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ABSTRACT OF THE THESIS

A Deep Learning Approach to Estimate Blood Pressure from PPG Signals

By

Ali Tazarv

Master of Science in Electrical Engineering

University of California, Irvine, 2022

Professor Sameer Singh, Chair

Blood Pressure (BP) is one of the four primary vital signs indicating the status of the

body vital (life-sustaining) functions. BP is difficult to continuously monitor using a sphyg-

momanometer (i.e. a blood pressure cuff), especially in everyday-setting. However, other

health signals which can be easily and continuously acquired, such as photoplethysmography

(PPG), show some similarities with the Aortic Pressure waveform. Based on these similar-

ities, in recent years several methods were proposed to predict BP from the PPG signal.

Building on these results, we propose an advanced personalized data-driven approach that

uses a three-layer deep neural network to estimate BP based on PPG signals. Different from

previous work, the proposed model analyzes the PPG signal in time-domain and automati-

cally extracts the most critical features for this specific application, then using a variation of

recurrent neural networks called Long-Short-Term-Memory (LSTM) to map the extracted

features to the BP value associated with that time window. Experimental results on two sep-

arate standard hospital datasets, yielded absolute errors mean and absolute error standard

deviation for systolic and diastolic BP values outperforming all prior approaches.

vii



Chapter 1

Introduction

Hypertension, defined as systolic blood pressure (SBP) larger than 140mmHg, or diastolic

blood pressure (DBP) larger than 90mmHg (SBP and DBP are the two values used for

measuring BP), or taking antihypertensive medication [2], is estimated to have caused 9.4

million annual deaths globally, 17% of the total death in 2012 and 7% of total disability

adjusted life years (DALYs) [28]. If left uncontrolled, hypertension causes stroke, myocar-

dial infarction (MI), cardiac failure, dementia, renal failure and even blindness. In adults,

hypertension after diabetes is the second reason to increase the risk of cardiovascular disease

(CVD) and several types of cancer, as well as multiple non-fatal diseases. Hypertension has

been increasing in recent years. By 2030, 40.5% of the US population is projected to have

some form of CVD [10]. The prevalence of hypertension is highest in some low-income popu-

lations [28]. While people with the risk of hypertension need to measure their blood pressure

frequently, conventional cuff-based BP measurement devices are expensive and inconvenient

for continuous monitoring. Thus the development of alternative methods is necessary.

Blood Pressure (BP) – commonly reported in mmHg – is a quasi-periodic signal in sync with

the heart activities. The upper peak in each period is called the Systolic Blood Pressure
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Figure 1.1: Schematics of PPG sensor design

(SBP), and the lower bound in each period is called Diastolic Blood Pressure (DBP).

1.1 PPG signals and Blood Pressure

While the BP signal is difficult to acquire continuously in everyday settings, Photoplethys-

mography (PPG) is a non-invasive optical method that measures a related signal: temporal

variations of blood volume in the vessels and tissues. PPG signals are obtained from pulse

oximeters, emitting visible light (LED) on the skin and measuring the micro-variations in

the transmitted or reflected light intensity through a Photo-Diode, as depicted in Figure 1.1.

PPG sensors are small in size and low cost to build, and they exist in most of the newer

smart wearables (e.g. smartwatches, activity trackers, and smart rings).

In recent years, there has been an extensive body of research studying similarities and cor-

relation of PPG signals and Aortic Pressure waveforms, and furthermore, prediction of SBP

and DBP based on PPG signals. An example of experimental waveforms for a subject is

presented in Figure 1.2. As can be seen from this example, since both signals are originating

from the same source (heart beats), they can be highly correlated with each other. However,

since Aortic and PPG are generally measured from different parts of the body (e.g. arm vs.

wrist), and using different devices, they are typically out of phase. Figure 1.2 is based on

experimental data after time-shift alignment. A few recent methods, such as the one in [33],

have been proposed to automatically compensate for the phase difference.

