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ABSTRACT OF THE DISSERTATION 

 

 

Language Development in Emerging Autism: 

Neural and Behavioral Mechanisms of Risk and Resilience 

 

by 

 

Torrey Lynn Cohenour 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2024 

Professor Connie L. Kasari, Chair 

 

Autism spectrum disorder (autism) is a heterogeneous, highly heritable 

neurodevelopmental condition. Language delays are highly prevalent among children with 

autism or with an elevated likelihood of autism, and delays in spoken language development are 

often the earliest concerns reported by parents of autistic children. However, there is 

remarkable heterogeneity in language skills and trajectories among autistic children. There is 

thus intense interest in identifying early markers that may shed light on language variability in 

autism. This dissertation sought to fill these gaps by studying individual variability in receptive 

and expressive language abilities, cross-sectionally and longitudinally, among community-

referred 12- to 23-month-olds with autism symptoms. The studies reported here utilized a 

multimodal approach to identify behavioral and neural mechanisms associated with variability in 

language abilities in emerging autism. 
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Study 1 examined receptive-expressive language phenotypes (i.e., the extent to which 

receptive and expressive language abilities were of a similar developmental level). Nearly half of 

children exhibited an atypical “expressive advantage” language profile characterized by stronger 

expressive language skills than receptive language skills. Contrary to hypotheses, there was no 

evidence for significant concurrent associations between receptive-expressive language 

phenotypes and proposed demographic, cognitive, social communication, and behavioral 

predictors. However, receptive-expressive language phenotype at T1 did significantly predict 

rate of expressive language growth: children with a greater expressive language advantage 

(i.e., a greater delay in receptive language relative to their own expressive language level) 

exhibited significantly slower expressive language growth over 12 months than children with a 

receptive language level more similar to or exceeding their own expressive language level at 

T1. 

Leveraging task-free electroencephalography (EEG) data acquired at T1, Study 2 

examined EEG correlates of concurrent receptive-expressive language phenotypes and 

individual differences in receptive and expressive language growth. Data-driven analyses 

revealed significant, positive associations between spontaneous theta (3-6 Hz) power and 

receptive-expressive phenotypes and significant associations between spontaneous alpha 

power (6-9 Hz) and rate of both receptive language and expressive language growth. 

These findings suggest that early receptive-expressive language profiles are a 

meaningful prognostic marker of language delay, and EEG-based metrics may be sensitive to 

individual differences in neurocognitive mechanisms that shape language growth. 
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GENERAL INTRODUCTION 

Autism spectrum disorder (autism) is an early-emerging, highly prevalent 

neurodevelopmental condition characterized by persistent difficulties in social communication 

and restricted interests or repetitive behaviors (American Psychiatric Association, 2013; 

Maenner et al., 2020). Autism diagnosis is considered stable and reliable as early as 18 to 24 

months of age (Barbaro & Dissanayake, 2017; Ozonoff et al., 2015), though early behavioral 

signs of autism are often evident far earlier (e.g., Sacrey et al., 2015; Zwaigenbaum et al., 

2021). However, most children with autism in the United States are not diagnosed until after 

their fourth birthday (Maenner et al., 2023). Evidence suggests that earlier initiation of 

behavioral intervention is associated with more favorable intervention response and improved 

child outcomes (Flanagan, Perry, & Freeman, 2012; Granpeesheh, Dixon, Tarbox, Kaplan, & 

Wilke, 2009; Rogers et al., 2012; Vivanti, Dissanayake, & The Victorian ASELCC Team, 2016), 

perhaps due to the remarkable neuroplasticity of the birth- to 36-month period (Klin et al., 2020). 

Thus, developing biomarkers and tools to improve early detection and identification of children 

with or at risk of autism remains a high priority. 

Recent years have seen a surge in research using neuroimaging, 

electroencephalographic (EEG), and behavioral methodologies to identify “pre-symptomatic” 

markers of autism; that is, markers that can identify infants who will later receive an autism 

diagnosis (Grzadzinski et al., 2021). These studies primarily include infants recruited from the 

first months of life who are known to have a greater chance of receiving an autism diagnosis by 

virtue of having a sibling with the condition (i.e., infants with an elevated familial likelihood of 

autism, EL). While these studies have provided key insight into autism pathogenesis, pre-

symptomatic markers that can be used to identify individual infants with autism before symptom 

emergence remain far from a clinical reality (Dawson, Rieder, & Johnson, 2023). It is also 

unclear whether markers identified among EL infants later diagnosed with autism generalize to 

infants from the general population, most of whom have no family history of autism. Moreover, 
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pre-symptomatic identification of autism is complicated by practical and ethical questions, given 

the current lack of evidence-based interventions designed for young infants who present with no 

overt signs of delay or appreciable autism features. 

A more promising approach with more near-term implications may involve identifying 

neural and behavioral prognostic markers (i.e., markers predictive of later developmental 

outcomes within a given population) among infants and toddlers already exhibiting early signs of 

autism. Relative to EL infants, less is known about infants and toddlers showing early signs of 

autism sampled from the general population, nor about neural and behavioral mechanisms 

linked with specific social capacities disrupted from very early in autism. Identifying features of 

functional brain development that contribute to variability in early language skills among young 

children with autism symptoms, for example, could provide critical insight into neural 

mechanisms contributing to heterogeneity within the emerging autism phenotype. Addressing 

this gap in our understanding of the mechanisms that shape social development during the “pre-

diagnostic” period in the second year of life (i.e., when markers of autism first become apparent 

and can be intervened upon with targeted intervention) has the potential to improve access to 

personalized interventions among infants first showing signs of autism. For instance, identifying 

prognostic markers using EEG to predict which symptomatic infants are also at the highest risk 

of language delay could facilitate earlier identification of infants who may benefit from targeted 

language intervention. Moreover, understanding the behavioral, environmental, and neural 

mechanisms that shape language development in the context of emerging autism could provide 

insight into treatment mechanisms or specific targets most likely to deliver the greatest benefit to 

child language outcomes. Given that language delays are among the earliest concerns 

expressed by parents of children with autism (Herlihy, Knoch, Vibert, & Fein, 2015; Karp, 

Ibañez, Warren, & Stone, 2017; McMahon, Malesa, Yoder, & Stone, 2007; Ramsey et al., 2018; 

Sacrey et al., 2015; Talbott, Nelson, & Tager-Flusberg, 2015), and early language abilities are 

predictive of a wide range of developmental and functional outcomes (Bal, Kim, Cheong, & 
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Lord, 2015; Bennett et al., 2008; Gillespie-Lynch et al., 2012; Howlin, Mawhood, & Rutter, 2000; 

Howlin, Moss, Savage, & Rutter, 2013; Kim, Bal, & Lord, 2018; Szatmari, Bryson, Boyle, 

Streiner, & Duku, 2003), it is increasingly evident that identifying markers that can shed light on 

individual differences in language development and predict language outcomes in emerging 

autism may have real clinical and practical value.  

Autism as an Adaptive Alternate Developmental Trajectory 

Recent frameworks for understanding functional brain development in the context of 

emerging social and cognitive competencies stress the dynamic, bidirectional relationships 

between genes, brain, and experience that together cultivate the optimal state for learning and 

development. For example, the “neuroconstructivist” framework (e.g., Karmiloff-Smith, 2009) 

assumes that the developing brain is self-organizing, exquisitely attuned to the learning 

opportunities offered in the environment, and will direct resources (e.g., attention) to maximize 

learning. Under the neuroconstructivist framework, ontogenetic adaption is the process by which 

infants adapt to the features of their environment and intrinsic factors (e.g., genetics) endowed 

from birth (Johnson, 2015). Adaptations necessarily shape experiences in the environment and 

shape what infants are prepared to learn and what information is most “learnable.” Under 

species-expectant environmental conditions and against a typical genetic background, 

ontogenetic adaptation allows for the establishment of neural infrastructure needed for the 

emergence of increasingly complex social and cognitive skills, resulting in a “neurotypical” 

developmental trajectory and outcome. However, adaptations in response to atypical intrinsic 

(e.g., genetic anomalies) or environmental conditions (e.g., early deprivation or neglect) may 

result in disrupted, or alternative, developmental trajectories and outcomes. 

Disruptions to typical brain-behavior development seen in autism may be attributable, in 

part, to underlying genetic factors. For example, there is evidence for overlap between autism-

associated genetic variants and genes implicated in prenatal brain development and activity-

dependent synaptic function (Ruzzo et al., 2019), suggesting that genetic mechanisms that 
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confer autism risk may also influence synaptic plasticity and brain development from very early. 

Indeed, familial genetic risk of autism is associated with altered trajectories of structural (Hazlett 

et al., 2017; Shen et al., 2017; Wolff et al., 2015; Wolff et al., 2012) and functional brain 

development in infancy (Dickinson et al., 2021; Dickinson, Varcin, Sahin, Nelson, & Jeste, 2019; 

Gabard-Durnam et al., 2019; Orekhova et al., 2014). Behavioral and cognitive features of 

autism may reflect adaptations in response to neuromaturational constraints and cumulative 

experiences within the environment: for instance, children with autism tend to have stronger 

local information processing capacity than neurotypical children (Guy, Mottron, Berthiaume, & 

Bertone, 2019), show heightened sensitivity to subtle physical contingencies that neurotypical 

children fail to detect (Klin, Lin, Gorrindo, Ramsay, & Jones, 2009), and spend more time 

exclusively attending to objects during free-play interactions with caregivers (Adamson, 

Bakeman, Deckner, & Romski, 2009), reflecting an early preference for and growing expertise in 

non-social aspects of the environment. Thus, atypical neurocognitive development in autism 

may reflect an adaptive response to underlying genetic and environmental influences that 

ultimately lead children to privilege elements of their environment that are most “learnable”.  

The ontogenetic adaptation hypothesis suggests that individual differences in brain 

maturation may also help explain variability in language development in autism. While it is well-

established that enriching experiences within the social context (e.g., dyadic social interaction) 

are critical for the acquisition of skills like language (Kuhl, 2011; Swanson et al., 2019), 

evidence suggests that intrinsic maturational factors, like brain development, constrain infants’ 

ability to learn from these social encounters. The impact of maturational constraints on 

development has been demonstrated in studies of healthy preterm infants, who have additional 

postnatal experience relative to full-term infants of the same postconceptional age. Studies 

suggest the extra experience afforded to preterm infants provides little benefit, if not detriment, 

in the development of more complex social and cognitive milestones, such as speech and 

language acquisition (Bosseler et al., 2013; Jansson-Verkasalo et al., 2010; Peña, Pittaluga, & 
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Mehler, 2010; Peña, Werker, & Dehaene-Lambertz, 2012). Although postconceptional age-

matched preterm infants have weeks more postnatal experience than full-term infants, studies 

find little evidence that preterm infants achieve language milestones earlier. Furthermore, many 

preterm-born children tend to lag behind full-term peers in cognitive (Kerr-Wilson, Mackay, 

Smith, & Pell, 2012), language (Jansson-Verkasalo et al., 2010; van Noort-van der Spek, 

Franken, & Weisglas-Kuperus, 2012), and social development (Crnic, Ragozin, Greenberg, 

Robinson, & Basham, 1983) – an effect that is not fully explained by perinatal neurological insult 

or injury. One possible explanation is a “mismatch” between preterm infants’ biological 

maturational status and environmental demands – that is, the brain is not yet equipped to learn 

from experiences or exposures in the postnatal environment. 

This framework points to the potential utility of identifying neural and behavioral metrics 

of “readiness” for language acquisition (e.g., metrics of functional brain maturity and pre-

linguistic communication skills) in autism, which could, in turn, provide meaningful prognostic 

insight. Such findings may provide an initial jumping-off point for rigorous testing of candidate 

prognostic and predictive biomarkers (FDA-NIH Biomarker Working Group, 2020) that can 

facilitate clinical decision-making, including individualizing intervention approaches among 

infants/toddlers developing autism identified as being at the highest risk of language delay. 

Overview of Studies 

Study 1: Receptive-Expressive Language Phenotypes and Language Growth in Emerging 

Autism 

Children diagnosed with autism are more likely than children with neurotypical 

development or those with non-autism developmental differences to present with a language 

profile characterized by stronger expressive language abilities relative to their receptive 

language level (Chawarska, MacAri, & Shic, 2012; Davidson & Ellis Weismer, 2017; Ellis 

Weismer et al., 2010; Luyster et al., 2008; McDaniel, Yoder, Woynaroski, & Watson, 2018; 

Swanson et al., 2017). Whether receptive-expressive phenotypes (the extent to which receptive 
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and expressive language skills are of a similar developmental level) are associated with co-

occurring cognitive or social communication strengths or weaknesses among infants and 

toddlers exhibiting early signs of autism has yet to be established. Crucially, the causes and 

longer-term consequences of early atypical receptive-expressive profiles have yet to be 

explored systematically among community-referred, racially and ethnically diverse infants and 

toddlers at “high clinical risk” of autism. To address these gaps, Study 1 aimed to characterize 

early receptive-expressive phenotypes (capturing within-individual variability in language 

abilities) among 12- to 23-month-old infants and toddlers with autism symptoms. Study 1 further 

aimed to test whether receptive-expressive language phenotypes were linked with concurrent 

behavioral characteristics and predictive of receptive and expressive language growth over 12 

months. 

Study 2: Neural Mechanisms Associated with Language Heterogeneity in Emerging 

Autism 

Building on behavioral findings from Study 1, Study 2 tested whether 

electroencephalography (EEG) measures of endogenous oscillatory activity in the developing 

brain predict individual differences in language development. Using a data-driven analytical 

approach, Study 2 tested whether spectral power in two empirically and theoretically motivated 

frequency bands, theta (3-6 Hz) and alpha (6-9 Hz), is predictive of concurrent receptive-

expressive language phenotypes and rate of receptive and expressive language growth among 

infants and toddlers with autism symptoms. 

By investigating behavioral and neural mechanisms that shape language growth in the 

second year among children developing autism, these findings can set the stage for future 

research integrating neural and behavioral data to develop prognostic and predictive biomarkers 

to facilitate early identification, and personalized, adaptive interventions tailored to infants’ brain-

behavioral phenotypic characteristics. 
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STUDY 1 

Receptive-Expressive Language Phenotypes in Emerging Autism 

Abstract 

Evidence suggests a significant proportion of children diagnosed with autism spectrum 

disorder (autism) exhibit expressive language skills that are more developmentally advanced 

than would be expected relative to their receptive language skill level. Whether atypical 

receptive-expressive language profiles are present among infants and toddlers showing early 

signs of autism remains unclear. Crucially, the causes and developmental consequences of 

early disruptions to typical receptive-expressive language development in autism are not well 

understood. The objective of Study 1 was to characterize variation in language abilities among 

70 infants and toddlers with early signs of autism by examining receptive-expressive language 

profiles (i.e., discrepancies between receptive and expressive language levels) and trajectories 

of language growth. 

While there was marked heterogeneity in the magnitude of receptive-expressive 

language discrepancies, the proportion of children who presented with "atypical" language 

profiles (i.e., an expressive advantage [41.4%] or a receptive advantage [34.3%]) far exceeded 

the proportion of children with balanced receptive and expressive language levels (24%). 

Contrary to hypotheses, there were no significant associations between receptive-expressive 

language phenotype (measured dimensionally or categorically) and concurrent chronological 

age, cognitive functioning, autism symptom levels, or joint attention skills. Hierarchical linear 

modeling revealed significant associations between initial receptive-expressive profiles and 

trajectories of expressive language growth, such that children with an expressive language 

“advantage” (i.e., language production skills that exceed comprehension skills, as measured on 

a standardized developmental assessment) showed significantly slower expressive language 

growth  over 12 months. Together, these findings suggest that relative weakness in language 

comprehension may stall growth in language production among children with autism, consistent 
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with many models of neurotypical language acquisition. Early receptive-expressive profiles may 

serve as prognostic markers of expressive language growth in infants and toddlers developing 

autism. 
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Receptive-Expressive Language Phenotypes in Emerging Autism 

Acquisition of spoken language early in development is a key predictor of longer-term 

developmental outcomes among children with autism, including academic achievement, social 

competence, and quality of life decades later in adulthood (Anderson, Liang, & Lord, 2014; Bal, 

Kim, Cheong, & Lord, 2015; Gillespie-Lynch et al., 2012; Kim, Bal, & Lord, 2018). Language 

abilities are highly heterogeneous among children with autism but also appear highly malleable, 

particularly before age six (Pickles, Anderson, & Lord, 2014). For this reason, early interventions 

for infants/toddlers with autism or autism features often focus on bolstering communication and 

language skills (Schreibman et al., 2015). Despite the importance of language skills, there is still 

a lack of clarity as to which clinical, behavioral, environmental, or biological factors are most 

predictive of language abilities and language growth, and which variables may predict language 

improvement in response to early interventions. In addition to experiencing a higher rate of 

language delays, children with autism are also more likely to present with atypical receptive-

expressive language phenotypes characterized by atypically strong expressive language skills 

relative to receptive language skill level. The mechanisms that give rise to atypical receptive-

expressive phenotypes in autism and the longer-term consequences of atypical language 

profiles very early in development remain unclear. Despite the importance of early language 

skills in neurotypical development and autism, we know very little about the intrinsic or 

environmental mechanisms that may explain the remarkable variability in language outcomes 

and language trajectories among community-referred infants and toddlers exhibiting early 

autism symptoms. 

Language Development in Autism 

Prospective longitudinal studies of infants with an older autistic sibling (who thus have an 

elevated likelihood of developing autism themselves; EL)  have provided unprecedented insight 

into autism emergence, given that approximately 15-20% of these infants will go on to develop 

autism themselves by toddlerhood (Ozonoff et al., 2011). These studies have provided 



 10 

opportunities to identify the earliest markers of autism risk and insight into how early variability 

in cognitive and behavioral development within the first two years of life maps onto later 

outcomes.  

Earlier theories of autism (e.g., Fein et al., 1986) hypothesized that social and language 

difficulties associated with autism arose from abnormalities or the outright absence of 

endogenous mechanisms of socially adaptive behavior normally intact at birth (e.g., preference 

for faces exhibiting directed gaze versus averted gaze, preference for infant-directed speech 

versus adult-directed speech; Batki et al., 2000; Farroni et al., 2002; Johnson, 2005; Pegg et al., 

1992). Given that these capacities, coupled with early experiences, facilitate the development of 

children's understanding of others' communicative cues and their ability to initiate and maintain 

contingent social interactions, it was hypothesized that early disruptions to these mechanisms 

resulted in the observed social communication features of autism first evident around 12 months 

of age. However, evidence from prospective studies of EL infants later diagnosed with autism 

suggests that many social adaptive mechanisms are, indeed, intact in the first year of life, 

including attention to others' eyes (Elsabbagh et al., 2012; Jones & Klin, 2013), gaze-following 

(a precursor to joint attention; Bedford et al., 2012; Thorup et al., 2018), and perceptual 

narrowing to non-native phonemes (Seery, Vogel-Farley, Tager-Flusberg, & Nelson, 2013). 

These findings are remarkable given that atypical eye contact, joint attention difficulties, and 

spoken language delays or deficits in toddlerhood are considered cardinal features of the 

condition.  

There is also evidence that EL infants later diagnosed with autism are similar to 

neurotypical infants in early communication skills prior to the 9 to 12-month window, including in 

the use of directed gaze and social smiles during interactions with caregivers (e.g., Filliter et al., 

2015; Gangi et al., 2021; Ozonoff et al., 2010; Rozga et al., 2011), and vocalizations (Northrup 

& Iverson, 2015; Paul, Fuerst, Ramsay, Chawarska, & Klin, 2011; Plate et al., 2021; Talbott, 

Nelson, & Tager-Flusberg, 2015). Studies using standardized developmental assessments 
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(e.g., Mullen Scales of Early Learning; Mullen, 1996) similarly find little evidence for differences 

before 12 months in receptive and expressive communication between infants with or without 

autism, with differences only emerging at or shortly after 12 months of age (Bussu et al., 2018; 

Estes et al., 2015; Iverson et al., 2018; Landa, Gross, Stuart, & Faherty, 2013; Landa, Holman, 

& Garrett-Mayer, 2007; Levin, Varcin, O'Leary, Tager-Flusberg, & Nelson, 2017; Ozonoff et al., 

2010, 2014; Paterson et al., 2019; Swanson, 2020; Swanson et al., 2017). 

By 12 months of age, infants later diagnosed with autism begin to diverge substantially 

from non-autistic peers in language acquisition and early language milestones, and language 

differences between children with or without later autism grow more dramatic across the second 

and third years of life. While most autistic infants and toddlers show gains in language skills 

over time, EL infants later diagnosed with autism show significantly slower language growth 

than non-autistic EL infants and infants with no family history of autism, including those with 

non-autism language delays (e.g., Iverson et al., 2018), resulting in a growing disparity between 

groups in receptive and expressive abilities over the second year (Anderson et al., 2007; Bussu 

et al., 2018; Franchini et al., 2018; Ozonoff et al., 2010). Marked delays are also evident in the 

acquisition of early language milestones, including production of first words (Harrop et al., 2021; 

Howlin, 2003; Kover, Edmunds, & Ellis Weismer, 2016; Mayo, Chlebowski, Fein, & Eigsti, 2013; 

Ohashi et al., 2012; Pickles et al., 2022) and first multi-word phrases (Harrop et al., 2021; 

Howlin, 2003; Kover et al., 2016; Ohashi et al., 2012; Pickles et al., 2022). Perhaps as striking 

as the magnitude of such delays is the vast variability within groups of children with autism in 

age at skill acquisition: for instance, Mayo et al. (2013) report that the average age at first words 

in their sample of 98 autistic toddlers was approximately 19.5 months. However, estimates 

ranged from as low as seven months to as high as 37 months within their sample. 

Receptive-Expressive Phenotypes in Autism  

Though neural and behavioral substrates of language comprehension and production 

emerge simultaneously over the first year of life, language comprehension skills (i.e., receptive 
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language skill) mature earlier than production skills (i.e., expressive language) in neurotypical 

and non-autistic developmentally-delayed children (Ellis Weismer et al. 2010; Seol et al., 2014), 

such that the number of words understood almost always exceeds the number of words 

produced (Bornstein & Hendricks, 2012). In contrast, the "comprehension precedes production" 

adage does not appear to be universally true among children with autism. 

Evidence suggests that a large proportion of children with autism have stronger 

expressive language skills than would be expected from their receptive language abilities. 

However, there are inconsistencies regarding how common receptive-expressive language skill 

discrepancies are and whether they are linked to other demographic or behavioral 

characteristics, perhaps due to differences in measuring language abilities and in sample 

chronological ages across studies. 

