dT or P for the 
L o 

eigenmodes to dominate over the side-scattered wave-packet j the 

most favorable conditions for eigenmode observation thus occur 

at F = F (the equality in Eqs. (V.82b or f)), provided 

Eqs. (V.82d or h, or V.83b) can be satisfied. 

In the next three sections, we will apply these results 

to three situations where one might try to look for the Raman insta­

bility: a typical laboratory theta-pinch, laser-fusion experiments, 

and computer simulations. 
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D. Examples 

Theta-Pinch Parameters 

We do not wish to go into a long discussion of various 

theta-pinch experiments and fusion proposals (see Pef. A VI), but 

rather just take as typical parameters a density n ̂  10 cm" , a 

density scale length L ^ 10 cm along the axis, and a radius 

r ^ 1 cm. Using a C0„ laser with X = 10.6 urn and p 2 o 
i / —1 to = 2 x 10 sec , we then have the following additional 

relations: u> /u ^ 10, to /u -v 9, K ^ /Tk ; Kc/w ^ 14, 
O p h p O p 

c k l y / t ° A ^ ° - 9 9 -

Taking V = 10, Eq. (V.82b) then gives 

I o > 1.3 X ID4* watt*/cmZ , CT.84a) 

Eq. (V.82d) gives 

d L > 33 cm , &84b) 

while Eq. (V.83b) gives (P = I dj?) 

Pe > 1.0 X 10' Watts (2.84c) 
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as the conditions that must be sa t i s f i ed in order to observe the 

eigenmodes (assuming no nonlinear saturat ion) . While Eq. (V.84a) 

gives an eas i ly obtainable in tens i ty , the required d- i s much 

larger than even the typical theta-pinch plasma radius! Even if 

L were decreased significantly in order to reduce the requirement 

on d- (although thereby increasing the required I ) , the power 

requirement from Eq. (V.84c) remains unaltered and prohibit ively 

large (equivalent to 10 ki lo- joules delivered in 1 nano-second). 

From Eq. (V.Sla) , the required laser pulse duration i s t . *u 

^ (d L /c) /£k / < 0 o r \ ^ 1-1 nano-sec. From Eqs. (V.8ld, e ) , 

at an in tens i ty of I =10 watts/cm we have A. *\» 3.0 and 

T "u 10.9. However, the side-scattered wave-packet requires a 

distance y ^ 16.5 cm to saturate a t the level V ^ 10.9, 
S c. 

whereas the plasma radius is only r ^ 1 cm; thus, the wave-
packet will saturate early at a level of only (r ) ^ 
% (10.9)(2r /y ) £ 1 or even less if the actual laser focal P ° 
diameter dT < 2r so that the v, j.ve-packet would exit the L p 
pumped region before leaving the plasma. For the sake of com­
pleteness, the growth rate of the wave-packet (at the center of 
the resonance zone) is given by Eq. (1.2) as 7 /<u = 
= 0.067(a) / ^ ^ ( K c / i o j f y i O ^ w / ^ ^ X ^ y m ) X 1.1 * 1 0 - 3 

10 2 at I = 10 w/cm while the resonance zone width is given hy 
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Eg.. (V.77), with Z = ( A /(i)^)1^ ̂  0.28 mm, as h * 4.9 Z X 2 / 3 • 

• (w./ti)o)2/3((o / w A ) 5 / 6 ^ 1.5 Z % 0.43 mm using X = 3. 

We conclude that the observation of the eigenmodes in a 

plasma with theta-pinch parameters and an axially directed laser 

is highly unlikely: it would require an extremely high power 

laser (P £ 10 watts for 1 nsec.) and a density scale length 

somehow reduced much below 1 cm. However, by firing the laser 

in perpendicular to the theta-pinch axis rather than along the 

axis, L « 1 cm can be achieved, and with L = 1 mm ' n n 
the requirements are I ^ 4-3 x 10 watts/cm and dT & 1.5 cm; 

O ij 

moreover, with h a, 0.090 mm (using X = 3) we can take 

Ax- = 0.5 mm » h (as discussed below Eq. (V.83)) and reduce the 

power requirement to P = I d-Ax,. ̂  3-3 x 10 watts (e. g., 15 

joules delivered in t T % 50 pico-secs) by using a noncircular 

focal cross-section with the polarization perpendicular to the 

theta-pinch axis (now the side-scatter direction). We finish this 

section by noting that, from Eq. (V.83b), we roughly have the 
12 2 

required P (10 w) >v> 2(ck, /ID.) (W./M ), which decreases as 

(1) -*• <D. •*• w /2: this motivates considering a lower frequency 

laser or a higher density plasma (e. g., a laser-pellet fusion 

experiment, as in the next section). 
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2. Laser-Pellet Fusion Parameters 

a. Slab Plasma 

In present experiments (see Ref. sec. H) using high inten­

sity short duration laser pulses such as from a Nd:glass laser 

with X = 1.06 urn and cu = 2 x 10 sec - 1, typical parameters 

in the underdense plasma region are a density n % 10 cm 

and a density scale length L "u lOjAm. Since our power require­

ment from Eq. (V.83b) (necessary for observing eigenmodes) 

is minimized for ID •* w. •+ w /2, we pick a value of m 

reasonably close to to /2 (and yet not so close as to violate o 
approximations made in sec. II): we take w /us = 3, ti)./d) = 2, 

K = k Q(ll/8) s, Kc/u = (11)*, and ck l y/w A = /J/2. 

