
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Towards Informed Exploration for Deep Reinforcement Learning

Permalink
https://escholarship.org/uc/item/0pg0t84b

Author
Tang, Haoran

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pg0t84b
https://escholarship.org
http://www.cdlib.org/

Towards Informed Exploration for Deep Reinforcement Learning

by

Haoran Tang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James Sethian, Co-chair
Professor Pieter Abbeel, Co-chair

Professor Trevor Darrell
Associate Professor Lin Lin

Fall 2019

Towards Informed Exploration for Deep Reinforcement Learning

Copyright 2019
by

Haoran Tang

Abstract

Towards Informed Exploration for Deep Reinforcement Learning

by

Haoran Tang

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor James Sethian, Co-chair

Professor Pieter Abbeel, Co-chair

In this thesis, we discuss various techniques for improving exploration for deep reinforcement
learning. We begin with a brief review of reinforcement learning (RL) and the fundamental
exploration v.s. exploitation trade-off. Then we review how deep RL has improved upon classical
methods and summarize six categories of the latest exploration methods for deep RL, in the order
of increasing usage of prior information. We then explore representative works in three categories
and discuss their strengths and weaknesses. The first category, represented by Soft Q-learning, uses
entropy regularization to encourage exploration. The second category, represented by count-based
exploration via hashing, maps states to hash codes for counting and assigns higher exploration
bonuses to less-encountered states. The third category utilizes hierarchy and is represented by
a modular architecture for RL agents to play StarCraft II. Finally, we conclude that exploration
informed by prior knowledge is a promising research direction and suggest topics of potentially
high impact.

1

Acknowledgments

I am extremely fortunate to study in Applied Math as a PhD student at UC Berkeley. I am very
grateful to Prof. James Sethian, who introduced me to the exciting field of applied math, offered
generous help in my PhD program application, and guided me through my earlier years of study. I
would also like to thank Prof. Pieter Abbeel especially, who has offered constant support and advice
to help me transition into the field of deep reinforcement learning and to make this thesis possible.

I am very thankful to Rocky Duan, Peter Chen, and Sergey Levine for their long-term guidance
on my research. Thanks to my other collaborators for the work in this thesis, including Tuomas
Haarnoja, Rein Houthooft, Davis Foote, Adam Stooke, Huazhe Xu, Dennis Lee, and Jeffrey O
Zhang. Thanks to Lawrence Evans for serving on my quals committee, Trevor Darrell for serving
on my dissertation committee, and Lin Lin for serving on both committees. Thanks to talented
colleagues at UC Berkeley and DeepMind, including Carlos Florensa, Xinyang Geng, Tianhao
Zhang, Yang Gao, Yi Wu, Keiran Paster, Yuhuai Wu, and Sasha Vezhnevets, for exchanging great
research ideas. Thanks to my closest friends, Renyuan Xu, Difei Xiao, and Yingxin Chen for
constant career and emotional guidance.

Finally, this thesis is dedicated to my parents Shuhuai Bi and Dengfeng Tang, for all the years
of unconditional love and support.

i

Contents

Contents ii

1 Introduction 1
1.1 Reinforcement Learning . 1
1.2 The Exploration and Exploitation Trade-Off . 1
1.3 Deep Reinforcement Learning . 2
1.4 Techniques for Exploration in Deep Reinforcement Learning 3
1.5 Contributions of This Thesis . 4

2 Reinforcement Learning with Deep Energy-Based Policies 6
2.1 Introduction . 6
2.2 Preliminaries . 8
2.3 Training Expressive Energy-Based Models via Soft Q-Learning 10
2.4 Related Work . 14
2.5 Experiments . 15
2.6 Theoretical results . 19
2.7 Implementation Details . 23
2.8 Discussion . 25

3 #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Leaning 26
3.1 Introduction . 26
3.2 Methodology . 27
3.3 Related Work . 30
3.4 Experiments . 31
3.5 A Case Study of Montezuma’s Revenge . 37
3.6 Discussion . 37

4 Modular Architecture for StarCraft II with Deep Reinforcement Learning 40
4.1 Introduction . 40
4.2 Related Work . 41
4.3 Modular Architecture . 42
4.4 Training Procedure . 47

ii

4.5 Evaluation . 48
4.6 Discussion . 51

5 Conclusion 52

Bibliography 54

iii

Chapter 1

Introduction

1.1 Reinforcement Learning
Reinforcement Learning (RL) is a trial-and-error framework for solving Markov Decision Processes
(MDPs) [108]. An MDP consists of a state space S, an action space A, a transition function
p : S × A × S → [0,∞) s.t.

∫
p(s, a, s′) ds′ = 1 ∀s, a describing the probability of reaching

a new state s′ after taking action a at state s, and a reward function r(s, a) received after the
transition (some MDPs consider r stochastic). A (stochastic) policy π : S ×A → [0,∞) specifies
a distribution over action a at state s. A typical objective for an MDP is to maximize the discounted
sum of rewards

max
π

Eπ,p

[
∞∑
t=0

γtr(st, at)

]
(1.1)

RL usually refers to model-free RL, which assumes no or little prior knowledge of S, A, p,
or r. In particular, the only available tool is an environment simulator that returns sampled
trajectories (sequences of states and actions) for a given policy. Intuitively, a policy identifies
patterns through trials, increases the probabilities of more rewarding actions, and repeats the process
until it converges. Q-learning [108] is a classic example for this trial-and-error approach. As we
shall see in Section 1.2, the generality of RL comes at the cost of sample inefficiency and usually
requires careful algorithmic design.

Here we further define several useful terms. A trajectory is τ = {(st, at)}Tt=0. The Q-value
for a policy π is Qπ(s, a) = Eπ,p [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. The value for π is V π(s) =
Ea∼π(s,·) [Qπ(s, a)]. Q∗ and V ∗ correspond to the optimal policy π∗.

1.2 The Exploration and Exploitation Trade-Off
During RL training, to guarantee convergence to the global optimum, each action at each state
requires sufficient trials to accurately evaluate its outcome. But to accelerate convergence, the
evaluation should be focused on (as currently perceived) more promising actions. The classic UCB1

1

algorithm summarizes such exploration v.s. exploitation trade-off in a multi-armed bandit (stateless
MDP) setting.

ak = arg max
a

(
r̂k(a) + c

√
2 log k

Nk−1(a)

)
(1.2)

where k is the number of iterations, r̂ is the sample mean estimate of (stochastic) r, N is the
number of times a has been tried, and c is a tunable positive constant. Here the reward estimate r̂k
emphasizes exploitation, while the remaining term favors under-explored actions, hence encourages
exploration. A similar version is used in the Monte-Carlo Tree Search algorithm for the famous
AlphaGo agent [102].

In MDPs with longer horizons, the trade-off becomes even more crucial. Since the total reward
estimation has higher variance, exploitation is more likely to lead to local optimum. Moreover,
exploration becomes harder due to the increasing number of branching factors. Numerous theoretical
attempts have been made to address the trade-off in finite S and A settings, many resembling (1.2)
in certain ways. They will be discussed in more detail in Section 3.3, but here let us preview a
representative algorithm and understand the complexity.

MIBE-EB [106] is a count-based method for exploration. At each timestep k, it counts the
occurrence N of each state-action pair, computes sample estimates r̂, p̂ of the reward and transition
function, and solves an approximate Q-value that includes a bonus term for under-explored state-
action pairs.

Qk(s, a) = r̂k(s, a) + γ
∑
s′

p̂k(s, a, s
′) max

a′
Qk(s

′, a′) +
β√

Nk(s, a)
(1.3)

Then ak = arg maxaQk(sk, a) is executed at timestep k. This algorithm is "Provably Approx-
imately Correct", in the sense that an MDP-dependent coefficient β > 0 exists such that with
probability (1− δ) (across all runs of the algorithm), V πk(sk) ≥ V ∗(sk)− ε for all but a polynomial
in (1/ε, 1/δ, 1/(1− γ), |S|, |A|) timesteps. In particular, convergence is almost guaranteed in the
limit, but near-optimal solution is unlikely guaranteed without massive sampling. This example
shows why solving RL thoroughly is a fundamentally difficult.

Beware that most theoretical works focus on finite (and small) MDPs. Problems with continuous
S and/orA present different opportunities and challenges. For example, imagery states are no longer
treated distinct by minor differences in pixel values, but are compared by their visual semantics. On
the other hand, the naive counting or sample mean estimates no longer work and different modeling
techniques are required. For certain hard problems, one can even utilize prior knowledge to inform
exploration. Section 1.4 will summarize such modern techniques.

1.3 Deep Reinforcement Learning
While traditional RL focuses on tabular or linear representations of S and A, it is less effective
against more complex problems, such as image observations. With the advance of deep learning
[28], neural networks arise as powerful function approximators that can handle high-dimensional

2

inputs and outputs. Soon they became popular candidates for value functions and policies, and
have been successfully applied to playing Atari games [68], mastering the game of Go [102], and
learning locomotion controllers [96, 60].

The most popular deep RL methods are policy gradient [96, 66, 94, 34] and Q-learning [69, 60,
33]. Unlike classical algorithms, they are distinctively model-free, scalable, and data-intensive. In
fact, the ability to utilize massive data is the major reason for the success of deep RL.

1.4 Techniques for Exploration in Deep Reinforcement
Learning

Techniques for exploration in deep RL are not fundamentally different from their classic coun-
terparts. However, due to nonlinear function approximations, quantities such as (s, a) visitation
frequency and variance of value estimates are not straightforward to obtain. Moreover, neural net-
works are able to generalize to different inputs, the analysis of which has been absent in traditional
RL, and still remains unsolved even in deep learning.

Nevertheless, variants of classic methods still have empirical utility. There exists a spectrum of
techniques, from the least to the most informed (i.e. armed with prior knowledge), which we shall
summarize here.

1. Entropy regularization. Initiated in [66] and later formalized in [33], this method prevents
early convergence to a deterministic policy by introducing policy entropy to the objective.
Chapter 2 will discuss it in more detail.

2. Novelty bonus. These techniques characterize novel or under-explored events, such as new
s, (s, a), or (s, a, s′), and assigns a bonus reward based on their novelty. This category of
techniques has many names, such as count-based exploration [7], intrinsic motivation [41, 2],
curiosity [84, 10], information gain [12], and others [26, 9]. Novelty bonus is by far the most
popular research topic due to their effectiveness and generality.

3. Hierarchy. Hierarchical policies are thought to explore more efficiently, because the higher
level can reason in longer horizons and in higher-level semantics. Successful examples
include [55, 119, 22, 70].

4. Reward shaping. For certain challenging problems, such as MDPs with sparse rewards and
long horizons, it can be easier to learn from a different but correlated reward. A famous
example is presented in the OpenAI Dota project [78].

5. Bootstrapping from demonstrations. Sometimes the optimal solutions are so hard to search
by RL that bootstrapping from demonstration is almost necessary. For example, self-play RL
on StarCraft II was only able to learn naive rushing strategies. But by imitating expert actions
and then learning from RL, the AlphaStar agent quickly surpassed human[120].

3

6. Meta-exploration. Meta-learning considers how to learn a new task quickly by leveraging
knowledge from previously learned tasks. In particular, meta-exploration can acquire an
exploration strategy from its learning experiences on other tasks. [17] and [32] have successful
examples.

1.5 Contributions of This Thesis
In following chapters, we will see examples of detailed investigations into three types of exploration
techniques: entropy regularization, novelty bonus, and hierarchy. The chosen order represents the
author’s growing interest towards more informed exploration (more prior knowledge). Chapter 5
will summarize lessons learned from the investigations and argue why informed exploration is
important for solving challenging problems efficiently in deep RL.

The first contribution, titled “Reinforcement Learning with Deep Energy-Based Policies”,
studies how entropy regularization assists exploration. Drawing inspiration from stochastic opti-
mal control, it proves that the optimal policy of the entropy-regularized objective has an energy
form π∗soft(s, a) ∝a exp(Q∗soft(s, a)). Moreover, Q∗soft is the unique solution to the “soft Bellman
equation”, and therefore can be obtained from “soft Q-learning”, analogous to the conventional
Q-learning. In addition, π∗soft uses a deep neural net to approximate the arbitrarily complex energy
distribution, and is trained by Stein Variational Gradient Descent. Compared to the conven-
tional Gaussian noise for greedy exploration, an energy-based policy assigns equal probabilities
to equally rewarding actions, hence capturing various modes of good behavior. Experiments
on continuous control tasks demonstrate its benefits on improved exploration and transfer learn-
ing. Videos of related experiments are available at https://sites.google.com/view/
softqlearning/home. The source code can be accessed at https://github.com/
haarnoja/softqlearning. A BAIR blog post summarizes key results along with new investi-
gations: https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning.
This paper was published at 2017 International Conference on Machine Learning.

The second contribution, titled “#Exploration: A Study of Count-Based Exploration for Deep
Reinforcement Leaning”, studies how to implement count-based exploration via simple hash
functions. The paper begins by reviewing classic count-based exploration methods with “provably
approximately correct” guarantees. It then proposes bonus rewards of the form β√

n(φ(s))
to drive

the agent towards under-explored states. The key is choosing a good hash function φ. It can be
static and as simple as random projections. It can also be learned and represented by convolutional
neural nets. Detailed experiments were performed on continuous control tasks from OpenAI Gym
and challenging video games from Atari 2600. The simple hashing technique shows surprisingly
competitive performance. A further investigation into Montezuma’s Revenge shows how designing
hash functions that only incorporate task-related information can boost scores dramatically. Videos
of related experiments are available at https://www.youtube.com/playlist?list=
PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55. This work was published at 2017 Conference
on Neural Information Processing Systems.

4

https://sites.google.com/view/softqlearning/home
https://sites.google.com/view/softqlearning/home
https://github.com/haarnoja/softqlearning
https://github.com/haarnoja/softqlearning
https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning
https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55
https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55

The third contribution, titled “Modular Architecture for StarCraft II with Deep Reinforcement
Learning”, studies how to simplify complex exploration problems by modularization, pretraining,
and hierarchy. The game-play agent consists of five modules, each responsible for a relatively
independent subtask. A module is first pretrained with other handcrafted modules, and then
combined with other pretrained modules for fine-tuning. A hierarchical structure lets each module
choose macro actions (predefined action sequences) instead of raw actions, which greatly reduces
the search space. The agent is trained to play StarCraft II by competing against itself. Without ever
seeing the test opponents, it is able to beat the “Harder” difficulty built-in bot with a 92% success
rate. A video of the learned agent’s self-play can be viewed at https://sites.google.
com/view/modular-sc2-deeprl. This work was published at The 14th AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (2018).

5

https://sites.google.com/view/modular-sc2-deeprl
https://sites.google.com/view/modular-sc2-deeprl

Chapter 2

Reinforcement Learning with Deep
Energy-Based Policies
2.1 Introduction
Deep reinforcement learning (deep RL) has emerged as a promising direction for autonomous
acquisition of complex behaviors [68, 102], due to its ability to process complex sensory input [43]
and to acquire elaborate behavior skills using general-purpose neural network representations [59].
Deep reinforcement learning methods can be used to optimize deterministic [60] and stochastic [96,
66] policies. However, most deep RL methods operate on the conventional deterministic notion of
optimality, where the optimal solution, at least under full observability, is always a deterministic
policy [108]. Although stochastic policies are desirable for exploration, this exploration is typically
attained heuristically, for example by injecting noise [101, 60, 68] or initializing a stochastic policy
with high entropy [47, 96, 66].

In some cases, we might actually prefer to learn stochastic behaviors. In this chapter, we
explore two potential reasons for this: exploration in the presence of multimodal objectives, and
compositionality attained via pretraining. Other benefits include robustness in the face of uncertain
dynamics [127], imitation learning [128], and improved convergence and computational properties
[30]. Multi-modality also has application in real robot tasks, as demonstrated in [16]. However, in
order to learn such policies, we must define an objective that promotes stochasticity.

In which cases is a stochastic policy actually the optimal solution? As discussed in prior work, a
stochastic policy emerges as the optimal answer when we consider the connection between optimal
control and probabilistic inference [112]. While there are multiple instantiations of this framework,
they typically include the cost or reward function as an additional factor in a factor graph, and infer
the optimal conditional distribution over actions conditioned on states. The solution can be shown
to optimize an entropy-augmented reinforcement learning objective or to correspond to the solution
to a maximum entropy learning problem [115]. Intuitively, framing control as inference produces
policies that aim to capture not only the single deterministic behavior that has the lowest cost, but
the entire range of low-cost behaviors, explicitly maximizing the entropy of the corresponding
policy. Instead of learning the best way to perform the task, the resulting policies try to learn all of
the ways of performing the task. It should now be apparent why such policies might be preferred: if

6

we can learn all of the ways that a given task might be performed, the resulting policy can serve as a
good initialization for finetuning to a more specific behavior (e.g. first learning all the ways that
a robot could move forward, and then using this as an initialization to learn separate running and
bounding skills); a better exploration mechanism for seeking out the best mode in a multi-modal
reward landscape; and a more robust behavior in the face of adversarial perturbations, where the
ability to perform the same task in multiple different ways can provide the agent with more options
to recover from perturbations.