Generally, evidence for stronger expressive language skills relative to receptive 

language skills is more consistent in studies of toddler- and preschool-aged children 

(Chawarska, MacAri, & Shic, 2012; Davidson & Ellis Weismer, 2017; Ellis Weismer et al., 2010; 

Luyster et al., 2008; McDaniel, Yoder, Woynaroski, & Watson, 2018; Swanson et al., 2017), and 

studies using clinician-administered measures of language abilities or caregiver-report 

measures of vocabulary (Charman et al., 2003; Davidson & Ellis Weismer, 2017; Ellis Weismer 

et al., 2010; Hudry et al., 2010; Luyster et al., 2008; Maljaars, Noens, Scholte, & Berckelaer-

Onnes, 2012; McDaniel et al., 2018; Nevill et al., 2019; Reinhartsen et al., 2019; Seol et al., 

2014; Swanson et al., 2017; Volden et al., 2011). In contrast, there is little evidence to suggest 

infants later diagnosed with autism show atypical receptive-expressive profiles (that is, a 

discrepancy between receptive and expressive skill levels) prior to 12 months, and results are 

inconsistent in studies of school-age children with autism (Arutiunian et al., 2021; Kjelgaard & 

Tager-Flusberg, 2001; Kover, McDuffie, Hagerman, & Abbeduto, 2013; Maljaars et al., 2012). 

Further, several studies report cross-sectional or longitudinal evidence to suggest the 

prevalence of expressive-dominant profiles (i.e., language profiles characterized by stronger 
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expressive than receptive skills) declines with increasing chronological age across toddlerhood 

and the preschool years (Davidson & Ellis Weismer, 2017; Reinhartsen et al., 2019; Seol et al., 

2014), and autistic children with stronger nonverbal cognitive ability tend to have receptive-

expressive language profiles more similar to those exhibited by neurotypical children (Kover et 

al., 2013; Nevill et al., 2019; Reinhartsen et al., 2019; Volden et al., 2011; though see Hudry et 

al., 2010). Moreover, a large longitudinal study of children referred for possible autism at 24 

months identified distinct trajectories of language development across 2 to 19 years of age, 

finding that children who showed expressive language gains also tended to make gains in 

receptive language, but expressive gains tended to exceed receptive (Pickles et al., 2014). 

Quantifying Receptive-Expressive Language Discrepancies and Profiles 

One challenge in characterizing receptive-expressive language profiles among children 

with autism symptoms is identifying the best approach for quantifying differences between 

receptive and expressive language levels and translating quantitative differences into discrete 

categories (e.g., typical or atypical profiles; receptive- or expressive-dominant profiles). This is 

particularly challenging given the lack of guidance for drawing such comparisons across 

language domains and what constitutes a clinically meaningful discrepancy. For example, the 

manual for the Mullen Scales of Early Learning (Mullen, 1996), which is one of the most 

frequently used measures of cognitive and language ability in studies of infant/toddler-age 

children with autism, does not provide explicit guidance for comparing scores across domains, 

nor is there established guidelines for what constitutes a statistically- or clinically-significant 

difference in between receptive and expressive language scale scores.  

Studies using the Mullen or other clinician-administered norm-referenced assessments 

to examine receptive-expressive profiles have primarily used three approaches to quantify 

receptive-expressive discrepancy: (1) comparing domain scores statistically via hypothesis 

testing; (2) computing receptive-expressive difference scores from age equivalent (AE) scores 

(Hudry et al., 2014; Swanson et al., 2017), raw scores (Prescott & Ellis Weismer, 2022), 
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standard scores (Davidson & Ellis Weismer, 2017), or DQ scores (Chawarska et al., 2012); or 

(3) computing receptive-expressive ratio scores (i.e., receptive language AE divided by 

expressive language AE score; Reinhartsen et al., 2019; Seol et al., 2014). While it is generally 

agreed upon that a language profile characterized by stronger expressive language skills 

relative to receptive language skills is "atypical," what constitutes a sufficiently large discrepancy 

to be considered atypical varies across studies. For instance, using Mullen AE scores, Swanson 

et al. (2017) argued that a positive receptive-expressive difference score (i.e., receptive scores 

higher than expressive scores) reflects a more "normative" profile than a difference score of 

zero, citing evidence that neurotypical infant and toddler-aged samples show higher mean 

receptive language than expressive language T-scores (Longard et al., 2017; Mitchell et al., 

2006; Plate et al., 2021; Toth et al., 2007; Yankowitz et al., 2022), raw scores (Ozonoff et al., 

2010) and age equivalent scores (Reinhartsen et al., 2019). However, other large studies of 

prospectively-followed EL infant siblings (e.g., Hatch et al., 2021) and community-referred 

samples (e.g., Pierce et al., 2023) report similar mean receptive and expressive language T-

scores within neurotypical groups (suggesting a difference score of '0' is still "normative").  

Criteria for translating continuous metrics of receptive-expressive language abilities into 

categorical language profiles are also variable. In a large multisite case-control study of 30- to 

68-month-old children with autism (n = 695, mean age = 59.3 months), non-autism 

developmental delay (n = 987, mean age = 59.5 months), and children sampled from the 

general population (n = 889, mean age = 59.4 months), Reinhartsen et al. (2019) calculated 

receptive-expressive ratio scores (receptive language  AE divided by expressive language AE). 

Using the distribution of ratio scores in the general population "control" group, they then 

identified cut-off ratio scores corresponding with the mean (1.04) ± one standard deviation 

(0.13). Those within one standard deviation of the mean were classified as having balanced or 

"non-dominant" receptive-expressive language profiles, whereas those one standard deviation 

above or below the mean were classified as having "receptive dominant" and "expressive 
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dominant" profiles, respectively. Among children with autism, 46.6% had a non-dominant profile 

(relative to 74% of the general population sample), 29.8% had a receptive-dominant profile 

(relative to 15.6% of the general population sample), and 23.6% had an expressive-dominant 

profile (relative to 10.8% of the general population sample), largely consistent with evidence for 

an increased prevalence of atypical language profiles in autism. In a younger sample of children 

diagnosed with autism (mean age = 35.7 months, range = 20 to 50 months), Seol et al. (2014) 

similarly computed ratio scores using receptive and expressive AE scores, then classified 

children into categorical profiles using pre-specified ratio score cut-offs. Children with ratio 

scores below 0.9 were classified as "expressive dominant" (42.7% of the autistic sample), those 

with scores above 1.1 were classified as "receptive dominant" (30.1% of the autistic sample), 

and the remaining children were classified as "non-dominant" (27.2% of the autistic sample). 

The distribution of participants across the three language profiles differs starkly between the 

toddler-aged sample described in Seol et al. (2014) and the older, preschool- to early school-

aged sample described in Reinhartsen et al. (2019), despite the fact that both groups included 

children with confirmed autism spectrum disorder diagnoses. 

Demographic and Behavioral Correlates of Receptive-Expressive Discrepancies 

Inconsistent findings regarding the magnitude of receptive-expressive differences in 

autism, the prevalence of atypical ("unbalanced") profiles, and whether receptive-expressive 

profiles are linked with other demographic or behavioral variables may reflect variability across 

studies in approaches to quantify receptive-expressive discrepancies (notwithstanding 

differences in chronological and mental ages, ascertainment strategy, and autism genetic risk 

across samples). The association between early receptive-expressive language profiles and 

concurrent social communication skills and cognitive functioning among children with autism 

also remains elusive. While there is some inconsistent evidence for concurrent associations 

between receptive-expressive language discrepancies in autism and nonverbal cognitive 

functioning (e.g., Hudry et al., 2010; Nevill et al., 2019; Volden et al., 2011), autism symptom 
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levels (e.g., Hudry et al., 2010; Reinhartsen et al., 2019), and chronological age (e.g., Davidson 

& Ellis Weismer, 2017; Seol et al., 2014) the direction of these associations is inconsistent 

across studies. Moreover, whether receptive-expressive language profiles are associated with 

social communication skills known to play a crucial role in language acquisition (e.g., joint 

attention) remains unclear. It should also be noted that no known study to date has attempted to 

characterize receptive-expressive language profiles among community-referred "pre-diagnostic" 

infants and toddlers who are showing early behavioral signs of autism. Characterizing emerging 

language skills in this population during this window of development may help shed light on the 

early origins of social communication and language heterogeneity in autism and the potential 

consequences of typical or atypical receptive-expressive language profiles on other facets of 

social and cognitive functioning.  

Behavioral Predictors of Language Development in Autism 

Numerous studies of autistic children of varying chronological ages and language levels 

have sought to identify concurrent and longitudinal links between language skills and 

behavioral, demographic, and clinical variables. However, there remains little consensus as to 

which variables are most strongly linked with language outcomes at a given age. Among the 

most consistent findings, nonverbal cognitive ability is a robust predictor of receptive and 

expressive language ability among children with autism and EL infant siblings (Anderson et al., 

2007; Bedford, Pickles, & Lord, 2016; Brignell et al., 2018; Ellis Weismer & Kover, 2015; Ellis 

Weismer et al., 2010; Huberty et al., 2023; Hudry et al., 2010; Nevill et al., 2019; Norrelgen et 

al., 2015; Thurm, Lord, Lee, & Newschaffer, 2007; Thurm, Manwaring, Swineford, & Farmer, 

2015), predicting both concurrent language skills (e.g., Ellis Weismer et al., 2010), later 

outcomes (e.g., D. K. Anderson et al., 2007; though see Charman et al., 2003; Mundy et al., 

1990), and growth over development (e.g., Bedford et al., 2016; Huberty et al., 2023). In 

contrast, associations between language skills and other variables, including autism symptom 

severity (Bacon, Osuna, Courchesne, & Pierce, 2018; Bopp & Mirenda, 2011; Bopp, Mirenda, & 
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Zumbo, 2009; Chenausky, Norton, Tager-Flusberg, & Schlaug, 2018; Ellis Weismer & Kover, 

2015; Nevill et al., 2019), gross and fine motor skills (Bedford et al., 2016; Choi, Leech, Tager-

Flusberg, & Nelson, 2018; Lebarton & Iverson, 2013; Leonard, Bedford, Pickles, Hill, & BASIS 

Team, 2015; Wickstrom et al., 2021), joint attention (Anderson et al., 2007; Bono, Daley, & 

Sigman, 2004; Bottema-Beutel, 2016; Charman et al., 2003; Edmunds, Ibañez, Warren, 

Messinger, & Stone, 2017; Gillespie-Lynch et al., 2015; Malesa et al., 2013; Mundy et al., 1990; 

Nevill et al., 2019; Smith, Mirenda, & Zaidman-Zait, 2007; Toth et al., 2006; Yoder, Watson, & 

Lambert, 2015), play skills (Bopp & Mirenda, 2011; Ellis Weismer et al., 2010; Smith et al., 

2007; Toth et al., 2006), age at first words (Kenworthy et al., 2012; Kover et al., 2016; Mayo et 

al., 2013), history of language regression (Norrelgen et al., 2015; Pickles et al., 2022) and hours 

of intervention (Bono et al., 2004; Stone & Yoder, 2001) are more variable. Thus, there is 

currently a lack of consensus on the characteristics and early skills most strongly linked with 

later language outcomes or language growth in the second year of life among children with 

autism or those with autism features. Moreover, many studies have focused on predicting later 

outcomes at a fixed timepoint rather than predicting the rate of growth (two related but distinct 

constructs with differing clinical implications). 

In the context of intervention, compelling evidence exists for positive effects of early 

behavioral interventions on language abilities among children with autism (Fuller & Kaiser, 

2020; Sandbank et al., 2020), including naturalistic developmental behavioral interventions 

(NDBIs) delivered to young children of varying cognitive and language levels in a variety of 

settings (e.g., Y.-C. Chang et al., 2016; Dawson et al., 2010; Hardan et al., 2015; Kasari et al., 

2008, 2012). However, at the individual level, as many as 50% of autistic children show little 

improvement in spoken language even when receiving early intensive behavioral intervention 

coupled with speech/language therapy (e.g., Frazier et al., 2021) or high-quality, targeted 

evidence-based intervention (e.g., Panganiban & Kasari, 2022). Attempts to identify pre-

treatment predictors of language gains have yet to reveal a consistent set of clinical, behavioral, 
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or demographic variables that predict language growth at the aggregate group or individual 

level. Some studies report that younger chronological age at intervention start is associated with 

greater cognitive or language gains in response to intervention (e.g., Frazier et al., 2021; Kasari 

et al., 2012; Lombardo et al., 2021), while others fail to find an effect of age at initiation of 

intervention (Contaldo, Colombi, Pierotti, Masoni, & Muratori, 2020; Green et al., 2010; Tiura, 

Kim, Detmers, & Baldi, 2017). Similarly, evidence is somewhat mixed on whether beginning 

intervention with stronger language skills is associated with a larger intervention effect on 

language outcomes. While some naturalistic developmental behavioral intervention (NDBI) 

studies report greater gains among children with stronger language abilities at baseline (e.g., 

Kasari et al., 2008), others find no moderating effect of baseline language scores (Green et al., 

2010; Hardan et al., 2015) on intervention-induced language gains. Indeed, while a large meta-

analysis of the effects of non-pharmacological interventions on language skills of autistic young 

children found stronger language at baseline (but not intervention style, dosage, chronological 

age, or symptom severity) was associated with larger treatment effects (Sandbank et al., 2020), 

a meta-analysis of NDBIs specifically found neither chronological age nor language ability at 

baseline moderated intervention effects on language ability (Crank et al., 2021). As in studies 

examining predictors of language development in autism broadly, behavioral variables 

predictive of language gains in response to NDBIs are also mixed. For instance, some studies 

find stronger baseline cognitive abilities predict greater growth in response to intervention (e.g., 

Hardan et al., 2015), while others find no such effects (e.g., Green et al., 2010; Rogers et al., 

2021). However, there is consistent evidence that in the context of NDBIs, baseline autism 

symptom severity does not moderate the effect of intervention on language gains (Green et al., 

2010; Rogers et al., 2021). 

Associations Between Early Language Profiles and Language Growth 

           The potential role of early receptive-expressive language profiles in predicting 

subsequent trajectories of language growth has received less attention. While most neurotypical 
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models of language development (which posit language comprehension drives language 

production (e.g., Bornstein & Hendricks, 2012; Goldin-Meadow, Seligman, & Gelman, 1976; 

though see Bauer, Goldfield, & Reznick, 2002) would suggest that children with a relative 

receptive language advantage should exhibit greater (or faster) language growth, evidence from 

both observational and intervention studies suggest this relationship may be altered in autism. 

           Longitudinal studies examining receptive and expressive vocabulary among young 

children with and without autism report stronger associations between early expressive 

vocabulary and later receptive language vocabulary than between early receptive and later 

expressive vocabulary (Bottema-Beutel et al., 2019; Woynaroski, Yoder, & Watson, 2016). This 

relationship between receptive and expressive language skills appears to be specific to autism, 

given evidence that these cross-modal vocabulary associations differ significantly between 

children diagnosed with autism and language- and mental age-matched neurotypical children 

(Bottema-Beutel et al., 2019). 

           Studies examining receptive-expressive (i.e., cross-modal) generalization in the context 

of language instruction have also provided evidence contrary to what would be suggested by 

neurotypical language acquisition. For instance, evidence from single-case studies suggests 

children with autism more readily generalize language initially taught expressively than 

language initially taught receptively – that is, a higher proportion of children demonstrate 

successful expressive-to-receptive generalization of word learning than demonstrate successful 

receptive-to-expressive generalization (Bao, Sweatt, Lechago, & Antal, 2017; Su, Castle, & 

Camarata, 2019; Wynn & Smith, 2003). Intriguingly, there is some limited evidence that a similar 

pattern of superior expressive-to-receptive generalization is evident in the context of manual 

signed language instruction in children with autism (Watters, Wheeler, & Watters, 1981), 

suggesting that this atypical receptive-expressive association may be rooted in something 

fundamentally social cognitive rather than an artifact of disruptions to neuromotor systems 

underpinning speech production, for instance. 
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           Clinically, understanding the association between initial receptive-expressive phenotypes 

and subsequent trajectories of language growth could provide important insight into potential 

prognostic markers that could facilitate the early identification of children who may be at 

greatest risk of poorer language growth, as well as initial insight into mechanisms that may 

contribute to heterogeneity and plasticity in language growth across the second and third years 

of life among children with autism.  

The Present Study 

The objective of Study 1 is to describe within-individual variability in language skills 

among infants and toddlers showing early signs of autism and test whether individual 

differences in receptive-expressive language phenotypes are associated with concurrent 

behavioral characteristics and predictive of language growth.  

It was hypothesized the proportion of infants and toddlers who present with marked 

discrepancies between their receptive and expressive language levels would exceed estimates 

derived from samples of neurotypical children (e.g., Reinhartsen et al., 2019) and children with 

non-autism developmental language delays (e.g., Seol et al., 2014). Given evidence from the 

extant literature that lower nonverbal cognitive ability is associated with atypical receptive-

expressive language discrepancies among children with autism (e.g., Volden et al., 2011), it 

was hypothesized that children who exhibit a larger discrepancy between receptive and 

expressive language abilities will have poorer nonverbal cognitive functioning. Further, given the 

reciprocal associations between early social communication skills (e.g., RJA) and receptive 

language ability (Frost, Pomales-Ramos, & Ingersoll, 2022) and the possibility that stronger 

receptive language skills allow children to both initiate and maintain dyadic social interactions 

more readily and glean more from these interactions, one possible hypothesis is that an 

"atypical" expressive advantage, or a larger receptive-expressive discrepancy overall, would be 

associated with poorer concurrent social communication skills, and slower language growth 

over time. Poorer receptive language skills may impede children's ability to learn from their 
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environment (specifically, linguistic input from their environment) and disrupt or interfere with 

children's ability to establish and maintain reciprocal social interactions. However, the reverse 

could also be true: relative deficits in receptive language could arise as a result of disruptions to 

fundamental social communication skills, such as responsiveness to joint attention, that emerge 

early in development and support social learning. Though the present study is not designed to 

address the directionality of the relationship between social communication and language 

profiles, both of these possibilities would suggest that a more atypical receptive-expressive 

profile would be associated with poorer concurrent social communication functioning (i.e., 

poorer verbal cognitive ability overall, poorer performance on response to joint attention [RJA] 

tasks, and higher levels of autism symptoms), and slower language growth. On the contrary, it is 

also possible that atypical language profiles may reflect some "compensatory" mechanism in 

autism (in which case more atypical profiles may be more prominent among children with 

stronger cognitive skills and those acquiring language at a pace similar to neurotypical children). 

Study 1 will provide needed insight into these relationships, potentially identifying behavioral 

markers of both risk for atypical receptive-expressive development as well as markers of 

resilience (i.e., compensatory mechanisms).  

Study 1 Aims 

Aim 1a: Quantify receptive-expressive language abilities (i.e., the discrepancy between 

receptive and expressive skill level) at baseline (T1) using a standardized, clinician-

administered developmental assessment, and estimate the prevalence of Receptive Advantage 

(RA; receptive language > expressive language), Expressive Advantage (EA; expressive 

language > receptive language), and Balanced (receptive language	≈ expressive language) 

profiles among infants and toddlers with autism symptoms. 

Hypothesis 1a: Infants and toddlers will present with discrepancies in receptive and expressive 

language skill levels, though the magnitude and direction of these differences will vary markedly 
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between individuals. The proportion of children with EA profiles will be greater than the 

proportion of children with RA profiles. 

Aim 1b: Test for associations between baseline receptive-expressive language phenotypes and 

concurrent chronological age, autism symptom level, cognitive functioning, and joint attention 

skills. 

Hypothesis 1b: Children with a smaller discrepancy between receptive and expressive 

language levels will exhibit lower levels of autism symptoms, stronger cognitive abilities, and 

stronger social communication skills than those exhibiting larger discrepancies between 

language domains. 

Aim 2a: Map trajectories of receptive and expressive language growth over 12 months. 

Aim 2b: Test whether initial receptive-expressive language phenotype is predictive of rate 

receptive language growth and expressive language growth over 12 months. 

Hypothesis 2: Children with a smaller discrepancy between receptive and expressive language 

will show faster receptive and expressive language growth than children with a larger 

discrepancy between receptive and expressive skill levels.  

Method 

Participants  

Participants are infants and toddlers between 12 and 23 months of age drawn from a 

larger randomized controlled trial of a caregiver-mediated intervention for infants and toddlers 

with autism symptoms. Children were eligible for participation if they were (1) between 12 and 

24 months of age, (2) had scores on the Autism Diagnostic Observation Schedule, Second 

Edition (ADOS-2) Toddler Module (Lord, Luyster, Gotham, & Guthrie, 2012) consistent with 

Mild-to-Moderate-Concern range or higher, and (3) had autism-specific clinical concerns from a 

healthcare provider, psychologist or other professional. Exclusionary criteria included: (1) the 

presence of co-occurring neurological conditions (e.g., uncontrolled seizure activity), (2) known 

genetic conditions (e.g., tuberous sclerosis complex), or (3) major physical or sensory 
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impairments (e.g., cerebral palsy, blindness). Given that this study focuses on young children 

showing early autism symptoms before the typical age of diagnosis, children were not required 

to have a formal autism diagnosis to participate. Recruitment efforts focused primarily on 

community healthcare providers (e.g., pediatrician offices) and autism diagnostic or early 

intervention service providers. Online advertisements were also used to recruit families directly. 

A total of 108 infants and toddlers were referred to the intervention trial and screened for 

eligibility by trained clinicians with expertise in the differential diagnosis of autism in young 

children. Ten families dropped from the study immediately following screening and were not 

randomized to intervention. An additional five infants and toddlers were ineligible due to the 

presence of a known genetic condition. Thirteen children were deemed ineligible for 

participation due to insufficient evidence of autism symptoms (i.e., ADOS-2 scores below the 

eligibility cut-off and few or no autism-specific concerns from study clinicians). The remaining 80 

eligible infants and toddlers were enrolled and randomly assigned to the experimental (Baby 

JASPER) or active control (Standard Baby) interventions. Of those participants, 70 consented to 

and completed all measures at the first timepoint (T1). The final sample includes 70 infants and 

toddlers (Baby JASPER n = 37; Standard Baby n = 33). See Table 1.1 for participant 

demographic characteristics across the total sample and by intervention assignment. 
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Table 1.1. Participant Demographic Characteristics 

Variable Total 
N = 70 

 Baby JASPER 
n = 37 

 Standard Baby 
n = 33 

 M SD  M SD  M SD 
Chronological age, months 18.07 2.39  18.10 3.19  18.03 2.65 
Nonverbal mental age 15.41 3.16  15.07 2.97  15.80 3.36 
ADOS-2 Total Score 17.90 4.72  18.57 4.67  17.15 4.74          
 N %  N %  N % 
Sex, female/male 14/56 20/80  8/29 21.62/78.38  6/27 18.18/81.82 
Race and ethnicity         
African American or Black 3 4.29  2 5.41  1 3.03 
Asian 6 8.57  3 8.11  3 9.09 
Hispanic or Latin origin 8 11.43  3 8.11  5 15.15 
White 30 42.86  17 45.95  13 39.39 
Other 4 5.71  2 5.41  2 6.06 
More than one race 15 21.43  8 21.62  7 21.21 
Not reported 4 5.71  2 5.41  2 6.06 
Familial history of autism         
≥ 1 sibling with autism 19 27.14  6 16.22  13 39.39 
Parental education         
≥ 1 parent with college degree  56 80.00  26 70.27  30 90.91 
No parent with college degree 11 15.71  8 21.62  3 9.09 
Not reported 3 4.29  3 8.11  0 0.00 
Household income         
$100 000 or less 29 41.43  16 43.24  13 39.39 
Above $100 000 34 48.57  16 43.24  18 54.55 
Not reported/refused 7 10.00  5 13.51  2 6.06 
Note. Mullen visual reception age equivalent scores were used as a proxy for nonverbal mental age. ADOS-2 = 
Autism Diagnostic Observation Schedule, Second Edition. 