Considering the architecture of PPG sensors inFigure 1.1, they are vulnerable to motion

2
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Figure 1.2: ABP and PPG Correlation

artifacts (MA) which result in distortion in the signal fidelity. MA originate from a number

of factors [6]; the physical activity which might change the location of the sensor on the

skin, light leaking through the gap between the sensor and the skin, and the change in the

blood flow because of the physical movements are the most important factors of MA. The

overall effect is that MA might dominate the original PPG signal, which was intended to be

an indicator of the heart activities. Properties of PPG signal and some of its applications

are reviewed in [1].
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1.2 Related Work

Several methods to estimate BP from PPG have been proposed and studied in prior works.

For example in [15], [18] and [23], the authors propose BP estimation methods based on

Pulse Transit Time (PTT). PTT is defined as the time required for the blood pressure wave

to travel from the source (heart) to the wrist (where the PPG signal is recorded, and it is

measured by the time lag between the Electrocardiography (ECG) and PPG signals. In [25],

authors consider every sample point in one cycle as a separate feature and use Principal

Component Analysis (PCA) to reduce the number of features, and then apply regression

algorithms on the set of reduced features. In another work [29], authors propose a list of

some potential features of the PPG signals (e.g. area under the curve, the time length of

certain points on the signal in one cycle, etc.), and then use an autoencoder to reduce the

number of expressive features. In the end stage, they use a feed-forward neural network to

predict BP based on a reduced set of features.

The available solutions for estimating BP based on PPG signals in the literature are to first

extract a set of expressive features from PPG signals, and then estimate SBP and DBP

based on those features. A shortcoming of these approaches is that they may fail to capture

all the expressive features in the raw PPG signal from an application point of view. In

other words, there might be some informative features in the raw PPG signal which can play

important role in BP estimation, but are not included in the initial feature set (because it

is a limited list). Even in [25] the authors start with all the sample points in each cycle

and then apply PCA on those, the feature reduction procedure is not optimized for the BP

estimation application, as it is a general data compression method. Additionally, none of

these approaches exploit possible characterizations of the PPG as a time-series signal.

Different from these contributions, the proposed machine learning based method automati-

cally extracts features from the signal and analyzes temporal dependencies using an advanced
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neural architecture. Machine learning methods are broadly used in numerous healthcare ap-

plications from preprocessing and cleaning of the data, to monitoring and detection of various

physiological factors and event [32][14].

In addition to BP estimation, some of the other popular applications of PPG signals are

Heart Rate extraction [35][3], Bio-metric Identification [3], arterial oxygen saturation [1],

determining arterial stiffness [12], mental health monitoring and tracking [31], and other

bio-medical applications [24].

1.3 Overview and Contributions of this Thesis

In this thesis, we propose a new framework to address the shortcomings mentioned above.

Specifically, the proposed approach makes the following advancements with respect to prior

literature: (i) The proposed method utilizes a Convolutional Neural Network (CNN) layer,

which “learns” the most critical features of the PPG signal for this specific application

(BP estimation) in a nonlinear and efficient way, as part of an optimization problem; (ii)

We adopt a Long-Short Term Memory (LSTM) neural network model to capture temporal

inter-dependencies and condensate past information in a seamless and fully automated way.

We train and test the model for each subject separate from others. We apply the proposed

framework on two standard hospital datasets. The proposed model on MIMIC-II dataset

including 20 subjects, gives prediction error (MAE ± SDAE) of 3.70 ± 3.07 mmHg and

2.02±1.76 mmHg, for SBP and DBP values respectively. Also on UQVSD dataset, prediction

errors (MAE ± SDAE) are 3.70 ± 3.07 mmHg and 2.02 ± 1.76 mmHg, for SBP and DBP

respectively. To the best of our knowledge, these results outperform other methods available

in the literature.

