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Flexible Cobamide Metabolism in Clostridioides (Clostridium)
difficile 630 �erm

Amanda N. Shelton,a Xun Lyu,b Michiko E. Tagaa

aDepartment of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
bDepartment of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA

ABSTRACT Clostridioides (Clostridium) difficile is an opportunistic pathogen known for
its ability to colonize the human gut under conditions of dysbiosis. Several aspects of its
carbon and amino acid metabolism have been investigated, but its cobamide (vitamin
B12 and related cofactors) metabolism remains largely unexplored. C. difficile has seven
predicted cobamide-dependent pathways encoded in its genome in addition to a nearly
complete cobamide biosynthesis pathway and a cobamide uptake system. To address
the importance of cobamides to C. difficile, we studied C. difficile 630 Δerm and mutant
derivatives under cobamide-dependent conditions in vitro. Our results show that C. diffi-
cile can use a surprisingly diverse array of cobamides for methionine and deoxyribonu-
cleotide synthesis and can use alternative metabolites or enzymes, respectively, to by-
pass these cobamide-dependent processes. C. difficile 630 Δerm produces the cobamide
pseudocobalamin when provided the early precursor 5-aminolevulinic acid or the late
intermediate cobinamide (Cbi) and produces other cobamides if provided an alternative
lower ligand. The ability of C. difficile 630 Δerm to take up cobamides and Cbi at micro-
molar or lower concentrations requires the transporter BtuFCD. Genomic analysis re-
vealed genetic variations in the btuFCD loci of different C. difficile strains, which may re-
sult in differences in the ability to take up cobamides and Cbi. These results together
demonstrate that, like other aspects of its physiology, cobamide metabolism in C. difficile
is versatile.

IMPORTANCE The ability of the opportunistic pathogen Clostridioides difficile to cause
disease is closely linked to its propensity to adapt to conditions created by dysbiosis of
the human gut microbiota. The cobamide (vitamin B12) metabolism of C. difficile has
been underexplored, although it has seven metabolic pathways that are predicted to re-
quire cobamide-dependent enzymes. Here, we show that C. difficile cobamide metabo-
lism is versatile, as it can use a surprisingly wide variety of cobamides and has alterna-
tive functions that can bypass some of its cobamide requirements. Furthermore, C.
difficile does not synthesize cobamides de novo but produces them when given cobam-
ide precursors. A better understanding of C. difficile cobamide metabolism may lead to
new strategies to treat and prevent C. difficile-associated disease.

KEYWORDS 5-aminolevulinic acid, Clostridioides difficile, Clostridium difficile,
cobalamin, cobamide, corrinoid enzymes, methionine synthase, nutrient transport,
ribonucleotide reductase, vitamin B12

The human gut microbiota is a complex community composed of hundreds to
thousands of species of bacteria, archaea, and eukaryotic microbes (1). Members of

this community compete for nutrients such as carbon sources but also release metab-
olites that benefit other members. The exchange of B vitamins, particularly vitamin B12,
is thought to be prevalent in many environments because most bacteria lack the ability
to synthesize some of the cofactors that they require for enzyme catalysis (2–6) and
instead must acquire them from other organisms (7). Such nutrient cross-feeding
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interactions can influence bacterial metabolism in ways that can affect not only the
microbiota but also host health (8, 9).

Clostridioides (Clostridium) difficile is a human intestinal pathogen that is among the
most common causes of nosocomial infections, with nearly 300,000 health care-
associated cases per year in the United States (10). C. difficile colonization of the gut is
correlated with dysbiosis of the gut microbiota (11). Its abilities to germinate from
spores, proliferate in the gut, and cause disease are impacted both positively and
negatively by ecological and metabolic factors (12–14). The global alteration of the gut
metabolome following antibiotic treatment is correlated with increased susceptibility
to C. difficile infection, and recent work has linked changes in the relative abundance of
specific metabolites to changes in the microbiome using model systems (11, 15–17).
For example, succinate availability increases after disturbance of the microbiota, allow-
ing C. difficile expansion in a mouse model (18). Additionally, specific commensal
bacteria have been shown to produce compounds that stimulate C. difficile metabolism.
In a biassociation, Bacteroides thetaiotaomicron can break down host mucin and
produce sialic acid, which can be used by C. difficile for expansion in the gut (19). C.
difficile can also induce other members of the microbiota to produce indole, which is
thought to create a more favorable environment for the pathogen by inhibiting
competing microbes (20).

