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Industrial Internet of Things (IIoT) is an adaptation of traditional IoT for industrial

environments enabling full automation, remote monitoring, and smart maintenance. Predictive

analytics aims to utilize the collected system data and provide meaningful insight into business

decisions using Machine Learning (ML). However, there are numerous challenges that should be

addressed to fully benefit from IIoT predictive analytics. These include performance, securtiy,

and efficiency of ML algorithms. This dissertation provides solutions to each of these challenges.

Dynamic IIoT settings and conditions can significantly impact individual ML prediction

performance. As a solution to this problem, ensemble learning systematically combines multiple

xv



ML methods to increase prediction performance and robustness. However, in order to deploy

ensemble learning solutions in IIoT systems, additional training overhead and learning ability

under limited supervision should be addressed. To address the first challenge, we propose a

diversity-induced optimally-weighted ensemble learner. Our solution provides 39.2% faster

retraining compared to only accuracy included ensemble with 3.4% loss in accuracy. To solve

the second problem, we devise a novel few shot ensemble learning framework. It results in up to

16.4% improvement over the best algorithm by only using 0.3% of the training data.

IIoT security is challenging due to its increased inter-connectivity, small scale devices,

and large attack surface. Among various cyberattacks, adversarial attacks craft perturbed

examples to affect ML prediction performance. These attacks can cause serious outcomes on

IIoT systems, yet they are not carefully addressed in the IIoT domain. To fill this research gap,

we develop (1) a stacking ensemble learning-based framework that stays resilient against various

adversarial attacks, and (2) diversity promoting ensemble adversarial training approach as a

defense mechanism. Our stacking ensemble improves resiliency against adversarial attacks by

up to 60% compared to the most resilient single ML method. Furthermore, our defense improves

the resiliency by up to 97% compared to state-of-the-art training settings.

IIoT systems need efficient and robust learning solutions due to their resource constrained

devices and the potential for noise and variability. Hyper-dimensional computing (HDC) is

a brain-inspired learning solution which is shown to be efficient, accurate, and robust. We

first apply HDC for predictive analytics solution and test it against various adversarial attacks.

We observe that HDC has up to 67.5% higher resiliency compared to the state-of-the-art deep

learning methods while being up to 25.1× faster to train. Although we showed that HDC is

more resilient than DL methods, there is still a need to further investigate its resiliency against

adversarial attacks to use HDC for predictive analytics safely. For that purpose, we design a

novel HDC adversarial attack. Our approach improves attack success rate by up to 36%, and F1

score by up to 61% compared to the most effective state-of-the-art single adversarial attack.
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Chapter 1

Introduction

Industry 4.0 or fourth industrial revolution is an important milestone in production

systems which aims to automate decision-making, interconnect machinery, and maximize

productivity [1]. This leverages the notion of Industrial Internet of Things (IIoT) focusing on

machine-to-machine communication, big data, and machine learning. IIoT is used for various

tasks such as remote monitoring, business intelligence, quality control, automation, and predictive

maintenance [2]. Its value is increasing, where IIoT market is estimated to worth $7.1 trillion

to the United States by 2030 [3]. Huge amounts of data are collected in IIoT environments

on a regular basis by connecting every machine to the Internet [4]. Processing and analyzing

these data plays a significant role in obtaining more effective IIoT systems. Predictive analytics

aims to deploy Machine Learning (ML) solutions in IIoT systems to make predictions about the

likelihood of future outcomes, e.g., machinery failure, maintenance schedule.

ML-based solutions can be impactful in high-level decision making, bringing significant

cost gains. To illustrate, one robotic manufacturing company reduced downtime by 50% and

increased performance by 25% by utilizing an ML algorithm for failure prediction [5]. It is

crucial to understand how ML can be integrated into IIoT systems. Figure 1.1 presents the

ML-enabled IIoT architecture which consists of four main layers: physical, edge, cloud, and

visualization [6]. The physical layer consists of IIoT assets such as machinery, sensors, and

actuators. The edge layer collects data from physical layer, pre-processes the collected data,
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Figure 1.1. ML-enabled IIoT Architecture

establishes the cloud connection, and performs data analytics via pre-trained ML methods. The

cloud layer is responsible for storing the collected system data, and training ML models. It is

important to note that the trained ML models might require retraining when new data arrive

and those models are sent back to the edge layer to keep the prediction performance at a certain

level. Finally, the visualization layer utilizes data from both edge and cloud layers and provides

a visual representation of actionable insights, e.g., maintenance schedule, failure prediction.

This dissertation focuses on two main predictive analytics applications: predictive mainte-

nance and intrusion detection. Predictive maintenance (PdM) finds an optimum time to schedule

a maintenance before any failure occurs [7]. Its market size is expected to grow from $4.0 billion

in 2020 to $12.3 billion by 2025 [8]. Data-driven PdM utilizes historical data and deploy ML

models in IIoT environments. Data-driven PdM has multiple applications such as remaining

useful life (RUL) estimation, and intelligent fault diagnosis (IFD) [9]. RUL is defined as the

remaining time of a machine to perform its functions until it fails [9]. RUL prediction is a crucial

PdM task where even the slightest improvement in the RUL prediction performance can cause

huge cost gains via increased production efficiency [7]. Due to abundance of available IIoT data,
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ML-based RUL prediction methods have become extremely popular. These methods aim to find

a mapping between historical data and corresponding RUL values. As another important PdM

application, IFD utilizes ML algorithms to detect and classify different fault types. Other than

predictive maintenance, intrusion detection aims to continuously monitor the IIoT network data

to detect incoming cyberattacks [10]. It provides timely detection and alerts to prevent the spread

of infection throughout the IIoT system. ML methods have been recently adopted for intrusion

detection due to their successful performance in detecting cyberattacks effectively.

In order to fully benefit from IIoT predictive analytics, there are three main challenges

that should be addressed. The first challenge is the difficulty of selecting a single ML method that

can perform well across different IIoT settings. Ensemble learning aims to solve this problem by

combining multiple learners, yet it also brings additional training overhead. Another challenge is

IIoT security due to long lifetime of industrial devices, large-scale networks, and increased inter-

connectivity. Specifically, ML security plays a critical role in IIoT systems since ML methods are

heavily used in high level decision making. Adversarial attacks create slight but carefully-crafted

examples to affect the ML model prediction performance. These attacks can lead to serious

outcomes for IIoT systems such as undetected failures. The last challenge is creating efficient ML

solutions to be used at the edge, in resource-constrained devices. Hyperdimensional computing

(HDC) is one possible solution approach for robust and efficient learning. However, HDC can

also be vulnerable to adversarial attacks. To cope up with these challenges, this dissertation

proposes intelligent, secure, and efficient IIoT predictive analytics solutions. Next, we go into

the details of these challenges, provide a background knowledge, and outline our solutions.

1.1 Intelligent Learning

Although there are numerous ML methods proposed for different data-driven PdM appli-

cations, it is difficult to deploy a single ML method that works well across various IIoT settings.

Since industrial systems include very large number of individual systems and components, single
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ML model predictive performance might change drastically. This implies that deploying single

ML method might cause misleading actions for IIoT systems, e.g., wrong maintenance decision.

We can obtain more accurate and robust predictions by combining different ML methods. En-

semble learning (EL) is one solution approach to this problem which combines various ML

algorithms, i.e., base learners, in a systematic manner. EL provides higher a generalization ability,

improves robustness, and reduces the likelihood of a wrong selection of a poor individual learner.

This brings more successful predictive analytics, increasing system robustness and decreasing

maintenance costs of IIoT systems. There are three main ensemble learning approaches in the

literature [11]: (i) bagging, (ii) boosting, and (iii) stacking. Bagging combines similar type of

learners by using different subsamples of the data, e.g., random forest. Boosting also combines

similar learners while fixing the prediction error iteratively, e.g., AdaBoost. Lastly, stacking

combines different learners via a second-level learner, i.e., a meta learner.

In order for ensemble learning to be used in IIoT predictive analytics, there are two main

challenges that need to be addressed: (i) additional training overhead, and (ii) learning under

limited supervision. Additional training overhead is an important issue in ensemble learning

where multiple models need to be trained initially and might require retraining under new data to

maintain the overall prediction performance. To address this challenge, we propose a diversity-

induced optimally-weighted ensemble learner. For IIoT systems, it might be infeasible to have

labeled data for different working conditions. This can impact the prediction performance of

ensemble learning solutions. To solve this problem, we propose ensemble few-shot learning.

1.2 Secure Learning

IIoT Security: IIoT systems are often designed without security in mind or use com-

munication protocols that are not sufficiently secure and vulnerable off-the-shelf commercial

products [12, 13]. Increased inter-connectivity, small scale devices, large attack surface, and

poorly implemented security features make IIoT an easy target for cybercriminals [14]. Wu
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Figure 1.2. ML prediction performance under adversarial attack

et al. [13] summarize the IIoT assets that are vulnerable to cyberattacks under 4 categories:

operating systems, application software, communication protocols, and smart devices. Sophis-

ticated attackers can easily gain access to an entire IIoT system and damage its functionality

and production for a lengthy period [15]. For instance, the average estimated losses were $10.7

million per breach of data among manufacturing organizations in Asia Pacific in 2019 [16].

To cope with this challenge, cyber security measures should be taken such as cyber-security

awareness training, keeping software programs up-to-date, and installing a firewall [13]. Tuptuk

and Hailes [12] summarize common IIoT attacks under 13 different classes: denial of service,

eavesdropping, man-in-the-middle, false data injection, time delay, data tampering, replay,

spoofing, side channel, covert channel, zero day, physical, and adversarial attacks.

IIoT Adversarial Attack Motivation: Adversarial attacks aim to create slight but

carefully-crafted examples to impact ML model prediction performance. These attacks became

extremely important since ML methods have great success in IIoT [17]. Adversarial attacks

can cause serious consequences on IIoT systems such as undetected failures [6]. Figure 1.2

demonstrates the impact of an adversarial attack (under varying perturbation amounts) on

ML prediction performance for IIoT intrusion detection. Here, 0% perturbation refers to no

adversarial attack. Higher perturbation amount implies a stronger adversarial attack. In this
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figure, different colors denote distinct ML methods, e.g., random forest (RF), hyperdimensional

computing (HD), deep neural network (DNN). Under an adversarial attack, accuracy and F1

score can be impacted significantly irrespective of the underlying ML model, causing up to 25×

performance loss.

Adversarial Attacks: There are three types of adversarial attacks in the literature:

evasion, poisoning, and exploratory [18]. Evasion attacks target compromising the test data,

poisoning attacks contaminate the training data, and exploratory attacks gain knowledge about

the learning algorithm. We can further divide evasion attacks into two groups: white-box and

black-box. While white-box attacks have detailed knowledge about the model, black-box attacks

assume no knowledge about the underlying model. Other than attack generation methods, an

adversary also needs to determine how to conduct an adversarial attack for a real-world system

based on access level to the target ML model. We can categorize real-world attack patterns

under 3 classes [19]: (i) direct attacks allow an adversary to submit inputs to the actual target

and receive corresponding results, (ii) replica attacks use an exact replica of the target model to

refine the adversarial input, (iii) transfer attacks select a substitute model which is a good-enough

approximation of the target and use this model to craft adversarial examples. Among these,

transfer attack is the most realistic attack strategy where an adversary may not have access to the

target model.

Adversarial Defenses: Adversarial defenses aim to protect ML models against adversar-

ial attacks based on three main classes [20]: (i) input defense, (ii) adversarial attack detection,

and (iii) model defense. Input defense pre-processes input data to remove any adversarial com-

ponent before the system back-end processes it. Data compression [21], data coding [22], data

decomposition [23], and adding noise [24] are some example input defense strategies. Adversar-

ial attack detection aims to distinguish attacked data from normal ones before model training

and inference. Although it has been shown that these examples are not easy to detect [25],

there are two different methods for adversarial attack detection: (i) data feature analysis utilizes

data statistics analysis methods such as generalized likelihood ratio test [26], maximum mean
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discrepancy [27], and temporal consistency [28], (ii) ML-based detection first extracts features

and then train a decision model to determine if the input is an adversarial or not. Different

ML methods have been used so far, e.g., one-class classifiers [29], extreme learning machine

[30], and reinforcement learning [31]. Model defense is the last category of defenses which

strengthen the model itself against adversarial attacks, i.e., increasing the robustness. This is the

most heavily studied defense approach where there are numerous approaches such as gradient

masking [32], defensive distillation [33], generative adversarial network [34], certified defenses

[35], and adversarial training [36].

There are numerous IIoT security studies focusing on cryptography, authentication,

patch management, and intrusion detection [37]. However, the adversarial attack and defense

focus is lacking in majority of these. Hence, we fill this research gap by proposing resilient

learning solutions and novel defense mechanisms for IIoT predictive analytics. We have two

main contributions. First, we develop a stacking ensemble learning-based framework that stays

resilient against various white-box adversarial attacks. Second, we propose a diversity promoting

ensemble adversarial training approach as a defense mechanism against adversarial attacks.

1.3 Efficient Learning

Machine learning (ML) is fundamental to extract useful information from collected IIoT

data. IIoT systems consist of resource constrained devices where conventional ML models

cannot be directly used. There might be numerous IIoT learning scenarios where these devices

need to perform predictive analytics [38]. To enable this, there are three main ML challenges

that need to be addressed towards more efficient IIoT predictive analytics:

• Computational Complexity: State-of-the-art ML algorithms are computationally in-

tensive, and consume great amount of energy. The computing and resource capabilities

of IIoT’s resource constrained devices do not match up with the computing and power

requirements of these ML models.
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• Real-time Learning: IIoT is a dynamic system which requires streaming input, where

the input is continuously processed as it arrives. This creates real-time decision making,

requiring ML solutions to be extremely fast and capable of real-time learning.

• Noise Robustness: IIoT sensor data is shown to be noisy [39]. This can significantly

affect the prediction performance of ML models, risking their wide deployment.

To solve these challenges, there is a need for an efficient and robust learning solution.

Hyperdimensional Computing (HDC) was introduced as a brain-inspired learning solution for

robust and efficient learning [40]. HDC models data using points of a high-dimensional space,

called hypervectors. These points are manipulated with formal algebra operations to represent

relationships between objects. Compared to deep learning, HDC has shown advantages such as

smaller model size, reduced computation cost, one-shot learning capability, and robustness to

noise. These features make HDC a promising solution for IIoT’s resource constrained devices,

and the potential for noise and variability. HDC has three main stages [41]: 1) encoding: mapping

data into high dimensional vectors, called hypervectors (HVs), 2) training: combining encoded

HVs to create a model representing each class with a HV, and 3) inference: comparing the test

sample with the trained model to find the most similar class.

HDC has been used in a range of applications such as activity recognition [42], speech

recognition [43], and biomedical signal processing [44]. However, there is no prior work

utilizing HDC for IIoT predictive analytics. To fill this research gap, we first propose non-

linear encoding-based HDC for intelligent fault diagnosis. Furthermore, HDC resiliency against

adversarial attacks has not been completely understood. Although HDC can provide higher

resiliency compared to the state-of-the-art ML models, its prediction performance can still be

impacted by adversarial attacks. To show its resiliency thoroughly, we design a novel HDC

specific adversarial attack which is more effective than state-of-the-art adversarial attacks.
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1.4 Thesis Contributions

This thesis focuses on creating intelligent, secure, and efficient ML solutions for IIoT

predictive analytics. It shows methods to increase prediction performance, secure ML algorithms

against adversarial attacks, and deploying lightweight learning approaches for IIoT environments.

