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Abstract

Efficient crowdsourcing algorithms for discovering the top items
by

Shenshen Liang

Crowdsourcing provides a convenient way to collect information from humans. It
is proved to be an effective approach to solve large scale problems with relatively low
cost. Discovering top items from large datasets is a fundamental problem, which finds
its applications in various areas, such as players ranking, candidates recruiting, students
admission, and so on. Crowdsourcing can provide cost-efficient solutions for these

tasks, which usually require a large number of inputs.

We start the research by exploring crowdsourcing data for ranking. Two common
data types, numerical grades and pairwise comparisons, are examined. We design grad-
ing and comparison tasks with the same budgets and run them in crowdsourcing plat-
form. After collecting crowd workers’ responses, we analyze the influence factors and
compare the precisions of two types of data on ranking tasks. We choose to use pairwise

comparisons in the rest of this dissertation based on the analysis results.

Generally, there are two scenarios in the problem of top item discovery. In one
scenario, the number of target top items is unknown and unidentifiable, meanwhile the
qualities of top items are more important than the bottom ones, i.e., the errors in top
items incur larger losses. In this circumstance, the problem of identifying top items
is essentially a top-heavy ranking problem. In another scenario, the number of target
top items can be predefined or known. Such scenario occurs frequently when there
is a constraint on the amount of resources available. The problem is equivalent to a
top-K selection problem in this circumstance. In this dissertation, we propose novel

algorithms to solve problems of both scenarios.

viil



For top-heavy ranking problems, as there is extensive research on aggregating pair-
wise comparisons into rankings, we focus on studying strategies for selecting pairs of
items to be sent to the crowd, in order to make rankings converge as quickly as pos-
sible to the correct results. We define a “top-heavy” version of ranking distance, and
propose two algorithms to select the next pairs of items for the crowd to compare. In
particular, we define the loss involved in each pair of items, and design strategies which
select pairs that have maximum loss, or that lead to maximum ranking change. We
demonstrate that the rankings converge significantly faster with our algorithms in the
experiments. We further extend our algorithm to an efficient batched version, which
delivers the comparable ranking results, while dramatically reduces the computation

time and complexity.

For top- K selection problems, we propose an online top-/ selection algorithm, as
existing approaches are either inefficient as a result of having to learn a full ranking
which incurs unnecessary crowdsourcing costs, or require a fixed amount of work for
task completion and can not provide useful partial results if less work is performed. Our
algorithm dynamically and repeatedly selects items into acceptance (in the top-K') and
rejection (not in top-K’) with an error tolerance € > (. Partial results can be obtained
at any point of time in the algorithm. We prove that the complexity of the algorithm is
O(N log N), given an error bound and average probability of correctness of crowd. We
further propose several optimization techniques to reduce the number of comparisons
needed. Experimental results show that the algorithm can achieve comparable results

with significantly fewer comparisons.
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Chapter 1

Introduction

1.1 Crowdsourcing

With the development of advanced computation and artificial intelligence, com-
puters can process large volume of data, perform complex calculations, and so on.
However, there are many tasks that are difficult, or impossible, to solve by the most
sophisticated computers and programs alone. For example, judging the appropriate-
ness of an image, reviewing the quality of a product, or understanding the sentiment
of a dialogue. In contrast, humans can provide answers to these problems with their
unique capabilities. Humans are able to convert their perceptions and judgments into
knowledge and concepts, and transfer them to different domains. As a result, some

challenging tasks for computers can be easy, or even trivial for humans.

Crowdsourcing is one of the most common ways to obtain human-computational
input. It decomposes large scale problems into pieces of micro-tasks, distributes them
to a massive number of ordinary workers on the web, and obtains small pieces of in-
formation from the workers. It has been widely and extensively used in a variety of

applications. In industry, companies have been using it to solve core business chal-



lenges. For example, Wikipedia, the largest online encyclopedia, utilizes crowdsourc-
ing to gather information and data for a wide ranges of topics. Another example is Yelp,
which collects and publishes crowdsourced reviews about businesses, and helps users to
make informed decisions. In academia, universities and researchers use crowdsourcing
to solve a variety of tasks: object annotation, image labeling, peer-graded homework,
translation, proofreading, and so on. Compared to the traditional way of obtaining
opinions from domain experts and professionals, crowdsourcing has been proven to be
an effective way to retrieve human-powered information and solve large-scale prob-
lems, with relatively low cost and latency. In typical crowdsourcing systems, such as
Amazon Mechanical Turk and Figure Eight, there are two types of roles: requester
and worker. The requesters post a collection of tasks called Human Intelligence Tasks
(HITs) to crowdsourcing system. The system broadcasts the tasks to the public. The
workers can choose to accept any subset of tasks, and usually get paid by requesters
upon completion of tasks. Figure [I.T]illustrates a crowdsourcing system with requester

and worker.

1.2 Discover Top Items via Crowdsourcing

Discovering top items from large datasets is a fundamental problem, which finds
its usage in various areas, such as student admission, selection of scholarship recipi-
ents, candidate recruiting, landing page design, and so on. These tasks usually require
large number of inputs, and crowdsourcing provides a cost-efficient way to solve the

problems.

Generally, there are two types of tasks in identifying top items. In one circumstance,
the number of top items in demand is unidentifiable or unknown, while the top items

are more important than the items below. For example, when a social media content



Requester

Crowdsourcing system
broadcasts tasks to the
public, and calls for

workers to solve them.

Figure 1.1: Crowdsourcing system

creator designs their homepage, they usually places the more attractive contents at the
top, so that they can receive more clicks on their contents. In other words, the number
of clicks is related to the position where a content is placed in the item list. Failing to
display the contents with proper order can result in reduced traffic and interests from
online visitors. Apparently, the problem of identifying unknown number of top items is
essentially a global, top-heavy ranking problem, where higher ranked items command
geometrically higher visibility, revenue, or importance, and incur larger loss if they are
mis-placed. In another circumstance, the number of target top items are predefined or
known. Such scenario occurs frequently, when there is a resource restraint, where only
a fix number of resources are available. For example, a department of university can
afford to admit up to 30 prospective students in the next academic year. This type of
problem can be formulated as an item selection problem, the goal of which is to find

the top- /K items from an itemset.



1.3 Dissertation Overview

Research of crowdsourcing has emerged as a new field in computer science, and
the challenges require diverse efforts based on the specific problems and applications.
In this dissertation, we focus on methods of finding top items, when there is a hidden
ground truth in items’ order. Specifically, we are interested in the problem where the
hidden true order is based on the intrinsic ‘quality’ of items, as opposed to the orders
that are based on personal preferences, item relevance, and so on. For example, in
conference talks selection, the choice of talks depends on the quality ordering of talks.
Moreover, we do not focus on the problems where there is historical information that
can serve as objection function to learn a ranking. For instance, our methods do not
aim at learning a ranking on products sales, given customers’ purchase histories. We
concentrate on the finding the top items from the itemset, where there is no prior in-
formation that can be used as objective function, and the order assessment is usually
obtained by human inputs. For example, in student admission, while there are facts
such as SAT scores, GPAs, and so on, none of them shall be used as objective functions
to rank the students’ qualification. Human judgments, such as committee members’

assessments, are generally used to figure out the ordering.

In this dissertation, we analyze the crowdsourcing data for ranking first, and then
propose crowdsourcing algorithms for top-heaving ranking and top-K selection prob-

lems.

In Chapter 2, we explore the two most common data types for crowdsourcing rank-
ing problems. The two data types are ratings by numerical grades and pairwise compar-
isons. Each type has its advantages and disadvantages. Numerical grades provide fine
grain information about the items, and they can represent humans’ opinions precisely.
It is also straight-forward to aggregate the numerical grades into a ranking. However,

humans are found to be more prone to bias and errors when assigning grades. Pairwise

4



comparison is a simple expression of preference between two items. It usually requires
less cognitive workload, and is less prone to errors because of its simplicity. Nonethe-
less, the number of pairs is polynomial in the number of items in a dataset, and more

comparisons are needed to finish a ranking task.

We investigate the human factors in the ranking process and compare the two data
types, so that we can understand which data is better for learning the order of items,
and can design the crowdsourcing data collection mechanism effectively. We propose
different tasks and sent them to the crowd workers on Amazon Mechanical Turk. The
costs of tasks are designed to the identical so that the results are comparable. We
then estimate rankings for each task from crowd workers’ responses, and compare the
ranking precisions. The experimental results suggest that pairwise comparisons are
more precise and efficient for crowdsourced ranking. Consequently, we use pairwise

comparisons in the rest of this dissertation for top item discovery.

In Chapter 3, we study the crowdsourcing top-heaving ranking problem, where an
ordinal rank £ is associated with a benefit proportional to its position, and the errors
in the head of ranking are weighted more heavily than the errors in the tail. Though
extensive research has been done on how to aggregate pairwise comparisons into ac-
curate rankings [41,53,(77,83L91,/101], it is still very challenging to efficiently obtain
data with minimal cost. Therefore, we concentrate on studying strategies for selecting
pairs of items to be sent to the crowd for comparison, so that rankings will converge as

quickly as possible to the correct result.

In setting the problem, we assume that each item in a ranking has an intrinsic “qual-
ity”, and we define a “top-heavy” version of ranking distance where the mis-placement
of items is weighed according to 1/k* for rank k with A > 0; this will be used to
judge the speed of convergence of the proposed methods. As ranking aggregation is

not our primary focus, we perform ranking aggregation by applying the Glicko [44]



and TrueSkill [51], which are well-established on-line aggregation algorithms. We then
propose two algorithms to select the next pairs of items for the crowd to compare. In
particular, we define the loss involved in each pair of items, and design strategies that
select pairs for comparison that have maximum loss, or that lead to maximum ranking
change. We demonstrated the ranking converge significantly faster with our algorithms
in the experiments. Furthermore, the pair selection strategies are computationally ex-
pensive, as they require calculation of many alternative pairs to select the best next one.
To address this problem, we further propose efficient bathed version of the strategies,
which deliver the the same ranking precision essentially, while dramatically reduce the

computation time and complexity.

In Chapter 4, we explore the crowdsourcing top-K selection problem. Generally,
there are two types of approaches for this problem. One type consists in determining a
global ranking, and then returning the top-K elements of such a ranking. This type of
method has been extensively studied in crowdsourcing communities, and usually has
the advantage of being able to offer partial results before the completion of ranking.
However, it can be inefficient as it learns a full ranking, even among the items that
are all selected, and all rejected. It costs unnecessary crowdsourcing budgets to de-
termine and refine the global ranking. Another type of approach focuses on selecting
the top- K items rather than building a global ranking. It can be far more efficient than
global-ranking algorithms, as the crowdsourcing work is aimed at separating the top- &
elements from the rest, rather than obtaining a full ranking. However, these specialized
top-K algorithms require the completion of a fixed amount of work, and do not provide
partial results if less work is performed. Yet, partial results are usually useful. For ex-
ample, in candidate selection, one may wish to extend offers to the candidates as soon
as they are determined to be in the top-K set. If the crowdsourcing work takes longer

than expected, if a deadline makes it impossible to carry it to the end, or if the funds



for it are exhausted, having a usable partial result is the difference between failure and

(partial) success.

we propose a top-K selection algorithm that dynamically refines a classification
of the items into accepted (in the top-K) and rejected (not in top-/'). Given an error
tolerance € > 0, the algorithm creates a batch of comparisons, and as the responses
from the crowd come in, the algorithm uses them to refine the classification. The pro-
cess is repeated until the top-K elements are identified. Partial results can be obtained
at any time by returning the accepted elements, along with the unclassified elements
that have the largest estimated quality. We show that given the average probability of
crowd correctness ¢, for a fixed error tolerance € > 0, and for any top K/N percent, the
expected number of required comparisons is O(N log N), where N is the total num-
ber of elements. The worst-case occurs when K = N/2. We further propose several
optimization techniques to improve our algorithm. The algorithms are evaluated ana-
lytically and experimentally, and the results demonstrate that our algorithm can achieve

more accurate results with same amount of data.

Last but not least, we summarize our contributions and conclude our research in

Chapter 5.



Chapter 2

Crowdsourcing Rankings via Ratings

and Direct Comparisons

2.1 Introduction

In top item discovery problem, one of the essential tasks is to learn the order among
items, i.e., ranking items. In crowdsourcing systems, there are two common data col-
lection schemes for ranking problems. Requesters can either ask workers to provide
ratings to individual items with numerical grades, or to perform direct comparisons

between pairs of items. Each type has its advantages and limitations.

Numerical grade is commonly used in ranking problems. For example, Yelp asks
their users to rate businesses with grades between 1 to 5, and uses the aggregated grades
to rank the merchants. Numerical grades provide fine grain information about the tar-
get objects, and are capable of representing worker’s opinion precisely. Meanwhile, it
is relatively simple and straight-forward to aggregate grades to rankings, for example,
by averaging and sorting the grades. However, the process of grading can be incon-

sistent and prone to errors. For example, after interviewing overqualified candidates



frequently, the interviewers may raise their expectations unconsciously, and rate subse-

quent candidates lower than normal.

Pairwise comparisons, on the other hand, have become a popular data source for
ranking problems. In a single pairwise comparison, two items are presented to a user
together. The worker is asked to compare the pair and make a binary decision on one
over another. Pairwise comparisons are relatively easy to obtain from crowds, due to
the low cognitive workloads required in comparison. However, it requires more data to
learn a ranking, since the number of pairs is polynomial in the number of total items.

