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Abstract

We present an end-to-end system for structure and motion computation in a Man-
hattan layout from monocular videos. Unlike most SFM algorithms that rely on
point feature matching, only line matches are considered in this work. This may
be convenient in indoor environment characterized by extended textureless walls,
where point features may be scarce. Our system relies on the notion of “charac-
teristic lines”, which are invariants of two views of the same parallel line pairs on
a surface of known orientation. Experiments with indoor video sequences demon-
strate the robustness of the proposed system.

1. Introduction

Structure from motion (SFM) has a long history in computer vision [1, 2]. Tra-
ditional SFM relies on the ability to detect and match across two or more views a
substantial number of point features. Robust point detection and matching, how-
ever, can be challenging in indoor environments, where the density of detectable
points (e.g. corners) may be low. This is particularly true in the presence of ex-
tended textureless walls. Specularities, which often occur with shiny surfaces or
floor covers, may contribute to invalidate an already small pool of point feature
matches.

If point features may be relatively scarce, line features are almost invariably
present in these environment, due to plane intersections and other linear struc-
tures. In many cases, extended line features can be localized reliably in individual
images, and geometric constraints can be used to ensure correct matching across
views. A problem with SFM from lines is that, in the general case, at least three
images are necessary for epipolar geometry reconstruction. If, however, the lines
being matched are known to be coplanar, then four lines seen from two views

Preprint submitted to Elsevier June 15, 2016



suffice, provided that no line is parallel to the camera motion, and that no triplets
of line have a common point of intersection or are mutually parallel. If the plane
orientation and the rotation between the cameras are known, three coplanar lines
are sufficient for reconstruction of the camera motion from two views, provided
that the lines are not all mutually parallel.

In this contribution we introduce a technique for SFM over extended sequences
from line matching in a Manhattan world, that is, a layout containing only planes
at mutually orthogonal orientations. The Manhattan world represents an adequate
model for most indoor buildings with vertical walls and square corners. In a Man-
hattan world, lines are normally mutually parallel or orthogonal, and parallel or
orthogonal to the planar surfaces; estimation of the parallel lines’ vanishing points
enables computation of the planes’ orientation in the scene with respect to each
camera, and thus of the mutual camera orientation.

In previous work [3] we introduced the characteristic lines (CL) algorithm to
find sets of coplanar lines from two views of a Manhattan world, thus enabling
SFM computation. The CL algorithm performs a clustering of ~n-characteristic
lines, which are invariant representations of two views of parallel lines lying on a
common plane with known orientation ~n. The CL algorithm is fast and robust, and
was shown to produce good results with challenging image pairs [3]. In this paper
we extend the CL method for the analysis of videos from a monocular camera.
In principle, it would be possible to simply extract motion estimates from pairs
of views using 2-frames CL, and then feed these motion vectors to any existing
algorithm for global motion computation from two-view constraints. We show
that robustness can be increased dramatically by using a new multi-view CL tech-
nique that looks for clusters of vectors formed by characteristic lines over multiple
view pairs. This technique requires individual lines to be tracked across multiple
views; an algorithm for reliable line matching between two frames leading to the
formation of “line chains” across multiple frames is presented here. Cluster cen-
ters of multi-view characteristic lines represent estimates of the camera motion
between any two views, normalized by the distance from a planar surface of the
first camera location in the pair. This information is passed on to a modified
version of Özyeşil and Singer’s “least unsquared deviations” (LUD) algorithm[4]
that computes the global camera motion. While the original algorithm takes as
input unit-norm translation vectors (directions) between view pairs, we modified
it to take existing geometric constraints into account. Specifically, we leverage
the fact that the translation vectors produced by multi-view CL for all view pairs
that share one view have the same (unknown) scale factor. Finally, we introduce a
new technique for planar fitting of the reconstructed lines that makes explicit use
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of the Manhattan world geometry.
This paper is organized as follows. After presenting the related work in Sec. 2,

we describe the characteristic lines algorithm for motion and structure reconstruc-
tion from two views in Sec. 3. This section also introduces a new “line ordering
constraint” method for robust matching. Sec. 4 describes the extension of the
CL algorithm to multiple views; it includes our technique for line chain construc-
tion (4.1), multi-view characteristic lines clustering (4.2), motion reconstruction
via modified LUD algorithm (4.3), and Manhattan structure computation (4.4).
Sec. 5 presents results from experiments with videos taken from mostly texture-
less indoor environments. In the same section, we describe the techniques used
for line detection and vanishing point computation. Sec. 6 has the conclusions.

2. Related Work

The standard approach to recovering scene structure and camera pose from
multiple views is based on point feature matches across views [2]. When point
features are scarce, line features can be used instead. Computation of 3-D line
segments and camera pose from three images of a set of lines is possible using
the trifocal tensor [2, 5, 6, 7, 8, 9, 10]. This approach follows three general steps:
(1) trifocal tensor computation from triplets of line correspondences, producing
the three camera matrices; (2) 3-D line computation via triangulation from line
correspondences; (3) non-linear optimization for refinement. At least 13 triplets
of line correspondences are necessary for computing the trifocal tensor [2]. Note
that direct 3-D line computation requires at least three views because two views of
3-D lines in the scene do not impose enough constraints on camera displacements
[6, 11]. Kalman filter approaches for reconstruction from multiple views have also
been proposed [12, 13].

A few authors have attempted to recover structure and motion using line fea-
tures from only two views (as in our contribution), under strong assumptions (e.g.,
reliable estimation of segment endpoints across views [14]) or geometric priors
(Manhattan world). Košecka and Zhang [15] presented a method to extract dom-
inant rectangular structures via line segments that are aligned to one of the prin-
cipal vanishing points, thus recovering camera pose and planar surfaces. Elqursh
and Elgammal [16] introduced an SFM algorithm based on line features from a
man-made environment. Three line segments, two of which parallel to each other
and orthogonal to the third one, are used to recover the relative camera rotation,
and the camera translation is computed from any two intersections of two pairs
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of lines. This algorithm was shown to work even in the absence of dominant
structures.

An alternative approach is to detect dominant planes and compute the induced
homographies, from which the camera pose and planar geometry can be recov-
ered [17, 18]. Zhou et al. [19] presented a SFM system to compute structure
and motion from one or more large planes in the scene. The system detects and
tracks the scene plane using generalized RANSAC, and estimates the homogra-
phies induced by the scene plane across multiple views. The set of homographies
are used to self-calibrate and recover the motion for all camera frames by solving
a global optimization problem. Another possibility for planar surface recovery is
to fit multiple instances of a plane to 3-D point cloud obtained by SFM using a
robust estimation algorithm [20, 21, 22].

A more recent research direction looks to recover the spatial layout of an in-
door scene from a single image [23, 24, 25]. Lee et al. [26] proposed a method
based on an hypothesis-and-test framework. Layout hypotheses are generated by
connecting line segments using geometric reasoning on the indoor environment,
and verified to find the best fit to a map that expresses the local belief of region ori-
entations computed from the line segments. Flint et al. [27] addressed the spatial
layout estimation problem by integrating information from image features, stereo
features, and 3-D point clouds in a MAP optimization problem, which is solved
using dynamic programming. Ramalingam et al. [28] presented a method to de-
tect junctions formed by line segments in three Manhattan orthogonal directions
using a voting scheme. Possible cuboid layouts generated from the junctions are
evaluated using an inference algorithm based on a conditional random field model.
Tsai et al. [29] model an indoor environment as a ground plane and a set of wall
planes; by analyzing ground-wall boundaries, a set of hypotheses of the local en-
vironment is generated. A Bayesian filtering framework is used to evaluate the
hypotheses using information accumulated through motion.