Using T = 10, Eq. (V.82b) then gives 

I > H--5 X 10 , S wa t t s / cm 2 , (S.85a) 

Eq. (V.82d) gives 

d L 2 80|xm , &85b) 

while Eq. (V.83b) gives (P Q = !<,<!,) 
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?0>2.°l * 10' 2 watts §Z.85c) 

as the conditions that must be satisfied in order to observe the 

eig modes (assuming no nonlinear saturation). The intensity 

given by Eq. (V.85a) has been exceeded or approached in many 

experiments, but only by reducing the fotjal diameter d. to 

30 pm or less (see Ref. sec. H). All of the conditions listed 

in Eq. (V.85) will undoubtedly soon be exceeded: the power require-
12 ment of 3 x 10 watts is equivalent to 300 joules delivered in 

100 pico-seconds, and the pulse duration requirement of only 

t, ̂  0.31 pieo-sec is no problem. In raising the power to this 

level with short duration pulses, however, the density scale 

length may be reduced below 10 um thereby further increasing 
17 2 the intensity requirement (perhaps past 10 watts/cm ), and 

unless the actual focal width dT is correspondingly reduced 

according to Eq. (V.82d) this would increase the power 

requirement past that given by Eq. (V.83b). Thus, in trying to 

observe the eigenmodes, it may be a losing battle if one tries 

to attain the necessary power by compressing the pulse duration 

and, if the power requirement is not reached, it does no good to 

increase I by strong focusing because Eq. (V.82d) would 
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eventually be violated. Also, although at an intensity of 

I = 5 x lo 1 6 watts/em2 we have X = 3.8 and r_ £ 11, the 
o <• 

side-scattered wave-packet requires a distance y ^ 40 urn 

to saturate at the level T„ >v 11 and this distance may exceed 

the actual laser focal width d.; if this happens, the connec­

tive saturation will occur early at a level of only (T ?)_+.-, ^ 

*> ll(dT/y ), and this may explain the lack of experimental 
Li S 

evidence for the side-scattered wave-packet (although there are 

other possible explanations such as an unexpectedly small L , 

or density fluctuations 6n/n ^ V2L along y over a distance 

scale y < y corresponding to an effective density scale length 

I, ^ 2y L /h). For the sake of completeness, the growth rate 

of the wave-packet (at the center of the resonance zone ) is 

given by Eq.(1.2) (see also sec. V D 1) as Y A> = 0.12 at 

I = 5 x 10 w/cm while the resonance zone width is given by 

Eq. (V.77) (see also sec. V D l), with Z = (c 2L n/a- 2) 1 / 3 = 

= 1.3 wm, as h * 5.1 Z % 6.4 um using X = 3.8. 

For a laser-pellet fusion reactor, a density scale length 

L R; 100jam is generally thought to be typical in the under-

dense plasma region (see Ref. sec. J). Equation (V.82b) 

then gives 
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I > 2.1 * 1 0 , S w a t t s / c m 2 , (2.8Ga) 

Eq. (V.82d) gives 

d L > 370 |xm , (5.8Glb) 

while the power requirement (P = I &.) remains at P % 
O O l i O 

& 2.9 x 10 watts as the conditions required for eigenmode ob­
servation (again assuming no nonlinear saturation). The intensity 
given by Eq. (V.86a) is exceeded in typical proposed laser-
pellet reactors (Ref. sec. J) and in many present laser-fusion 
experiments(Hef. sec. H). However, the focal width requirement, 
given by Eq. (V.86b), is somewhat restrictive for a single laser 
beam (reactor proposals envision using multiple over-lapping 
laser beams to cover a spherical pellet surface, but this case 
will be looked at in the next section); this is especially true 
in present experiments where d. *6 100 at this power. If 
a density scale-length of L % 100 um is reached (e.g., by 
using a laser pre-pulse in present experiments), the resonance 
zone width would be h ̂  5.1 Z % 14 um using Z s ( o ^ / u 2 ) 1 ' 3 % 
•fc.2.8 um and A = 3.8 (equivalent to T_ % 11 and Y0/«> = 

_2 = 2.5 x 10 ). Thus, by using a noncircular focal cross-section, 
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with the width along the polarization reduced to AT ^ 30 Vim » h 
and the width along the side-scatter direction increased to dT X, 

% 370 um, we could satisfy Eqs. (V.86a, b) and yet reduce the 
power requirement to only P = I d-Ax. £ 2.3 * 10 watts 
(equivalent to 23 joules delivered in 100 pieo-seconds). This 
is within present laser capabilities, although this type of 
focusing would be extremely difficult (the slit-like focal 
spot would have to be straight within 30 vm. over the entire 
length of 370 Vm). 

In conclusion, it appears to be very difficult to arrange 
all the parameters (plasma and laser) in a manner satisfactory 
for the observation of the eigenmodes in a slab profile laser-
fusion experiment. Generally, this requires a laser power 

12 P i 3 x 10 watts, although this power requirement can be 
reduced somewhat (t» AxT/d..) by using a noncircular focal 
cross-section; for this purpose, a density scale length L % 
% 100 u m seems best since the required dT is then sufficiently 
large that one can adjust Ax. to satisfy dT » Ax. <\» 30 um 
(also, larger d. allows the laser power to be delivered over 
a longer pulse duration before the laser ponderomotive force 
and local plasma heating have a chance to create density gradients 
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over the focal diameter d,; at 1 keV temperature, sound waves 
take 3 picu-sec to travel 1 unj). Thus, this appears to be one 
possible explanation for the lack of experimental evidence for 
these eigenmodes. In the next section, we will consider the 
modifications introduced by a spherical pellet-plasma. 

