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Decoding the precision of historical temperature observations

Andrew Rhines,a* Martin P. Tingley,b Karen A. McKinnona and Peter Huybersa
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*Correspondence to: A. Rhines, Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA
02138, USA. E-mail: arhines@fas.harvard.edu

Historical observations of temperature underpin our ability to monitor Earth’s climate.
We identify a pervasive issue in archived observations from surface stations, wherein the
use of varying conventions for units and precision has led to distorted distributions of the
data. Apart from the original precision being generally unknown, the majority of archived
temperature data are found to be misaligned with the original measurements because of
rounding on a Fahrenheit scale, conversion to Celsius, and re-rounding. Furthermore, we
show that commonly used statistical methods including quantile regression are sensitive to
the finite precision and to double-rounding of the data after unit conversion. To remedy
these issues, we present a Hidden Markov Model that uses the differing frequencies of
specific recorded values to recover the most likely original precision and units associated
with each observation. This precision-decoding algorithm is used to infer the precision of
the 644 million daily surface temperature observations in the Global Historical Climate
Network database, providing more accurate values for the 63% of samples found to have
been biased by double-rounding. The average absolute bias correction across the dataset
is 0.018 ◦C, and the average inferred precision is 0.41 ◦C, even though data are archived
at 0.1 ◦C precision. These results permit better inference of when record temperatures
occurred, correction of rounding effects, and identification of inhomogeneities in surface
temperature time series, amongst other applications. The precision-decoding algorithm
is generally applicable to rounded observations–including surface pressure, humidity,
precipitation, and other temperature data–thereby offering the potential to improve
quality-control procedures for many datasets.
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1. Introduction

Daily temperature maxima and minima measured at surface
weather stations are the primary observational source for
information about the last two centuries of climate, forming the
bulk of pre-satellite observations (Thorne et al., 2011). Historical
measurements of daily temperature extrema are more reliable
(Wang, 2014) and widely available than daily averages because
self-registering thermometers–which have been in widespread
use since the 1800s–can track the diurnal range of near-surface
temperature without continuous human observation (Austin and
McConnell, 1980). Archival, restoration, and digitization of these
time series has been crucially important for studying historical
weather and climate variations (e.g. Brohan et al., 2006).

The Global Historical Climate Network Daily (GHCND)
database (Menne et al., 2012) is the largest aggregation of quality-
controlled daily surface observations. A number of biases and
errors in these time series are known to stem from physical changes

in the observing system, such as by station relocation (Feng et al.,
2004), from human factors that cause certain numbers to be
preferentially chosen under uncertainty (Nese, 1994), and from
transcription or digitization errors that occur during the archival
process (Reek et al., 1992; Torok and Nicholls, 1996; Durre et al.,
2010). Existing quality-control procedures have prevented many
erroneous samples from being included in analyses, though these
have primarily focused on identifying implausible values such
as long strings of zeros, or unrealistic values relative to those of
nearby stations (Durre et al., 2010; Muller et al., 2013), with many
techniques being applied only to monthly averages.

Observational precision is an important source of uncertainty
that has not been adequately addressed. Although all GHCND
observations are archived in increments of 0.1 ◦C, their original
precision and units are not generally reported, and may vary
in time and from station to station. Many individual time
series are well-documented, but metadata from other stations
are absent, incomplete, or non-standardized (e.g. as handwritten
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Figure 1. (a) The effect of unit conversion and double-rounding errors on daily
maximum temperature observations from the GHCND database. The tenths digit
is not uniformly distributed (solid) as a result of variable precision and units in the
original data. Correcting for the presence of different precisions and units detected
by precision decoding, the distribution is found to be nearly uniform (dashed),
though human-induced biases due to preferential recording of the zero digit still
appear to be an issue. Panel (b) illustrates how rounding and unit conversion
alters the archived temperature for various original precisions. Hatching indicates
that the archived value is offset from the mean true temperature on that interval,
whereas unhatched bars indicate that the interval is correctly centered. Note
that each coloured sequence forms a non-overlapping staircase covering all true
temperatures. Bars are slightly offset in the vertical for visibility.

notes), and the diversity of data sources makes their recovery
difficult for large, global datasets (Durre et al., 2010). In some
cases it is possible to locate the original recording medium–as
with older data from Cooperative Observer Program stations,
derived from forms that instruct the operator to record values in
Fahrenheit to the nearest integer. Although many raw digitized
observations have been made available through the heterogeneous
source data compiled by the Global Land Surface Databank
(GLSD; Thorne et al., 2011), in certain cases there is no readily
identifiable information regarding precision. For example, the
lowest-level form of data for a station in Mombasa, Kenya
(GHCND station code KE000063820) in the GLSD is a set of
manually aggregated monthly average temperature tables with
little supporting information beyond the station location and a
list of numbers and dates. The units can be inferred through
comparison with the regional climatology, but the precision must
be inferred in some other way.

In addition to being an uncharacterised source of uncertainty,
data that have been double-rounded–that is, rounded in the
initial measurement units, possibly converted to different units,
and then rounded a second time–can lead to a surprising variety
of errors in subsequent analyses (Figueroa, 1995). Evidence of a

substantial double-rounding effect can be seen in the frequency
of each possible tenths digit in the GHCND data (Figure 1(a)), in
which zeros are systematically overrepresented (comprising 14%
of all samples) and fives are under-represented (comprising only
4% of samples). Unlike the leading digit, which is logarithmically
distributed in most data (Durtschi et al., 2004), the trailing digit
is typically uniformly distributed (Preece, 1981), with deviations
stemming from distorted sampling (Al-Marzouki, 2005). The
inflated zero counts alone might be explained by digit preferences
of station operators or by some observations having originally
been 1.0 ◦C-precision, but the under-representation of fives
suggests a further effect given the large sample size and the
relatively uniform frequency of the remaining digits.