Also, it is less straight-forward to aggregate the comparisons to rankings.

The goal of this chapter is to understand the human factors that influence the accu-
racy of crowdsourcing data for ranking, and determine which data type shall be used
to obtain more precise information. We propose three research questions, design ex-
periments and compare the accuracy of rankings that are achieved with various crowd-
sourcing settings. In particular, we keep the budgets of all tasks identical, so that the

results are valid for comparison.

The rest of the chapter is organized as follows: after a review of background in
Section[2.2] we describe our methodology in Section[2.3] where we define the research
questions and design experiments for the answers. In Section[2.4] we present our exper-

imental outcomes and discuss the results. Finally, we conclude this chapter in Section

2.2 Related Work

Crowdsourcing obtains small pieces of information from ordinary crowds. It has
been proven effective to get human-powered information with relatively low cost [[100].

Crowdsourcing has been used extensively in many areas, such as opinion collection,



ranking, knowledge sharing, entity recognition, object annotation, and so on.

Crowdsourcing platforms, such as Amazon Mechanical Turk [97], Figure Eight
(formerly known as CrowFlower) [36] and ChinaCrowd [21]], provide matketplaces
where users can request mass number of workers to perform human intelligence tasks
(HITs). Generally, there are two types of users in these platforms, namely, requester
and worker. The requesters design and post HITs to the platform to collect inputs
from human workers, and usually pay a small amount of money for each HIT. The
workers browse and accept the HITs that they would like to work on, and receive the

compensation upon completing and submitting their answers.

Ranking is a popular problem in crowdsourcing platforms. Usually, there are two
major schemes to collect inputs for rankings: ratings via grades, or pairwise compar-
isons. In grading tasks, requesters define numerical ranges, which are usually non-
negative, and ask workers to choose a value within the range to evaluate the target
object. Grades allow workers to express their judgments with finer grained informa-
tion, and thus can more precisely describe worker’s opinion over the items. Moreover,
the methods of aggregating grades to rankings are straight-forward, including calcula-
tion of average, median, and so on. However, the grades can be inconsistent between
workers, or even inconsistent between the same worker with different contexts. As a

result, grades can be prone to errors.

In pairwise comparison tasks, workers express their relative preferences between
two objects, without mapping their judgments to grades and assigning the grades ex-
plicitly. Such judgments are relatively easier to make, since they require less cognitive
workloads than mapping judgments to grades. However, it usually requires a high
number of comparisons to achieve good ranking results, and the ranking aggregation

methods are more complicated.

In [17], Checco and Demartini analyzed and compared three types of data, i.e.,

10



grades, stars and pairwise comparisons, for ranking in crowdsourcing environments.
However, their experiments were conducted by collecting workers’ preferences to the
estimated rankings. As a result, the evaluation of rankings can be subjective and biased.
Yang et al. explored three approaches of pairwise comparison, absolute relevance and
relevance ratio for relevance assessment, but their research focuses on understanding
and comparing the performance and cost differences between the inputs from crowd-
sourcing and conventional experts [104]]. Kuhberger and Gradl evaluated three response
modes of choice, rating and ranking when the crowd is presented with risky options,
but focused on different mode’s impact on risky option selection rather than ranking
[64].

A classical, tournament-based algorithm, Glicko, is used to aggregate pairwise com-
parisons to rankings. The algorithm takes the outcomes of head-to-head games as com-
parisons, and assumes that a player’s skill follows a Gaussian distribution, with two
parameters as player’s average skill and uncertainty. Glicko extends Bradley-Terry

model and updates players’ skills with comparisons [44].

2.3 Experimental Methodology

In this section, we propose research questions to understand the factors that influ-
ence human’s precision on grading, and to compare the ranking outcomes from grading
and pairwise comparisons. We then describe our methodology to investigate the prob-

lems, and present four metrics for evaluating ranking precision.

We examine and compare two common data schemes that ranking tasks adopt in

crowdsourcing platforms:

e Numerical grade. Workers evaluate a single item with one grade in given range.

11



e Pairwise comparison. Workers select one item from an item pair. In particular, we

do not allow tie in comparisons to simplify decision-making process.

The experiments are conducted by posting human intelligence tasks (HITs) to Ama-
zon Mechanical Turk. We collect crowd’s answers and aggregate them to rankings. The

estimated rankings are assessed with four metrics described in Section[2.4]

We believe that when human brains process grades for object assessment, an intrin-
sic step is to compare and make references and utilize the existing knowledge of the
similar objects. This is a critical step in human’s evaluation process, which occurs fre-
quently, sometimes even unconsciously, regardless of whether the evaluation task asks
for an explicit comparison. For example, when a Yelp user rates a restaurant, they may
compare the taste of food, service, environment, etc., to similar restaurants they has
visited, and assign a grade that is in consistent with their prior experience, or the expec-
tation that is developed through the prior knowledge. Another example exists in real
estate property valuation, where appraisers refer to properties with comparable size,
years of construction, location, and so on, and leverage the values of those properties
to assess the target property. Apparently, the information that human use as reference
in assessment plays a significant role in evaluation process. As a result, we focus on
exploring the impacts of reference information to ranking. In the rest of this chapter, we
refer such information as ‘context’. Apparently, a context is self-contained in pairwise
comparisons: a worker only needs to compare the two items in the pair, and does not

require extra reference to make a decision.

Our research investigate the following research questions (RQ):

RQ1: Does context of grades impact ranking precision?

RQ2: How does biased order in context influence ranking precision?

12



RQ3: How do grades versus pairwise comparisons perform in crowdsourcing rank-

ing problems?

In the rest of this section, we will first introduce our designed datasets and exper-
imental setups, then describe the methods we design to investigate the research ques-

tions.

2.3.1 Datasets and Experiment Settings

There are various types of data that can be used for crowdsourcing analysis, such as
area of polygons, facial expressions, fuzziness of images, and so on [5,31}/70,/102,106].
In this investigation, we choose to use polygons, because while there is a clear ground
truth in the order of polygons areas, evaluating them requires low cognitive cost, and
we can easily generate the desired statistical properties and adjust the difficulty level of

tasks.

We generate polygons of various shapes and areas as follows: For any polygon,
the number of angles is determined by uniformly sampling an integer from the range
of [3,20]. The area of a polygon is a float value, which is uniformly sampled from
the range of (0,100]. We then generate a convex polygon that has the corresponding
number of angles and area. After the polygon is generated, each polygon is plotted

inside a fix-size rectangular. An example of a polygon is provided in Figure [2.1]

We generate 20 datasets for the research, with 40 polygons in each dataset. Each
dataset is sent to workers on Amazon Mechanical Turk via Human Intelligence Tasks
(HITs). In the analysis, we design two types of HITs: grading HITs and comparison
HITs. For grading HITs, the workers are asked to evaluate the area of a polygon with a
number within (0, 100]. For comparison HITs, worker are required to compare the area

of two polygons and pick the larger one. In particular, we purposely do not provide

13



Figure 2.1: Example of a polygon

any guidance or baseline for grading tasks, because we want to simulate the real-world
situations where there is no guideline for making an assessment, for example, evalu-
ating students for admission, grading student essays, and so on. In order to make the
outcomes of tasks comparable, we keep the budgets identical for any experiment on

each dataset.

2.3.2 Experiment Design

In this section, we describe the research questions in detail, and illustrate our method-

ology and experiments for the investigation.

14



Impact of Grading Context (RQ1)

In real world scenarios, people usually get multiple elements in grading tasks. For
example, an professor needs to grade the homework of multiple students; a company
assesses multiple candidates; and so on. In RQ1, we want to understand a fundamental
question from psychological perspective: do humans grade each item in isolation, or
do they first grade a few items without prior information, then use the previous items
and grades as reference points to assign future grades? In other words, does a context
impact human’s precision in grading?

We design grading experiments to answer this question. For each dataset that we
generate (which is described in Section [2.3.1]), we send grading tasks to Amazon Me-
chanical Turk and ask the workers to grade the area of each polygon. The tasks are

designed as follows:

Task 1: Present all 40 items in sequence in one HIT, where items are ordered randomly.

Task 2: Present every item in a single HIT, where HITs are ordered randomly.

In task 1, workers receive one item at a time, and the next item is only shown after
the previous item is graded. Workers are not allowed to go back and revise the grades
they have assigned. In this way, workers can make references from previous items and
calibrate the future grades, i.e., a context is provided to workers. In task 2, the items

are presented in an isolated fashion, and there is not an available context.

Each task has an identical cost of $0.8. We send out each task 5 times for every

dataset, so the cost of a task is $4 for each dataset.
How we process the HIT responses

After collecting the responses of all tasks, we calculate the averages grades of each

item for the two tasks. Then, we estimate two rankings for each dataset, by sorting the
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average grades of each task. We will demonstrate the ranking results in Section [2.4.1

of this chapter.

Impact of Biased Order in Context (RQ2)

Biased order in context, where top items appear early in sequence, is a phenomenon
that happens frequently in real world. For example, when companies and universities
hire employees, they usually incline to evaluate the candidates that appear to be more
qualified and have stronger background first. Apparently, the bias in order can impact
the first impressions of humans. Psychological research has suggested that primacy ef-
fect, also known as first-impression bias, can influence human judgments significantly,
even in the presence of contradictory evidences afterwards [3,145,|89]. Such bias can

last long [47]] and is consistently found to be resistant to change [46,[73]].

We believe that when people make references in grading, essentially, they memorize
the characteristics of some prior items, and use them as ‘signposts’ for future grades.
Due to the first impression bias, the initial items may become the major referencing
points. Workers may develop a profound memory in those items, and leverage them
heavily for grading.

In this research question, we are interested in the impacts of biased order in context,
and how people are influenced by different levels of bias in the order. We design six
tasks to investigate this problem. For every dataset described in [2.3.1} we send six
grading tasks to the crowd respectively. Each task organize all 40 items in a particular
order in a single HIT. Similar to task 1 of RQI, the items are displayed to workers
one by one in sequence, and the grades can not be modified once assigned. We create
various levels of bias in context in the tasks, by placing different number of top items

at the beginning of sequence. The task are designed as follows:

Task 1: All items are ordered randomly.

16



Task 2: Uniformly sample two top items and place them at the beginning of sequence,

then randomly order the other items.

Task 3: Uniformly sample five top items and place them at the beginning of sequence,

then randomly order the other items.

Task 4: Uniformly sample ten top items and place them at the beginning of sequence,

then randomly order the other items.

Task S: Uniformly sample fifteen top items and place them at the beginning of se-

quence, then randomly order the other items.

Task 6: Uniformly sample twenty top items and place them at the beginning of se-

quence, then randomly order the other items.

We define the ‘top items’ as the half of items with larger areas in the dataset. Note
that the task 1 in this research question is the same as task 1 in RQ1, so we can re-use
part of the results from RQ1. The cost of each task is again $0.8, and each task is sent
out 5 times for each dataset. Consequently, the cost of a task is still 4 for each dataset.

How we process the HIT responses

Similar to RQ1, we calculate the average grades and estimate six rankings for each

dataset. The results will be discussed in Section

Comparisons vs. Grades (RQ3)

We have explored the characteristics of grading tasks. To this point, we want to
compare the performance of grades and pairwise comparisons in ranking tasks, and

understand which type can yield more precise results.
To answer this question, we design pairwise comparison tasks, and compare them

with the best-performed grading task. In the comparison tasks, we generate a pair by
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randomly matching two items from a dataset. In this way, a total of 20 random pairs
are generated for each dataset. Each pair is sent to the crowd in a single HIT, and tie
is not allowed. In summary, for each dataset, we perform and compare the following

three tasks:

Task 1: The grading task with best performance from RQ1 and RQ?2.

Task 2: Send 20 random pairs for comparison, with each pair in a single HIT. The cost

of one pairwise comparison is identical to the cost of one grade.

Task 3: Send 20 random pairs for comparison, with each pair in a single HIT. The cost

of one pairwise comparison is two times as the cost of one grade.

We design the different costs of two comparison tasks to capture the different efforts
that a pairwise comparison task requires. If the item for evaluation is relatively simple
and straight-forward, comparing two items can be considered as an atomic, unit task
which requires the similar effort as grading an item. In another case, if the item is
relatively complex to evaluate, comparing two items requires two units of efforts of
evaluating the items, while grading an item only requires one. As a result, the cost for

comparison doubles that of grading.

In task 1, each dataset costs 0.8 and is sent 5 times for grading. In order to make the
results of task 2 and 3 comparable, we need to keep their costs the same as task 1. Con-
sequently, each item in a dataset receives 10 comparisons in task 2, and 5 comparisons

in task 3. The costs of task 2 and task 3 are both $4 for each dataset.

set receives 10 comparisons from crowd workers, and we pay $0.02 for each com-
parison. As a result, a dataset costs $4. In task 3, each item in a dataset receives 5

comparisons and we pay $0.04 for each. Consequently, a dataset still costs $4.

How we process the HIT responses
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For grading tasks, we estimate the rankings in the same way of RQ1 and RQ2.
For comparison tasks, we use Glicko [44] to aggregate the comparisons into a ranking
for each dataset. The estimated rankings from grades and pairwise comparisons are

illustrated and compared in Section [2.4.3

2.3.3 Ranking Quality Evaluation

We use four metrics to evaluate the aggregated rankings, namely, bubble count dis-
tance, bubble quality distance, absolute ranking difference, and absolute quality differ-

ence. In this section, we introduce each metric respectively.