We propose novel ensemble learning solutions that can perform well in many IIoT settings. To

get sufficient data for learning, these IIoT environments deploy numerous small sensors and edge

computing devices, creating security vulnerabilities, such as adversarial attacks that impact the

prediction performance. We develop secure learning solutions to enhance the resiliency against

adversarial attacks. These intelligent and secure learning solutions increase the computational

burden of IIoT systems, which rely heavily on smaller computing devices. To solve this problem,

we design efficient learning solutions for IIoT predictive analytics. The following discussion

summarizes the contributions and outlines the rest of the thesis:

• Chapter 2 presents a novel ensemble learning solution that introduces diversity to minimize

retraining overhead while keeping accuracy at a certain level. To ensure accuracy, we

create a quadratic programming model that combines single learners effectively. For

diversity, we measure similarity among different learner predictions and select the most

diverse ones iteratively. The experimental results show that our approach provides 39.2%

faster retraining with only 3.4% loss in accuracy compared to only accuracy included

ensemble approach. This shows that our approach can adapt to changing conditions faster

with high accuracy.

• Chapter 3 presents a novel few shot ensemble learning framework for intelligent fault

diagnosis. Our approach combines five different Siamese neural network architectures

using an iterative majority voting classifier. Our transfer learning-oriented experiments

show that we can improve the best algorithm significantly while using very limited labeled

data. We obtain up to 16.4% improvement over the best algorithm by only using 0.3% of
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the training data.

• Chapter 4 proposes a resilient stacking ensemble learning-based framework against white-

box adversarial attacks. We first train DL methods from three different architectures:

recurrent, convolutional, and hybrid. Our ensemble learner then combines the most resilient

DL method predictions based on our iterative selection procedure. Our experiments show

that adversarial attacks can impact the performance of DL-method considerably, leading

up to 120× prediction performance loss. We use this performance loss to quantify method

resiliency, where more resilient methods would lead to smaller performance loss. The

proposed stacking ensemble improves resiliency against adversarial attacks by up to 60%

compared to the most resilient single learner.

• Chapter 5 presents a novel defense framework against adversarial attacks. The idea is

based on the fact that diversity among the ensemble learners plays a crucial role in reaching

overall ensemble robustness. We first measure the loss gradient similarity among pre-

trained ML models and select the most dissimilar ones to promote diversity. Then, we

create perturbed training instances using the selected diverse base learners and augment

those examples into our training data. In testing, we measure the performance change

after adversarial attacks are introduced. Our experiments show that we can improve the

resiliency by up to 97% (43% on average) compared to state-of-the-art training settings.

• Chapter 6 presents hyper-dimensional computing (HDC) as an efficient, robust, and

resilient ML method. We first apply non-linear encoding based HDC for intelligent fault

diagnosis. We then test HDC against various adversarial attacks. Our black-box adversarial

attacks first train a substitute model and create perturbed test instances using this trained

model. These examples are then transferred to the target models. The change in the

classification accuracy is measured as the difference before and after the attacks. This

change measures the resiliency of a learning method. Our experiments show that HDC

leads to a more resilient and lightweight learning solution than the state-of-the-art deep
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learning methods. HDC has up to 67.5% higher resiliency compared to the state-of-the-art

methods while being up to 25.1× faster to train.

• Chapter 7 proposes a novel adversarial attack design for HDC. Although HDC is shown

to be more resilient than state-of-the-art deep learning models, it is still vulnerable to

adversarial attacks. To show its resiliency, we devise a novel adversarial attack for

HDC. We first select the most diverse set of attacks to minimize overhead, and eliminate

adversarial redundancy. Then, we perform a real-time attack selection which finds out

the most effective attack. Our experiments on a realistic IIoT intrusion data set show the

effectiveness of our attack design. Compared to the most effective single attack, our design

strategy can improve attack success rate by up to 36%, and F1 score by up to 61%.

• Chapter 8 summarizes our dissertation and discusses possible future research directions in

the field of IIoT predictive analytics.
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Chapter 2

Diversity-induced Optimally Weighted
Ensemble Learner

2.1 Introduction

Industry 4.0 is an important milestone in production systems where smart manufacturing

has become an essential component. This leverages the adaptation of traditional Internet of

Things (IoT) for manufacturing, creating the Industrial IoT (IIoT) notion. IIoT enables the inter-

connection of anything, anywhere, and at any time in the context of industrial applications [1].

This allows better automation, and more fine-grained control, utilizing computer networks to col-

lect enormous amount of data from the connected machines and convert this data into actionable

information [45]. To optimize the performance of these smart and automated systems, timely

and correct maintenance decisions are necessary, eliminating unplanned downtime, and better in-

ventory management. The focus of IIoT is the appropriate management of industrial assets along

with predictive maintenance (PdM) [46]. For example, BOSCH maintains quality management

through PdM based on big data analysis, smart sensors, and artificial intelligence [47]. PdM

predicts time-to-failure of a machine by employing copious mathematical approaches where it

finds an optimum time to schedule a maintenance before any failure occurs.

Remaining useful life (RUL) is defined as the remaining time of a machine to perform its

functions until it fails. RUL prediction is an important PDM application [9], which can signifi-

cantly improve the overall system performance. Even the slightest RUL prediction improvement
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can lead to enormous cost gains. Recently, data-driven RUL prediction methods have become

popular with the abundance of available data. These machine learning (ML) oriented methods

find a mapping between historical data and RUL. Among these, deep learning (DL) methods are

more preferable due to their superior performance. However, industrial systems consist of large

number of individual systems and components, and finding a single method that works best in

these various settings is a difficult task. Also, since PdM data might show extreme variations in

early vs. late phases (e.g., machines do not fail early), these ML models may need retraining

with the new incoming data. The retraining phase is the performance bottleneck of these models,

with significant computation time overhead. To achieve the vision of IIoT and utilizing from the

huge data generated by IIoT devices, there is a need for lightweight prediction approaches [46].

Ensemble learning combines multiple algorithms, i.e., base learners, and improves base

learner performance. This results in more successful data analytics, increasing system robustness

and decreasing maintenance costs of IIoT systems. Ensemble learning eliminates single method

selection but may create additional overhead as multiple methods need to be trained (and retrained

with new data). Previous works generally use a small number of base learners, around 5-7, to

avoid this issue [48]. However, there may be other methods performing better. Thus, the main

issues with ensemble learning-based RUL prediction become 1) how many learners to consider

for best performance and 2) how to select from them to minimize the retraining overhead.

The contribution of this chapter is to develop a diversity-induced optimally-weighted

ensemble learner for RUL prediction (OPTDIV). To address the first issue, we dramatically

increase the set of base learners to 20 methods, more than 2× compared to the state-of-the-art.

We show single method performance on NASA C-MAPSS data set [49]. Some of these methods,

e.g., Wavenet are used for RUL prediction for the first time. We observe that the best performing

algorithm changes with data set. Next, our ensemble learner uses a quadratic programming

model to find the base learner optimal weights. This optimizes the accuracy of our ensemble

learner. Finally, we consider model diversity to reduce base learner set, by calculating the

Euclidean distance among base learner predictions. This step selectively reduces the base learner
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set, reducing the computation overhead of the retraining phase. We compare our proposed model

OPTDIV against optimally weighted ensemble learner OPT (without diversity) and see that

OPTDIV has 39.2% faster retraining than OPT with only 3.4% loss in accuracy. This enables

OPTDIV to adapt to changing conditions faster with high accuracy.

2.2 Related Work

The research on improving RUL prediction performance gained popularity due to ad-

vances in condition and health monitoring techniques. We can categorize the RUL prediction

approaches under three main categories: experience based, model-driven (physical) and data-

driven. Experience based models rely solely on expert knowledge and they are specific to a

machine, that is why they are really hard to generalize. Physical models incorporate the physics

of failure into RUL estimation [50]. The failure mechanism, e.g., fatigue, wear, is included in

a mathematical model, establishing a relationship between the usage of a system to a lifetime

prediction. It is difficult to create these models and they are machine specific.

Data-driven models (the ML approach) use historical data to learn a model of system

behavior [51]. ML methods play a vital role in IIoT with use cases in maintenance cost

optimization, and manufacturing process improvement [52]. Since traditional ML models require

extensive feature extraction, DL recently became more popular to provide end-to-end RUL

prediction [53]. For instance, Hyundai Motors Co., a car manufacturer, recently developed a

DL-based car fault diagnosis system that is superior to expert analysis [47]. DL also provides

better prediction performance than traditional ML methods. There are numerous DL methods

adopted for RUL prediction: recurrent neural network [54], convolutional neural network [55],

long short-term memory [56, 57], auto-encoders [58, 59], and etc. There are also hybrid models

which combine two or more models for better prediction such as CNN and LSTM [60].

Best algorithm may change across different systems (and thus data sets) [61]. An

ensemble learner combines predictions from multiple models and it performs better than the
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single methods. To fulfill the theoretical requirements of good ensembles, base learners should

be both accurate and diverse [62]. In this chapter, we incorporate these two components into our

ensemble learner by proposing an iterative framework. For RUL prediction, there are different

ensemble learning approaches. Li et al. [63] combine multiple traditional ML-based learners

by using particle swarm optimization and sequential quadratic programming to determine their

weights. Shi et al. [64] utilize ensemble learning to predict RUL of bearings. Li et al. [65] assign

an optimized, degradation-dependent weight to each learner to obtain better prediction accuracy.

All these works do not reach great prediction performance since they did not use DL methods

(i.e., they solely consider traditional ML methods). They also did not consider the diversity

aspect of the base learners. In this chapter, we utilize various DL methods and improve their

single prediction performance by proposing a diversity-induced ensemble learner framework.

2.3 Proposed Framework

DL is particularly useful for IIoT applications since it can model a complex production

environment with high prediction accuracy. However, a single DL model may not provide

accurate RUL predictions. Alternatively, distinctive models can be combined (ensemble learner)

for better prediction. Similarly, it is onerous to choose the base learners. Mistakenly selected base

learners may lead to deficient performance. To solve this problem, we create a diversity-induced

optimally weighted ensemble learner in this chapter. We present our framework in Figure 2.1.

First, we start with data pre-processing module where we normalize the data and select the most

useful features. In DL module, we create a DL library where we consider 20 state-of-the-art

models ranging from vanilla recurrent neural networks to temporal convolutional networks. In

our last module, we create our ensemble model by following two steps: accuracy and diversity. In

accuracy, we formulate an optimization problem to find the optimal weights of the base learners,

then we eliminate the models which have zero weight. In diversity, we first create a diversity

matrix to measure similarity among selected base learner predictions. Afterwards, we select the
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Figure 2.1. Proposed Framework for RUL Prediction

most diverse models and discover their optimal weights while keeping ensemble accuracy at a

certain level by introducing error tolerance level.

2.3.1 Data pre-processing Module

We normalize the input sensor data using min-max normalization. For the feature

selection, we utilize the Random Forest (RF) algorithm to discover variable importance which is

calculated based on the reduction in residual sum of squares. Based on the calculated feature

importance values, we keep the features that take positive importance values. Feature selection

is crucial to increase model prediction performance.

2.3.2 Deep Learning Module

The deep learning module outputs single prediction model RUL values using the input

sensor data. We implement 20 DL prediction methods. We employ sliding time window approach

to convert time series sensor data into a regression problem. Table 2.1 presents the selected deep

learning models. We categorize those models under three different architectures.
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Table 2.1. Selected Deep Learning Models

Architecture Category Sub-category Abbreviation Explanation

Recurrent

Recurrent Neural
Network(RNN)[66]

Vanilla RNN Simple RNN

Layer Normalized LNRNN
Normalization across the

features dimension

Long Short-Term Memory (LSTM) [67]

Gated Recurrent Unit (GRU) [68]

Vanilla
LSTM
GRU Special memory cells

Bi-directional
BLSTM
BGRU

Backward direction
(future and past data)

Parallel
PLSTM
PGRU Two parallel paths

Convolutional 1-D Convolutional
Neural Network (CNN) [55, 69, 70, 71]

Vanilla CNN
Simple 1D
convolution

Depthwise separable DSEPCNN Single input channel convolution

Wavenet WAVE
Dilated and causal convolutions,

residual and parameterized
skip connections

Temporal Convolutional
Networks TCN Dilated and causal convolutions

Hybrid

CNN-RNN [72]
Vanilla
Parallel

CRNN
PCRNN

Serially and in parallel connected
CNN and RNN layers

CNN-LSTM [60]
Vanilla
Parallel

CLSTM
PCLSTM

Serially and in parallel connected
CNN and LSTM layers

CNN-GRU [73]
Vanilla
Parallel

CGRU
PCGRU

Serially and in parallel connected
CNN and GRU layers

CNN-LSTM-GRU [74] Parallel CLG
In parallel connected

CNN, LSTM, and GRU layers

CNN-RNN-LSTM-GRU Parallel CRLG
In parallel connected

CNN, RNN,
LSTM, and GRU layers

1) Recurrent Architectures: For recurrent models, hidden state represent everything

that has been seen so far. Recently, they become popular in RUL prediction and demonstrated

good performance [56]. All models contain three recurrent layers (e.g. RNN, LSTM) having 64,

32, and 16 units. After recurrent layers, all models are connected to two fully connected feed

forward neural networks (each with 8 units) and final one-dimensional output layer.

2) Convolutional Architectures: Convolutional neural networks (CNN) use multiple

feature extraction stages that can automatically learn hidden representations. Particularly, for

RUL prediction, many CNN models have shown a great success [55]. Especially, 1-D CNN

is common for time series applications, making it a suitable model for RUL prediction. The

considered CNN network structures contain five consecutive CNN layers, Flatten (Dropout)

layer, one fully connected layer (with 100 nodes) and an output layer with one node.

3) Hybrid Architectures: Hybrid models blend two or more methods to integrate strong

aspects of different methods and to create more powerful estimator. For instance, combining CNN
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and LSTM can be useful since CNN can handle feature extraction, and LSTM can build long

term time dependencies. Based on the previously selected vanilla recurrent and convolutional

models, we construct hybrid models. We consider both in series and in parallel connection.

2.3.3 Ensemble Module

A theoretically good ensemble method should include both accurate and diverse base

learners [62]. In our ensemble module, we satisfy this condition by considering accuracy and

diversity steps consecutively. In accuracy, we find the optimal weights for our base learners by

solving an optimization problem. Then we eliminate the zero-weighted models to keep the most

important ones. In diversity, we measure similarity among remaining models based on Euclidean

distance and select the smallest model subset that is able to meet the desired threshold criteria.

The threshold level measures how much worse performance our diversified subset can tolerate

than the optimally weighted ensemble learner.