Observations originally recorded to a precision of 1.0 ◦F,
converted to Celsius and then rounded again to 0.1 ◦C-precision
never feature a five in the decimal position (Figure 1(b)). For
example, integer values between 32 and 42 ◦F convert to 0.1 ◦C-
precision values of 0.0, 0.6, 1.1, 1.7, 2.2, 2.8, 3.3, 3.9, 4.4, 5.0,
and 5.6 ◦C, respectively, in a repeating sequence of decimal digits.
The under-representation of fives (Figure 1(a)) can therefore be
understood as a consequence of the GHCND database containing
some data that were originally of 1.0 ◦F-precision, a fact that has
been previously noted (Zhang et al., 2009), but for which the
consequences of double-rounding have not yet been assessed.
Furthermore, there is no established method to automatically
infer the original precision even in the relatively simple case of
a constant rounding and conversion protocol, though of course
this can also vary in time.

In the following, we introduce an algorithm termed precision
decoding which accurately infers the original precision and
units of observations (section 2), and then demonstrate its
operation upon synthetic data (section 3) and present results
and implications (section 4) as well as conclusions (section 5).

2. Precision decoding

The objective of the precision-decoding algorithm is to determine
the most likely precision and units of each sample in a given
time series. The algorithm works by determining whether a
given sequence of observations is consistent with each of several
candidate precision levels, modelling the unobserved precision
and units as a latent variable which is then inferred using
a Hidden Markov Model (HMM). The algorithm makes use
of the fact that each method of observing, rounding, and
converting physical observations leaves distinct fingerprints in
double-rounded data in the form of predictable distributions of
possible values (Figures 1 and 2). Precision decoding recovers
time series of the most likely precision and units of the original
observation and, in cases where double-rounding has misaligned
the archived values, recovers the original observations and the
range of possible values implied by the inferred precision, also
known as the preimage.

Although the algorithm is general and can be applied to any
time series, for purposes of specificity, we describe it with reference
to temperature data from the Global Historical Climate Network
Daily database (GHCND; Menne et al., 2012). The GHCND data
are distributed as integer multiples of 0.1 ◦C, in accord with the
format recommended by the World Meteorological Organization.
Each measurement is provided with one or more flags denoting
metadata or quality-control information, and we only consider
minimum and maximum temperature values without negative
quality-control flags.

Precision is generally not directly observable, but rather must
be detected from the data, motivating the use of an HMM to
estimate the most likely precision state through time. A solution
for this Markov model which is optimal in the maximum
a posteriori sense is obtained through the Viterbi algorithm
(Forney, 1973). The algorithm requires the specification of an
emission matrix linking the precision state to the observations, E,
a transition matrix describing the likelihood of the precision or
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Figure 2. Detection of historical precision in two example surface stations. Daily maximum temperature data from stations in (a) Russia (59.32◦N, 39.92◦E)
and (b) Kenya (4.03◦S, 39.62◦E) are plotted by year with circle area proportional to the number of observations recorded at a given value, illustrating that the
data lie on quantized levels that vary over time. (c,d) Precision changes detected using precision decoding show that early observations in (a) were taken at 1 ◦F
precision, followed by more accurate 0.1 ◦C observations. In (b), the record also begins with 1 ◦F precision, followed by a hiatus and a transition to 1 ◦C when
observations resumed in 1973, finally switching to 0.1 ◦C in 1982. Points with ambiguous precision within the likely range of a detected state transition are indicated
in white.

units changing, A, an initial state distribution, �, and candidate
combinations of precision, X. The convention used here is that
Elk gives the likelihood of emission l when the system is in
state k, and Aij gives the probability of transitioning from
state i to state j (Figure 3). �i represent the probability that
the system is initially in state i. We assume that the system
satisfies the Markov property, i.e. that the system’s current state
and emissions depend only on its most recent state. If the
transition, emission, and initial state probabilities are known
exactly and the system satisfies the Markov property, the Viterbi
algorithm determines the most likely state sequence, optimal
in the sense of maximum a posteriori probability. In the more
general case that we are confronted with model parameters
that are unknown, they can be estimated iteratively using the
Baum–Welch algorithm (Rabiner, 1989). As the number of
precision states present in a specific time series is not known
a priori, we also use the Bayesian Information Criterion (BIC;
Schwarz, 1978) to identify the optimal model and avoid over-
fitting by using too many states. Using the parameters obtained
from Baum–Welch augmented by the BIC, the Viterbi algorithm
then provides an estimate of the most likely state sequence. These
computational methods are widely used in signal processing,
machine learning, bioinformatics, and other areas of research
(e.g. Durbin et al., 1998).

Figure 3. State-space representation of the HMM used in precision-decoding.
The unobserved precision state sequence, S, is distributed according to the initial
state probabilities, �, with transitions governed by the transition matrix, A. At
each time j = {1, 2, . . . , N}, the categorical variable Xj represents the mapping
from the archived temperature to the precision consistency. The likelihood of
each precision level being present, conditional on the unobserved state, is given
by the emission probability matrix, E.

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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2.1. Precision candidates and consistency subsets

Use of an HMM requires a mapping from the temperature time
series to a time series representing consistency with each candidate
precision state, as the Markov property is not satisfied unless the
emission probabilities depend only on the current precision state.
Raw temperature values are generally non-Markovian in that
they follow a seasonal cycle and thus explore only a small range
of possible emissions at any given time, hence the need for a
transformation. We make use of the fact that each assumed
original precision level implies a distinct distribution of archived
0.1 ◦C-precision values, and, conversely, each archived value at
0.1 ◦C-precision is only possible under a subset of the original
candidate precision levels (Figure 1(b)). By identifying the original
precision level and assuming conventional rounding and unit
conversions, we can identify the range of values in the original
precision that correspond to the archived GHCND value.