We consider an itemset S = {I, I5, ..., I,} with n items, where each item [; € S
has an intrinsic quality ¢;. In the metric definition below, we denote the true ranking of
items as 7, and the true ranking of item /; as r(¢). Similarly, we denote the estimated
ranking as 7’ and estimated ranking of item [; as r’(¢). The four metrics are defined as

follows.

Bubble Count Distance

When 1/ is different from r, we can correct it by performing the bubble sort algo-
rithm and swapping the orders of items. The number of swaps that takes to transform 7’
to r represents the dissimilarity of two rankings. It is also referred as Kendall tau dis-
tance [63]. We normalize the count of swaps with n to make the distances of different

sized datasets comparable. So the bubble count distance can be expressed as:

_ g <)

n

L(r,r") (2.1)
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where

i) 1 if (r(i) > r(j) and /(i) < 7'(§)) or (r(i) < r(j) and (i) > r'(j))
0 otherwise

Bubble Quality Distance

When we interpret the swap in bubble sort algorithm from cost perspective, we
consider each step to correct 77, i.e., each swap, is associated with a cost. To account
for the cost of correcting 7/, we use the absolute quality difference between two items
I; and I}, i.e., |¢; — g;|, to represent the cost of swapping a mis-ordered item pair. We
denote the normalized cumulative sum of the quality differences between all swapped
pairs as bubble quality distance:

L) = 2t 1) (2.2)

n

where

iy — 11O = aI (@) > r() and () <) or (+(0) < 1(7) and () > /()
| 0 otherwise

Absolute Ranking Difference

In this metric, we compare the pairwise difference between true ranking r(7) and
estimated ranking 7/ (7) of each item I;. The absolute ranking difference is defined as the
normalized difference between the two ranking, r(¢) and /(7), for all items in itemset,

1.e.,

S () =)

n

L(r,r")

(2.3)
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Absolute Quality Difference

We also compare the quality difference between two items with the same ranking
in r and 7’. Such difference depicts the distance between the quality distributions of 7’/
and r. Denote the item that ranks at p position of true ranking as [/;, and its quality as
qr(i)=p- Similarly, denote the item that ranks at p position of estimated ranking as I},
and its quality as g,(;)—,. The absolute quality difference is calculated the normalized

sum of quality differences, i.e.,

L) = Zr=t o= = 6=l 04
n

2.4 Experiment Results and Discussions

In this section, we evaluate the ranking results with the four metrics, compare the

evaluation outcomes, and discuss our findings.

As described in section every task has a cost of $4 on each dataset, and
we estimate a ranking for each task on each dataset. For each estimated ranking, we
evaluate it with the four metrics as described in Subsequently, for each task,
we calculate the average and the 95% confidence interval of each metric among all the
20 datasets. In summary, we calculate an average ranking loss, and a 95% confidence
interval of loss, on every metric for each task. The results are demonstrated in the

following sections.

2.4.1 RQI1: Grading in Isolation versus in Context

We obtain two rankings results from HITs in isolation and in context respectively.

The comparison of the ranking precision is summarized in Table In each cell of the
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table, the first number is the average loss of 20 datasets, and the second number is the
range of 95% confidence interval. For example, 10 + 2 refers to an average loss of 10,

with the 95% confidence interval of [8, 12].

Table 2.1: Ranking losses from grading tasks, with and without context

Bubble Bubble Absolute Absolute

Metric Count Quality Ranking Quality
Distance Distance Difference | Difference
Task 1: with context 2.60 £0.39 | 1244 +3.6 | 4.02 £ 0.54 | 3.58 +0.48
Task 2: without context || 4.30 = 0.18 | 31.66 = 3.1 | 6.27 =0.3 | 5.76 4+ 0.46

We also plot the data in Figure [2.2]for each metric respectively.

From Figure the rankings from the grades that are obtained with context con-
stantly outperform the ones from the grades that are obtained in isolation. The average
loss from contextual grades is significantly lower than those from isolated grades, and

the 95% confidence intervals does not overlap, on every metric that we use.

The results of experiments demonstrate that when grading tasks are performed with
a context, they can produce more precise rankings than the ones that are executed with-
out a context. Actually, such experimental results align with our expectations. We
believe that when humans are assigned with a set of items for grading, they assign a
few grades without reference, memorize them, and form a statistical opinion of the
items’ distribution with the memory, consciously or unconsciously. Such opinion on
distribution makes people more consistent in assigning grades afterwards. In contrast,
when items are presented in an isolated fashion, it is more challenging for humans to
form such statistical ideas, thus the grades assigned by workers are more subject to
various noise. As a result, the grades from isolated tasks are more inconsistent, and the

rankings are less precise.

From the results of RQ1, we believe that in crowdsourcing environments, workers

are more precise when they grade items with context. Grading tasks are preferably
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assigned with context.

2.4.2 RQ2: Biased Order in Context

We propose 6 tasks in this research question. All grading tasks have their own
contexts available, while the levels of bias in order are different from each other. The
average loss and the 95% confidence interval of each task is illustrated in Table [2.2

Additionally, we visualize the results in Figure[2.3]

Table 2.2: Ranking losses with different biases in contexts

Bubble Bubble Absolute Absolute

Metric Count Quality Ranking Quality
Distance Distance Difference | Difference
Task 1: no bias 2.6 +0.39 1244 £3.6 | 4.02+0.54 | 3.58 +:0.48

Task 2: 2-item bias || 2.71 £ 0.51 1454 4+49 |412+073| 3.6t0.7
Task 3: 5-item bias 28 £0.50 | 1547 £546 | 418 £0.69 | 3.77 = 0.72
Task 4: 10-item bias || 3.33 £ 0.72 | 22.37 £9.03 | 494 £1.01 | 4.36 = 0.99
Task 5: 15-item bias || 3.91 £ 0.68 | 2743 £7.85 | 572+ 0.94 | 5.1 £0.85
Task 6: 20-item bias || 4.13 £ 1.01 | 29.36 = 10.30 | 599+ 1.2 | 531 +1.34

From Figure [2.3]it is clear that the average ranking losses increase monotonically,
when there is more bias existing in context. The differences become more evident when
more top items are placed at the beginning of sequence. Meanwhile, the variances

generally increase with more bias in the context.

We believe these results reflect how human brains process information, and how it
can be influenced. As discussed in RQ1, when humans perform grading tasks with con-
text, they memorize certain characteristics of a subset of items, and form statistical ideas
of item distributions. The information of those items are used as ‘reference’ to compare
with other items. From the psychological research in [47,/73,89], it is apparent that due
to the ‘first impression effect’ and its nature of long-lasting and change-resistance, the

more bias exists at the beginning of item sequence, the stronger first impression is, so
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that the statistical idea of distribution is influenced more heavily, and more uncertain-

ties are introduced to the grading process. As a result, with more bias at the beginning

of item sequence, we observe larger average losses and variances in ranking results.
From the results of RQ2, it turns out that an unbiased context is preferred when

assigning crowdsourcing grading tasks.

2.4.3 RQ3: Grades versus Pairwise Comparisons

We compare the two pairwise comparison tasks with the grading task with unbiased
context, which produce the best ranking precision among all grading tasks.

Table 2.3|shows the average ranking losses and 95% confidence interval of the rank-
ings from pairwise comparison tasks and the best-performed grading task. The corre-
sponding graph is provided in Figure [2.4]

Table 2.3: Ranking losses of pairwise comparison tasks and grading task without bi-
ased context

Bubble Bubble Absolute Absolute
Metric Count Quality Ranking Quality
Distance Distance Difference | Difference
Task L: grading 2604039 | 1244 +3.6 | 4.02+0.54 | 3.58 + 0.48
with unbiased context
Task 2: pairwise comparison || , \o \ (16| 1091 + 134 | 3.83 + 022 | 3.53 + 032
with unit cost
Task 3: pairwise comparison | ) ¢\ 54 | 1194192 |3.94+025 | 3.55+ 034
with 2X cost

From Figure [2.4] it is obvious that rankings estimated from pairwise comparisons
achieve better precision compared to the more precise ranking that is estimated from

grades. Meanwhile, the variances of loss from pairwise comparisons are much smaller.

We believe there are two major factors that lead to such results. On one hand,
with two items paired together, a context is self-contained in a pairwise comparison.

This context provides a reference and makes the judgment easier. On the other hand,
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workers only need to figure out the relative order of two items to perform a pairwise
comparison. In contrast, to grade an item, from psychological perspective, workers not
only need to figure out the relative orders among the items, but also to quantify the
differences and represent them with different values. The grading task requires more
cognitive workload and thus is prone to errors. As a result, it is natural that pairwise

comparisons can yield more precise rankings than grades.

Results of RQ3 illustrate that pairwise comparisons shall be adopted over grades

for crowdsourcing ranking tasks.

2.5 Conclusion

In this chapter, we explore two types of data, i.e., numerical grades and pairwise
comparisons, for crowdsourcing ranking tasks. We aim at understanding the human
factors in grading, and comparing the precision of ranking from grades and pairwise
comparisons. We propose three research questions, and investigate the questions by
designing different tasks and sending them to Amazon Mechanical Turk, with all tasks
having the same costs. We estimate a ranking from each task, and compare the ranking

losses with four metrics.

The experiment results show that humans are more precise in grading, when they
grade items with context. Also, humans are sensitive to the order of context, and a
biased order in context hinders people from grading precisely. Compare to grades,
pairwise comparisons are less prone to error and can yield more precise rankings, due
to its nature of simplicity and self-contained context. In addition to the precision ad-
vantage, comparing a single pair of items requires less efforts than grading a sequence
of items, hence a comparison task has a shorter turnaround time and is more widely

accepted by crowd workers. Consequently, pairwise comparisons are adopted in the

25



remaining part of this dissertation.
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Figure 2.2: Average ranking loss and 95% confidence interval, from grading tasks with
and without context
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Chapter 3

Pairwise Comparison Selection for

Top-heavy Rankings

3.1 Introduction

Identifying top items from large dataset is one of the key problems in real world.
This problem widely exists in various applications, such a student admissions, selecting
the recipients of scholarships, online contests, and so on. Crowdsourcing has been
proven effective to get large scale of information with relatively low cost, and thus is

suitable for this problem.

One common circumstance in top item discovery problem is that, the number of
target top items is unknown or unidentifiable, while the influences of top items are
larger than others. Such a scenario prevails, especially when the result is provided to
diversified groups of users. For example, when a social media content creator, such
as a video blogger, designs their homepage, they does not know how many videos the
users will view, and the numbers vary among different users. Meanwhile, the high

quality videos are usually placed at the top of homepage, so that they can attract more

30



user clicks and views. Failing to place the high quality videos can result in disinterest
from users and reduced traffic. The nature of top item discovery, when the number of
target items is unknown, is essentially a ranking problem, where the errors at the top of
ranking incur larger loss to the system. Based on our findings in Chapter 2] we will use

pairwise comparisons for ranking.

Extensive research has been done on how to aggregate pairwise comparisons into
accurate rankings, such as Mallows [72]], nuclear norm minimization [43]], Bradley-
Terry [8], Glicko [44]], TrueSkill [51] and so on [62][12]. However, it is still very
challenging to efficiently obtain data with minimal computational cost. Therefore, we
concentrate on studying active learning strategies for selecting pairs of items to be sent
to the crowd for comparison, so that rankings will converge as quickly as possible to
the correct rank. Specifically, in this dissertation we focus on ‘top-heavy’ rankings
where an ordinal rank £ is associated with a benefit proportional to its position. These
type of geometric benefit distributions are typical in online settings, where higher rank

commands geometrically higher visibility, and revenue [85[][|16][25].

In setting the problem, we assume that each item in a ranking has an intrinsic “qual-
ity”, and we define a “top-heavy” version of ranking distance where the mis-placement
of items is weighed according to 1/k* for rank k with A\ > 0; this will be used to judge
the speed of convergence of the proposed methods. Thus, errors in the head of the
ranking will be weighed more heavily than errors in the tail. As ranking aggregation
is not our primary focus, we perform ranking aggregation by applying the Glicko [44]

and TrueSkill [51]], which are well-established on-line aggregation algorithms.

We then formulate and compare two active learning strategies for selecting the next
pairs of items to compare. In particular, we define the loss (or error) involved in each
pair of items, and we consider and justify strategies that select pairs for comparison that

have maximum loss, or that lead to maximum ranking change. We identify one such
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strategy, maximum loss, as the one that leads to overall best results, as demonstrated by
our simulations.

These pair selection strategies are computationally expensive, as they require at
each round the computation of many alternatives in order to select the best. To address
this problem, we propose and develop efficient batched versions of the pair selection
strategies, which deliver essentially the same performance while exhibiting much less

computation time and complexity, with the dominant step being a sorting step.

In this chapter, our contributions can be summarized as follows:

e We define a distance to measure “top-heavy” rankings.

e We propose two active learning strategies for selecting pairs effectively which

reduce ranking loss rapidly, in crowdsourcing environments.

e We propose an efficient batch algorithm with low computational resources.