Unfortunately, solving such maximum entropy stochastic policy learning problems in the
general case is challenging. A number of methods have been proposed, including Z-learning
[113], maximum entropy inverse RL [128], approximate inference using message passing [115],
Ψ-learning [88], and G-learning [24], as well as more recent proposals in deep RL such as PGQ [74],
but these generally operate either on simple tabular representations, which are difficult to apply
to continuous or high-dimensional domains, or employ a simple parametric representation of the
policy distribution, such as a conditional Gaussian. Therefore, although the policy is optimized to
perform the desired skill in many different ways, the resulting distribution is typically very limited
in terms of its representational power, even if the parameters of that distribution are represented by
an expressive function approximator, such as a neural network.

How can we extend the framework of maximum entropy policy search to arbitrary policy
distributions? In this chapter, we borrow an idea from energy-based models, which in turn reveals
an intriguing connection between Q-learning, actor-critic algorithms, and probabilistic inference.
In our method, we formulate a stochastic policy as a (conditional) energy-based model (EBM),
with the energy function corresponding to the “soft” Q-function obtained when optimizing the
maximum entropy objective. In high-dimensional continuous spaces, sampling from this policy,
just as with any general EBM, becomes intractable. We borrow from the recent literature on EBMs
to devise an approximate sampling procedure based on training a separate sampling network, which
is optimized to produce unbiased samples from the policy EBM. This sampling network can then be
used both for updating the EBM and for action selection. In the parlance of reinforcement learning,
the sampling network is the actor in an actor-critic algorithm.

The principal contribution of this work is a tractable, efficient algorithm for optimizing arbitrary
multimodal stochastic policies represented by energy-based models, as well as a discussion that
relates this method to other recent algorithms in RL and probabilistic inference. In our experimental
evaluation, we explore two potential applications of our approach. First, we demonstrate improved
exploration performance in tasks with multi-modal reward landscapes, where conventional deter-
ministic or unimodal methods are at high risk of falling into suboptimal local optima. Second,
we explore how our method can be used to provide a degree of compositionality in reinforcement
learning by showing that stochastic energy-based policies can serve as a much better initialization for
learning new skills than either random policies or policies pretrained with conventional maximum
reward objectives.

7

2.2 Preliminaries
In this section, we will define the reinforcement learning problem that we are addressing and
briefly summarize the maximum entropy policy search objective. We will also present a few useful
identities that we will build on in our algorithm, which will be presented in Section 2.3.

Maximum Entropy Reinforcement Learning
We will address learning of maximum entropy policies with approximate inference for reinforcement
learning in continuous action spaces. Our reinforcement learning problem can be defined as
policy search in an infinite-horizon Markov decision process (MDP), which consists of the tuple
(S,A, ps, r), The state space S and action space A are assumed to be continuous, and the state
transition probability ps : S × S × A → [0, ∞) represents the probability density of the next
state st+1 ∈ S given the current state st ∈ S and action at ∈ A. The environment emits a reward
r : S ×A → [rmin, rmax] on each transition, which we will abbreviate as rt , r(st, at) to simplify
notation. We will also use ρπ(st) and ρπ(st, at) to denote the state and state-action marginals of the
trajectory distribution induced by a policy π(at|st).

Our goal is to learn a policy π(at|st). We can define the standard reinforcement learning
objective in terms of the above quantities as

π∗std = arg max
π

∑
t

E(st,at)∼ρπ [r(st, at)] . (2.1)

Maximum entropy RL augments the reward with an entropy term, such that the optimal policy aims
to maximize its entropy at each visited state:

(2.2)

π∗MaxEnt =arg max
π

∑
t

E(st,at)∼ρπ [r(st, at)+αH(π(· |st))] ,

where α is an optional but convenient parameter that can be used to determine the relative importance
of entropy and reward.1 Optimization problems of this type have been explored in a number of
prior works [48, 113, 128], which are covered in more detail in Section 2.4. Note that this objective
differs qualitatively from the behavior of Boltzmann exploration [92] and PGQ [74], which greedily
maximize entropy at the current time step, but do not explicitly optimize for policies that aim
to reach states where they will have high entropy in the future. This distinction is crucial, since
the maximum entropy objective can be shown to maximize the entropy of the entire trajectory
distribution for the policy π, while the greedy Boltzmann exploration approach does not [128, 58].
As we will discuss in Section 3.4, this maximum entropy formulation has a number of benefits,
such as improved exploration in multimodal problems and better pretraining for later adaptation.

If we wish to extend either the conventional or the maximum entropy RL objective to infinite
horizon problems, it is convenient to also introduce a discount factor γ to ensure that the sum of
expected rewards (and entropies) is finite. In the context of policy search algorithms, the use of a

1In principle, 1/α can be folded into the reward function, eliminating the need for an explicit multiplier, but in
practice, it is often convenient to keep α as a hyperparameter.

8

discount factor is actually a somewhat nuanced choice, and writing down the precise objective that
is optimized when using the discount factor is non-trivial [111]. We defer the full derivation of the
discounted objective to Section 2.6, since it is unwieldy to write out explicitly, but we will use the
discount γ in the following derivations and in our final algorithm.

Soft Value Functions and Energy-Based Models
Optimizing the maximum entropy objective in (2.2) provides us with a framework for training
stochastic policies, but we must still choose a representation for these policies. The choices in prior
work include discrete multinomial distributions [74] and Gaussian distributions [88]. However,
if we want to use a very general class of distributions that can represent complex, multimodal
behaviors, we can instead opt for using general energy-based policies of the form

π(at|st) ∝ exp (−E(st, at)) , (2.3)

where E is an energy function that could be represented, for example, by a deep neural network. If
we use a universal function approximator for E , we can represent any distribution π(at|st). There
is a close connection between such energy-based models and soft versions of value functions and
Q-functions, where we set E(st, at) = − 1

α
Qsoft(st, at) and use the following theorem:

Theorem 1. Let the soft Q-function be defined by

Q∗soft(st, at) = rt + E(st+1,...)∼ρπ

[
∞∑
l=1

γl (rt+l+αH (π∗MaxEnt(· |st+l)))

]
,

and soft value function by

V ∗soft(st) = α log

∫
A

exp

(
1

α
Q∗soft(st, a

′)

)
da′. (2.4)

Then the optimal policy for (2.2) is given by

π∗MaxEnt(at|st)=exp

(
1

α
(Q∗soft(st, at)−V ∗soft(st))

)
. (2.5)

Proof. See Section 2.6 as well as [127].
Theorem 1 connects the maximum entropy objective in (2.2) and energy-based models, where

1
α
Qsoft(st, at) acts as the negative energy, and 1

α
Vsoft(st) serves as the log-partition function. As

with the standard Q-function and value function, we can relate the Q-function to the value function
at a future state via a soft Bellman equation:

Theorem 2. The soft Q-function in (2.4) satisfies the soft Bellman equation

Q∗soft(st, at) = rt + γ Est+1∼ps [V ∗soft(st+1)] , (2.6)

where the soft value function V ∗soft is given by (2.4).

9

Proof. See Section 2.6, as well as [127].
The soft Bellman equation is a generalization of the conventional (hard) equation, where we

can recover the more standard equation as α→ 0, which causes (2.4) to approach a hard maximum
over the actions. In the next section, we will discuss how we can use these identities to derive
a Q-learning style algorithm for learning maximum entropy policies, and how we can make this
practical for arbitrary Q-function representations via an approximate inference procedure.

2.3 Training Expressive Energy-Based Models via Soft
Q-Learning

In this section, we will present our proposed reinforcement learning algorithm, which is based
on the soft Q-function described in the previous section, but can be implemented via a tractable
stochastic gradient descent procedure with approximate sampling. We will first describe the general
case of soft Q-learning, and then present the inference procedure that makes it tractable to use
with deep neural network representations in high-dimensional continuous state and action spaces.
In the process, we will relate this Q-learning procedure to inference in energy-based models and
actor-critic algorithms.

Soft Q-Iteration
We can obtain a solution to (2.6) by iteratively updating estimates of V ∗soft and Q∗soft. This leads to a
fixed-point iteration that resembles Q-iteration:

Theorem 3. Soft Q-iteration. Let Qsoft(· , ·) and Vsoft(·) be bounded and assume that∫
A exp(1

α
Qsoft(·, a′))da′<∞ and that Q∗soft <∞ exists. Then the fixed-point iteration

Qsoft(st, at)←rt+γ Est+1∼ps [Vsoft(st+1)] , ∀st, at (2.7)

Vsoft(st)←α log

∫
A
exp

(
1

α
Qsoft(st, a

′)

)
da′, ∀st (2.8)

converges to Q∗soft and V ∗soft, respectively.

Proof. See Section 2.6 as well as [24].
We refer to the updates in (2.7) and (2.8) as the soft Bellman backup operator that acts on the

soft value function, and denote it by T . The maximum entropy policy in (2.5) can then be recovered
by iteratively applying this operator until convergence. However, there are several practicalities that
need to be considered in order to make use of the algorithm. First, the soft Bellman backup cannot
be performed exactly in continuous or large state and action spaces, and second, sampling from
the energy-based model in (2.5) is intractable in general. We will address these challenges in the
following sections.

10

Soft Q-Learning
This section discusses how the Bellman backup in Theorem 3 can be implemented in a practical
algorithm that uses a finite set of samples from the environment, resulting in a method similar to
Q-learning. Since the soft Bellman backup is a contraction (see Section 2.6), the optimal value
function is the fixed point of the Bellman backup, and we can find it by optimizing for a Q-function
for which the soft Bellman error |T Q − Q| is minimized at all states and actions. While this
procedure is still intractable due to the integral in (2.8) and the infinite set of all states and actions,
we can express it as a stochastic optimization, which leads to a stochastic gradient descent update
procedure. We will model the soft Q-function with a function approximator with parameters θ and
denote it as Qθ

soft(st, at).
To convert Theorem 3 into a stochastic optimization problem, we first express the soft value

function in terms of an expectation via importance sampling:

V θ
soft(st) = α logEqa′

[
exp

(
1
α
Qθ

soft(st, a
′)
)

qa′(a′)

]
, (2.9)

where qa′ can be an arbitrary distribution over the action space. Second, by noting the identity
g1(x) = g2(x) ∀x ∈ X ⇔ Ex∼q [(g1(x)− g2(x))2] = 0, where q can be any strictly positive
density function on X, we can express the soft Q-iteration in an equivalent form as minimizing

JQ(θ) = Est∼qst ,at∼qat

[
1

2

(
Q̂θ̄

soft(st, at)−Qθ
soft(st, at)

)2
]
, (2.10)

where qst , qat are positive over S and A respectively, Q̂θ̄
soft(st, at) = rt + γEst+1∼ps [V

θ̄
soft(st+1)] is a

target Q-value, with V θ̄
soft(st+1) given by (2.9) and θ being replaced by the target parameters, θ̄.

This stochastic optimization problem can be solved approximately using stochastic gradient de-
scent using sampled states and actions. While the sampling distributions qst and qat can be arbitrary,
we typically use real samples from rollouts of the current policy π(at|st) ∝ exp

(
1
α
Qθ

soft(st, at)
)
.

For qa′ we have more options. A convenient choice is a uniform distribution. However, this choice
can scale poorly to high dimensions. A better choice is to use the current policy, which produces
an unbiased estimate of the soft value as can be confirmed by substitution. This overall procedure
yields an iterative approach that optimizes over the Q-values, which we summarize in Section 2.3.

However, in continuous spaces, we still need a tractable way to sample from the policy
π(at|st) ∝ exp

(
1
α
Qθ

soft(st, at)
)
, both to take on-policy actions and, if so desired, to generate

action samples for estimating the soft value function. Since the form of the policy is so general,
sampling from it is intractable. We will therefore use an approximate sampling procedure, as
discussed in the following section.

Approximate Sampling and Stein Variational Gradient Descent (SVGD)
In this section we describe how we can approximately sample from the soft Q-function. Existing
approaches that sample from energy-based distributions generally fall into two categories: methods
that use Markov chain Monte Carlo (MCMC) based sampling [92], and methods that learn a
stochastic sampling network trained to output approximate samples from the target distribution

11

[126, 50]. Since sampling via MCMC is not tractable when the inference must be performed
online (e.g. when executing a policy), we will use a sampling network based on Stein variational
gradient descent (SVGD) [61] and amortized SVGD [122]. Amortized SVGD has several intriguing
properties: First, it provides us with a stochastic sampling network that we can query for extremely
fast sample generation. Second, it can be shown to converge to an accurate estimate of the posterior
distribution of an EBM. Third, the resulting algorithm, as we will show later, strongly resembles
actor-critic algorithm, which provides for a simple and computationally efficient implementation
and sheds light on the connection between our algorithm and prior actor-critic methods.

Formally, we want to learn a state-conditioned stochastic neural network at = fφ(ξ; st),
parametrized by φ, that maps noise samples ξ drawn from a normal Gaussian, or other arbitrary
distribution, into unbiased action samples from the target EBM corresponding to Qθ

soft. We denote
the induced distribution of the actions as πφ(at|st), and we want to find parameters φ so that the
induced distribution approximates the energy-based distribution in terms of the KL divergence

Jπ(φ; st) = DKL

(
πφ(· |st)

∥∥∥∥ exp

(
1

α

(
Qθ

soft(st, ·)− V θ
soft

)))
.

Suppose we “perturb” a set of independent samples a
(i)
t = fφ(ξ(i); st) in appropriate directions

∆fφ(ξ(i); st), the induced KL divergence can be reduced. Stein variational gradient descent [61]
provides the most greedy directions as a functional

∆fφ(· ; st) = Eat∼πφ
[
κ(at, f

φ(· ; st))∇a′Qθ
soft(st, a

′)
∣∣
a′=at

+ α∇a′κ(a′, fφ(· ; st))
∣∣
a′=at

]
,

where κ is a kernel function (typically Gaussian, see details in Section 2.7). To be precise, ∆fφ is
the optimal direction in the reproducing kernel Hilbert space of κ, and is thus not strictly speaking
the gradient of (2.11), but it turns out that we can set ∂Jπ

∂at
∝ ∆fφ as explained in [122]. With this

assumption, we can use the chain rule and backpropagate the Stein variational gradient into the
policy network according to

∂Jπ(φ; st)

∂φ
∝ Eξ

[
∆fφ(ξ; st)

∂fφ(ξ; st)

∂φ

]
, (2.11)

and use any gradient-based optimization method to learn the optimal sampling network parameters.
The sampling network fφ can be viewed as an actor in an actor-critic algorithm. We will discuss
this connection in Section 2.4, but first we will summarize our complete maximum entropy policy
learning algorithm.

Algorithm Summary
To summarize, we propose the soft Q-learning algorithm for learning maximum entropy policies
in continuous domains. The algorithm proceeds by alternating between collecting new experience
from the environment, and updating the soft Q-function and sampling network parameters. The
experience is stored in a replay memory buffer D as standard in deep Q-learning [69], and the
parameters are updated using random minibatches from this memory. The soft Q-function updates

12

use a delayed version of the target values [68]. For optimization, we use the ADAM [52] optimizer
and empirical estimates of the gradients, which we denote by ∇̂. The exact formulae used to compute
the gradient estimates is deferred to Section 2.7, which also discusses other implementation details,
but we summarize an overview of soft Q-learning in algorithm 1.

Algorithm 1: Soft Q-learning
θ, φ ∼ some initialization distributions.
Assign target parameters: θ̄ ← θ, φ̄← φ.
D ← empty replay memory.

for each epoch do
for each t do

Collect experience
Sample an action for st using fφ:
at ← fφ(ξ; st) where ξ ∼ N (0, I).

Sample next state from the environment:
st+1 ∼ ps(st+1|st, at).

Save the new experience in the replay memory:
D ← D ∪ {(st, at, r(st, at), st+1)} .

Sample a minibatch from the replay memory
{(s(i)

t , a
(i)
t , r

(i)
t , s

(i)
t+1)}Ni=0 ∼ D.

Update the soft Q-function parameters
Sample {a(i,j)}Mj=0 ∼ qa′ for each s

(i)
t+1.

Compute empirical soft values V̂ θ̄
soft(s

(i)
t+1) in (2.9).

Compute empirical gradient ∇̂θJQ of (2.10).
Update θ according to ∇̂θJQ using ADAM.

Update policy
Sample {ξ(i,j)}Mj=0 ∼ N (0, I) for each s

(i)
t .