We assess the consistency of each observation, Tj, with
candidate precisions indexed by k. Consistency is tabulated in
a matrix, C, denoting whether Tj could have been recorded using
precision state k. Specifically, for Celsius precision states having a
precision of pk decimal digits, the consistency matrix is defined as

cjk =
{

d if Tj ≡ 0 (mod 10pk ),

0 otherwise,
(1)

where d is the degeneracy–the number of unique values in the
original precision that map onto Tj. For example, d is ten if
the original precision is hundredths of a degree Celsius and the
final precision is tenths of a degree Celsius. Cases where data are
archived in Celsius but originally recorded in Fahrenheit require
a modified inversion procedure which is described in section 2.2.
Many rows of C are identical, and we refer to each unique row
as a precision consistency subset. Each of these subsets acts as a
symbol that carries information about the underlying precision
state, and the rate at which each symbol occurs is the basis for
decoding the precision using an HMM.

With R candidate precisions there are up to 2R − 1 possible
consistency subsets, but the number is much smaller in practice
due to repeating patterns which eliminate many combinations.
For example, every temperature consistent with 1.0 ◦C-precision
is also consistent with 0.5 and 0.1 ◦C, while the converse is not true.
The use of consistency subsets implicitly assumes that day-to-day
temperature variability is large compared with typical precision
increments, in that the symbol emitted at time tj is assumed
to be independent of that emitted at time tj−1, conditional
on the true precision used for each sample. If the data are
strongly autocorrelated such that successive values are likely to
be identical, the assumption of independence could be relaxed
by considering only every τ th sample, where τ is an empirical
decorrelation increment. In practice, we find this additional step
to be unnecessary. (For example, the Majuro Airport station in
the Marshall Islands (GHCND code RMW00040710, discussed in
Zhang et al., 2009) has strong autocorrelation and reported only
17 unique values of both minimum and maximum temperature,
with identical temperatures being reported for consecutive days
approximately 25% of the time. While the distribution of decimal
digits is distorted compared with the expected distribution for
high-variability stations, in the space of consistency subsets
the Fahrenheit data remain clearly distinguishable from other
precisions until 2013 after which the station apparently reports at
0.1 ◦C precision.

We use candidate precisions of 0.1, 0.5, and 1.0 ◦C, as well
as 0.1, 1.0, and 2.0 ◦F. The 0.1 ◦C, 1.0 ◦C, and 1.0 ◦F candidates
are chosen because they are established standards documented
to have been used by different station networks. The additional
possibilities of 0.5 ◦C, 0.1 ◦F, and 2.0 ◦F were included following
exploratory analysis which suggested additional precisions were
necessary to explain the results at a large number of stations. We do
not exclude that there may be rare cases with additional precisions,

or that the effective precision may be lower where digit-preference
biases are present (Nese, 1994). This set of candidates yields a
relatively small set of seven possible subsets, while maintaining
a high degree of distinguishability between different candidate
precisions. Having a small number of candidate states as well as a
small number of subsets is also advantageous from the perspective
of computation, as the Viterbi and Baum–Welch algorithms have
complexity O(N × R2 + N × R × K), where N is the number of
samples in the time series, R is the number of precision candidates,
and K is the number of possible consistency subsets.

Missing values are ignored here rather than being assigned
a special consistency category, a simplification that has some
immediate–but minor–effects. As a result of ignoring the gap
length, the ambiguity of transition points can spread across
the observation gaps (e.g. Figure 1(d)). Simple cases of this
type can be corrected for in post-processing, and extensions
to the algorithm could also be made to explicitly model gaps.
Because gaps in observations may coincide with observing system
changes, it would ultimately be useful to address the missing
values in the state estimates; the Viterbi algorithm does not
permit for missing observations, though alternative methods
such as posterior decoding (Durbin et al., 1998) could be used to
augment the Viterbi results in such cases.

2.2. Inversion given both rounding and unit conversion

Computation of the consistency between observations and
candidate precision levels requires the identification, for each
candidate precision, of the range of values that map onto each
value archived in the GHCND database. This mapping can be
derived by first considering the rounding function,

round(x) =
⌊

x + 1

2

⌋
, (2)

where the floor function (�·�) is defined by the inequality for
some integer n,

�x� = n ⇔ n ≤ x < n + 1. (3)

Note that the convention to round upwards used here is consistent
with meteorological conventions but differs from alternative
definitions sometimes used in other fields, for example rounding
away from 0 at half-integer values, or rounding to the nearest even
integer (so-called bankers’ rounding, designed so that negation
commutes with rounding). We also note that, for the temperature
units considered here, all rounding methods give identical results
with precision-decoding.

For a destination precision of p decimal digits, the true value
of the observed temperature, T, is rounded to⌊

10pT + 1

2

⌋
10−p. (4)

In general, the original temperature may have been rounded
multiple times and is perhaps subject to unit changes as well.
Any such sequence of rounding and data processing steps can be
represented as a composition of similar functions.