After a review of related work in Section [3.2] we define the problem precisely, and
describe the Glicko and TrueSkill methods for ranking aggregation (Section [3.3). In
Section [3.4] we present our active learning methods for selecting pairs, and in Section

[3.5| we present and analyze the experimental results.

3.2 Related Work

Obtaining data from crowdsourcing is widely applied in many fields, such as rank-
ing, knowledge sharing, elections, opinion collection, and so on [61][27]. Pairwise
comparison is one of the most commonly used crowdsourced input for ranking prob-

lems.
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Much research has been done on how to aggregate comparison outcomes into a
ranking [41}53,/77,83,91,/101]. Generally, ranking aggregation methods can be cat-
egorized into three types: permutation-based, such as researches in Mallows [72]] and
CPS [83] models; matrix factorization, such as work in [43,60]; and score-based prob-
abilistic method, such as Plackett-Luce [69](80], Bradley-Terry [8], Thurstone [95],
etc. Permutation methods are generally computational expensive, while matrix factor-
ization methods do not have sufficient probabilistic interpretations. As a result, we use

score-based methods for ranking aggregation in this chapter.

Score-based methods assign a score to each item, and use all scores to generate
rankings. Among score-based methods learning from pairwise data, the Elo ranking
method is perhaps the first Bayesian pairwise ranking algorithm [37], and it is widely
used in ranking sports and estimating the underlying skills of players. A player’s skill is
assumed to follow a Gaussian distribution with two parameters as average skill level and
player’s uncertainty. Glickman extended Bradley-Terry model and updated player skills
based on designed length of period, assuming same Gaussian distribution of player
skills [44]. Trueskill by Microsoft is another Bayesian ranking system with Gaussian
distribution assumption [S51]]. It extendes a Thurstone-Mosteller model which adds a

latent variable as player performance.

Ranking aggregation via pairwise comparisons aims at computing a ranking for
items that can represent all the comparison outcomes with minimum data disagreement.
The problem that concerns us in this dissertation is how to optimally select pairs for
comparison, so that a “good” ranking can be obtained with as few comparisons as

possible, and thus, as efficiently as possible.

Active learning is an effective way to improve efficiency and promote performance.
It has been recognized that by properly selecting items, learning tasks achieve better

accuracy and require less data for training [24,35,66,[84]]. There are mainly three types
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of active learning methods. The first one is uncertainty sampling, which targets at find-
ing items that the system is most uncertain about [96[][71]]. Another one is minimizing
expected loss, which focuses on searching for items that can reduce highest expected
error [88]. Lastly, query by committee method looks for items that a set of learners
(refers as committee) having largest disagreement with [76][42]. While extensive re-
search has been performed on active learning, most of them are for binary or graded

based problems [|15}26,34, 39, 65,79, 103]].

Some research was done on active learning for ranking from pairwise comparisons.
Donmez et al. applied their document selection algorithm to RankSVM and RankBoost
[33]]. Also using RankSVM, Yu proposed to add most ambiguous document pairs to
training dataset [[105]]. Chen et al. proposed a framework to find reliable annotators
and informative pairs jointly, which requires annotator quality information [[18]]. A
maximum likelihood based algorithm was proposed by Guo et al. to locate the topmost
item in a ranking [48]]. Other research based on pairwise comparisons includes work
done by Chu et al. [22], Ailon [2], Jamieson et al. [S7]] and so on. Notably, a majority

of them focus on selecting annotators rather than items.

3.3 Top-Heavy Ranking

A ranking problem consists in sorting a set of items S = {Iy, I5,..., I,} accord-
ing to their quality. Ranking problems are solved via crowdsourcing when assessing
the quality of an item requires human judgement, as is the case, for instance, when
assessing the quality or appeal of videos, images or merchandise. We consider here
ranking problems that are fop-heavy in their reward: being ranked in position k has

value proportional to 1/k.

These top-heavy problems find application whenever the ranking is used to display
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the items to users. In such cases, a higher rank commands a larger amount of user
engagement, which can be measured in item views, page visits, user votes and so forth,
according to the nature of the items being ranked. As user attention is valuable (and can
be monetized), we assume that the value of being ranked in position k is proportional
to 1/k*, for some A > 0. We call this a A-top heavy ranking. This is equivalent to
assuming that user attention follows a Zipf distribution, an assumption that has been

validated on the Web [54].

3.3.1 Ranking Quality

To measure the quality of a ranking, we introduce a measure of distance between
top-heavy rankings. Our distance will give more weight to differences among top po-
sitions than to differences among positions in the tail of rankings. This reflects the
intuition that errors in top rankings matter more than errors in the tails of rankings, as
there is much more value in the top than in the tail. For instance, in a sport competition
where athlete sponsorship is proportional to the inverse of the rank, it would obviously
be worse to get the order wrong between the first and second positions than between

the 101st and the 102nd.

Precisely, for our set of items S = {Iy, I, ..., I}, consider two rankings r and 7’
so that () is the position (the ordinal) of item I; according to ranking r, for 1 < i < n,

and similarly for r’. We define the distance d(r, r’) between r and 7’ by:

n 1 1
i=1 i)™

d(r,r') = MO 3.1)

S

where )\ is the coefficient of the A-top heavy ranking, and n is the number of items
in S. Equation (3.1]) can be understood as follows. If r is the correct ranking, and 7’

is another ranking, then |ﬁ — ﬁ| is the amount of value that item ¢ receives in
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error, either in positive or negative. Thus, the quantity (3.1)) represents the total value

mis-allocation of ranking 7/, measured with respect to ranking 7.

In particular, if * is the correct ranking, we denote by

L(r) =d(r,r") (3.2)

the loss of r, measured as its distance from optimality.

3.3.2 Learning Top-Heavy Rankings

Our goal consists in developing algorithms for learning top-heavy rankings via

crowdsourcing. The algorithms we develop follow the following scheme:

1. We start with a random ranking.
2. At each round:

(a) We select two items, and we ask a user to compare them.

(b) We use the result of the comparison to update the rankings.

We rely on binary comparisons because they are the most elementary of comparisons,
and they require less cognitive load on the user than multi-way comparisons. The goal
of the above process is to converge as quickly as possible to the optimal ranking ac-
cording to distance (3.1)), that is, to reduce the loss of the rank as quickly as possible.

As our distance is top-weighed, this means identifying the top items early.

In this dissertation, we focus on step[2a} the selection of the items to be compared.
Once two items are compared, there are several classical methods for updating a rank-
ing according to the comparison outcome; we describe two such alternative methods,

Glicko and Trueskill, in the following. Our focus here is on how to choose the elements
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whose comparison will reduce ranking loss in the fastest possible way, and with low
computational cost. Intuitively, choosing the elements to compare entails estimating
which elements might be incorrectly ranked, keeping into account that errors at the
top matter more than errors in the tail of the ranking. As the choice of the pairs to be
compared uses information from the ranking update step, we first describe the ranking

update step, and subsequently our proposed methods for item selection.

3.3.3 Ranking Update Methods

We describe here two ranking update methods: Glicko [44], and TrueSkill [51].

Glicko

The Glicko [44] method for ranking update models each item as having a score that
has a Gaussian distribution. Thus, for each item [;, Glicko stores the median p; and
the standard deviation o; of the score. The model further assumes that if two items
I;, I; have scores X; and X; (sampled from their respective distributions), then the
probability that a user prefers /; to ; is proportional to

eﬂ(Xi—Xj)

1+ e”(Xi*Xj) ’

where £ > 0 is an arbitrary scaling constant. This is known as the Bradley-Terry
model of match outcomes [8]. In [44], the constant is x = (log 10)/400, and was
chosen to scale the resulting scores so that they would approximate the scores of the Elo
ranking for chess players [37]. The value of the constant is immaterial to the ranking
being produced (it is simply a scaling for the scores), and we choose x = 1 in our

implementation.

With these choices, once a comparison is done, the Glicko model parameters are
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updated as follows. Denote with s;; the outcome of comparison between item /; and
item /;:

1 if 7 wins j

0 if 7 wins ¢

Let also forz =1, 2,
N 1

g(o;) =
/14 3¢%02 /2

The update formulas for the mean and standard deviations are:

q
11 <= pi + ﬁg(%z)(sij — )
o? 52

—1
1 1
2
o <Uz * 52>
where

1
- 1+ e 90D (=h5)

0 = {QZ (9(032))223'(1 - Zj)}_l :

The above update formulas are obtained from [44] as the special case in which time
decay of the scores does not occur. Glicko models time decay of scores, so that as
players remain inactive, their score median decreases, and their score standard deviation
increases, modeling increased uncertainty about their abilities. Such time dependence
is appropriate in modeling tennis and chess scores, but not in modeling the quality of

items in crowdsourcing batches of short temporal duration.
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TrueSKkill

The TrueSkill rating system [51] also assumes a Gaussian belief on online game
players’ skills. It estimates skills by constructing a factor graph, connecting players
that have had a match together, and using approximate message passing. Trueskill was
developed for players belonging to teams; we present here a simplified version without
teams (or, more precisely, where all teams have one player only), which corresponds to

the problem at hand.

The skill of player ¢, denoted as s;, is again assumed to be Gaussian-distributed
with mean x; and standard deviation ;. The performance of player ¢, denoted by p;,
is also assumed to be Gaussian distributed, with mean value equal to s; and standard
deviation /3, with 3 constant for all players. Thus, s; models the intrinsic skills of player
1, whereas p; models the actual performance of player ¢ in a specific match. Translated
into our setting, s; models the intrinsic quality of item ¢, and p; models how the quality
of an item is perceived by the worker performing the comparison. A tie between /; and

I occurs when |p; —pj| < ¢ for a chosen ¢, while ; is preferred to ; when Y; =Y} > ¢.

If denote Z as whole set of match outcomes, the skills of all players as S, the
performances of all players as P, and all differences between the performances of two

players as D, the general Bayesian inference problem is:

p(8|Z) //p(Z, D,P,S)dD dP

= //P(Z|D)p(DIP)p(P|S)p(S) dD dP

where the joint density of the entire system is presented as a product of distributions.
So, the problem consists in computing a marginal probability. To solve it, Trueskill
implements an approximate method with a factor graph structure, where messages pass

between nodes that correspond to the parameters of the problem. The message passing
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iterations stop when convergence is reached, yielding the player’s skills, which corre-

spond for us to the item qualities. An example of a factor graph is illustrated in Figure

B.1

51~N (4, 012) s2~N (U, 0%) s3~N (3, Uf)
pl"’N(Sl;ﬁz) P2~N'(53, B%) p3~N(s3, %)

I(dy =p1 —p2) R I(d; = p2 —p3)

I(d; > ¢) I(ldz| <€)

Figure 3.1: An example of TrueSkill factor graph

We apply TrueSkill after each comparison, updating the scores of the two items that

took part in the comparison itself.

3.4 Active Learning for Pair Selection

Our active learning strategies aim at selecting the pair whose comparison will re-
duce ranking loss most effectively. In designing pair selection strategies, we focus on
strategies that select items which might be incorrectly ranked, as comparing such items

is likely to be more beneficial. We propose two strategies: maximum loss and maxi-
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mum ranking changes.

3.4.1 Maximum Loss

The maximum loss ranking strategy selects for comparison at each step the pair of
items that have the largest expected mis-allocation of reward. To make this expected
value mis-allocation precise, we define the expected loss of a pair of items as the prod-
uct of the probability of the two items having incorrect relative orders by the amount
of error resulting from this situation. If we denote the item with higher rank as /; and
the one with lower rank as I;, the probability of a pair having incorrect relative orders
is essentially the probability of item ; having a larger sampled value than that of item
I; from their distributions respectively. The amount of value mis-allocation resulting
1 1

R @‘ So, our strategy of

from incorrect relative orders in a top-heavy ranking is

selecting maximum expected loss selects the items ¢, j given by:

L _ 1‘} (3.3)

arg max § Prob. ]~Z<_f * . .
{ U<l 5@~

)

where fi, fj are sampled values from distributions of item I;, /;, Prob.(fi < fj) is
the probability of /;, I; having incorrect relative orders, and (¢), r(j) are the ranking
positions of the items. By the properties of Gaussian distributions, the probability of

(i), r(7) having incorrect relative orders can be calculated as:

Prob.(fi < fj) = Prob.(fi — fj <0)=9a (M)

2 2
o; +0;

where 41, j1; are the means and o;, 0; are the standard deviations of the distributions of

1;, I; respectively.
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3.4.2 Maximum Ranking Change

The maximum ranking change strategy selects the pair that will have the greatest
impact on the current ranking. Intuitively, if two items change their rankings dramat-
ically after a comparison that is inverse of their current relative order, it implies that
a big problem exists potentially and the previous ranking is unstable or unreliable. In
consideration of this, we propose a strategy, which selects the pair that will result in the
largest expected ranking change after comparison, if the comparison shows an inverse

order of the current order.

The expected ranking change for items receiving inverse comparisons is the prod-
uct of the probability of two items receiving an inverse comparison and the expected
amount of change to rankings after the comparison. Mathematically, the probability
of two items receiving an inverse comparison is equal to the probability of two items
having incorrect current order. With the same notations as first strategy, and denoting
the expected amount of change for items receiving an inverse comparison as g(1; < I;),

we would like to select a pair of items 7, 5 as follows:
arg max { Prob.(I; < ;)  g(I; < I;) } (3.4)
(i,3)

where Prob.(I; < I ;) is computed as before. The expected amount of change for items

receiving an inverse comparison can be calculated by:

1 1

o= b= G

r(i) (i)l

where 7 (7)%i=% and r(j)%=% are the updated rankings of item I; and I;, if item [; loses

to /; in comparison, i.e., if item /; and [; receive an inverse comparison.