b. Spherical Plasma 

The eigenmode calculation has been extended to the case 
of a spherical nonuniform plasma n = n(r) by Iiu, Rosenbluth, 
and White (Ref. G IX). They reduced the problem down to two 
dimensions by considering a cross-section of the spherical pellet 
containing both the incident laser k = z and the scattered 
electromagnetic wave L = y. Expanding n = n [l - (r - *„)/!< 1 
about the resonance position (i. e., radius) r , and taking the 
center of the sphere at (z = r , y = 0), they then used the 
approximation r "k, r - z + y /2r in n(r) (valid for 
|z/rQ| « 1 and |y/rQ | « 1). By dropping the 3/9y 2 

term in Eq. (1.21) (valid for |y/rQ| « 1), and factorizing 
'* Ejfz, y, u^) = E^z', o^, Kjy) expfik^ y(l + z'/rQ + y 2/6r 2)] + 

i 2 + c.c. with z s z - y /2r , they obtained an equation for 
i 

E.,(z , a),, k, ) identical in form to Eq. (1.25a) with z 
i p ' 

replaced by z but with the additional term - 2k- z /r 
added to Q(z , to,, ̂ ly)- ^ n^ s ^ * u r n g i v e s a l 1 equation 
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identical i n form to Eq. (V.2) but in terms of a variable 

p = ap(z , GJ , k ), parameters X = X/va and X = 

= fx + 2icTi? (Y + v )L /(u r D|/a, and the function q (z ,X ) = I l y p n p o ) 1 1 1 / 
i i i _ 

2X - p + 1/p , where y = Im UL i s the growth r a t e and 

a = (1 + 2CTL. L /GO r ) E . Thus, a l l of our resul ts obtained in 
? 

sec. V A-C are s t i l l valid provided we substitute p for p, 
i i 

* for A, and X for X everywhere. We do not wish to go 

into this in any more detail here but rather just point out that 

the spherical plasma modifications, to our previous slab 

plasma results, are small whenever 2(ck.„/<•>,) (OJ,/(I) ) L /r <v> 1. 

For proposed laser-pellet fusion reactors (Ref. sec. J), 

typically L <v< 100 um and r 'v 600 pm giving 2(ck. /u.) • 

• (<D./UJ ) L /r % 1 for oi./d) = 2. Thus, Eqs. (V.86a, b) and 

P £ 3 x 10 watts are still approximately correct in giving 

the necessary conditions for observing the eigenmodes. Equation 

(V.86b) can be checked another way by noticing that the back-

and side-scatter wave-packet saturation is due to suffering a 

density change corresponding to a change in position of half the 

resonance zone width, or h/2, and that a corresponding density 

change in the spherical case with z held fixed requires a 

distance along y of (r h) . Thus, an effective resonance zone 

width along y is h % 2(r h) , and the maximum required laser 

focal diameter (i. e., an upper bound on the quantity that 
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appears on the right in Eqs. (V.Slb, 86b, etc.)) is necessarily 

2h % 4(r h) (it is an upper bound because refraction will not 

allow z to remain fixed, but will cause an earlier saturation than 

predicted by h alone and, thus, an earlier appearance of 

the eigenmodes and a less stringent requirement on d. for their 

observation). We can, therefore, believe Eqs. (V.81b and 86b) 

whenever they give an smaller requirement on dT than 4(r h ) s ; 
lj O 

otherwise, the curvature of the spherical plasma has a major effect 

on the side-scattered wave-packet saturation. In our present case 

with h *fc 14 um, both estimates give 370 urn. 

The intensity given by Eq. (V.86a) is exceeded in typical 

proposed laser-pellet reactors (Ref. sec. J). However, d,/2 *»» 

i> 200 um does not very well satisfy |y/r | « 1 ( a requirement 

in the extension of the eigenmodes to a spherical plasma), and 

this may lead to an early saturation of the eigenmodes at a 

level comparable to that of the side-scattered wave-packet. 

Also, although in a laser-pellet reactor the intensity is required 

to be highly uniform (multiple over-lapping laser beams), the 

polarization will not be uniform but rather will change on a 

distance scale d .. comparable to the spacing of the individual 

laser beam focal centers. This spacing or d . may or may not 

exceed 370 um, and if d . < 370 um the eigenmodes would saturate 

early before they could be observed above the side-scattered 
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wave-packet. For the side-scattered wave-packet, y **» 185 Pm, 

so its convective saturation would remain at T except for very 

small d. or d ,. At an intensity of I = 10 watts/cm , V % 

*• 32 and y i> 270 um, and even if d . were reduced to s pol 
150 um T ^ 18 would still be sufficiently large that the side-

scattered wave-packet and eigenmodes would probably saturate 

together and at an earlier nonlinear level. Since growth suf­

ficiently large as to require nonlinear (as opposed to linear 

conveetive) saturation is undesirable (as discussed in sec. I A 1), 
If* P 

and an intensity as high as 10 watts/cm is typical, this 

indicates possible future problems (in spite of the previously 

discussed, and expected, lack of present experimental evidence for 

the Raman instability) that may be encountered as laser-fusion 

experiments approach the parameters typical of proposed laser-

pellet fusion reactors. It should be pointed out, however, that 

random density flucturations 6"n/n < h/2L •*> 0.1 over a density 

scale y < y *v 200 yim would tend to decrease the growth rate 

over the refraction saturation distance y and thus reduce T_ 
s 2 

below our expression. Also, going to an appropriate noneireular 

focal cross-section (shortened perpendicular to the polarization), 

for each separate laser beam incident on the pellet, would reduce 
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3. Computer Simulation 