The rounding function is many-to-one. Although the function
is not invertible, it is possible to solve for its preimage (the range of
possible values prior to rounding) if the data processing sequence
is known. As a concrete example, consider the question of whether
a given archived Celsius observation, Tr, with pr decimal digits of
precision, could derive from an original Fahrenheit observation
with po digits of precision. Repeated application of Eqs (3) and
(4) and the conversion from Fahrenheit to Celsius lead to the
inequality,

9

5

(
Tr − 10−pr

2

)
+ 32 ≤ n×10−po

<
9

5

(
Tr + 10−pr

2

)
+ 32, (5)
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where n ∈ Z and n × 10−po is the originally recorded temperature
in Fahrenheit. For a given po and pr, all n satisfying this inequality
must be found to evaluate consistency. A solution exists only if
at least one integer n satisfies the inequality, a fact that provides
a strong constraint for inferring precision. Multiple solutions
can exist wherever the interval has a width greater than 10−po .
The number of solutions (the degeneracy in Eq. (1)), d, is then
bounded by ⌊

9

5
10po−pr

⌋
≤ d ≤

⌈
9

5
10po−pr

⌉
, (6)

where 
·� is the ceiling function. For example, if the Celsius
precision is one decimal digit (pr equals one, as in the GHCND
database), and the Fahrenheit precision is 1 ◦F (po equals 0),
there is at most one solution and the inverse can be recovered
in every case where the conversion was from a precision of 1 ◦F
to 0.1 ◦C. Often, however, double-rounding leads to irreversible
errors (Figueroa, 1995), as a result of degeneracy if the original
precision is smaller than the archive precision–80% of all
0.1 ◦C values have two possible 0.1 ◦F source values, hence
the need for a treatment of degeneracy in the consistency
subsets.

Equation (5) can be solved explicitly using integer linear
programming, but in practice a more efficient solution is to
solve the forward problem on an exhaustive list of values in the
destination units, and then check for consistency via a look-up
table which we implement as a binary search tree.

2.3. Emission matrix

The emission matrix, E, has entries, Elk, denoting the likelihood
of observing consistency subset l when the true observational
precision state index is k. For example, if the only possible
precisions are r1 = 0.1 ◦C and r2 = 1 ◦C, the only consistency
subsets possible for all observations are l1 = {0.1 ◦C} and
l2 = {0.1, 1 ◦C} because there are no values that could be
consistent with the precision being 1 ◦C without also being
consistent with 0.1 ◦C. In this truncated case, the full emission
likelihood is

E =
(

9/10 0
1/10 1

)
. (7)

For convenience and interpretability, the emission likelihood is
normalized down columns of E, so that each entry represents
the probability of emitting subset l from precision state k. In
computing E, we use a flat prior for the true temperature,
i.e. we assume that all temperature values are equally likely.
This is equivalent to the assumption that temperature variability
is large relative to the precision increments. Real temperature
time series explore a finite range (O(100 ◦C)), so that the
asymptotic limit is only approximate. Nevertheless, the emission
likelihoods are sufficiently distinct that we do not find any
improvement in classification in synthetic tests when a smoothed
empirical distribution specific to each time series is used to
generate E instead of the flat prior; the likelihoods are typically
higher, but the decoded state sequence is indistinguishable
as a result of the consistency mapping providing a strong
constraint.

2.4. Parameter estimation

We use the Baum–Welch algorithm (Rabiner, 1989) to provide
an estimated transition matrix, A, and initial state probabilities,
�. The Baum–Welch algorithm uses expectation maximization
(Dempster et al., 1977) to converge on a maximum likelihood
estimate of the model parameters given the observations.The
probability of transitioning from one observational precision
to another is generally unknown and can be expected to vary

substantially from station to station, but is assumed to be relatively
unlikely. To reflect this, we initialize the algorithm with

Â =

⎧⎪⎨
⎪⎩

α if i=j,

1 − α

R − 1
otherwise.

(8)

We set α equal to 0.999 (the Baum–Welch algorithm is not
sensitive to this choice, but converges more quickly when
initialized with large self-transition probabilities). We add
uniform, randomly generated noise on the interval (0, 10−5)
to each entry and re-normalize the matrix to avoid issues
with initial symmetry known to influence the outcome of the
subsequent parameter estimation (Durbin et al., 1998). Because
we have an analytical solution for the emission probabilities,
we have modified the standard Baum–Welch implementation
so that it estimates only the transition matrix and the initial
state probabilities. We use a tolerance of 10−6 and at most 500
iterations for convergence.

Maximum likelihood estimates conditional on the parameter
estimates are obtained for each possible combination of precision
candidates. The optimal set of precision candidates is selected as
the one that minimizes the BIC (Schwarz, 1978),

BIC = −2L + D log(N), (9)

where L is the log-likelihood of the data given the model
with maximum-likelihood parameters as estimated by the
Baum–Welch algorithm, D is the number of independent
parameters estimated, and N is the number of observations
in the time series. D depends only on the number of precision
states assumed to be present, R:

D = (R − 1) + R(R − 1). (10)

Because we do not train the emission probabilities, the degrees
of freedom stem from the transition matrix, A, contributing
R(R − 1) since each row must sum to one, and the initial state
probability, �, contributing R − 1 since � must also sum to one.

