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Studies of adaptive radiations have played a central role in our understanding
of reproductive isolation. Yet the focus has been on human-biased visual and
auditory signals, leaving gaps in our knowledge of other modalities. To date,
studies on chemical signals in adaptive radiations have focused on systems
with multimodal signalling, making it difficult to isolate the role chemicals
play in reproductive isolation. In this study we examine the use of chemical
signals in the species recognition and adaptive radiation of Hawaiian Tetra-
gnatha spiders by focusing on entire communities of co-occurring species,
and conducting behavioural assays in conjunction with chemical analysis of
their silks using gas chromatography-mass spectrometry. Male spiders signifi-
cantly preferred the silk extracts of conspecific mates over those of sympatric
heterospecifics. The compounds found in the silk extracts, long chain alkyl
methyl ethers, were remarkably species-specific in the combination and quan-
tity. The differences in the profile were greatest between co-occurring species
and between closely related sibling species. Lastly, there were significant
differences in the chemical profile between two populations of a particular
species. These findings provide key insights into the role chemical signals
play in the attainment and maintenance of reproductive barriers between
closely related co-occurring species.

1. Introduction
Studies of adaptive radiations have been central in developing our understanding
of the processes involved in speciation and diversification. The explosive nature of
adaptive radiations that result in exceptionally high levels of diversity, often with
multiple, closely related species co-occurring with one another, has provided fruit-
ful grounds for biologists to study these evolutionary processes [1,2]. Specifically,
these systems have played a key role in understanding how divergence between
close relatives is attained and maintained, highlighting the complex interplay
between ecological and reproductive isolation. While some studies have high-
lighted ecological shifts as drivers of divergence [2–5], many others have
identified sexual recognition cues as playing a central role [2,6–11]. While the con-
flicting results may reflect fundamental differences between lineages, it may also be
due to some signals (especially visual and auditory) being readily amenable to
measurement while those that fall outside human sensory modalities are much
more difficult to quantify. Here, we examine the possibility that chemical differ-
ences might serve as hidden cues for reproductive isolation in adaptive radiations.
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While chemical cues are well known to play an essential role in mate and resource choice in many taxa [12–14], their role as an
isolating mechanism in adaptive radiation is largely unknown. Pioneering work on moths and Drosophila have shown that rapid
evolution of chemical signals is important in the early stages of reproductive isolation [15,16]. Chemical studies on the adaptive
radiation of Heliconius butterflies [17–20], Hawaiian Drosophila [21,22], Hawaiian Laupala crickets [23,24] and Cameroonian cichlid
fish [25] show a similar result. Nevertheless, it has been difficult to untangle the relative significance of chemical communication in
reproductive isolation in relation to the other seemingly more dominant visual and auditory forms of communication integral to
these systems, and the extent to which chemicals may provide sufficient species specificity to isolate co-occurring species. The cur-
rent study examines an adaptive radiation of spiders where multiple closely related species co-occur despite exhibiting little to no
evidence for the use of visual or auditory communication [26,27], with hybridization between co-occurring species being uncom-
mon [28]. This work takes a novel approach in examining the role of chemical signals in reproductive isolation by focusing on
entire communities of co-occurring species within a rapidly diversifying lineage where the relative contribution of chemical signals
can be studied in isolation from other communication modalities.

The Hawaiian Islands are well known for many examples of adaptive radiation. Among spiders, the larger radiations are seen
in nocturnal taxa [29]. The spider genus Tetragnatha, in particular, includes over 50 different species distributed across the archi-
pelago. While generally known for their drab coloration, elongate body, and a propensity to build horizontal orb webs over water
[30], representatives in the Hawaiian Islands exhibit a wide array of morphologies and ecologies. The Hawaiian species are divided
into two major clades: the ‘web-building’ clade that builds orb webs, and the ‘spiny leg’ clade that has abandoned web-building
and lives a cursorial lifestyle [26,27,31–33]. Spiders from both clades produce the characteristic spider dragline silk, a silk type used
in mobility, but differ in the use of an orb web for prey capture. Up to eight representatives from these two clades co-occur in the
native wet and mesic forests on each of the current high islands [26,27]. However, like their mainland counterparts, they have low
visual ability, are exclusively nocturnal, and show little evidence of vibratory communication, even among the web-builders,
which generally have flimsy webs [30] with the strands often water-drenched, making them seemingly unfit to transmit vibratory
cues [27]. Moreover, the spiders lack stridulatory structures [26,27,30,34], which are commonly found in non-web building spiders
and used for vibratory communication [35–37]. Yet, despite the lack of obvious signaling modalities, there is little evidence of
hybridization [28] and populations of sister taxa are almost invariably highly structured [28,38]. The lack of evidence for either
visual or vibrational cues in courtship led to the assumption that the diversification was driven by ecological processes, although
the means through which sister taxa achieved reproductive isolation is unclear [31,32]. These observations raised the question of
whether chemicals signals might provide a mechanism for communication, species recognition and reproductive isolation among
co-occurring species.