Some interactions with microbiota members have also been shown to be inhibitory
to C. difficile. Coculturing with certain Bifidobacterium spp. on particular carbon sources
reduces C. difficile toxin production relative to monoculture (21). While primary bile
acids produced by the host promote C. difficile spore germination, Clostridium scindens
and other 7�-dehydroxylating Clostridia transform these compounds into secondary
bile acids, which are inhibitory to C. difficile (22, 23). The latter example illustrates that
compounds in the same class can have different effects on the disease state. Given the
complexity of metabolic interactions in the mammalian gut, many additional microbial
metabolites likely influence the ability of C. difficile to colonize and persist in the gut.

One class of metabolites that has not been explored for its ability to affect C. difficile
growth and virulence is cobamides, the vitamin B12 (also called cobalamin) family of
cofactors. Cobamides are used in diverse metabolic pathways, including methionine
synthesis, deoxyribonucleotide synthesis, acetogenesis, and some carbon catabolism
pathways. These reactions are facilitated by fission of the Co-C bond to the cobamide
upper ligand, which can be a 5=-deoxyadenosyl group for radical reactions, a methyl
group for methyltransferase reactions, or a cyano group in the inactive vitamin form
(24) (labeled “R” in Fig. 1A). Over 80% of all sequenced bacteria (25–27) and 80% of
sequenced human gut bacteria (2, 28, 29) have one or more cobamide-dependent
enzymes, suggesting that cobamides are widely used cofactors across microbial eco-
systems. Strikingly, fewer than 40% of bacterial species are predicted to produce
cobamides de novo (2, 25–28), and therefore, over half of the bacteria that use
cobamides must acquire them from their environment. Cobamides vary in the structure
of the lower ligand (Fig. 1A and B), and organisms studied to date are selective in which
cobamides they can use (28, 30–37). Seven cobamides, in addition to the cobamide
precursor cobinamide (Cbi) (Fig. 1C), have been detected in the human gut (38). In an
environment with plentiful, diverse cobamides and cobamide precursors, a microbial
species that requires a particular cobamide can either import that cobamide, synthesize
it de novo, chemically remodel available cobamides to the preferred structure, or alter
its need for the cobamide by using alternative pathways (8, 39).

The seven predicted cobamide-dependent enzymes encoded in the C. difficile
genome are involved in methionine synthesis, nucleotide metabolism, and carbon
metabolism (Fig. 2). When grown with amino acids and glucose as carbon and energy
sources in vitro, C. difficile does not require cobalamin supplementation (40). However,
in model infection systems, cobamide-dependent pathways may be important for
virulence and growth. For example, access to ethanolamine catabolism may be impor-
tant in modulating virulence, as deletion of EutA, the reactivating factor required for the
activity of the cobamide-dependent ethanolamine ammonia lyase (EutBC), in C. difficile
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strain 630 Δerm reduces the mean time to morbidity in a hamster model (41). Addi-
tionally, metabolic models and transcriptomics (42, 43) suggest that the cobamide-
dependent Wood-Ljungdahl carbon fixation pathway is an important electron sink, and
an experimental study suggests that it may be used for autotrophic growth by some C.
difficile strains (44).

The observation that C. difficile can grow without added cobamides in vitro (40) suggests
that it may not require cobamides under these conditions or that it can biosynthesize
cobamides. However, all sequenced strains of C. difficile are missing HemA and HemL, the
first two enzymes in the cobamide biosynthesis pathway required for the production of the
precursor 5-aminolevulinic acid (ALA) (45) (Fig. 1C). Therefore, C. difficile is predicted to be
able to produce a cobamide only when ALA is available, as has been observed in three
other bacteria (25) (Fig. 2). In order to use cobamide-dependent pathways, we predict that
C. difficile requires cobamides or precursors such as ALA from the gut. While ALA is an
intermediate made in all tetrapyrrole-producing organisms, including the host, cobamides
are produced by only some bacteria and archaea (46).