3. Structure from Lines from Two Views

3.1. Notation and Basic Concepts
By Manhattan world [30] we mean an environment comprising only planar

surfaces, each of which is oriented along one of three canonical mutually orthog-
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Figure 1: Left: The two camera centers ~c1, ~c2 and the lever vectors ~u1(L), ~u2(L) for line L. Right:
Line L lies on the plane Π ≡ (~n, d) (both line and plane orthogonal to this page). The thick blue
line is the trace of the ~n-characteristic plane Π(L, ~n) (also orthogonal to the page).

onal vectors1 (~n1, ~n2, ~n3). In addition, we will assume that each line2 visible in
the scene lies on a planar surface (possible at its edge) and is oriented along one
of the three canonical vectors.

Two pictures of the environment are taken from two different viewpoints (cam-
era centers, ~c1 and ~c2) with baseline ~t = ~c1 −~c2. The rotation matrix representing
the orientation of the frame of reference of the first camera with respect to the
second one is denoted by R. Previous work has shown how to reconstruct the ori-
entation of a camera from a single picture of a Manhattan world, using the location
of the three vanishing points of the visible lines [31]. This estimation can be made
more robust by measuring the gravity vector using a 3-axis accelerometer, a sensor
that is present in any modern smartphones [32]. We will assume that the charac-
teristic calibration matricesK1, K2 of the cameras have been obtained offline, and
that the orientation of each cameras with respect to the canonical reference system
(~n1,~n2,~n3) has been estimated (and, consequently, that R is known). We will also
assume that lines visible in both images have been correctly matched; the algo-
rithms used in our implementation for line detection and matching are presented
in Sec. 5.1.1 and 3.3.1.

1A vector is represented by an arrowed symbol (~n) when the frame of reference is immaterial,
and by a boldface symbol (n) when expressed in terms of a frame of reference.

2For the sake of simplicity, we use the term “line” to indicate both a 3-D line and its projection
onto an image. If there is risk of confusion, the latter will be termed “line image”. “Characteristic
lines” are geometric representations of linear constraints, and should not be confused with actual
lines visible in the scene.
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A generic plane Π will be identified by the pair (~n, d), where ~n is its orientation
(unit-norm normal) and d is its signed offset with respect to the first camera (d =
〈~p − ~c1, ~n〉, where ~p is a generic point on the plane, and 〈·, ·〉 indicates inner
product). In a Manhattan world, surface planes Π and visible lines L are oriented
along one of the three canonical orientations.

It is well known that a plane (~n, d) imaged by two cameras induces an homog-
raphy H on the image points in the two cameras. Given a line L in the plane, the
two homogeneous representations L1 and L2 of the line images in the two cam-
eras are related to one another as by L1 = HTL2. The relationship between lines
in space and line images is best described in terms of the lever vector ~u(L), which
is a unit-norm vector orthogonal to the projection plane [14] (the plane contain-
ing L and the optical center of the camera; see Fig. 1, left panel). Expressed in
terms of the associated camera reference frames, the lever vectors can be written
as u1 = KT

1 L1 and u2 = KT
2 L2. The lever vectors are thus easily computed from

the image of the line L in the two cameras. The following relation holds:

u1 = HT
c u2 (1)

whereHc = K−12 HK1 is the calibrated homography matrix induced by the plane,
which can be decomposed [2] as

Hc = R + tnT/d (2)

In the above equation, the baseline t and plane normal n are expressed in terms of
the reference frames defined at the second camera and at the first camera, respec-
tively, and d is the distance between the plane and the first camera.

3.2. Motion from Lines on a Plane with Known Orientation
By combining (1) and (2), one sees that the lever vectors associated with the

same line L seen by two cameras are related as by

u1 = RTu2 + nuT2 t/d (3)

Thus, a single line on a plane with known normal ~n defines one linear constraint
on ~t/d (since the matrix nuT2 has rank 1). The null space of solutions coincides
with the second camera’s projection plane of L. The only information we can
derive about ~t/d is its projection 〈~t/d, ~u2〉 (as the lever vector ~u2 is orthogonal to
this projection plane), which is equal to [3] (see the Appendix for a proof):

〈~t/d, ~u2〉 =
sin ~u1, ~u2
sin ~u1, ~n

(4)
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Figure 2: Left: Lines L1, L2 and L3 (orthogonal to this page) are ~n-coplanar. Their associated
~n-characteristic planes all intersect at a characteristic line through the baseline (also orthogonal to
this page). They also individually intersect with the ~n-characteristic plane associated with line L4,
parallel but not coplanar with the other lines, but these intersections are outside of the baseline.
Right: The sets of parallel lines (L1, L2) and (L3, L4) are mutually orthogonal; all lines are ~n-
coplanar. The ~n-characteristic line associated with (L3, L4) intersects the ~n-characteristic line
associated with (L1, L2), L∗, at a point on the baseline.

Thus, the vector ~t/d lies on a plane that is parallel to the projection plane of
L on the second camera, at a (signed) distance 〈~t/d, ~u2〉 from it. We call this the
~n-characteristic plane Π(L, ~n) [3] (see Fig. 1, right panel). Note that Π(L, ~n) can
be easily computed using (4), provided that the plane orientation ~n is known.

If a second line L2 is also seen that is coplanar with L, one more linear con-
straint is added on ~t/d. The space of solutions for ~t/d is the intersection of the
two ~n-characteristic planes Π(L, ~n) and Π(L2, ~n). If L and L2 are parallel, the
space of solutions is a line that is parallel to both L and L2 (as should be expected:
moving either camera parallel to the lines does not change the line images). This
line takes the name of ~n-characteristic line L∗ [3]. The ~n-characteristic line of
a pair of ~n-coplanar lines can be computed easily from their images in the two
views, as the intersection of the associated ~n-characteristic planes.

If a third coplanar line is added, the vector ~t/d is fully determined, unless
the three lines are mutually parallel (as in this case the associated lever vectors
are all coplanar). In fact, for a bundle of parallel ~n-coplanar lines (i.e., lying
on the common plane oriented as ~n), the ~n-characteristic planes associated with
the lines intersect in a common ~n-characteristic line (see Fig. 2, left panel). Oth-
erwise stated, any two parallel ~n-coplanar lines in the bundle share the same ~n-
characteristic line. Thus, ~n-characteristic lines represent an invariant of any num-
ber of ~n-coplanar parallel lines. This property is at the basis of the characteristic
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lines algorithm for motion and structure computation proposed in [3], and briefly
summarized in the following.

3.3. The Characteristic Lines Algorithm
As described in the previous section, matching a set of ~n-coplanar lines across

two views enables at least partial reconstruction of the “normalized” motion vec-
tor ~t/d, provided that the plane orientation ~n is known. The remaining problem is
to find, for each planar orientation ~n, the groups of ~n-coplanar lines. The charac-
teristic lines (CL) algorithm [3] provides a fast and robust solution to this problem.