Compute actions a(i,j)
t = fφ(ξ(i,j), s

(i)
t).

Compute ∆fφ using empirical estimate of (2.11).
Compute empiricial estimate of (2.11): ∇̂φJπ.
Update φ according to ∇̂φJπ using ADAM.

end for
if epoch mod update_interval = 0 then

Update target parameters: θ̄ ← θ, φ̄← φ.
end if

end for

13

2.4 Related Work
Maximum entropy policies emerge as the solution when we cast optimal control as probabilistic
inference. In the case of linear-quadratic systems, the mean of the maximum entropy policy is
exactly the optimal deterministic policy [112], which has been exploited to construct practical path
planning methods based on iterative linearization and probabilistic inference techniques [115].
In discrete state spaces, the maximum entropy policy can be obtained exactly. This has been
explored in the context of linearly solvable MDPs [113] and, in the case of inverse reinforcement
learning, MaxEnt IRL [128]. In continuous systems and continuous time, path integral control
studies maximum entropy policies and maximum entropy planning [48]. In contrast to these prior
methods, our work is focused on extending the maximum entropy policy search framework to high-
dimensional continuous spaces and highly multimodal objectives, via expressive general-purpose
energy functions represented by deep neural networks. A number of related methods have also
used maximum entropy policy optimization as an intermediate step for optimizing policies under a
standard expected reward objective [87, 73, 88, 24]. Among these, the work of [88] resembles ours
in that it also makes use of a temporal difference style update to a soft Q-function. However, unlike
this prior work, we focus on general-purpose energy functions with approximate sampling, rather
than analytically normalizable distributions. A recent work [liu2017stein] also considers an entropy
regularized objective, though the entropy is on policy parameters, not on sampled actions. Thus the
resulting policy may not represent an arbitrarily complex multi-modal distribution with a single
parameter. The form of our sampler resembles the stochastic networks proposed in recent work on
hierarchical learning [22]. However this prior work uses a task-specific reward bonus system to
encourage stochastic behavior, while our approach is derived from optimizing a general maximum
entropy objective.

A closely related concept to maximum entropy policies is Boltzmann exploration, which uses
the exponential of the standard Q-function as the probability of an action [46]. A number of prior
works have also explored representing policies as energy-based models, with the Q-value obtained
from an energy model such as a restricted Boltzmann machine (RBM) [92, 19, 82, 39]. Although
these methods are closely related, they have not, to our knowledge, been extended to the case of
deep network models, have not made extensive use of approximate inference techniques, and have
not been demonstrated on the complex continuous tasks. More recently, [74] drew a connection
between Boltzmann exploration and entropy-regularized policy gradient, though in a theoretical
framework that differs from maximum entropy policy search: unlike the full maximum entropy
framework, the approach of [74] only optimizes for maximizing entropy at the current time step,
rather than planning for visiting future states where entropy will be further maximized. This prior
method also does not demonstrate learning complex multi-modal policies in continuous action
spaces.

Although we motivate our method as Q-learning, its structure resembles an actor-critic algo-
rithm. It is particularly instructive to observe the connection between our approach and the deep
deterministic policy gradient method (DDPG) [60], which updates a Q-function critic according
to (hard) Bellman updates, and then backpropagates the Q-value gradient into the actor, similarly
to NFQCA [35]. Our actor update differs only in the addition of the κ term. Indeed, without this

14

term, our actor would estimate a maximum a posteriori (MAP) action, rather than capturing the
entire EBM distribution. This suggests an intriguing connection between our method and DDPG: if
we simply modify the DDPG critic updates to estimate soft Q-values, we recover the MAP variant
of our method. Furthermore, this connection allows us to cast DDPG as simply an approximate
Q-learning method, where the actor serves the role of an approximate maximizer. This helps explain
the good performance of DDPG on off-policy data.

2.5 Experiments
Our experiments aim to answer the following questions: (1) Does our soft Q-learning method
accurately capture a multi-modal policy distribution? (2) Can soft Q-learning with energy-based
policies aid exploration for complex tasks that require tracking multiple modes? (3) Can a maximum
entropy policy serve as a good initialization for finetuning on different tasks, when compared to
pretraining with a standard deterministic objective? We compare our algorithm to DDPG [60], which
has been shown to achieve better sample efficiency on the continuous control problems that we
consider than other recent techniques such as REINFORCE [125], TRPO [96], and A3C [66]. This
comparison is particularly interesting since, as discussed in Section 2.4, DDPG closely corresponds
to a deterministic maximum a posteriori variant of our method. The detailed experimental setup can
be found in Section 2.7. Videos of all experiments2 and example source code3 are available online.

Didactic Example: Multi-Goal Environment
In order to verify that amortized SVGD can correctly draw samples from energy-based policies
of the form exp

(
Qθ

soft(s, a)
)
, and that our complete algorithm can successful learn to represent

multi-modal behavior, we designed a simple “multi-goal” environment, in which the agent is a
2D point mass trying to reach one of four symmetrically placed goals. The reward is defined as
a mixture of Gaussians, with means placed at the goal positions. An optimal strategy is to go
to an arbitrary goal, and the optimal maximum entropy policy should be able to choose each of
the four goals at random. The final policy obtained with our method is illustrated in Figure 2.1.
The Q-values indeed have complex shapes, being unimodal at s = (−2, 0), convex at s = (0, 0),
and bimodal at s = (2.5, 2.5). The stochastic policy samples actions closely following the energy
landscape, hence learning diverse trajectories that lead to all four goals. In comparison, a policy
trained with DDPG randomly commits to a single goal.

Learning Multi-Modal Policies for Exploration
Though not all environments have a clear multi-modal reward landscape as in the “multi-goal”
example, multi-modality is prevalent in a variety of tasks. For example, a chess player might try
various strategies before settling on one that seems most effective, and an agent navigating a maze
may need to try various paths before finding the exit. During the learning process, it is often best
to keep trying multiple available options until the agent is confident that one of them is the best

2https://sites.google.com/view/softqlearning/home
3https://github.com/haarnoja/softqlearning

15

https://sites.google.com/view/softqlearning/home
https://github.com/haarnoja/softqlearning

Figure 2.1: Illustration of the 2D multi-goal environment. Left: trajectories from a policy learned
with our method (solid blue lines). The x and y axes correspond to 2D positions (states). The
agent is initialized at the origin. The goals are depicted as red dots, and the level curves show the
reward. Right: Q-values at three selected states, depicted by level curves (red: high values, blue:
low values). The x and y axes correspond to 2D velocity (actions) bounded between -1 and 1.
Actions sampled from the policy are shown as blue stars. Note that, in regions (e.g. (2.5, 2.5))
between the goals, the method chooses multimodal actions.

(a) Swimming snake (b) Quadrupedal robot

Figure 2.2: Simulated robots used in our experiments.

(similar to a bandit problem [56]). However, deep RL algorithms for continuous control typically
use unimodal action distributions, which are not well suited to capture such multi-modality. As a
consequence, such algorithms may prematurely commit to one mode and converge to suboptimal
behavior.

To evaluate how maximum entropy policies might aid exploration, we constructed simulated
continuous control environments where tracking multiple modes is important for success. The first
experiment uses a simulated swimming snake (see Figure 2.2), which receives a reward equal to its
speed along the x-axis, either forward or backward. However, once the swimmer swims far enough

16

forward, it crosses a “finish line” and receives a larger reward. Therefore, the best learning strategy
is to explore in both directions until the bonus reward is discovered, and then commit to swimming
forward. As illustrated in Figure 2.3 in Figure 2.3, our method is able to recover this strategy,
keeping track of both modes until the finish line is discovered. All stochastic policies eventually
commit to swimming forward. The deterministic DDPG method shown in the comparison commits
to a mode prematurely, with only 80% of the policies converging on a forward motion, and 20%
choosing the suboptimal backward mode.

(a) DDPG (b) Soft Q-learning

Figure 2.3: Forward swimming distance achieved by each policy. Each row is a policy with a
unique random seed. x: training iteration, y: distance (positive: forward, negative: backward). Red
line: the “finish line.” The blue shaded region is bounded by the maximum and minimum distance
(which are equal for DDPG). The plot shows that our method is able to explore equally well in both
directions before it commits to the better one.

The second experiment studies a more complex task with a continuous range of equally good
options prior to discovery of a sparse reward goal. In this task, a quadrupedal 3D robot (adapted
from [95]) needs to find a path through a maze to a target position (see Figure 2.2). The reward
function is a Gaussian centered at the target. The agent may choose either the upper or lower
passage, which appear identical at first, but the upper passage is blocked by a barrier. Similar to
the swimmer experiment, the optimal strategy requires exploring both directions and choosing the
better one. Figure 2.4(b) compares the performance of DDPG and our method. The curves show
the minimum distance to the target achieved so far and the threshold equals the minimum possible
distance if the robot chooses the upper passage. Therefore, successful exploration means reaching
below the threshold. All policies trained with our method manage to succeed, while only 60%
policies trained with DDPG converge to choosing the lower passage.

17

(a) Swimmer (higher is better) (b) Quadruped (lower is better)

Figure 2.4: Comparison of soft Q-learning and DDPG on the swimmer snake task and the
quadrupedal robot maze task. (a) Shows the maximum traveled forward distance since the beginning
of training for several runs of each algorithm; there is a large reward after crossing the finish line.
(b) Shows our method was able to reach a low distance to the goal faster and more consistently.
The different lines show the minimum distance to the goal since the beginning of training. For both
domains, all runs of our method cross the threshold line, acquiring the more optimal strategy, while
some runs of DDPG do not.

Accelerating Training on Complex Tasks with Pretrained Maximum
Entropy Policies
A standard way to accelerate deep neural network training is task-specific initialization [28], where
a network trained for one task is used as initialization for another task. The first task might be
something highly general, such as classifying a large image dataset, while the second task might
be more specific, such as fine-grained classification with a small dataset. Pretraining has also
been explored in the context of RL [98]. However, in RL, near-optimal policies are often near-
deterministic, which makes them poor initializers for new tasks. In this section, we explore how our
energy-based policies can be trained with fairly broad objectives to produce an initializer for more
quickly learning more specific tasks.

We demonstrate this on a variant of the quadrupedal robot task. The pretraining phase involves
learning to locomote in an arbitrary direction, with a reward that simply equals the speed of the
center of mass. The resulting policy moves the agent quickly to an randomly chosen direction. An
overhead plot of the center of mass traces is shown above to illustrate this. This pretraining is similar
in some ways to recent work on modulated controllers [40] and hierarchical models [22]. However,
in contrast to these prior works, we do not require any task-specific high-level goal generator or
reward.

Figure 2.6 also shows a variety of test environments that we used to finetune the running policy
for a specific task. In the hallway environments, the agent receives the same reward, but the walls
block sideways motion, so the optimal solution requires learning to run in a particular direction.

18

Figure 2.5: Center of mass plot after quadruped pretraining.

Figure 2.6: Quadrupedal robot (a) was trained to walk in random directions in an empty pretraining
environment (details in Figure 2.7), and then finetuned on a variety of tasks, including a wide (b),
narrow (c), and U-shaped hallway (d).

Narrow hallways require choosing a more specific direction, but also allow the agent to use the
walls to funnel itself. The U-shaped maze requires the agent to learn a curved trajectory in order to
arrive at the target, with the reward given by a Gaussian bump at the target location.

As illustrated in Figure 2.7, the pretrained policy explores the space extensively and in all
directions. This gives a good initialization for the policy, allowing it to learn the behaviors in the
test environments more quickly than training a policy with DDPG from a random initialization, as
shown in Figure 2.8. We also evaluated an alternative pretraining method based on deterministic
policies learned with DDPG. However, deterministic pretraining chooses an arbitrary but consistent
direction in the training environment, providing a poor initialization for finetuning to a specific task,
as shown in the results plots.

2.6 Theoretical results
Here we present proofs for the theorems that allow us to show that soft Q-learning leads to policy
improvement with respect to the maximum entropy objective. First, we define a slightly more
nuanced version of the maximum entropy objective that allows us to incorporate a discount factor.
This definition is complicated by the fact that, when using a discount factor for policy gradient
methods, we typically do not discount the state distribution, only the rewards. In that sense,

19

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

Figure 2.7: The plot shows trajectories of the quadrupedal robot during maximum entropy pre-
training. The robot has diverse behavior and explores multiple directions. The four columns
correspond to entropy coefficients α = 10, 1, 0.1, 0.01 respectively. Different rows correspond to
policies trained with different random seeds. The x and y axes show the x and y coordinates of
the center-of-mass. As α decreases, the training process focuses more on high rewards, therefore
exploring the training ground more extensively. However, low α also tends to produce less diverse
behavior. Therefore the trajectories are more concentrated in the fourth column.

discounted policy gradients typically do not optimize the true discounted objective. Instead, they

20

Figure 2.8: Performance in the downstream task with fine-tuning (MaxEnt) or training from scratch
(DDPG). The x-axis shows the training iterations. The y-axis shows the average discounted return.
Solid lines are average values over 10 random seeds. Shaded regions correspond to one standard
deviation.

optimize average reward, with the discount serving to reduce variance, as discussed by [111].
However, for the purposes of the derivation, we can define the objective that is optimized under a
discount factor as

π∗MaxEnt = arg max
π

∑
t

E(st,at)∼ρπ

[
∞∑
l=t

γl−t E(sl,al) [r(st, at) + αH(π(· |st))|st, at]

]
.

This objective corresponds to maximizing the discounted expected reward and entropy for future
states originating from every state-action tuple (st, at) weighted by its probability ρπ under the
current policy. Note that this objective still takes into account the entropy of the policy at future
states, in contrast to greedy objectives such as Boltzmann exploration or the approach proposed by
[74].

We can now derive policy improvement results for soft Q-learning. We start with the definition
of the soft Q-value Qπ

soft for any policy π as the expectation under π of the discounted sum of
rewards and entropy :

Qπ
soft(s, a) , r0 + Eτ∼π,s0=s,a0=a

[
∞∑
t=1

γt(rt +H(π(· |st)))

]
. (2.12)

Here, τ = (s0, a0, s1, a1, . . .) denotes the trajectory originating at (s, a). Notice that for convenience,
we set the entropy parameter α to 1. The theory can be easily adapted by dividing rewards by α.

The discounted maximum entropy policy objective can now be defined as

J(π) ,
∑
t

E(st,at)∼ρπ [Qπ
soft(st, at) + αH(π(· |st))] . (2.13)

21

The Maximum Entropy Policy
If the objective function is the expected discounted sum of rewards, the policy improvement theorem
[108] describes how policies can be improved monotonically. There is a similar theorem we can
derive for the maximum entropy objective:

Theorem 4. (Policy improvement theorem) Given a policy π, define a new policy π̃ as

π̃(· |s) ∝ exp
(
Qπ

soft(s, ·)
)
, ∀s. (2.14)

Assume that throughout our computation, Q is bounded and
∫

exp(Q(s, a)) da is bounded for any
s (for both π and π̃). Then Qπ̃

soft(s, a) ≥ Qπ
soft(s, a) ∀s, a.

The proof relies on the following observation: if one greedily maximize the sum of entropy and
value with one-step look-ahead, then one obtains π̃ from π:

H(π(· |s)) + Ea∼π [Qπ
soft(s, a)] ≤ H(π̃(· |s)) + Ea∼π̃ [Qπ

soft(s, a)] . (2.15)

The proof is straight-forward by noticing that

H(π(· |s)) + Ea∼π [Qπ
soft(s, a)] = −DKL (π(· |s) ‖ π̃(· |s)) + log

∫
exp (Qπ

soft(s, a)) da (2.16)

Then we can show that

Qπ
soft(s, a) = Es1 [r0 + γ(H(π(· |s1)) + Ea1∼π [Qπ

soft(s1, a1)])]

≤ Es1 [r0 + γ(H(π̃(· |s1)) + Ea1∼π̃ [Qπ
soft(s1, a1)])]

= Es1 [r0 + γ(H(π̃(· |s1)) + r1)] + γ2 Es2 [H(π(· |s2)) + Ea2∼π [Qπ
soft(s2, a2)]]

≤ Es1 [r0 + γ(H(π̃(· |s1)) + r1] + γ2 Es2 [H(π̃(· |s2)) + Ea2∼π̃ [Qπ
soft(s2, a2)]]

= Es1 a2∼π̃,s2
[
r0 + γ(H(π̃(· |s1)) + r1) + γ2(H(π̃(· |s2)) + r2)

]
(2.17)

+ γ3 Es3 [H(π̃(· |s3)) + Ea3∼π̃ [Qπ
soft(s3, a3)]]

...