In computer simulations (see Ref. sec. L) with periodicity 
typically assumed along y, there is no finite resonance region 
along y to convectively saturate the growing eigenmodes. The 
response will therefore continue to evolve until at least the 
eigenmodes saturate by nonlinear processes; the side-scattered 
wave-packet will saturate convectively (by refraction) at an 
exponentiation V above noise unless r_ is so large 
(j£ Jtn(n X_), the coulomb logarithm) that nonlinear processes have 
also caused an early saturation here too. Thus, in such simulations 
the response always evolves eventually (provided X > X % 0.3, 
the eigenmods threshold from Eq. (V.31b)) to a nonlinear 
stage where the eigenmodes are dominant over — or at least 
comparable with — the side-scattered wave-packet; the time 
required for this to occur is given roughly by Eq. (V.8la). This 
would correspond to an experimental situation where either d T 

satisfies Eq. (V.Slb) and I exceeds the threshold given 
by X > X„ % 0.3 or, although d T may not satisfy Eq. (V.Slb), o u 

Yy from Eq. (V.8le) is so large that the side-scattered wave-
packet — and possibly even the eigenmodes — have nonlinearly 
saturated at an exponentiation below r~. In order to suppress 
this automatic nonlinear evolution in periodic plasma simulation!!, 
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one could simulate a periodic array of plasma blocks separated 
by a distance y £ y (in an attempt to disperse the waves forming 
the eigenmode before they reach the next plasma block with its 
corresponding resonance zone). Of course, one would need only 
one plasma block centered on the spatial grid and surrounded on 
both sides by a vacuum region (width £ y ); the periodic 
boundary conditions would then simulate automatically the other 
plasma blocks. Or, one could use absorbing boundaries to end 
the eigenmode growth and thereby simulate the effects of finite dT 
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VI. CONCLUSION 

We have investigated the electromagnetic "Green's function" 

response to a delta-function transverse current source in a 

plasma which can be nonuniform and pumped by a laser driving the 

Haman instability. The precise meaning of these terms, the 

configuration used, and basic approximations and restrictions 

have been given in the introductory section. We have considered 

the four basic cases — a . Uniform, No Pump; b. Nonuniform, No 

Pump; c. Uniform, Pumped; d. Nonuniform, Pumped — with particular 

emphasis placed on mathematical similarities and differences 

among the four cases. By applying the same mathematical 

procedure to all four cases, we have been able to demonstrate 

that the Green's function for case (d) reduces to the appropriate 

Green's function for cases (a)-(c) as the pump strength goes 

to zero or the nonuniformity scale length goes to infinity. In 

particular, the eigenvalues found to occur in case (d) either 

vanish or require an infinitely long time to observe as one 

approaches cases (a) - (c). 

The response in cases (a) - (c) consists of wave-packets 

(possibly growing) of different frequency, each traveling along 

a well-defined space-time (z - t) trajectory labeled by the 

saddle-point frequency. The response in case (d) consists of 

such wave-packets with the addition of localized growing eieenmodes. 
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These eigenmodes dominate at late times over the transient 

refracting wave-packets. However, for very early times case (d) 

reduces to case (c) and the wave-packets predominate. In fact, 

in the section on case (d), we have shown that the eigenmode 

response does not dominate until after refraction has saturated 

that convectively growing wave-packet whose turning point coincides 

with its resonance zone. This "side-scattered" wave-packet has 

the largest saturation amplitude of any wave-packet since it 

remains within its resonance zone the longest time. In applying 

the results obtained here to any experiment, one must first 

compare the temporal duration of the laser pulse with the 

"side-scatter wave-packet saturation time" to determine whether 

one is in the "transient" or "eigenmode" regime. This discussion 

is for the model assumed here (i. e., periodic in x and y, 

with the response given in the z-t plane); for a more realistic 

model (i. e., a source localized in y as well as in z and t, 

and a laser of finite extent along y), one should also compare 

the spatial width of the laser beam pulse with the "sidescatter 

wave-packet saturation distance" obtained by multiplying the 

above time by the wave-packet group velocity along y. Here we 

are assuming that the integration of our periodic Green's function 

over k merely introduces a convective behavior along y with 
if 

wave-packet trajectories, extending into y-z-t space, labeled 
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by a saddle-point frequency and y wavevector. 

For parameters typical of a theta-pinch, we found a refraction 

saturation time of a few nanoseconds and a refraction saturation 

distance of tens of centimeters — much larger than either typical 

laser beam diameters or theta-pinch plasma diameters. Therefore, 

we expect a negligible effect from the eigenmodes and that a 

local convectively growing wave-packet approach neglecting 

refraction would be more appropriate. Backseattered waves would 

be saturated by passing out of the resonance zone, and sidescattered 

waves would be saturated by passing out of the finite diameter 

laser beam. For parameters typical of a laser-fusion experiment, 

we found a refraction saturation time on the order of a picosecond — 

much smaller than the laser pulse duration. However, the re­

fraction saturation distance was found to be 40 microns or more — 

marginally greater than typical focal spot diameters for a single 

intense laser beam. Our above conclusion then usually applies here 

also. For a laser-fusion computer simulation, however, the 

system is periodic along y — infinitely wide plasma and laser 

beam, and a discrete set of k values — and, after the 
y 

refraction saturation time (on the order of a picosecond), the 

temporally growing eigenmodes wil l dominate. The convective 

nature of the eigenmodes along y i s los t due to the periodicity. 
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FIGURE CAPTIONS 
Chapter I 

1.1 Density regions associated with various instabilities. 
1.2 Raman instability in a uniform plasma (backscatter shown). 