 

Intervention 

An independent statistical group was responsible for randomizing eligible participants to 

two intervention conditions, Baby JASPER (experimental treatment) or Standard Baby (active 

control), for the larger intervention study. Briefly, both groups received eight weeks of 

intervention, which included two 2.5-hour sessions per week. These biweekly intervention 

sessions included one hour of direct parent education or coaching and two hours of group-

based activities. The Standard Baby intervention included one hour of direct parent education 

and used group-based activities targeting various developmental domains (e.g., cognitive, 

motor, daily living skills) based on the Assessment, Evaluation, and Programming System for 

Infants and Children, Second Edition (AEPS; Bricker, Pretti-Frontczak, Johnson, & Straka, 

2002). The Baby JASPER intervention included one hour of Joint Attention Symbolic Play 
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Engagement and Regulation intervention (JASPER; Kasari et al., 2022) and utilized group 

activities that specifically targeted social communication and dyadic engagement. Thus, the 

Standard Baby classroom took a more "domain-general" approach, whereas the Baby JASPER 

classroom focused more explicitly on social communication skills that are disrupted from very 

early in autism symptom development. Both interventions are manualized and equivalent in 

contact and intensity. These interventions are described in detail elsewhere (Gulsrud et al., 

under review; Sterrett, Magaña, Gulsrud, Paparella, & Kasari, 2022). 

Behavioral Measures 

This study uses a subset of behavioral outcome measures administered as part of a 

larger randomized controlled trial of an early intervention for infants and toddlers with autism 

symptoms. Participating infants and toddlers completed behavioral assessments at three 

timepoints: T1 (baseline, pre-intervention), two months later at T2 (exit, immediate post-

intervention), and 12 months after T1 at T3 (follow-up). Participants were 18.07 months old on 

average at T1 (SD = 2.93), 20.74 months old at T2 (SD = 2.88), and 31.29 months old at T3 (SD 

= 2.55). The distribution of chronological ages across enrollment (stratified by participant) is 

displayed in Figure S1.1. On average, participants completed the T2 visit 2.77 months after T1 

(SD = 0.66) and completed the T3 visit 12.95 months after T1 (SD = 0.64). 

Demographic Form. Participating families completed a demographic questionnaire at 

T1. The questionnaire included items designed to gather information about child and family 

characteristics.  

Autism Diagnostic Observation Schedule, Second Edition (ADOS-2). Infants and 

toddlers referred for participation were screened for eligibility with the ADOS-2 Toddler Module 

(Lord et al., 2012), administered by trained independent clinicians from a specialized clinic. The 

ADOS-2 is an autism diagnostic instrument for children and adults of varying language levels. 

The Toddler Module is designed specifically for children between 12 and 30 months of age. The 

ADOS-2 measures core autism symptoms, including social communication impairments (Social 
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Affect domain) and restricted/repetitive behaviors (RRB domain). Domain scores are summed to 

generate an Overall Total score. The ADOS-2 Toddler Module scoring algorithm provides 

guidance for mapping Overall Total scores onto three categories reflecting the level of clinical 

concern (Little-to-No Concern, Mild-to-Moderate Concern, and Moderate-to-Severe Concern). 

Mullen Scales of Early Learning (Mullen). The Mullen Scales of Early Learning 

(Mullen, 1996) is a standardized developmental assessment of cognitive and motor 

development for children up to 68 months of age. The Mullen was administered to participants 

by research-reliable, independent evaluators. The Mullen assesses skills across five domains: 

gross motor, fine motor, visual reception, receptive language, and expressive language. Raw 

scores, age equivalent scores, and T-scores are provided for each subscale. The Mullen has 

been used extensively in infants and toddlers with autism or other developmental disabilities in 

research settings (Belteki, Lumbreras, Fico, Haman, & Junge, 2022), and evidence for 

construct, convergent and divergent validity of the Mullen in children with autism has been 

established (Swineford, Guthrie, & Thurm, 2015). Nonverbal and verbal developmental quotient 

(DQ) scores were computed to index cognitive functioning relative to chronological age 

expectations. Nonverbal DQ (NVDQ) scores are calculated by dividing the average of visual 

reception and fine motor scale AE scores by the child's chronological age and multiplying the 

results by 100. The same procedure is used to compute Verbal DQ (VDQ) scores, though using 

the average AE from the receptive language and expressive language scales. The purpose of 

using DQ scores, as is common in studies of infants and toddlers with or at increased likelihood 

of autism, is to avoid possible floor effects associated with T-scores while providing a metric 

quantifying functioning relative to chronological age expectations that captures variability in 

cognitive functioning even among children with the most profound developmental delays (Lord 

et al., 2006; Munson et al., 2008). 

Continuous measures of receptive-expressive phenotype and language profiles (Aim 1) 

were derived from receptive and expressive language scale AE scores from the T1 Mullen 
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administration. To map trajectories of language growth (Aim 2), receptive and expressive 

language age equivalent scores (AE) from T1, T2, and T3 were used. 

Early Social Communication Scales (ESCS). The Early Social Communication Scales 

(ESCS; Mundy et al., 2003) is a structured, observational measure designed to elicit early social 

communication behaviors, including child initiations of joint attention (IJA) and responsiveness 

to others' bids for joint attention (RJA). The assessment is approximately 15 to 20 minutes in 

duration and is video-recorded for later coding offline. IJA is quantified as the frequency with 

which a child spontaneously uses gaze, language/communicative vocalizations, or gestures to 

initiate shared attention with the assessor. IJA behaviors are distinct from other social 

communication behaviors (e.g., child-initiated requests) in that the underlying intent is to direct 

the assessor's attention to share an experience. Overtures involving multiple combined skills are 

counted as one instance of IJA (e.g., a child-initiated point paired with eye contact is scored as 

one instance of IJA). RJA was assessed during a shared book-reading task and gaze-following 

task. The assessment typically involves a total of 14 RJA probes, or opportunities, for the child 

to respond to the assessor's bid for joint attention. RJA is quantified as the total number of child 

responses divided by the total number of opportunities for response. A trained independent 

assessor administered the ESCS, and independent coders blind to intervention assignment and 

timepoint scored the video-recorded assessments. Coders maintained reliability of at least 80%, 

assessed by intraclass correlation coefficients. 

Analysis Strategy 

Aim 1a: Characterizing Receptive-Expressive Phenotypes 

To clarify inconsistencies in the extant literature on receptive-expressive language 

profiles among children with autism (and whether atypical profiles are more common among 

children with or developing autism than in the general population), receptive-expressive 

language discrepancies and profiles were quantified using three approaches: (1) receptive-

expressive Difference Scores (as in Swanson et al., 2017), (2) receptive-expressive Ratio 
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Scores  (as in Reinhartsen et al., 2019; Seol et al., 2014), and (3) using published receptive-

expressive ratio score cut-offs (Seol et al., 2014) to classify children into three discrete language 

profiles. Language profiles included Receptive Advantage (RA; receptive language level > 

expressive language level), Expressive Advantage (EA; expressive language level > receptive 

language), and Balanced (receptive language level ~ expressive language level) profiles. Thus, 

these three approaches yield two continuous metrics of receptive-expressive discrepancy and 

one categorical metric describing the strength of receptive versus expressive language skills. 

Aim 1b: Concurrent Behavioral Correlates of Receptive-Expressive Phenotypes 

To examine the association between continuous metrics of receptive-expressive 

language ability (Difference and Ratio Scores) and the behavioral variables of interest 

(chronological age, autism symptoms, cognitive ability, and joint attention skills), Spearman's 

rank-order correlations (rs) were computed. The present sample of N = 70 provided 80% power 

to detect a medium effect (i.e., |rs| = .35) at an alpha-level = .05. One-way ANOVA was used to 

test whether children with EA, RA, or Balanced language profiles differed significantly on the 

behavioral variables of interest. The present sample size of N = 70 provided 80% power to 

detect a medium-to-large effect (Cohen's f = 0.37) of language profile on the behavioral 

variables of interest. 

Aim 2: Receptive and Expressive Language Trajectories 

Hierarchical linear modeling (HLM) was used to model change across the 12-month 

study period in receptive and expressive language ability. Models were computed separately for 

receptive and expressive language. The HLM approach for studying longitudinal change has 

several desirable characteristics particularly well-suited to the present dataset: HLM readily 

accommodates missing observations (e.g., in cases of attrition) and allows time to be modeled 

in a flexible manner (e.g., as a function of chronological age, time elapsed since the first 

measurement occasion; Singer & Willett, 2003).  



 29 

To address the research aims, unconditional means and unconditional growth models 

were fit to the language data in order to characterize group mean trajectories of language 

growth (fixed effects), variability in initial status and rate of growth (level-1 and level-2 residual 

variance components), and the extent to which initial status was related to rate of change over 

time. With only three measurement occasions, modeling options are limited. While curvilinear 

(e.g., decelerating quadratic) or piece-wise linear models may fit the data better than a linear 

specification, these models require more measurement occasions (perhaps as many as five or 

more per participant; Raudenbush & Bryk, 2005) to capture individual differences in rates of 

growth with sufficient precision. As the primary objective of Aim 1 is to capture individual 

differences in language abilities and growth, a linear growth model was proposed with random 

participant-level intercepts and slopes. 

Given the current longitudinal design, there were a number of ways that time (i.e., the 

level-1 predictor) could be conceptualized, including child chronological age, timepoint (i.e., 

Entry, Exit, Follow-Up), or its time-structured analog (i.e., target data collection timeline; Month 

0, Month 2, Month 12), or actual days, week, or months elapsed since the first measurement 

occasion. Given between-participant variability in the spacing of assessments (e.g., some 

children completed T3 assessments precisely 12 months after T1, whereas others completed 

T3 assessments at a delay), both categorical and time-structured variants of timepoint were 

quickly eliminated. Given the broad age range covered at each measurement occasion (e.g., 

children were as young as 12 months or as old as 23 months at the first measurement occasion; 

see Figure S1.1.) and relatively sparse sampling across the measurement period, age (either 

centered or raw) was also eliminated.  

I chose to model time as months elapsed since baseline (Time) given that this metric is 

readily interpretable with respect to intercept (i.e., the intercept is the estimated score at T1), 

and rate of change, given the dependent variables (age equivalent scores) approximate child 

performance using "age" in months. This interpretation of linear slope also provides useful 
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insight into the extent to which language growth, on average, is outpacing what would be 

expected for a given period of time (e.g., slope < 1 suggests slower growth relative to normative 

development, whereas slope > 1 suggests language skills are growing at a faster rate than what 

would be expected in normative development). Moreover, given the significant share of 

participants who completed fewer than three timepoints and the relatively sparse sampling of 

language over the 12 months, the variability in temporal spacing of measurement occasions is 

beneficial for estimating fixed effects (i.e., group mean trajectories) in the presence of missing 

and unbalanced data (Singer & Willet, 2003). 

To test whether initial receptive-expressive phenotype was predictive of the rate of 

language growth (Aim 2b), T1 receptive-expressive language profile was added to the 

unconditional growth models as a predictor of initial status and rate of linear growth. Intervention 

assignment was then added to the subsequent model, allowing me to evaluate the effects of 

language profiles on growth trajectories after statistically controlling for intervention assignment. 

Sensitivity analyses were conducted using T1 Difference Scores to evaluate whether observed 

effects were consistent across receptive-expressive language metrics. While I had proposed 

examining the several T1 child demographic and behavioral predictors of language trajectories, 

it quickly became clear that the present sample size (N = 70, n = 168 measurement occasions) 

is insufficient for testing a large number of predictors simultaneously (including testing whether 

initial language phenotypes are predictive of language growth above and beyond the effects of 

other T1 predictors). This decision-making process is discussed in detail in the Results section. 

Results 

Aim 1a: Cross-Sectional Receptive-Expressive Language Phenotypes 

Quantifying Receptive-Expressive Language Phenotypes at T1 

Difference Scores and Ratio Scores were computed as previously described. The 

distribution of Difference and Ratio scores within the present sample (see Table 1.2, Figure 

1.1) suggests that, on average, infants and toddlers had relatively balanced receptive and 
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expressive language abilities. However, there was remarkable variability within the sample 

(recall Difference Scores of 0 and Ratio Scores of 1 reflect equivalent receptive and expressive 

abilities, respectively). Difference Scores appear approximately normally distributed upon visual 

inspection, consistent with the results of the Shapiro-Wilk test (W = 0.966, p = .055). Skew and 

kurtosis were acceptable. No outliers were detected (i.e., all observed values fell within three 

standard deviations of the mean). In contrast, visual inspection of Ratio Scores (Figure 1.1) 

suggests the presence of potential outliers and deviation from the normal distribution. As 

expected, Difference Scores and Ratio Scores are highly correlated (rs = 0.975, p <.001). 

Three groups reflecting receptive-expressive language profiles were formed using Ratio 

Score cut-offs described in Seol et al. (2014). EA profiles were the most prevalent, as nearly 

half (n = 29, 41.4%) of infants and toddlers met criteria for an expressive advantage profile. Of 

the remaining children, 24 had Ratio Scores consistent with an RA profile (34.3%) and 17 

(24.3%) had Ratio Scores consistent with a Balanced receptive-expressive language profile. 

 

Table 1.2.  Descriptive Statistics for Metrics of Receptive-Expressive Language Phenotypes 
Metric Computation 

 
Descriptives    

M SD Min, Max 
Difference Score Receptive AE – Expressive AE 

 
0.30 3.76 [-7, 11] 

Ratio Score Receptive  AE ÷ Expressive AE 
 

1.09 0.53 [0.14, 3.25]       

Language Profile 
  

N % 
 

Expressive Advantage Ratio Score < 0.90 
 

29 41.43% 
 

Receptive Advantage Ratio Score > 1.10 
 

24 34.29% 
 

Balanced 1.10 ≥ Ratio Score ≥ 0.90 
 

17 24.29% 
 

Note. AE = age equivalent score. 
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Figure 1.1. Distribution of receptive-expressive Difference Scores and Ratio 
Scores. 

 

Aim 1b: Cross-Sectional Associations with Receptive-Expressive Phenotypes 

Preliminary Analyses 

Following computation of language metrics, preliminary analyses were undertaken to 

examine whether there was an association between the three receptive-expressive language 

profile metrics (Difference Scores, Ratio Scores, and Language Profiles) and select 

demographic variables: sex at birth, family history of autism (dummy coded, such that 1 = at 

least one autistic sibling per parent report, 0 = no autistic siblings or not reported), parental 

education (1 = at least one parent obtained a college or graduate degree, 0 = no parents with a 

college or not reported), and race/ethnicity. Given the group-level sample sizes were relatively 

small for those who reported a racial/ethnic identity other than White (see Table 1.1), for 

statistical analyses, groups were collapsed to ensure cell sizes were sufficiently large to satisfy 

assumptions of chi-square tests. Racial/ethnic identity groups were collapsed into three groups: 
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White (the most-frequently-endorsed identity; n = 30), more than one race/ethnicity (the second 

most-frequency endorsed category, n = 15), and others (Hispanic/Latin origin, n = 8; Asian n = 

6; African American or Black, n = 3;  Other, n = 4; not reported/refused, n = 4). While traditional 

significance could not be carried out without combining racial/ethnic groups due to small 

expected cell counts, the distribution of Difference Scores, Ratio Scores, and Language Profile 

membership across each race/ethnic group is displayed in Figure S1.2. for descriptive 

purposes. Note that the variables tested here are not the primary variables of interest but rather 

background variables to include as potential covariates in later analyses when indicated. 

Thus, p-values have not been adjusted for multiple comparisons. 

Nonparametric Mann-Whitney tests were implemented for preliminary analyses 

examining associations between background demographic variables and Difference and Ratio 

Scores. Note that while Difference Scores satisfied assumptions of independent samples t-test, 

Ratio Scores did not. Mann-Whitney tests are reported for both variables in the interest of 

consistency. There were no significant differences between males and females in Difference 

Scores (U = 380, z = -0.18,  p = .864) or Ratio Scores (U = 379.5, z = -0.18, p = .859). There 

were also no differences in Difference Scores (U = 504.5, z = 0.27, p = .791) or Ratio Scores 

(U = 524.50, z = 0.53, p = .596) as a function of family history of autism. There was no effect of 

parental educational attainment on Difference Scores (U = 398.00, z = 0.09, p = .929) or Ratio 

Scores (U = 376.50, z = -0.23, p = .820). For tests of race/ethnicity, nonparametric rank-based 

one-way ANOVA was used (Kruskal-Wallis H). Results indicate no significant differences in 

Difference Scores (H = 0.96, df = 2, p = .620) or Ratio Scores (H = 1.00, df = 2, p = .605) across 

racial/ethnic groups. 

For preliminary analyses of categorical language profiles, traditional 3x2 chi-square 

analyses were not possible due to an excessive number of cells with expected counts below 5 

for sex at birth, family history of autism, and parental education. However, the distribution of 

males and females appeared similar across groups (20.7%, 20.8%, and 17.6% of participants 



 34 

assigned female at birth for EA, RA, and Balanced groups, respectively). The proportion of 

children with at least one autistic sibling was also similar across groups (24.1% of EA group, 

29.2% of RA group, and 29.4% of Balanced group), as was the proportion of children with at 

least one parent who earned a college or graduate degree (82.4% of EA group, 82.8% of RA 

group, and 75.0% of Balanced group). Chi-squared tests failed to detect significant associations 

between Language Profile membership and race/ethnic  identity (𝜒!(4) = 4.10, p = .398).  

Correlates of Receptive-Expressive Difference and Ratio Scores 

Spearman's nonparametric correlation analyses were used to identify associations 

between continuous measures of receptive-expressive language discrepancy and hypothesized 

demographic and behavioral predictors. Briefly, analyses revealed no significant associations 

between Difference Scores and child chronological age (p = .227), ADOS-2 Total score (p 

= .164), NVDQ (p = .352), VDQ (p = .356), RJA (p = .120) or IJA (p = .932). This pattern was 

consistent with the results for Ratio Scores (see Table 1.3.).  

Table 1.3. Correlational Analyses of Receptive-Expressive Language Discrepancy Scores  and 
Primary Behavioral Variables 
     Correlation with 

Difference Score 
 Correlation with 

Ratio Score 
Variable N M SD  rs p  rs p 
Chronological age 70 18.10 2.93  .15 .227  .10 .405 
Nonverbal DQ 70 86.26 16.17  .11 .352  .14 .243 
Verbal DQ 70 58.25 22.59  .11 .356  .12 .306 
ADOS-2 Total Score 70 17.90 4.72  -.17 .164  -.19 .123 
RJA 67 34.60% 24.01%  .19 .120  .17 .180 
IJA 67 11.05 9.86  .01 .932  .05 .686 
Note. ADOS-2 = Autism Diagnostic Observation Schedule, Second Edition; DQ = developmental quotient; IJA = 
initiations of joint attention; RJA = response to joint attention. 

 

Considering these findings, more granular exploratory follow-up analyses were 

conducted to evaluate whether there were associations between Difference and Ratio scores 

and (1) ADOS-2 domain-level scores, and (2) Mullen scale-level scores for all five scales (rather 

than nonverbal and verbal scores, which aggregate across multiple scales). Given the large 

number of correlation coefficients calculated in these follow-up analyses, Bonferroni adjustment 

was applied to p-values computed for ADOS-2 domain scores (adjusting for two tests) and 
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Mullen scale scores (adjusting for five tests). Bonferroni adjustment was carried out separately 

for Difference Scores and Ratio Scores.  

The results of follow-up analyses are displayed in Table 1.4. For Difference Scores and 

Ratio Scores, receptive language AE scores were the only significant associations following 

Bonferroni correction (padj < .001). The direction of this positive association suggests a greater 

receptive advantage is associated with stronger receptive skills overall (recall that Difference 

Scores alone provide no information about language level, but rather, the difference between 

language domains)). While the associations with expressive language did not survive Bonferroni 

correction, the correlation coefficients suggest that an increasing expressive advantage is 

associated with stronger expressive language skills. 

Table 1.4. Follow-up Correlation Analyses of ADOS-2 Domain and Mullen Scale Scores 
     Correlation with 

Difference Score 
 Correlation with 

Ratio Score 
Variable N M SD  rs p  rs p 
ADOS-2 Domain 

         

Social Affect 70 14.94 3.89 
 

-.16 .179 
 

-.19 .115 
RRB 70 2.96 1.62 

 
-.03 .834 

 
-.02 .848 

Mullen Scale AE 
         

Gross Motor 69 15.51 2.39 
 

.19 .111 
 

.19 .120 
Visual Reception 70 14.67 3.94 

 
.20 .100 

 
.21 .082 

Fine Motor 70 16.16 3.13 
 

.07 .542 
 

.08 .501 
Receptive Language 70 10.57 5.21 

 
.52 <.001 

 
.53 <.001 

Expressive Language 70 10.27 4.32 
 

-.26 .033ª 
 

-.25 .041ª 
Note. ADOS-2 = Autism Diagnostic Observation Schedule, Second Edition; AE = age equivalent score; DQ = 
developmental quotient; RRB = restricted/repetitive behaviors. ªNo longer significant following Bonferroni 
correction. 

 
Associations Between Language Profiles and Behavioral Variables  

The within-groups assumption of normality was not satisfied for nearly all the dependent 

variables of interest (i.e., the distribution of the dependent variables was non-normal within at 

least one of the language profile groups, per visual inspection and Shapiro-Wilk test), with the 

exception of NVDQ. Thus, for all dependent variables other than NVDQ, a robust variation of 

traditional one-way ANOVA using 10% trimmed means was employed using the WRS2 package 

(Mair & Wilcox, 2020) available in R (R Core Team, 2021). The robust test statistic, Ft, is a 

generalization of Welch's F (Field & Wilcox, 2017; Wilcox, 2023). Post-hoc pairwise 
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comparisons and corresponding effect sizes are computed using 10% trimmed means. The 

effect sizes, dt, are a robust version of Cohen's d (Algina, Keselman, & Penfield, 2005) and may 

be interpreted similarly (i.e., a standardized mean difference between groups).  

Groups did not differ significantly in age (Ft(2, 33.61) = 1.39, p = .264), ADOS-2 Total 

Score (Ft(2, 34.22) = 0.790, p = .462), NVDQ (F(2, 67) = 0.71, p = .497), VDQ (Ft(2, 32.52) = 

0.47, p = .628), IJA (Ft(2, 30.55) = 0.85, p = .437), or RJA (Ft(2, 29.29) = 0.240, p = .788). 