To address the importance of cobamides for C. difficile metabolism and to understand
how C. difficile acquires cobamides, we examined C. difficile 630 Δerm and mutant deriva-
tives in vitro under cobamide-dependent conditions. We found that the bacterium can use
a surprisingly diverse array of cobamides for growth requiring cobamide-dependent me-
thionine and deoxyribonucleotide synthesis and can use alternative nutrient sources or
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FIG 1 Structures of cobamides and cobamide precursors. (A) Structure of cobalamin (B12). The corrin ring,
nucleotide loop, and lower ligand are labeled. (B) Lower ligands of cobamides analyzed in this study, with
the three structural classes labeled. The lower ligand name, abbreviation for the cobamide containing the
lower ligand, and alternative names of the cobamide (when applicable) are indicated. (C) Cobamide
precursors used in this study. R, upper ligand (-CN, -OH, -CH3, or 5=-deoxyadenosyl).
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enzymes to fulfill its metabolic needs. In addition to importing and using a variety of
cobamides, when provided with ALA or the late intermediate Cbi, C. difficile 630 Δerm can
produce the cobamide pseudocobalamin and can produce other cobamides if provided an
alternative lower ligand. Together, these results show that C. difficile is versatile in its
cobamide metabolism.

RESULTS
C. difficile requires methionine or a cobamide for growth. To investigate

cobamide-dependent metabolism in the model C. difficile strain 630 Δerm, we sought
to culture the organism under conditions that require specific cobamide-dependent
enzymes. The C. difficile genome encodes the cobalamin-dependent methionine syn-
thase MetH but does not contain the cobalamin-independent alternative enzyme MetE.
The absence of a complete cobamide biosynthesis pathway suggests that C. difficile
requires either methionine or a cobamide in its growth medium. Previously, methionine
was classified as a “growth-enhancing,” but not essential, amino acid in a medium
containing cyanocobalamin (vitamin B12) for seven of eight strains tested (40, 47). To
test whether C. difficile can use cobamides for methionine synthesis and to identify the
specific cobamides that support its MetH-dependent growth, we cultured C. difficile in
a defined medium lacking methionine with a range of concentrations of cyanocobal-
amin, Cbi, and eight other cyanylated cobamides that we purified. C. difficile was unable
to grow in this medium without cobamide or methionine addition (Fig. 3A), suggesting
that, as predicted, it cannot produce cobamides de novo to support the activity of
MetH. Remarkably, unlike other bacteria that have been reported to use a limited
number of cobamides for methionine synthase activity (28, 48, 49), all of the cobamides
and Cbi were able to confer high growth yields to C. difficile at concentrations as low
as 1 nM (Fig. 3A). Methionine addition also supported growth, although higher con-
centrations were required than for cobamides (Fig. 3B). We also observed robust
growth with the addition of ALA (Fig. 3C).
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C. difficile growth with the ribonucleotide reductase NrdJ requires a more
restricted set of cobamides. C. difficile genomes encode homologs of the cobalamin-
dependent (class II) ribonucleotide reductase (RNR) (nrdJ [CDIF630erm_RS07280]) as
well as two cobalamin-independent RNRs: an oxygen-dependent (class I) RNR (encoded
by nrdE [CDIF630erm_RS16325] and nrdF [CDIF630erm_RS16320]) and an oxygen-
sensitive (class III) RNR (nrdD [CDIF630erm_RS00990] and nrdG [CDIF630erm_RS00995]).
In principle, any of these three isozymes could be used for deoxyribonucleotide
synthesis from ribonucleotides, although under anaerobic conditions, only the class II
and class III RNRs are expected to function. Cobamide addition is not required for
anaerobic growth of the parent strain C. difficile 630 Δerm ΔpyrE in a Casamino Acids
medium (Clostridium difficile defined medium [CDDM]) with glucose, and the addition
of cobamides or cobamide precursors did not affect the growth yield (see Fig. S1 in the
supplemental material), suggesting that the class III RNR NrdDG is functional under
these conditions. To test whether the class II RNR NrdJ is functional, we deleted the
nrdD and nrdG genes while providing exogenous cobalamin, using the allelic exchange
system in a ΔpyrE background (50). This strain could grow only with cobalamin
addition, suggesting that NrdJ is functional and NrdEF is not under these growth
conditions (Fig. 4A). To determine which cobamides it requires, the ΔnrdDG strain was
grown with the same cobamides and precursors as those in Fig. 3. In contrast to growth
under MetH-requiring conditions, the NrdJ-dependent conditions showed more selec-
tivity in which cobamides supported growth (Fig. 4A), as expected based on studies
with other class II RNRs (33, 36, 51, 52). There was little growth with [Cre]Cba, [Phe]Cba,
and [5-OHBza]Cba (see Fig. 1B for cobamide abbreviations) (Fig. 4A). The addition of
ALA also supported NrdJ-dependent growth (Fig. 4B).