We’ll start by considering a simple case with a bundle of parallel lines, all ori-
ented along a direction ~ni (in which case, as discussed earlier, only the projection
of ~t/d on a plane orthogonal to the lines can be found). In a Manhattan world,
each line in the bundle can belong to a plane with orientation of either ~nj or ~nk
with i 6= j 6= k (or to two planes, if the line is at a surface junction). For each ori-
entation ~n = ~nj or ~n = ~nk, we compute the ~n-characteristic lines of pairs of lines
in the bundle. The line pairs that are ~n-coplanar share the same ~n-characteristic
line, whereas the ~n-characteristic lines of non-~n-coplanar lines may be expected
to distribute randomly. Hence, identifying the groups of ~n-coplanar becomes a
problem of finding the clusters of closely located characteristic lines. Each such
cluster indicates the presence of a planar surface oriented as ~n. Clustering can be
performed (for example, using mean shift [33]) on the traces of the characteristic
lines on the plane oriented as ~ni and containing the second camera’s optical cen-
ter. The m-th cluster center represents an estimate of the projection of ~t/dm on
this plane, where dm is the distance of the m-th planar surface to the first camera.
Importantly, all clusters are expected to lie on the same line through the origin.
For example, Fig. 3 shows the traces of ~n2- and ~n3-characteristic lines generated
by pairs of vertical lines. The cluster center for each group of characteristic lines
identifies a specific surface in the scene. Note that, due to the different orienta-
tion of the two planes, the clusters are at opposite sides with respect to the origin.
The orientation of the translation ~t/d can be determined by a visibility test of the
reconstructed lines.

In the general case with bundles of lines aligned along all three canonical ori-
entations, we proceed as follows. For each possible plane orientation ~ni, we con-
sider each bundle of parallel lines aligned along ~nj and ~nk in turn. We compute the
~ni-characteristic lines of each parallel line pair. If two line pairs, one pair oriented
along ~nj and one pair oriented along ~nk, are coplanar, then their ~ni-characteristic
lines should intersect at ~t/d. Based on this intuition, the CL algorithm finds points
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Figure 3: Top row: Image pair with detected lines oriented along one canonical direction (~n1).
Only lines that have been matched across images are shown. Bottom left: Traces of the ~n2- and
~n3-characteristic lines on a plane oriented as ~n1. The cluster centers, found by mean shift, are
marked by a cross. Note that the cluster centers for the ~n2- and ~n3-characteristic lines are found
separately. Characteristic line traces are shown by circles in dark blue color when associated with
a cluster, by circles in pale blue color otherwise. Bottom right: The coplanar line sets defined by
the characteristic line clusters (each set drawn with a characteristic color).

in 3-D space that have a high density of nearby ~ni-characteristic lines (in either di-
rection) using a modified mean-shift algorithm [3]. Fig. 4 shows ~n-characteristic
lines in all three directions, for two different orientations of ~n. The cluster centers
(shown by crosses, and found using the modified mean shift procedure) identify
the three visible vertical surfaces

3.3.1. Line Matching
Our algorithm requires lines detected in each frame to be correctly matched

across consecutive frames. Line matching is a notoriously difficult task. Part of
the problem stems from the fact that, at least for the indoor environments con-
sidered here, different lines in the same image may appear very similar to each
other. To characterize line appearance, we define a descriptor that takes into ac-
count both textural and color information in the areas adjacent to the line. We
use the mean-standard deviation line descriptor (MSLD [34]), which defines pixel
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Figure 4: Top row: Image pair with detected lines oriented along the three canonical directions (the
color of each line identifies its orientation). Only lines that have been matched across images are
shown. Bottom left: Characteristic lines for the different orientations. The color of a characteristic
line matches the color of the lines it represents. Clusters centers identified by the modified mean
shift algorithm [3] are shown by black crosses. Characteristic lines not associated to a cluster are
shown in pale color. The regressed baseline direction is represented by a black line through the
origin (shown as a thick dot). Bottom right: The coplanar line sets defined by the characteristic
line clusters (each set drawn with a characteristic color).

support regions for each point in the line, from which SIFT-like descriptor (edge
orientation histograms) are generated. In addition, as suggested by Bay et al. [35],
we compute color histograms within each such region. More specifically, we first
vector quantize the color of each pixel into one of the 11 “color names” defined
in [36], then compute color vectors histogram on these 11 bins over the same re-
gions used for MSLD. When matching two lines L1 and L2, we first compute the
Euclidean distances dT and dC between the MSLD and color histograms asso-
ciated with the two lines. Then, a “compound” similarity measure is defined as
follows:

Sim(L1,L2) = wT e
−d2T /σ + w

−d2C/σ
C (5)

10



The coefficients wT and wC (with wT + wC = 1) are chosen adaptively so as
to weigh the color term dC more in poorly textured areas (as measured by the
average brightness gradient magnitude at both sides of both matching lines), and
less in texture-rich regions.

Textural and color information alone, however, cannot guarantee robust line
matching. One approach to increasing robustness is to include nearby point fea-
ture correspondences and their topological layout [37, 38, 35]. We propose a
different strategy, one that restricts the set of possible matches by defining a line
ordering constraint (LOC). LOC generalizes the well-known ordering constrain of
points in individual epipolar lines, often used in stereo matching [39]. A counter-
clockwise radial ordering of the images of a set of visible parallel lines is defined
with respect to the line images’ common vanishing point (Fig. 5). LOC posits
that the pairwise ranking of two line images induced by the radial ordering in one
view is preserved for the matching line images in the second view. Note that this
constraint makes no assumptions about the epipolar geometry of the two cam-
eras. Similarly to the standard ordering constraint on points in conjugate epipolar
lines used in stereo matching, LOC may break down in the case of thin objects
that are parallel to the considered 3-D lines. Dynamic programming can be used
to find a set of line matches that are LOC-consistent while minimizing a global
cost comprising an appearance term (the similarity Sim(L1,L2) defined in (5))
and a “skip” term (a constant cost per line skipped in each image). A similar ap-
proach was taken by Cornelis et al. [40], who defined an ordering constraint on
the vertical lines detected in properly warped images. Note that image warping
(which requires estimation the epipolar geometry) is not needed using the counter-
clockwise radial line ordering introduced here.

To evaluate the effectiveness of the LOC algorithm in terms of line match-
ing accuracy, we compared it against the commonly used Nearest-Neighbor-Ratio
criterion (NNR) that computes the ratio of the distances to the nearest and to the
second nearest neighbor [41, 34]. Specifically, we only kept matches with a com-
pound similarity measure ( 5) larger than 0,65, and with a NNR value larger than
0.8. Table. 1 shows comparative results over a set of 6 indoor image pairs in terms
of the number of correct matches, the total number of matches, and their ratio
(correct match ration, CR), as in [34]. Overall, the LOC algorithm produced a
higher average number of total matches as well as a higher average CR than the
NNR criterion.
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Images 1 2 3 4 5 6 Total CR
NNR 14(21) 22(32) 27(32) 26(26) 16(16) 18(21) 123(148) 83%
LOC 22(26) 29(32) 38(39) 34(34) 20(21) 16(19) 159(167) 95%

Table 1: Line matching accuracy tests on 6 image pairs using the NNR criterion [41, 34] and the
proposed LOC alorithm. For each column, the first number is the number of correct line matches,
while the number in parentheses is the number of total matches. CR is the correct match ratio.