In most cases the standard form of the criterion is adequate,
however we note that in cases where there are biases in recording
practices, some further ad hoc measures are required to prevent
over-fitting. Specifically, when decimal digits of 5 and 0 are
preferentially recorded, the parameter estimation step may
compensate by jumping into and out of the 0.5 ◦C state, e.g.
from the 0.1 ◦C state. To prevent such flickering, we make a
modification if the model chosen by the Bayesian Information
Criterion predicts more than ten state transitions, instead using a
modified Bayesian Information Criterion (mBIC),

mBIC = −2L + (D + W) log(N), (11)

where W is the number of transitions in the Viterbi path. The
mBIC is similar to the standard BIC for change point methods in
which the model complexity scales with the number of transitions
rather than the number of states (Bogdan et al., 2008). We find
that the results are not overly sensitive to the threshold choice of
ten transitions, as the mBIC is primarily invoked where severe
overfitting results in transitions occurring regularly. However, in
order to avoid missing potentially important cases where a small
but non-zero number of transitions are present (as in Figure 2), we
use the mBIC only above this threshold. The modified criterion is
used for 1947 of the 28 824 examined stations. These stations are
geographically widespread, with the highest concentrations in the
USA due to the overall high station density there. Another possible
contributing factor is the prevalence in the USA of many longer
time series, and therefore presumably a greater susceptibility
to human digit preferences in the older observations. If hard
classification decisions are not required, multiple selection criteria
including the BIC and mBIC could be used simultaneously in

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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Figure 4. The Jensen–Shannon divergence between different precisions in
consistency space. Small values indicate that a pair of states is difficult to
distinguish, whereas large values indicate that the states can be easily distinguished
with a small number of samples. Values exactly equal to 0 are in grey.

a hierarchical setting to provide a smoothed state estimate that
represents the contribution of several models. Based on results
from synthetic tests (following section), we also forbid direct
transitions between the 0.1 ◦F state and either 0.1, 0.5, or 1 ◦C.
As with the mBIC, this choice reduces overfitting and only
appears to influence a small number of stations that have large
digit-preference biases.

3. Validation of the algorithm

We perform several synthetic tests of the algorithm to evaluate
its performance on realistic sample sequences. The tests are
performed using both unbiased and biased samples to determine
the robustness of the algorithm. The resolution of the model
selection procedure is also tested by varying the length of the
analysed sequences.

In evaluating the algorithm’s performance it is important to
account for the fact that some pairs of precisions are more difficult
to distinguish than others; some pairs often produce mutually
consistent samples (e.g. 0.5 and 1.0 ◦C), while others do so less
frequently (e.g. 0.5 ◦C and 1.0 ◦F). It is therefore useful to define
a distinguishability measure to evaluate the algorithm relative
to an information-theoretic baseline. A symmetric measure
of the difference between two discrete distributions is the
Jensen–Shannon Divergence (JSD; Lin, 1991),

JSD(Q||P) =1

2

∑
i

Qi log

(
2Qi

Qi + Pi

)

+ 1

2

∑
i

Pi log

(
2Pi

Qi + Pi

)
, (12)

where P and Q are two discrete distributions–here, in the
space of consistency subsets. By construction the JSD values
fall between 0 and 1, and are an upper bound for the rate at
which information in the observations can be used to distinguish
between two possible states. Small values (e.g. 1.1 × 10−3 for
the {0.1 ◦C, 0.1 ◦F} comparison) indicate that the two states in
question are difficult to distinguish given a set of observations,
and large values (e.g. 0.93 for the {0.5 ◦C, 2.0 ◦F} comparison)
indicate that states are easier to distinguish. Most candidate
precision pairs are readily distinguishable (Figure 4), though
differentiating 0.1 ◦C from 0.1 ◦F is considerably more difficult.
We note that at archival precisions smaller than 0.1 ◦C, the
0.1 ◦F and 0.1 ◦C states would be more clearly distinguishable.
In the tests that follow, we stratify the algorithm’s performance
according to the JSD of the two precisions being compared.

Synthetic data are generated to resemble autocorrelated daily
temperature observations with a seasonal cycle. The time series
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Figure 5. Histograms of the error rate in the decoded precision of synthetic
observations. For each pair of precisions, 1000 trials using 20 years of synthetic
data are generated, with the observational precision changing after 10 years.
Histogram bars are shaded by the Jensen–Shannon divergence on the same
colour scale as in Figure 4. Non-zero errors in the 0.1 ◦F-to-0.1 ◦C case occur over
a much wider range which is not fully shown, with an expected misclassification
count of 35 days. Its distribution has a qualitatively similar shape to the other
cases.

are generated as an AR(1) process with noise variance of 9 ◦C2

and an autoregressive coefficient of 0.8, which is then added to
a 20 ◦C amplitude sinusoidal seasonal cycle, representative of a
typical midlatitude location. Variation of the AR(1) parameters
and the seasonal cycle amplitude over a wide range representative
of different climatic zones suggests that the results are not sensitive
to these choices. We sample the data using different sequences
of precision and unit combinations, and evaluate the accuracy of
precision-decoding in identifying the original precision of each
synthetic time series.

First, we generate 20-year-long sequences with two precisions
present, each comprising half of the sequence so that the transition
occurs in the middle of the sequence. As is common with HMM
state inference problems (Durbin et al., 1998), errors tend to occur
in ‘bursts’ so that the misclassification distribution is positively-
skewed. Errors for each case appear to approximately follow
a Poisson distribution whose parameter is related to the case’s
Jensen–Shannon Divergence. When the sampling is unbiased, the
misclassification count has a median of 0 and a mean of between
0 and 1 days for most cases, albeit with some notable exceptions.
The combination of 0.1 ◦F and 0.1 ◦C results in an average
misclassification of 35 days, and approximately 1.5 days for the
0.5 ◦C versus 1.0 ◦C and 1.0 ◦F versus 2.0 ◦F pairs (Figure 5).

Robustness of the algorithm to digit preference biases is assessed
by imposing a random preference in the original units towards
trailing digits of {5, 2, 8, 0}. When neighbouring digits are drawn,
we reassign them to these digits with {9%, 7%, 5%, 12%} chance
respectively. For example if a trailing digit of 4 or 6 is drawn, it is
reassigned to a 5 with 9% chance. The imposed rates are similar
to those found empirically at heavily biased stations (Nese, 1994),
where the cause of the bias is thought to have been introduced
through human preference for rounding to certain digits. The
introduction of these biases yields similarly low misclassification
rates to the unbiased case, with error rate distributions statistically
indistinguishable from those shown in Figure 5.