The rest of the thesis is organized as follows. Chapter 2 explains our proposed framework
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and the methodology to solve the estimation problem. Chapter 3 explains the datasets we

used to evaluate the proposed model and the results of the evaluation and comparison with

state-of-the-art methods. And Chapter 4 concludes the thesis.
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Chapter 2

Proposed Model

We propose a Deep Learning architecture to estimate blood pressure values directly from

PPG signals. Figure 2.1 presents the block diagram of the proposed model. The method

is composed of the following blocks and components: (1 ) Signal Pre-processing Block; (2 )

Machine Learning Block composed of a Smart Feature extraction (CNN) and a Time Series

Analysis (LSTM) module; and (3 ) Model Evaluation block. We explain the first two blocks

here and talk about Evaluation block later in Chapter 3.

2.1 Pre-processing

The input PPG and ABP signals are assumed to be temporal waveforms with a sampling

frequency fs = 20Hz. Since both signals originate from a bio-mechanical source (heart

activities), we do not expect to see high frequency elements in their waveforms. Thus, higher

frequency elements are likely due to noise. Additionally, since the PPG is a relative signal

and its DC offset (mean value) does not have an interpretation of our interest, we eliminate

the mean value of the signal (the zero frequency element). There are many popular methods

7



Pre-processingPPG 
(8 sec)

Training 
data

Trained 
Model

Deep Learning Training: 
CNN+ LSTM (2)+MLP

PPG

Evaluation
PPG

Estimated BP

Ground truth BP

Verify

Labels: (DBP, SBP)

ABP 
(8 sec)

Max – Min  
values

Labels: (DBP, SBP)

Parameters

Test data

Figure 2.1: Overview of the proposed method to estimate BP from single channel PPG signal

to eliminate a predefined frequency range from a signal. Herein, we use a traditional Fourier

Transform (FFT)-based approach. In the PPG signal, we set a band-pass filter eliminating

the frequencies outside the range 0.1 − 8 Hz. The resulting waveform still contains all the

information necessary for our estimation, while being affected by a smaller noise energy. In

preprocessing the Aortic Pressure signal, we apply a low-pass filter with cut-off frequency

5Hz to the raw signal to eliminate sharp peaks in the signal. After these steps, we split both

the PPG and ABP into chunks (windows or frames) of 8 s with a step of 2s, resulting in 6s

overlaps between consecutive windows (gray shaded part in Figure 2.2).

Each window is composed of 160 sample points (8s × 20Hz) which we use as the model

input, either as training or test data. In the ABP signal, the signal is passed through a 1 Hz

digital lowpass filter (to eliminate large instant changes in the BP), and then the maximum

… . ...

ti ti+1 ti+2 ti+7 ti+8 ti+9t0 t-1

wj
wj+1

Figure 2.2: Splitting PPG signals into 8s windows,
ti is the sample at timestamp i.
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and minimum value in each window (Fig. 1.2a), are labeled as the Systolic and Diastolic BP

respectively for that sample.

2.2 Deep Learning

Deep Neural Networks, and primarily including Multi-Layer-Perceptron (MLP), Convolu-

tional Neural Network (CNN) and Recurrent Neural Network (RNN) architectures, facili-

tate task-adapted feature representation of the data. CNN, which was specifically designed

to deal with variability of 2D shapes, in [19] is shown to perform well on 1D data and

outperform other existing approaches for certain tasks. CNN consists of an initial layer of

convolutional filters – boxes of certain sizes sF, with certain sets of trainable weights which

slide over the input data – followed by an activation function (e.g. Rectified Linear Units),

a pooling layer (down sampling) with pool size sP, and eventually a fully connected (Dense)

layer. Stacking multiple convolutional layers results in a non-linear, smart and task-adaptive

method to extract features from data [22].

RNNs are an effective choice for time series data analysis, since they learn contextual patterns

in the input from previous time steps. Unlike feed-forward networks, RNNs use their internal

states to process temporal sequences of the input. However, learning to store information

over extended time intervals via recurrent back-propagation may necessitate an excessive

training time, due to the insufficient decaying error gradient back-flow (vanishing gradient)

discussed in [11].