The problem with the selection (3.4)) is that it requires computing the outcome of

42



all possible pair comparisons. This is very expensive computationally: in order to get
the future ranking positions of the items in a pair, the algorithm has to perform quality
updates for both items, and sort all items for a new ranking. To address this problem,

we analyze the equation and propose an approximate version.

Equation (3.4) can also be expressed as:

- - 1 1 1 1
= Probti < 1) o5 = s~ 5y * )

Equation (3.5)) holds because with a comparison of /; winning /;, the ranking update

algorithms will update the ranking so that r(j)%~%

ranks higher than or equivalent to
r(j), while 7(i)’=% ranks lower than or equivalent to r(7). This result is consistent
with the intuition that one item shall get a lower ranking than its current ranking if

loses, while the other shall rank higher if wins.

Assuming the ranking changes for both items are in same percentage of o > 0, 1.e.,

. .:%*(1—1—04)

r(i)Iz<Ij T(i

= =y * (1= a)

then (3.5) can be further expressed as:

- - 1 1 1 1
Prob.(Ii < I;) <r(i) TrRE g T r(j)fﬁfj)
_ Pro = 3 . 1 ' o 1 ' o (3.6)
= Prob.(I; < I;) (T(i) 0+ a) +r(].) (1_a)>

By first order Tyler Series, while o« — 0, ﬁ — a, ﬁ — «. Assuming o — 0,
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can be approximated by:

Prob.(I; < I;) x (3@) + 7’(1j)> e (3.7
1

<

1

x Prob.(I; < I;) * ( + >
oG ()

We assume « approaches 0 because we believe that in a ranking system with suffi-

cient comparisons, one single comparison shall not change any item’s ranking dramat-

ically. As an example, a tennis player will not get a huge ranking drop just because he

loses one game.

In light of the above approximations, the maximum ranking change strategy selects

the items 7, 7 as follows:

1 1
arg(;;;ax {Prob.(]i < 1) * (7’(2) + 7’(]))} ) (3.8)

Thus, the maximum ranking change pair selection strategy only relies on the current

positions of items, and the computational complexity is significantly reduced.

3.4.3 Randomized Pair Drawing

Deterministically selecting for comparison the pair with the highest value, as done
in (3.3) and (3.8)), carries the risk of trapping the ranking in a local optimum. To deal
with this problem, we propose to use a randomized version of our pair selection strate-
gies. In the randomized version, we select each pair with probability proportional to the
arguments of and (3.8)), respectively. The algorithms thus still focus on the most
promising pairs for comparison, but their randomized nature makes them more robust.
In experiments we performed, the randomized version of the selection algorithms al-

ways outperformed the deterministic ones, so that for this dissertation we opted for
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presenting the results only for the stochastic versions, for the sake of conciseness.

3.4.4 Batch Algorithm for Efficient Selection

In many online applications, the volume of items in a ranking is huge. With such
size, it is very computational expensive, or even impossible to evaluate all candidate
pairs. Also, updating the ranking after every user comparison sequentially is imprac-
tical and will impose vast burden on the system. As a result, in practice, instead of
sequential algorithms, batch active learning methods are widely used. Therefore, we
design a batch algorithm to reduce the computational cost and make our algorithms

more efficient.

In the above pair selection algorithms, we observe that items close in rank are more
likely to be selected, because they have a higher probability of being incorrectly ranked.
We make use of this observation in our batch algorithm to narrow the candidate pair
space. For any item I; with position (i), when selecting its candidate pairing set, we
do not consider all other items: rather, the batch algorithm only looks for a subset of
items immediately below [; and evaluates the corresponding pairs. In this way, we are
able to cut down evaluation pairs dramatically. Since the ranking can be incorrect, we
also include in the evaluation pairs items that are sampled randomly. This randomness

improves the stability of the algorithm.

Once the batch algorithm determines candidate pairing sets for all items, it uses the
same active strategies to calculate values for all pairs. Then, it selects a batch of pairs
stochastically, where each pair is selected with probability proportional to its value.
All selected pairs are presented to users concurrently for their comparisons. After the
comparison outcomes are collected, the batch algorithm updates the ranking with all
outcomes at once and a new batch will be selected. In this way, the expensive process

of computing pair evaluations is performed only once for every batch, rather than once
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for every pair presented to users.

3.5 Experiments

3.5.1 Experiment Settings

We conduct experiments with simulated data as it can provide precise “true” ranking
for evaluation. We assume there are 100 items, each of them has an underlying score
with a Gaussian distribution, and sample its mean and variance respectively. Specif-
ically, we sample all items’ means from one Gaussian distribution as opposed to any
heavy-tailed distribution, because in this dissertation, we focus on the intrinsic “qual-
ities” of items that represent their strength or greatness, such as competitiveness of
sports players, skills of online gamers, ratings of merchandise, reviews of restaurants;
and a ranking is generated based on items’ qualities. In contrast, a heavy-tailed dis-
tribution is usually assumed in relevance ranking problems, which sort items by their

degree of relevance.

All pair selection strategies start with the same non-informative score estimation.
Every time an algorithm requests a user comparison, we simulate it by sampling from
true distributions of both items. The item with a larger sampled value is considered
the winner. We conduct 20 experiments for each strategy, with 2,000 pair selections
per experiment. All algorithms are evaluated with respect to the loss (3.2). In the

experiments, we choose A values at 0.5, 1, 2 respectively.

3.5.2 Algorithm Loss Comparison

Figure [3.2] shows the loss decrease resulting from the proposed algorithms, for dif-

ferent A\ coefficients. Along the x-axis is the number of selected pairs and along the
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Figure 3.2: Loss comparison: active learning vs. random strategy.
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The loss differences between sequential and batch versions are not significant.
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Figure 3.4: Average run time comparison: sequential vs. batch.

y-axis is the average loss per experiment. The error bars indicate 95% confidence in-
tervals, and the random strategy is used as baseline. After each pairwise comparison,
the item scores are updated via Glicko and TrueSkill respectively, and a new pair to

compare is selected.

The results demonstrate that our two proposed algorithms perform significantly bet-
ter than the baseline. With more pairwise comparisons, it is expected to see the ranking
losses of all the algorithm decreasing, but the proposed algorithms converge to the true
ranking and reduce loss much faster. The 95% confidence intervals between baseline
and proposed algorithms rarely overlap, illustrating that the reduction in loss result-
ing from our algorithms is significant. Maximum loss and maximum ranking change
algorithms get comparable results at the end of experiments, with maximum loss per-
forming slightly better. We believe it is because the approximation used in maximum

ranking change introduces some loss.

Relatively, the loss decrease is slower for algorithms evaluated with a A coefficient
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of 2. We believe that it is due to the top-heavy reduction effect. With A > 1, except
for the very top of the ranking, the losses from mis-ranked elements become smaller,
limiting the scope for loss decrease once the top-ranked items are correctly ranked.
The divergence between algorithms and evaluation measure results in the performance

decrease.

3.5.3 Sequential and Batch Version Comparison

We have also experimented with the batch version of our algoritms. We start with
the same non-informative score estimation. We use 10% of total items as candidate
pairing set for each item, with half of them sampled from the immediately lower ranked
elements, and half of them sampled randomly. The batch size is set at 20, so the ranking

will be updated after collecting 20 pairwise comparisons from users.

Sharing the same x-axis and y-axis as Figure [3.2] Figure [3.3| shows loss decrease
of sequential and batch versions of each algorithm. It is evident that in spite of eval-
uating only 10% of all pairs, the batch versions achieve almost same performances as
sequential versions. The results demonstrate that the batch versions of our algorithms
are capable of getting comparable performance as the sequential versions, while dra-
matically reducing the computational cost. Figure illustrates that the average run
time per experiment of the batch versions are significantly smaller than that of the se-
quential versions. Collectively, Figures [3.3] and [3.4] prove that our batch algorithms are

an effective solution to ranking problems with large dataset.

3.6 Conclusion

In this chapter, we propose two active learning strategies for selecting pairwise

comparisons for top-heaving rankings, where top ranking items are considered more
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critical than items lower in the rankings. To address the computational challenge arising
from large data volume, an efficient batch algorithm is proposed and applied. Our
experimental results show that both active learning methods are effective at reducing
ranking loss; overall, the maximum loss method achieves slightly better performance.
We also demonstrate how our batch algorithm can achieve comparable loss decrease

results while significantly reducing computational costs.
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Chapter 4

Online Top-K Selection

4.1 Introduction

Selecting top-K items from large itemsets is a common task. It occurs when there
is a constraint on the amount of resources available, for example, in college admissions,
selecting the recipients of scholarships, newspaper highlight design, and so on. Broadly,
there are two approaches to the top-K selection problem. One approach consists in
determining a global ranking, and then returning the top- /K elements of such a ranking.
This approach can avail itself of a long line of work on crowdsourced ranking, starting
with now classical approaches such as the BTL model [8], ELO ranking [37], and
Trueskill [51]]. This approach can be inefficient for the task of top-K selection, as
it determines a full ranking even among items that are all selected, and all rejected.
Nevertheless, the approach often has the advantage of being able to offer partial results:
as these algorithms maintain and refine a global ranking (in various ways), at any point
during the crowdsourcing work, they can provide a best estimate of the ranking, and

thus, of the top-K elements.

Approaches that focus on selecting the top-/ elements with crowdsourced inputs,
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rather than building a global ranking, have been proposed in [23}29,31,|82, 98] among
others. As expected, these can be far more efficient than global-ranking algorithms, as
the crowdsourcing work is aimed at separating the top- K elements from the rest, rather
than obtaining a full ranking. However, these specialized top-/ algorithms require
the completion of a fixed amount of work, and do not provide useful partial results
if less work is performed. For instance, if the algorithms of [31,82] are interrupted,
one is left with multiple lists of “best-among-)/"’ elements, for comparison batches of
size M. Short of randomly selecting K of these best-among-M elements, there is no
obvious way of compiling a global top- K result if only part of the required work for the
algorithm is performed. Yet, partial results are often useful. For example, in candiate
selection, one may wish to extend offers to candidates as soon as they are determined to
be in the top- K set. If the crowdsourcing work takes longer than expected, if a deadline
makes it impossible to carry it to the end, or if the funds for it are exhausted, having a

usable partial result is the difference between failure and (partial) success.

Here, we propose a crowdsourced top-K selection algorithm that dynamically re-
fines a classification of the items into accepted (in the top-K’) and rejected (not in top-
K). Initially all items are unclassified; for each item, the algorithm maintains an es-
timated quality, and an estimated uncertainty on the quality. Given an error tolerance
e > 0, the algorithm creates a batch of comparisons and sends them to the crowd. As
the results from the crowd come in, the algorithm uses them to refine the classification,
promoting to accepting all the items that fall into the top-K with probability at least
1 — €, and demoting to rejecting all items that have probability at least 1 — € of not
belonging to the top- K elements. The process is repeated until the top-K elements are
accepted. Partial results can be obtained at any time by returning the accepted elements,
along with the unclassified elements that have largest estimated quality. We show that

not only can our algorithm provide partial results; it is also more efficient than previ-
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ous top- K algorithms. The efficiency stems from the fact that items are classified into
accepted or rejected as soon as enough evidence is accumulated, rather than after a pre-
scribed amount of comparisons are performed. Hence, the ability of our algorithm to
provide partial results, and its superior efficiency, both stem from the same underlying

mechanism.

The contributions of this chapter can be summarized as follows:

e We present an online algorithm, named BetaTopK, for top- K item selection based
on the dynamic classification of items into top- /K, and rejected, items. The algo-

rithm can at any time provide a best-effort selection of the top-K elements.

e We show that, for a fixed error tolerance ¢ > 0 and an average probability of
crowd correctness ¢, and for any top K /N percent, the expected number of re-
quired comparisons is O(N log N), where N is the total number of elements.

The worst-case occurs for K = N/2.
e We propose several optimization techniques to improve BetaTopK.

e We evaluate the performance of our algorithm analytically and experimentally,
from the perspectives of selection loss and number of required comparisons, and
we show that it improves on the state of the art. Both global ranking and top- K

selection approaches are used as benchmarks.

4.2 Related Work

Identifying top-K items is a critical problem in many areas, such as student ad-
mission, candidate recruiting, newspaper photo selection, and so on. Crowdsourcing

provides an efficient way to collect input with relatively low costs, and it has been
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applied extensively in learning tasks, such as ranking, classifying, labeling, and more
[7,32,74].

Extensive research has been done on obtaining a global ranking from crowdsourced
data. Among the foundational work, we recall here the maximum likelihood estimation
(MLE) model [40,55]], which is one of the most commonly adopted schemas for global
ranking. Another approach is the Bradley-Terry-Luce (BTL) model [8,68]], which has
provided the foundations of many crowdsourcing works, including the classical Elo
rating [37]]. For example, RankCentrality by Negahban et. al extended the BTL model
and used random walk strategy on pairwise-choice Markov chain [[78]. It is one of
the most representative works in the family of spectral-based ranking paradigm, along
with [75,/77,86], to name a few. Another notable work stemming from BTL model
is TrueSkill by Microsoft [51]. It improved Elo ranking [37] by constructing a fac-
tor graph and using approximate message passing, dramatically reducing the amount
of input required to converge. Much work followed, including the CrowdBT model
with BTL by Chen et al. [[18]], which took the quality of workers into consideration.
Wauthier et. al [101]] suggested a weighted counting algorithm on edges to achieve an
approximate overall ranking with noisy input. The work in [1,2,9, 10} 13,50,57] consid-
ered the scenario in which input comparisons can be selected adaptively, and proposed

different active learning strategies to improve a global ranking.