In a more stringent test we also examine the misclassification
rate when the length of the sequences varies. We generate 10-
year-long sequences using one precision, to which we append
a shorter sequence using a second precision. Misclassification
rates are highly state-dependent when the second subsequence is
short compared with the first (Figure 6), with nearly immediate
resolution of brief switches between some pairs of states, but up
to O(100) days being needed for the 0.1 ◦F-to-0.1 ◦C case. This
limitation arises during the model selection procedure, which
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Figure 6. Sensitivity to small number of samples at a second precision. The
median number of misclassified days is plotted for precision-decoded synthetic
time series having 20 years at one precision, followed by a variable-length sequence
at a second precision, as indicated by the x-axis. The 0.1 ◦F-to-0.1 ◦C curve extends
beyond the visible range of the y-axis, falling after O(100) days. Lines are offset
slightly in the vertical for visual clarity. The worst case bound (grey) corresponds
to all samples in the second subsequence being misclassified.

requires sufficient evidence of an additional precision being
present to permit the additional model complexity. Once samples
of the second precision are sufficiently abundant that the model
complexity penalty in the BIC (the second term in Eq. (9)) is
outweighed by the benefit of including an additional precision
state, the misclassification rate typically drops rapidly. This
phenomenon is known as the lock-in time. As with the constant
sequence length case (Figure 5), the lock-in time misclassification
errors roughly scale with the JSD values (Figure 6). We also
repeated the same test but with the first subsequence having the
same variable length as the second. When the two subsequences
are of equal length, we find lower misclassification rates relative
to the unequal length case as a result of the BIC restriction on
complexity playing a smaller role.

In general, the misclassification rate is proportional to the
number of state switches due to the unavoidable chance
of ambiguity for observations immediately before and after
transitions. We note that many time series in the GHCND
database are O(100 year) in length, leading to expected
misclassification rates of O(10−5) for stations that experience
one precision transition. Overall, the tests indicate that very small
misclassification rates can be expected even when the sampling is
moderately biased. Goodness-of-fit tests may reveal stations for
which the assumption of unbiased recording does not hold.

In a situation where one has reason to expect regular preci-
sion cycles –such as when technicians or instrumentation change
seasonally–posterior decoding (Durbin et al., 1998) or related
methods may be used to design a test for such simple types of peri-
odicity. Posterior decoding also provides a useful measure of the
uncertainty of recovered states. At detected transitions, irreducible
ambiguity in the consistency subsets can lead to the posterior
probability of the transition location being blurred in time. In
plots of the Viterbi path (e.g. Figure 2), we give a visual indication
of the 95% confidence interval for the transition (Durbin et al.,
1998), although this range is typically narrow (Figures 5 and 6).

4. Results and discussion

Finite precision has a variety of implications for the analysis and
interpretation of observations. We discuss how the majority of
data are not centred on their most likely value, how this has
implications for identification of record-breaking temperatures,
and why inference of the original precision is necessary to reliably
perform quantile regression. The analysis presented here is by
no means an exhaustive study of precision variability within the

GHCND database, and precision-decoding will be most useful
when used in tandem with other quality-control tools.

4.1. GHCND data

We use precision-decoding to estimate the precision of all
temperature observations in the public version of the GHCND
database, comprising 28 824 weather stations with a total of 644
million samples, and find that 63% of the data are misaligned due
to double-rounding. We note that while double-rounding errors
are small compared with estimates of the accuracy of surface
station temperatures (∼ 0.5 − 1.0 ◦C; Menne et al., 2012), the
inferred precision is generally similar in magnitude. The mean
absolute error across the temperature observations in GHCND
is 0.018 ◦C. That so many observations are affected arises from
the high density of stations in the USA using constant 1 ◦F
precision, including 1218 US Historical Climate Network stations
that are maintained specifically for long-term climate studies
(Menne et al., 2009). In total, 71% of all observations are
detected as being 1 ◦F-precision. One-ninth of the 71% are evenly
divisible by the five-ninths conversion factor to Celsius, making
(8/9) × 71% ≈ 63% of observations misaligned.

The prevalence of 1 ◦F-precision data (Figure 7) accounts for
the dearth of fives in the trailing digit of the rounded Celsius
data (Figure 1(a)). Additionally, the binning of the original 1 ◦F-
precision data is at intervals that correspond to 0.56 ◦C–much
larger than the implied 0.1 ◦C intervals at which the data are
archived. The original precision of some archived data is 2 ◦F
(0.3% of samples), corresponding to 1.1 ◦C intervals (Figure 7).
Seven hundred and forty stations apparently use 2 ◦F-precision
for more than 1 month of samples. Celsius measurements with
either 0.5 ◦C (4% of samples) or 1 ◦C (1% of samples) precision
obviously also feature greater uncertainty than suggested by the
0.1 ◦C archival precision (Figure 8). Twenty-four percent of
samples are detected as being at least 0.1 ◦C-precision. Though
difficult to distinguish from 0.1 ◦C, we infer that 7% of these
high-precision data are likely 0.1 ◦F-precision.

Precision changes are also common within individual station
time series, with 15% of stations having fewer than 95% of
observations in their most common precision category. The
appearance of 0.1 ◦F-precision observations (Figure 7) stems
mostly from Australian stations, consistent with the varying,
site-specific practices known to have been used there historically
(Torok and Nicholls, 1996). A high density of 0.5 ◦C observations
between 1977 and 2012 is primarily from approximately 2300
stations in Canada and Mexico. One degree Celsius-precision
observations also appear between 1972 and 1981 in approximately
1000 stations from the former Soviet Union.