C. difficile produces pseudocobalamin from the precursor ALA via the cbi
genes. The observation that C. difficile could grow under cobamide-dependent condi-
tions with ALA or Cbi (Fig. 3A and C and Fig. 4) suggests that it can produce a cobamide
from these precursors using the cobamide biosynthetic genes encoded in its genome
(25). To test this prediction, the corrinoid fraction, which includes cobamides and late
cobamide precursors, including Cbi, was extracted from the cell pellets of C. difficile 630
Δerm grown with either ALA or Cbi. Consistent with our predictions, high-performance
liquid chromatography (HPLC) analysis of the extracted corrinoids showed that C.
difficile produced a cobamide only when ALA or Cbi was added (Fig. 5A). We con-
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structed a strain lacking the corrin ring biosynthesis genes cbiKLJHGFTEDC, and, as
predicted, corrinoid analysis of this strain demonstrated that these genes are necessary
for cobamide synthesis from ALA but not Cbi (Fig. 5A). Because C. difficile lacks all
known genes for the biosynthesis of benzimidazoles and the attachment of phenolic
lower ligands, it is predicted to be incapable of producing benzimidazolyl or phenolyl
cobamides but may produce a purinyl cobamide (49, 53–59). Indeed, the major
cobamide present in C. difficile corrinoid extracts coeluted with the purinyl cobamide
pseudocobalamin (Fig. 5A). The UV-visible (UV-Vis) spectrum of the major cobamide
was consistent with a pseudocobalamin standard (Fig. S2C). Mass spectrometry analysis
verified that the major cobamide extracted from cultures grown with ALA is pseudo-
cobalamin (Fig. S2A and B).

C. difficile can perform guided biosynthesis but does not remodel cobamides.
Some bacteria can perform guided biosynthesis, a process in which an exogenously
provided, nonnative lower ligand base is incorporated into a cobamide (32, 36, 48, 60,
61). To test if C. difficile is capable of guided biosynthesis to produce cobamides other
than its native pseudocobalamin, either dimethylbenzimidazole (DMB) (the lower
ligand of cobalamin) (Fig. 1A) or a related compound, benzimidazole (Bza) (Fig. 1B), was
added to cultures containing either ALA or Cbi. Analysis of corrinoid extracts showed
that C. difficile could attach either of these exogenous lower ligands to form cobalamin
and [Bza]Cba, respectively, with both precursors (Fig. 5B). A small amount of pseudo-
cobalamin was also recovered in cultures containing Cbi with Bza (Fig. 5B).

Some bacteria and archaea are able to remodel cobamides by removing the lower
ligand and nucleotide loop with the amidohydrolase enzyme CbiZ and rebuilding the
cobamide with a different lower ligand (31, 62–64). We were unable to identify a cbiZ
homolog in the C. difficile genome, and accordingly, we did not observe evidence of
remodeling: when cobalamin, [2-MeAde]Cba, or [Cre]Cba was provided to C. difficile,
the same cobamides were recovered from the cells (Fig. 6A).