Figure 5: The line ordering constraint (LOC) improves robustness of line matching in the case of
repeated linear structures. Only matched lines oriented along one of the three canonical directions
are shown (the color of each line identifies its match pair). The numbers on the matched lines
indicate the counter-clock wise radial ordering with respect to the lines’ common vanishing point.

4. Structure from Lines – Multiple Views

We now extend the CL algorithm to the case of multiple views of the same
scene. The first step is to compute “line chains”, that is, sets of line images across
multiple views that are projections of the same line in space. We then compute a
clustering in a higher dimension space, where data points are vectors formed by
concatenating 2-D characteristic lines for the same line pair seen from multiple
views. The cluster centers directly provide estimation of scaled motion between
two camera views; a modified LUD algorithm is then employed for robust mo-
tion estimation. Finally, planar patches are fitted to the triangulated lines using
Manhattan world geometric constraints.

4.1. Line Chain Construction
As will result clear in Sec. 4.2, our algorithm for multi-view SFM benefits

from tracking the same line across multiple frames. The simplest approach to
building line chains (sequences of matching line images in consecutive frames)
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would be to match lines in consecutive frame pairs, assigning the same label to
the two lines, one per frame, being matched (each label identifying one line chain).
Unfortunately, this algorithm may lead to undesired effects in the event of occa-
sional line breakage. In order to analyze this problem and to justify the proposed
solution, let us first formally define a line chain as a connected component of the
directed graph G = (V,E) whose nodes V represent individual image lines, and
whose edges E connect two nodes if the lines associated with the nodes belong
to different frames and have been matched by our algorithm (the direction of the
edge pointing to the more recent frame). Note that in the simple case of lines
matched across two consecutive views, each node has maximum degree of 2. The
fragmentation problem mentioned above can be formalized as a node split in the
graph G, where the nodes resulting from the split are disconnected from each
other. While line fragmentation is not an issue with the 2-frames characteristic
lines algorithm (as each such segment correctly identifies the line it belongs to),
it becomes a problem for line chain construction, since a node split may break an
otherwise connected line chain (Fig. 6).

To mitigate problems associated with fragmentation, we implemented a 3-
frames line matching algorithm that uses dynamic programming to generate LOC-
compliant solutions (in a similar fashion as for the two-frame LOC matching of
Sec. 3.3.1). Given the small number of lines typically found in each image (about
70 on average), the additional computational cost is well affordable. 3-frames line
matching ensures that sporadic line splits do not break a line chain (see Fig. 7).
The price to pay is that now nodes in the graph may have a degree as high as 4,
which brings on the risk of merging connected components (line chains) in the
case of fragmentation or mismatches (Fig. 7).

To avoid this, we implement a pruning procedure on the graph that limits the
number of incoming edges (indegree) and of outgoing edges (outdegree) at each
node. Specifically, we endow the edge linking the nodes associated with lines
Li and Lj with the “similarity” value Sim(Li,Lj) defined in (5). In the case of a
node with indegree (outdegree) larger than 1, only the incoming (outcoming) edge
with highest similarity is kept. This simple solution has given us good results; an
example of resulting line chain is shown in Fig. 8.

After the line chains in the sequence have been formed, we define an ordering
on them; this is used both for characteristic line clustering (Sec. 4.2) and for plane
fitting (Sec. 4.4). The ordering is induced by the radial line ordering around the
vanishing points (LOC, Sec. 3.3.1) at each image. The line chains are ordered in
such a way that, for any two line chains and for any view that sees both lines in the
chain, the ranking of the two line chains and of the lines in the view (as defined
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Line fragments matching problem 

Match 

Match 

merging two line fragments 
Figure 6: The line fragmentation problem for line chain construction. The same line segment
(corresponding to the edge of the red wall) is seen in three views, but it is split in two segments in
the second view. The segment in the first view is matched to one of the two segments, while the
segment in the third view is matched with the other segment, impeding formation of a line chain.

Figure 7: A sequence of images with the 3-frames line matching results. Two triplets of lines are
found by the 3-frames line matching algorithm for the first three frames (two pairs of blue arrows).
One triplet of lines are found for the next three frames (shown by a pair of green arrows). The
bottom line segment in the second frame is mistakenly matched with the upper line segment in the
third frame. Our algorithm removes the incoming edge (a green dashed arrow) to the upper line
segment in the third frame (which is also the outgoing edge from the bottom line segment in the
second frame).

by the LOC) is the same.

4.2. The Multi-View Characteristic Lines Algorithm
The 2-frames characteristic lines algorithm [3], summarized in Sec. 3.3, at-

tempts to determine which line pairs are ~n-coplanar by looking at local concen-
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Figure 8: Line chains correctly identified across four image frames. Only lines that oriented along
the vertical direction are shown.

trations of ~n-characteristic lines. Unfortunately, depending on the camera motion
relative to the scene geometry, characteristic lines clustering from a single pair
of views may be challenging or impossible. For example, when camera motion
between the two views is small or is almost parallel to the direction of parallel
lines in the scene, clusters of characteristic lines may be located very close to
each other, which complicates individual cluster identification in the presence of
noise.

It is reasonable to assume that, if the same lines are seen from multiple views,
evidence from all such views could contribute to understanding whether the lines
in the pair are indeed ~n-coplanar, and thus increase reliability of camera motion
estimation. The idea is that view pairs with large baseline, or with baseline that is
not aligned with visible parallel lines, could compensate for other, less informative
view pairs. We bear this intuition to fruition by the algorithm described next.

4.2.1. A Simple Case: All Lines Seen by All Views
Suppose for the time being that a set of N views see the same set of parallel

lines in the scene, and that we are interested in finding the ~n-coplanar groups of
lines in this set (where ~n is a canonical planar direction that is orthogonal to the
lines). Also assume that each line has been correctly tracked across the N views,

forming an N -long line chain. One could, in principle, consider all
(
N
2

)
pairs

of views, run the regular CL algorithm on each view pair (by computing a 2-D
clustering of the characteristic line traces), and “digest” this set of results to decide
which lines are ~n-coplanar. We propose a different solution, one that computes
the characteristic lines clustering only once, but in a space with dimension of
N(N − 1). Clustering is performed on vectors formed by concatenating the 2-D
characteristic line traces obtained from all view pairs. Mean shift is used to find
the modes of this data point distribution.
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Remember that mean shift finds modes of a probability density function as
linear combinations of samples generated by this density, where the weights of
the combination are refined at each iteration. Specifically, the weight of each
sample is proportional to the value at that sample location of a kernel (e.g. a
Gaussian kernel) centered on the current mode estimate at that iteration. Now
consider an indexing {m} of all (ordered) view pairs, and an indexing {p} of all
(ordered) parallel line pairs. Let l∗m,p be the trace of the p-th ~n-characteristic line
on an orthogonal plane for the m-th view pair, and let l∗p be the vector formed
by concatenating the p-th line traces for all view pairs. Given the current mode
estimate l̂∗, the p-th vector is assigned weight wp with

wp = K exp
(
−c‖̂l∗ − l∗p‖2

)
= K exp

(
−c
∑
m

‖̂l∗m − l∗m,p‖2
)

(6)

where l̂∗m is the component of the current mode estimate for the m-th view pair,
and c and K are constant (K is chosen to ensure that the weights wp sum up to
1). Updates are performed for each view pair independently, but using the global
weights {wp}:

l̂∗m =
∑
p

wpl
∗
m,p (7)

Fig. 9 shows a comparison of multi-view CL clustering vs. regular 2-view
CL clustering in the case of small camera motion. Both methods are tested on
four image pairs with different baseline lengths. These images were extracted
from a sequence; we considered the image pairs with indices (0,3) (shown in the
figure), (0,6), (0,9), and (0,12). The camera moved of uniform motion approxi-
mately along the y direction (horizontal and parallel to the side walls), resulting in
increasing baseline ~t for the selected image pairs (e.g. (0,12) has a larger baseline
than (0,3)).