4.2. Effects of unknown precision on quantile regression

Many statistical methods assume that data are continuously
distributed, and corrections that permit the use of discrete
measurements typically require specification of the censoring
or rounding process. For example, estimation of conditional
quantiles is sensitive to finite-precision sampling because non-
smooth distributions of the data lead to objective functions
that are not differentiable (Machado and Silva, 2005). If non-
smoothness is not mitigated, this problem precludes the use of
a broad class of statistical methods including quantile regression
(Koenker and Bassett, 1978). Remedies include the explicit use of
censoring in a regression model (Reich and Smith, 2013) and the
application of jitter (i.e. random noise) to approximately restore
the original distribution (Machado and Silva, 2005), but both
solutions require that the censoring process is known. Whereas
adding uniform white noise with a range of ±0.05 ◦C may
otherwise appear sensible given how the data are archived, such
an approach would generally not adequately restore GHCND
data toward its original distribution and would still give biased
results. As shown in the following example, our results permit
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Figure 7. Variations in the distribution of precision and units of daily maximum temperature observations from the GHCND database between 1850 and 2013
detected using precision-decoding. Curves are smoothed in time for the purposes of presentation using a 30-day boxcar window.

accurate restoration of the original underlying data distribution
and unbiased quantile regression results.

We use synthetic observations to show that, for rounding
procedures common in the GHCND data, these effects are severe
even for relatively simple sample distributions. We generate 2000
synthetic time series by drawing from a normal distribution
with a standard deviation of 10 ◦C and adding a linear trend
in the mean of 0.02 ◦C year−1. Each time series contains 90
samples per year over a duration of 30 years, representing daily
samples for one season over a climatological period (used, for
example, to estimate the base temperature distribution and its
trends). Quantile regression is performed to estimate linear trends
in the 95th percentile of the time series (Figure 9(a)). These
quantile trends are then compared with cases involving realistic
sampling practices. In one case, the data are sampled at 1 ◦C-
precision by rounding, and in a second case at 1 ◦F-precision,
followed by re-rounding at 0.1 ◦C-precision as in the GHCND
database.

The same quantile regression procedure is repeated for each
time series (Figure 9(b,c)), resulting in significant distortions
of the distribution, wherein the inferred trends are strongly
biased towards zero. We then show that the application of
jitter can restore the distribution, but only if the correct
precision is known a priori. First, we assume that only the
archival precision (0.1 ◦C for GHCND)–rather than the actual
sampling precision–is known. Uniform random values generated
on the interval [0.05, 0.05] ◦C are added to all samples, and the
95th percentile trends are re-estimated (Figure 9(d,e)), yielding
estimates that are still severely distorted and zero-inflated with
respect to the true distribution. Second, we use the actual sampling
precision, as would be available from precision-decoding. For
the 1 ◦C-precision samples, uniform random values on the
interval [−0.5, 0.5] ◦C are added to the time series. Similarly,
random values on [−0.5, 0.5] ◦F are added to each of the
1 ◦F-precision samples. Again, the 95th percentile slopes are
re-estimated (Figure 9(f,g)), yielding a distribution of trends that
is approximately restored. A paired Kolmogorov–Smirnov test
rejects the null hypothesis of the trends in Figure 9(b)–(e)
being drawn from the same distribution as those in (a),
while failing to reject the null in the case of (f) and (g) at
p < 0.05.

In addition to exhibiting zero-inflation and a distorted shape,
the means of the uncorrected distributions are biased. The mean
of the slope estimates (in ◦C decade−1) is 0.198 for the original

data, while for the 1 ◦C-rounded data it is 0.180 when no jitter
is applied, 0.183 for the incorrectly jittered data, and 0.198
for the correctly jittered data. The mean bias depends on the
distribution of the original slopes, the length of the time series,
the variability of the data, and the level of rounding. Sufficiently
coarse rounding can lead to all slopes being zero to within machine
precision.

4.3. Identification of record-breaking values

If not corrected, double-rounding can induce errors in the
attribution of record events. For example, although no recording
practice changes are indicated in the station metadata or in
the original source data available from the International Surface
Temperature Initiative (Thorne et al., 2011), we find that a
Kenyan station (KE000063820, Figure 2(b)) used 1 ◦F-precision
from 1955 to 1961, 1 ◦C from 1973 to 1981, and finally 0.1 ◦C from
1982 to present. Correcting the misaligned 1 ◦F-precision values
for daily maxima at this station indicates that 21 of the current
maximum records (i.e. each corresponding to a particular day of
the year) are misaligned in the GHCND database. For instance,
the raw GHCND record at station KE000063820 for 30 May is
30.6 ◦C in 1961, a record that was tied in 2004. However, we infer
that it was originally recorded as 87 ◦F and was biased upwards
by double-rounding after conversion to Celsius. The record for
30 May is therefore actually more likely to have occurred in 2004,
when it was recorded with no bias as 30.6 ◦C.

Chances of misidentifying record events increase with the
probability that any two randomly chosen samples from a given
station are recorded using different precisions. The probability
of finding different precisions can be quantified using a diversity
index. We use the Gini–Simpson index (Jost, 2006),

G = 1 −
∑

i

p2
i , (13)

where P = {p1, p2, . . . , pR} is the categorical distribution of
precision states, giving the likelihood that any two randomly
chosen samples from a given station will have been recorded
using different precisions. Maps of the diversity index (Figure 8)
show high probabilities in regions that have switched recording
conventions, such as in Canada, where recording conventions for
many stations switched from Fahrenheit to Celsius in the 1970s,
and Eastern Europe, where precision levels have been variable.
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Figure 8. Geographical patterns of precision and its variability. (a) Distinct geographical patterns emerge in a map of precision diversity (Eq. (13)), the probability
that any two randomly chosen samples are of different precisions. (b) The mean precision (the average width of the preimage of each measurement). Stations with
diversity indices less than 0.05 and mean precisions less than 0.105,◦C are displayed in (a) and (b), respectively, as grey points in the background.