1) Accuracy: The goal of the accuracy step is to discover the most important methods

in RUL prediction. The importance is measured by the optimal weights assigned to the base

learners. To find those weights, we formulate a mathematical optimization problem where we

minimize the mean squared error (MSE). Mathematically, MSE is formulated using the variance

and bias of an estimator θ̂ :

MSE(θ̂) =Variance(θ̂)+Bias2(θ̂) (2.1)

We specifically consider MSE since minimization of MSE is equivalent to minimizing

bias and variance simultaneously, as shown in Equation 2.1. Accordingly, we formulate the

following mathematical optimization model:

minimize
1
N

N

∑
i=1

(yi−∑
M
j=1 w j ŷi j)

2 (2.2)
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subject to
M

∑
j=1

w j = 1 (2.3)

w j ≥ 0 ∀ j = 1, . . . ,M (2.4)

where N is the number of observations, M is the number of base learners, yi is the true

values for an observation i (i = 1, . . . ,N), ŷi j is the predicted values for an observation i by

the base learner j ( j = 1, . . . ,M). w j is the weight corresponding to the base learner j. The

objective function (2.2) minimizes the MSE, constraint (2.3) ensures that weights sum up to 1,

and constraints (2.4) restrict all weights to be non-negative. The constructed model has a convex

quadratic objective function. We prove this by showing that Hessian (i.e. matrix that organizes

all the second partial derivatives of a function) of our objective function is positive semidefinite

(PSD). Without loss of generality, objective function (2.2) can be reformulated using L2 norm

and matrix notation:

∥y− Ŷ w∥2
2 (2.5)

where y is an N dimensional vector storing real values, Ŷ is an N ×M prediction matrix

and w is an M dimensional weight vector. For simpler notation, let ψ be a function that maps w

to ∥y− Ŷ w∥2
2:

ψ : w 7→ ∥y− Ŷ w∥2
2 = ∥y∥2

2 −2yT Ŷ w+∥Ŷ w∥2
2 (2.6)

Note that ψ is twice differentiable. The first and second partial derivatives of ψ with

respect to w and wT are:
∂ψ

∂w
=−2yT Ŷ +2wT Ŷ T Ŷ (2.7)

∂ 2ψ

∂w∂wT = 2Ŷ T Ŷ (2.8)

We also need to show Ŷ T Ŷ is a PSD matrix. Let ξ be an M dimensional vector. We prove
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Figure 2.2. Dot Product Operation

that Ŷ T Ŷ is PSD:

ξ
T (Ŷ T Ŷ )ξ = (Ŷ ξ )T (Ŷ ξ ) = ∥Ŷ ξ∥2

2 ≥ 0 (2.9)

We proved that our objective function is convex and it is also quadratic. We also have

affine constraints. Thus, above model is a quadratic program (QP) for which there is a guarantee

that a local minimum is also the global minimum [75]. Solving this QP yields the optimal

weights w∗ for each DL model. Based on discovered w∗, we eliminate the models which have 0

weight. This means that unimportant models are eliminated from the larger set. Most importantly,

we can achieve the optimal ensemble prediction performance using the base learner predictions

and their corresponding weights. Figure 2.2 demonstrates our approach to combine the base

learner predictions with their optimal weights. Here, we perform a dot product operation which

takes single algorithm RUL predictions and optimal weights, and outputs RUL predictions.

To exemplify, consider the first row of the ensemble learner RUL predictions (blue table) in

Figure 2.2. In order to obtain the RUL prediction value as 44 (corresponding to the first

aircraft engine), we multiply the first column of base learner RUL predictions (orange table)

with the base learner optimal weights (green table) and round to the nearest integer. That is,

(44×0.374)+(43×0.214)+(42×0.198)+(50×0.096)+(49×0.091)+(45×0.027)≈ 44.

This optimization procedure considers solely accuracy of the base learners. We call this ensemble
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learner OPT for the rest of this paper and we denote the number of models in OPT as τ . We

shrink the number of models by including diversity in our ensemble learner.

2) Diversity: There is a trade-off between accuracy and diversity in ensemble learners.

Adding diversity leads to worse prediction performance and vice versa. Our main goal of adding

diversity is to obtain the smallest subset of DL models while preserving the accuracy at a certain

level. We call this diversity-aware optimally weighted ensemble learner OPTDIV. The main

motivation behind adding diversity is the reduced retraining overhead. This overhead becomes

crucial when new data arrives. In that case, there is a need to retrain the selected models. Since

OPTDIV has smaller number of models, it would be faster to retrain than OPT approach.

To measure diversity, there is no generally accepted metric to be used [62]. In a regression

problem, covariance between individual estimators’ outputs can be used for instance. We

choose to utilize Minkowski distance to measure the similarity among methods’ predictions

of OPT. Minkowski distance measures the similarity between two points in the normed vector

space. Consider an N dimensional vector space and two points: X = (x1,x2, ...,xN) and Y =

(y1,y2, ...,yN). Minkowski distance D(X ,Y ) of order p is formulated as:

D(X ,Y ) =

(
N

∑
i=1

|xi − yi|p
)1/p

(2.10)

When p = 2, Euclidean distance is obtained:

√
N

∑
i=1

(xi − yi)2 (2.11)

Here, any p value can be used without loss of generality. We calculate the Euclidean

distance among all possible pair of models and create a distance matrix Ξτ×τ . This matrix

demonstrates diversity among selected model predictions. For instance, Ξ(TCN,GRU) denotes the

distance between prediction vectors of temporal convolutional network and vanilla GRU. If the

distance is bigger, we expect those two models to be more diverse (since their predictions are
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less similar).

First, we create the smallest subset of models by selecting the two most diverse models

(OPTDIV). This is achieved by finding the maximum value in Ξ and its corresponding models.

Afterwards, we solve previously formulated QP to calculate the optimal weights for those

base learners and measure prediction performance. At this point, we check whether OPTDIV

prediction performance is within desired threshold. We determine the threshold based on error

tolerance level (δ ) which is a parameter in [0,1]. Based on selected δ , we determine allowable

performance difference between OPT and OPTDIV. To put more concretely, assume that in OPT,

we found optimal ensemble RMSE to be 20. If we select error tolerance level δ to be 1%, then

our proposed approach iterates until we reach an RMSE of 20.2 or less. At each iteration, we

expand OPTDIV by selecting the next most diverse model (i.e. select the model that has the

second highest element in Ξ and so on). Overall, our approach starts by selecting the two most

diverse models, and increases the number of models until it meets the desired threshold level.

Let υ denote the number of models in OPTDIV. Observe that for any δ , we have υ ≤ τ .

Without loss of generality, we can assume that this inequality is strict. This assumption reveals

the trade-off between computational overhead and accuracy. Since OPTDIV has smaller number

of models, when the new data comes, retraining will be less costly than OPT. However, its

accuracy would be worse (but not worse than δ ). If we need much faster training and sub-optimal

accuracy, OPTDIV would be a better choice.

2.4 Experimental Analysis

2.4.1 Experimental Setup

Dataset Description: NASA C-MAPSS (Commercial Modular Aero-Propulsion System

Simulation) is a commonly used data set for RUL prediction. The simplified engine diagram in

Figure 2.3 demonstrates the major components, e.g., fan, combustor of an aircraft engine [49].

Input data is created by different sensors, e.g., temperature, pressure placed on these components.
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Figure 2.3. Aircraft Engine Diagram

Table 2.2. C-MAPSS Data Set Summary

Data Set FD001 FD002 FD003 FD004
Train trajectories 100 260 100 249
Test trajectories 100 259 100 248

Max/Min cycles for train 362/128 378/128 525/145 543/128
Max/Min cycles for test 303/31 367/21 475/38 486/19
Operating conditions 1 6 1 6

Fault conditions 1 1 2 2

NASA C-MAPSS has four sets of data: FD001∼FD004. Each data set has different complexity

levels, e.g., operating conditions, fault conditions as shown in Table 2.2. While FD001 is the

simplest data set, FD004 is the most complex since it has the highest number of operating and

fault conditions. Each data set has separate training and testing sets. The training data contains

the entire lifetime of an engine, yet test data is terminated at some point before engine failure.

Each row corresponds to a single operating time cycle with 26 columns: the engine ID, cycle

index, three operational settings, and 21 sensor measurements. At the beginning, the engine is

operating normally and develops a fault at some point in the future. The real RUL values are

provided for the test data, and the goal is to estimate the RUL before a failure occurs.

RUL Target Function: The easiest and the most common approach to model RUL

is linear where its value decreases with time. Nonetheless, it is hard to observe an apparent

degradation behavior of an engine in the beginning of its lifetime. In general, an engine degrades

more as it approaches its end of life. For the C-MAPSS data set, it is shown that piece-wise linear

degradation model is more appropriate than linear model [76]. Thus, we adopt a piece-wise

linear RUL target function where we set the maximum RUL limit constant (the break point) to
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Figure 2.4. Random Forest Feature Importance

125-time cycles as in [77].

Performance Evaluation Metric: Prediction error (ε) is the difference between the

estimated RUL (RULest) and the true RUL (RULtrue), i.e., ε = RULest −RULtrue. We use Root

Mean Square Error (RMSE) for evaluation:

RMSE =

√
1
N

N

∑
i=1

ε2
i (2.12)

2.4.2 Data pre-processing

We select the most important features in predicting RUL for (1) better prediction per-

formance, (2) decreased computational complexity, and (3) preventing overfitting. We perform

feature selection for FD001 and FD003 because these two demonstrate explicit health degrada-

tion behaviors. We employ the Random Forest (RF) algorithm to evaluate the feature importance.

Figure 2.4 illustrates nonzero feature importance values for the FD001 and FD003 training

data sets. While x-axis has feature importance values in [0,1], y-axis shows different features.
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Figure 2.5. Deep Learning Models Prediction Performance

We observe that the most informative feature comes from sensor 11 for both data sets. It is

important to note that this process is fully automatized, meaning that we do not need to visually

inspect incoming data. When the new data comes, RF will update itself to calculate new feature

importance values. Based on that, the most useful features will be updated and join the ensemble

learning process.

2.4.3 Deep Learning Models Performance

All experiments are run on a PC with 16 GB RAM and an 8-core 2.3 GHz Intel Core

i9 processor. We run all models with the same parameter configuration: Adam optimizer with

learning rate 0.001, elu activation function, He initialization, batch size of 512, and a max

number of epochs of 250 where callback is activated (patience is set to 10 for validation data).

We replicate each experiment 10 times and report average values. We adopt a sliding time
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Figure 2.6. Base Learner Optimal Weights

window approach for better prediction performance. Here, we select the time window based on

the minimum number of cycles for the test data since only sequences that meet the window-length

can be considered. To use the entire test data, the window size is selected as 30, 20, 35, and 15

respectively from FD001 to FD004. Figure 2.5 depicts the best performing ten models across the

data sets. At each sub-figure, horizontal axis represents RMSE value, and vertical axis provides

specific DL model. The smaller the RMSE value, the better the model is. One key observation

is that the best performing algorithm varies depending on data set. Specifically, CLG, WAVE,

PCLSTM, and PCGRU are the best algorithms with RMSE values 12.42, 17.24, 12.52, and

19.62 respectively. We can also observe that hybrid and convolutional models perform better

than recurrent ones.
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2.4.4 Ensemble Learner Performance

Accuracy: To discover the most important models, we formulate and solve the previously

formulated quadratic optimization problem in YALMIP [78] using the solver MOSEK [79]. As

an output, we obtain the optimal weights w∗ corresponding to each base learner. In Figure 2.6,

we show the models that take non-zero weights. In each sub-figure, on the x-axis, we have

optimal weights w∗ while on the y-axis we have the corresponding DL models. CRNN, WAVE,

PCLSTM, and PCGRU takes the greatest weights with 0.27, 0.39, 0.37, and 0.49 respectively.

The number of models that have positive weights is different at FD002 where we have 7 models

(τ = 7) as opposed to 6 (τ = 6) as in the remaining data sets. We also examine the relationship

between base learner RMSEs and their optimal weights. Intuitively, we expect the base learner

with the smallest RMSE to take the largest weight. However, this cannot be observed at FD001.

Besides, even though some methods do not perform really well by themselves, they can still take

a positive weight, e.g., PCRNN at FD004. In terms of optimal weights, we again cannot see one

algorithm to be the best across all data sets, i.e., no dominant algorithm). When we multiply

w∗ with the corresponding learner predictions, we obtain OPT predictions. RMSE values of

OPT are 11.95, 16.08, 12.04, and 19.17 respectively. Compared to the best single estimators,

OPT brings 3.7%, 6.7%, 3.9%, and 2.3% accuracy improvement. Note that OPT has the most

accurate predictions since we solve an optimization problem. Adding diversity degrades the

estimation accuracy (trade-off between accuracy and diversity), yet it decreases the number of

models which leads to lower computational overhead.

Comparison with State-of-the-Art Ensemble Methods: To verify the performance of

our ensemble approach (OPT), we compare it with the state-of-the-art ensemble methods where

we select Bagging, Gradient Boosting, AdaBoost, and Stacking [80]. We select these methods

since these are the most well-known and successful ensemble approaches. As an input, 20 single

method predictions are provided to these ensemble methods. We implement these methods using

the scikit-learn library [81]. For the optimal hyper-parameter selection, we utilize GridSearch,
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Figure 2.7. State-of-the-art Ensemble Comparison

which builds model on each possible parameter combination and finds the best hyper-parameter

configuration [82]. Accordingly, we use the following hyper-parameters: AdaBoost 7→ number

of estimators: 30, learning rate: 1, loss: linear; Gradient Boosting 7→ number of estimators: 90,

learning rate: 0.1, loss: least squares; Bagging 7→ number of estimators: 20, max samples: 2,

max features: 1; Stacking 7→ averaging the predictions of all base learners. We make a prediction

performance comparison based on test data error. Figure 2.7 shows this comparative analysis

where our method OPT (represented with green color) outperforms selected ensemble methods

in all data sets. Specifically, OPT improves the prediction performance of the best ensemble

method by up to 7.3% and 4.6% on average.

Diversity: We create the diversity matrix Ξτ×τ based on Euclidean distance between

OPT model predictions. For demonstration purposes, we share a sub-matrix of Ξ3×3:
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Ξ3×3 =

CRNN CRLG CNN


0 7 3 CRNN

7 0 1 CRLG

3 1 0 CNN

(2.13)

where we have a symmetric matrix with zero diagonal. Here, each cell represents a

normalized diversity score. For instance, the most two diverse models are CRNN, and CRLG

since the distance between those two points is the maximum. We start with the 2 most diverse

models and expand this set until we reach desired error tolerance level δ . To provide better

understanding, we consider all the models in OPT and create OPTDIV until υ = τ − 1. To

exemplify, for FD001, we have τ = 6, so we consider the most diverse models until υ = 5. For

each υ value, we calculate its RMSE and its performance degradation compared to OPT. Figure

2.8 demonstrates OPTDIV performance under varying υ values.