Long-Short-Term-Memory (LSTM) is a variation of RNN and solves this issue by using

memory blocks, for which the trainable “forget gate”, “input gate” and “output gate” control

which parts of the data are worth saving and which parts are not, this idea solves the issue

of vanishing gradient mentioned above, and the result is a strong tool to learn and track
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long-term inter-dependencies in the input data (e.g. time series data). The combination

of CNN with a subsequent LSTM has been shown to perform well on PPG signals. As an

example, in [3] authors use a similar architecture for estimating heart-rate and Bio-metric

ID based on PPG signals. Herein, we use a similar structure applied to the problem at hand.

The model is trained in Python environment (version 3.6.3) and implemented using Keras

2.2.4 [4], with Tensorflow 1.3.1 backend. The CNN layer starts with a 1-D filtering operation

with filter size sF = 15 followed by a Rectified Linear Unit (RELU) [26] as activation

function, a batch-normalization layer [13], a max-pooling layer with pool size sP = 4, and

finally a dropout layer [30] with dropout rate = 0.1. The Max-pooling layer is a type of down

sampling: as we set sP to be equal to 4, the layer looks at the 4 elements of each filter (non-

overlapping), keeps the maximum element and discards the rest, so that the output length is

one fourth of the input length. Unlike some other common deep network layers (e.g. Dense),

the Max-pooling layer does not have trainable weights. Dropout layers are probabilistic

masks that in every gradient update (mini-batch) block a portion of the nodes (set their

output equal to zero). In our implementation, the dropout rate = 0.1 means that in every

gradient update, there is a 10% chance for each node in the layer to be dropped (blocked,

or set to zero). These two layers (Max-pooling and Dropout) are well-known methods used

to avoid overfitting.

Our LSTM network is composed of two series of identical LSTM layers. Each of them has 64

units (nU), with tanh as the activation function for the hidden state data and output data,

and hard-sigmoid as the recurrent activation functions for the forget, input, output gates.

The model was trained using Adam optimizer [16]. Batch size was set to 20 to balance the

training time vs noisiness of gradient updates trade-off. The hyperparameters mentioned

above and also the number of layers for each network (CNN and LSTM), were optimized by

means of a grid search. Changing the hyperparameters (e.g. sF, nU, sP, etc.) or the number

of layers did not result in an improved final output.
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Chapter 3

Data, Metrics, and Experimental

Results

3.1 Datasets

To evaluate the accuracy and efficiency of the proposed method, we used two publicly acces-

sible real life datasets. Each of these datasets are collected from a number of participants in

hospital settings. We briefly explain each of them in this section.

3.1.1 MIMIC v.3 2015

Multi-parameter Intelligent Monitoring in Intensive Care, provided by [9]. The MIMIC-II

dataset includes health-care information and signals of thousands of patients at a number

of hospitals between the years 2001 and 2008. Part of this large dataset, including PPG,

Arterial Blood Pressure (ABP) and Electrocardiogram (ECG) signals is extracted and used

in another work [15]. An example of PPG and corresponding ABP signals from this dataset

11
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Figure 3.1: Example of PPG (a portion of a normalized signal) and the corresponding raw
ABP signal from MIMIC-II dataset

is given in Figure 3.1 (PPG in that figure is a portion of a normalized raw signal). These

signals are originally recorded at a sampling frequency fs=125 Hz, with a minimum accuracy

of 8 bits. We randomly selected data corresponding to 20 different subjects -five minutes

long each- from this dataset to test our model.

3.1.2 The University of Queensland Vital Signs Dataset:

This dataset covers a wide range of BP values, recorded from 32 surgical patients in duration

ranging from 13 minutes to 5 hours, at the Royal Adelaide Hospital, Australia [20]. This

dataset is recorded at the sampling frequency fs = 100Hz. We used 49 measurements (10

minute intervals) from this dataset.