While comprehensive work exists for the problem of global ranking with crowd in-
put, a direct application of those methods to a top- K problem increases the complexity
unnecessarily, since determining a global ordering is more expensive than determining

the set of top-K items.

Approaches that are tailored to top- K problem include [31,/82], which generalized
the tournament approach into a multi-round ranking and selection process for deter-

mining the top- K elements. The algorithm by Davidson et al. [30] also adopted the

55



tournament approach and utilized a heap-based method to get the top-K list. These
three works can cope with errors in crowd comparisons, but they require the completion
of a fixed amount of work, namely the ranking-and-selection rounds, before the final
result becomes available. Eriksson proposed a top-K algorithm [38] by considering
comparisons as graph edges. It performed a ‘reverse’ depth first search and eliminated
the items with path length larger than /. However, this algorithm can return the items
far from the top-K items if not all comparisons among the items are observed. Chen
and Suh proposed a spectral MLE approach [20] that recovered the top- K items with
high probability, with the strict assumption that the comparisons follow the BTL model.
Jiang et al. [58]] and Suh et al. [94] suggested top- K methods by extending the spectral
MLE algorithm with different restrictions respectively, with the same BTL assumption.
As the BTL model does not account for the possibility of users purposely lying, the
BTL model and its variations fail to provide accurate estimations in practice [6,28]].
A Borda-count based algorithm was proposed in [90] to achieve the O(/N) bound of
input comparisons, with the assumption of a Binomial distribution for the number of
comparisons of each pair. Our algorithm is related, except it performs active learning,
using a probability model to decide when to truncate the accumulation of Borda counts
and discard or promote an item, while offering precise guarantees on the correctness
probability of the top- K set. Chen et al. studied bounds for the amount of comparison
input that is needed, under the setting in which comparisons can be requested uniformly
for all items [19]. In contrast, our algorithm is an on-line one, where comparison re-
quests are dynamically generated for the most needed items. In [23], active learning
strategies for top- K problems were discussed. However, it assumed the probabilities of

preferences between items are given, which is not realistic in practice.
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4.3 Online Top-Kk Selection Algorithm

4.3.1 Definitions and Problem Settings

Our goal is to discover the top-K items from an itemset via crowdsourcing. We
consider an itemset /, where each item ¢ € [ has an intrinsic quality ¢;. For K < |I|, the

top- K problem consists in selecting the subset Tx C I of elements such that |7k | = K,

and such that 3,7 g; is maximized. For a candidate top- K selection U C I, |U | =K,
we do not measure the quality of U by its elementwise difference from 7', as this would
provide only a coarse measure of selection quality. Rather, we define the selection loss

L(U) as the fraction of quality we fail to capture by selecting U rather than T}:

ZiETk G — 2icv Qi
ZiETk qi

LU) = 4.1)

This notion of loss encodes the general goal of top- /" selection: with a constraint on
the number of items that can be selected, the goal is to amass as large a total quality as
possible. Such measurement finds its application in many real-world scenarios. For ex-
ample, a graduate program plans to admit 10 students, but one of the top-10 applicants
is not selected by mistake. In this case, selecting an applicant whose ranking is close
to top-10 will be better than a bottom-ranked one. The loss defined in Equation (.T))
captures the degree of loss among different results, while an elementwise measurement

fails to do so.

4.3.2 Algorithm foundations

The core idea of our algorithm consists in modeling the quality of an item via a
Beta distribution, as the two parameters of Beta distribution account for the number

of wins and losses of an item in comparing with others. If comparison outcomes are
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truthful, that is, if higher-ranked items win when they are compared against lower-
ranked ones, a Beta distribution Beta(«, 5)(z) represents the a-posterior probability
that an item ranks at a fraction = of the total rank, given that & — 1 comparisons were
won, and 5 — 1 lost. Thus, a Beta distribution accounts both for the estimated position
of an item in the ranking, and for the uncertainty with which the rank is known. The
algorithm accumulates evidence on items until the items can be accepted in the top-K

set, or discarded, with a specified amount of confidence.

If there are no comparison errors, the fractional rank of an item after w wins and
[ losses has an a-posteriori distribution Beta(w + 1,1 + 1)(x). If crowd comparisons
are only correct with an average probability of ¢, then the a-posteriori fractional rank

distribution is Beta(w + 1,1 + 1) <xq +(1—2)(1- q)) Thus, let

c(w,l;q)(z) = C’DFBeta(xq +(1-2)(1—qhw+1,1+ 1) ,

where C' D Fgeta(7; @, B) is the cumulative distribution function of Beta distribution,
with parameters of «, 5 at x. Given a probability bound ¢ > 0 of making a wrong

decision, we can promote the item to the top-K set when

c(w, 1;q) (N _ K) <e, (4.2)

and we can eliminate the item when

1 —c(w,l;q) <N;[K> < €. (4.3)

Equation (4.2)) and (4.3) suggest that a non top-K item can be selected into top-K
list with a probability of at most €, and likewise a top- /X item can be eliminated with the

same probability bound. Also, with Equation (4.2), the probability of an item in top- &
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can be calculated any time before BetaTopK algorithm completes. As a result, the top-
K list can be generated anytime by selecting the K items with highest probabilities. In

this way, the online property on our algorithm is achieved.

We propose an initial algorithm, which determines the top-/K list by eliminating
items until only K items remain. Later, we will propose an optimized algorithm that

performs item promotion and elimination concurrently.

4.3.3 The BetaTopK Algorithm

The BetaTopK algorithm is detailed in Algorithm(I] In this algorithm, the top-/ list
is achieved by eliminating unlikely candidates in iterations, and returning the remaining

itemset. The notations of the algorithm are:

e [: the itemset, in which the number of remaining items reduces with the progress

of algorithm.

e [{: the number of top items to be selected.

h: the number of comparisons an item receives in one iteration.

e: the probability of eliminating a top-K item erroneously.

Ei: the top-K result set.

T': an itemset that holds the candidates for elimination.

At the beginning of an iteration, each item starts with zero wins and losses. It is com-
pared with /& random opponents, and the number of wins and losses are recorded, as
illustrated in the PerformComparisons procedure. The algorithm then eliminates the
items with probabilities of being top- /K smaller than e. Such iteration repeats until KA

items remain. The remaining items are returned as the output of the algorithm.
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Algorithm 1 BetaTopK Algorithm

Input: 7, K, h, €
Output: Fx

: while |/| > K do
: PerformComparisons(/, h)

e; c(wi, lz’; Q) (|I||;\K)

1

2

3

4: // Demotion: identify items to be eliminated.

5: T+ {iel|1l—e; <ce}/lSeeEquation (4.3).
6.

7

8

9

if |T| > |I| — K then
T < |I| — K items in T" with largest e;
: I+ I\T
: EK — 1
10:
11: procedure PERFORMCOMPARISONS(/, h):
12: foralli € I do

13: w; <= 0,1; <0

14: c+ 0

15 whilec < % do

16: Shuffle /

17: fori = 1to|/| do

18: Get items u, v at positions ¢ and (i + 1)%|I|
19: Ask the crowd to compare u, v

20: Update w,, L, wy, L,

21: cc+1
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At any time before the BetaTopK algorithm completes, a best-effort top- K list can
be obtained via Algorithm [2} this algorithm calculates the probability of being top-
K of each item in the remaining itemset, and returns the K items with the largest

probabilities.

Algorithm 2 Online retrieval of top-K

Input: 7, K
Output: Ey

I-K
1: e; « c(w;, l;;q) (‘ ||I| )
2: g + K items with smallest e;

Theorem 1. Given an error tolerance of € and an average probability of q for crowd
correctness, for selection of any K /N percentage of top items, the expected number of

comparisons required in BetaTopK for an itemset of N items is O(N log N).
Proof. We use the following notations in the proof:

e ¢: the average probability of correct comparisons by crowd.

1: the true rank of an item.

t: the number of wins an item has to receive minimally, in order to not be elimi-

nated, i.e., to survive.

P?: the probability of item 7 being eliminated in one iteration.

p; . the probability of item ¢ winning a randomly selected opponent.

x;: the total number of wins item ¢ receives in one iteration.

In particular, the relationship between p; and ¢ is:

(N —i)g+ (i —1)(1—q)
N—1

pi = (4.4)
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because for an item ranks at position ¢, ¢ — 1 items are superior to it and N — 7 items are
inferior to it. With crowd’s average probability of comparing correctly being ¢, an item
wins with an expectation of (: — 1)(1 — ¢) times when being compared with the i — 1
items that are superior to it, and wins an expectation of (/N —i)q times when comparing

to the N — 7 items that are inferior to it.

Based on Equation @, we can derive the relationship between p; and p(n1-;) as

follows:
Pit P41 = (N*i)q;[(:l)(lfq) + (N*(NJrlfi))q];rSJ;/Hfi*l)(1fq) _ (Nfl)qJ;\(fflflfl)(lfq) _
g+1—-q=1

To sum up:

Pit o1 =1 4.5)

An item ranking at position i is eliminated in an iteration with a probability of P{.
We can express this probability as a Bernoulli variable since the outcome of elimination
is binary. By characteristics of Bernoulli distribution, the expected number of items

being eliminated in one iteration is:

> P (4.6)

We can prove Theorem |1|if the lower bound of # is independent of N. The
rationale behind is that, the lower bound of # being independent of N means a
fraction of NV items is eliminated in one iteration, regardless of the value of /N. Equiva-
lently, it means to reduce the remaining number of items to a constant value, log N
iterations are required. Note that in one iteration, all items receive h comparisons
respectively, making the complexity of the number of comparisons in one iteration

O(N). Consequently, the expected number of comparisons required in BetaTopK is

O(N log N).
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We consider K < % in the following proof. However, the proof remains valid when
K > % because in that situation, the top-K problem is equivalent to the problem of

selecting the bottom-(N — K) items, so the same proof applies.

The proof focuses on showing that the lower bound of M is independent of N
herein. For an item that ranks at posision i, P? can be calculated as: P¢ = Pr(z; <
t). Note that any comparison that item i receives is a Bernoulli trial with a winning
probability of p;. As a result, the total number of wins that item ¢ receives in one
iteration with A comparisons, i.e., x;, is a random variable that follows a Binomial

distribution with parameters h and p;. With z; expressed as a Binomial random variable,

N P¢ can be calculated by:

N N N t-1
ZPZ-d:ZP (mi <t) =D Pr(z
i=1 i=1 i=1 j=0
N t—1
= ZZ Binomial(j; h, p;)
i=1

=14=0

(4.7)

where Binomial(k;n,p) is the probability mass function of Binomial distribution:
Binomial(k;n,p) = Pr(X =k) = (Z)pk(l —p)nk,

By the nature of Binomial distribution, since p; + p(v4+1-i) = 1, we have:
Binomial (j; h, p(ny1-i)) = Binomial(h — j; h, p;) (4.8)

With Equation (4.8)), Equation (4.7)) can be calculated with the top half of all items:

t—

N t-1
> Y Binomial(j; h,p;) =
i=1 j=0

. (4.9)

N
2 t—1

>N {Bz’nomz’al(j; h,p;) + Binomial(h — 7; h,pi)}

i=1j=0
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By characteristics of Bernoulli distribution, Z;;}) {Binomz’al (7; h, pi)+Binomial (h—
7 h, pl)} is the total area of two sides of a Binomial probability mass function, and its

value ranges from O to 1, i.e.:

-1
0<> {anomzal(j h,p;) + Binomial(h — j; h pz)} <1 (4.10)

Jj=0

~+

Based on information theory, 3»;}) {Binomial(j; h, p;) + Binomial(h—j; h, pz)}
is minimized when p;, = 0.5. Consequently, Equation (4.9) has a lower bound as

follows:

[tz
EiL

Binomial(j; h, p;) + Binomial(h — j; h,pi)} >

ileot 1 4.11)
> {Binomial(j; h,0.5) + Binomial(h — j; h, 0.5)}

=0

With Equation (.10 and (4.11)), we can derive the lower bound of the expected

number of items being eliminated in one iteration, i.e. 3% | P¢ below:

N
> Pz
=1

Z {Bmomml J; h,0.5) + Binomial(h — j; h, 0. 5)} (4.12)

N \

where - 30— {Bmomial(j; h,0.5) + Binomial(h — j; h, 0.5)} is a value within the
range of [0, 1].

If we can show that the variable ¢ is independent of N, by Equation (4.12)), we can
assert that the lower bound of # is independent of N.

As aforementioned, ¢ is the number of minimal wins an item has to receive to sur-
vive, and an item will be eliminated when the area of Beta distribution to the right of
threshold, i.e., (1 — ﬁ)q + %(1 — q), is smaller than €. In other words, an item will

be eliminated if the area of Beta distribution to the left of the threshold is greater than
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1 — €. With h comparisons, ¢ can be calculated as:

K K
t = mtin{C’DFBem ((1 — N)q+ N(l —q)t+1,h—t+ 1) <1-— e} 4.13)

and ¢ >= 0.