C. difficile requires btuFCD for efficient uptake of cobamides and Cbi. The
presence of cobamides in the cellular fraction of cultures grown with either Cbi or a
cobamide at nanomolar concentrations (Fig. 5 and Fig. 6A) suggested that C. difficile
takes up Cbi and cobamides via an active transporter. We identified a candidate
cobalamin uptake operon (btuFCD) downstream of a sequence annotated as a cobal-
amin riboswitch, suggesting that these genes function in corrinoid import, and con-
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structed a deletion mutant of this operon (27, 28, 65–70). No corrinoids could be
detected in the cellular fraction of the �btuFCD mutant grown with 10 nM Cbi or
cobalamin (Fig. 6A). In contrast, ALA uptake is apparently unaffected in the �btuFCD
mutant, as pseudocobalamin can be recovered from the cellular fraction when ALA is
provided (Fig. 6A). Furthermore, the ΔbtuFCD mutant grew poorly in methionine-free
medium even when Cbi or cobalamin was added at concentrations that were 103- to
104-fold higher than what is required for the growth of the parental strain (Fig. 6B). The
ability of methionine or ALA to support growth remained unaffected by the ΔbtuFCD
mutation (Fig. 6B). Interestingly, genomic analysis identified strains of C. difficile that
contain a tlpB transposon insertion in btuC, likely rendering the BtuFCD transporter
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nonfunctional (Fig. 7A) (71). Of the genomes analyzed, the tlpB insertion in this locus
appears to be restricted to strains in the PCR ribotype 027 (RT027) clade, including the
hypervirulent strain R20291, based on a multilocus sequence typing (MLST) tree of C.
difficile strains (Fig. 7B, red labels). This observation suggests that unlike strain 630 Δerm
examined in this study, members of the RT027 clade may be unable to take up
cobamides and Cbi efficiently.

DISCUSSION

The potential of C. difficile to cause disease is closely linked to its ability to fill
ecological niches made available by gut microbiota dysbiosis (13), using a suite of
metabolic pathways to make use of newly available nutrient sources. C. difficile has an
unusually high number of cobamide-dependent pathways encoded in its genome (25),
but their functions have been underexplored. Here, we show that C. difficile is able to
use many cobamides and cobamide precursors in two of its seven cobamide-
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dependent pathways. The promiscuous use of cobamides and the ability to bypass
these cobamide-dependent pathways highlight the metabolic flexibility of C. difficile.

The cobalamin-dependent methionine synthase MetH is the most abundant
cobamide-dependent enzyme encoded in bacterial genomes (25) and is found in
numerous organisms in all three domains of life, including humans (24). Compared to
the majority of other MetH homologs that have been studied, our MetH-dependent
growth results indicate that the C. difficile MetH homolog is unusually promiscuous in
its cobamide selectivity. For example, several eukaryotic algae grew robustly under
MetH-dependent conditions with cobalamin but did not grow with pseudocobalamin
at the same concentrations (33). The human gut commensal bacterium Bacteroides
thetaiotaomicron could use benzimidazolyl and purinyl cobamides for MetH-dependent
growth but could not use phenolyl cobamides (28). An example of MetH selectivity in
vitro was in Spirulina platensis, where the purified enzyme bound its native cobamide,
pseudocobalamin, with a higher affinity than for cobalamin (72). An exception to this
observed selectivity is another gut pathogen, Salmonella enterica, which can use its
native cobamide, pseudocobalamin, in addition to cobalamin, [Phe]Cba, and [Cre]Cba,
for MetH-dependent growth, although other cobamides were not tested (48, 49). The
versatility of C. difficile’s cobamide use is notable given the diversity of cobamides that
have been detected in the gut (38).
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In contrast to MetH, our growth experiments indicate that the selectivity of C. difficile
NrdJ is more similar to those of other organisms that rely on NrdJ for growth. For
example, Sinorhizobium meliloti was unable to grow with [Cre]Cba and grew poorly
with pseudocobalamin relative to its native cobamide, cobalamin (36); Lactobacillus
leichmannii could use only benzimidazolyl or purinyl cobamides (51); and Euglena
gracilis grew well with cobalamin and [Bza]Cba and poorly with pseudocobalamin,
[5-OHBza]Cba, and [Cre]Cba (33, 52). Unlike MetH, the NrdJ enzyme requires cobamides
that can adopt the “base-on” configuration in which the lower ligand base is coordi-
nated to the cobalt ion throughout the catalytic cycle (24). Phenolyl cobamides are
unable to adopt the base-on configuration, so their inability to support growth under
NrdJ-dependent conditions was expected. C. difficile 630 Δerm also contains an active
class III cobamide-independent RNR, NrdDG, which may be an important strategy to
maintain deoxyribonucleotide synthesis when cobamides are scarce. However, in other
species, under certain conditions, the class II RNR provides an advantage over other
RNR classes, such as during oxidative stress (73), although the conditions where NrdJ
would provide an advantage for C. difficile have yet to be uncovered.