V 1 and V are group velocities of the scattered waves. 
1.3 Diagram of (w ,k_) for resonance A = A = 0. For a 

cold plasma, resonance shell in k,-space is a sphere and 
10.(10 = 10 -«ii is independent of £.. 

1.4 Space-time response for given (w ,k,). 
(a). Back-scatter; (b). Oblique-scatter. 

1.5 (a). Back-scatter (V^V- < 0) in a density gradient, 
(b). Pulse growth and saturation. 

1.6 (a). Oblique-scatter in a density gradient. 
(b). Pulse growth and saturation, 

1.7 (a). Side-scatter in a density gradient. 
(b). Pulse growth (V. and V- z-dependence ignored). 

1.8 Refraction of side-scattered wave-packet (turning point coin­
cides with resonance zone center at z ) for given k, ,. 
Growth occurs only for 0 — t _ t , while wave-packet is 

s 
in resonance zone. 
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1.9 Several representative wave-packets for the space-time 

response with given k., , and no pump. The lowest frequency 

non-evanescent wave-packet is (a) which has its turning 

point at the source position z . Both wave-packets (b) 

have the same frequency but initially propagate in opposite 

directions along z. The wave-packets (c) have very high 

frequency, propagate with essentially the speed of light 

along z, and define the light-cone below which there is 

no response. 

I.10 Representative wave-packets for the pumped space-time response 

with given k_ .. The side-scattered wave-packet (a) en­

counters its resonance zone at its turning point position. 

The temporally growing eigenmodes (with maximum growth rate) 

are localized within the resonance zone (a). A wave-packet 

of lower frequency than (a) encounters its turning point 

before its resonance zone and does not grow. The two 

oblique (or back)-seattered wave-paekets (b) enounter 

their resonance zone (b) (at different times) in the 

underdense region to the left of the source position z. 

A wave-packet, of much higher frequency than (b), encounters 

the uniform plasma or vacuum to the left of z = 0 

before its resonance zone (e. g., oi > oi ) and does not 

grow. -
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1.11 Density profile showing boundary at z = 0 between 
uniform (or vacuum) and nonuniform plasma regions. The 

2 2 density gradient du) (z)/dz = to /L is taken to be constant. 
The electromagnetic pump wave is incident along the density 
gradient. The delta-function source 6(z - z ), for the 
scattered electromagnetic waves, is located at position z . 

1.12 Orientation of the three waves, the electromagnetic fields, 
and the nonlinear currents and charge densities for the 
special case of side-scattering with fc. = 0 . The longi­
tudinal current £.(£2) drives 6n(fi) (i. e., the Langmuir 
wave). The transverse current J_( u ) drives E. and 
B, of the side-scattered electromagnetic wave. The electron 
oscillation velocities v and v. are used in obtaining 
currents and v * B_ forces. 

1.13 The complex u.-plane showing the Bromwich contour B and 
i the depressed contour B . The semi-circle of radius R 

(dashed line) gives negligible contribution to the integral 
as R •* °°. The branch-points and branch-cuts shown are for 

- 2 2,2 \ the uniform unpumped plasma. u> = (to + ck.,) , and u, 
represents damping. 
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FIGURE CAPTIONS 

Chapter III 

III.l Trajectories of wave-packets of constant frequency u). 

(straight lines) and lines of constant phase YC^yperbolas), 

for uniform unpumped plasma. The source is at position z , 
2 2 2.2 and to = a) + c ic... Outside the light-cone, the response 

111.2 Space-time diagram, for nonuniform unpumped plasma, showing 

the eight different regions used in calculating the asymptotic 

response G-. The dimensionless variables are t s u) t/£ 

and z = to (z )/u. where to (z) = w (z) + c k n i , ID = s p x^ s 
= w(z ), and £ = L r/etu . The source z o is at z = 1, s n s p s 
while the boundary z = 0 (between uniform and nonuniform 

plasma) is at z(z = 0) and lies between z = 0 and z = 1. 

111.3 Trajectories of wave-packets of constant frequency £3. = w /to 

(lines ending at the point z = 1, £ = 0) and lines of 

constant phase Y(hyperbola-like lines). The dashed line 

is the line of turning points for wave-packets with different 

K . See Fig. III.2 for further definitions. 

111.4 Plot of Green's function (2/c)G. on vertical axis (same 

as t), at various fixed times t, as a function of 

position z. Various time intervals (of duration At = 0.1) 
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have been purposely left blank. We have multiplied (2/c)G.. 

by 0.0075 in Fig.III.4a and by 0.02 in Figs. III.4b-d, 

and have used £ = 300. Note change of plotting scale in 

going from Figs. III.4a to b. 

111.5 The complex Y-plane showing the branch-cuts between +i 

and -i and the five saddle-point solutions Y H(n), with 

n = |z - z |/ct. This is for the uniform pumped plasma. 

Fig. III.5a shows the sheet labeled pi in sec. Ill C 

with the solutions I - III. Fig. III.5b shows the sheet 

labeled [4] with solutions IV and V. b = (u^ - m)/2Y 
1/3 and a = (b/2) , where Y O is the uniform plasma growth 

2 2 2.2 rate given by Eq. (1.2), oi = ui + cTc^,, and w„ = u> - *» • 

111.6 Contours, in the complex UL-plane, of constant Re(y) 

(solid lines) and constant Imfy) (dashed lines), for the 

uniform unpumped plasma (but discussed also in sec. Ill C). 