≤ Eτ∼π̃

[
r0 +

∞∑
t=1

γt(H(π̃(· |st)) + rt)

]
= Qπ̃

soft(s, a). (2.18)

With Theorem 4, we start from an arbitrary policy π0 and define the policy iteration as

πi+1(· |s) ∝ exp (Qπi
soft(s, ·)) . (2.19)

Then Qπi
soft(s, a) improves monotonically. Under certain regularity conditions, πi converges to

π∞. Obviously, we have π∞(a|s) ∝a exp (Qπ∞(s, a)). Since any non-optimal policy can be
improved this way, the optimal policy must satisfy this energy-based form. Therefore we have
proven Theorem 1.

22

Soft Bellman Equation and Soft Value Iteration
Recall the definition of the soft value function:

V π
soft(s) , log

∫
exp (Qπ

soft(s, a)) da. (2.20)

Suppose π(a|s) = exp (Qπ
soft(s, a)− V π

soft(s)). Then we can show that

Qπ
soft(s, a) = r(s, a) + γ Es′∼ps

[
H(π(· |s′)) + Ea′∼π(· |s′) [Qπ

soft(s
′, a′)]

]
= r(s, a) + γ Es′∼ps [V π

soft(s
′)] . (2.21)

This completes the proof of Theorem 2.
Finally, we show that the soft value iteration operator T , defined as

T Q(s, a) , r(s, a) + γ Es′∼ps

[
log

∫
expQ(s′, a′) da′

]
, (2.22)

is a contraction. Then Theorem 3 follows immediately.
The following proof has also been presented by [24]. Define a norm on Q-values as ‖Q1−Q2‖ ,

maxs,a |Q1(s, a)−Q2(s, a)|. Suppose ε = ‖Q1 −Q2‖. Then

log

∫
exp(Q1(s′, a′)) da′ ≤ log

∫
exp(Q2(s′, a′) + ε) da′

= log

(
exp(ε)

∫
expQ2(s′, a′) da′

)
= ε+ log

∫
expQ2(a′, a′) da′. (2.23)

Similarly, log
∫

expQ1(s′, a′) da′ ≥ −ε + log
∫

expQ2(s′, a′) da′. Therefore ‖T Q1 − T Q2‖ ≤
γε = γ‖Q1 − Q2‖. So T is a contraction. As a consequence, only one Q-value satisfies the soft
Bellman equation, and thus the optimal policy presented in Theorem 1 is unique.

2.7 Implementation Details

Hyperparameters
All tasks have a horizon of T = 500, except the multi-goal task, which uses T = 20. We add an
additional termination condition to the quadrupedal 3D robot to discourage it from flipping over.

Throughout all experiments, we use the following parameters for both DDPG and soft Q-
learning. The Q-values are updated using ADAM with learning rate 0.001. The DDPG policy and
soft Q-learning sampling network use ADAM with a learning rate of 0.0001. The algorithm uses
a replay pool of size one million. Training does not start until the replay pool has at least 10,000
samples. Every mini-batch has size 64. Each training iteration consists of 10000 time steps, and both

23

the Q-values and policy / sampling network are trained at every time step. All experiments are run
for 500 epochs, except that the multi-goal task uses 100 epochs and the fine-tuning tasks are trained
for 200 epochs. Both the Q-value and policy / sampling network are neural networks comprised of
two hidden layers, with 200 hidden units at each layer and ReLU nonlinearity. Both DDPG and
soft Q-learning use additional OU Noise [116, 60] to improve exploration. The parameters are
θ = 0.15 and σ = 0.3. In addition, we found that updating the target parameters too frequently can
destabilize training. Therefore we freeze target parameters for every 1000 time steps (except for the
swimming snake experiment, which freezes for 5000 epochs), and then copy the current network
parameters to the target networks directly (τ = 1).

Soft Q-learning uses K = M = 32 action samples (see Section 2.7) to compute the policy
update, except that the multi-goal experiment uses K = M = 100. The number of additional action
samples to compute the soft value is KV = 50. The kernel κ is a radial basis function, written
as κ(a, a′) = exp(− 1

h
‖a − a′‖2

2), where h = d
2 log(M+1)

, with d equal to the median of pairwise

distance of sampled actions a(i)
t . Note that the step size h changes dynamically depending on the

state s, as suggested in [61].
The entropy coefficient α is 10 for multi-goal environment, and 0.1 for the swimming snake,

maze, hallway (pretraining) and U-shaped maze (pretraining) experiments.
All fine-tuning tasks anneal the entropy coefficient α quickly in order to improve performance,

since the goal during fine-tuning is to recover a near-deterministic policy on the fine-tuning task.
In particular, α is annealed log-linearly to 0.001 within 20 epochs of fine-tuning. Moreover, the
samples ξ are fixed to a set {ξi}

Kξ
i=1 and Kξ is reduced linearly to 1 within 20 epochs.

Computing the Policy Update
Here we explain in full detail how the policy update direction ∇̂φJπ in algorithm 1 is computed.
We reuse the indices i, j in this section with a different meaning than in the body for the sake of
providing a cleaner presentation.

Expectations appear in amortized SVGD in two places. First, SVGD approximates the optimal
descent direction φ(·) in Equation (2.11) with an empirical average over the samples a(i)

t = fφ(ξ(i)).
Similarly, SVGD approximates the expectation in Equation (2.11) with samples ã(j)

t = fφ(ξ̃(j)),
which can be the same or different from a

(i)
t . Substituting (2.11) into (2.11) and taking the gradient

gives the empirical estimate

∇̂φJπ(φ;st)=
1

KM

∑K
j=1

∑M
i=1

(
κ(a

(i)
t ,ã

(j)
t)∇a′Qsoft(st,a

′)
∣∣
a′=a

(i)
t

+∇a′κ(a′,ã
(j)
t)

∣∣
a′=a

(i)
t

)
∇φfφ(ξ̃(j);st).

Finally, the update direction ∇̂φJπ is the average of ∇̂φJπ(φ; st), where st is drawn from a mini-
batch.

24

Computing the Density of Sampled Actions
Equation (2.9) states that the soft value can be computed by sampling from a distribution qa′ and that
qa′(·) ∝ exp

(
1
α
Qφ

soft(s, ·)
)

is optimal. A direct solution is to obtain actions from the sampling

network: a′ = fφ(ξ′; s). If the samples ξ′ and actions a′ have the same dimension, and if the
jacobian matrix ∂a′

∂ξ′
is non-singular, then the probability density is

qa′(a′) = pξ(ξ
′)

1∣∣∣det
(
∂a′

∂ξ′

)∣∣∣ . (2.24)

In practice, the Jacobian is usually singular at the beginning of training, when the sampler fφ is
not fully trained. A simple solution is to begin with uniform action sampling and then switch to
fφ later, which is reasonable, since an untrained sampler is unlikely to produce better samples for
estimating the partition function anyway.

2.8 Discussion
In summary, Soft Q-Learning improves exploration by explicitly sampling actions from exp(Qsoft−
Vsoft), thus trying similarly rewarding actions with similar probabilities and eventually avoiding
local minimums. However, in practice, sampling variation can still incorrectly favor less rewarding
actions, which will cause early convergence through the snowball effect - more experiences are
gathered using the worse actions, which in turn biases the Q-value estimate towards favoring
them. Therefore the exploration vs exploitation conflict forces a trade-off between accurate value
estimation and fast convergence.

To formalize the energy-based policy form, an entropy-regularized objective is proposed in
place of total rewards. Despite its task-agnostic definition, it should be considered a modeling tool
rather than an objective truth. Besides shaping the reward, one can easily change the optimal policy
by remapping the action space or choosing a different temperature α. Therefore, it is up to the user
to decide the form and degree of exploration.

Entropy regularization has limited power since it only involves properties of the reward function.
In later chapters, we will study how to inform exploration by exploiting the state-space structure
Chapter 3 and the decision hierarchy Chapter 4.

25

Chapter 3

#Exploration: A Study of Count-Based
Exploration for Deep Reinforcement
Leaning

3.1 Introduction
Reinforcement learning (RL) studies an agent acting in an initially unknown environment, learning
through trial and error to maximize rewards. It is impossible for the agent to act near-optimally until
it has sufficiently explored the environment and identified all of the opportunities for high reward,
in all scenarios. A core challenge in RL is how to balance exploration—actively seeking out novel
states and actions that might yield high rewards and lead to long-term gains; and exploitation—
maximizing short-term rewards using the agent’s current knowledge. While there are exploration
techniques for finite MDPs that enjoy theoretical guarantees, there are no fully satisfying techniques
for high-dimensional state spaces; therefore, developing more general and robust exploration
techniques is an active area of research.

Most of the recent state-of-the-art RL results have been obtained using simple exploration
strategies such as uniform sampling [68] and i.i.d./correlated Gaussian noise [96, 60]. Although
these heuristics are sufficient in tasks with well-shaped rewards, the sample complexity can grow
exponentially (with state space size) in tasks with sparse rewards [80]. Recently developed explo-
ration strategies for deep RL have led to significantly improved performance on environments with
sparse rewards. Bootstrapped DQN [81] led to faster learning in a range of Atari 2600 games by
training an ensemble of Q-functions. Intrinsic motivation methods using pseudo-counts achieve
state-of-the-art performance on Montezuma’s Revenge, an extremely challenging Atari 2600 game
[7]. Variational Information Maximizing Exploration (VIME, [41]) encourages the agent to explore
by acquiring information about environment dynamics, and performs well on various robotic loco-
motion problems with sparse rewards. However, we have not seen a very simple and fast method
that can work across different domains.

Some of the classic, theoretically-justified exploration methods are based on counting state-

26

action visitations, and turning this count into a bonus reward. In the bandit setting, the well-known
UCB algorithm of [56] chooses the action at at time t that maximizes r̂(at) +

√
2 log t
n(at)

where r̂(at)
is the estimated reward, and n(at) is the number of times action at was previously chosen. In the
MDP setting, some of the algorithms have similar structure, for example, Model Based Interval
Estimation–Exploration Bonus (MBIE-EB) of [106] counts state-action pairs with a table n(s, a)
and adding a bonus reward of the form β√

n(s,a)
to encourage exploring less visited pairs. [53] show

that the inverse-square-root dependence is optimal. MBIE and related algorithms assume that the
augmented MDP is solved analytically at each timestep, which is only practical for small finite state
spaces.

This chapter presents a simple approach for exploration, which extends classic counting-based
methods to high-dimensional, continuous state spaces. We discretize the state space with a hash
function and apply a bonus based on the state-visitation count. The hash function can be chosen
to appropriately balance generalization across states, and distinguishing between states. We select
problems from rllab [18] and Atari 2600 [6] featuring sparse rewards, and demonstrate near state-of-
the-art performance on several games known to be hard for naïve exploration strategies. The main
strength of the presented approach is that it is fast, flexible and complementary to most existing RL
algorithms.

In summary, this chapter proposes a generalization of classic count-based exploration to high-
dimensional spaces through hashing (Section 3.2); demonstrates its effectiveness on challenging
deep RL benchmark problems and analyzes key components of well-designed hash functions
(Section 3.4).

3.2 Methodology

Count-Based Exploration via Static Hashing
Our approach discretizes the state space with a hash function φ : S → Z. An exploration bonus
r+ : S → R is added to the reward function, defined as

r+(s) =
β√

n(φ(s))
, (3.1)

where β ∈ R≥0 is the bonus coefficient. Initially the counts n(·) are set to zero for the whole range
of φ. For every state st encountered at time step t, n(φ(st)) is increased by one. The agent is trained
with rewards (r + r+), while performance is evaluated as the sum of rewards without bonuses.

Note that our approach is a departure from count-based exploration methods such as MBIE-EB
since we use a state-space count n(s) rather than a state-action count n(s, a). State-action counts
n(s, a) are investigated in the Supplementary Material, but no significant performance gains over
state counting could be witnessed. A possible reason is that the policy itself is sufficiently random
to try most actions at a novel state.

Clearly the performance of this method will strongly depend on the choice of hash function φ.
One important choice we can make regards the granularity of the discretization: we would like for

27

Algorithm 2: Count-based exploration through static hashing, using SimHash
1 Define state preprocessor g : S → RD

2 (In case of SimHash) Initialize A ∈ Rk×D with entries drawn i.i.d. from the standard
Gaussian distribution N (0, 1)

3 Initialize a hash table with values n(·) ≡ 0
4 for each iteration j do
5 Collect a set of state-action samples {(sm, am)}Mm=0 with policy π
6 Compute hash codes through any LSH method, e.g., for SimHash,

φ(sm) = sgn(Ag(sm))
7 Update the hash table counts ∀m : 0 ≤ m ≤M as n(φ(sm))← n(φ(sm)) + 1

8 Update the policy π using rewards
{
r(sm, am) + β√

n(φ(sm))

}M
m=0

with any RL

algorithm

“distant” states to be be counted separately while “similar” states are merged. If desired, we can
incorporate prior knowledge into the choice of φ, if there would be a set of salient state features
which are known to be relevant. A short discussion on this matter is given in the Supplementary
Material.

Algorithm 2 summarizes our method. The main idea is to use locality-sensitive hashing (LSH)
to convert continuous, high-dimensional data to discrete hash codes. LSH is a popular class of hash
functions for querying nearest neighbors based on certain similarity metrics [4]. A computationally
efficient type of LSH is SimHash [11], which measures similarity by angular distance. SimHash
retrieves a binary code of state s ∈ S as

φ(s) = sgn(Ag(s)) ∈ {−1, 1}k, (3.2)

where g : S → RD is an optional preprocessing function and A is a k ×D matrix with i.i.d. entries
drawn from a standard Gaussian distribution N (0, 1). The value for k controls the granularity:
higher values lead to fewer collisions and are thus more likely to distinguish states.

Count-Based Exploration via Learned Hashing
When the MDP states have a complex structure, as is the case with image observations, measuring
their similarity directly in pixel space fails to provide the semantic similarity measure one would
desire. Previous work in computer vision [62, 15, 114] introduce manually designed feature
representations of images that are suitable for semantic tasks including detection and classification.
More recent methods learn complex features directly from data by training convolutional neural
networks [54, 103, 38]. Considering these results, it may be difficult for a method such as SimHash
to cluster states appropriately using only raw pixels.

Therefore, rather than using SimHash, we propose to use an autoencoder (AE) to learn mean-
ingful hash codes in one of its hidden layers as a more advanced LSH method. This AE takes as

28

input states s and contains one special dense layer comprised of D sigmoid functions. By rounding
the sigmoid activations b(s) of this layer to their closest binary number bb(s)e ∈ {0, 1}D, any state
s can be binarized. This is illustrated in Figure 3.1 for a convolutional AE.

6× 6 6× 6 6× 6 6× 6 6× 66× 6

b·ecode
downsample

softmaxlinear

64× 52× 521× 52× 52

96× 24× 24
96× 10× 10

96× 5× 5

2400

b(·)
512

1024

96× 5× 5
96× 11× 11

96× 24× 24

1× 52× 52

Figure 3.1: The autoencoder (AE) architecture for ALE; the solid block represents the dense
sigmoidal binary code layer, after which noise U(−a, a) is injected.

A problem with this architecture is that dissimilar inputs si, sj can map to identical hash codes
bb(si)e = bb(sj)e, but the AE still reconstructs them perfectly. For example, if b(si) and b(sj) have
values 0.6 and 0.7 at a particular dimension, the difference can be exploited by deconvolutional
layers in order to reconstruct si and sj perfectly, although that dimension rounds to the same binary
value. One can imagine replacing the bottleneck layer b(s) with the hash codes bb(s)e, but then
gradients cannot be back-propagated through the rounding function. A solution is proposed by [29]
and [90] is to inject uniform noise U(−a, a) into the sigmoid activations. By choosing uniform
noise with a > 1

4
, the AE is only capable of (always) reconstructing distinct state inputs si 6= sj , if

it has learned to spread the sigmoid outputs sufficiently far apart, |b(si) − b(sj)| > ε, in order to
counteract the injected noise.

As such, the loss function over a set of collected states {si}Ni=1 is defined as

L
(
{sn}Nn=1

)
= − 1

N

N∑
n=1

[
log p(sn)− λ

K

∑D
i=1 min

{
(1− bi(sn))2 , bi(sn)2

}]
, (3.3)

with p(sn) the AE output. This objective function consists of a negative log-likelihood term and a
term that pressures the binary code layer to take on binary values, scaled by λ ∈ R≥0. The reasoning
behind this latter term is that it might happen that for particular states, a certain sigmoid unit is
never used. Therefore, its value might fluctuate around 1

2
, causing the corresponding bit in binary

code bb(s)e to flip over the agent lifetime. Adding this second loss term ensures that an unused bit
takes on an arbitrary binary value.