Figure 1.3 depicts the distribution of demographic and behavioral variables across language 

profile groups. 

As with correlational analyses, granular ADOS-2 domain-level and Mullen scale-level 

follow-up analyses were conducted. There were no group differences in ADOS-2 Social Affect 

domain scores (Ft(2, 33.79) = 0.59, p = .560) or RRB domain scores (Ft(2, 34.35) = 1.31, p = 

.283). Groups also did not differ significantly in gross motor (Ft(2, 32.7) = 0.36, p = .703), or 

visual reception (Ft(2,32.13) = 2.06, p = .143). The tests of fine motor (Ft(2, 35.10) = 3.51, p = 

.066) and expressive language scales Ft(2, 31.89) = 2.96, p = .066) approached significance. 

The test of receptive language AE scores was significant (Ft(2, 30.62) = 6.65, p = .004), such 

that mean receptive language AE scores were significantly lower in the EA group relative to the 

Balanced group (p = .008, dt = -.82) and relative to the RA group (p < .001, dt = -0.89). Pairwise 

group differences remained significant following Bonferroni correction. The discrepancy 

between groups in receptive language scores, and lack thereof for other Mullen scale scores, is 

evident in Figure 1.3. 

Aim 1 Summary 

Although receptive and expressive language levels appear relatively balanced at the 

aggregate sample level, examining individual-level discrepancies in between language domains 

made clear that there are substantial individual differences in receptive-expressive phenotypes 

across children A larger proportion of children exhibited atypical language profiles characterized 

by an imbalance between receptive and expressive language skill levels. Contrary to 
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hypotheses, receptive-expressive phenotypes, whether quantified using Difference Scores, 

Ratio Scores, or categorical language profiles, were not significantly associated with child 

chronological age, autism symptom levels, cognitive ability, motor functioning, or joint attention 

abilities in the present sample. Rather, the only significant association across all three receptive-

expressive metrics was with receptive language level, such that children with stronger 

expressive language skills than receptive language skills tended to exhibit poorer concurrent 

receptive language abilities overall. 
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Figure 1.2. Distribution of child-level behavioral and demographic characteristics by 
language profile. BAL = balanced profile, EA = expressive advantage profile, RA = 
receptive advantage profile. NVDQ = nonverbal developmental quotient; VDQ = verbal 
developmental quotient. 
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Aim 2: Receptive-Expressive Language Phenotypes and Language Growth  

Preliminary Analyses: Missing Data 

As is common in longitudinal studies, not all participants contributed language data at all 

three timepoints. Language data was available for 70 participants at T1 (100% of the sample), 

57 participants at T2 (81.4%), and 40 participants at T3 (57.1%). In total, 38 children (54.3% of 

the sample) contributed language data at all three timepoints, 21 contributed data at two 

timepoints (i.e., either T1 and T2 only [27.1%], or T1 and T3 only [2.9%]), and 11 children 

contributed data at only one timepoint (i.e., T1, 15.7%). Data loss was largely due to attrition, 

though there were a few instances when data loss was due to non-compliance (n = 2 children 

missed the T2 visit but completed the T3 visit; n = 3 children attended the T3 visit but did not 

complete the Mullen). Table S1.1 summarizes demographic information and descriptive 

statistics for behavioral variables (measured at T1) stratified by the number of timepoints 

completed. Briefly, there were no differences between children who contributed three, two, or 

one timepoint in male-to-female sex ratio, autism family history, parental educational attainment, 

or household income (as reported at T1). Groups also did not differ significantly in chronological 

age, receptive language AE score, expressive language AE score, visual reception AE score, or 

ADOS-2 Total scores at T1. 

Mapping Trajectories of Language Growth 

Cross-sectional descriptive statistics for language age equivalent scores, chronological 

age, and time elapsed are shown in Table 1.5. Prior to fitting growth trajectories, an 

unconditional means model was fit to examine variance components for receptive and 

expressive language models separately. Next, the unconditional linear growth models were fit 

with random intercept and linear slope parameters to allow initial status (i.e., language scores at 

T1) and rates of change to vary across participants, thereby providing a means to capture 

individual differences in language development. 
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Table 1.5. Cross-Sectional Descriptive Statistics for Key Child-Level Variables 

 T1 
N = 70 

T2 
N = 57 

T3 
N = 40 

 M (SD) M (SD) M (SD) 
Chronological age, months 18.07 (2.93) 20.74 (2.88) 31.29 (2.55) 
Receptive Language AE 10.57 (5.20) 15.47 (6.28) 26.80 (8.82) 
Expressive Language AE 10.27 (4.32) 14.60 (5.11) 25.63 (8.81) 
NVMA (Visual Reception AE) 14.67 (3.94) – – 
ADOS-2 Total Score 17.90 (4.72) – – 
Time since T1, months 0 2.77 (0.66) 12.95 (0.62) 
Note. AE = age equivalent; ADOS-2 = Autism Diagnostic Observation Schedule, Second Edition; AE = age 
equivalent; NVMA = nonverbal mental age. 

 

The following section describes the results of fitting unconditional means (Model 0) and 

unconditional growth (Model 1) models to receptive and expressive language AE scores. 

Receptive and expressive language models are summarized in Tables 1.6 and 1.7, 

respectively. 

Aim 2a: Mapping Longitudinal Trajectories of Receptive and Expressive Language 

 Estimates of fixed effects, variance components, and goodness-of-fit indices for 

unconditional means (Model 0) and unconditional growth (Model 1) models of receptive and 

expressive language are displayed in Tables 1.6 and 1.7. 

Model 0, Unconditional Means Model 

The variance estimates derived from the unconditional means models indicate that 

average receptive language scores vary significantly over time (level-1 variance; 𝜎"! = 68.22, 

p<.001), and average receptive language scores vary significantly between individuals (level-2 

variance in initial status; 𝜎#! = 15.27, p < .001). The intraclass correlation coefficient (ICC) 

computed from the estimated level-1 and level-2 variance parameters indicate that 

approximately 17.7% of the variance in receptive language outcomes lies “between” individuals 

(ICC = 0.177); that is, nearly 20% of the variation in receptive language ability is attributable to 

difference among children. Findings were similar for the expressive language unconditional 

means model (level-1 𝜎$!	= 62.69, p < .001; level-2 variance in initial status 𝜎#!	= 8.72, p < .001), 

such that average language scores vary significantly over time, and average expressive 
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language scores differ between individuals. Approximately 12% (ICC = 0.116) of the variance in 

expressive language outcomes is attributable to differences among children 

Model 1, Unconditional Linear Growth Model 

Model 1 added Time  (quantified as months since T1) as a level-1 predictor. Models 

included random intercepts and slopes. Fixed effects for the receptive language model indicate 

the estimated population mean receptive language AE score at T1 is approximately 11 AE 

"months" (𝛾## = 11.14, F(1,69.37) = 319.11, p < .001), and on average, children’s receptive 

language AE scores increase approximately by 1.2 AE “months” each month (𝛾%# = 1.17, 95% 

CI [1.01, 1.33], F(1, 42.65) = 215.33, p < .001). The level-1 variance component (𝜎$! = 12.16, p 

< .001) declined by 82.18% with the addition of Time to the model, suggesting that 

approximately 82% of the within-individual variation in receptive language is systematically 

associated with linear time (Singer & Willett, 2003). Estimated level-2 variance components 

describe the unpredicted variability in individual growth parameters that remains after 

adding Time to the model. Variance in initial status  (𝜎#! =18.69, p < .001) and in rate of change 

(𝜎%! =0.135, p = .02) both differ significantly from zero, suggesting the addition of level-2 

(between-child) predictors to the model may help explain heterogeneity. Notably, the estimated 

correlation between level-2 residuals (indexing the extent to which receptive language abilities 

at T1 are related to the rate of growth in receptive language skills over time) approached 

statistical significance (𝜌'#% = 0.340, p = .076), suggesting there is a non-significant positive 

association between level of receptive language abilities at T1 and rate of growth over time. 

Fixed effects for the expressive language model indicate that the average expressive 

language AE score at T1 is approximately 10.5 AE “months” (𝛾##= 10.62, 95% CI [9.58, 11.66], 

F(1,69.41) = 417.32, p < .001), and on average, AE scores increase by approximately 1.1 AE 

“months” for every month since T1 (𝛾%#= 1.10, 95% CI [ 0.93, 1.26], F(1,48.86) = 178.17, p < 

.001). All level-1 and level-2 variance components differed significantly from 0, suggesting 
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significant unpredicted variability in individual growth parameters remains. Level-1 residuals 

declined by approximately 87.54% compared to the unconditional means model, indicating that 

most within-individual variance in expressive language is systematically associated with 

linear Time. Notably, the correlation between level-2 residuals was not significantly different 

from 0 (𝜌'#% = 0.265, p = .095), though there was a trending positive association such that 

stronger expressive language skills at T1 was associated with faster growth. 

After fitting the unconditional growth models, assumptions of normality were assessed 

graphically with normal probability plots of raw level-1 and level-2 residuals and scatterplots of 

standardized level-1 and level-2 residuals by participant ID number. The homoscedasticity 

assumption was evaluated graphically by plotting level-1 residuals against Time (i.e., the level-1 

predictor). Following guidelines outlined by Singer and Willett (2003), it was determined that 

there was sufficient evidence that the models' basic assumptions were met. 

Observed trajectories of receptive and expressive language with estimated population mean 

trajectories derived from unconditional growth models are displayed in Figure 1.3. 

Figure 1.3. Empirical growth charts of observed receptive and expressive language scores and 
prototypical growth trajectories from unconditional growth models. 

 

Aim 2b: Receptive-Expressive Phenotypes as Predictors of Language Trajectories 

Model-Building Strategy 
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The proposal for this dissertation included an analysis plan aimed at identifying T1 

predictors of language growth, including initial receptive-expressive language profile, 

chronological age, nonverbal cognitive ability, ADOS-2 Total scores, joint attention skills, 

demographic variables (i.e., socioeconomic status), and intervention assignment. However, it 

quickly became clear that the present sample size (N = 70 children, with n = 168 total 

measurement occasions) is likely underpowered for this approach. Given these constraints, the 

analysis plan was modified to focus on the T1 receptive-expressive phenotype as a predictor of 

language growth. 

Notably, preliminary analyses (not shown) were conducted to test the effects of T1 

predictors of language growth originally proposed as control variables (that is, variables not of 

substantive interest that may be associated with language growth, based on existing evidence). 

Child sex at birth, parental educational attainment (at least one parent completed college versus 

no parent completed college or no response), annual household income (above $100,000 

versus below $100,000 or refused/no response), home language exposure (as reported on the 

demographic questionnaire at T1; more than one language versus one language or no 

response) were not significant predictors of initial status or growth for receptive or expressive 

language and were thus not considered for inclusion in any subsequent models.  

Further, preliminary analyses with intervention assignment as a level-2 predictor of initial 

status and growth found no significant effect of intervention assignment on language growth 

(i.e., the Time by intervention assignment interaction term was not significant). This is consistent 

with preliminary results from the larger randomized controlled trial, which found no significant 

treatment effect on receptive language or expressive language scores (Gulsrud et al., in 

preparation). However, both models indicated that intervention assignment was a predictor of 

initial language status. Here, "initial status" corresponds with estimated language abilities prior 

to random assignment to intervention (recall that Time was coded such that the first 

measurement occasion was set to equal 0). Thus, these significant effects are likely a reflection 



 44 

of chance rather than anything systematic associated with intervention: children who were 

eventually randomly assigned to the Standard Baby group tended to have stronger language 

skills on average than those randomly assigned to the Baby JASPER condition. This raises 

important questions about the value of including intervention assignments in these models, 

particularly in light of the limitations already imposed by this relatively small sample size. In the 

presence of a larger sample with more densely sampled language data across the 

measurement period, the most conservative approach would be to retain intervention 

assignment as a control variable in all analyses, regardless of whether its effects on initial status 

or rate of change are statistically significant. However, this decision is less straightforward in the 

presence of sample size limitations. 

In light of these preliminary analyses, the following analysis plan was formulated. As a 

first step (Model 2), T1 receptive-expressive language profile (Profile) would be added as a 

level-2 predictor to the unconditional growth models, providing a means to test whether 

T1 Profile was associated with average initial status or rate of growth. For analyses, 

T1 Profile was dichotomized into EA profile versus RA or Balanced profiles (1 = EA, 0 = RA or 

Balanced). This decision was partly hypothesis-driven based on Aim 1 findings, and also an 

effort to reduce the number of parameters estimated in the growth models. Results from Model 

2 are thus interpreted as "uncontrolled" effects of T1 Profile on growth parameters, given that 

intervention assignment is not included in the model (Singer & Willett, 2003). To test whether 

T1 Profile is predictive of initial status and rate of growth after statistically controlling for 

intervention assignment, Model 3 adds intervention assignment (Tx) as a control variable (1 = 

Baby JASPER, 0 = Standard Baby). Future work with a larger sample size will explore whether 

receptive-expressive profile is predictive of language growth above and beyond the effects of 

other child-level characteristics (e.g., nonverbal cognitive ability, autism symptom levels) and 

whether these early language profiles are associated with variability in intervention response. 

Note for Models 2 and 3, fixed effects parameter estimates are of primary interest.   
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Model 2, Uncontrolled Effects of T1 Language Profile on Language Trajectories 

Adding Profile to unconditional growth models improved model fit for both receptive 

language (Δ	-2 Log Likelihood [-2LL] = 12.58, df = 2, p = .002) and expressive language (Δ	-2 LL 

= 7.47, df = 2, p = .024). Profile was a significant predictor of initial receptive language status (p 

< .001) but not a significant predictor of linear growth in receptive language (p = .745). Having 

an EA profile at T1 was associated with markedly lower estimated initial receptive language 

scores. Profile was predictive of linear growth in expressive language (p = .009) but not of initial 

expressive language ability. Having an EA profile at T1 was associated with significantly slower 

linear growth (see Table 1.8). 

Model 3, Effects of T1 Language Profile on Language Trajectories, Controlling for 

Intervention Assignment 

The addition of intervention assignment (Tx) as a predictor of initial status and linear 

growth of receptive language did not appreciably alter parameter estimates for the effect Profile 

on initial receptive language status  (p < .001) or linear growth in receptive language (p = .878). 

This is consistent with findings for expressive language growth: Profile remained a significant 

predictor of linear growth in expressive language (p = .008) but was not predictive of initial 

expressive language status (p = .254). Notably, in both models, intervention assignment was a 

significant predictor of initial language status (i.e., estimated language scores at T1) but not of 

estimated rate of language growth. As previously outlined, this likely is a reflection of differences 

between intervention groups due to chance rather than a systematic effect of intervention, given 

children were randomly assigned to intervention groups after T1 language assessments were 

administered. See Table 1.9 for parameter estimates of fixed effects. 

Sensitivity Analysis: Converging Evidence Across Unique Measures of T1 Receptive-

Expressive Phenotypes 

The analyses testing the uncontrolled (Model 2, not shown) and controlled (Model 3; see 

Table 1.10) effects of receptive-expressive language phenotype of language growth were 
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repeated using T1 Differences Scores. The results were largely consistent with those obtained 

using a categorical measure of receptive-expressive profile: T1 receptive-expressive Difference 

Scores significantly predicted initial receptive language status and expressive language growth. 

After controlling for intervention assignment, the effect of T1 Difference Score on initial 

expressive language status was also significant. 

Aim 2 Summary 

Infants and toddlers with autism symptoms showed substantial gains in language skills 

over 12 months. Growth trajectories suggest that on average, children’s language skills grew at 

a rate similar to what would be expected in neurotypical development. There was a trending, 

though non-significant, positive association between estimated initial status and estimated rate 

of change for both receptive and expressive language models; the true nature of this 

association may be clearer when re-evaluated in a larger sample.  

Initial receptive-expressive language phenotype as measured at T1 was a significant 

predictor of expressive language growth, such that having a greater expressive language 

advantage (or put otherwise, a greater receptive disadvantage) at T1 was associated with 

slower growth over the 12-month measurement period. Notably, this effect was consistent when 

using categorical language profiles and a dimensional measure of receptive-expressive 

phenotype. 

Discussion 

The present study examined receptive-expressive language phenotypes among infants 

and toddlers showing early signs of autism spectrum disorder and tested the extent to which 

early language phenotypes were associated with other domains of social, cognitive, and motor 

development. This study further evaluated whether initial receptive-expressive language 

phenotypes were predictive of subsequent receptive and expressive language growth. 

Receptive-Expressive Language Phenotypes 
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The distribution of Difference and Ratio Scores in the present sample suggests that 

while children had, on average, relatively balanced receptive and expressive language skills, 

there were substantial individual differences in the extent to which receptive level differed from 

expressive skill level. Moreover, when categorizing children into discrete language profiles using 

published Ratio Score cut-scores, it became apparent that children with relatively equal 

receptive and expressive language levels were, in fact, in the minority. In contrast, EA profiles 

were the most prevalent in the present sample. Notably, the distribution of language profiles in 

the present sample of children with autism symptoms is remarkably consistent with that reported 

in the toddler-age group of children diagnosed with autism described by Seol et al. (2014), 

which used the same Ratio Score cut-points to create language profile groups. Specifically, they 

report 42.7% of autistic children presented with an Expressive Advantage profile, 30.1% 

presented with a Receptive Advantage profile, and the remaining 27.2% had Balanced profiles. 

The strong prevalence of EA profiles in the present sample is consistent with evidence 

from older children indicating that children with autism may be more likely than children with 

neurotypical development or non-autism developmental delays to show atypically advanced 

expressive language abilities relative what would be expected based on their receptive 

language level (Chawarska et al., 2012; Davidson & Ellis Weismer, 2017; Ellis Weismer et al., 

2010; Hudry et al., 2010; Luyster et al., 2008; Maljaars et al., 2012; McDaniel et al., 2018; 

Reinhartsen et al., 2019; Swanson et al., 2017; Volden et al., 2011).  

Contrary to hypotheses, there was no evidence to suggest receptive-expressive 

language phenotypes – whether defined using Difference Scores, Ratio Scores, or discrete 

language profiles – are linked with chronological age, autism symptom levels, or even cognitive 

ability. This finding is in contrast with previous work suggestive of a decline in receptive-

expressive discrepancy with increasing chronological age (e.g., Davidson & Ellis Weismer, 

2017; Seol et al., 2014, though see Hudry et al., 2010; Kover et al., 2013), and some work 

indicating an association between nonverbal cognitive ability and discrepant language profiles 
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(though notably, the direction of this association varies across studies; Hudry et al., 2010; Nevill 

et al., 2019; Volden et al., 2011). There was also no association between levels of autism 

symptoms and receptive-expressive language discrepancy, which is consistent with some 

research on school-age autistic children (Kover et al., 2013; though see Reinhartsen et al., 

2019) but not with other studies of preschool-age autistic children that report positive 

associations between level of autism symptoms and degree of receptive advantage (Hudry et 

al., 2010). Furthermore, contrary to hypotheses, there was no evidence for an association 

between joint attention skills and receptive-expressive discrepancies. 

It is important to highlight that the present sample represents a population that differs 

from the populations typically sampled from in extant research on receptive-expressive profiles, 

both with respect to chronological age as well as diagnostic status. Here, I report on a sample of 

children who are significantly younger on average (many of whom are younger than 18 months, 

the age at which autism diagnosis is considered reliable; Ozonoff et al., 2015) and who also 

have not yet received a formal autism diagnosis, in part owing to their young age. This may, in 

part, account for discrepant findings. 

Receptive and Expressive Language Growth 

Somewhat consistent with hypotheses, results of longitudinal hierarchical linear growth 

models suggest that early receptive-expressive language phenotype may be a candidate 

marker of risk for poorer language growth. These findings were specific to expressive language, 

such that children who had weaker receptive language skills relative to their own expressive skill 

level (i.e., an expressive advantage) tended to show slower expressive language growth. While 

these findings should be replicated in a larger sample, this preliminary evidence suggests that 

relative weakness in language comprehension may stall growth in language production, 

whereas comprehension-production discrepancy is less important for growth in language 

comprehension. 
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The slowed expressive language growth among children with a relative receptive 

language delay (expressive advantage) is consistent with neurotypical models of language 

development, in which language comprehension skills are said to drive language production 

(Bornstein & Hendricks, 2012). However, the dampening effect of receptive “disadvantage” on 

expressive language growth and lack of significant association between receptive-expressive 

discrepancy and receptive language growth is in contrast with evidence from preverbal 

preschool-age autistic children. Recent studies examining longitudinal associations between 

receptive and expressive vocabulary suggest that links between early expressive vocabulary 

and later receptive vocabulary may be stronger than the association between early receptive 

and later expressive vocabulary, specifically among children with autism (Bottema-Beutel et al., 

2019; Woynaroski et al., 2016). However, it is possible that this discrepancy is a reflection of 

differences in the measures used to index language performance and differences in sample 

characteristics (e.g., in chronological age, autism diagnostic status). For instance, while the 

recent studies reporting atypical associations between early expressive and later receptive 

language examined receptive and productive vocabulary, the present study utilized the Mullen 

receptive and expressive language subscales, which provide a more holistic measure of 

receptive and expressive communication. 

Why might children with an expressive language advantage (or, put otherwise, a 

receptive language disadvantage) show slower expressive language growth? One possibility is 

that difficulties with language comprehension have far-reaching consequences for social 

functioning and communication development. For instance, comprehension delays may interfere 

with children’s ability to engage in meaningful contingent social interactions, which play a crucial 

role in scaffolding language acquisition, particularly among children with autism (Adamson, 

Bakeman, Deckner, & Romski, 2009; Adamson, Bakeman, Suma, & Robins, 2019; Bottema-

Beutel, Lloyd, Watson, & Yoder, 2018; Kuhl, 2011). Difficulties with receptive language may 

emerge as a result of disruptions to neurocognitive mechanisms that support children’s ability to 
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effectively and efficiently process and make meaning of linguistic input in their environment. 

Studies of EL infants suggest that disruptions to mechanisms that underpin adaptive social 

attention are present even before autism symptoms emerge (e.g., Hatch et al., 2021; Jones & 

Klin, 2013; Pierce et al., 2023); thus, early receptive language delays, and dampening of 

expressive language growth, may be a consequence of very early differences in more domain-

general cognitive capacities. This hypothesis is supported by recent work demonstrating that 

levels of attention to a speaker (measured behaviorally) are predictive of receptive-expressive 

vocabulary discrepancy, such that preverbal autistic toddlers and preschoolers who spent more 

time attending to a speaker had more typical receptive-expressive vocabulary discrepancies 

(McDaniel, Yoder, Woynaroski, & Watson, 2018).  In Study 2, I explore this possibility by testing 

whether patterns of functional brain activity are associated with early receptive-expressive 

language phenotypes and language growth, focusing on electroencephalography (EEG) metrics 

known to be associated with cognitive and social skills in infancy and early childhood. 