The saddle-point frequency w.(n), n = |z - z |/ct, is 
il S 

shown as well as the contour of steepest descent, passing 

through (1)., which lies partially on both of the two 

Riemann sheets shown in Figs. III.6a, b. The branch-cuts 
extend from ±u to infinity along the real to.-axis. 
2 - 2 2,2 

P 11 
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FIGURE CAPTIONS 

Chapter IV 

IV.l Generalized Stokes (dashed) and anti-Stokes (solid) lines, 

with arrows indicating direction of propagation (on 

anti-Stokes lines) and growth (on Stokes lines). The 

arrows are labeled (e. g., +i, -2i) according to the value 

of the WKBJ coefficient (a, or a 2) for that WKBJ solution 

corresponding to that arrow (if no label is present for an 

arrow, the coefficient is taken to equal 1). For cases 

(a, b), the transition point is a first order zero, and 

two different boundary conditions (designated b. c.) are 

taken: incoming wave (a) or outgoing wave (b). For cases 

(c,d), the transition point is a first order pole, and 

the boundary conditions are incoming (c) or outgoing (d). 

IV.2 Generalized Stokes and anti-Stokes lines for the pole (p) -

zero (z) combination. The intrinsic branch-cut is chosen 

to lie in the upper-half-plane. The solution (arrows and 

labels) is obtained by the procedure given in sec. IV B. 

Case (a): incoming wave from left is partially reflected, 

with outgoing wave on the right (boundary condition b. c ) . 

Case (b): incoming wave is not reflected if one uses an 

outgoing wave on left (b. c ) . Large circle indicates that 

the pole-zero pair can be treated as a "compound" transition 
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point, with Stokes constants T . One reaches T ? by 

going through the in t r ins ic branch-cut in a counterclockwise 

direct ion. 
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FIGUHE CAPTIOUS 

Chapter V 

V.l The complex X-plane, showing the branch-cut used in defining 

p + = X + (X 2 + 1)* and p_ = X - (X 2 + 1)* such that 

|pj - 1 and |p_| ± 1 . 

V.2 The complex p-plane, showing the positions of p (x) and 

p_(X), for three values of |x| (2, 1, 0.5), as 

6 = arg(X) varies from 0 to 180 degrees. The positions 

are symmetric about the real p-axis for ImX 1. 0 and 

ImXJLo. 
V.3 The positions of the Stokes (dotted) and anti-Stokes 

(solid) lines for |x| = 4/3 and various values of 

9 = arg(X): 

(a). 9 = 0; (b) 9 = ir/8; (c) 9 = TT/4; (d) 9 = 3^/8; 

(e) 8 = ir/2; ( f ) 8 = 5w/8; (g) 9 = 3ir/4; 

(h) 8 = 7ir/8; ( i ) 9 = IT. There are two roots of q(p) , 

at P+(X) and p (X), and one pole, at p = 0. 

V.4 The positions of the Stokes (dotted) and anti-Stokes ( so l id ) 

l ines for | x | = 0.93 and various values of 9 = arg(X): 

(a) 8 = 0; (b) 8 = TT/8; ( C ) 9 = T/4; (d) 8 = 3*/8; 

(e) 8 = ir/2; ( f ) 8 = 5ir/8; (g) 8 = 3*/4; (h) 8 = 7TT/8; 

( i ) 8 = ir. 
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V.5 The posit ions of the Stokes (dotted) and anti-Stokes ( so l id ) 

l ines for |x | =0.80 and various values of 6 = arg(X): 

(a) 6 = 0; (b) 6 = ir/16; ( c ) 6 = TT/8; 

(d) 6 = 3TT/16; (e) 6 = tr/A; ( f ) 6 = 5TT/16; 

(g) 6 = 3T/8; (h) 6 = 7TT/16; ( i ) 9 = ir/2. 

V.6 The posit ions of the roots (u>Jz), u° ( a ) , and w° ( z ) ) 

and poles ( ^ ( z ) and a i ^ C z ) ) of Q(z, o^, k^ ) = 
2 2 

= X (dp/dz) q(p,X), and the branch-cuts in the complex 

u -plane used in defining v^, for several typical values 

of z (shown in Fig. V.7) along the real z-axis: 

(a) z = 0; (b) z = z > 0; ( c ) z = z > z ; 
in ii 

(d) z = z > z . The roots, poles, and branch-cuts are 
symmetric about the imaginary ai.-axis. The solutions 

A(p,X) and B(p,X) have intrinsic branch-cuts (not 

shown) which we take to extend vertically downward from 

Uj^z) and from u" I ] ;(z). w = w (z) + c 2 ^ ^ . 

V.7 The positions of the roots (zjui.) and z+(<u )) and the 

pole (zjo^)) of Q(z, u±, k^) = X2( dp/dz )2q(p,X), and 

the branch-cuts in the complex z-plane used in defining 

\/Q, for several typical values of UL (shown in Fig. V.6): 

(a) a^ = u ^ z = 0) ; (b) u^ = (^(z ); (c) ^ = w^z ); 
i n i II 

(d) o^ = WjU ); (e) 0^ = 11); ( f ) a^ = u> ; 
in 

(g) u. = (1) . Also shown i s the relat ion between the 
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complex z- and p-planes, with the corresponding points 

being ( z 0 O , P 0 O = 0 ) , (z_,?_), and ( z + , p + ) . 

V.8 The WKBJ approximation for the solutions A( p,X) and B( p,X) 

in the complex p-plane (compare with Fig. V.7e), for 

X((iL,k ) evaluated at UL = in shown in Fig. V.6a. 

The imposed boundary conditions (b . c .) are : (a) A = f 

as p -*• +=>; (b) B = f„ ± g_ above or below the branch-

cut as p -»• -°°. The solutions f and g are given in 
n Bn & 

Eq. (V.9). The solutions A and B have an intrinsic 

branch-cut (not shown) extending essentially (for Re UL < M ) 

vertically downward from p = 0. 
n 

V.9 Same as Fig. V.8, but with u = w shown in Fig. V.6a. See 
also complex p-plane in Fig. V.7f. 