Seven different cobamides and the precursor Cbi have been detected in human
feces (38). In stool samples of individuals not taking cobalamin supplements, the
average amount of total corrinoid present is approximately 1,300 ng per g of feces,
roughly equivalent to 1 �M (38). Cbi is found at tens of nanograms per gram (38).
Growth experiments under MetH- and NrdJ-dependent conditions showed that C.
difficile 630 Δerm reached maximum growth yields with as little as 1 nM cobamide or
Cbi (Fig. 3 and 4). Based on the absence of corrinoids in the cellular fraction of a 630
Δerm ΔpyrE ΔbtuFCD strain (Fig. 6), we infer that strains with an insertion in btuC (Fig.
7), including the hypervirulent R20291 and CD196 strains (71), would require cobam-
ides or Cbi at extracellular concentrations higher than 100 �M if relying on cobamide-
dependent enzymes. This suggests that these strains may not be able to use the
cobamides or Cbi present in the gut.

Our results show that not only is C. difficile able to use multiple cobamides to
support its metabolism, but it can also use the early precursor ALA to produce
pseudocobalamin. The ability to use ALA to produce a cobamide, and, thus, not strictly
rely on cobamide or Cbi uptake, could be important to strains with a transposon
insertion in the btuC gene (Fig. 7) (70, 74). ALA concentrations in the human gut have
not been reported. However, we speculate that, similar to cobamides and Cbi, ALA and
possibly other early cobamide precursors could be provided by other members of the
microbiota. Alternatively, ALA could be provided by the host either through the diet or
via the biosynthesis of heme, which also uses ALA as a precursor. Members of the
commensal gut microbiota have been reported to be able to salvage ALA (25),
suggesting that ALA could be available in the gut.

C. difficile is also able to incorporate nonnative lower ligands to form benzimidazolyl
cobamides (guided biosynthesis). Free benzimidazole bases have been found in animal
gastrointestinal tracts, such as in rumen fluid and termite guts (75), but benzimidazole
levels in the human gut have not been measured. The cobamides used by C. difficile
could therefore also vary with the presence of different benzimidazole-producing
organisms in the microbiota. Our results show that pseudocobalamin and most benz-
imidazolyl cobamides support the growth of C. difficile equally for the two pathways
that we investigated in this study, but the cobamide preferences of the other five
cobamide-dependent pathways have not been investigated.

We have identified cobamides and precursors that C. difficile can use in vitro, but which
cobamides or cobamide precursors it predominantly uses in the gut remain to be discov-
ered. Evidence from transcriptomics is ambiguous with respect to the expression of genes
encoding cobamide-dependent enzymes or cobamide biosynthesis during infection, likely
due to differences in study design (15, 43, 76–78). Since both diet and the microbiota can
contribute to the cobamide profile in the gut (38, 79, 80), the availability of cobamides may
vary significantly across infection systems and affect the expression and use of cobamide
biosynthesis and cobamide-dependent pathways by C. difficile. In one study, hemB, which
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encodes the enzyme that converts ALA to the next intermediate, porphobilinogen, was
among the most highly expressed genes in C. difficile strain VPI 104363 in a mouse model
(43), suggesting that C. difficile produces cobamides from ALA in the gut. How the
cobamide content in the gut environment changes during C. difficile infection is unknown,
but since much of the cobamide content in the lower gastrointestinal tract is produced by
resident gut microbes (79, 80), it is possible that cobamide abundances change during
dysbiosis. Further in vivo studies are needed to determine the extent to which cobamide
metabolism is important for C. difficile-associated disease.