It is worth noting that the relative disadvantage in language comprehension may also 

manifest later in development in other facets of language functioning among children with 

autism. For instance, on average, children with autism show relative weakness in meaning-

related emergent literacy skills (i.e., comprehension) relative to decoding-related skills 

(Davidson & Ellis Weismer, 2014; Westerveld et al., 2017). Moreover, consistent with the 

elevated prevalence of receptive-expressive oral language discrepancy among children with 

autism, the prevalence of hyperlexia (typically defined as a marked discrepancy in decoding 

skills relative to comprehension and often, very early acquisition of reading skills without explicit 

instruction) is elevated among children with autism relative to those with other 

neurodevelopmental conditions (Grigorenko et al., 2002; Ostrolenk, Forgeot d’Arc, Jelenic, 

Samson, & Mottron, 2017). This is suggestive of continuity between early language profiles and 

language functioning across multiple modalities (e.g., spoken, written) and raises further 
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questions about the extent to which early language profiles are predictive of growth in other 

facets of language functioning. 

Strengths and Limitations 

The results reported in Study 1 should be interpreted in light of several methodological 

considerations. First, it is essential to underscore that this sample includes children who are 

showing clear, elevated symptoms of autism spectrum disorder who have not necessarily met 

clinical diagnostic criteria for autism. This sampling approach was motivated by evidence that 

very young “pre-diagnostic” infants and toddlers later diagnosed with autism show clear delays 

in social communication development well before autism diagnosis is considered reliable and 

stable, and often many years before children receive a comprehensive diagnostic evaluation in 

the community. As such, there is a clear need to develop interventions that can address these 

early vulnerabilities before the time at which diagnostic evaluation may be performed (or 

accessed) in the community clinical setting. Thus, these findings are specific to children 

exhibiting the emerging autism phenotype, who may or may not go on to meet diagnostic 

criteria. While this sampling strategy somewhat limits the generalizability of findings to other 

populations (e.g., elevated likelihood infants, children with community autism diagnoses), there 

are significant benefits to this approach: enrolling pre-diagnostic infants/toddlers with autism 

symptoms provides an opportunity to leverage the remarkable neuroplasticity of this period and 

deliver intervention when the brain may be in an optimal state for learning. Furthermore, this 

largely “pre-diagnostic” infant/toddler sample is likely more reflective of the clinical population 

that community-based providers (e.g., pediatricians, early intervention service providers) 

regularly encounter in their clinical practice. 

Although the Mullen is one of the most frequently used measures of language ability and 

has been used extensively in cross-sectional and longitudinal studies of language development 

in infants, toddlers, and preschoolers with autism (e.g., Anderson et al., 2007; Bono, Daley, & 

Sigman, 2004; Bruyneel, Demurie, Zink, Warreyn, & Roeyers, 2019; Fusaroli, Weed, Fein, & 
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Naigles, 2019; Iverson et al., 2018; Lebarton & Iverson, 2013; Longard et al., 2017; Mitchell et 

al., 2006; Swanson et al., 2017; Toth et al., 2007), it provides a more “holistic” assay of 

communication ability and thus may fail to capture important nuances that naturalistic language 

samples, for example, may capture. However, given the sample age and anticipated rate of 

language delays, a more holistic measure of receptive and expressive communication ability 

(i.e., measuring preverbal and verbal skills) may be more meaningful in this population than a 

measure of vocabulary, for example. The fact that the Mullen is clinician-administered is also a 

strength, given parent-report measures of language abilities (e.g., Vineland, MCDI) may provide 

biased estimates of language skills. Examining receptive-expressive discrepancies using 

alternative standardized and/or naturalistic measures of language competence may be highly 

informative. 

Statistical power is rarely addressed in studies of brain and behavioral development 

among infants with or at elevated likelihood of autism, despite the fact that small sample sizes 

have long been a limitation in the field. The present study of N = 70 children was powered to 

detect moderate effects for correlational analyses and moderate-to-large effects for omnibus 

comparisons across categorical language profile groups. Thus, it’s possible that the present 

study lacks sufficient statistical power to detect associations or group differences that were 

smaller in magnitude.  

As previously discussed, the present sample size, coupled with a relatively sparse 

sampling of language abilities over the 12-month measurement period, were also limitations to 

longitudinal analyses of language growth. Increasing the number of measurement occasions 

would provide a means to examine possible curvilinear (e.g., quadratic) trajectories and also 

would allow for modeling of discontinuous trajectories (for instance, using separate slope 

parameters to estimate growth during the intervention period and after the withdrawal of 

intervention). Further, future work with larger sampled sizes and more densely sampled 

observations of language abilities would allow us to test whether receptive-expressive language 
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phenotypes are predictive of language growth, above and beyond the effects of other child-level 

characteristics, and whether receptive-expressive language profile moderates the effect of a 

social communication-focused intervention on child social, cognitive, and language outcomes. 

Conclusions 

This study provides evidence in support of an increased prevalence of atypical 

receptive-expressive language profiles among young children showing early behavioral signs of 

autism. While previous research in older autistic children has provided evidence to suggest that 

receptive-expressive phenotype may be associated with other demographic or behavioral 

characteristics, no such associations were identified in this sample of symptomatic infants and 

toddlers. However, exploratory longitudinal analyses indicate that initial receptive-expressive 

language phenotype, measured in terms of categorical language profiles or dimensionally, were 

predictive of expressive language growth, such that children with an atypical expressive 

language advantage were predicted to show slower language growth. These findings suggest 

that measures of early receptive-expressive language phenotypes may serve as clinically 

meaningful markers of increased risk for stalled language growth over the second and third 

years of life.   
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Table 1.6. Receptive Language Unconditional Means and Unconditional Growth Models 

 Model 0 
Unconditional Means  Model 1 

Unconditional Growth 
Fixed Effects Est. SE t df p  Est. SE t df p 
Initial Status            
Intercept, 𝛾!! 15.85 .80 68.50 19.93 <.001  11.14 0.62 69.36 17.86 <.001 
Linear Growth            
Time, 𝛾"!       1.17 0.08 42.65 14.67 <.001 
           
           
Variance Est. SE z p   Est. SE z p  
Level-1, 𝜎#$ 68.20 9.51 7.17 <.001   12.16 2.36 5.16 <.001  
Intercept 𝜎!$ 14.65 8.04 1.82 .034   18.69 4.89 3.82 <.001  
Slope, 𝜎"$       0.14 0.07 2.05 .020  
Correlation, 𝜌!"       0.35 0.29 1.20 .115  
            
Goodness-of-Fit           
-2 LL 1207.63     1032.71     
AIC 1213.63     1044.71     
Note. Results of hierarchical linear growth modeling for receptive language age equivalent scores, with estimates of 
fixed effects, random effects, and goodness-of-fit indices -2LL = -2 Log Likelihood; AIC = Akaike information 
criterion. 
 
 
 
Table 1.7. Expressive Language Unconditional Means and Unconditional Growth Models 

 Model 0 
Unconditional Means  Model 1 

Unconditional Growth 
Fixed Effects Est. SE t df p  Est. SE t df p 
Initial Status            
Intercept, 𝛾!! 15.23 0.71 65.60 21.50 <.001  10.62 0.52 69.40 20.43 <.001 
Linear Growth            
Time, 𝛾"!       1.10 0.08 48.86 13.35 <.001 
           
           
Variance Est. SE z p   Est. SE z p  
Level-1, 𝜎#$ 62.68 8.80 7.12 <.001   7.81 1.49 5.26 <.001  
Intercept 𝜎!$ 8.22 6.72 1.22 .110   13.38 3.37 3.97 <.001  
Slope, 𝜎"$       0.21 0.06 3.25 .001  
Correlation, 𝜌!"       0.27 0.22 1.23 .220  
            
Goodness-of-Fit           
-2 LL 1183.84     986.93    
AIC 1189.84     998.93    
Note. Results of hierarchical linear growth modeling for expressive language age equivalent scores, with estimates 
of fixed effects, random effects, and goodness-of-fit indices -2LL = -2 Log Likelihood; AIC = Akaike information 
criterion. 
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Table 1.8. Parameter Estimates for Models Predicting Language Growth from T1 Language 
Profile (Model 2) 
Receptive Language       
Fixed Effects Est. SE df t p 95% CI 
Initial Status       
Intercept, 𝛾!! 12.91 0.75 70.17 17.25 <.001 [11.42, 14.41] 
Profile, 𝛾!" -4.22 1.16 68.54 -3.65 <.001 [-6.52, -1.91] 
Linear Growth       
Time, 𝛾"! 1.20 0.11 41.94 11.11 <.001 [0.98, 1.42] 
Time*Profile,  𝛾"" -0.05 0.16 42.69 -0.33 .745 [-0.38, 0.27] 
       
Goodness-of-Fit       
-2 LL 1020.13      
AIC 1036.13      
       
Expressive Language       
Fixed Effects Est. SE df t p 95% CI 
Initial Status       
Intercept, 𝛾!! 10.17 0.68 70.42 14.99 <.001 [8.81, 11.52] 
Profile, 𝛾!" 1.09 1.05 69.12 1.04 .300 [-1, 3.19] 
Linear Growth       
Time, 𝛾"! 1.29 0.10 46.28 12.50 <.001 [1.08, 1.49] 
Time*Profile,  𝛾"" -0.41 0.15 47.21 -2.71 .009 [-0.72, -0.11] 
       
Goodness-of-Fit       
-2 LL 979.46      
AIC 995.46      
Notes. Profile refers to receptive-expressive language profile at T1 (0 = RA or Balanced, 1 = EA). Time 
was parameterized as months since T1, thus, estimates of initial status are estimates of language scores 
at T1.  -2 LL = -2 Log Likelihood; AIC = Akaike information criterion; EA = expressive advantage; RA = 
receptive advantage. 
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Table 1.9. Parameter Estimates for Models Predicting Language Growth from T1 Language 
Profile, Controlling for Intervention Assignment (Model 3) 
Receptive Language      
Fixed Effects Est. SE df t p 95% CI 
Initial Status       
Intercept, 𝛾!! 14.34 0.91 70.25 15.71 <.001 [12.52, 16.16] 
Profile, 𝛾!" -4.14 1.10 67.39 -3.75 <.001 [-6.34, -1.94] 
Tx, 𝛾!$ -2.73 1.09 68.06 -2.50 .015 [-4.9, -0.55] 
Linear Growth       
Time, 𝛾"! 1.19 0.13 40.69 9.27 <.001 [0.93, 1.45] 
Time*Profile,  𝛾"" -0.06 0.16 42.53 -0.35 .725 [-0.38, 0.27] 
Time*Tx, 𝛾"$ 0.02 0.16 42.56 0.15 .878 [-0.3, 0.35] 
       
Goodness-of-Fit       
-2 LL 1014.18      
AIC 1034.18      
       
Expressive Language      
Fixed Effects Est. SE df t p 95% CI 
Initial Status       
Intercept, 𝛾!! 11.39 0.83 70.67 13.69 <.001 [9.73, 13.05] 
Profile, 𝛾!" 1.16 1.01 68.48 1.15 .254 [-0.85, 3.17] 
Tx, 𝛾!$ -2.31 1.00 69.03 -2.32 .023 [-4.3, -0.32] 
Linear Growth       
Time, 𝛾"! 1.39 0.12 44.20 11.58 <.001 [1.15, 1.64] 
Time*Profile,  𝛾"" -0.42 0.15 46.74 -2.79 .008 [-0.72, -0.12] 
Time*Tx, 𝛾"$ -0.20 0.15 46.84 -1.34 .186 [-0.5, 0.10] 
       
Goodness-of Fit       
-2 LL 972.11      
AIC 992.11      
Note. Profile refers to receptive-expressive language profile at T1 (0 = RA or Balanced, 1 = EA). Tx refers 
to intervention assignment (1 = Baby JASPER, 0 = Standard Baby). Time was parameterized as months 
since T1, thus, estimates of initial status are estimates of language scores at T1.  -2 LL = -2 Log 
Likelihood; AIC = Akaike information criterion; EA = expressive advantage; RA = receptive advantage. 
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Table 1.10. Parameter Estimates for Models Predicting Language Growth from T1 Difference 
Scores, Controlling for Intervention Assignment 
Receptive Language      
 Est. SE df t p 95% CI 
Initial Status       
Intercept, 𝛾!! 12.18 0.77 69.68 15.87 <.001 [10.65, 13.71] 
Difference Score, 𝛾!" 0.68 0.14 70.64 4.80 <.001 [0.4, 0.96] 
Tx, 𝛾!$ -2.27 1.05 69.20 -2.17 .034 [-4.37, -0.18] 
Linear Growth       
Time, 𝛾"! 1.17 0.11 42.29 10.53 <.001 [0.95, 1.4] 
Time*Difference Score,  𝛾"" -0.02 0.02 44.27 -0.86 .397 [-0.06, 0.03] 
Time*Tx, 𝛾"$ 0.02 0.16 43.11 0.09 .925 [-0.31, 0.34] 
       
Goodness-of-Fit       
-2 LL 1007.17      
AIC 1027.17      
       
Expressive Language      
 Est. SE df t p 95% CI 
Initial Status       
Intercept, 𝛾!! 12.09 0.71 69.05 16.94 <.001 [10.67, 13.52] 
Difference Score, 𝛾!" -0.31 0.13 69.92 -2.32 .023 [-0.57, -0.04] 
Tx, 𝛾!$ -2.53 0.98 68.72 -2.59 .012 [-4.48, -0.58] 
Linear Growth       
Time, 𝛾"! 1.15 0.10 46.03 10.98 <.001 [0.94, 1.36] 
Time*Difference Score,  𝛾"" 0.06 0.02 48.81 2.69 .010 [0.01, 0.1] 
Time*Tx, 𝛾"$ -0.14 0.15 47.41 -.92 .363 [-0.45, 0.17] 
       
Goodness-of-Fit       
-2 LL 969.13     [10.65, 13.71] 
AIC 989.13     [0.4, 0.96] 
Note. Difference Score refers to receptive-expressive language discrepancy score computed at T1 using 
Mullen age equivalent scores. Time was parameterized as months since T1, thus, estimates of initial status 
are estimates of language scores at T1.  -2 LL = -2 Log Likelihood; AIC = Akaike information criterion. 
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Appendix 

Table S1.1. Descriptive Statistics for T1 Variables by Number of Timepoints Completed 
 
 
Variable 

Completed 
Three Visits 

n = 38 

Completed 
Two Visits 

n = 21 

Completed 
One Visit 

n = 11 
 

 N (%) N (%) N (%) p 
Sex at birth = female 9 (27.3%) 3 (14.3%) 2 (18.2%) .73 
≥ 1 autistic sibling 13 (36.1%) 5 (25.0%) 1 (9.1%) .76 
≥ 1 parent completed college 33 (89.2%) 15 (78.9%) 8 (72.7%) .23 
Income > $100k 21 (58.3%) 10 (52.6%) 3 (37.5%) .77 
 M (SD) M (SD) M (SD) p 
T1 Chronological age, months 18.13 (2.68) 17.9 (3.06) 18.18 (3.68) .95 
T1 Receptive Language AE 11.32 (5.49) 9.86 (5.63) 9.36 (2.66) .42 
T1 Expressive Language AE 10.92 (4.38) 10.57 (4.51) 7.45 (2.58) .06 
T1 NVMA (Visual Reception AE) 15.58 (3.92) 13.71 (3.96) 13.36 (3.41) .11 
T1 ADOS-2 Total 17.39 (4.73) 18.29 (4.89) 18.91 (4.57) .59 
Note. Family history of autism, parental educational attainment, and income were derived from a demographic 
questionnaire completed at T1. ADOS-2 = Autism Diagnostic Observation Schedule, Second Edition; AE = age 
equivalent score; NVMA = nonverbal mental age. 
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Figure S1.1. Chronological age at study visit stratified by participant (N = 70). 
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Figure S1.2. Distribution of Difference Scores, Ratio Scores, and language profiles by race and 
ethnicity. 
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STUDY 2 

Neural Mechanisms Supporting Language Development in Infants and Toddlers with 

Autism Symptoms  

Abstract 

Increasing evidence suggests that early differences in functional brain development 

precede the emergence of autism behavioral features and other autism-associated 

developmental differences in early toddlerhood. As such, there is intense interest in identifying 

brain-based markers that can, in isolation or conjunction with other clinical markers, facilitate 

early identification of infants and toddlers at the highest risk of experiencing early language 

delays who may benefit from targeted early intervention.  

Motivated by this gap, Study 2 builds on findings from Study 1 by testing whether 

patterns of spontaneous oscillatory power measured at baseline (T1) are associated with (1) 

concurrent receptive-expressive language phenotypes and (2) longitudinal growth in receptive 

and expressive language abilities among N = 70 infants and toddlers aged 12- to 23-months 

with autism symptoms. Data-driven analyses revealed significant associations between 

spontaneous theta (3-6 Hz) power and concurrent receptive-expressive language phenotypes, 

and robust, positive associations between spontaneous alpha power (6-9 Hz) measured at 

baseline (T1) and receptive and expressive language growth. These findings are particularly 

striking, given that Studies 1 and 2 found little evidence for associations between baseline 

(T1) behavioral predictors of receptive-expressive phenotypes and language growth. This study 

is a critical step toward understanding neural mechanisms driving typical and atypical language 

development in emerging autism and developing early markers to identify children who may 

benefit the most from interventions targeting spoken communication.  
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Neural Mechanisms Supporting Language Development in Infants and Toddlers with 

Autism Symptoms  

Language delays are highly prevalent among infants and toddlers with autism or children 

with an elevated familial likelihood of autism (EL; Belteki, Lumbreras, Fico, Haman, & Junge, 

2022; Marrus et al., 2018). Disruptions to language development are apparent as early as 12 

months among infants later diagnosed with autism (Bussu et al., 2019; Franchini et al., 2018; 

Ozonoff et al., 2010), and children with autism often lag behind non-autistic peers in the 

acquisition of key language milestones, like first words (Kover, Edmunds, & Ellis Weismer, 

2016). These early social differences are highly consequential for longer-term developmental 

outcomes in autism, as language abilities in toddlerhood are a robust predictor of long-term 

functioning and behavioral outcomes (Bal, Kim, Cheong, & Lord, 2015; Gillespie-Lynch et al., 

2012; Gotham, Pickles, & Lord, 2012). 

As language differences are often apparent before the age at which an autism diagnosis 

is made, there is intense interest in identifying behavioral and biological factors that contribute to 

between- and within-individual heterogeneity in early language abilities. The emergence of 

spoken language over the first and second years of life coincides with dynamic changes in 

structural and functional networks that support information processing capacities essential for 

social communication and spoken language. Understanding these neural network changes in 

autism could provide valuable mechanistic insight into the neural origins of language differences 

in autism and help identify objective prognostic markers. 

Electroencephalographic (EEG) Markers of Autism in Infancy  

EEG is a well-established, noninvasive technique that has been extensively used in 

infant research and is both scalable and highly sensitive to early developmental changes in 

functional circuitry. Noninvasive electroencephalography (EEG) has been invaluable in shaping 

our understanding of typical and atypical neurodevelopment across the lifespan and neural 

underpinnings of various cognitive, social, and behavioral operations and capacities. 
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Spontaneous or "resting state" EEG captures brain dynamics in the absence of overt tasks or 

cognitive demands by measuring electrical activity produced by populations of neurons in the 

cortex. These brain rhythms, or neural oscillations, refer to rhythmic fluctuations in the 

excitability of populations of neurons. At the most basic level, neural oscillations arise from shifts 

in excitatory-inhibitory states within populations of neurons (Buzsáki, 2011). EEG measures 

these electrical fields generated by neural populations through electrodes placed directly on the 

scalp. Whereas other neuroimaging methods offer an indirect index of neural activity by 

measuring peripheral processes associated with neural events (e.g., hemodynamic response, 

as in fMRI), EEG measures neural activity more directly and offers superior temporal resolution 

to methods like fMRI. Whereas task-based EEG studies provide valuable insight into 

mechanisms underpinning the processing of linguistic stimuli, for example, spontaneous EEG 

provides important insight into the intrinsic functional architecture of the developing brain that 

subserves the emergence of increasingly complex cognitive, social, and behavioral capacities 

across the first years of life (Anderson & Perone, 2018). The desirable psychometric properties 

of specific EEG metrics derived resting state EEG, including excellent test-retest reliability in 

infants and children (Levin et al., 2020; van der Velde, Haartsen, & Kemner, 2019), make it 

particularly well-suited for studies aimed at understanding individual differences or developing 

reliable, reproducible prognostic or predictive biomarkers. 

Across the first years of life, patterns of brain activity measured via EEG undergo 

dramatic reorganization, reflecting the maturation of underlying cortical structure and refinement 

of neural circuitry. This reorganization is characterized by a shift in the distribution of spectral 

power from lower frequencies (below 6 Hz) towards higher frequencies (Marshall, Bar-Haim, & 

Fox, 2002), a change that unfolds alongside the emergence of major social and communication 

milestones (Anderson & Perone, 2018; Saby & Marshall, 2012). Increasing evidence from 

studies using EEG suggests infants with familial or genetic risk of autism show alterations in 

brain development early in the first year of life, even though overt behavioral signs of autism are 
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not evident until after 12 months. These studies have provided critical insight into emerging 

functional brain differences in autism (that is, brain markers associated with autism as a 

categorical diagnosis) and insight into heterogeneity in cognitive and behavioral 

development within the diagnostic category of autism.  

Oscillatory activity within specific frequency bands (e.g., alpha, theta) or across the 

frequency spectrum has been studied extensively in children and adults with autism. For 

instance, evidence suggests autism is associated with a pattern of excessive power 

concentrated in lower frequency bands (e.g., delta, theta bands), an overall reduction in 

absolute and relative alpha power (typically defined as 6-12 Hz in adults, or 6-9 Hz among 

infants), differences in the spatial distribution of spectral power (i.e., hemispheric asymmetry), 

and reduced long-range coherence patterns, possibly coupled with enhanced short-range 

coherence (Wang et al., 2013). 

In infancy, alterations in spectral power and the rate of developmental change thereof 

are evident among EL infants, often regardless of whether they develop autism in toddlerhood. 

Tierney et al. (2012) examined developmental trajectories of frontal spectral power (absolute 

power in delta, theta, alpha, beta, and gamma bands) among EL infants from 6 to 24 months of 

age. They reported that EL infants displayed lower frontal power across all bands at six months 

and showed marked differences in trajectories of change in frontal power across the first two 

years relative to infants without a family history of autism (low familial likelihood of autism, LL). 

In a more extensive study of EL and LL infants, including 61 later diagnosed with autism, 

(Huberty et al., 2021) also found EL infants have significantly lower absolute power at three 

months across all frequency bands and significantly steeper increase in absolute power from 3 - 

36 months relative to LL infants. However, initial spectral power and developmental change in 

power were not associated with autism diagnostic outcome specifically, suggesting the effect of 

autism itself did not lead to alterations in brain development above and beyond the effect of 

familial genetic liability for autism. 
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Similarly, Levin et al. (2017) examined associations between resting frontal power at 

three months and later diagnostic and developmental outcomes among EL and LL infants. 