The majority of studies on this topic have used one of these two datasets. However, details

of how portions of these datasets were selected for experiments were not revealed. We

acknowledge that the data we used for our experiment, might not be exactly matching the
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Figure 3.2: Distribution of Systolic BP and Diastolic BP

data used in similar studies. But in order to conduct a fair comparison, we picked a portion

of each dataset randomly.

For both datasets, we re-sampled the PPG and ABP signals at 20 Hz, and re-adjusted the

timings [33] (in most of the records PPG and ABP were off by around 0.25-0.35 s). The

distribution of BP in MIMIC-II data (that we used in this experiment) is given in Figure

3.2. After these steps, the resulting PPG signals and ABP values are ready to be used for

training and evaluation of our method.

3.2 Experimental Results

The preprocessed PPG signals and BP values from both datasets (section 3.1) are further

normalized to zero mean and unit variance before being used as the input to the network.

The relevant linear and nonlinear features of the input data are extracted through a CNN

network, and then these features are given to a two layer LSTM network to do the time series

analysis. What is important to consider here is that unlike conventional methods, feature

extraction is performed as part of the training process; the trainable weights in the CNN are

optimized to extract the most important features of the PPG signal, and by important we

13



Table 3.1: Performance comparison with prior works

Work Dataset
SBP DBP

MAE SD MAE SD

[8] MIMIC-II 4.47 6.85 3.21 4.72
[21] MIMIC-II 8.54 - 4.34 -
[25] MIMIC-II 3.97 7.99 2.43 3.37
[17] MIMIC-II 3.80 3.46 2.21 2.09
Our work MIMIC-II 3.70 3.07 2.02 1.76

[34] UQVSD 11.64 8.20 7.62 6.78
[5] UQVSD 4.77 7.68 3.67 5.69
Our work UQVSD 3.91 4.78 1.99 2.45

mean they are informative toward the estimation of the BP values. We perform leave-one-

window-out validations. Hence, one 8s time window is kept separate, and training is done on

the rest of data. Then, the trained model is evaluated on the test sample. Also for training,

we do not use three time windows on each side of test sample, to account for the 6s overlap

between two consecutive time windows. With this strategy, the training data and test data

will be completely separate from one another. We are training and testing the model for

each subject independently from the others. The performance of the network is evaluated

using the following three metrics:

Absolute Error (AE): for each test sample, AE is defined as AEi = |BPTi
− BPEi

|, in

which BPTi
is the true or target blood pressure, and BPEi

is the estimated blood pressure

when window number i is held out as the test sample. Consequently the mean value of

AEi and the standard deviation over all number_of_samples iterations (for each subject),

and then over all subjects are calculated and reported in the Table 3.1. Mean of AE would

be rough estimate of the error value on predictions, and standard deviation of AE would

tell how robust and reliable the method is. A model is selected as a strong predictor, if it

produces small MAE and SDAE values. The method proposed in this thesis, to the best

of our knowledge, outperforms all other currently available frameworks and techniques.

14



BHS: As a second metric, we consider a standard commonly used for blood pressure mea-

surements accuracy, provided by the British Hypertension Society (BHS) [27], which grades

the measurement accuracy into three groups (A-C). This metric measures the fraction of

measurements (or estimations) which are within a certain range – 5, 10 and 15 mmHg – of

the target values for unobserved data. Based on this metric, our proposed model (to the

best of our knowledge) is the only method that gets Grade A for both SBP and DBP (in

predictions based on PPG only). Detailed results are given in Table 3.2. For comparison au-

thors in [25] report grade A for DBP and below C for SBP estimation on MIMIC-II dataset.

Also authors in [5] report grade A for DBP, and B for SBP estimation on UQVSD dataset.