For each image pair, the characteristic lines for the y and for the z (vertical) di-
rections are plotted on the x-y plane (the y-characteristic lines are shown as dashed
green lines, while the intersections of the z-characteristic lines with the x-y plane
are shown with blue dots). The characteristic lines cluster centers computed by
the two algorithms are shown for each image pair as circles (2-view algorithm) or
crosses (multi-view algorithm). Ideally, the characteristic lines corresponding to
coplanar parallel lines should all intersect at point ~t/d, where d is the (approxi-
mately constant) distance to the side wall, and this point should lie close to the y
axis (as ~t is approximately parallel to y). The cluster centers produced by multi-
view clustering conform to this expectation (note that the distance of the cluster
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to the origin increases with the baseline ~t). 2-view clustering produces less accu-
rate results, especially for the pairs with smaller baseline. Although these results
could conceivably be improved by adjusting the size of the mean-shift kernel, we
noticed that finding a kernel size that works for different baselines is challenging
for the 2-view clustering algorithm. In contrast, multi-view clustering seems to be
less sensitive to the choice of kernel size.

4.2.2. The General Case: Visibility Sets
In general, different views from a moving camera see different sets of lines,

with large overlap only between nearby views. Fig. 10 (a) shows the visibility
table for a certain sequence, where each column represents a view pair and each
row represents a parallel line pair. A ‘1’ entry in the (p,m) position means that
both views in the m-th pair see both lines in the p-th pair. The visibility table is
built from the computed line chains (Sec. 4.1).

The visibility set Vp of the p-th line pair is defined as the set of view pairs
that see both lines in the p-th pair (i.e., the set of column indices with non-null
entries in the p-th row of the visibility table). We modify the equation for weight
computation (6) to take visibility sets into account as follows:

wp = K |Vp| exp

−c ∑
m∈Vp

‖̂l∗m − l∗m,p‖2
|Vp|

 (8)

The Gaussian kernel is computed on the average squared distance between the
line trace l∗m,p and the current mode estimate at each view in the visibility set. The
factor |Vp| gives higher weight to lines that are seen by many views.

Care must be taken during component-wise update. LetWm be the set of line
pairs seen by the m-th view pair (i.e., the set of row indices with non-null entries
in the m-th column of the visibility table). The update equation (7) is modified as
follows:

l̂∗m = Rm

∑
p∈Wm

wpl
∗
m,p with Rm =

1∑
p∈Wm

wp
(9)

4.2.3. Multiple Line Orientations
Until now we have considered the case of a parallel lines bundle. In order to

estimate camera motion, we need to consider both line directions orthogonal to the
planar orientation ~n. For this purpose, we use the modified mean shift algorithm
introduced in [3]. We give only a short summary of the algorithm in the 2-views
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Figure 9: 2-view vs. multi-view characteristic line clustering (Sec. 4.2.1). Top: Image frames 0
and 3 with detected lines oriented along the y (green) and z (blue) canonical directions. Second and
third rows: Characteristic lines for the y (dashed green lines) and z (blue dots) directions plotted
on the x-y plane for the view pairs (0, 3), (0, 6), (0, 9), and (0, 12). Red circles: Cluster centers
identified by 2-view clustering. Red crosses: Cluster centers identified by multi-view clustering.

case here; the reader is referred to [3] for a detailed description. Remember that
the characteristic line of a parallel line pair has the same orientation as the lines
in the pair. The characteristic lines of line pairs in two orthogonal bundles are
thus mutually orthogonal. The goal is to find a 3-D point that has in its neighbor-
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hood a high concentration of characteristic lines in both directions. The modified
mean shift algorithm achieves this goal by alternating mode estimation update in
the three canonical directions, each time using only one appropriate set (or both)
of characteristic lines for weight computation. Extension to the multi-view case
using the update equations (8) and (9) is relatively straightforward.

4.2.4. Characteristic Lines Selection
While the original CL algorithm operates on all characteristic lines, we found

it beneficial to select a subset with high likelihood of being ~n-coplanar before clus-
tering. Specifically, we select the characteristic lines formed by pairs of parallel
lines whose rank (induced by the ordering of the associated line chains introduced
in Sec. 4.1) does not differ by more than 3. These lines may be expected to be
relatively close in the image, and thus have a good chance of belonging to the
same visible surface.

4.2.5. Clusters Selection
We run the iterative clustering procedure starting from a random set of line

chain pairs, resulting in a number of clusters for each planar orientation ~n.
Each cluster is characterized by its cluster visibility set, which is the union of

visibility sets Vp of the line pairs associated with the characteristic lines contained
in the cluster. As seen in Fig. 10 (c), clusters visibility sets often overlap with each
other, which may indicate that they are generated by the same surface. To select
representative clusters, we follow the following strategy. We create a graph with
clusters as nodes, and edges weighted by the Jaccard distance (1 minus the ratio of
the cardinalities of the intersection and of the union) of the cluster visibility sets
for the two nodes linked by the edge. The connected components of this graphs
are found (Fig. 10 (d)), and only one representative per component (specifically,
the one with highest associate density value as computed by mean shift) is kept
(Fig. 10 (e) and (f)).

Each cluster center l̂∗ encodes the estimated normalized camera translation
vectors {~tm/dm} between the views in the m-th pair, where dm is the distance
between the surface identified by the cluster and the first camera in the m-th view
pair.

4.3. Global Motion Computation
The multi-view intrinsic line clustering described in the previous section pro-

duces a number of “normalized” motion vector estimates {~τi,j,k = ~ti,j/di,k},
where ~ti,j represents ~cj − ~ci, the motion from the i-th to the j-th view, and di,k
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is the distance from the camera in the i-th view to the k-th visible surface in the
scene. (Remember that different parallel surfaces produce distinct characteristic
line clusters.) We use the Least Unsquared Deviations (LUD) algorithm [4] to
reconstruct the camera motion vectors {~ci}. This was shown to be more robust
than the least squared deviation formulation [42] in the presence of outliers. We
also use a parallel rigidity test as in [4] for unique realizability of camera loca-
tions from pairwise directions. The parallel rigidity test [43] is used to maintain
well-posed instances of the camera location estimation problem. For ill-posed in-
stances of the problem we extract maximally parallel rigidity components in the
camera location formation as in [44].

The original LUD algorithm takes in input a set of unit-norm vectors {~γi,j},
and solves the following problem:

arg min
{~ti},{δi,j}

∑
(i,j) ‖~cj − ~ci − δi,j~γi,j‖

s.t.
∑

i ~ci = 0 ; δi,j ≥ D

(10)

In the equation above, the index pairs (i, j) include all view pairs for which a
normalized motion estimate could be computed, and D is a constant. Unit norm
vectors {~γi,j} represent the motion directions computed for the view pairs.