Again, diagnostic effects on spectral power were not observed. However, Dickinson et al. (2020) 

observed significant correlations between patterns of functional connectivity at three months 

(specifically, lower frontal connectivity and higher right temporoparietal connectivity) and 

elevated autism symptom severity at 18 months among EL and LL infants, suggesting that 

dimensional outcomes (rather than categorical, diagnostic outcomes) may be more valuable in 

shedding light on brain-behavior associations. The presence of increased right temporoparietal 

connectivity among infants with elevated autism symptoms later in toddlerhood is noteworthy, 

particularly given the importance of this region for social cognition (Adolphs, 2008) and evidence 

for hypoconnectivity later in toddlerhood (Dickinson, DiStefano, Lin, et al., 2018). While 

seemingly paradoxical, these findings fit well with the "developmental delay versus deviance" 

phenomenon discussed at length in the context of cognitive and behavioral development in 

autism (e.g., Baron-Cohen, 1991; Bartak et al., 1975) and the ontogenetic adaptation 

hypothesis previously discussed. That is, brain development in autism may be characterized by 

both slower and faster developmental timescales, where some aspects of structural/functional 

development emerge later or more slowly in autism, and others unfold earlier or on a faster 

timescale. These altered timescales, in turn, influence what infants are prepared to "learn" from 

their environment, thereby shaping subsequent cognitive and behavioral development.  

EEG Predictors of Early Language Development in Autism 

Significant developmental changes in the distribution of spectral power (e.g., maturation-

related increase in the contribution of higher-frequency oscillations to the infant/toddler EEG 

power spectrum) coincide with sensitive periods for language acquisition across the first three 

years of life. For instance, the dominance of slow-frequency activity during the first six months 

may serve an adaptive purpose for language acquisition, ensuring the infant brain is well-

equipped to process the temporal and acoustical properties of language input during this period 
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(i.e., infant-directed speech; Goswami, 2019; Menn et al., 2022). In turn, the emergence of 

faster oscillations towards the end of the first year is thought to support more complex 

processing capacities necessary for acquiring language and developing "expertise" in one's 

native language (Menn, Mannel, & Meyer, 2023; Ortiz-Mantilla, Hämäläinen, Realpe-Bonilla, & 

Benasich, 2016). Alterations in electrophysiological development associated with genetic risk of 

autism (Wang et al., 2013) may play a role in shaping language development in autism. 

Evidence from prospective studies of EL infant siblings suggests activity within the alpha 

(Huberty et al., 2023; Levin et al., 2017; Tran et al., 2021), theta (Wilkinson et al., 2020), and 

gamma (Romeo et al., 2021; Wilkinson et al., 2019; Wilkinson et al., 2020) frequency bands are 

linked with concurrent or later expressive language skills in infancy and toddlerhood. For 

instance, converging evidence across unique samples suggests that absolute power (Huberty et 

al., 2023; Levin et al., 2017) and functional connectivity (Tran et al., 2021) within the alpha band 

during the first six months of life are predictive of both concurrent (Huberty et al., 2023) and later 

expressive language skills in toddlerhood (Levin et al., 2017; Tran et al., 2021) among EL 

infants. The association between gamma (30-50 Hz) activity and language abilities varies as a 

function of chronological age and autism diagnostic status. In overlapping samples of EL and LL 

infants, Wilkinson et al. (2020) and Romeo et al. (2021) report that reduced gamma power at six 

months or 24 months, respectively, predict stronger 24-month expressive language skills among 

EL autistic infants but not among non-autistic infants. In contrast, reduced gamma power at six 

months is associated with poorer 24-month expressive language abilities among non-autistic 

infants, suggesting neural mechanisms underpinning expressive language development may be 

altered in autism even before symptoms or language delays become apparent.  

The neural mechanisms supporting receptive language development in EL infants and 

children with autism are less clear, particularly given that many studies reporting significant 

associations between oscillatory power and expressive language abilities failed to detect similar 

associations with receptive language. However, evidence from task-based event-related 
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potential (ERP) paradigms suggests that neural mechanisms underpinning infants' processing 

of social stimuli (e.g., faces; Glauser et al., 2022) and familiar linguistic stimuli (e.g., Kuhl et al., 

2013) may also be linked with receptive language development in autism specifically. Further, 

other EEG/ERP evidence suggests that more domain-general processes indexing cortical 

excitation/inhibition regulation (e.g., neural response to stimulus repetition) may play a role in 

receptive language development (Kolesnik et al., 2019). Specifically, autistic and non-autistic 8-

month-olds who show higher levels of cortical "reactivity" to repeated tones (suggestive of a 

failure to suppress neural response to repeated stimuli) show slower rates of receptive language 

growth from 8 to 36 months of age. Together, these findings suggest that receptive language 

development may rely on alternative neural mechanisms in autism (e.g., Glauser et al., 2022), 

perhaps due to broader disruptions to excitatory/inhibitory regulation and experience-dependent 

brain development. These broader domain-general neurodevelopmental disruptions may, for 

example, disrupt autistic infants' ability to detect regularities (repetition) in continuous speech, 

leading to the recruitment of alternative neural mechanisms and alterations in language 

development. However, it remains unclear whether features of spontaneous EEG activity, which 

provides a window into the brain's intrinsic functional architecture, are also linked with receptive 

language development. It is worth emphasizing that few studies have examined neurobiological 

predictors of language growth throughout development or language change in response to 

intervention among young children with autism symptoms, instead predicting language 

outcomes at a fixed timepoint. 

Brain-Behavior Phenotypes in Infants and Toddlers with Autism Symptoms 

Studies using resting-state EEG to identify brain-behavior associations among infants 

and toddlers with or at elevated likelihood of autism often select and define a region of interest 

(ROI) a priori. For example, studies examining EEG correlates of cognitive and language 

abilities among infants with or at genetic risk of autism often focus on spectral power in a given 

frequency band (e.g., alpha, 6-9 Hz or gamma, 30-50 Hz) within the frontal region (typically 
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defined as averaged power values across specific electrodes; e.g., F3 and F4 or F3, Fz, and F4; 

Carter Leno et al., 2021; Dickinson et al., 2019; Huberty et al., 2021, 2023; Levin et al., 2017; 

Pierce, Reilly, & Nelson, 2021; Tierney et al., 2012; Tran et al., 2021). This approach is 

attractive in that it allows for hypothesis-driven analyses and mitigates massive Type I error 

inflation that would arise from conducting hypothesis tests for each channel (and the substantial 

loss of statistical power that comes with the implementation of traditional techniques for 

controlling error rate, such as Bonferroni correction). However, averaging across a select set of 

sensors comes at the cost of losing potentially valuable insight into the spatial distribution of 

brain-behavior associations or failing to detect significant, meaningful associations altogether. 

This possibility is particularly relevant when studying brain-behavior development in the first 

years of life, when the neural mechanisms subserving newly emerging social cognitive or 

behavioral capacities, like language, may initially rely on alternative neural mechanisms than 

those identified in older populations (Friederici, Brauer, & Lohmann, 2011; van der Velde, White, 

& Kemner, 2021), or recruit multiple regions or distributed networks. Moreover, there is 

evidence from studies using EEG-based metrics (e.g., Dickinson, DiStefano, Lin, et al., 2018; 

Glauser et al., 2022; Lauttia et al., 2019; Nyström, Jones, Darki, Bölte, & Falck-Ytter, 2021; 

Wilkinson et al., 2020; Wilkinson, Levin, Gabard-Durnam, Tager-Flusberg, & Nelson, 2019) as 

well as structural and functional neuroimaging (e.g., Nair et al., 2021; Swanson et al., 2017) that 

infants and children with or at elevated familial likelihood of autism display distinct brain-

behavior "phenotypes" from those who are developing typically or have a typical genetic risk of 

autism, suggesting that selecting regions of interest based on extant data from neurotypical or 

other clinical populations may be inappropriate. For these reasons, statistical approaches that 

provide a means to maintain a nominal Type I error rate without substantially reducing the 

dimensionality of resting state data (and thereby potentially missing meaningful and 

unanticipated effects) are particularly desirable (Buzzell, Morales, Valadez, Hunnius, & Fox, 

2023; Meyer, Lamers, Kayhan, Hunnius, & Oostenveld, 2021).  
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The Present Study 

Despite the importance of early language skills in neurotypical development and autism, 

we know little about the neural and behavioral mechanisms that may explain the remarkable 

variability in language outcomes and language trajectories in autism. Moreover, studies 

addressing these gaps in community-referred samples of young children with autism symptoms 

are relatively rare, as are studies employing EEG methods to shed light on developmental 

heterogeneity among children exhibiting the emerging autism phenotype. 

Study 2 addresses these gaps by examining EEG correlates of early receptive-

expressive language phenotypes and trajectories of language growth in a community-referred 

sample of infants and toddlers showing early signs of autism. Using a data-driven cluster-based 

permutation testing approach, Study 2 aimed to identify patterns of spontaneous (resting-state) 

EEG activity most strongly associated with (1) concurrent receptive-expressive language 

phenotypes and (2) developmental change in receptive and expressive language abilities within 

a population of "pre-diagnostic" infants and toddlers with autism symptoms. Theta (3-6 Hz) and 

alpha (6-9 Hz) oscillations are thought to play a critical role in the emergence of social and 

cognitive capacities during the second year of life (Henderson et al., 2002; Mundy et al., 2000; 

Mundy, Fox, & Card, 2003; Paulus, Kühn-Popp, Licata, Sodian, & Meinhardt, 2013; Perone & 

Gartstein, 2019; Smith & Bell, 2010) and are linked with structural and functional integrity of the 

developing brain (Valdés-Hernández et al., 2010). Motivated by our lab's recent findings 

indicating links between alpha power and concurrent language abilities in this sample of infants 

and toddlers (Cohenour, Dickinson, Jeste, Gulsrud, & Kasari; under review), Study 2 focuses 

specifically on spontaneous oscillatory power in the theta and alpha frequency bands. 

Study Aims 

Aim 1: Using a data-driven analytic approach, identify patterns of spontaneous (resting state) 

EEG activity significantly associated with concurrent receptive-expressive language 

discrepancy/profiles at baseline (T1). 
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Hypothesis 1: Measures of receptive-expressive language discrepancy will be significantly 

associated with concurrent spontaneous EEG power.  

Aim 2: Using a data-driven analytic approach, identify patterns of spontaneous (resting state) 

EEG activity significantly associated with individual differences in receptive and expressive 

language growth across 12 months. 

Hypothesis 2: Individual differences in receptive and expressive language growth will be 

significantly associated with levels of spontaneous alpha power measured at T1.  

Method 

Participants  

Study 2 includes the same longitudinal sample participants described in Study 1 

(see Participants on p. 22). Briefly, 80 children were deemed eligible for participation in the 

larger intervention study by virtue of having elevated scores on the Autism Diagnostic 

Observation Schedule, Second Edition (ADOS-2), autism concerns from a study clinician, and 

no known co-occurring neurological, genetic, physical, or sensory impairments. Of the 80 

eligible children, N = 70 (87.5%) consented to EEG and provided usable data. Participant 

characteristics are summarized in Table 1.1 (see p. 24). 

Intervention 

An independent statistical group was responsible for randomizing eligible participants to 

either the Baby JASPER group (experimental treatment) or Standard Baby group (active 

control) as part of the larger intervention study. These interventions are described in Study 1 

(see Interventions on p. 24). Both interventions are manualized and equivalent in contact and 

intensity. 

Behavioral Measures  

Data from assessments and questionnaires administered at T1 (baseline), T2 (exit; 

approximately two months after T1 at the end of the active intervention period), and T3 (follow-

up; approximately 12 months after T1) were used to map trajectories of receptive and 
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expressive language growth. Complete descriptions of behavioral measures are provided in 

Study 1 (see Behavioral Measures, p. 25). 

As described in Study 1, receptive and expressive age equivalent (AE) scores from the 

Mullen Scales of Early Learning (Mullen; Mullen 1996) were used to characterize receptive and 

expressive language development across 12 months. Language was assessed at T1, T2, and 

T3. 

EEG Acquisition 

Continuous task-free (i.e., spontaneous) EEG data were acquired during the T1 visit for 

a minimum of two minutes while children were held on a caregiver's lap in a dimly lit and sound-

attenuated room. An unseen research assistant blew bubbles if the child became fussy during 

the recording, consistent with spontaneous EEG recording protocols employed in studies of 

infant and pediatric populations (Levin et al., 2017). Recordings were continued beyond two 

minutes (120 seconds) if the child remained calm to increase the likelihood that all participants 

would have sufficient usable data after removing noisy segments and artifacts (recording 

duration range: 122.83 to 452.77 seconds). Data were recorded using a 128-channel Hydrocel 

Geodesic Sensor Net (Electrical Geodesics, Inc.; Eugene, Oregon) and Net Amps 300 

(Electrical Geodesics, Inc.) amplifier. Data were sampled at 500 Hz and recorded using Net 

Station 4.4.5 software, filtered online with a bandpass of 0.1 to 100 Hz, and referenced to the 

vertex (Cz). Electrode impedances were kept below 100 KΩ.  

EEG Processing 

Data processing was performed offline using the EEGLAB toolbox (Delorme & Makeig, 

2004) and in-house MATLAB scripts. EEG data were high-pass filtered to remove frequencies 

below 1 Hz and low-pass filtered to remove frequencies above 50 Hz using a finite impulse 

response filter. Continuous data were then visually inspected, and noisy channels and sections 

with excessive noise or nonstereotyped artifacts were removed. Following the manual removal 

of noisy channels, data were cleaned using artifact subspace reconstruction (ASR), a principal 
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component analysis-based statistical technique that uses artifact-free reference data to identify 

and remove high amplitude artifacts exceeding a predetermined threshold (Chang, Hsu, Pion-

Tonachini, & Jung, 2018). ASR was implemented in EEGLAB with default parameters and a 

rejection threshold of k=8. Clean data were then interpolated to the international 10-20 system 

25-channel montage (Jasper, 1958) using the EEGLAB interp_mont function and decomposed 

into maximally independent components (ICs) using independent components analysis (ICA; 

Onton, Westerfield, Townsend, & Makeig, 2006). ICA is a blind source separation method that 

decomposes EEG signals into their maximally independent components, allowing for the 

removal of stereotyped artifacts representing non-neural activity (e.g., electrooculogram, 

electromyogram, and line noise). After decomposing the data using ICA, the iclabel function was 

used to automatically classify ICs into distinct categories, thus aiding the detection and removal 

of ICs representing non-neural sources. Specifically, any ICs with a majority probability of 

arising from non-neural sources (i.e., ICs with <50% probability brain) were removed from the 

data. As EEG recordings acquired from infant and toddler populations are often limited in 

duration, combining ASR and ICA is an effective and efficient approach to remove artifacts from 

pediatric datasets while retaining the coinciding neural signal (e.g., Dickinson et al., 2021; Tran 

et al., 2021). 

Data preprocessing procedures resulted in the removal of 20.97 channels on average 

(SD = 6.48). The minimum amount of artifact-free data available across participants was 99.57 

seconds (mean = 179.44, SD = 64.75). 

Oscillatory Power 

EEG data were exported to FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2010) for 

the computation of spectral power. Multi-tapered Fast Fourier Transformation was implemented 

using the FieldTrip function ft_freqanalysis (1,000 sample Hanning windows with 50% overlap), 

yielding power spectral density estimates with 0.5 Hz frequency resolution for each channel.  
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A permutation procedure was employed to ensure that an equivalent amount of data 

underwent power analysis for each participant, thus ensuring power estimates were not 

impacted by variability in file length across participants. A total of 30 two-second epochs (60 

seconds) of resting-state data were randomly selected for each participant and underwent 

power analysis (Xie, Toll, & Nelson, 2022). This procedure was repeated 1,000 times for each 

participant, with the power spectra calculated as the average across the permutations. This 

rigorous approach guaranteed that the power calculations were derived from a consistent 

amount of data for each participant, with the continuity of data within epochs maintained 

throughout the process. 

Absolute power was calculated by summing power estimates within each frequency 

band (i.e., theta, 3-6 Hz; alpha, 6-9 Hz) at 0.5 Hz frequency resolution. Absolute power spectra 

values were converted into relative power by dividing them by the sum of the total spectrum (1-

50 Hz), thus reflecting the proportion of total spectral power accounted for by each frequency 

bin. Relative power, which essentially corrects for total power, was used for analyses given 

differences in non-neural anatomical factors (e.g., skull thickness) are known to influence 

absolute power values (Benninger, Matthis, & Scheffner, 1984), and relative power values are 

more sensitive to developmental changes in frequency composition across early development 

(Clarke, Barry, McCarthy, & Selikowitz, 2001; Marshall et al., 2002). 

Given the established associations between social-cognitive development in infancy and 

toddlerhood and oscillatory activity in the theta (3-6 Hz) and alpha (6-9 Hz) bands (Anderson & 

Perone, 2018), and our recent work identifying concurrent associations between alpha activity 

and language ability (Cohenour et al., under review), analyses focused on spontaneous power 

within these frequency bands.  

Analysis Strategy 

Overview of Cluster-Based Permutation Testing of Task-Free EEG Data 
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Cluster-based permutation testing is a nonparametric approach that leverages the 

inherent clustered structure of high-dimensional EEG data to simultaneously maintain a nominal 

Type I error rate without a dramatic loss of statistical power while preserving dimensionality (for 

instance, spatial dimensionality) of the EEG data (Maris & Oostenveld, 2007). These 

approaches to analyzing neural data have a long history of use in neuroimaging (e.g., Bullmore, 

1999) and adult EEG, though they have been used less frequently in infant and developmental 

EEG studies until more recently (e.g., Çetinçelik, Rowland, & Snijders, 2023; Garcés et al., 

2022; Maguire & Schneider, 2019; Marriott Haresign et al., 2023; Phillips et al., 2023; Shephard 

et al., 2019; Wass et al., 2018).  

Cluster-based permutation tests are built around the assumption that true neural effects 

captured via EEG are clustered along a given dimension (e.g., temporal, spatial, spectral; the 

specific dimension depends on the research question and data structure at hand). For instance, 

it is expected that spatial effects would manifest as similar patterns of activity from multiple 

adjacent sensors, given that signals transmitted to neighboring sensors likely share a common 

cortical source due to the manner in which electrical fields "travel" through tissue to sensors on 

the scalp (i.e., volume conduction; Xie, Toll, & Nelson, 2022). 

The simultaneous control of Type I Error and maintenance of statistical power afforded 

through nonparametric cluster-based tests is realized by implementing a two-step approach. At 

the first stage (the "cluster formation” stage), clusters in the dimension of interest (e.g., spectral, 

temporal, and/or spatial) are identified, guided by pre-specified parameters defined by the 

researcher, including the channel-level threshold for cluster formation (e.g., channel-

level t statistics exceeding |t| = 1.96). Adjacent electrodes that surpass this threshold are then 

grouped into a cluster. If a cluster or clusters are identified in the data, they are then quantified 

using a cluster statistic (T), the most commonly used of which is computed as the sum of t-

values for the cluster's constituent electrodes (i.e., maxsum; Oostenveld, Fries, Maris, & 

Schoffelen, 2010). 
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At the second "inference" stage, the statistical significance of the cluster is evaluated via 

Monte Carlo nonparametric permutation testing (1,000 permutations) under the null hypothesis 

of statistical independence (i.e., exchangeability). Specifically, the null hypothesis states that the 

observed cluster statistic is no larger than what would be observed by chance with randomly 

shuffled data. At this stage, the cluster formation procedure is re-implemented on the data 1,000 

times, and the largest cluster statistic obtained in each permutation is stored, resulting in a 

permutation distribution of cluster statistics from the surrogate data. Estimated critical values 

(corresponding with alpha = .025 to account for two-sided testing) are then generated from the 

chance distribution and compared against the observed cluster statistic identified initially; if the 

observed cluster statistic exceeds the Monte Carlo-estimated critical value, the null hypothesis 

of statistical independence is rejected, and the cluster is considered to be statistically significant. 

By conducting hypothesis testing at the cluster level rather than the individual channel level, the 

familywise error rate can be successfully maintained at a nominal level, as has been 

demonstrated in simulation studies (Pernet, Latinus, Nichols, & Rousselet, 2015). Details of this 

analytical approach and its use in developmental EEG specifically are discussed at length in 

Meyer et al. (2021). 

It is important to note that this approach to hypothesis testing necessarily alters the 

interpretation of statistically significant or non-significant effects. For instance, if cluster-based 

permutation testing is used to test the hypothesis that alpha power (averaged across the 0.5 Hz 

frequency bins) is associated with a behavioral variable, it would be appropriate to interpret a 

significant cluster as providing robust evidence for a significant brain-behavior association. 

Moreover, the spatial distribution of the cluster (i.e., the locations of the electrodes identified in 

the significant cluster) provides insight as to where the brain-behavior effect is strongest. A 

significant cluster should not be interpreted as indicating that all of the individual channels that 

comprise the cluster are statistically significant on their own, as significance testing only 

occurred at the cluster level. 
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Aim 1: Neural Correlates of Receptive-Expressive Language Phenotypes 

Measures of receptive-expressive phenotypes included Difference Scores (receptive 

language AE minus expressive language AE), Ratio Scores (receptive language AE ÷ 

expressive language AE), and language profiles (expressive advantage, receptive advantage, 

and balanced) as measured at T1. These measures of receptive-expressive language 

phenotype are described at length in Study 1. 

Cluster-based permutation testing was implemented in FieldTrip (Oostenveld et al., 

2010) to test the association between spontaneous power in alpha and theta bands and the 

variables representing receptive-expressive language phenotypes computed in Study 1. For 

continuous measures of receptive-expressive language phenotypes (Difference and Ratio 

Scores), the ft_statfun_correlationT function within FieldTrip was implemented to identify groups 

of spatially adjacent channels in which the association between spectral power and the 

behavioral variable of interest exceeded a pre-specified threshold (critical value). Specifically, 

correlation coefficients (Spearman's rs) were generated for each channel-level association and 

transformed to t-statistics. Neighboring channels exceeding the pre-specified threshold (|t| = 

1.995) were grouped to form clusters. An analogous procedure was carried out using 

the ft_statfun_indepsamplesF to test whether relative theta or alpha power differed as a function 

of language profile. Adjacent channels with F-statistics exceeding the pre-defined threshold (F 

= 3.314) were formed into clusters.  

Clusters identified at the cluster formation stage were then quantified with a cluster 

statistic computed using maxsum parameter in FieldTrip, which is calculated as the sum of the 

sample-level (channel-level) t statistics generated during cluster formation for each individual 

channel within a cluster. If a candidate cluster is identified at the first stage, the Monte-Carlo 

nonparametric permutation testing procedure was then implemented to evaluate the statistical 

significance of the cluster using the ft_statistics_montecarlo function. Critical values at 

the cluster level were derived from the chance distributions of surrogate cluster statistics and 
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compared against the observed cluster statistic; if the observed statistic exceeded the estimated 

critical value, the null hypothesis of statistical independence was rejected, and the observed 

cluster was considered statistically significant. Note that a critical value equivalent to alpha = 

.025 was used for analyses using correlational analyses to form clusters in order to account for 

two-tailed tests.  

