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Abstract 
 

Rumors inundate every social network.  Some of them are 
true, but many of them are false.  On rare occasions, a false 
rumor is exposed as the lie that it is.  But more commonly, 
false rumors have a habit of obtaining apparent verification, 
by corroboration from what seems to be a second independent 
source.  However, in complex social networks, the 
connectivity is such that a putative second source is almost 
never actually independent of the original source.  In the 
present work, rumor network simulations demonstrate how 
remarkably easy it is for a node in the network to be fooled 
into thinking it has received independent verification of a 
false rumor, when in fact that “second source” can be traced 
back to the original source.  By developing a theoretical 
understanding of the circumstances under which the spread of 
false rumors, “alternative facts,” and fake news can be 
controlled, perhaps the field can help prevent them from 
ruining elections and ruining entire nations.   

 
Keywords: Networks, Social Networks, Interaction 

 
Introduction 

 

The interactivity that exists among the subsystems that 
form a cognitive system has powerful and lasting 
consequences. In the human brain, the interactivity among 
the neural subsystems that form the language 
comprehension network is what allows phonetics to 
influence syntactic processing (Farmer, Christiansen, & 
Monaghan, 2006) and semantics to influence speech 
perception (Gow & Olson, 2015; Spivey, 2016).  In the 
human brain, the interactivity among the neural subsystems 
that form the visual perception network is what allows depth 
perception to influence motion discrimination (Trueswell & 
Hayhoe, 1995) and attention to influence visual perception 
(Gandhi, Heeger, & Boynton, 1999; Spivey & Spirn, 2000).  
In the human brain, the interactivity between the language 
comprehension network and the visual perception network 
is what allows visual context to influence spoken word 
recognition (Allopenna, Magnuson & Tanenhaus, 1998; 
Spivey-Knowlton, 1996), and linguistic input to influence 
visual perception (Lupyan & Spivey, 2010; Lupyan & 
Ward, 2013).  These examples form just a tiny subset of the 
many consequences of interactivity in the human brain. 

Outside the human brain, interactivity in a social 
network has powerful consequences for group behavior.  
When two people cooperate on a shared task, or even just 
have a conversation, they often exhibit real-time motor 
coordination in their postural sway (Shockley, Santana, & 

Fowler, 2003; M. Richardson, Marsh & Schmidt, 2005), 
their eye movements (D. Richardson, Dale & Kirkham, 
2007), their gestures (Paxton & Dale, 2013), and their 
language use (Louwerse, Dale, Bard, & Jeuniaux, 2012).  It 
has even been shown that behavioral and neural responses 
of two participants cooperating on a task exhibit the 
signatures of competition between the two subtasks, even 
though each person is in charge of only one of those 
subtasks (Sebanz, Knoblich, Prinz, & Wascher, 2006). 
Essentially, each person is doing some of the thinking for 
the other person.  When these mechanisms of coordination 
are optimized between two people, they can even perform a 
joint perceptual task at a level that is better than either of 
them alone (Fusaroli et al., 2012). 

When people share information with each other, they 
tend to self-organize into a larger cognitive system 
(Goldstone & Gureckis, 2009).  Much like how cognition 
may be an emergent property of billions of neurons 
interacting with one another in a brain (Kello, Beltz, Holden 
& Van Orden, 2007), group cognition may also be an 
emergent property of multiple people interacting with one 
another in a shared context (Thiener, Allen, & Goldstone, 
2010).  Due to the continuous fluid flow of information 
throughout the network, every node (be it a neuron or 
person) is richly interdependent with every other node, at 
least indirectly. Not only can positive influences spread 
throughout such a network, as when two brains show 
improved performance on a shared perceptual task (Fusaroli 
et al., 2012), but negative influences can also spread 
throughout the network and infect nearly every component.  
Network simulations of rumor-spreading have recently 
begun to analyze this process of false information infecting 
a social network (Roshani and Naimi, 2012). 

Traditional studies of rumor transmission tended to 
focus on linear sequential transfer of a rumor, and how the 
content can often become accidentally modified after 
several transmissions (Allport & Postman, 1947).  
Sometimes this is referred to as the “telephone game.”  
However, more recent studies of rumor transmission have 
used network theory to examine how non-linear 
transmission of rumors happens in complex social networks 
that are richly interconnected (Del Vicario et al., 2016).  For 
example, when the network has islands of homogeneity, 
tight-knit like-minded enclaves that connect mostly just to 
their own group, these subnetworks can become “echo 
chambers” that reinforce false narratives and conspiracy 
theories within their walls. Alternatively, when the 
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connectivity of a social network is scale-free (neither 
random nor homogenous) – much like the brain’s 
connectivity (Kello, 2013; Sporns, 2010) – then almost any 
rumor can be expected to spread throughout the entire 
network, irrespective of whether it is true or false (Nekovee, 
Moreno, Bianconi, Marsili, 2007).  What has not been 
explored yet in this small cottage industry of research is 
how easily a false rumor can obtain independent verification 
via an apparent second source, even when that “second 
source” actually has the original source as its origin. 