Evidence for the use of chemical signals in spiders is well documented in intraspecific mate choice experiments, showing the
ubiquitous use of chemicals across the spider phylogeny [37,39,40]. Furthermore, in interspecific interactions, studies conducted on
Linyphia and distantly related (European and North American) Tetragnatha spiders have demonstrated that long chain alkyl methyl
ether lipids found on the silk of female spiders play a role in distinguishing conspecific from heterospecific mates [40–42]. From
this we can hypothesize that these methyl ethers may play a role in species recognition between closely related co-occurring
species of Hawaiian Tetragnatha. Here we investigate the role of methyl ethers in the species recognition of co-occurring Hawaiian
Tetragnatha spiders and determine the extent of the species-specific signals, how the compounds in the signals have evolved
structurally, and whether the signals differ between populations of a given species. Specifically, we examine three hypotheses:
(1) methyl ethers derived from the silk allow species to behaviorally distinguish conspecifics from co-occurring heterospecifics;
(2) co-occurring species have methyl ethers that differ either in structural identity or in abundance; and (3) if chemicals play a
role in species recognition, then they will differ most between close relatives in sympatry compared to those in allopatry. We
find that male Hawaiian Tetragnatha spiders from both the web-building and spiny leg clades use chemicals found on the silk
of females to distinguish conspecifics from co-occurring heterospecifics, and that these chemicals are species-specific in the struc-
tural identity and not simply the amount of the compounds. In comparison, species in allopatry showed considerable overlap in
their chemical signatures. Our results highlight the potential key role of chemicals in reproductive isolation between closely related
co-occurring species in an adaptive radiation where other communication modalities appear nonessential.
2. Results
(a) Chemicals derived from silk allowed species to discriminate conspecifics from sympatric heterospecifics
Silk choice trials and silk extract choice trials were conducted to determine whether males can discriminate the silk or silk extract of
conspecific females from that of sympatric heterospecific females. For all six species of Hawaiian Tetragnatha, males selected the
silk of the conspecific female at a significantly higher frequency than that of the sympatric heterospecific female (figure 1). Similar
results were found in the silk extract choice trials, where males selected the extract of the conspecific female at a significantly higher
frequency than that of the sympatric heterospecific female (figure 1). The same pattern was observed in silk choice trials and silk
extract choice trials between sympatric species from the same clade (web-building or spiny leg) and between sympatric species
from different clades (figure 1; electronic supplementary material, S1).