Aim 2: Neural Predictors of Receptive and Expressive Language Growth 

In Study 1, unconditional linear growth models were constructed to describe trajectories 

of language growth across 12 months in this sample of infants and toddlers. Unconditional linear 

growth model specifications and descriptions are provided in the Appendix. Estimates of fixed 

effects, random effects, and goodness-of-fit indices for receptive language and expressive 

language unconditional growth models reported in Study 1 are reproduced in Table 2.1. 

To test whether spontaneous EEG power measured at T1 is associated with individual 

differences in receptive and expressive language growth, model-based (i.e., empirical Bayes) 

estimates of individual growth parameters were extracted from receptive and expressive 

unconditional linear growth models. This approach has been used to examine associations 

between the rate of fine motor growth and later language outcomes among infants with an 

elevated familial likelihood of autism (Choi, Leech, Tager-Flusberg, & Nelson, 2018), 

associations between the pace of vocabulary growth in toddlerhood and vocabulary skills during 

preschool (Rowe, Raudenbush, & Goldin-Meadow, 2012), associations between individual 

differences in symptom trajectories and variation in structural or functional brain connectivity 

across adolescence (e.g., Chahal et al., 2019) and associations between pre-treatment 

functional connectivity and change in depressive symptoms from pre- to post-treatment 

(Crowther et al., 2015). These individual growth parameters (𝜋+#&, and 𝜋+%&, describing 

child i's predicted initial status and predicted rate of change) are computed by combining 

information from the fixed effects coefficients and the random effects coefficients (which 

describe how child i's growth parameters deviate from their own estimated population average 
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growth trajectory). Model-based estimation of individual growth parameters is the preferred 

approach for extracting individual trajectories from growth models because it offers greater 

precision than other approaches (e.g., ordinary least squares regression; Singer & Willett, 

2003). This is discussed in greater detail in the Appendix. 

Table 2.1. Unconditional Linear Growth Models for Receptive and Expressive language  
 Receptive Language  Expressive Language 

Fixed Effects Est. SE t df p  Est. SE t df p 
Intercept, 𝛾!! 11.14 0.62 69.36 17.86 <.001  10.62 0.52 69.40 20.43 <.001 
Linear Slope (Time), 𝛾"! 1.17 0.08 42.65 14.67 <.001  1.10 0.08 48.86 13.35 <.001 
            
Variance Components Est. SE z p   Est. SE z p  
Level-1, 𝜎#$ 12.16 2.36 5.16 <.001   7.81 1.49 5.26 <.001  
Level-2, Intercept, 𝜎!$ 18.69 4.89 3.82 <.001   13.38 3.37 3.97 <.001  
Level-2, Slope, 𝜎"$ 0.14 0.07 2.05 .020   0.21 0.06 3.25 .001  
Correlation, 𝜌!" 0.35 0.29 1.20 .115   0.27 0.22 1.23 .220  
            
Goodness-of-Fit            
-2 Log Likelihood 1032.71      986.93     
AIC 1044.71      998.93     
Note. Results of hierarchical linear growth modeling for language age equivalent scores, with estimates of fixed 
effects, random effects, and goodness-of-fit indices AIC = Akaike information criterion. 
 

Because the primary aim was to assess associations between EEG metrics at baseline 

and subsequent growth in language skills, analyses focused on individual estimates of linear 

slope for receptive and expressive language models. These individual estimates of linear growth 

were treated as dependent variables in cluster-based permutation analyses. 

To test associations between T1 spontaneous alpha and theta power and language 

growth, the ft_statfun_correlationT function (Pearson's r) within FieldTrip was used to identify 

groups of spatially adjacent channels in which the association between spectral power and 

linear growth exceeded the pre-specified threshold (|t| = 1.995) were grouped to form clusters.  

Results of cluster-based permutation analyses are displayed graphically using 

topographical plots (where cluster extent is visualized using symbols representing individual 
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electrodes, and cluster intensity is visualized using color) and scatterplots representing 

associations between spectral power and language variables.  

When clusters are identified in the data, their corresponding cluster statistic, T, Monte-

Carlo-estimated p-value, and effect size, r, are reported. Note that there is no established best 

practice for reporting cluster-level effect sizes following cluster-based permutation analyses 

(Meyer et al., 2021). However, one recommended approach is to calculate an effect size using 

the average of the cluster. Using an analogous approach to that recommended in Meyer et al. 

(2021), reported cluster-level effect sizes, r, reflect the strength of the association between the 

behavioral variable of interest and spectral power across the cluster (i.e., the averaged power 

values for channels comprising the significant cluster). The magnitude of these effect sizes may 

be interpreted similarly to conventional r-based effect sizes. Note that the findings reported here 

are significant after enforcing cluster-based controls for multiple comparisons at the sample 

(channel) level and adjustment for two-sided significance testing at the cluster level. 

Results 

Aim 1: Neural Correlates of Receptive-Expressive Language Phenotypes 

Preliminary Analyses 

Though I had hypothesized that neural correlates of receptive-expressive abilities would 

be evident within the traditionally defined "infant" theta (3-6 Hz) and alpha (6-9 Hz) frequency 

bands, I leveraged the flexibility of cluster-based permutation testing to examine whether there 

were potential effects outside of these canonical frequency ranges that would be worth 

exploring and testing in my main analyses. This decision was motivated both by the exploratory 

nature of this work as well as the inconsistent definitions of "alpha" and "theta" frequency 

ranges in infant and toddler-age populations. For these preliminary, exploratory analyses, I 

conducted cluster-based permutation testing for the entire 1 to 12 Hz frequency spectrum 

(binned with 0.50 Hz resolution), relaxing the cluster formation threshold to a value 
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corresponding to p = .10, given the primary objective was to explore patterns qualitatively prior 

to carrying out formal permutation-based hypothesis testing.  

For Difference Scores and Ratio Scores, there was evidence for a potential effect within 

the 3 - 4 Hz frequency range and 3 - 4.5 Hz frequency range, respectively, consistent with the 

proposed theta frequency band. This was similar to the exploratory analyses of Language 

Profiles: these preliminary analyses revealed evidence for a potential effect of language profile 

within the 3 - 3.5 Hz frequency range. In light of these exploratory analyses, the proposed 

analysis plan was unchanged, such that cluster-based permutation analyses were carried out 

with both theta (3-6 Hz) and alpha (6-9 Hz) bands. Rather than identifying clusters within each 

0.5 Hz bin in the alpha and theta ranges, power values were averaged across the frequency 

ranges, as is common practice and appropriate for these specific hypotheses. 

Relative Power and Receptive-Expressive Language Discrepancy 

Receptive-Expressive Difference Scores 

There was a significant, positive association between relative theta power and 

Difference Scores, as identified in a left frontocentral cluster (T = 9.54, p = .032, r = .302). No 

clusters were identified within the alpha frequency band. 

Receptive-Expressive Ratio Scores 

Consistent with analyses of Difference Scores, There was a significant, positive 

association between theta power and Ratio Scores, as identified in a similar left front-central 

cluster (T = 11.40, p = .028; r = .296). No clusters were identified within the alpha frequency 

band. See Figure 2.1. 

Relative Power and Receptive-Expressive Language Profiles 

No clusters within the theta or alpha frequency band surpassed the pre-specified 

threshold for cluster formation (F = 3.13). For exploratory purposes, I opted to conduct two 

separate exploratory tests to determine whether mean relative alpha or theta power differed 
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significantly between RA and EA profiles, as well as between Balanced and EA profiles. This 

was achieved using the ft_statfun_indepsamplesT function in FieldTrip.  

Expressive Advantage and Receptive Advantage Group Differences 

For the analyses comparing RA and EA groups, the sample-level threshold for cluster 

formation was |t| = 2.01 (df = 51). A positive cluster was identified within the left frontocentral 

region, suggesting that mean theta power was higher among those with an RA profile than 

those with an EA profile, though the cluster did not surpass the threshold for statistical 

significance following permutation testing (T = 6.29, p = .095).  

Expressive Advantage and Balanced Group Differences 

For analyses comparing Balanced and EA profiles, the sample-level threshold for cluster 

formation was |t| = 2.02 (df = 39). No clusters were identified in either the alpha or theta 

frequency band at the cluster formation stage. 
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Figure 2.1. Cluster-based permutation analyses revealed significant associations between spontaneous 
relative theta (3-6 Hz) power and receptive-expressive language discrepancy, such that an increasing 
receptive language advantage is associated with higher levels of theta power. Scatterplots, right, illustrate 
the association between receptive-expressive language metrics and relative theta power summed across 
cluster channels. A. Relative theta power was positively associated with Difference Scores (p = .032), as 
seen in a cluster located in the left frontocentral region. B. Relative theta power was positively associated 
with Ratio Scores (p = .028) as evidenced in a left frontocentral cluster. 
 

Aim 1 Summary 

Data-driven analyses examining associations between spectral power and continuous 

measures of receptive-expressive language revealed significant associations between levels of 

spontaneous theta power and the degree of receptive-expressive language discrepancy, such 

that those with stronger receptive language skills relative to their expressive language skills 

tended to exhibit higher levels of theta power. Although categorical language profiles were 

derived from Ratio Scores, no clusters were identified in omnibus tests of Language Profiles. 
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Given the relatively small and unbalanced group sizes, the present sample may be 

underpowered to detect more subtle significant group differences that may be present between 

language profile groups. 

Aim 2: Neural Correlates of Receptive and Expressive Language Growth 

Preliminary Analyses 

As with analyses of T1 receptive-expressive language phenotypes, preliminary 

exploratory analyses were undertaken to determine whether there were potential effects that fell 

outside the canonical frequency bands specified in my hypotheses. I conducted cluster-based 

permutation testing for the entire 1 to 12 Hz frequency spectrum (binned with 0.50 Hz 

resolution), relaxing the cluster formation threshold to a value corresponding to p = .10.  

For individual receptive language growth parameters, there was some evidence for a 

potential effect within the 8 - 9 Hz frequency range. Similarly, for individual expressive language 

growth parameters, there was some evidence for a potential effect in the 7 - 8.5 Hz range. In 

both cases, potential effects fell within the "infant alpha" range of 6-9 Hz. The proposed analysis 

plan was unchanged, such that cluster-based permutation analyses were carried out with both 

theta (3-6 Hz) and alpha (6-9 Hz) bands. Power values were averaged across each frequency 

band prior to analyses. 

Neural Correlates of Receptive Language Growth 

Analyses revealed significant positive associations between relative alpha power at T1 

and individual differences in the rate of receptive language growth, as evidenced in two 

significant clusters. Cluster 1 (T = 7.27, p = 0.027, r = .32) included left parietal-occipital regions 

whereas Cluster 2 (T = 6.63, p = .035, r = .28) included frontal regions. No clusters were 

identified within the theta band. 

Neural Correlates of Expressive Language Growth  

The rate of expressive language growth was significantly positively associated with 

relative alpha power. Two clusters were identified, including one spanning multiple cortical 
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regions within the left hemisphere (Cluster 1 T = 25.70, p = .011, r = .33) and a second, smaller 

cluster localized to the right temporoparietal region (Cluster 2 T = 8.78, p = .036, r = .38). As 

with analyses of receptive language growth, there was no evidence for any association between 

spontaneous theta power at baseline and rate of expressive language growth. See Figure 2.2. 

Figure 2.2. Results of cluster-based permutation analyses examining associations between T1 spectral 
power and receptive language growth (A) and expressive language growth (B). Children with higher levels 
of spontaneous relative alpha power at T1 showed significantly faster rate of growth across the 12-month 
measurement period relative to those with lower levels of relative alpha power at enrollment. Scatter plots 
depict the association between individual-level estimates of linear growth in language abilities (i.e., 
empirical Bayes estimates of growth parameters, 𝜋%"%) and relative alpha power summed across cluster-
specific channels. A. Receptive Language. Levels of relative alpha power at T1 were significantly, 
positively associated with participant-level estimates of linear growth in receptive language AE scores (i.e., 
linear slope, 𝜋%"%) derived from hierarchical linear growth models. Cluster 1 (shown with + symbols; p = .027) 
was localized to left parieto-occipital regions whereas Cluster 2 (shown with x symbols, p = .035) involved 
frontal regions. B. Expressive Language. Levels of relative alpha power at T1 were significantly, positively 
associated with participant-level estimates of linear growth expressive language AE scores (i.e., linear 
slope, 𝜋%"%) derived from hierarchical linear growth models. Cluster 1 (shown with + symbols; p = .011) 
involved multiple cortical regions, whereas Cluster 2 (shown with x symbols, p = .036) included the right 
temporoparietal area. 
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Sensitivity Analysis: Excluding Children with Only One Timepoint  

Receptive and expressive language unconditional growth models were re-fit using data 

from the subgroup of children who contributed data at two or more timepoints. This subset of the 

larger dataset included n = 59 children and a total of n = 156 measurement occasions. Model-

based Bayes estimates of individual growth parameters extracted from these unconditional 

growth models were used as dependent variables in cluster-based permutation analyses, as in 

the primary analyses. The results were unchanged: relative alpha power was significantly 

associated with individual differences in the estimated rate of receptive language growth 

(Cluster T = 6.84, p = .036, r = .30) and expressive language growth (Cluster T = 32.89, p = 

.008, r = .36). The spatial distribution of significant effects was similar to that observed in the full 

sample, such that the strongest effects for receptive language were observed in left parieto-

occipital regions, whereas effects for expressive language were more distributed across the 

scalp. Note that for sensitivity analyses of expressive language, a single large cluster was 

identified, the spatial distribution of which matched that of the two clusters identified in the 

primary expressive language analyses. As with primary analyses using data from all children, 

relative theta power was not significantly associated with individual receptive or expressive 

language growth parameters.  

Discussion 

This study leveraged cross-sectional and longitudinal behavioral and 

electrophysiological data collected from infants and toddlers showing early signs of autism 

enrolled in an early intervention study to examine whether measures of functional brain activity 

were predictive of concurrent receptive-expressive language phenotypes and longitudinal 

growth in receptive and expressive language abilities over 12 months. The present study is 

among the first to detail the EEG correlates of receptive-expressive phenotypes during the 

second year of life and provides novel insight into heterogeneity in language development 

among community-referred infants and toddlers with autism symptoms. It is worth highlighting 
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that although there is a growing body of evidence for infant and toddler EEG correlates of later 

language outcomes, these studies primarily include prospectively monitored infants with an 

elevated familial likelihood of autism (i.e., heightened genetic risk of autism due to the presence 

of an autistic sibling). While such studies have provided unprecedented insight into autism 

emergence and early-emerging differences in structural and functional brain development, the 

generalizability of these findings is somewhat limited, given EL infants likely represent a 

genotypically (e.g., Leppa et al., 2016) and phenotypically (Cohenour, Gulsrud, & Kasari, 2023) 

distinct subgroup from the broader autism population. Thus, extending this line of inquiry to 

populations of infants and toddlers identified in community settings (who likely better present the 

phenotypic, genetic, and sociodemographic diversity of the broader autism population) is, in and 

of itself, an important step towards translatable, clinically-practicable research on brain-

behavioral development in autism.  

This study is a first step towards identifying features of functional brain development that 

contribute to variability in early language skills among young children with autism symptoms and 

elucidating neural mechanisms that contribute to heterogeneity within the emerging autism 

phenotype. Addressing this gap in our understanding of the neural and behavioral mechanisms 

that shape social development during the "pre-diagnostic" period in the second year of life 

provides a foundation for the rigorous testing of prognostic and predictive markers that can help 

explain heterogeneity in development broadly, as well as heterogeneity response to very early 

interventions. Such markers could facilitate the identification of symptomatic infants and toddlers 

at the highest risk of experiencing co-occurring language difficulties who may benefit from 

targeted language intervention. Moreover, understanding the behavioral, environmental, and 

neural mechanisms that shape language development in the context of emerging autism could 

provide insight into treatment mechanisms or specific targets most likely to deliver the greatest 

benefit to child language outcomes. 
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Spontaneous Theta Power is Associated with Receptive-Expressive Language 

Phenotypes 

Despite finding little evidence for associations between receptive-expressive language 

phenotypes and child-level demographic and behavioral variables (Study 1), there was evidence 

for a significant association between spontaneous theta power and receptive-expressive 

language metrics, such that higher relative theta power was associated with an increasing 

receptive language advantage (that is, on average, those who have stronger receptive language 

skills than expressive language skills tend to have higher levels of theta power than those who 

have similar or weaker receptive skills relative to their expressive skills). Interestingly, our lab 

has recently reported in this same sample that relative theta power was not significantly 

associated with concurrent receptive or expressive language skills when examined separately. 

In contrast, alpha power was robustly linked with concurrent language skills (Cohenour et 

al., under review). This suggests that the present results are not driven by mere differences in 

language level overall but rather something specific to the receptive-expressive discrepancy. 

The relationship between levels of theta power and cognitive or broader developmental 

outcomes is complex and, at times, seemingly paradoxical. Theta oscillations dominate the 

neonatal EEG power spectrum and remain the dominant rhythm for much of the first year of life 

before declining in favor of higher-frequency oscillations (e.g., alpha; Saby & Marshall, 2012). 

Thus, increased levels of relative theta power in later infancy and early childhood are thought to 

reflect a global delay in brain maturation (McLaughlin et al., 2010). Indeed, elevated levels of 

spontaneous theta power have been reported among children who have experienced severe 

early psychosocial deprivation (Marshall, Fox, & BEIP Core Group, 2004; McLaughlin et al., 

2010), infants from households experiencing socioeconomic disadvantage and high levels of 

maternal stress (e.g., Troller-Renfree et al., 2023), infants and children diagnosed with or at 

elevated familial risk of attention deficit hyperactivity disorder (ADHD; Shephard et al., 2019; 

Snyder & Hall, 2006), as well as children diagnosed with developmental dyslexia (Cainelli, 
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Vedovelli, Carretti, & Bisiacchi, 2023) compared to typically-developing controls. Moreover, 

higher levels of spontaneous theta power have been linked with poorer executive functioning 

skills during early childhood (Law et al., 2023), poorer long-term cognitive outcomes (e.g., Tan 

et al., 2023), and elevated levels of anxiety symptoms and ADHD symptomatology among 

children with and without early psychosocial risk (McLaughlin et al., 2010). Interestingly, 

declines in resting-state theta power across middle childhood (perhaps reflecting normative 

neuromaturational changes in the distribution of spectral power) are predictive of expressive 

vocabulary, but not receptive vocabulary, at age 11 years among neurotypical children (Meng et 

al., 2022). 

In contrast, task-related increases in theta power have been linked with superior 

cognitive and behavioral performance and increased verbal and nonverbal cognitive functioning 

(Braithwaite, Jones, Johnson, & Holmboe, 2020; Jones et al., 2020). In infancy and early 

childhood, increases in theta power are observed during periods of sustained or anticipatory 

attention (Xie, Mallin, & Richards, 2019), social attention (Haartsen, Charman, Pasco, Johnson, 

& Jones, 2022; E.J.H. Jones, Venema, Lowy, Earl, & Webb, 2015), object exploration (Begus, 

Southgate, & Gliga, 2015; Orekhova, Stroganova, Posikera, & Elam, 2006), novelty detection 

(e.g., Köster, Langeloh, Michel, & Hoehl, 2021), and processing of speech (Begus, Gliga, & 

Southgate, 2016; Bosseler et al., 2013; Orekhova et al., 2006). Modulation of theta activity is 

thought to reflect a broader, adaptive attention-gating mechanism, enabling children to deploy 

attentional resources to elements of the environment that are most likely to provide 

opportunities for learning (Begus & Bonawitz, 2020).  

The present findings suggest that children with lower levels of theta power, particularly in 

the left frontocentral region, are more likely to have comparatively delayed expressive language 

skills relative to their receptive skill level. Again, relative theta power itself was not related to 

receptive or expressive skill level overall in the present sample; rather, theta power was 

specifically linked with the magnitude of receptive-expressive discrepancy. These findings have 
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a few possible interpretations in light of the extant literature on resting and task-related theta 

activity in infancy and early childhood. First, while excessive theta power is typically considered 

a marker of neuromaturational delay (e.g., McLaughlin et al., 2010), in autism, this may reflect a 

beneficial adaptation to underlying genetic vulnerabilities or a leveraging of strengths common 

among children with autism. For instance, increased availability of theta oscillations may enable 

children to leverage areas of cognitive strength (e.g., local information processing and broader 

enhancements to perceptual functioning; Guy, Mottron, Berthiaume, & Bertone, 2019), which, in 

turn, provides an extra boost to receptive language by facilitating improved processing of 

linguistic input. The interpretation is consistent with the ontogenetic adaptation hypothesis for 

adaptive, alternative developmental trajectories in autism. 

Spontaneous Relative Alpha Power Predicts Rate of Language Growth 

 Data-driven analyses of individual language growth parameters revealed a consistent 

pattern: higher alpha power was associated with more rapid receptive and expressive language 

growth in the present sample of infants and toddlers showing early behavioral signs of autism. 

Associations were observed in localized clusters on the scalp, potentially indicating a spatially 

distinct neural signature of early language development in emerging autism. These findings, 

coupled with observed theta-related effects for receptive-expressive phenotypes, emphasize the 

potential of theta- and alpha-based EEG metrics as neural indicators of risk for, or resilience 

against, more profound spoken language difficulties, and highlight the potential interconnected 

neural processes that set the stage for receptive and expressive language growth. 

Developmental change in alpha oscillations across the first three years of life coincides 

with the emergence of increasingly complex social and communication capacities (Anderson & 

Perone, 2018). Given that these rhythms facilitate efficient communication across distributed 

regions (Chapeton et al., 2019), maturation-related increases in alpha power may provide the 

neural infrastructure needed for language acquisition. The present results are consistent with 

studies of EL infants later diagnosed with ASD reporting longitudinal associations between early 
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alpha-band activity and expressive language outcomes in later infancy and toddlerhood 

(Huberty et al., 2023; Levin et al., 2017; Tran et al., 2021). The widespread spatial distribution of 

the clusters linked with expressive language growth (compared with those linked with receptive 

language growth) is similar to the pattern identified in our analyses of concurrent expressive 

language ability (Cohenour et al., under review). Given spoken language production is later 

emerging (Bornstein & Hendricks, 2012; Fenson et al., 1994) and relies on the coordination of 

complex cognitive and motor systems, this more widespread effect may reflect a later 

specialization of brain networks for expressive language. Notably, the regions where this effect 

was strongest (see Figure 2.2 B) are primarily localized to left and right temporoparietal regions 

– regions that have long been implicated in language functioning and social cognition (Adolphs, 

2008; Friederici et al., 2011; Paterson, Heim, Thomas Friedman, Choudhury, & Benasich, 

2006). These regions appear to play a role in language trajectories among children with autism, 

too. Using functional magnetic resonance imaging (fMRI) in a community sample of children 

with and without autism, Lombardo and colleagues (2015) found evidence for hypoactivation in 

bilateral temporal cortices during speech processing among children with autism who exhibited 

"poorer" language outcomes (i.e., with Mullen receptive and expressive language T-scores < 

40) relative to autistic children and neurotypical children without language delays. 