From above equation, it is apparent that the value of ¢ depends on the percentage of
K outof N, ie., £, but is independent of N.

With Equation (4.13)) showing that ¢ is independent of NV, we can conclude that the

N pd
lower bound of &Tlp is independent of N. As a result, Theoremis proved.

4.3.4 Optimized BetaTopK Algorithm

We present here an optimized version of the BetaTopK Algorithm [T} which im-
proves the initial BetaTopK algorithm in two aspects. First, it adds a promotion stage
to each iteration, which selects items with probabilities of being in top-K larger than
1 — €. As aresult, the promotion stage can identify top-/ items with a bounded error
of €. Second, instead of resetting all wins and losses at the beginning of each iteration,
the optimized BetaTopK keeps the comparisons from previous iterations as long as the
comparisons are performed among the remaining items. In this way, the algorithm can

converge faster due to better utilization of historical information.

The optimized algorithm is illustrated in Algorithm [3] In the algorithm, we use the

previous notations with the following additions:

e K 4. the number of top-K items yet to be discovered.

e T': an itemset that holds temporary results. It is used for different purposes at

selection and elimination stages.
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The reason for establishing a temporary itemset 7 is that, if the number of top- K can-
didates retrieved in an iteration exceeds what the algorithm expects, or if the number of
elimination candidates exceeds what the algorithm targets at, the algorithm should only
select or eliminate a subset of the items in 7". Keeping the temporary itemset allows the

algorithm to further calculate the target subset.

4.4 Evaluation

We compare our algorithm with two algorithms. One is TrueSkill, which is a crowd-
sourcing, global ranking algorithm [51]. Another one is the algorithm proposed in [31],

which is a top-K selection algorithm.

We conduct experiments with simulated crowdsourcing data as it can provide a
precise evaluation of the loss, since we know the items’ true qualities. The items’ true
qualities, or scores, are sampled from a Gaussian distribution. The crowd’s perception
on each item is expressed as a Gaussian distribution as well. The mean of the latter
Gaussian distribution represents the crowd’s average perception on the item, and it is
set to the item’s true quality. The crowd’s uncertainty about the item is expressed as the

variance of this Gaussian distribution, and is sampled uniformly.

Every time an algorithm requests a comparison from crowd, we simulate it via a
two-step process. First, we determine the true winner, that is, the winner as perceived by
a honest (or truthful) crowd worker. To this end, we sample the perception distributions
of the two items; the item with the larger sample value is the true winner. Second, we
return the true winner as comparison winner with probability ¢, and the true loser as
comparison winner with probability 1 — ¢; this models the crowd accuracy ¢. In real-
world applications, ¢ can be determined by the average rate of correct answers from

crowd empirically.
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Algorithm 3 Optimized BetaTopK Algorithm

Input: 7, K, h, €
Output: Ex

Eg <0, Kyop +— K
while |I| > K, and | Ex| < K do

1:

2:

3 PerformComparisonsCumulative(/, h)
4: e; < c(w;, l;;q) (m_'#)

5: // Promotion: identify top-K items.
6 T <+ {i € I | e; < €} I/ See Equation (4.2).
7 if | 7| > K,q, then

8 T < Kgqp items in T' with smallest e;

9

: Er + ExuT
10: // Demotion: identify items to be eliminated.
11: if |Fx| < K then
12: T+ {i € I|1—¢; <€}/ See Equation (4.3).
13: if | 7| > |I| — K,qp then
14: T « |I| — K,qp items in T with largest e;

15: I+ I\ Eg, I+ I\T, Ky, <+ K—|Ex|

16: if |Ex| < K then

17: Er+— Ex Ul

18:

19: procedure PERFORMCOMPARISONSCUMULATIVE(/, h):
20: foralli € I do

21: w; <— number of wins item ¢ obtains, from the comparisons with other
remaining items in /

22: [; < number of losses item ¢ receives, from the comparisons with other
remaining items in /

23: c+ 0

24:  whilec < 2 do

25: Shuffie 1

26: fori = 1to|/| do

27: Get items u, v at positions 7 and (i + 1)%|I|

28: Ask the crowd to compare u, v

29: Update w,, L, wy, L,

30: c+—c+1
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In the evaluations, we repeat every experiment 20 times, and we report the average

and confidence interval of the results.

4.4.1 Loss Evaluation

In this section, we evaluate our algorithm by comparing its loss with TrueSkill,
when they receive the same amount of comparisons. The loss defined in (4.1) is used

for the comparison.

A experimental evaluation of top-K ranking and selection algorithms is available
in [106]. It showed that TrueSkill, a global ranking algorithm, performs excellently in
top-K problems among the existing algorithms. As a result, it is used to compare with
our algorithm. TrueSkill estimates the qualities of items with any incoming compar-
isons, and uses the qualities to update the ranking constantly. It is an online algorithm
and does not have a definite number of comparisons for termination. To compare our
algorithms to TrueSkill, we feed to the algorithms itemsets with the same size and char-
acteristics, and we record the loss at regular intervals along the working of the (online)
algorithms. In our experiments, 100 items are compared against each other, with the
goal of selecting the top 10 items. Each algorithm takes a total of 2000 comparisons,
and the losses are recorded in every 200 comparisons. The hyper-parameter h of Be-

taTopK 1is set to 4 in the experiments.

Figure [.1] shows the losses of algorithms in two separate settings. The left side
of the figure shows the losses with the assumption of a perfectly truthful crowd, i.e.,
g = 1.0. The right side shows the losses with a more realistic assumption, where the
crowd can make mistakes and judge incorrectly, with the average correctness ¢ being
0.8. In Figure 4.1}, the x-axis is the number of pairwise comparisons performed, and the

y-axis is the average loss. The error bars indicate the 95% confidence intervals.

The results in Figure [d.T|demonstrate that BetaTopK achieves much lower selection
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Figure 4.1: Loss comparisons

loss than TrueSkill algorithm, when they consume the same number of comparisons. In
both settings, the differences between two algorithms become evident after about 400
comparisons, revealing the fast converge characteristic of BetaTopK. It can be observed
that the 95% confidence intervals between TrueSkill and BetaTopK rarely overlap, il-
lustrating that our algorithm is able to consistently obtain substantial improvement.
Overall, the results demonstrate that the proposed algorithm can achieve significant loss
reduction and return high quality top- K results comparing to one of the best-performed

top-K algorithms.

4.4.2 Evaluation: Number of Comparisons

We compare the number of comparisons required for algorithm termination by Be-
taTopK and the algorithm proposed in [31], when they achieve the same level of error in
results. Essentially, comparing the numbers of inputs needed when two algorithms ob-
tain results with same error, is equivalent to comparing the losses when two algorithms
receive the same amount of inputs. However, as many top-K selection algorithms can

not produce an intermediate result before algorithm completes, it is impossible to report
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the loss of them in progress. As a result, we choose to compare the number of inputs

required by the two algorithms, given the same level of error.

The algorithm in [31] is a recursive offline algorithm that selects the top- K items by
dividing the ranking task into reduction and endgame phases. In the reduction phase,
the itemset is partitioned into small sets that can be sent out for ranking by crowd
workers; the items that end up in top position in such rankings are used to construct
a reduced itemset. The process continues, recursively reducing the itemset size, until
the complete set of items can be sorted. In the endgame phase, the complete sorting
of the reduced itemset is used to reconstruct a top-K selection of the original itemset,
following the recursion backwards. We refer this algorithm as RecurTopK due to its
recursive structure. RecurTopK needs a pre-established number of comparisons before

the top- K set is constructed.

Complexity Analysis

The number of comparisons required by RecurTopK can be derived analytically. We

summarize the conclusions here, and present the detailed derivation in Appendix [A}

In the following, let:

e s: size of a ranking task in the reduction phase, i.e., the number of elements that

RecurTopK can send to each crowd worker for comparison.
e 7): probability of an item being incorrectly ranked in a recursive call.

o CDFpinomial(k;n, p): the cumulative distribution function of Binomial distribu-
tion. C'DFginomial(k;n,p) = Pr(X < k)= Zi@o (Zb)p’(l — p)"%, where X is

a random variable.

In a perfect scenario where the crowd is perfectly truthful, i.e., ¢ = 1.0, we have:
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Reduction phase: - - slog s.

=z

| (o)

Endgame phase, where K > s : {logs([]\{’)-‘ - sK log(sK).

Endgame phase, where K < s: {logs(

In scenarios where the crowd can be inaccurate, i.e. ¢ < 1.0, we get:

Reduction phase: R - - - slog s, where

. R i
R= m}%n {CDFBinomial (\‘2J ) R7 Q> < IOgS} :

Endgame phase, where K < s :

(].’}Ogs(f“)w. <<f(-+'f>'f(> k¥§<(l('+'1>'f(>,

K 2 2

where U = min {C’DFBmommz ({UJ U, q) < .\
U 2 1 ((KJrl)-K)
og 5

Endgame phase, where K > s: U - {logs(%)w - sK log(sK),

. U
- f0) <t}

In the equations above, we relate the probability 7 of error in a recursive call to the

error bound e of BetaTopK via:

Fe

=9+

where D = [logs(%)w — 1 1s the number of recursive calls required by the RecurTopK

algorithm.

For BetaTopK, we perform the evaluation both analytically and experimentally. In

the analytical evaluation, we calculate the expected number of comparisons required by
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BetaTopK for completion. In the experimental evaluation, we demonstrate the average

number of comparisons required by BetaTopK.

Analytical Comparison

Table .1 shows the number of crowdsourced comparisons required by RecurTopK
(denoted as Recur) and BetaTopK(denoted as Beta) in Algorithm [I] analytically, with
various K, N and ¢ settings. The analytical results of Algorithm T|use the lower bound
of expected number of eliminated items to calculate the number of comparisons needed.
The value of ¢ is set at 0.01 for BetaTopK, and the same level of error is set for Recur-

TopK via (4.14)).

We can see that in most settings, BetaTopK requires less comparisons than Recur-
TopK, and as K grows, the advantage of BetaTopK becomes more significant. This
observation is in line with our expectation. The BetaTopK Algorithm [I| generates the
top-K list by dynamically reducing candidates, promoting or discarding them. When
K is large, many candidates can be easily promoted, or many easily discarded. In
contrast, the RecurTopK performs a more thorough analysis of the top-K elements; in
particular, the number of recursive calls is independent of K. As a consequence, the
algorithm does not exploit the ease with which some elements can be determined to be
in the top-K set. As a result, the differences between BetaTopK and RecurTopK get
larger, the larger the value of K.

Furthermore, Tablereveals that with the same setting of X', NV and s, BetaTopK
gains a larger advantage when the crowd is more prone to mistakes, i.e., when ¢ is
smaller. This demonstrates that the dynamic nature of BetaTopK enables the more

efficient handling of crowd errors.
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Table 4.1: Number of comparisons required by RecurTopK and BetaTopK analytically

Parameters q=0.6 q=0.7 q=0.8 q=0.9 q=1.0
Recur | Beta Recur | Beta Recur | Beta | Recur | Beta | Recur | Beta
J[V(:_11000, 21,392 | 20,533 || 6,427 | 13,759 || 3,682 | 8,496 | 2,209 |5,073 | 736 | 4,231
s=15
KN =100 1430, | 1632 367, | 10371 150, | 8406 | 68,769 | 7.554 || 13,753 | 6.780
< | K =50, 950 752 092
s s =60
N=10,000. || 3376, | 2.264, | 1,400, | 596, | 657, | 179, | 431, | 146, || 86376 | 75.750
K =50, 557 | 560 874 | 339 249 | 726 | 882 | 932
5 =60
N = 100,
K10, | 42844 | 20.533 | 12,206 | 13.759 || 6.530 | 8496 | 3.692 | 5073 | 854 | 4231
5§=25
K1 N=10,000, | 3048, | 2.264, || 1,261, | 596, | 640, | 179, || 310, | 146, || 82413 | 75.750
> | K =50, 114 560 284 | 339 196 | 726 | 544 | 932
s s =30

N=10,000, || 13,444, | 2,162, || 3,994, | 1,003, || 2,126, | 604, || 1,192, | 337, | 258, | 219,
K =500, 818 972 380 450 615 | 319 733 | 860 | 851 | 106

s =30
N=10, 000,
K—5.000, | 331364/ 1,163, | 80919,| 1,037, | 33.986,| 840, | 18308, | 755, | 2620, | 370,
s =30 256 242 361 168 324 666 137 406 951 000

Experimental Comparison

In Table {.2] we compare the analytical evaluation of the BetaTopK Algorithm I]
(denoted as A), with the experimental evaluation of the optimized BetaTopK Algorithm
(3] (denoted as E). The comparison uses the same ¢ = 0.01 as in the analytical results.
This comparison shows the value of the optimizations, which in many cases reduce the

number of crowdsourced comparisons by a factor of two.