When an interactive system (be it a brain or a group of 
people) spends any amount of time sending signals back and 
forth among its subcomponents, it quickly becomes difficult 
to trace the source of a signal and determine whether a given 
signal is afferent (recently coming from an external source) 
or efferent (better described as generated endogenously).  
Under these circumstances, following the trail of a rumor in 
a social network is extremely difficult.  The journalistic 
practice of “corroborating the story” can become quite 
complicated.  A common method of fact-checking is to find 
a second source for the same story. If the second source is 
independent of the first source, and says essentially the 
same thing, then it adds veracity to the report.  Even naïve 
experimental participants tend to use this tactic (Kim et al., 
2008). However, in an interconnected network of people 
sharing information, almost no one is actually independent 
of anyone else.  Frequently, an apparent second source, 
which gets used as verification of the rumor, actually 
acquired its information indirectly from the original source. 

One concrete real-world example of such false 
corroboration is the U.S. Pentagon’s case for Saddam 
Hussein stockpiling weapons of mass destruction (WMD) at 
the beginning of the 21st century.  It has now been well-
established that U.S. leaders were proactively seeking 
justification for a pre-existing plan to invade Iraq and 
depose its leader (Dreyfuss & Vest, 2004; Ryan, 2006).  It 
turned out to be all too easy for information gatherers to 
fool themselves into thinking they had corroborated reports 
of WMD, when in fact the corroboration was actually a 
duplicate of the original false rumor. The CIA, British 
intelligence services, and the New York Times all collected 
reports of WMD in Iraq, and carefully sought independent 
verification.  Each of these entities received fallacious 
reports from the same Iraqi defector, codenamed 
“Curveball” by the CIA.  And what’s more, each of them 
used un-sourced reports from one another as corroboration 
of their own report.  What they each did not realize at the 
time was that the “second source” to corroborate their report 
from Curveball was actually just someone else’s report from 
Curveball (Bamford, 2005; Prados, 2004). 

False rumors, “alternative facts,” and fake news have 
become an everyday occurrence recently, where too many 
people obtain their news reports on social network sites and 
blogs, where “news” is provided that has not been vetted by 
policies of ethical journalism.  For example, in January of 
2016, journalist and author, Fareed Zakaria, was “trolled” 
on the internet with a fake report of him calling for “jihad 

rape of white women to depopulate the white race.”  Some 
people believed this false rumor so strongly that they made 
threats on Zakaria’s life, and frightening phone calls to his 
daughters in the middle of the night (Zakaria, 2016).   

Similarly, in the fall of 2016, fake news reports were 
disseminated widely on Facebook about presidential 
candidate Hillary Clinton being involved in a child sex-
trafficking ring based at a particular pizza shop in 
Washington, D. C.  One man believed that false rumor so 
strongly that he felt compelled to travel across state lines to 
visit that pizza shop with an assault rifle in his hands and 
fire a shot to let them know he was there to save the 
children.  The U. S. Department of National Intelligence has 
recently determined that many such fake news stories about 
Hillary Clinton were fabricated and disseminated via social 
networks specifically with the intent of influencing the 
results of the 2016 U. S. election (DNI Report, 2017). 

In Del Vicario et al.’s (2016) computational analysis of 
conspiracy theories on the internet, they concluded that, 
“many mechanisms cause false information to gain 
acceptance, which in turn generates false beliefs that, once 
adopted by an individual, are highly resistant to correction.”  
In the following rumor network simulations, the results 
suggest that false corroboration may be one of those many 
mechanisms. 

 
Random Rumor-Net Simulations 

 

In this first group of simulations, a 100-node network 
was constructed and given random placement of bi-
directional connections, excluding self-connections.  In one 
set of 100 simulations, the network was given 10% 
connectivity, such that each node on average was connected 
to about 10 of the possible 99 other nodes (i.e., average 
node degree=10).  The average clustering coefficient for this 
network (which shows how interconnected each node’s 
friends are) was .10.  Another set of 100 simulations used a 
clustering coefficient of .33, and Figure 1 shows an example 
degree distribution from one of those networks.  Another set 
of 100 simulations used a clustering coefficient of .5, and a 
fourth set used a clustering coefficient of .67. 