We slightly modified the formulation in (10) to include all available con-
straints. Instead of using unit-norm motion vectors {~γi,j}, we use our computed
values {~τi,j,k}:

arg min
{~ti},{δi,k}

∑
(i,j,k) ‖~cj − ~ci − δi,k~τi,j,k‖

s.t.
∑

i ~ci = 0 ; δi,k ≥ D

(11)

This formulation is very similar to (10), except for the fact that the vectors {~τi,j,k}
are not unit-norm, and the sum now extends not only to all view pairs, but to the
combination view pairs/surfaces. In addition, the values {δi,k} are only defined
for combinations view/surfaces, rather than for view pairs (since all view pairs
(i, j) for fixed i share the same distance di,k to the k-th surface from the i-th
view). The solution can be computed using exactly the same procedure as for the
original LUD problem. Importantly, in the noiseless case (~τi,j,k = (~cj − ~ci)/di,k),
any solution of (11) is congruent with the true set of motion vectors {~ci}. Note
that there are usually much fewer variables to optimize than with the original
formulation (10), as only a small number of different surfaces are visible in typical
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Figure 10: (a),(b): Visibility tables. The (p,m) cell of each table indicates whether the p-th line
pair (oriented along the X direction (a) or the Z direction (b)) is visible by the m-th view pair.
(c): The cluster visibility table for lines in both the X and Z direction. Clusters were computed on
~n-characteristic lines (with ~n oriented in the Y direction) in both the X and Z direction using the
modified mean shift algorithm. (d): Cluster visibility table highlighting the connected components
of the cluster visibility table (Sec. 4.2.5). (e): The selected clusters. (f) Selected clusters computed
from ~n-characteristic lines, with ~n oriented along the X direction.

images. The modified LUD problem is solved by an iteratively reweighted least
squares (IRLS) solver [45, 46].

4.4. Manhattan Structure Computation
Given the sequence of camera locations (Sec. 4.3) and orientations (from van-

ishing points), we can reconstruct the geometry of the environment from features
(lines) triangulation. The Manhattan world assumption provides strong priors on
the geometry of the scene; in particular, for wall layout reconstruction, it can be
assumed that each wall is vertical and oriented in one of two possible known di-
rections (indicated asX or Y in the following). We leverage this prior information
to build a piecewise planar fit to the triangulated data.

The first step in our algorithm is the computation of the location of the visible
lines in space. For each canonical direction, we consider each line chain (Sec. 4.1),
determine its visibility set, and compute a 2-D least-squares triangulation of the
line’s traces on an orthogonal plane [2]. We then perform bundle adjustment [2]
using the Ceres solver [47] on the computed lines, motion vectors, rotation matri-
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ces, and focal lengths (from prior camera calibration). The segments whose trace
on an orthogonal plane has reprojection error larger than 5 pixels after bundle
adjustment are discarded.

For each horizontal canonical direction (say, X), we consider the vertical
lines’ traces on the horizontal plane, as well as the horizontal lines oriented as
Y , and project these points/lines orthogonally onto the X axis (each horizontal
line contributes one point to the projection). The modes of the resulting distribu-
tion (computed via mean shift) determine the main vertical surfaces {Πj} in the
scene oriented as X (see Fig. 11). The next step is to assign each vertical line to
one surface in either orientation. This operation is complicated by noise in the line
position measurement, and by the fact that, in the proximity of surface intersec-
tions, line-surface association can be ambiguous (see Fig. 11). We frame this task
as a minimum cost path problem in a directed graph, leveraging spatial coherence
priors.

We define a directed graph, where each node represents an association be-
tween a vertical line and one of the planes found in the previous step. A generic
node associating the i-th line in the sequence with the plane Πj is indexed as Ni,j .
Two nodes that are associated with consecutive lines (according to the ordering
defined in Sec. 4.1) are linked by an edge. Nodes and edges are assigned cost
values; the minimum cost path determines the line/plane association. We define
nodes and edges costs as follows.

4.4.1. Node Costs
The cost at node Ni,j is simply a function d of the distance of the i-th vertical

line to the plane Πj (equal to 1 − exp(−d2/c) for a suitable constant c) – see
Fig. 11. While some lines can be safely assigned to the closest plane, in other
cases distance-based association would lead to incorrect results.

4.4.2. Edge Costs
The edge linking Ni,j with Ni+1,k is assigned a cost that is equal to 1 minus

the conditional probability of the assignment Ni+1,k given Ni,j . This probability
is computed in terms of the reconstructed lines alignment and deviation, which
measure how well the i-th and the (i + 1)-th line traces align with either the X
or the Y axis. The reconstructed lines alignment term rlaXi,i+1 or rlaYi,i+1 is equal
to the magnitude of the cosine of the angle formed by the vector ~ri,i+1 joining the
traces of the i-th and of the (i+ 1)-th line with the Y or X axis, respectively. The
reconstructed lines deviation term rldi,i+1 is the magnitude of the cosine of the
angle formed by ~ri,i+1 and a line at 45◦ in the X-Y plane.
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Figure 11: The main vertical surfaces in the scene oriented along X and Y (dashed lines) are
shown together with the traces of the vertical lines on the horizontal plane (blue points) and the
estimated camera location and orientation in the trajectory.

The alignment/deviation terms measure the evidence provided by observations
o (characteristic line, reconstructed lines) to the hypotheses that the two lines are
aligned with the X axis, the Y axis, or neither. By assigning proper prior prob-
abilities, we can compute the posterior probabilities that the i-th and (i + 1)-th
lines are ~n-coplanar with ~n oriented as X (event denoted by ‖Xi,i+1), as Y (‖Yi,i+1),
or that they are not ~n-coplanar for either axis (‖̄i,i+1):

P (‖Xi,i+1|o) = K · P (o| ‖Xi,i+1) · P (‖Xi,i+1) = K · rlaXi,i+1 · P (‖Xi,i+1)

P (‖Yi,i+1|o) = K · rlaYi,i+1 · P (‖Yi,i+1)

P (‖̄i,i+1|o) = K · rldi,i+1 · P (‖̄i,i+1)

(12)

where the normalization constant K ensures that the three posteriori probabili-
ties sum up to 1. In our experiments, we set the priors as follows: P (‖Xi,i+1) =

P (‖Yi,i+1) = 0.4, P (‖̄i,i+1) = 0.2.
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The formulas above express our belief that the two lines belong to a plane ori-
ented asX or Y , or neither. We now leverage simple geometric reasoning and spa-
tial coherence priors to transform these in conditional probabilities P (Ni+1,k|Ni,j)
(where we use the same notation for a node in the graph and for the association
event it represents). Using the total probability theorem,

P (Ni+1,k|Ni,j, o) = P (Ni+1,k|Ni,j, ‖Xi,i+1) · P (‖Xi,i+1|o) (13)

+ P (Ni+1,k|Ni,j, ‖Yi,i+1) · P (‖Yi,i+1|o)
+ P (Ni+1,k|Ni,j, ‖̄i,i+1) · P (‖̄i,i+1|o)

where we took into consideration the fact that the observations considered here
(characteristic line, reconstructed lines) can only help determine the coplanarity
(or lack thereof) of the lines. We assign to the first factor in each term in the sum
the value v if j = k, or εv if j 6= k, where 0 < ε < 1. Multiplication by ε is
meant to discourage frequent jumps in plane assignment. v can take one of two
values: l or h, with 0 < l < h = 2l < 1. The choice between l and h depends on
the assumed ~n-coplanarity of the lines, as well as on the orientation of the planes
Πjand Πk. If the lines are ~n-coplanar in the X orientation (‖Xi,i+1), v is assigned
the value h only when the planes are identical (j = k) and oriented as X; in all
other cases, v = l. Similar reasoning apply to the event ‖Yi,i+1. If the lines are
not ~n-coplanar in either direction (‖̄i,i+1), v is assigned the value l only when the
planes are identical (j = k); v is set equal to h otherwise.