111 
V.10 Same as Fig. V.8, but with HL = u shown in Fig. V.6a. 

See also complex p-plane in Fig. V.7g. 

V.ll The complex X-plane, showing the eigenvalues XjJX), 

N = 0,1,2..., for several values of the pump strength 

parameter X: (a) X = 0.30; (b) X = 0.60; (c) X = 0.90; 

(d) X = 1.20; (e) X = 1.50. 

V.12 (a) The complex X-plane, showing the position of the eigen­

value X (X) for the values of X used in Fig. V.ll; 

(b) The imaginary part of X (X) vs. X, showing the cross­

over (imX = 0 ) at X =0.32 corresponding to threshold 

(in absence of damping). From part (b), X (X ) = 0.92. 
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V.13 The complex o>-plane, showing the eigenvalues u i N ( A ) > 

N = 0 , 1 , 2 , . . . , (corresponding to the XJA) of Fig. V. l l ) 

for X = 0.6 and v n> y / 3 , where the uniform plasma growth 
ii 

ra te y (see Eq. 1.2) i s evaluated at OL = OL = 

= (w + cTs^i/u )/2. The drawing i s only qual i ta t ive , with 

the imaginary axis expanded by a factor of two and Y = 

= ID /20 chosen for convenience to i l l u s t r a t e the d e t a i l , o 

Also shown are the boundaries (dashed l ines) representing 

the constraints on the eigenvalues, as discussed in sec . 

V B 3: -v - IntfWjjj) < YQ and u£ < R e ^ ) S u o - <op(z = 0) . 

V.14 Space-time plot showing the regions where the saddle-points 

have different forms. The symbols a, b , a , b correspond 

to the functions defined in Eq. (V.37). The boundaries 

between the various regions are formed by the following 

l i ne s : the wave-packet t ra jec tor ies ( l ines of essent ia l ly 
i i 

constant saddle-point frequency o> ) where z (u ) = a 
+ s 

and ID = ( o = [ u ( z ) + c k - , r ( the minimum possible saddle-
i 

point frequency, where z = source position ), where u •*• » 
s 

(the light-cone), and where the resonance position z^oi ) 
i equals zero, z . or the turning point position z (u ); 

S "*" 
i the line of turning points where z.(ti) ) = z and 

u = oi = [<»> (z_) + cTtnf ( Z equals greater of z or z ); 
g L p g XJC g S 

the l i ne of points on the wave-packet t ra jector ies where 
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z = zjito ) (not same as line where zm = z + ) . The boundary 
i 

lines depend upon the saddle-point frequency in and have 

been drawn assuming the special case o> *> oi., the unpumped 

solution (sec. Ill B ) . 

V.15 The exponentiation factor Re(9 2), evaluated at the turning 

point time given by Eq. (V.71), as a function of the distance 

6S3 = Re(z.) - z between the source z and the turning point + s s ' 
2/3 z + . 6p = 6z/X '-% and h is the resonance zone width from 

Eq. (V.77). r_ is the side-scatter exponentiation factor 

given by Eq. (V.74). 
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LIST OF FREQUENTLY USED SYMBOLS 

a = boundary coefficient Eq. (1.32) 

A = solution of Eqs. (1.25, 28b) Eq. (1.31) 

a^ = WKBJ coefficient 

a 2 = WKBJ coefficient 

B = solution (linearly independent of A) of Eq. Eq. (1.31) 

(1-25) 

B = pump (laser ) magnetic field 

B, = scattered electromagnetic wave magnetic field 

c = speed of lightior phase reference level Eq. (IV.2d) 

cos 9 = e o • e Eq. (1.2) 

2 2 
D = v KID (1 - kn A , ) = a pump o p Ix l 

strength parameter Eq. (I.25c) 

d T = laser diameter 

e = electronic charge (> 0) 

£ = & = polarization of incident laser 

§ = polarization of scattered wave Eq. (1.22) 

E = pump (laser) electric field 
E, = scattered electromagnetic wave electric field 

Eq. (III.29) 

WKBJ term in sec. V Eq. (IV.2) 

f = {Q = an effective k.. Eq. (III.23) 

f = WKBJ solution in sec. IV, or a particular 
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f„ = WKBJ solution in sec. IV, or a particular 
V/KBJ term in sec. V Eq. (IV.2) 

G_ = Green's function for scattered electromagnetic 

wave 

h = resonance zone width 

£ = current density Eq. (1.21) 

K = k - k, = beat wave-vector — -o —1 
k = wave-vector of incident laser * 
—o 

k_, = wave-vector of scattered electromagnetic 

wave 

kjCasfuJ - «^(z)]*/c Eq. (1.22) 

k l z = [u.2 - U2( B) - c ^ J V c Eq. (1.6) 

L = djln n(z) /dz = density scale length Eq. (1.8) 
Si = y = refraction saturation distance Eq. (1.17) 
m = electron mass 
n = electron density 
N = eigenmode label Eq. (V.19) 
n = unperturbed plasma density 
q = dimensionless Helmholtz potential (Q) Eq.(IV.1) 

and Eq. (V.2) 
Q = Helmholtz potent ia l Eq. (1.25b) 

S = source Eq. ( I .25a) 
or Stokes constant Eq. (IV.8) 



t = time 

T = transition point 

t = a) t/£ = dimensionless time Eq. (III. 14a) 