 

 
Figure 1: Degree distribution from a 100-node random 
network in which, on average, most nodes are 
connected to about 33 other nodes. 
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To begin a simulation, node #1 was infected with a 
rumor by flipping its state from zero to 1.0.  This is the one-
and-only origination of the rumor in this network. It could 
be true or false, but for the purpose of testing its evolution 
into “fake news,” the rumor is treated as false.  For every 
instance of transmitting the rumor, a randomly chosen 
infected node would select randomly among its connections 
to spread the rumor with one other node.  After spreading, 
that bidirectional connection was erased in the network to 
prevent it from being used again in the future.  (The 
simulation assumes that if the same rumor were shared 
again between the same two people, it would not count as a 
transmission.) For that very first transmission, this 
obviously involved node #1 sharing the rumor with one of 
the nodes connected to it.  At which point there would then 
be two nodes that have been exposed to the rumor. Then one 
of those nodes was randomly selected to spread the rumor 
again. After 100 transmissions of the false rumor, some of 
the nodes had still never been exposed, some had been 
exposed once, and some had heard the rumor from two or 
more different connections.  This latter case counts as 
people who had heard the rumor corroborated by what 
would seem to be a second source.  However, the simulation 
actually has only one source of the rumor: node #1.  For 
example, node #1 might spread the rumor to node #47, who 
then spreads the rumor to node #23.  Next, node #47 might 
share the rumor again, this time with node #87, who shares 
it with node #18, who then shares the rumor with node #23.  
In that scenario, node #23 could easily be fooled into 
believing that it had received independent corroboration 
(from node #18) of the rumor it first heard from node #47. 

In this first group of simulations, the number of nodes 
that received this false corroboration was recorded for low-, 
medium-, high- and very high-connectivity networks (i.e., 
clustering coefficients of .1, .33, .5, and .67).  Interestingly, 
after 100 transmissions of the rumor, there were no 
differences across these four different types of random 
networks (results averaged across the 100 simulations in 
each case).  In all simulations, irrespective of how densely 
interconnected the network was, around 26 of the 100 nodes 
had heard the rumor from two or more sources (Table 1).  
This insensitivity to network density is likely due to the fact 
that a rumor-spreader is randomly selected each time 
(among nodes that know the rumor), and its relative 
likelihood of spreading the rumor to a knowing node or an 
unknowing node is unchanged by how well-connected it is. 

 

Table 1: Random networks with different numbers of 
connections show about the same number of nodes 
hearing false corroboration of the rumor (2+ times). 

 

Avg Node 
Degree 

Clustering 
Coefficient 

Never 
Heard 

Heard 
Once 

Heard 2+ 
times 

10 .10 33.6 40.1 26.3 
33 .33 34.6 38.8 26.6 
50 .50 34.8 38.4 26.8 
67 .67 34.9 38.4 26.7 

 

With 200 nodes and 200 rumor transmissions (or 500 
nodes and 500 rumor transmissions), again about one-
quarter of the nodes obtain false corroboration – irrespective 
of how densely or sparsely connected the network is.  With 
half as many transmissions as there are nodes, about 10% of 
the nodes obtain false corroboration. And with twice as 
many transmissions as nodes, about 60% of the nodes obtain 
false corroboration. Based on these initial simulations, it 
appears that false corroboration of a rumor may be 
remarkably easy to obtain in a social network. 

 
Scale-Free Rumor-Net Simulations 

 

Most real-world networks, including social networks, 
are not at all random in their connectivity.  Instead, social 
networks tend to have a scale-free pattern of connectivity, 
meaning that most nodes have a smallish number of 
connections (node degree), while a few nodes have a very 
large number of connections.  Using a version of Barabasi 
and Albert’s (1999) preferential attachment process, a group 
of scale-free rumor networks were designed that show a 
power-law in their degree distribution (Figure 2).  

 
Figure 2: (A) Degree distribution from a 100-node 
scale-free network where the mean number of 
connections per node is 33, but most nodes have <25 
connections and a few nodes have >75 connections. (B) 
On log-log coordinates, the degree distribution forms a 
relatively straight line with a slope of -1.3.   
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By contrast to a scale-free network, in a random 
network the proportion of connections each node has 
generally corresponds to the clustering coefficient as well.  
That is, if each node in a random network has about 10% of 
the possible connections, then the clustering coefficient 
(showing what proportion of each node’s friends are 
connected to each other) will also tend to be around .10.  
However, in a scale-free network, the clustering coefficient 
(.62, in Figure 2) tends to be substantially higher than the 
average proportion of connections the nodes have (.33, in 
Figure 2).  That is, in a scale-free network, most nodes have 
relatively few friends, but a sizeable proportion of those 
friends know each other. 