5. Experiments

We have tested our system with video sequences taken inside a university
building characterized by mostly textureless walls, with relatively narrow corri-
dors linked by hallways. The videos were taken with an iPhone 4S at VGA res-
olution and at a frame rate of 7 frames/s, while walking and holding the iPhone
straight up, the camera looking forward. Timestamped measurements from the
accelerometers were also taken; these were used to aid in vanishing point compu-
tation (Sec. 5.1.2). We used all frames in the video to compute line chains, but
computed SFM only using one frame out of three; this was done to reduce com-
putational time (Sec. 5.1.4). Our results are presented in Sec. 5.2; implementation
details are presented next.
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5.1. Implementation Details
5.1.1. Line Detection

We use the LSD (Line Segment Detector) algorithm [48] to find line segments.
This algorithm works in linear time, and does not require any parameter tuning.
Short line segments (less than 30 pixels in length) are removed, and nearby line
segments of similar orientation are merged using the algorithm in [49]. More
specifically, a fitting line is computed through the center of mass of the vertices
of the two segments, with orientation angle equal to the mean of the orientation
angles of the two segments, weighted by their lengths. The “merged segment” is
defined as the shortest segment on this line containing the projections of all end-
points of the original segments. However, if the average distance of the original
segments endpoints to the fitting line is larger than 1 pixel, or if there is a gap of
more than 50 pixels between the projections of the two segments on the fitting
line, the merged segment is discarded and the original segments are retained.

5.1.2. Vanishing Points Estimation
Following [32], we assume that one canonical direction is aligned with the

gravity vector ~vZ , which can be found using the smartphone’s accelerometers.
The segments in the image that converge towards the associated vanishing point
are removed. The goal now is to find the two vanishing points for the remaining
(horizontal) segments. Towards this goal, we use the following RANSAC-like
procedure. At each iteration, we randomly select one line segment and compute
the associated lever vector ~u (Sec. 3.1). We then compute the vanishing points of
two horizontal orthogonal directions ~vZ ×~u and (~vZ ×~u)×~vZ , and count the line
segments aligned with either vanishing point (specifically, we measure the angle
between each line’s lever vector and each vanishing points, and assign a line to a
vanishing point if the angle has magnitude less than 5◦).

After a number of iteration, the vanishing points with highest number of sup-
ported segments are retained. Finally, three mutually orthogonal vectors are com-
puted by minimizing the alignment errors with all line segments using non-linear
optimization [47]. Once the vanishing points have been found, each line segment
is rotated around its midpoint and aligned with the direction from the midpoint to
the associated vanishing point. This pre-processing is particularly useful for short
segments, whose estimated orientation can be noisy.

5.1.3. Orientation Ambiguity
Identification of vanishing points in a Manhattan world provides a direct esti-

mation of the camera orientation with respect to the canonical frame of reference.
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Care must be taken, however, to correctly assign axis labels when the camera is
moving, lest the direction that was assigned to theX axis, say, in the current frame
may be identified as the Y axis at the next frame. We solve this gauge ambiguity
by simply labeling with the same name the pairs of axes (one per view in a pair
of consecutive views) that (with respect to the camera’s reference frame) have the
smallest angular difference.

5.1.4. Computational Cost
The original sequences used for our experiments were 1356 frames long. We

divided them into 6 chunks of 240 frames each, with an overlap of 9 frames each.
As mentioned earlier, all frames are used for line chain computation, but only one
frame out of three was used for SFM (resulting in 80 views per chunk, with an
overlap of 3 views). Multi-view characteristic lines clustering and global motion
computation was performed over each chunk of 80 views. Consecutive chunks
were then aligned by moving the locations computed for the second chunk by a
common vector aligning the centers of the position computed for the overlapping
views in the two chunks to a common location (after which, the locations of each
overlapping view computed for the two chunks were averaged together).

On a Mac Air 1.7 GHz Intel Core i5 with 4GB RAM, each chunk of 240
frames (80 views used for SFM) took on average 157 second to process, divided
as follows:

• Line chain computation: 26.2 s (on 240 frames – 0.11 s/frame)

• Multi-view characteristic lines clustering: 38.9 s (on 80 views – 0.49 s/view)

• Global motion estimation: 86.22 s (1.1 s/view)

• Triangulation + Bundle adjustment: 3.9 s (0.05 s/view)

• Manhattan structure computation: 1.5 s

5.2. Results: Qualitative
We present results of reconstructed trajectories and structure over three videos

in Figs. 12–14. A bird-eye view of the reconstructed trajectory and structure is
displayed over a floor plan of the building, which has been rescaled isotropically
(by hand) to visually match the reconstructed structure. We show reconstructions
with two different variations of our algorithm: 2-view characteristic lines clus-
tering [3], followed by global motion estimation (Sec. 4.3) with additional scale
normalization and Manhattan layout computation (sec. 4.4) (c); same as in (c),
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but with multi-view clustering (Sec. 4.2) (d). The scale normalization procedure
attempts to enforce a common reconstruction scale even when, due to sporadic
paucity of features, different segments are reconstructed with different scales. A
fixed distance between camera locations at two views with 8-view distance (con-
stant velocity model) is imposed by scanning the sequence of camera locations
after global motion estimation, and moving each camera location ~ci by a proper
amount along the line joining ~ci−1 with ~ci. This is clearly a very crude approach;
a more complete dynamical model could be used [50], possibly also using inertial
measurements, when available [51]. In each figure, we also show the trajectories
computed via SFM from point features, using two open source software pack-
eges: VisualSFM [52], by Changchang Wu; and the Theia multiview geometry
library (TheiaSFM) [53], by Chris Sweeney. In our experiments with TheiaSFM,
we obtained our best results using its global SFM implementation with brute force
point feature matching and regular SIFT descriptors. TheiaSFM’s cascade hash-
ing matching implementation and Root-SIFT didn’t work well with our indoor
video sequence. All other parameters were left to their default values.

Sequence 1 (Fig. 12) is characterized by a S-shaped trajectory. VisualSFM
reconstructs the trajectory fairly well up to a point, after which no camera location
estimates are returned. TheiaSFM, the 2-view characteristic lines clustering, and
the multi-view clustering all produce fairly good results.

We also show the reconstructed Manhattan structure, as shown by red rectan-
gles, obtained from the vertical lines associated with each planar structure as per
Sec. 4.4.