(b) Sympatric species had methyl ethers that were unique and species-specific
The compounds found in the silk extracts were analysed along the dimensions of chemical identity, proportion, and structure (for
example, the chain length and methyl branch position), as these components have been shown to be crucially important in mate
recognition and reproductive isolation [12,13].
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Figure 1. Results for male silk and silk extract choice trials. (a) Silk choice trial and (b) silk extract choice trial set-ups (not drawn to scale). Males were released at
the far end of the center stick. (c) Results of male choice when given a choice between conspecific versus heterospecific female silk in the silk choice trials (silk—
solid bars), and the chemical extract of conspecific versus heterospecific female silk in the silk extract choice trials (extract—hatched bars). All trials were significant
with the degree of significance indicated by the star above each plot (* = p≤ 0.05, ** = p≤ 0.01, *** = p≤ 0.001). Results for silk choice trials were: T. bre-
vignatha: χ2 = 4.765, df = 1, p = 0.02905, 13 : 4; T. quasimodo: χ2 = 7.118, df = 1, p = 0.008, 14 : 3; T. waikamoi: χ2 = 6.25, df = 1, p = 0.012, 13 : 3; T.
eurychasma: χ2 = 10.714, df = 1, p = 0.001, 18 : 3; T. stelarobusta: χ2 = 16.2, df = 1, p = < 0.001, 19 : 1; T. trituberculata: χ2 = 7.143, df = 1, p = 0.008,
12 : 2. Results for silk extract choice trials were: T. brevignatha: χ2 = 9.783, df = 1, p = 0.002, 19 : 4; T. quasimodo: χ2 = 16.133, df = 1, p = < 0.001, 26 : 4;
T. waikamoi: χ2 = 14.44, df = 1, p = < 0.001, 22 : 3; T. eurychasma: χ2 = 3.857, df = 1, p = 0.049, 15 : 6; T. stelarobusta: χ2 = 4.172, df = 1, p = 0.041,
20 : 9; T. trituberculata: χ2 = 7.118, df = 1, p = 0.008, 14 : 3.
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A total of 124 unique methyl ethers were detected in the dragline silk extracts of the 11 Hawaiian Tetragnatha species (six web-
building and five spiny leg species), and the two Californian web-building Tetragnatha species that were analysed (electronic sup-
plementary material, S2). The Hawaiian web-building clade overall had significantly more methyl ether compounds in their profile
than both the Hawaiian spiny leg and Californian species (average number of methyl ethers: Hawaiian web-building = 4.84 ± 3.66,
Hawaiian spiny leg = 2.15 ± 1.64, California web-building = 3.24 ± 2.89; ANOVA: F2,239 = 24.67, p = < 0.001) (electronic supplemen-
tary material, S3). For each of the 13 species, the compounds with the highest relative abundance and/or most consistent presence
(detected in over 50% of individuals) were recorded, resulting in a total of 32 methyl ethers across all species which underwent
further structural analysis. Of the remaining 92 unique methyl ethers, 61 were found in only one or two individuals and the
rest were found in low relative abundance across multiple individuals (figure 2; electronic supplementary material, S2 and S4).

The structures of the 32 methyl ethers were elucidated by combined analysis of their mass spectra, gas chromatographic reten-
tion indices and microderivatization of extracts by transformation into cyanides and methyl esters (electronic supplementary
material, S5 and S6) [42–44]. The latter was necessary because the location of methyl groups along the alkyl chain cannot be deter-
mined by analysis of the mass spectra of the native methyl ethers. Methyl ethers ranged in size from 22 to 39 total carbons, while
the number of methyl branches ranged from as few as one to as many as five. Hierarchical clustering of the methyl ethers based on
maximum common substructure suggested an optimal number of six methyl ether groups (electronic supplementary material, S7–
S10). When the methoxy group was accounted for in the analysis, groups were defined mostly by the carbon backbone length
(electronic supplementary material, S9 and S10). When the methoxy group was excluded from the analysis, the shared methyl
branch positions were a stronger factor in the clustering, and the resulting clusters were more species-specific (electronic sup-
plementary material, S7 and S8). The ancestral state reconstruction of the ω-methyl branch pattern (a way to count the methyl
branch position from the opposite end of the methoxy group) revealed that even-numbered ω-branch positions were the most
common and ancestral form found in both Hawaiian clades and the Californian outgroup, while odd-numbered ω-branch pos-
itions were only found in the Hawaiian web-building clade (electronic supplementary material, S11). Across all the species, the
most common branch positions were ω-10, ω-16 and ω-22, with ω-16 found in all species except for T. stelarobusta (figure 5a).

The NMDS results (figure 3; electronic supplementary material, S12) showed that the chemical profiles of individual spiders
(n = 246) clustered strongly based on species, suggesting that the identities and amounts of methyl ethers found in the profiles
were highly species-specific. There was very little overlap in the chemical profiles between different species, with the few excep-
tions being between species that do not co-occur. Tetragnatha quasimodo and T. versicolor showed significant overlap due to 1-
methoxy-8,14,20-trimethylnonacosane (ME 33_A) being a major contributor to both species’ profiles, while T. acuta, T. waikamoi
and T. filiciphilia had overlapping chemical profiles with 1-methoxy-6,12,18-trimethylheptacosane (ME 31_A) shared across
these species. ME 31_A was the only major contributor to the chemical profiles of T. waikamoi and T. filiciphilia, leading to a
near perfect overlap on the NMDS plot (figure 3c). PERMANOVA and PERMDISP analysis further supported a strong species
effect on chemical profile (ADONIS: F12,227 = 57.55, R2 = 0.753, p = 0.001; permutest: F12,227 = 14.359, p = 0.001) (electronic sup-
plementary material, S13 and S14). Between male and female specimens of the same species, PERMANOVA analysis showed
that chemical profiles differed significantly between the two sexes in T. acuta, T. brevignatha, T. stelarobusta and T. trituberculata
(electronic supplementary material, S15), with the differences being the most remarkable in T. brevignatha. In T. brevignatha 1-meth-
oxy-8,16,22-trimethylhentriacontane (ME 35_A) was the major compound found in female samples while 1-methoxy-6,14,20-
trimethylnonacosane (ME 33_B) was the major compound in male samples (S15).
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Tetragnatha stelarobusta, the only species sampled at both the Upper Waikamoi and Lower Waikamoi sites, exhibited popu-
lation-specific differences in chemical profiles with some overlap, as revealed in the PERMANOVA and PERMDISP analysis
(ADONIS: F1,25 = 4.848, R2 = 0.162, p = 0.027; permutest: F1,25 = 4.033, p = 0.051) (figure 4). Furthermore, t-tests revealed that the
relative abundances of the methyl ethers found in the chemical profiles were significantly different in the two populations,
with higher abundances of 1-methoxy-4,10,16,20,24-pentamethylheptacosane (ME 33_M), 1-methoxy-4,10,16,22,26-pentamethyl-
octacosane (ME 34_G) and 1-methoxy-4,10,16,22,26-pentamethylnonacosane (ME 35_B) in Upper Waikamoi (figure 4).