At each sub-figure, on the x-axis, we have υ values. On the y-axis we depict two

different measurements: on the left we have RMSE values and on the right we have performance

degradation measurements. Performance degradation is calculated by measuring how much

accuracy difference there are between OPTDIV and OPT. For example, when we only use the

two most diverse models in FD001, OPTDIV is 3.1% less accurate than OPT. Naturally, the

more models we add, the more accurate OPTDIV becomes. However, in some cases, increasing

υ does not bring significant advantage, e.g. in FD003, going from υ = 4 to υ = 5 increases

accuracy only by 0.05%. Hence, we bring the idea of error tolerance level δ to select the smallest

model subset for OPTDIV while not losing a significant accuracy. For example, given δ = 0.01,

OPTDIV has 4 models (υ = 4) at all data sets except FD004. If we select a bigger δ , then we end

up with smaller υ values and vice versa. Figure 2.9 demonstrates this relationship. This figure

shows selected υ values based on varying δ ∈ [0.04, 0.02, 0.01]. In general, we can observe

that as δ value gets larger, υ values become smaller. It means that OPTDIV has to select more
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Figure 2.8. OPTDIV Performance for Different υ

models to obtain desired accuracy level. As we observed previously, adding more models may

not bring a significant advantage in some cases.

2.4.5 Analysis on Retraining

This section analyzes the retraining performance and overhead of OPT, OPTDIV, and

single ML methods when there is new data and retraining is required. For OPT and OPTDIV,

we retrain only τ and υ number of models respectively. For single ML method, we have two

approaches: BEST and REBEST. Both methods use a single ML method but the former uses the

previously-identified best method, whereas REBEST retrains all methods to find whether the best

method has changed with new incoming data. BEST eliminates the high retraining overhead,

but has the risk to perform worse with new data. REBEST can update the best single model

but with a much greater computation cost. We compare OPT, OPTDIV, BEST, and REBEST

in terms of retraining time and prediction accuracy. To make that comparison, we use trained
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Figure 2.9. Effect of δ on υ

models of FD001, and treat FD003 as newly arrived data. We retrain the selected methods

(pre-trained on FD001) based on FD003 train data, and test performance using FD003 test data.

This represents that newly coming data can be different from the old data, i.e. FD003 has 2×

more fault conditions than FD001. Figure 2.10 and Figure 2.11 show the RMSE and retraining

time (normalized against BEST) results for this analysis respectively. We consider three OPTDIV

configurations with varying δ values.

Accuracy comparison: When we compare OPT and OPTDIV with δ = 0.01, we

observe that they perform equally. However, this was not the case on FD001 training where we

observed 0.84% accuracy difference (see Figure 2.8). This means that performance difference

has disappeared when we retrain these two approaches. Similarly, there is a 0.1% difference

between OPTDIV (δ = 0.02) and OPT which was previously 1.54%. This proves that adding

diversity leads to better generalization, which is helpful when the data change. We should also

note that OPTDIV with any δ value outperforms BEST and REBEST approaches significantly.

Overhead comparison: Between OPT and OPTDIV, retraining overhead difference

becomes apparent when we compare OPTDIV (δ = 0.04), and OPT approaches. As OPTDIV’s
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Figure 2.10. RMSE Comparison

Figure 2.11. Normalized Retraining Time

error tolerance increases, it becomes much faster than OPT. OPTDIV (δ = 0.04) is 39.2% faster

with only a 3.4% loss in accuracy. We also discover that OPTDIV is 92% faster than REBEST.

Compared to BEST, OPTDIV brings 5.7% performance improvement while only needing 8.5%

slower retraining. In summary, OPTDIV can adapt to changing data much faster, with small loss

in accuracy.

32



2.5 Conclusion

PdM requires accurate RUL prediction to obtain the best performance from production

systems. DL-based RUL prediction methods become prevalent due to their high accuracy and

easy implementation. However, choosing one algorithm may not provide accurate predictions

across different settings and data sets. Hence, we propose diversity included accurate ensemble

learner. We discover the smallest subset of learners out of 20 different DL methods while keeping

accuracy at a certain level. We include accuracy by finding optimal weights of the base learners.

We then measure the similarity among base learner predictions and select the most diversified

set of models. We show that our approach can have 39.2% faster retraining compared to an

accuracy-based ensemble learner with only 3.4% loss in accuracy.

In this chapter, we assumed that our data is fully labeled. However, in IIoT systems,

labeling might be expensive due to continuously changing operating conditions. In the next

chapter, we will address this challenge and propose a novel ensemble learning solution that can

work under limited supervision.
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Chapter 3

Ensemble Few-Shot Learning under
Limited Labeled Data

3.1 Introduction

Fault diagnosis helps establishing more efficient predictive maintenance systems by

finding and classifying different fault types [83]. Due to advancements in machine learning,

numerous intelligent fault diagnosis methods have been developed [84, 85, 86]. These methods

require huge amounts of labeled training data to work well. However, it might not be feasible to

obtain sufficient training samples for multiple fault types under all working conditions due to:

(1) slowly occurring failure processes, (2) frequently changing working conditions, and (3) that

some critical industrial systems are not allowed to run into faulty states [87]. Thus, intelligent

fault diagnosis methods should work with limited data and changing operating conditions.

This chapter proposes an ensemble few-shot learning framework (ENFES) for intelligent

fault diagnosis. In contrast to the state-of-the-art, we use multiple few-shot learning (FSL) meth-

ods and combine them via our majority voting framework to improve the prediction performance.

We focus on Siamese neural network owing to its high accuracy in fault diagnosis [87]. Given

pairs of input data, we first train five different convolutional neural network-based Siamese neural

networks. We combine the individual predictions using our iterative majority voting ensemble

learner where the fault type voted the most by the classifiers is assigned as the final output. In

case of a tie, the least accurate two models are eliminated based on validation set accuracy until
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a single method remains. We evaluate our approach using Case Western Reserve University

(CWRU) Bearing Datasets [88], a widely used benchmark for fault diagnosis. Since the working

conditions can change frequently, we consider different transfer learning (TL) scenarios, where

we train the model in one setting and test it in another. Here, the goal is to train and test model

under different working conditions. We directly transfer the learned model (in training phase) for

testing purposes. We observe that the best algorithm changes based on the underlying transfer

learning scenario indicating that one algorithm would not work the best in all cases. ENFES can

bring a significant performance improvement over the best algorithm with very limited training

data, up to 16.4% and 10.7% improvement over the best method with only 60 and 90 samples

(out of 19,800 samples), respectively.

3.2 Related Work

Few-shot learning (FSL) performs well with limited labeled data [89, 90, 91]. FSL-based

fault diagnosis learns classifiers given only a few labeled examples of each fault type where

the goal is to find similarity among input pairs. There are a variety of FSL approaches such as

Siamese neural networks [92], matching networks [93], model-agnostic meta learning [94], and

memory augmented neural network [95], and FSL-based fault diagnosis works [87, 96, 97, 98,

99]. These studies focus on using a single method for fault diagnosis. Previous studies found

that the best performing algorithm for a problem changes with respect to the dataset [48, 100].

Thus, we need a systematic methodology to combine different methods. To achieve this, we

utilize ensemble learning which is previously used for intelligent fault diagnosis [101, 102]. We

also utilize transfer learning to adapt to changing working conditions. Transfer learning is the

improvement of learning in a new task through the transfer of knowledge from a related task that

has already been learned. Transfer learning can enable transferring an already-learned model in

an existing operating condition to a new condition that was not observed before [103].
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Figure 3.1. Our Proposed Framework

3.3 Proposed Framework

Figure 3.1 presents our proposed framework. Given pairs of input sensor data, we first

train various Siamese neural networks. We collect the predictions of individual methods and

then combine them using our majority voting classifier approach where the most voted fault type

by the classifiers becomes the ENFES prediction. In case of a tie, the least accurate two models

are eliminated from the models based on validation set performance. We explain two aspects of

our framework in detail: Siamese neural networks, and majority voting classifier.

3.3.1 Siamese Neural Network

Although there are multiple sensors collecting data, it may not be feasible to label every

failure point. Few-shot learning (FSL) aims to solve this problem by using limited labeled data.

The goal of training an FSL model is to discover similarity between inputs coming from different

fault types. To train an FSL model, a support set is given containing a small set of labeled fault
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Figure 3.2. Siamese Neural Network (SNN) Structure

types. Given pairs of time series sensor data, training phase outputs the probability P that two

input samples are the same. For testing, there are two different approaches: one-shot k-way

testing and n-shot k-way testing. In one-shot k-way testing the support set Ψ contains k samples

x1, . . . ,xk with distinct labels y1, . . . ,yk: Ψ = {(x1,y1), ...,(xk,yk)}. Given the test sample x̃, the

goal is to output the class c̃ that maximizes the similarity probability:

c̃ = argmax
c

(P(x̃,xc)), xc ∈ Ψ (3.1)

In n-shot k-way testing, support set has n samples from k classes Ψ1, . . . ,Ψn. Given test sample

x̃, we obtain class c̃ that maximizes the similarity probability over n samples:

c̃ = argmax
c

(
n

∑
j=1

P(x̃,xc j)), xc j ∈ Ψ j (3.2)

We focus on Siamese Neural Network (SNN) due to its high accuracy in fault diag-

nosis [87]. We illustrate an example of SNN structure in Figure 3.2. SNNs contain two or

more identical sub-networks (same network architecture and shared weights). Outputs of these

networks are mapped to a high-dimensional feature vector to calculate the distance between the

inputs. By connecting feature vector to a distance function and a fully connected neural network,
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Table 3.1. Single Method Fault Type Predictions

Bearing ID CNN CNNRNN CNNGRU CNNLSTM CNNBLSTM

1
Ball

(0.014 in)
Ball

(0.007 in)
Ball

(0.014 in)
Ball

(0.014 in)
Ball

(0.021 in)

2
Outer Race
(0.021 in)

Outer Race
(0.014 in)

Outer Race
(0.021 in)

Outer Race
(0.014 in)

Outer Race
(0.021 in)

... ... ... ... ... ...

250
Inner Race
(0.007 in)

Inner Race
(0.014 in)

Inner Race
(0.007 in)

Inner Race
(0.021 in)

Inner Race
(0.007 in)

we find the similarity probability between input pairs. Higher similarity probability indicates

that two inputs are likely in the same category.

There are many alternatives for the sub-network selection, such as wide deep convolu-

tional neural network (WDCNN) [104] and long short-term memory (LSTM) [105]. However,

a single prediction method may not perform the best across different systems [61]. Ensemble

learning solves this issue where predictions from multiple models are strategically combined.

We create a CNN-based ensemble learning framework by considering five different architectures:

convolutional neural network (CNN), CNN recurrent neural network (CNNRNN), CNN gated

recurrent unit (CNNGRU), CNN long short-term memory (CNNLSTM), and CNN bi-directional

long short-term memory (CNNBLSTM). We use the same CNN architecture across all methods

as in [104, 87]. For the hybrid models (where two models are combined, e.g., CNNRNN), we

connect CNN with the selected network structure consecutively, e.g., for CNNRNN, we connect

CNN with 2 RNN layers with 32 and 16 nodes. We replace RNN layers with GRU, LSTM,

and BLSTM for the CNNGRU, CNNLSTM, and CNNBLSTM respectively. These SNNs provide

single model fault type predictions for our test data, shown in Table 3.1, where each model

outputs its fault prediction for a given bearing. Then, we combine these predictions using our

majority voting classifier. Notably, fault type predictions change with respect to the algorithm.
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Figure 3.3. Majority Voting Classifier

3.3.2 Majority Voting Classifier

Majority voting classifier (MVC) is an ensemble learner that combines the class predic-

tions of different methods. Assume that we have n different classifiers ξ1,ξ2 . . .ξn that map input

data X to class c1,c2 . . .cn. MVC Ξ finds the class c̄ that maximizes the weighted sum of correct

class predictions [106]:

Ξ(X) = c̄ = argmax
c

n

∑
j=1

ω jI(ξ j(X) = c) (3.3)

where ω1,ω2 . . .ωn are the classifier weights summing up to 1. I is the indicator function which

is 1 if the classifier prediction j is class c, and 0 otherwise. If we set all weights equal to each

other (i.e. ω j =
1
n), this formulation becomes a mode function which outputs the class most

voted by the classifiers. The main problem occurs when there is a tie among n classifiers. To

illustrate, say we have three classifiers ξ1,ξ2,ξ3, with their fault type predictions c1,c2,c3 which

are all distinct from each other. In this case, there is a tie among three methods. To break a

tie, we propose a method that iteratively eliminates the least accurate n−1 methods based on

the validation set accuracy. We continue classifier elimination until there is one method left to

guarantee tie-breaking. We specifically start with an odd number of methods (five) to reduce
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possible tie scenarios among classifiers. Figure 3.3 presents majority voting classifier example.

Given a test input sample, SNNs first predict the failure type, e.g., Ball (0.014 in). The majority

voting classifier then selects the prediction that is mostly voted by the SNNs and mark this as the

final prediction.

3.4 Experimental Analysis

3.4.1 Dataset Description

We use Case Western Reserve University (CWRU) Bearing Datasets [88], a widely

used benchmark for fault diagnosis This data was collected at 12k samples/second and at 48k

samples/second for drive end bearing experiments. We use the former data set that contains

19,800 training and 750 test samples. Bearing used in this experiment has three components:

rolling element, inner race, and outer race. 9 different fault types are provided in the dataset

based on the fault diameter (0.007, 0.014, and 0.021 inches) and the component (plus the normal

bearing condition). Besides, three datasets (A, B, and C) are given representing different working

conditions (based on motor speeds). We use transfer learning (TL) to transfer models across

possible working conditions. For instance, transfer from dataset A to B trains model using

dataset A, and tests this model on dataset B.

3.4.2 Experimental Setup

We use the same setup as in [87] because it led to great fault diagnosis performance:

sliding window of size 2048 points sliding with 80 points shift step, L1 distance to calculate

distance between feature vectors, regularized cross-entropy loss function, Adam optimizer,

batch size of 32, 15000 as number of epochs, and five-shot learning scenario. We repeat each

experiment 10 times and report average values. All experiments are run on a PC with 16 GB

RAM and an 8-core 2.3 GHz Intel Core i9 processor.
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Figure 3.4. Transfer Learning Methods Comparison

3.4.3 Results

We analyze the performance of our method under a transfer learning (TL) setting to

represent changing working conditions. In any production system, working condition of an

equipment can alter frequently, that is why it is crucial for data-driven methods to generalize

to unseen working conditions. We have three different datasets corresponding to three working

conditions: A, B, and C. We experiment with pairwise transfer learning scenarios: transfer

model from A to B, A to C, B to A, B to C, C to A, and C to B. Since our focus is on fault

type prediction using limited amount of data, we only use 60, 90, 120, and 150 samples from

the training data (out of 19,800 samples) while using the entire test data. Figure 3.4 presents

the model performance comparison for different number of training samples and TL scenarios.

In each sub-figure, the x-axis represents the transfer learning scenario (e.g., A 7→ B denotes
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Table 3.2. Our Method’s Improvement over the Best Algorithm (%)

Number of Training Samples
TL Scenario 60 90 120 150

A->B 3.86 3.65 3.41 3
A->C 16.4 8.64 1.28 0.93
B->A 9.24 1.38 0.5 -0.99
B->C 0.51 1.67 -0.45 1.08
C->A 7.59 5.06 -2.59 1.05
C->B 11.38 10.65 8 3.33

Average 8.17 5.18 1.69 1.4

transfer from dataset A to B), and y-axis is the accuracy of the methods. Each color denotes a

different method where our method (ENFES) is shown with light blue color. The performance of

a single method changes with respect to the TL scenario. For example, using 60 training samples,

CNNBLSTM is the best method for A 7→ B while CNNRNN being best for the opposite transfer

configuration (i.e. B 7→ A) when single SNNs are compared. ENFES utilizes all 5 methods

to improve the prediction performance. Under 60 and 90 samples, ENFES outperforms other

methods consistently. Table 3.2 presents our proposed approach improvement over the best

method for all TL scenarios. At 60 and 90 training samples, ENFES improves the best method

by up to 16.4% and 10.7% respectively (8.2% and 5.2% average). As we have more training

samples, the improvement over the best algorithm decreases, yet we still obtain improvement up

to 8% and 3.3% under 120 and 150 training samples (1.7% and 1.4% average).