T e = electron temperature 

T = Stokes constants (n = 0,1,2 used) Eq. (IV.10) 

t = refraction saturation time Eq. (1.16) 
5 

VQ = eEo/miDo Eq. (1.2) 

Vx = fc^c2/^) Eq. (1.1) 

^2 = 3 ^ v t h / J J E q - ( I - 1 ) 

v.. = electron thermal velocity 

W = Wronskian Eq. (1.26) 

X = dimensionless frequency parameter Eqs. (IV.9;V. 

y = posit ion variable perpendicular to z and e 
o 

Y Eq. (III.28) 

z = position variable along density gradient 

Z = (eli/(D ) = effective minimum wavelength Eq. (1.10a) 
~ — 2 2 
a = (») (z'/W = dimensionless position Eq. (III.16) 
z = greater of z or z Eq. (1.26) 
g s 
z„ = lesser of z or z Eq. (1.26) 

Xi S z = source position s 
z+C*"»j_) = root of Q(Z,ID ) Eq. (V.4b) 

zju^) = root of Q(z,u> ) Eq. (V.#>) 
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z (w.) = resonance position, w (z ) = w — tii. sec. I A 3a 

z 0 0(w 1) = z (m.) = resonance posi t ion, pole of 

QCz,^) Eq. (V.4b) 

z g = (^ / ( / Eq. ( I I I .14a) 

SjL = lo^/w2 Eq. ( I l l . 14a ) 

Y = Im( UL ) = growth rate 

T = exponentiation factor Eq. (1 .7) 

Y = (K v /2)(w /UL )* cos 6 Eq. (1 .2) o o p ± 

r = exponentiation factor (hack- or oblique-

scatter) Eq. (V.47) 

T„ = exponentiation factor (side-scatter) Eq. (V.51a) 

Y M = eigennode growth rate Eq. (V.35b) 
_ i 

Sui = u - u. Eq. (V.4la) 

^ s («"£ + e 2kj - uf ̂  Eq. (1.1) 
A2 = A = (oip + 3v^ f lK2 - J22)/2fl Eq. ( I . l ) 

n = (z - z ) /ct or Eq. ( I I I .5) 

= ( z g - z ^ / c t Eq. ( I I I . 2 4 ) 

6 = c o s " 1 ^ • &x) 

8 = a particular phase-integral Eq. (V.37a) 

6 = a particular phase-integral Eq. (V.37b) 

6_ = a particular phase-integral Eq. (V.57a) 

8 = a particular phase-integral Eq. (V.57b) 
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X = WKBJ large parameter Eq. (IV.l) 
or a dimensionless pump strength Eq. (V.2) 

XD E ^ e / ^ n e 2 ) * = D e b T e length 
u = WKBJ "p-integral" Eq. (IV.5) 
V. = damping rate of electromagnetic waves Eq. (I.l) 
v = v = damping rate of Langmuir plasma waves Eq. (I.l) 
5 = Lci3/ou? Eq. (III. 17a) n s' p i \ / 
p = dimensionless position variable; Eq (I.31;V.l) 

also used for charge density Eq. (1.21) 
Po = P(zn) = dimensionless position Eq. (1.31) 
P_. = P(z ) = dimensionless position Eq. (1.31) 
p +(X) = root (zero) of q(p,X) Eq. (V.2e) 
P_(X) = root (zero) of q(p,X) Eq. (V.2f) 
P^ = 0 dimensionless resonance position, pole 

of q(p,X) Eq. (V.4e) 
"y = wave-packet phase Eq. (III.3) 

or phase at arbitrary frequency Eq. (III.24) 
or phase-integral Eq. (IV.2) 

V x = solution of Eqs. (1.25, 27) Eq. (1.26) 
Y2

 = solution of Eqs. (1.25, 28) Eq. (1.26) 

u 5 [<"p(z) + ^ i j * = w( z) Eq-- (ni.i) 
n s u - u. = ID« = beat frequency. 
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a), = saddle-point (wave-packet) frequency for 

uniform unpumped plasma Eq. (III.5a) 

or nonuniform unpumped plasma Eq. (III.16) 

u) = W(z ) = frequency of wave with turning 

point at z_ g 
d)„ = (D(ZJ) = frequency of wave with turning 

point at z„ 
2 i = (4ir ne /m) = plasma frequency (i) P 

(* = m _ a = resonance frequency Eq. (III.28) 

ui = u(z ) = frequency of wave with turning 

point at z 

oi = frequency of incident laser 

oi- = frequency of scattered electromagnetic wave 

oi_ = ft = beat frequency 

oijXz) = root of Q(z,<a,) Eq. (V.4a) 

oijj.fz) = root of QU.o^) Eq. (V.4a) 

oi° (z) = root of Q(z,oi) Eq. (V.4a) 

oi™j.(z) = pole of Q(z,o) ) Eq. (V.4a) 
CO 

U

n i ( z ) = pole of QU.o^) Eq. (V.4a) 

oijjj = Re(oi 1) 

0) = OL + iv.. = an integration variable , Eq. (V.3&) 

sometimes taken to be a saddle-point frequency 
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u£ = (u Q + <?^J^/Z Eq. (V.32) 

^"lN^R = e iS e l B n 0 <ie frequency Eq. (V.35a) 

to, = u./w = dimensionless saddle-point frequency Eq. ( I I I . 16) 

SL = u>n/«> = dimensionless saddle-point Eq. ( I I I . 18a) 

frequency 

\ = V u

s 

5. = WJ/IO = dimensionless frequency Eq. ( I I I .14a) 

w 2 ( z j = [*>0 - w' - i ( v p - V l ) J 2 + c ^ Eq. (V.39) 
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