MATERIALS AND METHODS
Bacterial strains and growth conditions. C. difficile 630 Δerm, an erythromycin-sensitive derivative

of the isolate 630 (81), and C. difficile 630 Δerm ΔpyrE, a derivative of 630 Δerm with uracil auxotrophy
(50), were streaked from frozen stocks onto brain heart infusion medium supplemented with 5 g/liter
yeast extract and 0.1% L-cysteine (BHIS) agar (82) before being transferred to Clostridium difficile defined
medium (CDDM) containing Casamino Acids (83) and 8 g/liter glucose. Agar plates and 96-well plates
containing liquid cultures were incubated at 37°C in an anaerobic chamber (Coy Labs) containing 10%
H2, 10% CO2, and 80% N2. For C. difficile 630 Δerm ΔpyrE and derived strains, 5 �g/ml uracil was included
in all defined media. For corrinoid extractions and NrdJ phenotype experiments, strains were cultured in
CDDM plus 8 g/liter glucose. For MetH phenotype experiments, CDDMK plus 8 g/liter glucose without
methionine was used. CDDMK contains the same salts, trace metals, and vitamins as CDDM, but the
Casamino Acids, tryptophan, and cysteine are replaced with the following individual amino acids:
100 mg/liter histidine, 100 mg/liter tryptophan, 100 mg/liter glycine, 100 mg/liter tyrosine, 200 mg/liter
arginine, 200 mg/liter phenylalanine, 200 mg/liter threonine, 200 mg/liter alanine, 300 mg/liter lysine,
300 mg/liter serine, 300 mg/liter valine, 300 mg/liter isoleucine, 300 mg/liter aspartic acid, 400 mg/liter
leucine, 500 mg/liter cysteine, 600 mg/liter proline, and 900 mg/liter glutamic acid (40). All liquid defined
media were prepared by boiling under 80% N2–20% CO2 gas. After the pH stabilized between 6.8 and
7.2, the medium was dispensed into stoppered tubes and autoclaved. Filter-sterilized glucose and
vitamins were added after autoclaving. Cultures in stoppered tubes were incubated at 37°C.

For MetH phenotype assays, C. difficile 630 Δerm was grown in CDDM and then washed twice in
CDDMK without methionine prior to inoculation in CDDMK at an optical density at 600 nm (OD600) of
0.01 in a 96-well plate. For NrdJ phenotype assays, C. difficile 630 Δerm ΔpyrE ΔnrdDG was grown in
CDDM with 5 �g/ml uracil and 10 nM cyanocobalamin and washed three times in CDDM without
cyanocobalamin prior to inoculation in CDDM at an OD600 of 0.01 in a 96-well plate. The OD600 was
measured on a BioTek Synergy 2 plate reader after 22 to 24 h of growth.

ALA, Cbi, and cyanocobalamin were purchased from Sigma-Aldrich. Other cobamides were purified
from bacterial cultures as described previously by Men et al. (84).

Strain and plasmid construction. The allele-coupled exchange (ACE) system described previously
by Ng et al. was used for the construction of C. difficile mutant strains (50) (Table 1). Briefly, 500- to
1,000-bp sequences flanking the target gene(s) (arms of homology) in the C. difficile 630 Δerm genome
(GenBank accession number CP016318) were amplified by PCR (see Table S1 in the supplemental
material) and then cloned into pMTL-YN3 (Chain Biotech) by Gibson assembly (85) in Escherichia coli
XL1-Blue. Plasmid inserts were sequenced by Sanger sequencing before the transformation of the
plasmid into E. coli CA434 (Chain Biotech). Conjugation of E. coli CA434 and C. difficile 630 Δerm ΔpyrE
was performed as described previously (86), except that C. difficile and E. coli were each cultured for 5
to 8 h prior to pelleting E. coli and mixing with the C. difficile recipient. After 16 h of growth on BHIS agar,

TABLE 1 Bacterial strains and plasmids

Strain or plasmid Description
Source and/or
reference

Strains
Escherichia coli XL1-Blue QB3 MacroLab
Escherichia coli CA434 hsd20(rB

� mB
�) recA13 rpsL20 leu proA2; with IncPb conjugative plasmid R702 Chain Biotech; 95

Clostridioides difficile
630 Δerm Erythromycin-sensitive strain 81
630 Δerm ΔpyrE Strain CRG1496 50
630 Δerm ΔpyrE ΔbtuFCD This study
630 Δerm ΔpyrE ΔcbiKLJHGFTEDC This study
630 Δerm ΔpyrE ΔnrdDG This study