In these next simulations, a hundred 100-node scale-
free networks were designed that had an average of 10 
connections per node, along with another hundred networks 
that had an average of 17 connections per node, then another 
hundred with 25, and another hundred with 33 connections 
per node.  (In a scale-free network, when the average 
number of connections approaches 50% of the possible 
connections, its degree distribution can become bimodal and 
no longer adheres to a scale-free power law.  Therefore, the 
highest node degree used here was 33.) 

Each rumor-spreading simulation with these scale-free 
networks was carried out in a fashion similar to those with 
the random networks, except that the first rumor-infected 
node could not be an arbitrary choice because some nodes 
were substantially more connected than others.  To test the 
limiting case, the least-connected node in each scale-free 
network was selected as the first node to spread the rumor.  
After that starting point, 100 transmissions of the rumor 
took place exactly as it did with the random networks. 

 
Table 2: Scale-free networks with different numbers of 
connections show about the same number of nodes 
hearing false corroboration of the rumor (2+ times). 

 

Node 
Degree 

Cluster 
Coeff. 

loglog 
slope 

Never 
Heard 

Heard 
Once 

Heard 
2+ times 

10 .22 -0.71 40.1 34.6 25.3 
17 .39 -1.05 40.4 34.3 25.3 
25 .56 -1.25 40.8 33.9 25.3 
33 .68 -1.27 40.8 33.6 25.6 
 
In these scale-free rumor networks, a slightly larger 

proportion of the people never hear the rumor (about 40%) 
compared to that in the random networks (about 35%).  
However, remarkably, approximately the same number of 
false corroborations is observed (~25) as that seen with the 
random networks (compare Tables 1 & 2). As was tested 
with the random networks, this 25% false corroboration rate 
replicates for scale-free networks with 200 nodes and 200 
rumor-transmissions.  When there are 3-4 times as many 
transmissions as nodes, almost every node will have heard 
the rumor, and about ¾ of them will have heard it more than 
once (irrespective of network density).  Not surprisingly, in 
these scale-free networks, it is usually the well-connected 
nodes that first obtain these false corroborations.   

When a False Rumor Becomes Fake News 
 

Based on all these simulations, when there are as many 
rumor-transmissions as there are nodes, then almost 2/3 of 
them will hear the rumor, and about 1/4 of them will obtain 
a false corroboration of the rumor – even though it never 
actually had any independent secondary source.  This is true 
for both random rumor networks and for scale-free rumor 
networks. However, when one of the people in the network 
is a reporter for a news agency, who will broadcast the story 
to everyone if they obtain apparent corroboration, then it 
turns out that the type of connectivity does, in fact, matter.  
If one assumes that the reporter is among the most widely-
connected people in the network, then the different degree 
distributions for random networks and for scale-free 
networks (Figures 1 and 2) make for substantially different 
reporters.  In a random network, the most-connected node 
(i.e., the reporter) will have a number of connections that is 
greatly influenced by the density of the network’s 
connectivity (its average node degree).  However, in a scale-
free network, the most-connected node is often connected to 
>85% of the other nodes, irrespective of the average node 
degree.  Therefore, a reporter in a random network will only 
occasionally obtain a false corroboration, and thus publish 
the story (Table 3).  However, in a scale-free network, a 
reporter (who is massively well-connected) will almost 
always obtain false corroboration, and therefore publish the 
rumor (Table 4).  If that rumor is false, then its publication 
qualifies as fake news. 

 
Table 3: In random rumor-nets, false corroboration  
sometimes leads to the publication of fake news. 
 

Node Degree Clustering 
Coefficient 

Reporter-node 
Publishes Fake News 

10 .10 58% 
33 .33 42% 
50 .50 38% 
67 .67 35% 

 
Table 4: In scale-free rumor-nets, false corroboration  
almost always leads to the publication of fake news. 

 

Node 
Degree 

Clustering 
Coefficient 

loglog 
slope 

Reporter-node 
Publishes Fake News 

10 .22 -.071 92% 
17 .39 -1.05 93% 
25 .56 -1.25 93% 
33 .68 -1.27 87% 
 
Surprisingly, with random networks, denser 

connectivity leads to a reduced likelihood of the reporter-
node obtaining false corroboration and publishing the 
rumor.  Upon closer examination, this makes sense given 
the parameters of the simulation.  In a random network with 
a small average node degree (sparse connectivity), 
whenever a rumor-infected node is about to spread the 
rumor, it has a small number of friends to choose among.  If 
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one of them happens to be the reporter, which is somewhat 
likely since the reporter is the most connected node, then the 
reporter might hear the rumor.  And if that happens a second 
time, then a (false) corroboration has taken place, and the 
story gets broadcasted.   By contrast, in a random network 
with a large average node degree (dense connectivity), 
whenever a rumor-infected node is about to spread the 
rumor, it has a large number of friends to choose among.  
One of them is probably the reporter, but a random selection 
of to whom the rumor will be spread leaves the reporter with 
a slim chance.  In many of these random rumor-net 
simulations, the reporter never even heard the rumor once. 