In Figure 4.2 we plot the number of crowdsourced comparisons required by Recur-
TopK, BetaTopK Algorithm[I|with analytical result (termed BetaTopK Analytical), and
the BetaTopK Algorithm [3] with experimental result (termed BetaTopK Experimental)
when N = 10,000. The x-axis is the average probability of correctness of the crowd,
and y-axis is the number of comparisons. The results in Table 4.2|demonstrate the dra-
matic reduction in number of crowdsourced comparisons required by BetaTopK com-

pared to RecurTopK. The results also show that the number of comparisons required by
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Table 4.2: Comparisons: number of comparisons required by BetaTopK, analytically

and experimentally

q=20.6 q=0.7 q=0.8 q=20.9 q=1.0
Parameters A E A E A E A E A E
f\;( = 100, 20,533 | 18,500 || 13,759 | 6,220 || 8,496 | 3,440 || 5,073 | 1,840 || 4,231 | 1,520
=10
Ji( = 100, 11,632 | 10,460 || 10,371 | 9,420 || 8,406 | 8,200 | 7,554 | 5,760 | 6,780 | 3,600
=50
N = 10,000, 2,264, 596, 204, 179, 118, 146, 100, 75,750 74,000
K =50 560 339 000 726 000 932 000
N =10, 000, 2,162, | 2,130, 1,003, | 634, 604, 320, 337, 186, 219, 120,
K =500 972 450 000 319 000 860 000 106 000
N = 10,000 1,163, | 1,158, 1,037, | 968, 840, 832, 755, 748, 678, 458,
K =5,000 242 168 000 666 000 406 000 031 000
166 N =10, 000, K= 50 L4 N =10, 000, K=500 16 N =10, 000, K=5,000
3.0 - —:— FB{gg:"I:Z?) KAnalyi_:ical - —:— FB{gg:"I:Z?) KAnalyi_:ical i —:— FB{gg:'Fg?) KAnalyi_:ical
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Figure 4.2: Number of comparisons required by each algorithm

experiments is significantly smaller than that of analytical results.

4.5 Conclusion

In this chapter, we propose an online top-K algorithm in crowdsourcing environ-

ments, which focuses on maximizing the total qualities of the selected top-K items,

while is indifferent to their ordering. We prove that the expected number of com-

parisons required by this algorithm is O(/N log N') given error tolerance and average

probability of crowd correctness. Our analysis shows that the algorithm can achieve
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comparable selection outcome while requires fewer comparisons than existing algo-
rithms; the advantage is especially marked when the value K of selected items is a
non-negligible proportion of the total number of items. We also show how the algo-

rithm can be optimized, further improving its performance.
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Chapter 5

Conclusion and Future Work

In this dissertation, we explore the crowdsourcing data for ranking, and propose
novel algorithms to discover top items with crowdsourcing inputs. Our work and con-

tributions can be summarized as follows.

We explore two major data types in crowdsourcing ranking problems, numerical
grades and pairwise comparisons. We investigate the human factors in grading tasks,
and compare the precisions of two data types for crowdsourcing ranking problems.
Experiment results show that humans tend to grade more precisely when there is context
for grading, and a context without biased order helps humans to grade more accurately.
Experiment results also suggest that pairwise comparisons can achieve better ranking

results compared to grades, and thus are preferred for crowdsourcing ranking problems.

When the number of target top items is unknown or identifiable, the task of top item
discovery is equivalent to a top-heaving ranking problem, where top ranked items are
more critical than the lower ranked items. In this dissertation, we focus on selecting
the next pair to be sent to the crowd to compare, so that the ranking can converge to
the correct result as fast as possible. We propose two strategies, i.e., maximum loss

algorithm and maximum ranking change algorithm. Our experiment results show that
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while both algorithms are effective in reducing ranking loss with the same amount of
inputs, the maximum loss method achieves slightly better performance. We further de-
velop an efficient batch algorithm to address the computational challenge arising from
large volume of pair candidate calculation. We demonstrate that our batch algorithm
can achieve comparable loss decreasement, while reduce computational time and com-
plexity significantly.

When the number of target top items is known, the top item discovery task turns
into a top- K selection problem. We propose an online top- A algorithm, which focuses
on maximizing the total qualities of the selected top-K items, while is indifferent to
their internal ordering. Our algorithm is able to return partial results at any point of
time before algorithm completes. We prove that given error bound and crowd’s av-
erage probability of correctness, the expected number of comparisons required by the
algorithm is O(N log V). We further show several optimization techniques for our al-
gorithm. Experiment results demonstrate that our algorithm can achieve comparable
selection outcome, while it requires fewer comparisons than existing algorithms. The
advantage is especially marked when the value K is a non-negligible proportion of the

total number of items N.

We see several directions to extend our work. We can further develop advanced
pair selection algorithms, and examine how our top-K algorithm will be influenced
when the pair selection algorithms are applied. We are also interested in understand-
ing the crowd worker’s trustworthiness, and modeling it with the progress of crowd’s
responses. Last but not least, inspired by the results of chapter 2, we believe it is of
vital importance to develop algorithms to model the factors that impact human correct-
ness in crowdsourcing environments. Such research will tremendously improve our

understanding and utilization of crowdsourcing systems.
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Appendix A

Complexity Analysis of RecurTopK

In this section, we show the detailed complexity analysis of RecurTopK algorithm.
We continue to use the same notations listed in Section 4.3.3] In addition, we summa-

rize the notations for RecurTopK as follows:

e s: the size of a ranking task in reduction phase, i.e., the number of elements that

RecurTopK can send to each crowd worker for comparison.

e 7): probability of an item being incorrectly ranked in one recursive call.

o ¢

D: total number of recursive calls required by RecurTopK algorithm.

E': total number of iterations required by BetaTopK algorithm.

R: total number of times one ranking task is sent to the crowd in reduction phase.

U': total number of times one ranking task is sent to the crowd in endgame phase.

As illustrated in [31], D = [logs(%)w — 1, and the total number of ranking tasks
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required by RecurTopK is:

N

S —

R-

=

S+ U {logs()-‘ (A.1)

where R - 5% is the total number of ranking tasks required in the reduction phase, and

U- [logs(%)w is the total number of ranking tasks required in the endgame phase.

Moreover, BetaTopK and RecurTopK achieve the same level of correctness when:
(1—e)f =1 =P —= Elog(l—¢€)=2(D +1)log(1—n) (A.2)

Note that for any value x that is smaller than but approximately equal to one, i.e.,
r < land x =~ 1, we have logz ~ x — 1. Since both ¢ and 7 are positive values
close to 0, we can get log(1 — €) ~ —e and log(1 — 1) & —n. So Equation[A.2]can be

approximated as:

Fe

E(—€)=2(D+1)(-n) <= n= 2(D+1)

(A.3)

In this analysis, we consider a comparison-based sorting algorithm with a complex-
ity of O(N log N) for any ranking task, since O(N log N) is the optimal complexity for
any comparison-based sorting algorithms. Two scenarios are analyzed: a perfect sce-
nario where the crowd is perfectly truthful, i.e., ¢ = 1.0; and a more realistic, imperfect

scenario where the crowd can be inaccurate, i.e., ¢ < 1.0.

A.1 Reduction Phase

In this phase, every ranking task consists of s items. The total number of compar-

isons required in the reduction phase is the product of the total number of ranking tasks
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in this phase and the expected number of comparisons per task. Based on the first item
of Equation [A.1] the total number of comparisons required in reduction phase can be

expressed as:

R-

- slog s (A4)
s—1

Perfect scenario where q = 1
In a perfect scenario, a ranking task becomes a single sorting task, i.e., R = 1. With
Equation (A.4), the total number of comparisons required in reduction phase, under

perfect scenario, is:

1-

- slog s (A.5)
s—1

Imperfect scenario where q < 1

In an imperfect scenario, due to the incorrect comparisons, each ranking task has to
be performed multiple times to reach the same level of correctness as BetaTopK, i.e.,

R > 1. We demonstrate the way to calculate the value of R in the following paragraphs.

For a ranking task of size s, with the complexity of O(N log ), each item is ex-
pected to compare with log s other items. As defined at the beginning of Appendix
[A] the probability of the aggregated comparison outcome of a pair being correct is §.
Consequently, after comparing with log s items, the probability of an item being ranked
correctly is ¢°¢°. Given the lower bound of 1 — 7 for the probability of an item being

correctly ranked in a recursive call, the following formula is established:
3§°%° >1—n <= logs-logq >log(l —n) (A.6)
When ¢ is smaller but approximately equal to 1, log g ~ ¢ — 1. Similarly, since n

is a positive but approximately equal to 0, log(1 — ) ~ —n. As a result, Equation
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can be approximated as:
logs-(q—1)>-n <= ¢=>21—-—— (A7)

As described earlier, in an imperfect scenario, each pair is compared R times. The
comparisons are aggregated to a final comparison outcome. If more than half of the
comparisons are correct, the aggregated comparison outcome will be correct. For ex-
ample, at least 3 out of 5 comparisons towards a pair need to be correct, in order to

obtain a correct aggregated outcome for the pair.

Meanwhile, each of the R comparisons is correct with a probability of q. Mathe-
matically, ¢ a binomial variable, which includes R Bernoulli trials with a probability of
q for each trial, i.e., a binomial variable with parameters of ¢ and . Therefore, ¢ can

be calculated by:

R
Z Binomial(i; R,q) = 1 — CD FBinomial <V;J 'R, q) (A.8)

kel

Plug ¢ into Equation (A.7), we get:

1_CDFBinomial E 7Rq 1_L
2 log s

(A9)

— CDFBinomial E 1R7 q S L
2 log s

We can compute the minimum value of R that keeps BetaTopK and RecurTopK at
the same level of correctness with Equation (A.3)) and (A.9). After getting the value of
R, we can plug it into Equation (A.4), and get the total number of comparisons required

in reduction phase of RecurTopK, for the imperfect scenario where ¢ < 1.
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A.2 Endgame Phase

In the endgame phase, there are two circumstances: K < s and K > s. The
complexities of the two circumstances are different, and we will investigate them re-

spectively.

A.2.1 Endgame Phase: K < s.

In the maxima top-K list of any recursive call, the top item and its & — 1 subsequent
items in the same partition may be the true top/K items, so for the partition where the
top item resides, / items are placed into the candidate set. Similarly, the second-top
item and its K — 2 subsequent items in the same partition may be the true top/, so
that K — 1 items of the partition that includes the second-top item are placed into the

candidate set; so on and so forth. Consequently, the number of items in the candidate

(K+1)-K
R

set in a single recursive call is K + (K — 1) +---+ 1 =

The total number of comparisons required in the endgame phase is the product of
the total number of ranking tasks in this phase and the expected number of comparisons
per task. Based on the second item of Equation [A.T| with a sorting complexity of

O(N log N), the total number of comparisons required in endgame phase, when K < s,

U. {bgs(w . (<K+1>K> log (W> (A.10)

is:
K 2 2

Perfect scenario where q = 1

In a perfect scenario, each ranking task is simply a sorting task, i.e., U = 1. So the

number of comparisons in endgame phase, under perfect scenario when K < s, is:

[l 0] (S g (D)
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Imperfect scenario where q < 1

In an imperfect scenario, for the similar reason as in reduction phase, each pair is
compared multiple times, i.e., U > 1. We will show the method to calculate U in the

following.

(K+1)-K
2

In any recursive call, for a ranking task of size , with the ranking complexity

(K+1)-K

5 other items. For the

of O(N log N), each item is expected to compare with log
same reason of Equation given a lower bound of 1 — 7 for probability of an item

ranked correctly, we have:

q

log KA D-K

>1—n (A.12)

With the same approximation method used in Equation we can approximate

Equation [A.T2] with:
n

log ((K+21)~K>

Using the same reasoning of Equation [A.8] ¢ is a binomial variable and can be

U
q =1- CDFBinomml (\\2J ; U> Q>

G>1— (A.13)

expressed as:

Replace ¢ in Equation with above equation, we obtain:

1_CDFBinomial <\‘UJ7U,C]> >1— #
2 log (<K+21>K)
(A.14)
v U
— CDFBinomial (\‘ZJ ; U, q> <

log ((K+21)-K>

With the calculated value of U, we can plug it into Equation (A.10), and get the total
number of comparisons required in endgame phase of RecurTopK, for the imperfect

scenario when K < s.
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A.2.2 Endgame Phase: K > s.

In the maxima top-K list of any recursive call, for any top K — s + 1 item, all its
subsequent items in the same partition may be in true top K list. Since K > s and the
dominant parameter is K, we can use sK as the approximate size of ranking task in
each recursive call. As a result, the number of comparisons required in endgame phase,
when K > s, is:

U - {bgs(g)-‘ - sK log(sK) (A.15)

Perfect scenario where q = 1

In a perfect scenario, apparently U is still equal to 1. So the number of comparisons

in endgame phase, under perfect scenario when K > s, is:

P {mgsﬁﬂ . K log(sK)

Imperfect scenario where q < 1

In an imperfect scenario, the analysis is very similar to the endgame phase when
K < s. The only difference is that, the size of a ranking task in a recursive call is sK,

(K+1)-K
2

as opposed to . For the conciseness of this dissertation, we do not repeat the

similar process, but list the key results here.

The analysis results are:

_ Ui
>1—— 1
1= log(sK)
_ U n
=1- DFinomia =Y >1———
q CDFs l({2J Uq) log(sK)
. (A.16)
Ui
— DF inomia = Y Si
CDFp l<{2J Uq) log(sK)

The value of U can thus be calculated. Plug in the value of U into Equation [A.15]

we can get the total number of comparisons required in endgame phase of RecurTopK,
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for the imperfect scenario when K > s.
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