In contrast with the growing evidence for links between alpha-band activity and 

expressive language skills in autism (e.g., Cohenour, Dickinson, Jeste, Gulsrud, & Kasari, under 

review; Huberty et al., 2023), evidence for neural mechanisms associated with receptive 

language is sparse. For example, studies have reported significant associations between alpha 

activity and concurrent expressive language skills but no such effects for receptive language 

skills (Huberty et al., 2023). Task-based studies of auditory processing among EL infants and 

toddlers report associations between EEG-based measures of cortical reactivity (an index of 

excitatory/inhibitory function) and receptive language growth across infancy and early childhood, 

such that children who fail to suppress neural responses to repeated non-linguistic auditory 
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stimuli show slower receptive language growth (Kolesnik et al., 2019). Here, we report novel 

findings concerning neural correlates of receptive language in that we observed significant 

associations between levels of spontaneous relative alpha power and receptive language 

growth. These effects were most apparent in frontal regions and left parietal regions. Networks 

involving frontal regions have been implicated in language functioning across the lifespan 

(Friederici et al., 2011; Friederici & Gierhan, 2013). Evidence from neuroimaging and lesion 

studies suggests that parietal regions may play a crucial role in specific aspects of language 

functioning, including phonological processing and semantic processing (see Coslett & 

Schwartz, 2018). Phonological processing involves the perception and encoding of linguistic 

units, thereby facilitating the segmentation of continuous speech into meaningful phonetic units 

(Kuhl, Conboy, Padden, Nelson, & Pruitt, 2005; Kuhl & Meltzoff, 1982), whereas semantic 

processing of language refers to the ability to make meaning of words and linguistic input 

(Friedrich & Friederici, 2008).Thus, at the most fundamental level, these information-processing 

capacities are prerequisites for language comprehension.  

Notably, consistent with the results of our recent study examining neural correlates of 

concurrent language abilities in this sample of infants, there were no significant associations 

between levels of spontaneous relative theta power and language growth identified. I 

hypothesize that this may reflect the increasing importance of faster (i.e., alpha) oscillations 

during language learning across the second and third years of life and a diminishing importance 

of slower oscillations (e.g., delta, theta), which are thought to facilitate the processing of 

prosodic cues embedded in speech (Giraud & Poeppel, 2012) in early infancy. 

Limitations and Strengths 

The present study has several methodological strengths, a primary of which is the 

inclusion of a diverse, pre-diagnostic community-referred sample of symptomatic infants and 

toddlers. Studying brain-behavior development during this window could provide crucial insight 

into the neural and behavioral dynamics that shape the autism phenotype in infancy and early 
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toddlerhood. Moreover, given the symptomatic, pre-diagnostic stage captured in the present 

sample coincides with a window of heightened neuroplasticity when interventions may yield the 

largest "pay-off" for child outcomes (Klin, Klaiman, & Jones, 2015; Klin et al., 2020), identifying 

candidate biomarkers that can facilitate identification of children at highest risk of poorer 

language outcomes may be valuable. 

The limitations associated with the behavioral analyses of receptive-expressive 

language phenotypes and language trajectories, including the limitations associated have been 

outlined in Study 1. With respect to the EEG component of this work, there are several 

limitations and promising areas for future work. 

The present study was a focused investigation of links between language 

and spontaneous oscillatory power within hypothesis-driven, a priori-defined frequency bands: 

theta (3-6 Hz) and alpha (6-9 Hz). Associations between expressive language and spontaneous 

power in other frequency bands, including gamma (30 – 50 Hz), have been reported among EL 

infants (Romeo et al., 2021; Wilkinson et al., 2019). Alpha and theta EEG metrics offer desirable 

psychometric properties (Anaya, Ostlund, LoBue, Buss, & Pérez-Edgar, 2021; Levin et al., 

2020; van der Velde et al., 2019), as well as higher signal-to-noise ratio and less sensitivity to 

non-neural noise as compared with gamma metrics (McEvoy, Hasenstab, Senturk, Sanders, & 

Jeste, 2015; van der Velde et al., 2019). These properties are particularly desirable for 

developing objective, reliable biomarkers that can be used at scale in the community. Similarly, 

spontaneous spectral power is one of many metrics for assaying functional brain development. 

Other EEG metrics, including functional connectivity (Dickinson et al., 2021; Dickinson, 

DiStefano, Senturk, et al., 2018; Peters et al., 2013; Tran et al., 2021) and functional network 

properties (Keown et al., 2017; Lewis et al., 2014), are atypical in autism and linked with 

concurrent or later cognitive, social, and language functioning. These alternative EEG measures 

merit further exploration in the context of language phenotypes in emerging autism. 
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This study draws data from a larger randomized controlled intervention study of an 

experimental social communication-focused early intervention and a domain-general early 

intervention. The objective of this dissertation was not to examine treatment effects but rather to 

characterize language abilities in the context of emerging autism to ultimately identify prognostic 

biomarkers for language outcomes in autism. However, testing whether pre-intervention 

receptive-expressive language phenotypes or pre-intervention EEG-based metrics of functional 

brain development moderate the effects of intervention on both language outcomes would be of 

great value in not only parsing heterogeneity in intervention response (particularly given as 

many as half of autistic children fail to make meaningful gains in language even in the presence 

of high-quality intervention; Panganiban & Kasari, 2022) but also in the identification of 

predictive markers that can facilitate the identification of children most likely to respond 

favorably to a given intervention approach (FDA-NIH Biomarker Working Group, 2020). These 

questions will be addressed in future studies. 

Conclusions 

The present study is among the first to examine neural correlates of receptive-

expressive language phenotypes in emerging autism, providing new insight into mechanisms 

that may underpin language heterogeneity among children with autism symptoms. I report that 

children with receptive-expressive language phenotypes characterized by relative receptive 

language disadvantage exhibit lower levels of relative theta power as compared with children 

who present with more advanced receptive language skills relative to their expressive skill level. 

Our longitudinal findings suggest that higher levels of spontaneous alpha power may serve as a 

neural marker of resilience in autism, whereas lower levels of alpha power may signal 

underlying vulnerability for stalled language growth and poorer language outcomes. These 

findings provide a basis for future research expanding this line of inquiry to the intervention 

context (e.g., identifying brain-based predictive markers or markers of intervention response) 
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and, ultimately, to the development of scalable, clinically practicable tools to optimize care for 

children with or at high clinical risk of autism. 
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Appendix 

Unconditional Growth Model Specifications 

Level-1: 𝑌'( = 𝜋#' + 𝜋%'𝑇𝐼𝑀𝐸(' + 𝑒(' 

Level-2: 𝜋#' = 𝛾## + 𝑢#' 
𝜋%' = 𝛾%# + 𝑢%' 

 

In the level-1 equation, 𝜋#' represents child i's predicted language score at T1, and 𝜋%' 

presents child i’s predicted rate of linear growth in language abilities. The term 𝑒(' represents 

unobserved level-1 residuals for child i at t measurement occasion. We assume the level-1 

residuals are normally distributed with a mean of 0 and variance 𝜎$!. 

In the level-2 equations, 𝜋#' and 𝜋%' are the individual intercept and linear slope growth 

parameters of the true trajectory for child i. The  𝛾## and 𝛾%# terms are fixed effects coefficients 

that may be interpreted in a similar manner to regular regression coefficients. The level-2 

residuals, 𝑢#' and 𝑢%', represent unexplained variation in individual growth parameters (i.e., 

random effects); here, these values represent the deviation between child i's true initial status 

and true linear slope, respectively, from their estimated average trajectory. To account for 

possible associations between initial status and rate of change, level-2 residuals are allowed  to 

be correlated, resulting in a 2x2 variance-covariance matrix. We assume that level-2 residuals 

are bivariate normally distributed with a mean of 0, unknown variances (𝜎#! and 𝜎%! for intercept 

and slope parameters, respectively) and unknown covariance 𝜎#%. 

Model-Based (Empirical Bayes) Estimates of Individual Growth Parameters 

To evaluate the extent to which spectral power at T1 was associated with individual 

differences in rate of language growth, model-based estimates of individual growth parameters 

were extracted from receptive and expressive language growth models. Individual estimates of 



 116 

linear slope parameters, 𝜋+%', are obtained by combining information about child i’s true 

population linear growth trajectory (𝜋'%') with their level-2 residuals 𝑢%'. 
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GENERAL DISCUSSION 

Recent years have brought significant advances in our understanding of communication 

and language development in autism and factors that may contribute to variability in language 

growth. There is a pressing need to identify markers – whether behavioral/clinical, demographic, 

neural, or a combination – that can shed light on early heterogeneity in communication and 

language development in autism and ultimately facilitate earlier identification of children with the 

highest risk for poor language outcomes. Towards this goal, this dissertation sought to explore 

behavioral and brain-based factors contributing to language heterogeneity in emerging autism 

by leveraging electroencephalography (EEG) and behavioral data collected from a sample of 

community-referred, racially, and ethnically diverse infants and toddlers with heightened clinical 

risk of autism. 

Study 1 examined within-child variability in language abilities by characterizing early 

receptive-expressive language phenotypes – that is, the extent to which receptive language and 

expressive language skills are of a similar developmental level. Clinically, understanding the 

prevalence of atypical receptive-expressive profiles – and co-occurring clinical and behavioral 

characteristics of children who present with an atypical language profile – may have important 

implications for early identification (e.g., distinguishing children with non-autism language delay 

from children likely to develop autism), and intervention planning and targets. Consistent with 

hypotheses, results revealed an increased prevalence of children with language profiles 

characterized by more advantage expressive language skills than receptive language skills. 

Contrary to expectations, receptive-expressive language phenotypes were not significantly 

associated with concurrent demographic, cognitive, and behavioral characteristics.  However,  

receptive-expressive language phenotype at baseline significantly predicted the rate of 

expressive language growth, such that those with weaker language comprehension skills 

relative to language production skills showed slower expressive language growth than children 

with more typical receptive-expressive language profiles. 
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Building on this work, Study 2 aimed to shed light on intrinsic neural mechanisms that 

may drive individual differences in receptive-expressive language phenotypes and language 

trajectories. Specifically, data-driven analyses were used to test whether levels of spontaneous 

oscillatory power measured during task-free EEG were predictive of concurrent receptive-

expressive phenotypes and subsequent language growth. Study 2 identified significant 

associations between levels of spontaneous theta power and concurrent receptive-expressive 

language phenotypes, and significant associations between levels of spontaneous alpha power 

at T1 and longitudinal growth of receptive and expressive language skills.  

The presence of robust brain-behavior associations, particularly given the absence of 

robust behavioral associations with receptive-expressive phenotypes and language growth, is 

striking and lends itself to a specific hypothesis: individual differences in language abilities may 

be driven by differences in the integrity of lower-level, domain-general neurocognitive 

mechanisms that brain-based measures, such as EEG, are sensitive to. This hypothesis is 

consistent with evidence for very early disruptions to domain-general attentional mechanisms 

and alterations in structural and functional brain development that appear in 

infancy before autism symptoms are detectable (Bedford et al., 2012; Constantino et al., 2017; 

Elsabbagh et al., 2013, 2009; Elsabbagh & Johnson, 2016; Johnson, 2017; Johnson, Jones, & 

Gliga, 2015; Johnson et al., 2015; E. J. H. Jones, Gliga, Bedford, Charman, & Johnson, 2014; 

W. Jones & Klin, 2013). The ontogenetic adaptation framework suggests that disruptions to 

these early domain-general social cognitive mechanisms arise from “adaptive” co-opting of 

these capacities (which play a crucial role in social and communication development in 

neurotypical infancy) for non-social functions, for instance. 

Receptive and Expressive Language Development  

Consistent with evidence from studies of older children with an autism diagnosis (e.g., 

Ellis Weismer & Kover, 2015; Ellis Weismer et al., 2010; Hudry et al., 2010; Reinhartsen et al., 

2019), 12- to 23-month-old infants and toddlers exhibiting early signs of autism show an 
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elevated rate of atypical language profiles, and particularly, profiles characterized by a higher 

expressive language skill level than receptive language skill level. Given that there is little 

evidence to suggest that children with autism exhibit what appears to be an autism-specific 

atypical receptive-expressive language profile prior to 12 months (Hudry et al., 2014; Swanson 

et al., 2017), the present findings suggest that autism-associated alterations in receptive-

expressive development likely co-emerge with core autisms symptoms themselves.  

Though this dissertation was not designed to investigate causal mechanisms, it is worth 

considering what may be driving the emergence of these atypical profiles – whether receptively-

advantaged or expressively-advantaged – in the first place. That is, what might lead children to 

have intact language understanding but relative delays in language production, or vice versa? 

For children with a receptive advantage profile, it is possible that their relatively delayed 

expressive language skills reflect underlying neuromotor deficits rather than something social-

cognitive in nature. EL infants show delays in the development of gross and fine motor skills 

across the first years of life (Bedford, Pickles, & Lord, 2016; Begum Ali, et al., 2020; Choi, 

Leech, Tager-Flusberg, & Nelson, 2018), and fine motor skills as early as six months of age 

have been shown to predict later expressive language outcomes in toddlerhood (Choi et al., 

2018). Children with autism show an increased prevalence of oromotor anomalies relative to 

children with neurotypical development or non-autism developmental delays (e.g., Rogers, 

Hepburn, Stackhouse, & Wehner, 2003; West, 2019), and among children diagnosed with 

autism, early oromotor skills have been shown to predict concurrent and later expressive 

language abilities, including minimally verbal or verbally-fluent status (Belmonte et al., 2013; 

Gernsbacher, Sauer, Geye, Schweigert, & Hill Goldsmith, 2008; Thurm, Lord, Lee, & 

Newschaffer, 2007). However, a recent study found no associations between the size of 

receptive-expressive vocabulary discrepancy and imitative and non-imitative oral-motor function 

(capacities critical for speech production), though their sample included preschool-age children 

who were significantly older than those in the present sample (McDaniel, Yoder, Woynaroski, & 



 136 

Watson, 2018). Notably, gross and fine motor scores derived from the Mullen were not 

significantly associated with receptive-expressive discrepancy metrics in the present sample. 

However, a more targeted assessment of oromotor functioning would provide greater clarity. 

In contrast, the driving force behind expressive language advantage (or, put otherwise, 

relative delays in receptive language) may be more social-cognitive in nature, which would be 

consistent with the hypothesis that language differences are rooted in fundamental attentional 

differences. Recent evidence suggests that measures of social visual attention (i.e., attention to 

a speaker’s face) are significantly associated with later receptive-expressive language 

phenotype, such that autistic preschool-age children who spent less time attending to a speaker 

had more atypical language profiles (i.e., a greater expressive advantage) eight months later 

(McDaniel et al., 2018). On average, infants later diagnosed with autism show altered patterns 

of social visual attention (Chawarska, Macari, & Shic, 2013; Chawarska, Ye, Shic, & Chen, 

2016; Constantino et al., 2017; Klin, Lin, Gorrindo, Ramsay, & Jones, 2009; Klin, Shultz, & 

Jones, 2015; Pierce et al., 2016, 2023), dampened responsivity to speech as measured 

behaviorally (e.g., response to name) and using physiological markers of attention and arousal, 

such as heart rate variability (Hatch et al., 2021; Perdue et al., 2017), and greater difficulties 

integrating audio-visual speech information (Guiraud et al., 2012) than neurotypical infants. The 

cumulative effect of these early perceptual/attentional differences may only become observable 

in behavior after the first year of life, when environmental demands and developmental tasks, 

like language learning and production, require the integration of these systems. For instance, 

across the second year of life, enhanced visual attention to the mouth and eyes of a speaker is 

thought to support language acquisition by giving children access to the most language-rich, 

socially salient aspects of their environment (Habayeb et al., 2021; Hillairet de Boisferon, Tift, 

Minar, & Lewkowicz, 2018; Lewkowicz & Hansen-Tift, 2012); if the attentional mechanisms that 

enable children to derive any benefit from enhanced attention to linguistic-relevant cues are 

altered, then language development itself may be disrupted. Thus, the expressive advantage 
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language profile, predominant in the present sample, may reflect early-emerging anomalies in 

lower-level attention mechanisms that are especially pronounced in this subgroup of children 

with autism symptoms.  

Receptive-Expressive Phenotype Predicts Expressive Language Growth 

The observed association between initial receptive-expressive language phenotype and 

expressive language growth (where children with balanced or receptive-advantage profiles 

showed faster expressive language growth over time) is largely consistent with models of typical 

language acquisition, which posit that language comprehension drives language production 

(Bornstein & Hendricks, 2012; Fenson et al., 1994). If the atypical attention hypothesis holds, 

then it may be that children with an expressive advantage profile have a dual disadvantage in 

spoken language acquisition: that is, they may experience a reduction in the ability to attend to 

or process language input (hindering language growth overall), and weaker receptive language 

foundation on which to build expressive language skills. Clinically, the association between 

initial language profile and subsequent language growth suggests that examining receptive-

expressive phenotypes (in conjunction with domain-specific language performance) may 

provide unique information about language prognosis and perhaps even facilitate the 

identification of children at risk for slowed or plateaued expressive language growth (despite 

having relatively intact initial expressive language skills) who would otherwise be overlooked as 

candidates for early language intervention. 

Spontaneous Theta Power is Linked with Within-Individual Variability in Language 

Abilities 

Although cross-sectional analyses failed to detect concurrent associations between 

demographic and behavioral variables of interest and receptive-expressive phenotype, analyses 

of spontaneous EEG power revealed consistent, robust associations between receptive-

expressive phenotype and relative theta power. Specifically, lower levels of spontaneous theta 

power were associated with a more atypical language profile (i.e., an expressive advantage). In 
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contrast, children with higher levels of theta power tended to have more balanced or receptive 

advantaged language profiles. While increased levels of relative theta power are often 

considered a marker of neuromaturational delay in early childhood, among infants and toddlers 

with autism, this may be a neural adaptation – and potentially an advantageous adaptation – to 

underlying areas of vulnerability and strength. In infancy and early childhood, increases in theta 

activity have been observed during sustained attention and processing of social stimuli, 

including spoken language (Begus, Southgate, & Gliga, 2015; Bosseler et al., 2013; Haartsen, 

Charman, Pasco, Johnson, & Jones, 2022; Jones, Venema, Lowy, Earl, & Webb, 2015; 

Orekhova, Stroganova, & Posikera, 1999). As such, it has been proposed that theta activity may 

underpin a (social) attention-gating system that allows infants and toddlers to deploy attentional 

resources to the most social information-rich elements of the environment (Begus et al., 2015). 

In keeping with the altered attentional mechanisms hypothesis for atypical expressive language 

advantage, higher levels of spontaneous theta power, as observed among children with a 

stronger receptive-than-expressive language presentation, may serve an adaptive function by 

providing additional “scaffolding” supporting social attention. This neural infrastructure may, in 

turn, provide more opportunities for language learning or enable children to derive greater 

benefit from these learning opportunities achieved via social interactions. While this 

interpretation would be consistent with the ontogenetic adaptation hypothesis, future work 

should explore whether similar brain-behavior associations are observed among chronological- 

or mental age-matched neurotypical children and children with non-autism developmental 

delays to tease apart the specificity of this effect to autism (versus language delay more 

broadly). 

Spontaneous Alpha Power Predicts Rate of Language Growth  

 Analyses revealed that infants and toddlers with autism symptoms who exhibit higher 

levels of spontaneous alpha power show an accelerated rate of language growth. This suggests 

that increased alpha power provides the neural infrastructure that supports language learning, 
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either by directly supporting language-specific functions or by reinforcing a domain-general 

cognitive mechanism that benefits language acquisition. For example, our recent study 

examining concurrent associations between resting-state EEG power and joint attention 

revealed robust associations between relative alpha power and children’s ability to efficiently 

and accurately respond to others’ bids for joint attention, such that higher alpha power was 

predictive of stronger concurrent response to joint attention skills among infants and toddlers 

with autism symptoms (Cohenour et al., under review). 

Towards Precision Medicine: Spontaneous Alpha Power as a Candidate Biomarker  

While the aim of this dissertation was not to evaluate treatment effects, the observed 

association between levels of alpha power and language growth provides a theoretical and 

empirical foundation for future work focused on intervention-related markers. Just as there is 

marked phenotypic heterogeneity in autism, there is also vast heterogeneity in intervention 

response. For instance, while some children make remarkable gains in response to intervention, 

others struggle to develop fluent language even when provided early, intensive, evidence-based 

treatments (Eldevik et al., 2010; Panganiban & Kasari, 2022). Identifying statistically reliable, 

clinically validated, objective biomarkers that stratify individuals into meaningful subpopulations 

or shed light on biological mechanisms underlying ostensive behavioral changes in response to 

treatment could provide crucial insight that ultimately leads to more personalized, tailored 

approaches to intervention. EEG-based metrics are promising for use as brain-based 

biomarkers, given that EEG tends to be lower cost, more readily available in community 

healthcare settings, and better tolerated by young children than neuroimaging approaches like 

MRI (McPartland, 2016, 2017).  

Given evidence that pre-intervention levels of spontaneous alpha power are predictive of 

concurrent joint attention and language abilities (Cohenour et al., under review) as well as the 

subsequent rate of language growth, testing whether pre-intervention levels of alpha power 

moderate the effect of early interventions on language or social communication outcomes could 
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provide mechanistic insight into the neural groundwork that sets the stage for learning and 

whether differences in these underlying neural mechanisms may contribute to individual 

differences in intervention response. 

Conclusions 

Children with autism spectrum disorder often exhibit delays in the acquisition of spoken 

language, and a substantial minority of children still struggle to develop fluent speech by the 

time they enter primary school. Early acquisition of spoken language is highly consequential for 

longer-term developmental and functional outcomes across the lifespan; thus, there is a 

pressing need to understand behavioral, environmental, and intrinsic neural mechanisms that 

shape language growth and drive individual differences in language abilities in autism. This 

dissertation provides insight into language heterogeneity in the second year of life among 

infants and toddlers exhibiting early signs of autism. The findings reported here emphasize that 

within- and between-individual differences in language abilities among children with a high 

clinical likelihood of autism likely co-emerge with autism symptoms, and early variability in 

receptive-expressive language phenotypes may play a role in shaping subsequent development 

of expressive language skills. Building on these findings, I also identified robust associations 

between EEG-based measures of functional brain development and individual differences in 

concurrent language abilities and trajectories of language growth. Early heterogeneity in 

language acquisition in autism may be driven by alterations in foundational information-

processing mechanisms that support various social and communication functions. This 

dissertation provides preliminary evidence that EEG-based measures of functional brain activity 

may be sensitive to individual differences in the mechanisms that directly or indirectly support 

successful language acquisition in autism. Together, these findings lay a roadmap for a future 

program of research aimed at identifying multimodal (brain, behavioral) markers that can identify 

children who would benefit the most from targeted language interventions and markers that can 
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facilitate the optimization and personalization of early interventions supporting social and 

communication development. 
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