Plasmids
R702 Conjugation helper plasmid 95
pMTL-YN3 Allelic-exchange vector 50
pXL001 pMTL-YN3 containing the btuFCD deletion construct This study
pXL002 pMTL-YN3 containing the cbiKLJHGFTEDC deletion construct This study
pXL003 pMTL-YN3 containing the nrdDG deletion construct This study
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the mixed cells were resuspended in 1 ml phosphate-buffered saline (PBS), and 100 �l of the suspension
was plated onto each of 5 to 7 plates of BHIS agar with 10 �g/ml thiamphenicol, 250 �g/ml D-cycloserine,
and 16 �g/ml cefoxitin added. Colonies were purified at least twice by streaking onto BHIS medium with
15 �g/ml thiamphenicol, 250 �g/ml D-cycloserine, and 16 �g/ml cefoxitin, before counterselection on
CDDM agar supplemented with 2 mg/liter 5-fluoroorotic acid (5-FOA) and 5 �g/ml uracil. The resulting
colonies were purified by streaking at least twice on counterselection medium prior to screening by
colony PCR for the deletion and the presence of the C. difficile toxin gene tcdB (86). For the deletion of
nrdDG, 10 nM cobalamin was added to all media during the ACE procedure.

Corrinoid extraction and analysis. C. difficile was grown in 50 ml CDDM plus 8 g/liter glucose under
80% N2–20% CO2 headspace for 16 to 22 h at 37°C prior to corrinoid extraction. Two cultures were
combined under each condition for a total volume of 100 ml for each extraction. Corrinoid extractions
were performed as described previously (31), except that cell pellets were autoclaved for 35 min and
cooled prior to the addition of methanol and potassium cyanide. Two or more biological replicates were
performed under each condition.

High-performance liquid chromatography (HPLC) analysis was performed with an Agilent series 1200
system (Agilent Technologies, Santa Clara, CA) equipped with a diode array detector with detection
wavelengths set at 360 and 525 nm. For Fig. 5B and Fig. 6A, samples were injected onto an Agilent
Zorbax SB-Aq column (5 �m; 4.6 by 150 mm) at 30°C, with a 1-ml/min flow rate. Compounds in the
samples were separated with a gradient of 25 to 34% acidified methanol in acidified water (containing
0.1% formic acid) over 11 min, followed by a 34 to 50% gradient over 2 min and 50 to 75% over 9 min.
For Fig. 5A, samples were injected onto an Agilent Eclipse Plus C18 column (5 �m; 9.4 by 250 mm) at 30°C,
with a 2-ml/min flow rate. Compounds in the samples were separated with a gradient of 10 to 42%
acidified methanol in acidified water over 20 min. The standards that were injected were as follows: Cbi
(compound 1) at 200 pmol, pseudocobalamin (compound 2) at 225 pmol, cobalamin (compound 3) at
50 pmol, [Bza]Cba (compound 4) at 114 pmol, [2-MeAde]Cba (compound 5) at 114 pmol, and [Cre]Cba
(compound 6) at 151 pmol. Five percent to 20% (by volume) C. difficile samples were injected.

C. difficile MLST tree construction. For the 248 C. difficile genomes classified as “finished” or
“permanent draft” in the JGI/IMG database (87) (https://img.jgi.doe.gov/cgi-bin/mer/main.cgi [accessed
March 2019]), seven MLST gene sequences, adk, atpA, dxr, glyA, recA, sodA, and tpi (88), were downloaded
and aligned individually using MUSCLE (89). The alignments were concatenated, and genomes missing
one or more MLST genes or having duplicate genes were removed from the analysis, resulting in a total
of 79 strains analyzed. The concatenated alignment was manually trimmed in UGENE (90), and columns
with 95% or greater gaps were removed with trimAL (91). This alignment was used as the input for
RAxML 8.2.12 (92) on the CIPRES Web server (https://www.phylo.org/) (93) with 100 bootstraps, using the
GTRCAT model. The tree was visualized and annotated in iTOL (https://itol.embl.de/) (94).
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