The reasoning behind decreasing ENFES improvement with increasing data is due to the

performance of the best algorithm. For instance, at 60 samples C 7→B scenario, the best algorithm

CNNLSTM provides 70% accuracy. As we reach 150 samples, the best algorithm CNNGRU can

reach 85% accuracy. In this case, the room for improvement is limited by this method’s accuracy.

Hence, improvement for ENFES decreases from 11.4% to 3.3%. The performance of a single

algorithm changes with respect to TL scenario, e.g., CNNGRU is the worst algorithm at C 7→ A
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scenario under 150 samples. Our method provides consistent accurate predictions at all instances

(it is either the best or the second best approach). ENFES provides an average improvement over

the best method if we use less than 1% of the entire training data. This result aligns with our

claim where ENFES has highly efficient prediction under limited labeled data.

3.5 Conclusion

Fault diagnosis determines which fault occurred in a production system [83]. By using

historical sensor data and ML models, intelligent fault diagnosis methods can be created. Never-

theless, these methods require huge amount of labeled data to perform well. Few-shot learning

(FSL) eliminates this restriction by discovering similarity among input pairs. However, selection

of a single FSL method may not provide an optimal prediction performance. Different methods

can be combined by using an ensemble learner. In this chapter, we proposed ensemble few-shot

learning approach for fault diagnosis. We consider five different Siamese neural networks and

combine their fault type predictions via our majority voting classifier. We show that our approach

can improve the classifier accuracy significantly under different transfer learning scenarios.

In this chapter, we addressed the limited supervision challenge in IIoT systems. So far,

we assumed that machine learning models do not receive any perturbed data, i.e., no adversarial

attack. In the following chapter, we will design a novel ensemble learning solution that can stay

resilient against different adversarial attacks.
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Chapter 4

Resilient Stacking Ensemble Learner
Against Adversarial Attacks

4.1 Introduction

Recently, data-driven RUL prediction methods became popular since IIoT-based instru-

mentation has led to an abundance of system monitoring data. However, the performance of

ML methods relies heavily on input data quality. Thus, these methods are quite vulnerable to

adversarial attacks where an attacker can alter input data to impact ML prediction performance

significantly. Since ML is a core element for data-driven RUL prediction, these attacks may

have serious consequences such as wrong maintenance decisions causing undetected failures in a

system [6]. We need novel ML solutions that can stay resilient against adversarial attacks.

The performance of an ML-based application also depends on the specific ML algorithm

used. Selecting a single ML method is a difficult process since its performance may change

drastically based on the underlying dataset [61]. For adversarial attacks, it is easier to decode

ML model parameters for a single method, reducing the system resiliency against attacks [107].

Alternatively, ensemble learning combines multiple individual algorithms and it usually improves

base learner prediction performance [64, 100]. Against adversarial attacks, many ensemble

learning studies are proposed that are more resilient than a single method [108, 109, 110]. To

the best of our knowledge, ensemble learning has not been used previously to show its superior

resiliency in a realistic data-driven IIoT setting.
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Figure 4.1. IIoT Adversarial Attack Workflow

In this chapter, we propose a stacking ensemble learning framework which can stay

resilient against different adversarial attacks. We first train ten different deep learning (DL)

methods from three different architectures: recurrent, convolutional, and hybrid. Our ensemble

learner then combines the most resilient DL method predictions based on our iterative selection

procedure. Using NASA C-MAPSS [49], and UNIBO Powertools [111] dataset, we demonstrate

that adversarial attacks can impact the performance of DL-method considerably, leading up

to 120× prediction performance loss which can lead to premature replacements or completely

missed maintenance decisions. We use this performance loss to quantify method resiliency,

where more resilient methods would lead to smaller performance loss. Our experiments show

that proposed stacking ensemble approach improves resiliency against adversarial attacks by up

to 60% (48% on average) compared to the most resilient single method.

4.2 Related Work

4.2.1 IIoT Adversarial Attack Workflow

To understand how adversarial attacks can take place in IIoT environments, we present

the IIoT adversarial attack workflow in Figure 4.1. The workflow consists of 4 main components:

(i) System input is the data collected from sensors in a factory environment. (ii) Adversarial

attack begins with the attacker exploring any vulnerability to compromise one common system
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Figure 4.2. Multivariate time-series data

input data as victim. The attacker then induces a model to craft perturbations. After tampering

with the data inputted into the system back-end, the attacker can add malicious perturbations into

the input data and complete the attack. (iii) Defense refers to protection and mitigation strategies

against attacks. It plays a key role in minimizing the impact of adversarial attacks. (iv) System

back-end applies different ML methods to process the collected input sensor data to generate the

desired information to control the actuators.

4.2.2 Adversarial Attack Formulation for RUL prediction

The multivariate time-series input data with its corresponding RUL values is illustrated

in Figure 4.2. In this figure, we have S sensor data from N consecutive time stamps where each

cell represents individual sensor readings. We make the following mathematical definitions:

1. τi ∈ RS : [Reading1,i,Reading2,i, . . . ,ReadingS,i] is the vector containing all sensor read-

ings for the time stamp i, ∀i = 1, . . . ,N.

2. T ∈ RS×N : [τ1,τ2, . . . ,τN ] represents the multivariate time-series data.

3. D ∈ R(S+1)×N : [(τ1,RUL1),(τ2,RUL2), ...,(τN ,RULN)] denotes the supervised training

data.

4. f (.) ∈ F : RS×N 7→ RN is DL model which maps all sensor readings to the remaining

useful life prediction values ˆRUL.
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5. L f (., .) denotes the loss function of the model f .

6. T̈ = T +δT is the crafted adversarial example. T̈ is obtained by adding a perturbation δT

with the sample T such that ¨RUL ̸= ˆRUL and ∥T̈ −T∥ ≤ ε where ε ≥ 0 ∈R is a maximum

perturbation magnitude, ∥.∥ is any norm w.l.o.g (e.g., L∞), f (T ) = ˆRUL, and f (T̈ ) = ¨RUL.

7. Given a trained DL model f and original data T , adversarial example T̈ is found as a

solution to the following box-constrained optimization problem:

T̈ = T + argmin
δT

{∥δT∥ : f (T +δT ) ̸= f (T )} (4.1)

This problem yields the minimum perturbation amount δT while ensuring that RUL

prediction is altered. Most DL models make this formulation (Equation 4.1) non-linear

and non-convex, making it hard to find a closed-form solution [18]. Hence, we implement

different techniques to find an approximate solution to this optimization problem.

Fast Gradient Sign Method (FGSM)

FGSM was suggested as an efficient attack method to fool the GoogLeNet model [112].

This method initially calculates the gradient of the cost function with respect to the input of the

neural network. Adversarial examples are created based on a gradient direction:

T̈ = T + ε ∗ sign(∇τL f (T, ˆRUL)) (4.2)

where ε denotes the amount of the perturbation.

Basic Iterative Method (BIM)

BIM is an extension of FGSM where FGSM is applied multiple times with really small

step size [113]. At each iteration of the algorithm, BIM perturbs the original data in the direction
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of the gradient multiplied by the step size α:

T̈ = T +α ∗ sign(∇τL f (T̈ , ˆRUL)) (4.3)

where α is calculated by dividing the amount of perturbation by the number of iterations:

α = ε/I. Then, BIM clips the obtained time series elements to make sure that they are in the

ε-neighborhood of the original time series:

T̈ = min{T + ε,max{T − ε, T̈}} (4.4)

Momentum Iterative Mehod (MIM)

MIM integrates momentum into the BIM to stabilize the update directions and to escape

from poor local maxima [114]. At each iteration i, the variable gi gathers the gradients with a

decay factor µ:

gi+1 = µ ∗gi +
∇τL f (T̈i, ˆRUL)

∥∇τL f (T̈i, ˆRUL)∥1
(4.5)

where the gradient is normalized by the L1 distance. Then, the perturbed data is generated in the

direction of the sign of gi+1 with a step size α:

T̈i+1 = T̈i +α ∗ sign(gi+1) (4.6)

In MIM, the algorithm also ensures that the crafted adversarial examples T̈ satisfy the L∞ norm

bound constraint:

∥T̈ −T∥∞ ≤ ε

Robust Optimization Method (ROM)

The general goal in a supervised learning problem is to find model parameters θ that

minimize the empirical risk
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E(T,RUL)∼Ξ[L(T,RUL,θ)] where Ξ is the underlying supervised data distribution. However,

this formulation cannot handle data adversary properly. To solve that problem, set of allowed

perturbations ∆ is introduced initially.

Then, we modify the empirical risk formulation by feeding samples from the distribution

Ξ directly into the loss L which leads to the following min-max optimization formulation [115]:

min
θ

ζ (θ), where ζ (θ) = E(T,RUL)∼Ξ[max
δ∈∆

L(T +δ ,RUL,θ)]. (4.7)

Here, while inner maximization finds an adversarial version of a given data point T that achieves

a high loss, outer minimization discovers model parameters to minimize the adversarial loss

given by the inner attack problem. ROM replaces every instance with its FGSM-perturbed

counterpart to solve this problem.

While all these four methods use the gradient information of the loss function, they

modify the test data by adding different amounts of perturbation representing separate attack

scenarios. An attacker, who is able to access the trained DL methods, can implement these

methods and harm the prediction performance without being detected.

4.2.3 Adversarial Attacks in Predictive Maintenance

Adversarial attacks targeting predictive maintenance (PdM) applications can bring serious

outcomes such as delayed maintenance/replacement of a machine [6]. There are few studies

that analyze the impact of adversarial attacks on data-driven PdM. Mode et al. [107] focus on

false data injection attack (FDIA) on PdM systems which alters the collected sensor data by a

very small margin. They demonstrate the impact of different FDIA techniques on various DL

methods e.g., gated recurrent unit (GRU), and convolutional neural network (CNN). Their results

show that CNN is extremely sensitive to attacks while GRUs is the most resilient method. Their

further work [6] analyze the effect of adversarial attacks against ML methods. Specifically, they

utilize fast gradient sign method (FGSM) and basic iterative method (BIM) to create adversarial
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examples and compare DL model performances under those attacks. They show that these attacks

can cause up to 5× worse prediction performance. These two similar works consider limited

number of DL methods and attack scenarios. Besides, their experimental analysis includes the

simplest and most predictable data set from C-MAPSS. They also did not propose a novel ML

solution to increase system resiliency against adversarial attacks.

4.2.4 Ensemble Methods

In PdM domain, there are multiple ensemble learning approaches towards more accurate

predictions. Li et al. [63] combine multiple traditional ML methods using particle swarm

optimization and sequential quadratic programming. Shi et al. [64] combine multiple traditional

ML methods by using the most diverse base learners and features from different degradation

stages. Gungor et al. [7] combine different DL methods by discovering the most accurate and

diverse base learners iteratively (see Chapter 2 for details). Our ensemble approach combine

different DL methods using a stacking ensemble to find the most resilient base learners.

Ensemble learners are especially useful to provide additional security against cyber-

attacks since they can learn more robust features [116, 117]. Against adversarial attacks, different

ensemble learners are proposed for image classification. Pang et al. [108] present a diversity

promoting ensemble improving adversarial robustness while maintaining state-of-the-art accuracy.

Mirzaeian et al. [109] propose a resilient ensemble where each member learns a radically distinct

latent space through diverse knowledge distillation. To the best of our knowledge, our work is

the first to use ensemble learning towards more resilient PdM. Our ensemble results are also

more generalizable since we increase the number of attack scenarios, deep learning models, and

experimental dataset significantly compared to the state-of-the-art.
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Figure 4.3. Framework for DL Methods Compromise Calculation

4.3 Proposed Framework

4.3.1 Deep Learning Methods Compromise Calculation

We select 10 different DL models from recurrent (RNN, LSTM, BLSTM, GRU, BGRU),

convolutional (CNN, WAVE), and hybrid architectures (CLSTM, CGRU, GLSTM). With these

10 models, we cover a good range of DL methods from different architectures, increasing the

generalizability of our study. To quantify the resiliency of DL models, we use our framework

presented in Figure 4.3. The process starts with training 10 DL algorithms fed with training

data. The trained models are then evaluated under two different test data sets: 1) normal, and 2)

perturbed data. Adversary creates the perturbed data by adding imperceptible noise to the normal

test data. This noise generation process is obtained by using one of the selected adversarial

methods. Predictive models output two different remaining useful life (RUL) estimations: normal

RUL predictions, and compromised RUL predictions. Given true RUL values, our error metric

root mean squared error (RMSE) is calculated for both normal and compromised prediction

scenarios based on the following formulation: RMSE =

√
1
N

∑
N
i=1 ε2

i where N is the number of
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samples, ε is the difference between the estimated RUL (RULest) and the true RUL (RULtrue).

Using these error values, we calculate the DL model compromise which is formulated as:

Compromise =
RMSEcompromised

RMSEnormal
(4.8)

where Compromise> 1 (under the assumption that attacks lead to worse prediction performance).

The smaller the compromise value, the more resilient the model is against the adversarial attack.

For instance, given two methods CNN and LSTM, and their compromise values 8, and 5

respectively, we can conclude that LSTM is more resilient against the adversarial attack. If

we have M number of adversarial attacks (where M > 1), then we need to calculate the mean

compromise value for each DL method as follows:

Compromisemean =

(
M

∑
i=1

RMSE i
compromised

RMSEnormal

)
/M (4.9)

Since we have multiple attack techniques, this metric gives a more accurate idea about single

model resilience. Overall, we obtain mean compromise values for each DL model.

4.3.2 Stacking Ensemble Learner

Stacking (short for stacked generalization) is one of the most-used ensemble learning

methods where single method predictions are aggregated using a second-level learner, or meta-

learner [118]. Since our ensemble learner combines different DL model predictions, we select

stacking as the most suitable ensemble approach.

Ensemble Learner Training

We present the general framework for stacking ensemble training in Figure 4.4. We

start the training process by splitting training data into two subsets. We use the first subset

(subset 1) to train the DL models. Here, for the sake of simplicity, the figure shows only two

methods, namely CNN and RNN. After model training is completed, we obtain our predictive
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Figure 4.4. Framework for Stacking Ensemble Training

models. These models are used to make prediction on the subset 2 where each DL method

outputs RUL predictions. These RUL predictions are given to the stacking ensemble training for

which different meta-learners are trained. This training part is different from DL model training.

In DL training, as an input we have time series data, yet in ensemble training, we have the RUL

prediction values obtained from different DL methods. As an output of ensemble learner training,

we obtain our predictive ensemble models. For illustration purposes, linear regression (LR) is

used as the meta-learner to map single model RUL predictions to real RUL values in Figure 4.4.