The situation is very different in a scale-free network.  
In a scale-free rumor-net, most nodes have fewer 
connections than they would in a comparable random 
network.  Therefore, when a rumor-infected node is 
randomly selected to spread the rumor, it is usually one that 
has a smallish number of friends to choose among, and one 
of them is almost certainly the well-connected reporter (see 
also Doerr, Fouz, & Friedrich, 2012).  Thus, almost every 
time the rumor is transmitted, the reporter has a reasonable 
chance of being its recipient.  As a result, the reporter-node 
in such a network is highly likely to hear the rumor, and 
also highly likely to obtain a false corroboration of this 
rumor, even though the rumor actually has only one source. 

 
Conclusion 

 

Interactivity in a network is usually a good thing.  
Ambiguities or uncertainties present in one part of the 
network will often be resolved by strongly biasing 
information present in another part of the network (e.g., 
Kawamoto, 1993; MacDonald, Pearlmutter, and Seidenberg, 
1994; McRae, Spivey-Knowlton, & Tanenhaus, 1998).  
However, when that strongly biasing information is 
objectively false, the interactivity within a network can 
compromise its ability to align itself with reality. 

The present network simulations do not specifically 
distinguish between objectively false rumors and true 
rumors, but a recent analysis of 330 rumor threads on 
Twitter does.  For a false rumor, the time between rumor 
onset and debunking can be as much as seven times longer 
than the time between rumor onset and verification for a 
true rumor (Zubiaga, Liakata, Procter, Hoi, & Tolmie, 
2016).  That is, it takes much longer to debunk a false rumor 
than it does to verify a true rumor.  Therefore, if a long-
standing uncertain rumor has not been verified as true, then 
the odds are steadily increasing every day that it is a false 
rumor (that just hasn’t been debunked yet).  Most true 
rumors get verified very quickly. 

However, the nature of this verification process comes 
into question when considering the present rumor 
simulations.  If the apparent verification comes in the form 
of a seemingly independent source that corroborates the 
original rumor, it may be illusory.  The interactivity inherent 
in social networks can all too easily make a false 
corroboration (i.e., an echo from the echo chamber) appear 
as genuine independent corroboration.   

One potential solution to this problem is for reporters to 
make better efforts at tracing the lineage of a report, so that 
two reports from the same source might be identified as 
such.  A more reliable solution would be for journalism 
practices to avoid using secondary-source corroboration on 
its own as sufficient evidence to disseminate a story.  These 
rumor network simulations demonstrate that it is simply too 
easy to obtain such corroboration in a fraudulent manner.  
Instead, the criterion for publication of a story might ought 
to include evidence that cannot easily be faked, such as 
photos, video, audio recordings, and documents whose 
source can be reliably determined.  For example, if the 
report is that a public figure made sexist comments, or 
mocked a disabled person, or told the public a brazen lie, 
simply relying on two seemingly-independent sources to 
publish such a story may be insufficient.  If the comments or 
mocking are evident in a video clip of the public figure, or if 
the lie is present in a verifiably-sourced tweet from the 
public figure, then those pieces of evidence should be what 
are repeatedly disseminated in reporting the story.  Reports 
without such concrete evidence should be taken with a grain 
of salt, or perhaps not published in the first place. 

It has been proven time and time again in everyday life, 
as well as in high-stakes politics, that the dissemination of 
false rumors can ruin lives, ruin elections, and even ruin 
entire nations.  Understanding the mechanisms that allow, 
and exacerbate, the spread of misinformation in a social 
network of any kind may help with efforts to curtail and 
minimize the damage that can be done. The present 
simulations of a false rumor spreading throughout a network 
show convincingly that, even in a sparsely connected 
network, the “apparent corroboration” of a story often 
comes from a source whose own source can be traced back 
to the originator of the story, and thus should not actually 
count as independent corroboration. To quote Fareed 
Zakaria, “No matter how passionate people are, no matter 
how cleverly they can blog or tweet or troll, no matter how 
viral things get, lies are still lies.” 
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