For Atari 2600 image inputs, since the pixel intensities are discrete values in the range [0, 255],
we make use of a pixel-wise softmax output layer [77] that shares weights between all pixels. The
architectural details are described in the Supplementary Material and are depicted in Figure 3.1.
Because the code dimension often needs to be large in order to correctly reconstruct the input, we
apply a downsampling procedure to the resulting binary code bb(s)e, which can be done through
random projection to a lower-dimensional space via SimHash as in Eq. (3.2).

29

Algorithm 3: Count-based exploration using learned hash codes
1 Define state preprocessor g : S → {0, 1}D as the binary code resulting from the

autoencoder (AE)
2 Initialize A ∈ Rk×D with entries drawn i.i.d. from the standard Gaussian distribution
N (0, 1)

3 Initialize a hash table with values n(·) ≡ 0
4 for each iteration j do
5 Collect a set of state-action samples {(sm, am)}Mm=0 with policy π
6 Add the state samples {sm}Mm=0 to a FIFO replay poolR
7 if j mod jupdate = 0 then
8 Update the AE loss function in Eq. (3.3) using samples drawn from the replay

pool {sn}Nn=1 ∼ R, for example using stochastic gradient descent

9 Compute g(sm) = bb(sm)e, the D-dim rounded hash code for sm learned by the AE
10 Project g(sm) to a lower dimension k via SimHash as φ(sm) = sgn(Ag(sm))
11 Update the hash table counts ∀m : 0 ≤ m ≤M as n(φ(sm))← n(φ(sm)) + 1

12 Update the policy π using rewards
{
r(sm, am) + β√

n(φ(sm))

}M
m=0

with any RL

algorithm

On the one hand, it is important that the mapping from state to code needs to remain relatively
consistent over time, which is nontrivial as the AE is constantly updated according to the latest data
(Algorithm 3 line 8). A solution is to downsample the binary code to a very low dimension, or by
slowing down the training process. On the other hand, the code has to remain relatively unique for
states that are both distinct and close together on the image manifold. This is tackled both by the
second term in Eq. (3.3) and by the saturating behavior of the sigmoid units. States already well
represented by the AE tend to saturate the sigmoid activations, causing the resulting loss gradients
to be close to zero, making the code less prone to change.

3.3 Related Work
Classic count-based methods such as MBIE [105], MBIE-EB and [53] solve an approximate Bell-
man equation as an inner loop before the agent takes an action [106]. As such, bonus rewards are
propagated immediately throughout the state-action space. In contrast, contemporary deep RL algo-
rithms propagate the bonus signal based on rollouts collected from interacting with environments,
with value-based [68] or policy gradient-based [96, 66] methods, at limited speed. In addition,
our proposed method is intended to work with contemporary deep RL algorithms, it differs from
classical count-based method in that our method relies on visiting unseen states first, before the
bonus reward can be assigned, making uninformed exploration strategies still a necessity at the

30

beginning. Filling the gaps between our method and classic theories is an important direction of
future research.

A related line of classical exploration methods is based on the idea of optimism in the face
of uncertainty [8] but not restricted to using counting to implement “optimism”, e.g., R-Max
[8], UCRL [44], and E3 [49]. These methods, similar to MBIE and MBIE-EB, have theoretical
guarantees in tabular settings.

Bayesian RL methods [53, 31, 107, 27], which keep track of a distribution over MDPs, are an
alternative to optimism-based methods. Extensions to continuous state space have been proposed
by [85] and [80].

Another type of exploration is curiosity-based exploration. These methods try to capture the
agent’s surprise about transition dynamics. As the agent tries to optimize for surprise, it naturally
discovers novel states. We refer the reader to [93] and [83] for an extensive review on curiosity and
intrinsic rewards.

Several exploration strategies for deep RL have been proposed to handle high-dimensional state
space recently. [41] propose VIME, in which information gain is measured in Bayesian neural
networks modeling the MDP dynamics, which is used an exploration bonus. [104] propose to use
the prediction error of a learned dynamics model as an exploration bonus. Thompson sampling
through bootstrapping is proposed by [81], using bootstrapped Q-functions.

The most related exploration strategy is proposed by [7], in which an exploration bonus is added
inversely proportional to the square root of a pseudo-count quantity. A state pseudo-count is derived
from its log-probability improvement according to a density model over the state space, which in
the limit converges to the empirical count. Our method is similar to pseudo-count approach in the
sense that both methods are performing approximate counting to have the necessary generalization
over unseen states. The difference is that a density model has to be designed and learned to achieve
good generalization for pseudo-count whereas in our case generalization is obtained by a wide
range of simple hash functions (not necessarily SimHash). Another interesting connection is that
our method also implies a density model ρ(s) = n(φ(s))

N
over all visited states, where N is the total

number of states visited. Another method similar to hashing is proposed by [1], which clusters
states and counts cluster centers instead of the true states, but this method has yet to be tested on
standard exploration benchmark problems.

3.4 Experiments
Experiments were designed to investigate and answer the following research questions:

1. Can count-based exploration through hashing improve performance significantly across
different domains? How does the proposed method compare to the current state of the art in
exploration for deep RL?

2. What is the impact of learned or static state preprocessing on the overall performance when
image observations are used?

31

To answer question 1, we run the proposed method on deep RL benchmarks (rllab and ALE)
that feature sparse rewards, and compare it to other state-of-the-art algorithms. Question 2 is
answered by trying out different image preprocessors on Atari 2600 games. Trust Region Policy
Optimization (TRPO, [96]) is chosen as the RL algorithm for all experiments, because it can handle
both discrete and continuous action spaces, can conveniently ensure stable improvement in the
policy performance, and is relatively insensitive to hyperparameter changes. The hyperparameters
settings are reported in the Supplementary Material.

Continuous Control
The rllab benchmark [18] consists of various control tasks to test deep RL algorithms. We selected
several variants of the basic and locomotion tasks that use sparse rewards, as shown in Figure 3.2, and
adopt the experimental setup as defined in [41]—a description can be found in the Supplementary
Material. These tasks are all highly difficult to solve with naïve exploration strategies, such as
adding Gaussian noise to the actions.

Figure 3.2: Illustrations of the rllab tasks used in the continuous control experiments, namely
MountainCar, CartPoleSwingup, SimmerGather, and HalfCheetah; taken from [18].

(a) MountainCar (b) CartPoleSwingup (c) SwimmerGather (d) HalfCheetah

Figure 3.3: Mean average return of different algorithms on rllab tasks with sparse rewards. The solid
line represents the mean average return, while the shaded area represents one standard deviation,
over 5 seeds for the baseline and SimHash (the baseline curves happen to overlap with the axis).

Figure 3.3 shows the results of TRPO (baseline), TRPO-SimHash, and VIME [41] on the classic
tasks MountainCar and CartPoleSwingup, the locomotion task HalfCheetah, and the hierarchical
task SwimmerGather. Using count-based exploration with hashing is capable of reaching the
goal in all environments (which corresponds to a nonzero return), while baseline TRPO with
Gaussia n control noise fails completely. Although TRPO-SimHash picks up the sparse reward on

32

HalfCheetah, it does not perform as well as VIME. In contrast, the performance of SimHash is
comparable with VIME on MountainCar, while it outperforms VIME on SwimmerGather.

Arcade Learning Environment
The Arcade Learning Environment (ALE, [6]), which consists of Atari 2600 video games, is an
important benchmark for deep RL due to its high-dimensional state space and wide variety of
games. In order to demonstrate the effectiveness of the proposed exploration strategy, six games
are selected featuring long horizons while requiring significant exploration: Freeway, Frostbite,
Gravitar, Montezuma’s Revenge, Solaris, and Venture. The agent is trained for 500 iterations in all
experiments, with each iteration consisting of 0.1 M steps (the TRPO batch size, corresponds to
0.4 M frames). Policies and value functions are neural networks with identical architectures to [66].
Although the policy and baseline take into account the previous four frames, the counting algorithm
only looks at the latest frame.

BASS To compare with the autoencoder-based learned hash code, we propose using Basic Ab-
straction of the ScreenShots (BASS, also called Basic; see [6]) as a static preprocessing function
g. BASS is a hand-designed feature transformation for images in Atari 2600 games. BASS builds
on the following observations specific to Atari: 1) the game screen has a low resolution, 2) most
objects are large and monochrome, and 3) winning depends mostly on knowing object locations
and motions. We designed an adapted version of BASS1, that divides the RGB screen into square
cells, computes the average intensity of each color channel inside a cell, and assigns the resulting
values to bins that uniformly partition the intensity range [0, 255]. Mathematically, let C be the cell
size (width and height), B the number of bins, (i, j) cell location, (x, y) pixel location, and z the
channel, then

feature(i, j, z) =
⌊

B
255C2

∑
(x,y)∈ cell(i,j) I(x, y, z)

⌋
. (3.4)

Afterwards, the resulting integer-valued feature tensor is converted to an integer hash code (φ(st) in
Line 6 of Algorithm 2). A BASS feature can be regarded as a miniature that efficiently encodes
object locations, but remains invariant to negligible object motions. It is easy to implement and
introduces little computation overhead. However, it is designed for generic Atari game images and
may not capture the structure of each specific game very well.

We compare our results to double DQN [36], dueling network [123], A3C+ [7], double DQN
with pseudo-counts [7], Gorila [72], and DQN Pop-Art [37] on the “null op” metric2. We show
training curves in Figure 3.4 and summarize all results in Table 1. Surprisingly, TRPO-pixel-
SimHash already outperforms the baseline by a large margin and beats the previous best result on
Frostbite. TRPO-BASS-SimHash achieves significant improvement over TRPO-pixel-SimHash on

1The original BASS exploits the fact that at most 128 colors can appear on the screen. Our adapted version does
not make this assumption.

2The agent takes no action for a random number (within 30) of frames at the beginning of each episode.

33

Table 3.1: Atari 2600: average total reward after training for 50 M time steps. Boldface numbers
indicate best results. Italic numbers are the best among our methods.

Freeway Frostbite Gravitar Montezuma Solaris Venture

TRPO (baseline) 16.5 2869 486 0 2758 121

TRPO-pixel-SimHash 31.6 4683 468 0 2897 263

TRPO-BASS-SimHash 28.4 3150 604 238 1201 616

TRPO-AE-SimHash 33.5 5214 482 75 4467 445

Double-DQN 33.3 1683 412 0 3068 98.0

Dueling network 0.0 4672 588 0 2251 497

Gorila 11.7 605 1054 4 N/A 1245
DQN Pop-Art 33.4 3469 483 0 4544 1172

A3C+ 27.3 507 246 142 2175 0

pseudo-count 29.2 1450 – 3439 – 369

Montezuma’s Revenge and Venture, where it captures object locations better than other methods.3

TRPO-AE-SimHash achieves near state-of-the-art performance on Freeway, Frostbite and Solaris.
As observed in Table 1, preprocessing images with BASS or using a learned hash code through

the AE leads to much better performance on Gravitar, Montezuma’s Revenge and Venture. There-
fore, a static or adaptive preprocessing step can be important for a good hash function.

In conclusion, our count-based exploration method is able to achieve remarkable performance
gains even with simple hash functions like SimHash on the raw pixel space. If coupled with
domain-dependent state preprocessing techniques, it can sometimes achieve far better results.

A reason why our proposed method does not achieve state-of-the-art performance on all games
is that TRPO does not reuse off-policy experience, in contrast to DQN-based algorithms [72, 37, 7]),
and is hence less efficient in harnessing extremely sparse rewards. This explanation is corroborated
by the experiments done in [7], in which A3C+ (an on-policy algorithm) scores much lower than
DQN (an off-policy algorithm), while using the exact same exploration bonus.

Hyperparameter Settings
Throughout all experiments, we use Adam [52] for optimizing the baseline function and the
autoencoder. Hyperparameters for rllab experiments are summarized in Table 3.2. Here the policy

3We provide videos of example game play and visualizations of the difference bewteen Pixel-SimHash and
BASS-SimHash at https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55

34

https://www.youtube.com/playlist?list=PLAd-UMX6FkBQdLNWtY8nH1-pzYJA_1T55

0 100 200 300 400 500
−5

0

5

10

15

20

25

30

35

(a) Freeway

0 100 200 300 400 500

0

2000

4000

6000

8000

10000

(b) Frostbite

0 100 200 300 400 500
100

200

300

400

500

600

700

800

900

1000

TRPO-AE-SimHash

TRPO

TRPO-BASS-SimHash

TRPO-pixel-SimHash

(c) Gravitar

0 100 200 300 400 500

0

100

200

300

400

500

(d) Montezuma’s Revenge

0 100 200 300 400 500
−1000

0

1000

2000

3000

4000

5000

6000

7000

(e) Solaris

0 100 200 300 400 500
−200

0

200

400

600

800

1000

1200

(f) Venture

Figure 3.4: Atari 2600 games: the solid line is the mean average undiscounted return per iteration,
while the shaded areas represent the one standard deviation, over 5 seeds for the baseline, TRPO-
pixel-SimHash, and TRPO-BASS-SimHash, while over 3 seeds for TRPO-AE-SimHash.

takes a state s as input, and outputs a Gaussian distributionN (µ(s), σ2), where µ(s) is the output of
a multi-layer perceptron (MLP) with tanh nonlinearity, and σ > 0 is a state-independent parameter.

Table 3.2: TRPO hyperparameters for rllab experiments

Experiment MountainCar CartPoleSwingUp HalfCheetah SwimmerGatherer
TRPO batch size 5k 5k 5k 50k
TRPO step size 0.01
Discount factor γ 0.99
Policy hidden units (32, 32) (32,) (32, 32) (64, 32)
Baseline function linear linear linear MLP: 32 units
Exploration bonus β = 0.01
SimHash dimension k = 32

Hyperparameters for Atari 2600 experiments are summarized in Table 3.3 and 3.4. By default,
all convolutional layers are followed by ReLU nonlinearity.

The autoencoder architecture was shown in Figure 1 of Section 2.3. Specifically, uniform noise
U(−a, a) with a = 0.3 is added to the sigmoid activations. The loss function Eq.(3) (in the main
text), using λ = 10, is updated every jupdate = 3 iterations. The architecture looks as follows: an
input layer of size 52× 52, representing the image luminance is followed by 3 consecutive 6× 6

35

Table 3.3: TRPO hyperparameters for Atari experiments with image input

Experiment TRPO-pixel-SimHash TRPO-BASS-SimHash TRPO-AE-SimHash
TRPO batch size 100k
TRPO step size 0.01
Discount factor 0.995
random seeds 5 5 3
Input preprocessing grayscale; downsampled to 52× 52; each pixel rescaled to [−1, 1]

4 previous frames are concatenated to form the input state
Policy structure 16 conv filters of size 8× 8, stride 4

32 conv filters of size 4× 4, stride 2
fully-connect layer with 256 units

linear transform and softmax to output action probabilities
(use batch normalization[42] at every layer)

Baseline structure (same as policy, except that the last layer is a single scalar)
Exploration bonus β = 0.01
Hashing parameters k = 256 cell size C = 20 b(s) size: 256 bits

B = 20 bins downsampled to 64 bits

Table 3.4: TRPO hyperparameters for Atari experiments with RAM input

Experiment TRPO-RAM-SimHash
TRPO batch size 100k
TRPO step size 0.01
Discount factor 0.995
random seeds 10
Input preprocessing vector of length 128 in the range [0, 255]; downsampled to [−1, 1]
Policy structure MLP: (32, 32, number_of_actions), tanh
Baseline structure MLP: (32, 32, 1), tanh
Exploration bonus β = 0.01
SimHash dimension k = 256

convolutional layers with stride 2 and 96 filters feed into a fully connected layer of size 1024, which
connects to the binary code layer. This binary code layer feeds into a fully-connected layer of
1024 units, connecting to a fully-connected layer of 2400 units. This layer feeds into 3 consecutive
6 × 6 transposed convolutional layers of which the final one connects to a pixel-wise softmax
layer with 64 bins, representing the pixel intensities. Moreover, label smoothing is applied to the
different softmax bins, in which the log-probability of each of the bins is increased by 0.003, before
normalizing. The softmax weights are shared among each pixel.

In addition, we apply counting Bloom filters [20] to maintain a small hash table.

36

3.5 A Case Study of Montezuma’s Revenge
Montezuma’s Revenge is widely known for its extremely sparse rewards and difficult exploration
[7]. While our method does not outperform [7] on this game, we investigate the reasons behind this
through various experiments. The experiment process below again demonstrates the importance of
a hash function having the correct granularity and encoding relevant information for solving the
MDP.