Overall, we train 4 meta-learners to find out the most resilient one against adversarial attacks:

1) Linear Regression (LR): This linear model makes a prediction by calculating a

weighted sum of the input features, plus a bias term [118]: ŷ = θ0 +θ1x1 +θ2x2 + · · ·+θnxn

where ŷ indicates the predicted ensemble RUL value, n is the number of DL models, xi is the ith

DL model RUL prediction, θi (∀i = 1, . . . ,n) is the ith DL model weight, and θ0 is the bias term.

2) Random Forest (RF): RF is an ensemble of decision trees trained by the bagging

method [118]. The algorithm constructs multiple decision trees at training time and outputs the

mean prediction of the individual trees.

3) AdaBoost: AdaBoost is one of the most famous boosting approaches where focus
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Figure 4.5. Framework for Stacking Ensemble Testing

is given to the training instances that the predecessor underfitted. The weights of instances are

adjusted according to the error of the current prediction [118]. That is, subsequent estimators

focus more on difficult cases.

4) Extreme Gradient Boosting (XGBoost): XGBoost is an an efficient and effective

implementation of the gradient boosting algorithm. Gradient boosting differs from AdaBoost

since it fits the new predictor to the residual errors made by the previous predictor [118]. The

two main reasons why XGBoost is heavily used are execution speed and model performance.

Ensemble Learner Test

We test our stacking ensemble learner based on the framework provided in Figure 4.5.

Similar to single DL model testing, we obtain the compromise value for our ensemble learner

as an output. Given normal test data and perturbed test data (crafted by the adversary using

adversarial attack methods described previously), pre-trained (predictive) DL models (e.g. CNN,

RNN) make normal and compromised RUL predictions. These single method predictions are

then given to our pre-trained (predictive) ensemble model (e.g. LR) to generate ensemble normal
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and compromised RUL predictions. Similarly, the compromise value is calculated by dividing

the compromised RMSE by the normal RMSE. Since we have multiple attack scenarios, we

need to calculate mean compromise for our ensemble learner formulated in Equation 6.6. To

show the benefit of our ensemble learner, we calculate the ensemble improvement over single

method based on the following formulation:

Improvement =
(

Compromisesingle −Compromiseensemble

Compromisesingle

)
(4.10)

where Compromisesingle denotes the individual DL model mean compromise value, and ensemble

mean compromise value is Compromiseensemble. We report the improvement in percentage (%).

Here, improvement demonstrates the resiliency of our ensemble learner against adversarial

attacks compared to a single learner. The higher the improvement is, the more resilient our

ensemble learner is compared to single DL model.

Most Resilient Stacking Ensemble Selection

To determine the most resilient ensemble learner configuration, we follow our procedure

presented in Figure 4.6. This algorithm increases the number of base learners iteratively, and

finds the most resilient ensemble configuration where resiliency can no longer be improved.

Given single method mean compromise values C, the algorithm first sorts C in an ascending order.

We launch the ensemble search with the 2 most resilient methods. We train the ensemble, test

it, and calculate the ensemble mean compromise value using these two methods. The function

that calculates ensemble mean compromise is also provided in Figure 4.7. This function first

trains the ensemble learner given true RUL values and base learner RUL predictions. Then, it

makes ensemble RUL predictions for both normal and perturbed test data. As an input, it uses

single DL method normal and perturbed test data RUL predictions. The algorithm then calculates

the RMSE for both normal and compromised scenarios using real RUL values and ensemble

RUL predictions. It finally finds out the ensemble mean compromise. After we obtain ensemble
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Figure 4.6. Most Resilient Stacking Ensemble Selection

compromise value, we check if this value is smaller than the single best method compromise and

update the best compromise accordingly. We then continue with the next most resilient method

selection and add this method to our base learner subset. For this new ensemble configuration,
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Figure 4.7. Calculate Compromise

we calculate its compromise value and update the best compromise if it improves the best

compromise value. If there is no improvement, we increment the variable worsenedcounter. This

variable controls whether we should continue or terminate the ensemble search process. We

allow only a fixed number of iterations with performance decrease, worsenedtolerance, after

which we terminate the search process and return the best compromise value.
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4.4 Experimental Analysis

4.4.1 Dataset Description

To validate the resiliency of our proposed ensemble learner framework against adversarial

attacks, we use two different datasets: NASA C-MAPSS [49], and UNIBO Powertools [111].

NASA C-MAPSS is a benchmark dataset for RUL estimation. It includes multiple

aircraft engines simulated under various operating and fault conditions. It includes 4 different

datasets in increasing complexity: FD001∼FD004. For each dataset, we have separate training

and test data where the goal is to predict RUL for the test data. Our feature columns include the

engine ID, cycle index, three operational settings, and 21 sensor measurements.

UNIBO Powertools is a lithium-ion (Li-Ion) battery dataset collected in a laboratory

test by an Italian Equipment producer [111]. It contains 27 batteries which are run until their

end of life. We use 17 of these batteries for training and 10 of them for testing. These batteries

have different nominal capacities and they are tested under different conditions: 1) standard

test: battery was discharged at 5A current in main cycles, 2) high current test: battery was

discharged at 8A current in main cycles, 3) preconditioned test: battery cells are stored at 45°C

environment for 90 days before conducting the test. The following procedure is used to create the

dataset where during discharge, the sampling period is set to 10 seconds [111]: 1) Charge cycle:

Constant Current-Constant Voltage (CC-CV) at 1.8A and 4.2V (100mA cut-off), 2) Discharge

cycle: Constant Current until cut-off voltage (2.5V), 3) Repeat steps 1 and 2 (main cycle) 100

times, 4) Capacity measurement: charge CC-CV 1A 4.2V (100mA cut-off) and discharge CC

0.1A 2.5V, 5) Repeat the previous steps until the battery cell end of life. We have different

columns in this dataset: battery id, time, voltage, current, charging capacity, discharging capacity,

watt hour (wh) measurements during charge and discharge, temperature, and cycle count.
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4.4.2 Experimental Setup

Adversarial Attack Methods

We use the following parameters for the selected adversarial methods [119, 114, 115]:

amount of perturbation(ε)=0.1, step size(α)=0.001, number of iterations(I)=100.

Deep Learning Methods

Although we use the same model structures for both datasets, we select different hyper-

parameters to run the models so as to obtain the best possible performance. We replicate each

experiment 10 times and report average compromise values where we run all experiments on a

PC with 16 GB RAM and an 8-core 2.3 GHz Intel Core i9 processor.

NASA C-MAPSS: Adam optimizer with learning rate 0.001, elu activation function,

batch size of 128, and a max number of epochs of 150 where callback is activated (patience is

set to 10 for validation data), and sliding time window size of 80.

UNIBO: Adam optimizer with learning rate 0.0001, selu activation function, batch size

of 256, and a max number of epochs of 100 where callback is activated (patience is set to 10 for

validation data), and sliding time window size of 500.

Stacking Ensemble

For the select meta-learners, we perform hyper-parameter optimization using a grid

search [120]. This gives us optimal hyper-parameters to combine predictions from different

DL models using stacking ensemble. For the ensemble training, we split training data into two

subsets using the ratio 70% (subset 1) to 30% (subset 2). We use subset 1 for DL model training,

and subset 2 for ensemble training. We set worsenedtolerance to 2 since it leads to the selection

of optimal ensemble configuration.
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Table 4.1. Single DL Models Mean Compromise

DL Model / Dataset FD001 FD002 FD003 FD004 UNIBO
CLSTM 8.0 120.3 6.8 86.2 27.2

CNN 20.6 72.0 13.5 12.5 22.6
WAVE 17.6 25.6 14.4 5.6 7.2
CGRU 9.0 13.6 7.8 6.5 32.8

BLSTM 6.7 8.4 8.7 6.0 10.5
GLSTM 6.4 8.4 7.9 6.2 6.8
BGRU 6.1 7.4 7.5 5.9 7.5
LSTM 5.7 7.9 7.2 5.4 6.3
GRU 5.2 7.7 6.5 7.1 4.5
RNN 5.3 4.3 5.0 4.6 7.1

4.4.3 Single DL Models Resiliency

Table 4.1 presents mean compromise values for each DL method. In this table, each row

represents a different DL model and each column corresponds to a distinct dataset. We first

observe that DL model prediction performance is impacted poorly by the adversarial attacks

where there is up-to 120× compromise. We also notice that the resiliency of a DL method

changes with respect to the dataset. Here, we present the most resilient methods at the bottom of

the table. We observe that GRU is the most resilient algorithm at FD001, and UNIBO while RNN

is the best at the remaining datasets. We can conclude that recurrent architectures, e.g., GRU,

RNN, are superior over others. CNN-based methods are extremely sensitive to the adversarial

attacks where the prediction performance degrades by up to 72×. Hybrid methods can be

resilient if solely recurrent architectures are combined, e.g., GLSTM. For the most resilient

ensemble selection, we utilize the compromise values provided in Table 4.1.

4.4.4 Proposed Stacking Ensemble Learner Resiliency

Meta-learner Resiliency Analysis

We first analyze the meta-learner resiliency of our ensemble learner. Figure 4.8 illustrates

the meta-learner mean compromise values where each meta-learner is represented with a distinct
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Figure 4.8. Meta-learner Compromise Analysis

color. In each sub-figure, x-axis shows the number of base learners, and the y-axis provides the

ensemble compromise. We first note that the meta-learner resiliency fluctuates considerably

with respect to the number of base learners. To illustrate, at FD003, AdaBoost (ADA) is the

most resilient at 5 and 6 base learner ensemble scenarios, yet it is the worst if we only select

3 base learners. The best performing meta-learner also changes based on the number of base

learners. However, this is not the case for all datasets. For instance, ADA is always the most

resilient meta-learner at FD004, and UNIBO. When we analyze the average performance of each
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Figure 4.9. Stacking Ensemble Compromise Analysis

meta-learner over all datasets and ensemble learner configurations, we obtain 6.43, 4.91, 4.88,

and 4.47 compromise values for LR, RF, XGB, and ADA respectively. This shows that ADA

is the most resilient meta-learner while LR being the least resilient (on average). For the rest

of our ensemble analysis, we select the best meta-learner for each ensemble configuration and

report those measurements. To exemplify, for UNIBO dataset and any ensemble configuration,

we present the ADA compromise values since its value is the smallest. However, ADA is not

selected for any ensemble configuration at FD001.
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Stacking Ensemble Analysis

We first analyze the resiliency of ensemble learners having different number of base

learners. Figure 4.9 demonstrates a variety of stacking ensemble learner compromise values. In

each sub-figure, x-axis shows the attack method, the y-axis denotes the ensemble compromise.

Each figure shows the best single method and multiple ensemble learner configurations for

different attack methods. Note that in these figures, EnL represents our ensemble learner with n

most resilient learners. We consider different number of base learners (from 2 to 7, e.g., ‘E2L’

uses 2 most resilient base learners) and the most resilient single method (‘Best Single’). All

methods in each figure are represented with distinct colors and the legend of each figure shows

the order in which these methods are presented. Each ensemble compromise value in this figure

corresponds to the compromise value of the best meta-learner. We can find the most resilient

ensemble configuration from Figure 4.9, on the right most bar in each sub-figure. For instance, at

FD003, E5L (represented with yellow color) is the most resilient configuration. E3L, E2L, E5L,

E6L, and E4L are the most resilient ensemble configuration for FD001, FD002, FD003, FD004,

and UNIBO respectively. Besides, we observe that increasing the number of base learners does

not always lead to more resilient learner. To illustrate, the best performing ensemble at FD002

only uses 2 base learners. This result motivates us for a more clever ensemble method selection

approach which can both terminate the search process early (i.e., it might not be necessary to try

all base learners) and can find the most resilient ensemble configuration.

Adversarial Attacks Compromise Analysis

Based on the results in Figure 4.9, we also analyze the impact of an adversarial attack

on the model compromise. Figure 4.10 shows the average compromise values for each attack

method. On the y-axis, we calculate the average compromise over all ensemble and the best

single method scenarios, x-axis corresponds to the dataset. Momentum iterative method (MIM)

leads to highest compromise (up to 5.8×) whereas BIM is the least strong attack among all.
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Figure 4.10. Adversarial Attacks Compromise Analysis

Most Resilient Stacking Ensemble Selection

Table 4.2 presents the results of the most resilient ensemble configuration search process.

In this table, the columns show the dataset, best ensemble configuration, mean ensemble compro-

mise, best single method mean compromise, and the ensemble resiliency improvement over the

single method respectively. We can observe that the best ensemble configuration is different at

each dataset, e.g., E3L for FD001, E2L for FD002, and so on. We previously found out the most

resilient ensemble configurations. We can validate that our proposed algorithm is able to select

those ensemble configurations successfully. While we obtain the best ensemble mean compro-

mise at UNIBO (2.34×), the smallest single method compromise is obtained at FD002 (4.34×).

Our stacking ensemble approach achieves up to 47.9% mean compromise improvement. We also

analyze the proposed stacking ensemble compromise improvement for the adversarial attack

methods individually. Table 4.3 shows our proposed ensemble method’s resiliency improvement

over the best single method under each attack scenario. We reach up-to 59.9% improvement at

UNIBO. For FD001, FD002, FD003, and FD004, the maximum improvements are 31.5%, 35%,

16.5%, and 29.8% respectively.
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Table 4.2. Most Resilient Stacking Ensemble Configuration

Dataset Ensemble Configuration Compromise Best Single Compromise Improvement (%)
FD001 3 Learners (E3L) 3.76 5.21 27.83%
FD002 2 Learners (E2L) 2.88 4.34 33.64%
FD003 5 Learners (E5L) 4.49 5.00 10.20%
FD004 6 Learners (E6L) 3.32 4.63 28.29%
UNIBO 4 Learners (E4L) 2.34 4.49 47.88%

Table 4.3. Proposed Stacking Ensemble Compromise Improvement Over the Most Resilient DL
Method (%)

Dataset / Attack Method FGSM BIM RO MIM
FD001 27.4 23.6 31.5 27.5
FD002 35.0 32.6 32.0 34.5
FD003 5.3 8.4 16.5 10.1
FD004 28.2 29.8 29.2 26.6
UNIBO 40.4 45.3 59.9 46.0

4.5 Conclusion

We propose a stacking ensemble learning framework which is more resilient against

adversarial attacks compared to single DL methods. We use different adversarial attacks and 10

distinct DL models from recurrent, convolutional, and hybrid architectures. We find that recurrent

neural network based architectures provide more resilient learning whereas convolutional neural

network structures are extremely sensitive to the adversarial attacks. We observe that the most

resilient single ML method changes based on the data set or attack method. To address this

issue, we propose a framework that finds the most resilient ensemble configuration against

multiple attacks. The results show that our proposed ensemble learner framework can improve

the resiliency of the most resilient single method by up to 60%. From a research perspective, this

means that the proposed ensemble solution can still perform well under adversarial attacks. At

the management level, this leads to more accurate replacement and maintenance decisions even

under cyber-attacks.