(c) Sympatric species exhibited greater chemical disparity than allopatric species
The disparity through time (DTT) analysis revealed a high level of within-subclade disparity in chemical profiles throughout the
phylogeny, showing a pattern of chemical profile evolution that diverges from Brownian motion (electronic supplementary
material, S16). The three-dimensional traitgram provides a visualization of this divergence, with closely related species occupying
drastically different regions in the NMDS space (electronic supplementary material, S17). When comparing the chemical distances
among sympatric species pairs and allopatric species pairs, the overall distribution was significantly different, with sympatric
species pairs being more tightly distributed at higher chemical distance values relative to allopatric species pairs (variance:
allopatric = 0.053; sympatric = 0.007; Fligner–Killeen: chi-square = 11.837, d.f. = 1, p = < 0.001) (S18–S19).

The structures of the methyl ethers were significantly different among the most closely related sympatric species in both the
web-building clade and spiny leg clade (figure 5). Of the closely related sympatric web-building species, T. eurychasma,
T. stelarobusta and T. trituberculata, significant structural divergence was observed in the methyl ethers between T. eurychasma
and T. stelarobusta, with T. eurychasma having methyl ethers that were smallest in size, contained the fewest number of branches,
and had the longest elongation. By contrast, T. stelarobusta had methyl ethers that were largest in size, contained the most branches,
and had the shortest elongation (figure 5; electronic supplementary material, S20 and S21). Even when examining all 13 species,
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the divergence between T. eurychasma and T. stelarobusta continued to be pronounced, with each found at opposite ends of the
entire trait spectrum (figure 5). Occupying a middle ground between these two extremes, T. trituberculata was intermediate in all
three dimensions while still being significantly different from T. eurychasma and T. stelarobusta (figure 5; electronic supplementary
material, S20 and S21). Furthermore, while many of the ω-branch patterns were shared across multiple species, the three sympatric
web-building species each exhibited a distinct pattern from one another (figure 5a). Maximum common substructure analysis further
supported the divergence between T. eurychasma and T. stelarobusta, with each containing methyl ethers that separated into signifi-
cantly different groupings (electronic supplementary material, S7 and S8). Although less pronounced, significant structural
divergence was also found between the closely related sympatric spiny leg species, T. kamakou and T. waikamoi, with T. kamakou
having methyl ethers that were larger in size and contained fewer number of branches (figure 5; electronic supplementary
material, S20 and S21). The ω-branch patterns of the two species were also distinct, and again, the maximum common substructure
analysis revealed their methyl ethers separating into significantly different groupings (electronic supplementary material, S7–S10).
3. Discussion
Our study shows that males of Hawaiian Tetragnatha spiders use chemical signals to discriminate between conspecific and
co-occurring heterospecific females. Behavioural analysis showed that males preferred the silk extract of conspecific females
over those of sympatric heterospecific females (figure 1). In addition, where multiple species co-occur, these chemical signals
are highly species-specific showing no overlap between any of the species (figure 3). Moreover, there were significant differences
in the fundamental structure of these compounds, with higher differentiation between closely related sympatric species as
opposed to those occurring in allopatry (figure 5).