Our first attempt is to use game RAM states instead of image observations as inputs to the
policy, which leads to a game score of 2500 with TRPO-BASS-SimHash. Our second attempt is to
manually design a hash function that incorporates domain knowledge, called SmartHash, which
uses an integer-valued vector consisting of the agent’s (x, y) location, room number and other useful
RAM information as the hash code. The best SmartHash agent is able to obtain a score of 3500.
Still the performance is not optimal. We observe that a slight change in the agent’s coordinates does
not always result in a semantically distinct state, and thus the hash code may remain unchanged.
Therefore we choose grid size s and replace the x coordinate by b(x− xmin)/sc (similarly for y).
The bonus coefficient is chosen as β = 0.01

√
s to maintain the scale relative to the true reward4

(see Table 3.5). Finally, the best agent is able to obtain 6600 total rewards after training for 1000
iterations (1000 M time steps), with a grid size s = 10.

Table 3.6 lists the semantic interpretation of certain RAM entries in Montezuma’s Revenge.
SmartHash, as described in Section 3.5, makes use of RAM indices 3, 42, 43, 27, and 67. “Beam
walls” are deadly barriers that occur periodically in some rooms.

During our pursuit, we had another interesting discovery that the ideal hash function should
not simply cluster states by their visual similarity, but instead by their relevance to solving the
MDP. We experimented with including enemy locations in the first two rooms into SmartHash
(s = 10), and observed that average score dropped to 1672 (at iteration 1000). Though it is important
for the agent to dodge enemies, the agent also erroneously “enjoys” watching enemy motions at
distance (since new states are constantly observed) and “forgets” that his main objective is to enter
other rooms. An alternative hash function keeps the same entry “enemy locations”, but instead
only puts randomly sampled values in it, which surprisingly achieves better performance (3112).
However, by ignoring enemy locations altogether, the agent achieves a much higher score (5661)
(see Figure 3.5). In retrospect, we examine the hash codes generated by BASS-SimHash and find
that codes clearly distinguish between visually different states (including various enemy locations),
but fails to emphasize that the agent needs to explore different rooms. Again this example showcases
the importance of encoding relevant information in designing hash functions.

3.6 Discussion
The proposed hashing techniques generalize count-based exploration to more complex state spaces.
However, no theoretical guarantee applies to such non-tabular state representations, unless further

4The bonus scaling is chosen by assuming all states are visited uniformly and the average bonus reward should
remain the same for any grid size.

37

0 200 400 600 800 1000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

exact enemy locations

ignore enemies

random enemy locations

Figure 3.5: SmartHash results on Montezuma’s Revenge (RAM observations): the solid line is the
mean average undiscounted return per iteration, while the shaded areas represent the one standard
deviation, over 5 seeds.

Table 3.5: Average score at 50 M time steps achieved by TRPO-SmartHash on Montezuma’s
Revenge (RAM observations)

s 1 5 10 20 40 60

score 2598 2500 3533 3025 2500 1921

Table 3.6: Interpretation of particular RAM entries in Montezuma’s Revenge

ID Group Meaning

3 room room number

42 agent x coordinate

43 agent y coordinate

52 agent orientation (left/right)

27 beams on/off

83 beams beam countdown (on: 0, off: 36→ 0)

0 counter counts from 0 to 255 and repeats

55 counter death scene countdown

67 objects Doors, skull, and key in 1st room

47 skull x coordinate (1st and 2nd room)

assumptions about the state space structure are made and are consistent with the chosen hash
function. It becomes clearer with evidence from Section 3.5 that the best hash functions should
encode task semantics. Thus the user can utilize his prior knowledge about the task to accelerate

38

convergence to the global optimum.
Though count-based exploration shapes the reward, it is essentially still solving the original

problem, since all bonus rewards will converge to zero eventually. In Chapter 4, we will employ
various techniques, including hierarchy, to reformulate the problem and to dramatically speed up
exploration.

39

Chapter 4

Modular Architecture for StarCraft II with
Deep Reinforcement Learning

4.1 Introduction
Deep reinforcement learning (deep RL) has become a promising tool for acquiring competitive
game-playing agents, achieving success on Atari [67], Go [99], Minecraft [110], Dota 2 [79], and
many other games. It is capable of processing complex sensory inputs, leveraging massive training
data, and bootstrapping performance without human knowledge via self-play [100]. However,
StarCraft II, a well recognized new milestone for AI research, continues to present a grand challenge
to deep RL due to its complex visual input, large action space, imperfect information, and long
horizon. In fact, the direct end-to-end learning approach cannot even defeat the easiest built-in AI
[121].

StarCraft II is a real-time strategy game that involves collecting resources, building production
facilities, researching technologies, and managing armies to defeat the opponent. Its predecessor
StarCraft has attracted numerous research efforts, including hierarchical planning [124] and tree
search [117] (see survey by Ontañón et al. [76]). Most prior approaches focus on substantial manual
designs, yet still unable to defeat professional players, potentially due to their inability to utilize
game play experiences [51].

We believe that deep RL with properly integrated human knowledge can effectively reduce
the complexity of the problem without compromising policy expressiveness or performance. To
achieve this goal, we propose a flexible modular architecture that shares the decision responsibilities
among multiple independent modules, including worker management, build order, tactics, micro-
management, and scouting (Figure 4.1). Each module can be manually scripted or handled by a
neural network policy, depending on whether the task is routine and hence easy to handcraft, or
highly complex and requires learning from data. All modules suggest macros (predefined action
sequences) to the scheduler, which decides their order of execution. In addition, an updater keeps
track of environment information and adaptively executes macros selected by the scheduler.

We further evaluate the modular architecture by reinforcement learning with self-play, focusing

40

Module Responsibility Current Design
Worker management Ensure that resources are gathered at maximum efficiency Scripted
Build order Choose what unit/building/upgrade to produce FC policy
Tactics Choose where to send the army (attack or retreat) FCN policy
Micromanagement Micro-manage units to destroy more opposing units Scripted
Scouting Send scouts and track opponent information Scripted + LSTM prediction

Table 4.1: The responsibility of each module and its design in our current version. FC = fully
connected network. FCN = fully convolutional network.

Scheduler

Worker
Management Build Order Tactics Scouting Micro-

management

suggested
macros

PySC2
Environment

selected macro

PySC2 action

Updater (repeat until
macro finished)

macro termination

state summary
observations

Figure 4.1: The proposed modular architecture for StarCraft II

on important aspects of the game that can benefit more from massive training experiences, including
build order and tactics. The agent is trained on the PySC2 environment [121] that exposes a
challenging human-like control interface. We adopt an iterative training approach that first trains
one module while others follow very simple scripted behaviors, and then replace the scripted
component of another module with a neural network policy, which continues to train while the
previously trained modules remain fixed. We evaluate our agent playing Zerg v.s. Zerg against
built-in bots on ladder maps, obtaining win rates 92% or 86% against the “Harder” bot, with or
without fog-of-war. Furthermore, our agent generalizes well to held-out test maps and achieves
similar performance.

Our main contribution is to demonstrate that deep RL and self-play combined with the modular
architecture and proper human knowledge can achieve competitive performance on StarCraft II.
Though this chapter focuses on StarCraft II, it is possible to generalize the presented techniques to
other complex problems that are beyond the reach of the current end-to-end RL training paradigm.

4.2 Related Work
Classical approaches towards playing the full game of StarCraft are usually based on planning
or search. Notable examples include case-based reasoning [3], goal-driven autonomy [124], and
Monte-Carlo tree search [117]. Most other research efforts focus on a specific aspect of the decision

41

hierarchy, namely strategy (macromanagement), tactics, and reactive control (micromanaging).
See the survey of Ontañón et al. [76] and Robertson and Watson [89] for complete summaries.
Our modular architecture is inspired by hierarchical and modular designs that won past AIIDE
competitions, especially UAlbertaBot [14], but features the integration of deep RL training and
self-play instead of intense hard-coding.

Reinforcement learning studies how to act optimally in a Markov Decision Process to maximize
the discounted sum of rewards R =

∑T
t=0 γ

trt (γ ∈ (0, 1]). The book by Sutton and Barto [109]
gives a good overview. Deep reinforcement learning uses neural networks to represent the policy
and/or the value function, which can approximate arbitrary functions and process complex inputs
(e.g. visual information).

Recently, Vinyals et al. [121] have released PySC2, a python interface for StarCraft II AI,
and evaluated state-of-the-art deep RL methods. Their end-to-end training approach, although
shows potential for integrating deep RL to RTS games, cannot beat the easiest built-in AI. Other
efforts of applying deep learning or deep RL to StarCraft (I/II) include controlling multiple units in
micromanagement scenarios [86, 23, 118, 97] and learning build orders from human replays [45].
To our knowledge, no published deep RL approach has succeeded in playing the full game yet.

Optimizing different modules can also be cast as a cooperative multi-agent learning problem.
Apart from aforementioned multi-agent learning works on micromanagement, other promising
methods include optimistic and hysteretic Q learning [57, 64, 75], and centralized critic with
decentralized actors [63]. Here we use a simple iterative training approach that alternately optimizes
a single module while keeping others fixed, though incorporating multi-agent learning methods is
possible and can be future work.

Self-play is a powerful technique to bootstrap from an initially random agent, without access to
external data or existing agents. The combination of deep learning, planning, and self-play led to
the well-known Go-playing agents AlphaGo [99] and AlphaZero [100]. More recently, Bansal et al.
[5] has extended self-play to asymmetric environments and learns complex behavior of simulated
robots.

4.3 Modular Architecture
Table 4.1 summarizes the role and design of each module. In the following sections, we will
describe them in details for our implemented agent playing the Zerg race . Note that the design
presented here is only an instance of all possible ways to implement this modular architecture.
One can incorporate other methods, such as planning, into one of the modules as long as it works
coherently with other modules.

Updater
The updater serves as a memory unit, a communication hub for modules, and a portal to the PySC2
environment.

42

Module Macro name and inputs Executed sequence of macros or PySC2 actions
(All) jump_to_base (base) move_camera (base.minimap_location)

select_all_bases select_control_group (bases_hotkey)
Worker rally_workers (base) (1) jump_to_base (base), (2) select_all_bases,

(3) rally_workers_screen (base.minerals_screen_location)
inject_larva (1) select_control_group (Queens_hotkey), (2) for each base:

(2.1) jump_to_base (base),
(2.2) effect_inject_larva_screen (base.screen_location)

Build order hatch (unit_type) (choose by unit_type, e.g. Zergling → train_zergling_quick)
hatch_multiple_units (unit_type, n) (1) select_all_bases, (2) select_larva, (3) hatch (unit_type) n times
build_new_base (1) base = closest unoccupied base (informed by the updater)

(2) jump_to_base (base), (3) select_any_worker,
(4) build_hatchery_screen (base.screen_location)

Tactics attack_location (minimap_location) (1) select_army, (2) attack_minimap (minimap_location)
Micros burrow_lurkers (1) select_army, (2) select_unit (lurker), (3) burrowdown_lurker_quick
Scouting send_scout (minimap_location) (1) select_overlord, (2) move_minimap (minimap_location)

Table 4.2: Example macros available to each module. A macro (italic) consists of a se-
quence of macros or PySC2 actions (non-italic). Information such as base.minimap_location,
base.screen_location and bases_hotkey is provided by the updater.

Name Description
Time Total time (seconds) passed
Friendly bases Minimap locations and worker counts
Enemy bases Minimap locations (scouted)
Neutral bases Minimap locations
Friendly units Friendly unit types and counts
Enemy units Enemy unit types and counts (scouted)
Buildings All constructed building types
Upgrades All researched upgrades
Build queue Units and buildings in production
Notifications Any message from or to modules

Table 4.3: Examples memories maintained by the updater

To allow a fair comparison between AI and humans, Vinyals et al. [121] define observation
inputs from PySC2 as similar to those exposed to human players, including imagery feature maps of
the camera screen and the minimap (e.g. unit type, player identity), and a list of non-spatial features
such as the total amount of minerals collected. Because past actions, past events, and out-of-camera
information are crucial for decision making but not directly accessible from current observations,
the agent has to develop an efficient memory. Though it is possible to learn such a memory from
experiences, we think a properly hand-designed set of memories can serve a similar purpose, while
also reducing the burden on reinforcement learning. Table 4.3 lists example memories the updater
maintains. Some memories (e.g. build queue) can be inferred from previous actions taken. Some
(e.g. friendly units) can be inferred from inspecting the list of all units. Others (e.g. enemy units)
require further processing PySC2 observations and collaborating with the scouting module.

43

The “notifications” entry holds any information a module wants to notify other modules, thus
allowing them to communicate and cooperate. For example, when the build order module decides
to build a new base, it notifies the tactics module, which may move armies to protect the new base.

Finally, the updater handles communication between the agent and PySC2 by concretizing
macros into sequences of PySC2 actions and executing them in the environment.

Macros
When playing StarCraft II, humans usually choose their actions from a list of subroutines, rather than
from raw environment actions. For example, to build a new base, a player identifies an unoccupied
neutral base, selects a worker, and then builds a base there. Here we name these subroutines as
macros (examples shown in Table 4.2). Learning a policy to output macros directly can hide the
trivial execution details of certain higher level commands, therefore allowing the policy to explore
different strategies more effectively.

Build Order
A StarCraft II agent must balance our consumption of resources between many needs, including
supply (population capacity), economy, combat units, upgrades, etc. The build order module plays
the crucial role of choosing the correct thing to build. For example, in the early game, the agent
needs to focus on building enough workers to gather resources, and while in the mid game, it should
choose the correct types of armies that can beat the opposing ones. Though there exist numerous
efficient build orders developed by professional players, executing one naively without adaptation
can result in highly exploitable behavior. Instead of relying on complex if-else logic or planning
to handle various scenarios, the agent’s build order module can benefit effectively from massive
game-play experiences. Therefore we choose to optimize this module by deep reinforcement
learning.

Here we start with a classic hardcoded build order 1, as the builds are often the same towards the
beginning of the game, and the optimal trajectory is simple but requires precisely timed commands.
Once the hard-coded build is exhausted, a neural network policy takes control (See Figure 4.2). This
policy operates once every 5 seconds. Its input consists of the agent’s resources (minerals, gas, larva,
and supply), its building counts, its unit counts, and enemy unit counts (assuming no fog-of-war).
We choose to exclude spatial inputs like screen and minimap features, because choosing what to
build is a high-level strategic choice that depends more on the global information. The output is
the type of unit or structure to produce. For units (Drones, Overlords, and combat units), it also
chooses an amount n ∈ {1, 2, 4, 8, 16} to build. For structures (Hatchery, Extractor) or Queen, it
only produces one at a time. The policy uses a fully connected (FC) network with four hidden layers
and 512 hidden units for each layer.

We also mask out invalid actions, such as producing more units than the current resources can
afford, to enable efficient exploration. If a unit type requires a certain tech structure (e.g. Roaches

1Exactly the first 2 minutes taken from
https://lotv.spawningtool.com/build/56414/

44

hardcoded
build finished?

Neural Network
Policy

Hardcoded
build

next hardcoded macro

No

sampled macro

RL Training

rewards

update

 Feature extraction

Yes

state summary

required
buildings exist?

Yes
No

build n times build required
structures

build once

Figure 4.2: Details of our build order module.

need a Roach Warren) but it doesn’t exist and is not under construction, then the policy will build
the tech structure instead.

Tactics
Once our agent possesses an army provided by the build order module, it must learn to use it
effectively. The tactics module handles map-level army commands, such as attacking or retreating
to a specific location with a group of units. Though it is possible to hardcode certain tactics, we will
show in the Evaluation section that a learned tactics can perform better.

In the current version, our tactics simply decides where on the minimap to move all of its
armies towards. The input consists of 64× 64 bitmaps of friendly units, enemy units (assuming no
fog-of-war), and all selected friendly units on the minimap. The output is a probability distribution
over minimap locations. The policy uses a three-layer Fully Convolutional Network (FCN) with 16,
32 and 1 filters, 5, 3 and 1 kernel sizes, and 2, 1 and 1 strides respectively. A softmax operation over
the FCN output gives the probability over the minimap. The advantage of FCN is that its output
is invariant to translations in the input, allowing the agent to generalize better to new scenarios or
even new maps. The learned tactics policy operates every 10 seconds.

45

Scouting
Because the fog-of-war hides certain areas, enemy-dependent decisions can be very difficult to
make, such as building the correct army types to counter the opponent’s.

Our current agent assumes no fog-of-war during self-play training, but can be evaluated under
fog-of-war at test time, with a scouting module that supplies missing information. In particular, the
scouting module sends Overlords to several predefined locations on the map, regularly moves the
camera to those places and updates enemy information. It maintains an exponential moving average
estimate of enemy unit counts for the build order module, and uses a neural network to predict
enemy unit locations on the minimap for the tactics module. The prediction neural network applies
two convolutions with 16, 32 filters and 5, 3 kernel sizes to the current minimap, followed by an
LSTM of 512 hidden units, whose output is reshaped to the same size of the minimap, followed
by pixel-wise sigmoid to predict the probabilities of enemy units. Future work will involve adding
further predictions beyond enemy locations and using RL to manage scouts.