In this chapter, we addressed the decreasing prediction performance of DL models under
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adversarial attacks. Although we devised a resilient learning solution, we still need a defense

mechanism that can be used for any DL model. In the following chapter, we propose a novel

adversarial training defense against adversarial attacks.
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Chapter 5

Diversity Promoting Ensemble
Adversarial Training

5.1 Introduction

Data-driven remaining useful life (RUL) estimation utilizes sensor data to build machine

learning (ML) models. Recently, this approach became popular with abundance of available

sensor data where sensor data collection and processing plays a crucial role to achieving good

prediction performance [7, 121]. Furthermore, performance of ML methods relies heavily on

input sensor data quality. Thus, these methods are vulnerable to adversarial attacks where an

attacker can modify input data or model parameters, significantly worsening ML prediction

performance [122]. Since ML is in the center of data-driven RUL prediction, these attacks may

lead to wrong maintenance decisions causing undetected failures in a system [6]. Hence, there is

a need for effective defense mechanisms that can minimize the impact of adversarial attacks in

the RUL prediction domain.

This chapter proposes diversity promoting ensemble adversarial training framework

as a defense mechanism. To the best of our knowledge, our work is the first that proposes

ensemble adversarial training towards more resilient data-driven predictive maintenance. Given

10 different pre-trained deep learning (DL) methods, we first calculate pairwise loss gradient

similarity. Based on the similarity values, we select the most dissimilar subset of methods.

We then create perturbed training examples based on the selected methods where we use Fast
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Gradient Sign Method [112]. These crafted examples are augmented with the clean, i.e., non-

perturbed, training data. Given augmented training data, we train a convolutional neural network

(CNN) [55] because of its high accuracy in RUL prediction. In testing, we first create perturbed

test instances using our trained CNN based on different adversarial attacks. These instances are

then transferred to pre-trained DL methods to measure the performance change after adversarial

attacks which we refer as resiliency. The less the performance change is, the more resilient a

method is. We compare our approach with two non-adversarial state-of-the-art training settings.

Our experiments on NASA C-MAPSS dataset [49] show that the proposed ensemble training

approach can improve the learner resiliency by up to 97% (43% on average).

5.2 Related Work

Adversarial training is one of the most effective defense approaches against adversarial

attacks [36]. It augments training data with adversarial examples in each training iteration.

However, this approach converges to a degenerate global minimum [123]. To solve this problem,

ensemble adversarial training (EAT) is introduced by Tramer et al. [123] where training data

is augmented with adversarial examples generated from different target models. EAT provides

a better defense mechanism since it is harder for the attacker to trick multiple models in the

ensemble instead of just a single model. To obtain ensemble robustness against adversarial

attacks, the base learners should be diverse [124]. There are different methods proposed in the

literature that promote diversity in ensemble adversarial training [108, 125, 124, 126]. Yang et

al. [126] theoretically show that promoting the orthogonality between gradients of base models

leads to higher robustness. Inspired by this work, we promote diversity based on loss gradient

similarity among base learners.

69



Figure 5.1. Our Proposed Framework

5.3 Proposed Framework

Figure 5.1 depicts our proposed ensemble adversarial training framework. Given pre-

trained DL models, we first calculate the loss gradient similarity among learners and select the

most dissimilar ones. Using the selected learners and fast gradient sign method, perturbed training

examples are generated and augmented to the training data. Then, we train a convolutional neural

network (CNN) [55] using the augmented training data. As the output of this framework, we

obtain the trained CNN model. Next, we explain the steps of our framework in detail:

5.3.1 Pre-trained Models

We used 10 different pre-trained deep learning models from our previous study [122]:

Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bi-directional LSTM

(BLSTM), Gated Recurrent Unit (GRU), Bi-directional GRU (BGRU), Convolutional Neural

Network (CNN), Wavenet (WAVE), CNN-LSTM (CLSTM), CNN-GRU (CGRU), GRU-LSTM

(GLSTM). We cover a good range of DL methods, increasing the generalizability of our study.
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5.3.2 Loss Gradient Similarity Calculation

To introduce diversity into ensemble adversarial training, we measure pairwise loss

gradient similarity among two different pre-trained models (F and G) based on the following

formulation [126]:

∣∣∣∣ (∇xLF)
T (∇xLG)

∥(∇xLF)∥2 · ∥(∇xLG)∥2

∣∣∣∣ (5.1)

where ∇xLF and ∇xLG denote the loss gradient vectors of base models F and G on input

x. Note that Equation 5.1 is the absolute value of cosine similarity between the gradients of the

two loss functions. As a result of this step, we obtain the gradient similarity table as illustrated in

Figure 5.1. The smaller the similarity is, the more diverse the two models are. We then select the

models which are least similar to our pre-trained CNN since this model structure will be used in

adversarial training. We increment the number of models (thus augmented data size) until no

further resiliency improvement is observed.

5.3.3 Augmented Training Data Generation and Training

Based on the selected models from the previous step, we generate perturbed training

examples using fast gradient sign method (FGSM) [112]. FGSM first calculates the gradient

of the cost function with respect to the input of the neural network. Adversarial examples are

then created based on the gradient direction: ẍ = x+ ε ∗ sign(∇xL(θ ,x,y)) where ẍ represents

the crafted adversarial examples and ε denotes the amount of the perturbation. We select FGSM

since it can create adversarial examples efficiently [127]. These crafted examples are then

included in the training data. Given augmented training data, we train convolutional neural

network (CNN) [55] due to its high prediction accuracy in RUL prediction. As an output, we

obtain the adversarially trained CNN model.
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Figure 5.2. Testing Framework

5.3.4 Testing Framework

Figure 5.2 shows our testing framework where we adapt a transfer black-box attack

strategy [17]. Given the test data, we first create perturbed samples using our trained model

(CNN) based on three different adversarial attacks: fast gradient sign method (FGSM) [112],

basic iterative method (BIM) [116], and momentum iterative method (MIM) [114]. We then

transfer these instances to our pre-trained models. We measure pre-trained models’ prediction

performance before (RMSEnormal) and after (RMSEperturbed) the adversarial attacks where RMSE

refers to root mean squared error. To measure the prediction performance change, we define a

metric called Compromisemean formulated as:

Compromisemean =

(
M

∑
i=1

RMSE i
perturbed

RMSEnormal

)
/M (5.2)

where Compromisemean > 1 (with the assumption that attacks lead to worse prediction perfor-

mance) and M denotes the number of adversarial attacks (i.e., M = 3). The smaller the mean

compromise is, the more resilient the model becomes against adversarial attacks.

5.3.5 Compared Training Settings

We compare the resiliency of the proposed method with two different non-adversarial

training settings which directly use the pre-trained models: (i) white-box setting creates perturbed
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test instances using a pre-trained model and use them in the same model testing, i.e., no test

example transfer across different models. For instance, only pre-trained LSTM creates perturbed

test instances to be used in LSTM resiliency measurement, (ii) black-box setting creates perturbed

test examples only using the pre-trained CNN model and transfers the examples to other pre-

trained models at testing time. This setting is similar to our testing strategy, yet it does not

include adversarial training.

5.4 Experimental Analysis

5.4.1 Dataset Description

We use NASA C-MAPSS [49] which is a benchmark dataset for RUL estimation. This

dataset includes multiple aircraft engines simulated under different operating and fault conditions.

We select the FD002 dataset which is one of the most complicated (i.e., the highest number of

operating and fault conditions) datasets in C-MAPSS.

5.4.2 Experimental Setup

We use the following parameters for the selected adversarial attacks [119, 114]: amount

of perturbation (ε) = 0.1, step size (α) = 0.001, number of iterations (I) = 100, decay factor (µ)

= 1. For the DL model training, we use Adam optimizer with learning rate 0.001, elu activation

function, batch size of 128, and a max number of epochs of 150, and sliding time window size of

80. We repeat each experiment 10 times and report average values. All experiments are run on a

PC with 16 GB RAM and an 8-core 2.3 GHz Intel Core i9 processor.

5.4.3 Impact of Number of Base Learners in Resiliency

For our proposed method, we experiment with different number of diverse base learners

and measure their mean compromise across all pre-trained DL models to determine DENSE-

DEFENSE optimal configuration. Figure 5.3 shows mean compromise values (y-axis) across

each DL method (x-axis). We can observe that switching from 2 to 3 learners increase the
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Figure 5.3. Impact of Number of Base Learners in Resiliency

resiliency of the proposed method. However, adding more models after 3 learner ensemble

does not bring a significant resiliency benefit (for some models, it even decreases the resiliency).

Specifically, these ensemble configurations (2 learners, 3 learners, and 4 learners) have 6.58,

6.05, and 6.04 average compromise values across all models.

5.4.4 Mean Compromise Comparison

After we selected the optimal configuration for DENSE-DEFENSE, we compare our

approach with two other training settings (white-box and black-box). Table 5.1 shows the mean

compromise values for the 3 selected settings: white-box, black-box and our method DENSE-

DEFENSE. We can observe that for all DL methods, our approach provides the highest resiliency,

showing the superiority of our approach.

Based on the values in Table 5.1, we also calculate our method’s improvement over

the white-box and black-box settings. Table 5.2 presents the DENSE-DEFENSE resiliency

improvement over the selected approaches. Compared to white-box and black-box settings, our
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Table 5.1. Mean Compromise Comparison

DL Model / Approach White-box Black-box DENSE-DEFENSE
CNN 72.31 72.31 7.71

LSTM 7.83 8.46 7.59
GRU 7.50 7.87 6.31

HDNN 122.50 87.25 3.72
RNN 4.36 3.77 2.13

BIGRU 7.22 6.67 5.90
BILSTM 8.30 8.76 7.21

WAVE 25.59 24.45 5.75
CGRU 13.19 11.79 6.69

GLSTM 8.40 9.17 7.39

Table 5.2. DENSE-DEFENSE Resiliency Improvement

DL Model / Improvement (%) White-box Black-box
CNN 89.34 89.34

LSTM 3.13 10.28
GRU 15.83 19.72

HDNN 96.96 95.74
RNN 51.09 43.42

BIGRU 18.38 11.56
BILSTM 13.11 17.66

WAVE 77.52 76.47
CGRU 49.25 43.24

GLSTM 11.98 19.42
Average 42.66 42.69

Maximum 96.96 95.74

method improves the resiliency by up-to 96.9% and 95.7% respectively. For both approaches,

we obtain 43% average resiliency improvement. The results show that our method provides a

more resilient learning solution. Hence, our ensemble training approach is an effective defense

mechanism against different adversarial attacks.

5.5 Conclusion

ML methods are impacted significantly by small perturbations in input data. Hence,

adversarial attacks against ML methods can lead to bad outcomes for predictive maintenance
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applications. To provide one possible defense against those attacks, in this chapter we propose

diversity promoting ensemble adversarial training where selected diverse base learners’ perturbed

instances are included in the training process. Our experiments show that our method can be a

really effective defense mechanism against different adversarial attacks where we improve the

resiliency by up to 97% (43% on average) compared to state-of-the-art training approaches.

In this chapter, we focused on creating an effective defense mechanism against adversarial

attacks. In this thesis, we focused on deep learning (DL) models so far, yet IIoTs resource

constrained devices might not be suitable for DL training and inference. To address this challenge,

we utilize a novel learning paradigm hyper-dimensional computing (HDC) and investigate its

resiliency against adversarial attacks in the rest of this thesis.
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Chapter 6

Hyperdimensional Computing for
Resilient IIoT Predictive Analytics

6.1 Introduction

Abundant system monitoring data in IIoT systems makes data-driven predictive mainte-

nance (PdM) popular where machine learning (ML) is used for identifying best maintenance

schedules [100]. Intelligent fault diagnosis (IFD) is a key data-driven PdM application that finds

and classifies different fault types before they occur. There are variety of IFD methods proposed

in the literature such as convolutional neural network (CNN) [86], long short-term memory

(LSTM) [128], gated recurrent unit (GRU) [129], ensemble learning [121], and so on. The

success of these ML-based methods heavily depends on input data. Adversarial attacks against

ML methods manipulate legitimate inputs and force the trained model to produce incorrect

outputs leading to incorrect predictions. Since ML is in the center of intelligent fault diagnosis,

these attacks may have serious consequences such as undetected failures [6]. Hence, there is a

need for novel intelligent learning solutions that can stay resilient against various adversarial

attacks.

In this work, we propose hyperdimensional computing (HDC) as a resilient learning

solution against different black-box adversarial attacks for intelligent fault diagnosis (IFD). Our

black-box attack is based on a transferable attack strategy [130]. We first train a substitute deep

learning model, a wide deep convolutional neural network (WDCNN), and create artificial test
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Figure 6.1. HDC Learning Framework

samples using this trained model. We then transfer these instances to the target methods (e.g.,

LSTM, GRU, HD). In testing, we measure the classification accuracy of the target models before

and after the attacks. The accuracy change gives us the resiliency of a target method. We show

that HD is the most resilient and lightweight method, outperforming all deep learning (DL)

methods on commonly used CWRU Bearing dataset [88]. HD is up to 67.5% more resilient and

25.1× faster during training compared to the state-of-the-art DL methods.

6.2 Background and Related Work

6.2.1 HDC Background

HDC has 3 main parts, encoding, training, and inference as illustrated in Figure 6.1:

Encoding aims to map input data to hypervectors (HVs). Most of the proposed encoding

methods [131] linearly combine HVs corresponding to each feature, resulting in sub-optimal

classification quality [132]. In this chapter, we use non-linear encoding which considers the

non-linear interactions between the feature values with different weights and exploits the kernel

trick. This encoding approach is based on a study which shows that the Gaussian kernel
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function can be approximated by the dot product of two vectors. Assume an input vector in

original space Ξ⃗ = {ξ1,ξ2, . . .ξn} ∈ Rn. The encoded high-dimensional vector is represented as

H⃗ = {h1,h2, . . . ,hD} ∈ RD where D ≫ n. Encoding from Ξ⃗ to hi is as follows:

hi = cos(⃗Ξ · B⃗i +bi)sin(⃗Ξ · B⃗i) (6.1)

where B⃗ks are randomly chosen of dimension D ≃ 10k and bi ∼ U(0,2π). That is,

B⃗k j ∼ N(0,1) and δ (B⃗k1, B⃗k2)≃ 0, where δ is the cosine similarity.

Training has two steps to generate HVs representing each class. The first step, initial

training, performs element-wise addition of all encoded hyper-vectors in each existing class.

Let’s assume that H⃗i is the encoded hyper-vector of input i. We know that each input i belongs to

a class j. Hence, H⃗ j
i denotes the hyper-vector for input i from class j. In the initial training, HD

simply adds all hyper-vectors of the same class to generate the final model hyper-vector:

C⃗ j = ηH⃗ j
0 +ηH⃗ j

1 + · · ·= ∑
m

ηH⃗ j
m (6.2)

where η is the learning rate. This process is also called as one-pass training since

each input is visited only once. The second step of HD training, retraining, performs model

adjustment by iteratively going through the training dataset. Retraining is beneficial for HD

to improve the prediction accuracy. During this step, the encoded hyper-vector of each input

is created again, and its similarity with the existing class hyper-vectors is checked. If HD

misclassifies, say that H⃗ j from class C⃗ j is predicted as class C⃗k, it updates its model as follows:

C⃗ j = C⃗ j +ηH⃗ j

C⃗k = C⃗k −ηH⃗ j
(6.3)

which means that the information of H⃗ j causing misclassification to C⃗k is discarded.