An arguably safer approach to identifying record temperatures
is to evaluate them probabilistically within the range of each
observation’s precision, rather than by the daily best-estimate
provided by the raw observation. Such an analysis could be
performed using Monte-Carlo techniques given that the analytical
treatment using beta distributions becomes unwieldy after a small
number of candidate record events.

4.4. Improved quality control

In addition to correcting for distributional biases, precision-
decoding is a useful tool for quality control. Surface station
time series which have been digitized, perhaps after previous
aggregation steps, may in some cases represent distinct stations
or instruments that have been merged because of the appearance
of continuity. For example, a Russian station (RSM00027037,
Figure 2(a)) contains several years of 1 ◦F observations at the start
of the record, followed by 0.1 ◦C for the remainder. The source
flags within the data indicate that the early observations were
transcribed from global radio weather bulletins by operators in
the USA, while the later, more precise, data are sourced directly
from a Russian database (Razuvaev et al., 2008), consistent with
the detected switch. In many cases, however, source flags do
not provide such a clear transcript, and any detected precision

switches indicate that undocumented changes may have occurred.
This information can be used to improve the power of change-
point detection tests currently used in homogenization and
quality-control procedures (Karl and Williams, 1987; Lund and
Reeves, 2002; Menne and Williams, 2009).

In another case, it appears that 528 US stations
located at municipal airports reported unusual below-freezing
temperatures. The values are clearly spaced at intervals of 1 ◦F,
but with an offset of 0.1 ◦C from any plausible sequence of con-
version and rounding. The offset leads to these samples being
detected as transitions from 1 ◦F to either 0.1 ◦C or 0.1 ◦F preci-
sion. For example, since 2006 station USW00003866 has reported
363 temperature minima and eight maxima ranging from −13.8
to −0.6 ◦C that, after conversion from Fahrenheit, seem to have
been rounded upwards instead of to the nearest 0.1 ◦C. The fact
that these errors become apparent only in the 2000s and that
they occur only for sub-freezing temperatures is suggestive of
a software error or some other change in data processing or
instrumentation.

5. Conclusion

Statistical methods, especially those concerned with assessing
distributional changes or temperature extremes on daily
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Figure 9. The effect of finite-precision sampling on quantile regression. Quantile regression is performed to estimate trends in the 95th percentile of synthetic
temperature time series with a prescribed distribution of linear trends in the mean (a). The analysis is repeated for the same time series sampled at (b) 1 ◦C and (c)
1 ◦F precision, with significant zero-inflation evident due to non-smoothness of the data. When jitter of the same 0.1 ◦C magnitude as the GHCND archival precision
is added, the distributions for (d) 1 ◦C and (e) 1 ◦F precision are still highly distorted. When the correct (f) 1 ◦C and (g) 1 ◦F magnitude jitter is added to the rounded
data, the original distribution is restored. In all panels, the prescribed mean trend of 0.02 ◦C year−1 is indicated by the vertical dashed line.

time-scales, are sensitive to rounding, double-rounding, and
precision or unit changes. The precision-decoding algorithm
presented here provides an efficient and robust method of
inferring precision of time series and permits for correcting some
of the biases or errors which would otherwise accrue. Application
of precision-decoding to the GHCND database shows that
63% of all temperature observations are misaligned due to unit
conversion and double-rounding, and that many time series
contain substantial changes in precision over time.

The effects of double-rounding do not lead to systematic biases
in quantities that average over many temperature observations
because individual biases are asymptotically symmetric about the
true value when variability substantially exceeds the precision. For
quantities such as global mean temperature or monthly averages
at a single station, variable precision does not in itself lead to
significantly greater uncertainty. For other statistics, however,
substantial sensitivity is demonstrated. Methods that rely on
either distributional smoothness or individual extreme values are
shown to be particularly vulnerable, but generally amenable to
bias-correction through precision-decoding.

It may prove useful to combine or augment precision-decoding
with additional methods which can account for the available
metadata or other prior information. For example, a Bayesian
approach could be implemented to make use of geographical
or station network information in weighting the different
sets of precision candidates prior to model selection. Existing
Markov methods such as pair-HMMs (Durbin et al., 1998) used
for sequence alignment would also be a powerful means of
pooling precision information across a station network, though
algorithmic performance would currently limit their applicability
to small subsets of stations.

A software implementation of the precision-decoding algo-
rithm and the inferred precision of all publicly available GHCND

temperature station data is available in an online database (Rhines,
2015). We expect that these results will be useful in further error
detection, change-point analyses, and examinations of station
temperature distributions, amongst other applications. Precision-
decoding can also be applied to other temperature data such as
sea-surface temperature observations (Worley et al., 2005) and
vertical temperature profiles from radiosonde archives (Durre
et al., 2006). Historical observations of variables with physical
units other than temperature (including surface pressure, pre-
cipitation, and wind speed and direction) provide important
constraints for reanalyses (e.g. Compo et al., 2006) and other
datasets, and precision-decoding may be useful for additional
quality control there as well. We note that measurements involv-
ing length units such as surface pressure, precipitation, and sea
level (Woodworth and Player, 2003; Brohan et al., 2009) are
also susceptible to the double-rounding issues discussed here
because of historical changes between the Imperial and metric
systems.
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