Chemical signals found on the silk of Tetragnatha spiders showed a clear role in species recognition. Behavioural results showed
that species from both the web-building clade and the spiny leg clade were able to distinguish conspecific from sympatric hetero-
specific mates, indicating the widespread nature of the use of chemicals in species recognition in Hawaiian Tetragnatha spiders,
whether or not they build capture webs. Even when males were tested with sympatric heterospecific females from a different
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methyl ether compound were: ME 32_C: F1,25 = 2.223, p = 0.148; ME 33_C1/C2: F1,25 = 0.224, p = 0.64; ME 33_M: F1,25 = 6.301, p = 0.019; ME 34_G: F1,25 =
6.63, p = 0.016; ME 35_B: F1,25 = 8.188, p = 0.008; ME 37_A: F1,25 = 4.03, p = 0.056.
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clade to their own, the results were the same as when males were tested with sympatric heterospecific females from their own
clade. This suggests that chemical signals allow individuals to differentiate conspecific mates from all other Tetragnatha species
found within a given community which is often composed of a mix of both web-building and spiny leg species. A key finding
of the current study was that, overall, there was very little overlap in the methyl ethers between species and most methyl
ethers were unique to a given species. Studies in other adaptive radiations, including Heliconius butterflies [17–20], Hawaiian Dro-
sophila [21], and Hawaiian Laupala crickets [23,24] have also shown that the chemical signals between coexisting species are
divergent. However, many compounds can be found shared across multiple species, as seen in the Heliconius butterflies where
no one compound is exclusive to a single species [20], and in some instances, the differences between species are largely due
to the changes in the relative amounts of the compounds rather than differences in the presence or absence of the compound.
This could suggest that the chemical differences between close relatives is more subtle in these insects than in Tetragnatha spiders.
This may not be surprising given that many of these insects use a multitude of other cues to communicate and may rely on the
combinatorial effect of multimodal signalling to recognize appropriate mates [9,45–49]. Although many spiders use vibratory com-
munication, either through web-borne or substrate-borne vibrations, sometimes using stridulatory structures [35–37], Tetragnatha
spiders lack an obvious courtship ritual such as web plucking or stridulation [30,34,50]. Our findings indicate that Tetragnatha
spiders can make use of chemical signals to recognize conspecifics without the use of vibratory or visual signals.

Chemical profiles between sympatric Hawaiian Tetragnatha showed particularly striking differences in the specific identity of
methyl ethers found in the silk extracts, with each species having a unique combination of methyl ethers. In comparison, allopatric
species had noticeable overlap in their profiles with one instance of complete overlap in the profile of a web-building and spiny leg
species from two separate sites. This pattern of reproductive character displacement suggests a role for reinforcement [51,52] with
stronger differentiation between taxa that are sympatric versus those that are allopatric [53–55]. In Hawaiian Tetragnatha spiders,
the greatest structural difference in the methyl ethers were found in the sympatric sibling species of the web-building clade,
T. stelarobusta, T. trituberculata and T. eurychasma where they differed significantly in the size of the compound, methyl branch
number, ω-branch position, and the chain elongation (electronic supplementary material, S7 and S11). Although T. trituberculata
had methyl ethers that were structurally intermediate compared to the extremes of T. stelarobusta and T. eurychasma, the structural
characteristics were still significantly diverged from either extreme. Less substantial but still significant, differences were also
found between the closely related sympatric species T. waikamoi and T. kamakou from the spiny leg clade. While the results
highlight the potential role of reinforcement, it is unclear how much signal divergence might have preceded the co-occurrence.

Lastly, a key component to understanding the mechanisms of reproductive isolation is how recognition cues change and evolve
between populations to understand how these cues may eventually lead to reproductive isolation between these populations. In our
study, we detected differences in the chemical profile between two populations of T. stelarobusta. The relative amount of methyl ethers
differed such that the most abundant compounds were those that differed the most from compounds found in the profile of other
closely related sympatric species (figure 4). In chemical signals, the extrinsic environment, often the diet, has been shown to play an
important role in driving the divergence of chemical profiles [56–59]. Strong dietary and/or environmental associations that differ
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may produce divergent chemical signals despite geographical overlap [17,59], or conversely, similar associations may produce more
shared compounds across species. Although we cannot rule this out, diet does not seem to play a crucial role in the chemical signals
of Tetragnatha spiders as the chemicals significantly differed even between species that share dietary preferences (as seen in the spiny
leg species and some web-building species) and the same exact chemical signal was found in T. filiciphilia and T. waikamoi, a web
building and spiny leg species that differ in their diet [60]. Moreover, the two sites in our study, Upper Waikamoi (a closed Ohi’a
dominated mesic forest) and Lower Waikamoi (a closed Koa and Ohi’a dominated mesic forest) [61] fell within the same overall
forest type with roughly similar rainfall, though the higher elevation at the upper site (1900–2000 m) compared to the lower (1400
m) is associated with a lower temperature. Our results seem to align more with previous work showing that recognition cues between
populations vary according to the assemblage of close relatives co-occurring at a given site and the associated complexity of the
biotic signalling environment [62–67]. Thus, our results are congruent with the hypothesis that chemical profiles may by shaped
by reproductive character displacement due to the composition of species within the community.