Micromanagement
Micromanagement requires issuing precise commands to individual units, such as attacking specific
opposing units, in order to maximize combat outcomes. Here we use simple scripted micros in
our current version, leaving the learning of more complex behavior to future work, for example,
by leveraging existing techniques presented in the Related Work. Our current micromanagement
module operates when the updater detects that friendly units are close to enemies. It moves the
camera to the combat location, groups up the army, attacks the location with most enemies nearby,
and uses a few special abilities (e.g. burrowing lurkers, spawning infested terrans).

Worker Management
Worker management has been extensively studied for StarCraft: Brood War [13]. StarCraft II
simplifies the process, so the suggested worker assignment (2 per mineral patch, 3 per vespene
geyser) is often sufficient for professional players. We script this module by letting it constantly
review worker counts of all bases and transferring excess workers to under-saturated mining
locations, prioritizing gas over minerals. It also periodically commands Queens to inject larva at all
bases, which is crucial for boosting unit production.

Scheduler
The PySC2 environment places a restriction on the number of actions per minute (APM) to ensure
a fair comparison between AI and human. Therefore when multiple modules propose too many
macros at the same time, not all macros can be executed and a scheduler is required to order them
by priority. Our current version uses little APM, so the scheduler simply cycles through all modules
and executes the oldest macro proposals. When APM increases in the future, for example when
complex micromanagement comes into play, a cleverer or even learned scheduler will be required.

46

4.4 Training Procedure
Our agent is trained to play Zerg v.s. Zerg on the ladder map Abyssal Reef on the 4.0 version of
StarCraft II. For most games, Fog-of-war is disabled. Note that built-in bots can also utilize full
observations, so the comparison is fair. Each game lasts 60 minutes, after which a tie is declared.

Self-Play
We follow the self-play procedure suggested by Bansal et al. [5] to save snapshots of the current
agent into a training pool periodically (every 3 × 106 policy steps). Each game the agent plays
against a random opponent sampled uniformly from the training pool. To increase the diversity of
opponents, we initialize the training pool with a random agent and other scripted modular agents
that use fixed build orders and simple scripted tactics. The fixed build orders are optimized2 to
prioritize specific unique types and include zerglings, banelings, roaches_and_ravagers, hydralisks,
mutalisks, roaches_and_infestors, and corruptors_and_broodlords. Zerglings are available to every
build order. The scripted tactics attacks the enemy bases with all armies whenever its army supply
is above 50 or its total supply is above 100. The agent never faces the built-in bots until test time.

Reinforcement Learning
If winning games is the only concern, in principle the agent should only receive a binary win-
loss reward. However, we have found that the win-loss provides too sparse training signals and
thus slows down training. Instead we use the supply difference (dt) between the agent and the
enemy as a reward function. A positive supply difference is often correlated with an advantageous
status. Specifically, to ensure that the game is always zero-sum, the reward is the change in supply
difference rt = dt − dt−1 for each time step. Summing up all rewards yields a total reward equal to
the end-game supply difference.

We use Asynchronous Advantage Actor-Critic [65] to optimize the policies with 18 parallel
CPU workers. The learning rate is 10−4 and the entropy bonus coefficient is 10−1 for build order,
10−4 for tactics (smaller due to a larger action space). Each worker commits a gradient update to
the central parameter server every 3 minutes in game (every 40 gradient steps for build order and 20
for tactics)

Iterative Training
One major benefit of the modular architecture is that modules act relatively independently and
can therefore be optimized separately. We illustrate this by comparing iterative training, namely
optimizing one module while keeping others fixed, against joint training, namely optimizing all
modules together. We hypothesize that iterative training can be more effective because it stabilizes
the experiences gathered by the training module and avoids the complex module-wise coordination
during joint training.

2Most builds taken from https://lotv.spawningtool.com/build/zvz/

47

In particular, we pretrain a build order module with a scripted tactics described in the Self Play
section, and meanwhile pretrain a tactics module with a scripted build order (all Roaches). Once
both pretrained modules stabilize, we combine them, freeze the tactics, and only train the build
order. After build order stabilizes, we freeze its parameters and train tactics instead. The procedure
is abbreviated “iterative, pretrained build order and tactics”.

4.5 Evaluation
Videos our agent playing against itself and qualitative analysis of the tactics module are available
on https://sites.google.com/view/modular-sc2-deeprl. In this section, we would like to analyze the
quantitative and qualitative performance of our agent by answering the following questions.

1. Does our agent trained with self-play outperform scripted modular agents and built-in bots?

2. Does iterative training outperform joint training?

3. How does the learned build order behave qualitatively? E.g. does it choose army types that
beat the opponent’s?

4. Can our agent generalize to other maps after being trained on only one map?

Quantitative Performance

Figure 4.3: Win rates of our agent against opponents of different strengths. Asterisks indicate
built-in bots that are not seen during training. 1 epoch = 3× 105 policy steps.

Figure 4.3 shows the win rates of our agent throughout training, under the “iterative, pretrained
build order and tactics” procedure. Pretrained build order and tactics can already achieve 67% and
41% win rates against the Harder bot. The win rate of combined modules increase to 86% after
iterative training. Moreover, it outperforms simple scripted agents (also see Table 4.5), indicating
the effectiveness of reinforcement learning.

48

Training procedure Hard Harder Very Hard Elite
Iterative, no pretrain 77±6 % 62±10% 11±7% 11±5%
Iterative, pretrained tactics 84±4 % 73±8% 16±5% 9±6%
Iterative, pretrained build order 85±7% 81±5% 39±9% 25±8%
Iterative, pretrained build order and tactics 84±5% 87±3% 57±7% 31±11%
Joint, no pretrain 41±21% 21±13% 4±4% 5±4%
Joint, pretrained build order 65±18% 35±9% 10±4% 6±3%

Table 4.4: Comparison of final win rates between different training procedures against built-in bots
(3 seeds, averaged over 100 matches per seed)

Table 4.4 shows that iterative training outperforms joint training by a large margin. Even when
joint training also starts with a pretrained bulid order, its stability quickly drops and results in 50%
less win rate than iterative against the Harder bot. Pretraining both build order and tactics lead to
better overall performance.

Qualitative Evaluation of the Learned Build Order

Figure 4.4: Learned army compositions. Showing ratios of total productions of each unit type to the
total number of produced combat units.

Figure 4.4 shows how our learned build order module reacts to different scripted opponents
that it sees during training. Though our agent prefers the Zergling-Roach-Ravager composition
in general, it can correctly react to the Zerglings with more Banelings, to Banelings with fewer
Zerglings and more Roaches, and to Mutalisks with more hydralisks. Currently, the reactions are not
perfectly tailored to the specific opponents, likely because the Zergling-Roach-Ravager composition
is strong enough to defeat the opponents before they can produce enough units.

49

Average Roach Mutalisk V. Easy Easy Medium Hard Harder V. Hard Elite
Modular (None) 67±2% 69±3% 41±6% 100% 92±2% 71±4% 77±3% 62±9% 11±4% 11±5%
Modular (Tactics) 63±4% 76±6% 29±5% 100% 100% 91±2% 84±3% 73±7% 16±6% 9±4%
Modular (Build) 76±3% 81±3% 43±6% 100% 96±1% 92±1% 85±2% 81±3% 39±7% 25±5%
Modular (Both) 83±2% 80±7% 67±5% 100% 100% 99% 84±3% 87±2% 57±5% 31±10%
Scripted Roaches 62±3% – 18±9% 100% 100% 92±3% 71±7% 35±4% 6±3% 5 ±2%
Scripted Mutalisks 71±2% 82±5% – 100% 99% 86±4% 77±5% 64±7% 15±4% 2 ±1%

Table 4.5: Comparison of win rates (out of 100 matches) against various opponents. Pretrained
component in parenthesis. “V.” means “Very”.

Generalization to Different Maps
Many parts of the agent, including the modular architecture, macros, choice of policy inputs, and
neural network architectures (specifically FCN), are designed with certain prior knowledge that can
help with generalization to different scenarios. We test the effect of prior knowledge by evaluating
our agent against different opponents on maps not seen during training. These test maps have
various sizes, terrains, and mining locations. The 4-player map Darkness Sanctuary even randomly
spawns players at 2 out or 4 locations. Table 4.6 summarizes the results. Though our agent’s win
rates drop by 6% on average against Harder, it is still very competitive.

Opponent AR DS AP
Scripted Roaches 80±7% 82±4% 78±11%
Hard 84±3% 84±6% 78±5%
Harder 87±2% 77±7% 82±6%
Very Hard 57±5 % 44±7% 55±4%
Elite 31±10 % 22±11% 30±10%

Table 4.6: Win rates (out of 100 matches) of our agent against different opponents on various maps.
Our agent is only trained on AR. AR = Abyssal Reef. DS = Darkness Sanctuary. AP = Acid Plant.

Opponent Hard Harder V. Hard Elite
Win Rate 95±1% 94±2% 50±8% 60±8%

Table 4.7: Win rates (out of 100 matches) of our agent on Abyssal Reef with fog-of-war enabled

Testing under Fog-of-War
Though the agent was trained without fog-of-war, we can test its performance by filling missing
information with estimates from the scouting module. Table 4.7 shows that the agent actually
performs much better under fog-of-war, achieving 9.5% higher win rates on average, potentially
because the learned build orders and tactics generalize better to noisy/imperfect information, while
the built-in agents rely on concrete observations.

50

4.6 Discussion
Here we have presented a suite of techniques to simplify exploration in a very challenging task.
Notably, we use shaped dense rewards (Section 4.4), macro actions (Table 4.2) or hierarchical
learning, a modular architecture (Section 4.3), and pretraining plus iterative finetuning (Section 4.4).
These altogether accelerate learning dramatically. For example, our agent uses a total of 2 years
game play experiences, while the famous AlphaStar project [120] uses 200 years for each agent,
and hundreds of agents in the population. If computation resources are available, the data-intensive
approach of AlphaStar can achieve better performance more likely, because it maintains the original
problem. However, in resource-constrained industrial applications, it can be more favorable to speed
up exploration by using techniques presented here.

51

Chapter 5

Conclusion

In this thesis, we have investigated three out of six categories (Section 1.4) of techniques for
exploration in deep RL: entropy regularization, novelty bonus, and hierarchy. The entropy bonus
idea resulted in the soft Q-learning algorithm. Questions still remained regarding how to quickly
and accurately train the energy-based policy, and how to unbiasedly sample state-action pairs for
soft Q-learning. It was later extended to Soft Actor-Critic [34] and had wider application. However,
the core assumption that entropy bonus helps exploration, is still unchallenged. Is it possible that
another information-theoretic quantity gives the same elegant theories, but also allows task-specific
customization? Addressing this question can potentially strengthen existing algorithms and guide
entropy bonus towards more informed exploration.

The novelty bonus, represented by hash exploration in the thesis, has been studied very frequently
[10]. Despite its empirical success, the very definition of novelty has been vaguely stated and varies
between papers. In fact, most works propose a universal novelty form and measure it on all tasks,
but very few consider adapting it to each problem. The most effective bonus should be both novel
and task-oriented, as we have seen in Section 3.5. Investigation along this direction is still lacking,
but it has greater potential impact on practical applications.

Hierarchical RL has been long considered useful in exploration, due to its temporally extended
reasoning. Chapter 4 presented a handcrafted hierarchy, but designing it requires significant domain
knowledge. Moreover, a badly designed hierarchy can even limit the agent’s capacity, compared to
a non-hierarchical one[71]. Therefore it is important to acquire better hierarchy, either via learning
[119, 25, 71] or a meta-optimization procedure (e.g. running evolution algorithms on the goal
space). Existing works still lack systematic studies of what hierarchy is learned and what the
ideal hierarchy should be. Research along this direction can help reduce the difficulty of training
hierarchical agents and make existing algorithms more applicable.

We have seen that exploration informed by prior knowledge can be very powerful compared
to generic methods. However, due to the ad hoc nature of informed exploration techniques, their
most successful stories are only on isolated benchmark problems like Montezuma’s Revenge [91],
Dota [78], and StarCraft II [120]. For deep RL techniques to be feasible in practical problems with
human and computational resource constraints, such as industrial applications, we still need more
systematic study of informed exploration methods.

52

The last category, meta-exploration or in general meta reinforcement learning, can potentially
allow fast adaptation to specific RL problems by transferring knowledge from similar tasks [17, 21].
It can offload or complement some ad hoc designs mentioned above, by only requiring a variety of
similar problems and a neural network architecture that can handle the complex learning dynamics.
It will be exciting to see more research efforts in this direction in the future.

53

Bibliography

[1] David Abel et al. “Exploratory Gradient Boosting for Reinforcement Learning in Complex
Domains”. In: arXiv preprint arXiv:1603.04119 (2016).

[2] Joshua Achiam and S. Shankar Sastry. “Surprise-Based Intrinsic Motivation for Deep
Reinforcement Learning”. In: ArXiv abs/1703.01732 (2017).

[3] David W Aha, Matthew Molineaux, and Marc Ponsen. “Learning to Win: Case-Based Plan
Selection in A Real-Time Strategy Game”. In: International Conference on Case-Based
Reasoning. Springer. 2005, pp. 5–20.

[4] Alexandr Andoni and Piotr Indyk. “Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions”. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 2006, pp. 459–468.

[5] Trapit Bansal et al. “Emergent Complexity via Multi-Agent Competition”. In: International
Conference on Learning Representations (2018).

[6] Marc G Bellemare et al. “The arcade learning environment: An evaluation platform for
general agents”. In: Journal of Artificial Intelligence Research 47 (June 2013), pp. 253–279.

[7] Marc G Bellemare et al. “Unifying Count-Based Exploration and Intrinsic Motivation”. In:
Advances in Neural Information Processing Systems 29 (NIPS). 2016, pp. 1471–1479.

[8] Ronen I Brafman and Moshe Tennenholtz. “R-max-a general polynomial time algorithm for
near-optimal reinforcement learning”. In: Journal of Machine Learning Research 3 (2002),
pp. 213–231.

[9] Yuri Burda et al. “Exploration by Random Network Distillation”. In: ArXiv abs/1810.12894
(2019).

[10] Yuri Burda et al. “Large-Scale Study of Curiosity-Driven Learning”. In: ArXiv (2019).

[11] Moses S Charikar. “Similarity estimation techniques from rounding algorithms”. In: Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC). 2002,
pp. 380–388.

[12] Richard Y. Chen et al. “UCB and InfoGain Exploration via Q-Ensembles”. In: ArXiv
abs/1706.01502 (2017).

54

[13] Dion Bak Christensen et al. Efficient Resource Management in StarCraft: Brood War.
https://projekter.aau.dk/projekter/files/42685711/report.
pdf. 2010.

[14] David Churchill. UAlbertaBot. https://github.com/davechurchill/ualbertabot. 2017.

[15] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detection”.
In: Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR). 2005, pp. 886–893.

[16] C. Daniel, G. Neumann, and J. Peters. “Hierarchical Relative Entropy Policy Search.” In:
AISTATS. 2012, pp. 273–281.

[17] Yan Duan et al. “RL2: Fast Reinforcement Learning via Slow Reinforcement Learning”. In:
ArXiv abs/1611.02779 (2017).

[18] Y. Duan et al. “Benchmarking deep reinforcement learning for continuous control”. In: Int.
Conf. on Machine Learning. 2016.

[19] S. Elfwing et al. “Free-energy based reinforcement learning for vision-based navigation
with high-dimensional sensory inputs”. In: Int. Conf. on Neural Information Processing.
Springer. 2010, pp. 215–222.

[20] Li Fan et al. “Summary cache: A scalable wide-area web cache sharing protocol”. In:
IEEE/ACM Transactions on Networking 8.3 (2000), pp. 281–293.

[21] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks”. In: International Conference on Machine Learning. 2017,
pp. 1126–1135.

[22] C. Florensa, Y. Duan, and Abbeel P. “Stochastic Neural Networks for Hierarchical Rein-
forcement Learning”. In: Int. Conf. on Learning Representations. 2017.

[23] Jakob Foerster et al. “Counterfactual Multi-Agent Policy Gradients”. In: arXiv preprint
arXiv:1705.08926 (2017).

[24] R. Fox, A. Pakman, and N. Tishby. “Taming the noise in reinforcement learning via soft
updates”. In: Conf. on Uncertainty in Artificial Intelligence. 2016.

[25] Kevin Frans et al. “Meta learning shared hierarchies”. In: arXiv preprint arXiv:1710.09767
(2017).

[26] Justin Fu, John D. Co-Reyes, and Sergey Levine. “EX2: Exploration with Exemplar Models
for Deep Reinforcement Learning”. In: NIPS. 2017.