AAMI: As the third metric, we consider a different standard provided by the US Association

for the Advancement of Medical Instrumentation (AAMI) [7]. Based on this Standard, a

measurement algorithm is valid if the ME (Mean Error) of the measurements is below 5

mmHg and the SD of Errors is smaller than 8 mmHg. The results are presented in Table 3.3.

Our model passes the AAMI standard criteria for both SBP and DBP on both dataset. For

comparison, our proposed model produces better error values (lower mean and σ) compared

to [5] on UQVSD data. On MIMIC-II dataset we get lower error σ but higher error mean

compared to [25].

The distribution of the prediction error for one subject from the MIMIC-II dataset is depicted

in Figure 3.3. Based on the histograms, prediction errors are mostly small. However, in some

rare cases (less than 1% of times) the estimation error for SBP goes beyond the 20 mmHg

range from the target value. For DBP, that never happened in our experiments.

The Bland-Altman plot for the predictions on the same subject is shown in Figure 3.4.

Predictions on lower values of BP – left side of each plot - are more reliable (smaller error).

Note that these data points correspond to the times that the subject is likely to be less active

(potentially at rest), at which the PPG signal is expected to be less noisy and more reliable.

15
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Figure 3.3: Prediction Error for SBP (left), and DBP (right)
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Table 3.2: BHS Standard [27] vs. our results

(a) BHS Standard Minimum Requirements

Cumulative Percentage Error

≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%

(b) Our results on the two datasets

Cumulative Percentage Error (Grade)

Dataset Signal ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

MIMIC-II SBP 77% (A) 92% (A) 96% (A)
DBP 93% (A) 97% (A) 99% (A)

UQVSD SBP 75% (A) 92% (A) 96% (A)
DBP 92% (A) 98% (A) 99% (A)

Table 3.3: Comparison of results with AAMI Standard [7]

Mean
Error

σ of Er-
ror

AAMI Criteria: ≤ 5 ≤ 8

MIMIC-II SBP 0.21 6.27
DBP 0.24 3.40

UQVSD SBP 0.52 6.16
DBP 0.20 3.15
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Chapter 4

Conclusions and Future Work

Hypertension or high blood pressure is closely related with cardiovascular disease. While

continuous and portable BP monitoring is of high importance, conventional cuff-based BP

measurement devices are primarily confined to clinical settings. The method proposed in

this thesis is a cuff-less, noninvasive and feasible method which estimates Blood Pressure

with high accuracy based on only PPG signals. PPG sensors are simple and low cost, and

are integrated in most of newer smart watches and wearable devices. We use Convolutional

Neural Network to automatically extract the best features of the input, and then use a LSTM

network to analyze a time series analysis of the extracted features. Results of the proposed

method outperform previous methods that only use PPG signal as input. Importantly, the

proposed method ranks as A in the BHS Standard for both SBP and DBP, complies with

the AAMI Standard, and also outperforms all the other similar works in terms of prediction

error (as well as BHS criteria).

Wearable devices designed in recent years are able to capture a variety of health signals in-

cluding PPG, electrocardiogram (ECG), electromyography (EMG), and more. Deep learning

architectures applied on these signals along with personalization methods can be utilized to
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monitor various health factors such as mental health, blood glucose levels, oxygen saturation

levels, and to detect abnormalities. In addition, health signals contain subjective patterns,

which along with feasibility of wearable sensors, makes them good candidates to be used for

identification purposes.

Personalization is a solid direction to improve the accuracy and performance of these models.

However, building reliable subjective datasets that include the target variables is always a

challenge. Another challenge of working with health signals from wearables is the high levels

of noise which mainly originates from physical motions. Both of these are active areas in

research.

Lastly, even though the processing power required to execute the model (and more impor-

tantly, to keep it updated with the new subjective data) might be expensive to be executed

on the edge layer in an IoT architecture, in certain scenarios the data can be transferred to

the cloud, and the prediction output can be sent back to the user through a smart-watch or

smart-phone, all in real-time. The development of such architecture is left to future work.
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