In conclusion, adaptive radiations have been crucial in helping develop our understanding of the mechanisms involved in spe-
ciation. This study highlights the key role of chemistry in species recognition among an adaptive radiation of Hawaiian spiders
and highlights the prominent role of chemical signals in adaptive radiation, providing a mechanism for definitive species recog-
nition even in the absence of other possible cues. Future work using the island chronology will allow us to examine the relative
timing of signal divergence and associated reproductive isolation, relative to ecological shifts, in fostering speciation [68].
4. Methods
(a) Study organisms
Adult female, adult male and juvenile spiders of 11 different Hawaiian Tetragnatha species were collected from The Nature Conservancy of
Hawaii’s Waikamoi Preserve on the Hawaiian island of Maui during the summers of 2016–2020. The majority of spiders were collected
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from two sites: Upper Waikamoi at 1800–1950 m and Lower Waikamoi at 1380–1500 m. At Upper Waikamoi, T. eurychasma, T. kamakou,
T. quasimodo, T. stelarobusta, T. trituberculata and T. waikamoi can be found in sympatry while at Lower Waikamoi T. brevignatha, T. filiciphilia,
T. quasimodo, T. restricta, T. stelarobusta and T. waikamoi can be found in sympatry [27]. On the other hand, T. acutawas collected at a higher
elevation site just above Upper Waikamoi at around 2000 m, while the undescribed ‘Crater Elongate’, a dry habitat specialist, was
collected along the Haleakala Supply Trail and inside Haleakala Crater at 2000–2200 m. California Tetragnatha spiders, T. pallescens
and T. versicolor, were collected from Bodega Marine Reserve and Angelo Coast Range Reserve respectively. Once collected, specimens
were housed in modified 11 × 7 × 6 cm Tupperware containers with wet cotton balls for moisture and a plastic stick for hiding. The Hawai-
ian spiders were placed in a large incubator set to a thermal cycle of 10°C to 15°C and a 12 h light and 12 h dark cycle while the California
spiders were housed at room temperature with a 12 h light and 12 h dark cycle. All spiders were fed once a week with roughly four
Drosophila hydii or eight Drosophila melanogaster each.

(b) Silk and silk extract choice trials
To assess whether males of Hawaiian Tetragnatha spiders could discriminate conspecific from heterospecific females using silk produced
by the females, dragline (major ampullate) silk strands of conspecific and heterospecific females were presented to male spiders in a silk
choice trial (figure 1a). We used the same protocol as that described in Adams et al. [42]. The draglines naturally produced from the
females were placed so that the silk strands were attached to the horizontal stick in a Y-formation. A male was then placed on the opposite
end of the horizontal stick facing the silk strands. If the male did not move from this position within 30 min, the male was removed and
replaced with a new male. The male was considered to have made a choice when he moved off the stick and walked up one of the silk
strands. All trials were conducted in the dark under a dim red light to mimic nocturnal conditions and recorded using a smartphone
camera. The videos were checked to see if the males touched both silk strands since direct contact with the silk was considered necessary
to perceive contact chemical signals. A total of 17 trials was conducted with T. brevignatha, 21 trials with T. eurychasma, 17 trials with
T. quasimodo, 20 trials with T. stelarobusta, 14 trials with T. trituberculata and 16 trials with T. waikamoi males. For each species tested,
conspecific females from the same site and sympatric heterospecific females from the same site were chosen (specific combinations
listed in electronic supplementary material, S1). Heterospecific species from the same clade (spiny leg clade or web-building clade)
were chosen for all species except for T. brevignatha and T. stelarobusta.