[27] Mohammad Ghavamzadeh et al. “Bayesian Reinforcement Learning: A Survey”. In: Foun-
dations and Trends in Machine Learning 8.5-6 (2015), pp. 359–483.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep Learning”. In: http:
//www.deeplearningbook.org. MIT Press, 2016.

[29] Karol Gregor et al. “Towards Conceptual Compression”. In: Advances in Neural Information
Processing Systems 29 (NIPS). 2016, pp. 3549–3557.

55

https://projekter.aau.dk/projekter/files/42685711/report.pdf
https://projekter.aau.dk/projekter/files/42685711/report.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[30] S. Gu et al. “Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic”. In: arXiv
preprint arXiv:1611.02247 (2016).

[31] Arthur Guez et al. “Bayes-Adaptive Simulation-based Search with Value Function Approx-
imation”. In: Advances in Neural Information Processing Systems (Advances in Neural
Information Processing Systems (NIPS)). 2014, pp. 451–459.

[32] Abhishek K. Gupta et al. “Meta-Reinforcement Learning of Structured Exploration Strate-
gies”. In: ArXiv abs/1802.07245 (2018).

[33] Tuomas Haarnoja et al. “Reinforcement learning with deep energy-based policies”. In:
Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR.
org. 2017, pp. 1352–1361.

[34] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor”. In: arXiv preprint arXiv:1801.01290 (2018).

[35] R. Hafner and M. Riedmiller. “Reinforcement learning in feedback control”. In: Machine
Learning 84.1-2 (2011), pp. 137–169.

[36] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning with
Double Q-Learning”. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI). 2016.

[37] Hado van Hasselt et al. “Learning functions across many orders of magnitudes”. In: arXiv
preprint arXiv:1602.07714 (2016).

[38] Kaiming He et al. “Deep residual learning for image recognition”. In: 2015.

[39] N. Heess, D. Silver, and Y. W. Teh. “Actor-Critic Reinforcement Learning with Energy-
Based Policies”. In: Workshop on Reinforcement Learning. Citeseer. 2012, p. 43.

[40] N. Heess et al. “Learning and Transfer of Modulated Locomotor Controllers”. In: arXiv
preprint arXiv:1610.05182 (2016).

[41] Rein Houthooft et al. “VIME: Variational Information Maximizing Exploration”. In: Ad-
vances in Neural Information Processing Systems 29 (NIPS). 2016, pp. 1109–1117.

[42] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International
Conference on Machine Learning (ICML). 2015, pp. 448–456.

[43] M. Jaderberg et al. “Reinforcement learning with unsupervised auxiliary tasks”. In: arXiv
preprint arXiv:1611.05397 (2016).

[44] Thomas Jaksch, Ronald Ortner, and Peter Auer. “Near-optimal regret bounds for reinforce-
ment learning”. In: Journal of Machine Learning Research 11 (2010), pp. 1563–1600.

[45] Niels Justesen and Sebastian Risi. “Learning Macromanagement in StarCraft from Replays
using Deep Learning”. In: Computational Intelligence and Games (CIG), 2017 IEEE
Conference on. IEEE. 2017, pp. 162–169.

56

[46] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement learning: A survey”. In:
Journal of artificial intelligence research 4 (1996), pp. 237–285.

[47] S. Kakade. “A natural policy gradient”. In: Advances in Neural Information Processing
Systems 2 (2002), pp. 1531–1538.

[48] H. J. Kappen. “Path integrals and symmetry breaking for optimal control theory”. In:
Journal of Statistical Mechanics: Theory And Experiment 2005.11 (2005), P11011.

[49] Michael Kearns and Satinder Singh. “Near-optimal reinforcement learning in polynomial
time”. In: Machine Learning 49.2-3 (2002), pp. 209–232.

[50] T. Kim and Y. Bengio. “Deep directed generative models with energy-based probability
estimation”. In: arXiv preprint arXiv:1606.03439 (2016).

[51] Yoochul Kim and Minhyung Lee. “Intelligent Machines Humans Are Still Better Than
AI at StarCraft—for Now”. In: MIT Technology Review (2017). URL: https://www.
technologyreview.com/s/609242/humans-are-still-better-than-
ai-at-starcraftfor-now/.

[52] D. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: 2015.

[53] J Zico Kolter and Andrew Y Ng. “Near-Bayesian exploration in polynomial time”. In:
Proceedings of the 26th International Conference on Machine Learning (ICML). 2009,
pp. 513–520.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Advances in Neural Information Processing Systems 25
(NIPS). 2012, pp. 1097–1105.

[55] Tejas D. Kulkarni et al. “Hierarchical Deep Reinforcement Learning: Integrating Temporal
Abstraction and Intrinsic Motivation”. In: NIPS. 2016.

[56] T. L. Lai and H. Robbins. “Asymptotically efficient adaptive allocation rules”. In: Advances
in Applied Mathematics 6.1 (1985), pp. 4–22.

[57] Martin Lauer and Martin Riedmiller. “An Algorithm for Distributed Reinforcement Learning
in Cooperative Multi-Agent Systems”. In: In Proceedings of the Seventeenth International
Conference on Machine Learning. Citeseer. 2000.

[58] S. Levine and P. Abbeel. “Learning neural network policies with guided policy search
under unknown dynamics”. In: Advances in Neural Information Processing Systems. 2014,
pp. 1071–1079.

[59] S. Levine et al. “End-to-end training of deep visuomotor policies”. In: Journal of Machine
Learning Research 17.39 (2016), pp. 1–40.

[60] T. P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: ICLR (2016).

[61] Q. Liu and D. Wang. “Stein variational gradient descent: A general purpose Bayesian infer-
ence algorithm”. In: Advances In Neural Information Processing Systems. 2016, pp. 2370–
2378.

57

https://www.technologyreview.com/s/609242/humans-are-still-better-than-ai-at-starcraftfor-now/
https://www.technologyreview.com/s/609242/humans-are-still-better-than-ai-at-starcraftfor-now/
https://www.technologyreview.com/s/609242/humans-are-still-better-than-ai-at-starcraftfor-now/

[62] David G Lowe. “Object recognition from local scale-invariant features”. In: Proceedings of
the 7th IEEE International Conference on Computer Vision (ICCV). 1999, pp. 1150–1157.

[63] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environ-
ments”. In: Advances in Neural Information Processing Systems. 2017, pp. 6382–6393.

[64] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. “Hysteretic Q-Learning:
An Algorithm for Decentralized Reinforcement Learning in Cooperative Multi-Agent
Teams”. In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on. IEEE. 2007, pp. 64–69.

[65] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In:
International Conference on Machine Learning. 2016, pp. 1928–1937.

[66] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In: arXiv
preprint arXiv:1602.01783 (2016).

[67] Volodymyr Mnih et al. “Human-level Control through Deep Reinforcement Learning”. In:
Nature 518.7540 (2015), p. 529.

[68] V. Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature
518.7540 (2015), pp. 529–533.

[69] V. Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint (2013).

[70] Ofir Nachum et al. “Data-Efficient Hierarchical Reinforcement Learning”. In: NeurIPS.
2018.

[71] Ofir Nachum et al. “Near-optimal representation learning for hierarchical reinforcement
learning”. In: arXiv preprint arXiv:1810.01257 (2018).

[72] Arun Nair et al. “Massively parallel methods for deep reinforcement learning”. In: arXiv
preprint arXiv:1507.04296 (2015).

[73] G. Neumann. “Variational inference for policy search in changing situations”. In: Int. Conf.
on Machine Learning. 2011, pp. 817–824.

[74] B. O’Donoghue et al. “PGQ: Combining policy gradient and Q-learning”. In: arXiv preprint
arXiv:1611.01626 (2016).

[75] Shayegan Omidshafiei et al. “Deep Decentralized Multi-task Multi-Agent Reinforcement
Learning under Partial Observability”. In: International Conference on Machine Learning.
2017, pp. 2681–2690.

[76] Santiago Ontañón et al. “A Survey of Real-Time Strategy Game AI Research and Competi-
tion in Starcraft”. In: IEEE Transactions on Computational Intelligence and AI in games
5.4 (2013), pp. 293–311.

[77] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural
networks”. In: Proceedings of the 33rd International Conference on Machine Learning
(ICML). 2016, pp. 1747–1756.

[78] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/. 2018.

58

https://blog.openai.com/openai-five/

[79] OpenAI. OpenAI Five, 2018. https://blog.openai.com/openai-five/.
Accessed: 2018-08-19. 2018.

[80] Ian Osband, Benjamin Van Roy, and Zheng Wen. “Generalization and Exploration via
Randomized Value Functions”. In: Proceedings of the 33rd International Conference on
Machine Learning (ICML). 2016, pp. 2377–2386.

[81] Ian Osband et al. “Deep Exploration via Bootstrapped DQN”. In: Advances in Neural
Information Processing Systems 29 (NIPS). 2016, pp. 4026–4034.

[82] M. Otsuka, J. Yoshimoto, and K. Doya. “Free-energy-based reinforcement learning in a
partially observable environment.” In: ESANN. 2010.

[83] Pierre-Yves Oudeyer and Frederic Kaplan. “What is intrinsic motivation? A typology of
computational approaches”. In: Frontiers in Neurorobotics 1 (2007), p. 6.

[84] Deepak Pathak et al. “Curiosity-Driven Exploration by Self-Supervised Prediction”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
(2017), pp. 488–489.

[85] Jason Pazis and Ronald Parr. “PAC Optimal Exploration in Continuous Space Markov
Decision Processes”. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI). 2013.

[86] Peng Peng et al. “Multiagent Bidirectionally-Coordinated Nets for Learning to Play Star-
Craft Combat Games”. In: arXiv preprint arXiv:1703.10069 (2017).

[87] J. Peters, K. Mülling, and Y. Altun. “Relative Entropy Policy Search.” In: AAAI Conf. on
Artificial Intelligence. 2010, pp. 1607–1612.

[88] K. Rawlik, M. Toussaint, and S. Vijayakumar. “On stochastic optimal control and reinforce-
ment learning by approximate inference”. In: Proceedings of Robotics: Science and Systems
VIII (2012).

[89] Glen Robertson and Ian Watson. “A Review of Real-Time Strategy Game AI”. In: AI
Magazine 35.4 (2014), pp. 75–104.

[90] Ruslan Salakhutdinov and Geoffrey Hinton. “Semantic hashing”. In: International Journal
of Approximate Reasoning 50.7 (2009), pp. 969–978.

[91] Tim Salimans and Richard Chen. “Learning Montezuma’s Revenge from a Single Demon-
stration”. In: ArXiv abs/1812.03381 (2018).

[92] B. Sallans and G. E. Hinton. “Reinforcement learning with factored states and actions”. In:
Journal of Machine Learning Research 5.Aug (2004), pp. 1063–1088.

[93] Jürgen Schmidhuber. “Formal theory of creativity, fun, and intrinsic motivation (1990–
2010)”. In: IEEE Transactions on Autonomous Mental Development 2.3 (2010), pp. 230–
247.

[94] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint (2017).

59

https://blog.openai.com/openai-five/

[95] J. Schulman et al. “High-dimensional continuous control using generalized advantage
estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[96] J. Schulman et al. “Trust Region Policy Optimization.” In: Int. Conf on Machine Learning.
2015, pp. 1889–1897.

[97] Kun Shao, Yuanheng Zhu, and Dongbin Zhao. “StarCraft Micromanagement with Rein-
forcement Learning and Curriculum Transfer Learning”. In: IEEE Transactions on Emerging
Topics in Computational Intelligence (2018).

[98] E. Shelhamer et al. “Loss is its own Reward: Self-Supervision for Reinforcement Learning”.
In: arXiv preprint arXiv:1612.07307 (2016).

[99] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and Tree
Search”. In: Nature 529.7587 (2016), pp. 484–489.

[100] David Silver et al. “Mastering the Game of Go without Human Knowledge”. In: Nature
550.7676 (2017), p. 354.

[101] D. Silver et al. “Deterministic Policy Gradient Algorithms”. In: Int. Conf on Machine
Learning. 2014.

[102] D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In:
Nature 529.7587 (Jan. 2016). Article, pp. 484–489. ISSN: 0028-0836.

[103] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[104] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. “Incentivizing Exploration In Rein-
forcement Learning With Deep Predictive Models”. In: arXiv preprint arXiv:1507.00814
(2015).

[105] Alexander L Strehl and Michael L Littman. “A theoretical analysis of model-based interval
estimation”. In: Proceedings of the 21st International Conference on Machine Learning
(ICML). 2005, pp. 856–863.

[106] Alexander L Strehl and Michael L Littman. “An analysis of model-based interval estimation
for Markov decision processes”. In: Journal of Computer and System Sciences 74.8 (2008),
pp. 1309–1331.

[107] Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. “Planning to be surprised: Optimal
Bayesian exploration in dynamic environments”. In: Proceedings of the 4th International
Conference on Artificial General Intelligence (AGI). 2011, pp. 41–51.

[108] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Vol. 1. 1. MIT press
Cambridge, 1998.

[109] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. Vol. 1. 1.
MIT press Cambridge, 1998.

[110] Chen Tessler et al. “A Deep Hierarchical Approach to Lifelong Learning in Minecraft.” In:
AAAI. Vol. 3. 2017, p. 6.

60

[111] P. Thomas. “Bias in Natural Actor-Critic Algorithms.” In: Int. Conf. on Machine Learning.
2014, pp. 441–448.

[112] E. Todorov. “General duality between optimal control and estimation”. In: IEEE Conf. on
Decision and Control. IEEE. 2008, pp. 4286–4292.

[113] E. Todorov. “Linearly-solvable Markov decision problems”. In: Advances in Neural Infor-
mation Processing Systems. MIT Press, 2007, pp. 1369–1376.

[114] Engin Tola, Vincent Lepetit, and Pascal Fua. “DAISY: An efficient dense descriptor ap-
plied to wide-baseline stereo”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 32.5 (2010), pp. 815–830.

[115] M. Toussaint. “Robot trajectory optimization using approximate inference”. In: ICML.
ACM. 2009, pp. 1049–1056.

[116] G. E. Uhlenbeck and L. S. Ornstein. “On the theory of the Brownian motion”. In: Physical
review 36.5 (1930), p. 823.

[117] Alberto Uriarte and Santiago Ontañón. “Improving Monte Carlo Tree Search Policies in
StarCraft via Probabilistic Models Learned from Replay Data”. In: AIIDE. 2016.

[118] Nicolas Usunier et al. “Episodic Exploration for Deep Deterministic Policies: An Appli-
cation to StarCraft Micromanagement Tasks”. In: International Conference on Learning
Representations (2017).

[119] Alexander Vezhnevets et al. “Strategic Attentive Writer for Learning Macro-Actions”. In:
Advances in Neural Information Processing Systems 29 (NIPS). 2016.

[120] Oriol Vinyals et al. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II.
https://deepmind.com/blog/alphastar-mastering-real-time-
strategy-game-starcraft-ii/. 2019.

[121] Oriol Vinyals et al. “StarCraft II: A New Challenge for Reinforcement Learning”. In: arXiv
preprint arXiv:1708.04782 (2017).

[122] D. Wang and Q. Liu. “Learning to draw samples: With application to amortized mle for
generative adversarial learning”. In: arXiv preprint arXiv:1611.01722 (2016).

[123] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling network architectures for deep
reinforcement learning”. In: Proceedings of the 33rd International Conference on Machine
Learning (ICML). 2016, pp. 1995–2003.

[124] Ben George Weber, Michael Mateas, and Arnav Jhala. “Applying Goal-Driven Autonomy
to StarCraft.” In: AIIDE. 2010.

[125] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

[126] J. Zhao, M. Mathieu, and Y. LeCun. “Energy-based generative adversarial network”. In:
arXiv preprint arXiv:1609.03126 (2016).

61

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

[127] B. D. Ziebart. “Modeling purposeful adaptive behavior with the principle of maximum
causal entropy”. PhD thesis. 2010.

[128] B. D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”. In: AAAI Confer-
ence on Artificial Intelligence. 2008, pp. 1433–1438.

62

	Contents
	Introduction
	Reinforcement Learning
	The Exploration and Exploitation Trade-Off
	Deep Reinforcement Learning
	Techniques for Exploration in Deep Reinforcement Learning
	Contributions of This Thesis

	Reinforcement Learning with Deep Energy-Based Policies
	Introduction
	Preliminaries
	Training Expressive Energy-Based Models via Soft Q-Learning
	Related Work
	Experiments
	Theoretical results
	Implementation Details
	Discussion

	#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Leaning
	Introduction
	Methodology
	Related Work
	Experiments
	A Case Study of Montezuma's Revenge
	Discussion

	Modular Architecture for StarCraft II with Deep Reinforcement Learning
	Introduction
	Related Work
	Modular Architecture
	Training Procedure
	Evaluation
	Discussion

	Conclusion
	Bibliography