Sequence 2 (Fig. 13) was taken while walking in a U-shaped trajectory. Again,
VisualSFM is unable to reconstruct the trajectory beyond a certain point, while
TheiaSFM reconstructs the whole trajectory. However, the structure reconstructed
by TheiaSFM appears expanded at the bottom of the image, while conforming
well to the actual scene structure in the top part of the image. This is likely an
artifact resulting from inconsistent reconstruction scale, as explained above. 2-
view and multi-view clustering (with scale normalization) produce satisfactory
trajectories and structures. Note that the sequence was taken by one of the authors
walking at constant speed, thus approximately satisfying the constant velocity
assumption at the basis of our scale normalization algorithm.

Sequence 3 (Fig. 14) was taken while walking in a loop. VisualSFM is unable
to reconstruct the trajectory. TheiaSFM produces four disconnected trajectory
segments, each of which could be moved to match a segment of the floor plane, but
it fails to reconstruct the complete trajectory. This is probably due to a momentary
paucity of point features at the four corners of the trajectory.
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2-view clustering reconstructs the trajectory fairly well up to a point. Multi-
view reconstruction produces a satisfactory trajectory with loop closure, and an
acceptable reconstruction of the main visible surfaces.

5.3. Results: Quantitative
In order to provide a quantitative evaluation of our 2-view and multi-view

algorithms, we followed a procedure originally proposed in [3]. Note that we
don’t have ground truth motion or structure information, and thus cannot directly
assess the quality of reconstruction. Instead, we evaluate our results based on
whether, given any three coplanar 3-D lines, their reconstructions appear to be
coplanar. Since line coplanarity is easy to assess from images, this method results
in a convenient indirect way to validate the 3-D reconstruction.

We first sampled 31 key frames uniformly out of the 1356 frames of Sequence
3 (Fig. 14). Then, for each key frame, we manually enumerated all planes vis-
ible in the image and assigned each line segment to one or two of those planes
containing it. All possible line triplets in the key frame were labeled as coplanar
or non-coplanar based on their manually assigned plane labels. Given the set of
reconstructed 3-D lines, we consider all line triplets, and test each triplet for copla-
narity using Plücker matrices [54]. Specifically, lines (L1,L2,L3) are coplanar if
L1L

∗
2L3 = 0, where L1, L3 are the Plücker L-matrices associated with L1,L3 and

L∗2 is the Plücker L∗-matrix associated with L2 [54]. In practice, we declare the
three reconstructed lines to be coplanar if the norm of L1L

∗
2L3 is smaller than a

certain threshold δP (where we first normalize each Plücker matrix to unit norm).
By validating the estimated coplanarity with the ground-truth values for all line
triplets, we obtain a precision-recall pair. We also vary the threshold δP as well
as a parameter used in mean-shift clustering (specifically, the number of nearby
characteristic lines used to update the cluster center in every iteration) to create
the precision-recall curves shown in Fig. 15. In this figure we compare the results
of our 2-view and multi-view CL clustering, as well as those obtained with an
implementation that integrates Micusik and Wildenauer’s line-based method [55]
in our SFM pipeline, as explained in the following. We estimate three camera
poses using RANSAC based on the linear constraints on relative camera trans-
lations between three views as proposed in [55], using the relative rotations and
line matches produced by our algorithm. Although 5 lines matches are sufficient
for this algorithm [55], we used 6 matches to obtain better result. Unlike our
SFM pipeline, which only analyzes view pairs, the algorithm of [55] considers
all triplets of views. This results in a large number of relative camera translation
estimates (on the order of N3, where N is the number of views), making this
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(a) (b)

(c) (d)

(e)

Figure 12: Results for Sequence 1. Camera trajectory, shown with green dots; feature points
(a-b) or lines (c-e), shown with blue dots/lines; and Manhattan structure (c-e), shown with red
lines/retangles. (a): VisualSFM [52]; (b) TheiaSFM [53]; (c) 2-view characteristic lines cluster-
ing [3]; (d-e): Multi-view clustering (Sec. 4.2).

problem intractable once these estimates enter the global camera translation step
(Sec. 4.3). In order to reduce the size of the LUD problem (10), we visit all sets
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(a) (b)

(c) (d)

(e)

Figure 13: Results for Sequence 2 (see caption of Fig. 12)

of view triplets with a common view, and only retain the triplet with the smallest
reprojection error of its reconstructed lines.
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(a) (b)

(c) (d)

(e)

Figure 14: Results for Sequence 3 (see caption of Fig. 12)

Fig. 15 shows that the multiview CL clustering method produces best overall
results in terms of estimated line triplet coplanarity. To get some insight into the
difference of this method vis-a-vis the algorithm of Micusik and Wildenauer [55],
we show in Fig. 16 a bird-eye and a side view of the trajectories and of the struc-
ture as reconstructed by the two methods. While the trajectories look similar from
the bird-eye view, the side view shows that the method of [55] seems to produce
incorrect vertical values for the camera pose.
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Figure 15: Precision/recall curves for the algorithms (see Sec. 5.3).

(a) (b)

Figure 16: Bird-eye view (top) and side view (bottom) of the trajectory and structure reconstructed
by our multi-view CL clustering (a) and by our implementation of Micusik and Wildenauer’s linear
constraints [55] (b); see Sec. 5.3.

6. Conclusions

We have described a SFM system that is based solely on line matching, under
the assumption that the environment layout complies with the Manhattan world
hypothesis. This system is based on the idea of “characteristic lines”, which can
be seen as an invariant of two views of a parallel line pair laying on a plane with
known orientation. The characteristic lines algorithm enables segmentation of
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planar patches from visible lines, and thus reconstruction of motion and structure.
We have shown how to extend the characteristic lines algorithm to the multi-view
case, resulting in a more robust planar segmentation. Clusters of characteristic
lines indicate the presence of a planar surface, and provide a measurement of
pairwise camera translation, normalized with the distance to the plane. This in-
formation is fed to a modified LUD algorithm for globally consistent motion esti-
mation. The structure of the environment is then computed with an algorithm that
leverages the strong Manhattan world geometric constraints.

While this paper focused solely on line matching, it should be clear that max-
imum robustness and accuracy would be obtained by considering both point and
line features. We are currently exploring different approaches for combining these
heterogenous features in an unified framework. We are also looking at ways to ex-
pand our characteristic line method to weak Manhattan layouts [56], which have
only horizontal and vertical surfaces, but the vertical surfaces can be oriented in
any direction. Another intriguing research direction would be to combine the type
of knowledge that can be acquired from individual images (under strong geomet-
ric assumptions) with information from multiple views. Given that in many cases
the line configuration in a single image already suffice for indoor layout recon-
struction [23, 24, 25], this prior information could be very beneficial for SFM
algorithms.

Appendix

In this Appendix, we prove that if a line L lying on a plane with normal ~n is
matched across two views separated by the baseline vector ~t, then (4)

〈~t/d, ~u2〉 =
sin ~u1, ~u2
sin ~u1, ~n

(14)

where d is the distance of the plane from the first camera, and ~u1, ~u2 are the lever
vectors induced by the line L on the two cameras (as defined in Sec. 3.1).

From (1) one derives
u1 ×HT

c u2 = 0 (15)

Combining (15) with (2), one obtains

(RTu2)× u1 = u1 × nuT2 t/d (16)

hence (noting that u1, u2 and n are unit vectors)

uT2 t/d =
‖(RTu2)× u1‖
‖u1 × n‖ · ((RTu2)× u1)

T (u1 × n) (17)
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which is identical to (14).
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