To assess whether males of Hawaiian Tetragnatha spiders could discriminate conspecific from heterospecific females using chemical
signals alone, chemicals from the dragline silk of conspecific and heterospecific females were extracted with dichloromethane (DCM,
analytical grade) and the extracts were presented to males on cotton threads in a silk extract choice trial (figure 1b). To make the silk
extracts, dragline silk that was naturally deposited inside the Tupperware enclosures was collected by wrapping the silk around a
clean metal spatula and then pushing it into a tight ball using clean tweezers. The silk ball was then placed in a 2 ml glass vial (Agilent
Technologies) and soaked in 0.2 ml of DCM for 30 min. After 30 min, clean tweezers were used to remove the silk ball, the vials were
closed and secured with parafilm, and the extracts stored at −20°C until further use. Behavioural trials conducted with these silk extracts
were performed according to the protocol described in Adams et al. [42]. Two pieces of cotton thread were attached to the bamboo sticks to
form a Y-shape. Silk extracts of the females were dispensed with a glass pipette onto each cotton thread. The extracts were then allowed to
set for 1 min, giving time for the DCM to evaporate. A male was placed at the opposite end of the bamboo stick in the same manner as in
the silk choice trials. The male was considered to have made a choice when he moved off the bamboo stick and walked up one of the
cotton threads. All trials were conducted in the dark under red light and recorded using a smartphone camera. A total of 23 trials
were conducted with T. brevignatha, 21 trials with T. eurychasma, 30 trials with T. quasimodo, 29 trials with T. stelarobusta, 17 trials with
T. trituberculata and 25 trials with T. waikamoi males. As with the silk choice trials, for each species tested in the silk extract choice
trials, silk extracts of conspecific females from the same site and silk extracts of sympatric heterospecific females from the same site
were chosen (electronic supplementary material, S1). Finally, chi-square analyses were performed to evaluate male choice for both the
silk choice trials and silk extract choice trials.

(c) Chemical analysis of silk extracts
Dragline silk extracts of Tetragnatha spiders were analysed by GC-MS (Agilent 7890A/5975C). Dragline extracts from 22 T. acuta, 29
T. brevignatha, seven T. eurychasma, 23 T. filiciphilia, 11 T. kamakou, seven T. pallescens, 33 T. quasimodo, eight T. restricta, 28 T. stelarobusta,
21 T. trituberculata, 18 T. versicolor, 30 T. waikamoi and five ‘Crater Elongate’ were analysed. The gas chromatography was fitted with a
fused silica capillary column (Agilent, DB-5MS, 30 m × 0.32 mm× 0.25 µm) with helium as the carrier gas. Extracts were analysed in
splitless mode, with a column oven temperature program of 50°C for 5 min, increased by 5°C min−1 to 320°C. Injector and transfer
line temperatures were maintained at 250°C.

GC-MS data were analysed in OpenChrom [69] by detecting chromatogram peaks using the First Derivative Peak Detector feature at
the highest threshold. Peak integration areas and linear retention indices were calculated using the Trapezoid Peak Integrator and Reten-
tion Index Calculator features respectively. Previous work showed that methyl ethers are the most abundant compound found in the
Tetragnatha spider silk extracts and were species-specific [42]. As such, in this study, peaks with a strong m/z 45 were identified as
methyl ethers [41] and added to a user-built methyl ether library. Methyl ether peaks were aligned manually, based on retention time,
retention index and visual comparison with spectra in the library. For each individual chromatogram, relative peak contributions of
each methyl ether were calculated by dividing the peak area of a specific methyl ether by the sum of the peak areas of all methyl
ethers found in the sample.

(d) Structural analysis of compounds
To assess the structural evolution of the methyl ethers found across the spiders, the structures of the most common methyl ethers found in
each species were determined by the derivatization of the methyl ethers in two separate reactions using previously established procedures
in Adams et al. [42]: transformation into cyanides via iodination [43] and separate oxidation with RuO4 into methyl esters [44]. Using the
information from the derivatives, the total carbon number including the methoxy group, the methyl branching pattern, the ω-branching
pattern represented as the methyl branching pattern counted from the opposite end of the methoxy group, the carbon backbone length,
and the elongation amount represented as the number of carbons between the methoxy group and the methyl branch closest to the



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

291:20232340

9
methoxy group was determined. ω-Branching patterns were examined in this study since these methyl ethers are most likely to be derived
from fatty acid biosynthesis and are proposed to be constructed from the end opposite to the methoxy group, the ω-end, similar to insect
hydrocarbons or long-chain alcohols [70,71]. Average values for each structural category were then calculated for every species by
averaging the structural properties of the methyl ethers found in all the individual profiles of a given species.

(e) Statistical analysis of spider chemicals
To assess whether the chemical profiles of Hawaiian Tetragnatha exhibit species-specific patterns both in the identity and abundance of
methyl ethers, a non-metric multidimensional scaling (NMDS) ordination plot was created using the individual-level dataset in the
vegan package in R run with two dimensions and 100 iterations [72,73]. Shepard plots were created to see goodness-of-fit. To test for sig-
nificant differences in chemical profiles between species, permutational multivariate analysis of variance using distance matrices
(PERMANOVA) was performed using the adonis function in the vegan package [72]. Since PERMANOVA is sensitive to differences in
intra-group dispersions [74], an analysis of multivariate homogeneity of group dispersions (PERMDISP) was performed using the beta-
disper and permutest functions, also in the vegan package. All methyl ether profile dissimilarities were calculated using the Bray–Curtis
index. Significance was assessed via 999 permutations. Lastly, to assess whether there were differences in the chemical profiles between the
sexes and populations within a species, PERMANOVA and PERMDISP analyses were also performed on species grouped by sex (male
versus female in T. acuta, T. brevignatha, T. filiciphilia, T. kamakou, T. quasimodo, T. stelarobusta, T. trituberculata and T. waikamoi) and popu-
lation location (Upper versus Lower Waikamoi in T. stelarobusta). To compare the chemical distance between sympatric and allopatric
species pairs, a Kruskal–Wallis and Flingner–Killeen test was performed in R using the Bray–Curtis distance between all species pairs.

To assess whether the chemical profile of closely related species differ more than distantly related species, a reduced phylogenetic tree
modified from Kennedy et al. [33] was projected onto the two-dimensional chemical space defined by the NMDS plot. The position of the
end nodes in chemical space were calculated by taking the centroid of the points plotted on the NMDS for each species, and phylogenetic
relationships were depicted through solid black lines extending vertically through time. The end points were coloured according to the
phylogenetic branch length to the nearest node corresponding to each species using the ChronoPTS2D function in the ‘evoldiver’ package
[75] combined with the package ‘rgl’ [76] to generate a rotating three-dimensional gif. To visualize the divergence pattern of the chemical
profiles through the phylogeny, a disparity through time (DTT) plot was used. The DTT plot visually represents the average relative
disparity of each subclade at a given time in the phylogeny by dividing the average disparity of all subclades by the average disparity
of the entire clade [77].

A table of the most common methyl ethers were made for each species by listing methyl ethers that were found in more than 50% of
the individuals in each species, and those that had an average relative abundance greater than 50%. This ensured that compounds found in
large amounts as well as those found in lower amounts but found consistently between individuals of a given species were all represented.
For species with significant difference between male and female methyl ether profiles (as determined by ADONIS), a shortlist of methyl
ethers for each sex was determined. The two lists were then combined to give a species-level shortlist.

( f ) Statistical analysis of compound structure
To analyse the similarities in the structural patterns of the most common methyl ethers found across the species, maximum common sub-
structure (MCS) was used as a metric for chemical similarity [78,79]. MCS calculations were conducted on the entire structure of the
methyl ethers as well as the structures without the methoxy functional group. The MCS and subsequently the Tanimoto coefficient
[78] were then computed for all pairwise combinations of the most common methyl ethers. To yield a dissimilarity value between chemi-
cal pairs, the Tanimoto coefficient was subtracted from 1. A distance matrix was created using the chemical-pair dissimilarities. All MCS
calculations were performed using the R package ‘fmcsR’ [79]. Hierarchical clustering based on the distance matrix was used to construct a
dendrogram and group the methyl ethers into clusters based on their structural similarity. The optimal number of clusters was determined
by silhouette analysis. Cluster stability was assessed via bootstrapping with 1000 resamples using the function clusterboot in the R pack-
age ‘fpc’ [80]. The ancestral state reconstruction of the odd and even ω-branching patterns found in the species was performed using the R
toolkit ‘MBASR’ [81] run for 10 000 generations and sampled every 100 generations. Finally, character states of the total carbon number,
number of methyl branches, and elongation through the phylogeny were visualized using a maximum-likelihood approach implemented
using the function ‘contMap’ from the ‘phytools’ package [82,83], and the traitgram visualized using the ‘phenogram’ function in the
‘phytools’ package [82].
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