Inference checks the similarity of each encoded test data with the class hyper-vector.
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Most commonly, cosine similarity is used for the similarity check although other metrics (e.g.,

Hamming distance) could be suitable based on the problem. To calculate cosine similarity

between hyper-vector H⃗ and class hyper-vector C⃗ j:

cos(H⃗,C⃗ j) =
H⃗ ·C⃗ j

∥H⃗∥ · ∥C⃗ j∥
(6.4)

which is calculated by the dot product of the H⃗ and C⃗ j divided by the product of these two

vectors’ lengths. As an output of this step, HD provides the most similar class.

Hyperdimensional computing (HDC) was introduced as a brain-inspired learning solution

for robust and efficient learning [133]. Although HDC has been used in a broad range of

applications, the resiliency aspect of HDC classifiers has not been completely understood under

adversarial attacks. There are some studies in the literature aiming to test HDC resiliency against

adversarial attacks. Yang and Ren [134] showed that HDC can be vulnerable to adversarial

samples. Their proposed adversarial attack misled the HDC classifier to a wrong prediction label.

To enhance HDC security, they proposed adversarial training. Chen and Li [135] analyzed the

impact of adversarial attacks on an HDC speech recognition classifier and their proposed attack

based on differential evolution algorithm reached up to 85.7% attack success rate. Moraliyage

et al. [136] evaluated the adversarial robustness of HDC text classifiers. They observed that

different adversarial attacks lead to false prediction labels for language recognition and text

classification tasks. Ma et al. [137] introduced distance-guided fuzzing which iteratively mutates

inputs. By using the distance between query hypervector and reference hypervector, they generate

new inputs that can trigger incorrect behaviors of the HDC model. Thapa et al. [138] developed

an automated black-box differential testing framework to fool an HDC model. They were able

to improve the HDC model accuracy using retraining. Wang and Jiao [139] designed HDC-

specific poisoning attack framework based on confidence-based label-flipping method. They

also proposed data sanitization as a defense to filter suspect samples before training. In our work,

we show that by using non-linear encoding, HDC can stay resilient against different black-box
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Figure 6.2. Black-box Attack Framework

adversarial attacks. To the best of our knowledge, HDC has not been used in the PdM domain

where it can provide both lightweight and robust learning solution.

6.3 Proposed Framework

We use a black-box transferable attack strategy which first trains a substitute model

and crafts new test instances using the trained substitute model. As our substitute model, we

select wide deep convolutional neural network (WDCNN) since it is one of the most commonly

used DL methods in intelligent fault diagnosis [87, 121]. For our black-box attack setting, we

assume that an adversary has access to the training and test data, yet does not know anything

about the attacked (target) models. We illustrate our black-box attack framework in Figure

6.2. Attacker first trains the substitute model (WDCNN) and use the trained model to create

perturbed test data. Attacker can employ different attack strategies to obtain perturbed test

data. Afterwards, adversary sends these crafted examples to the target models in testing time.

In Figure 6.2, we give long short-term memory (LSTM) as the target model for illustration

purposes. However, note that there is a pool of pretrained target models adversary is not aware
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of (thus black-box attack). Attacker simply sends the created examples to the target models

to see if the attack will be successful or not. We measure the attack success based on change

in test data classification accuracy before and after the attack where accuracy is defined as:

Accuracy =
Number of correct predictions
Total number of test samples

. Change in accuracy gives us the resiliency of a

learning method which we measure by the metric called Compromise which is formulated as:

Compromise =
Accuracynormal

Accuracyperturbed
(6.5)

where Compromise> 1 (under the assumption that attacks lead to worse prediction performance).

The smaller the compromise value is, the more resilient the model becomes against the adversarial

attack. For instance, given two methods RNN and LSTM, and their compromise values 5 and 2

respectively, we can conclude that LSTM is more resilient against the adversarial attack. If we

have M number of adversarial attacks (M > 1), then we need to calculate the mean compromise

value for each learning method as follows:

Compromisemean =

(
M

∑
i=1

Accuracynormal

Accuracyi
perturbed

)
/M (6.6)

Because we have multiple attack strategies, mean compromise gives a more accurate idea about

single model resiliency. Overall, we obtain mean compromise value for each learning method

and use this metric for our experimental analysis. Furthermore, to show the HDC resiliency

improvement, we define the following improvement metric:

Improvement =
(

CompromiseDL −CompromiseHDC

CompromiseDL

)
(6.7)

where CompromiseDL denotes the single DL model mean compromise value, and HDC mean

compromise is CompromiseHDC. We report the improvement in percentage (%). Improvement

value shows the resiliency of the HDC learner compared to a single DL model.
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Figure 6.3. CWRU Experimental Test Apparatus

6.4 Experimental Analysis

6.4.1 Dataset Description

We use the Case Western Reserve University (CWRU) Bearing dataset [88]. Rolling

element bearing (REB) failure is one of the most frequent reasons for machine breakdown

leading to severe loss of safety and property [140]. Figure 6.3 represents the experimental test

apparatus to collect this dataset. The data were collected from both the drive end accelerometer

and the fan end accelerometer at 12k samples/second over a range of motor loads (from 0 hp

to 3 hp). Both datasets (drive end and fan end) contain 19,800 training and 750 test samples.

Bearing used in this experiment has three components: rolling element, inner race, and outer

race. 9 different fault types are provided in the dataset based on the fault diameter (0.007, 0.014,

and 0.021 inches) and the component (plus the normal bearing condition).

6.4.2 Experimental Setup

Selected Deep Learning (DL) Methods: We select 9 different DL methods: long

short-term memory (LSTM) [128], gated recurrent unit (GRU) [129], wide deep convolutional

neural network (WDCNN) [104], convolutional recurrent neural network (CRNN, CLSTM,

CGRU) [141], and simplified CRNN (SCRNN, SCGRU, SCLSTM) [141]). We cover a good
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range of DL methods, increasing the generalizability of our study.

Adversarial Attack Methods: We select the following parameters for our adversarial

methods [114, 115]: amount of perturbation (ε): 0.1, step size (α): 0.001, number of iterations

(I): 100, decay factor (µ): 1.

Parameter Selection: For both DL methods and HDC, we use a sliding time window

of size 100 with a number of epochs of 100. We replicate each experiment 10 times and report

average values. We run all experiments on a PC with 16 GB RAM and an 8-core 2.3 GHz

Intel Core i9 processor. For DL methods, the following hyper-parameters are selected: Adam

optimizer with learning rate 0.001, relu activation function, batch size of 16. For HDC, we select

the following parameters: encoding: non-linear, hyper-vector dimension size: 10,000, learning

rate: 0.005, number of epochs: 100, similarity metric: cosine.

Number of Training Samples: We measure the resiliency of the selected methods by

using different number of training samples while considering the whole test data. This is due

to the fact that it might be extremely costly to label specific fault types in a collected dataset

[121]. Specifically, our smallest experiment configuration uses 1.2% (240 samples) of the whole

training data where we double this ratio until we reach approximately 38.8% (7680 samples).

We call this ratio sample training ratio (STR) for the rest of this chapter. Considering different

STRs is crucial for IFD since it might not always be feasible to label fault data for the whole

training dataset. IFD methods should perform well under limited supervision [121].

6.4.3 Resiliency Analysis

Mean Compromise Comparison: We analyze the resiliency of selected DL models and

HD using mean compromise metric defined in Equation 6.6. Figure 6.4 and Figure 6.5 show

the mean compromise values of the 6 most resilient learning methods under different sample

training ratios for drive end and fan end datasets respectively. In these figures, x-axis represents

the selected STRs and y-axis gives the mean compromise values where each color represents a

different learning method. We can observe that the mean compromise of a DL method changes
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Figure 6.4. Mean Compromise Analysis (Drive End Dataset)
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Figure 6.5. Mean Compromise Analysis (Fan End Dataset)

significantly. To illustrate, while SCRNN (represented with purple color) is one of the most

resilient methods for really small STRs, it becomes the least resilient algorithm as we reach the

maximum STR. For drive end dataset (Figure 6.4), we can observe that HD is the most resilient

method for STRs greater than 2.4%. As the number of training samples increases, HD becomes

a more resilient method compared to the DL algorithms. We can make a similar observation

for fan end dataset as well (Figure 6.5). For STRs larger than 9.6%, HD is the most resilient

method against adversarial attacks. To present a single mean compromise value (for better

understanding), we calculate the average of mean compromise values over all STRs. Table 6.1
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Table 6.1. Average Compromise Comparison

Method / Dataset Drive end Fan end
CGRU 2.77 2.52

CLSTM 2.52 2.69
CRNN 2.30 2.77

SCLSTM 1.59 1.42
SCGRU 1.58 1.56
SCRNN 1.54 1.69
LSTM 1.52 1.45
GRU 1.42 1.42
HD 1.24 1.30

Table 6.2. Average and Maximum Resiliency Improvement of HD over DL Methods

Drive end Fan end
DL Method Average (%) Maximum (%) Average (%) Maximum (%)

CGRU 51.34 61.9 44.25 64.5
CLSTM 48.1 54.1 48.3 67.5
CRNN 42.1 52.4 49.9 64.4

SCLSTM 21.1 34.5 8.1 19.3
SCGRU 20.2 33.5 14.4 38.1
SCRNN 15.3 41.1 14.8 52.4
LSTM 18.5 27.6 10.0 21.7
GRU 10.9 25.9 8.0 14.2

presents these average compromise values for all the methods. When we compare DL methods

(i.e., all methods excluding HD), we can observe that recurrent neural network structures are the

most resilient. Specifically, GRU is the most resilient DL method with an average compromise

value of 1.42 for both datasets. This observation can be due to the fact that our hybrid DL model

structures contain convolutional layers. Since our crafted examples are based on wide deep

convolutional neural network, more test examples are able to deceive hybrid methods. Most

importantly, according to Table 6.1, HD is the most resilient method on average outperforminng

other DL methods at both datasets. This shows that HD provides a resilient learning solution

performing well even under different black-box adversarial attack configurations.

HD Resiliency Improvement: We calculate HD resiliency improvement over the se-

lected DL models using Equation 6.7 for each STR configuration. Then, we find the maximum
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Table 6.3. Target Models Training Time Comparison

Sample Training Ratio (%) Average
Method 1.2 2.4 4.8 9.6 19.4 38.8 Normalized
LSTM 151.0 366.1 514.8 980.4 1882.4 3294.8 25.1
GRU 161.5 307.7 451.5 861.5 1623.3 3165.5 23.0

CLSTM 16.0 31.8 81.0 174.6 413.7 820.2 5.4
CGRU 15.7 61.2 94.2 196.9 360.8 727.5 5.1

SCLSTM 15.6 28.9 52.2 119.5 246.4 488.6 3.3
SCGRU 15.2 27.6 50.6 106.8 228.1 448.5 3.1
CRNN 10.8 19.4 36.1 77.4 167.6 327.1 2.2

SCRNN 7.7 13.8 26.9 53.6 98.6 198.3 1.4
HD 6.0 10.2 18.6 37.5 72.0 141.8 1.0

and average improvement for each DL method. Table 6.2 demonstrates the HD average and

maximum resiliency improvement over the selected DL methods. For drive end experiment,

HD improves DL model resiliency by up to 61.9%, and up to 67.5% for the fan end dataset.

Compared to the most resilient DL method (GRU), HD improves the resiliency by up to 25.9%

and 14.2% for drive end and fan end data sets respectively. We are able to verify that HD provides

a resilient learning solution against adversarial attacks.

Training Overhead Comparison: Table 6.3 presents target models’ training time (in

seconds). In this table, each row represents a different target model (where the models are

ordered in decreasing training overhead) and each column corresponds to the selected STR. We

can observe that HD is the most lightweight model across all STRs. In the last column of this

table, we share the average (across sample training ratios) normalized training time with respect

to HD. HD can achieve up to 25.1× training speed up compared to DL methods. Compared to

the most resilient DL method (GRU), HD brings 23× faster training. From this analysis, we

can conclude that HD also provides a computationally efficient learning solution while being

resilient to adversarial attacks. Training overhead is especially critical for IIoT systems since

data is collected continuously. When new data arrives, learning models require retraining to keep

their prediction performances at a certain level [7]. HDC can alleviate this retraining overhead

due to its lightweight feature.
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6.5 Conclusion

Adversarial attacks deceive ML methods with fake inputs leading to worse prediction

performance. Hyperdimensional computing (HDC) is a novel learning solution which is robust

against noise. In this paper, we utilize HDC to stay resilient against created black-box attack

scenarios. Our experiments show that HDC can improve the resiliency of the state-of-the-art DL

methods by up to 67.5%. HDC can also achieve up to 25.1× training speed up compared to DL

methods, providing a lightweight learning solution. This means that HDC can still perform well

and efficiently under adversarial attacks, leading to more accurate replacement and maintenance

decisions even under cyberattacks.

In this chapter, we showed that HDC can be used as a lightweight, and resilient learning

solution in IIoT domain. However, there is still a need to analyze its resiliency against adversarial

attacks. To reach this goal, we devise HDC specific adversarial attack in the next chapter.
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Chapter 7

Hyperdimensional Computing Novel
Adversarial Attack Design

7.1 Introduction

The security solutions designed for traditional IT systems cannot be directly applied for

IIoT systems due to IIoT’s constrained functionality, limited power, and lightweight network

protocols [142]. Intrusion Detection System (IDS) is one of the security solutions that monitor

the network data to detect attacks and anomalies [10]. ML methods have been heavily used

for IDS due to their great performance in detecting attacks [143, 144, 145]. However, ML

methods are quite vulnerable to adversarial attacks. These attacks could pose significant threats

to ML-based IDS where data collected from different devices can be perturbed to cause malicious

data to be classified as benign, consequently bypassing the IDS. Hence, there is a need to evaluate

ML-based IDS against adversarial attacks and create realistic effective attacks that can deteriorate

IDS classification performance. By understanding the adversarial robustness rigorously, we can

develop better defense mechanisms that can protect IIoT systems against these attacks.

Hyperdimensional computing (HDC) was introduced as a brain-inspired learning solution

for robust and efficient learning. Compared to deep neural networks, HDC has shown advantages

such as smaller model size, less computation cost, and robustness to noise, making it a promising

alternative in low-cost computing devices in IIoT [146]. To the best of our knowledge, HDC has

not been used in an ML-based IDS domain previously. HDC can be a suitable IDS mechanism
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since it provides high energy efficiency, low power consumption, and fast training/inference

while its prediction performance is comparable with well-known ML methods. Similar to ML

methods, HDC can also be vulnerable to small perturbations on input data to produce wrong

classification [137, 138]. Previous studies on HDC security [134, 137, 136] mainly focus on

simple perturbations which are easy to detect and defend against, decreasing their effectiveness

against stronger attacks. Therefore, our goal is to develop an HDC adversarial attack mechanism

that would consistently work better than individual simple attacks.

In this chapter, we propose a diversity-induced adversarial attack framework for HDC.

We present our high-level framework in Figure 7.1. Given the test data, we first apply 9 different

perturbation methods ranging from transfer adversarial attacks to simple perturbations. For

transfer attacks, we utilize a pre-trained convolutional neural network. Then, we use perturbed

test data to calculate diversity among attacks. To introduce diversity, we measure pair-wise

Manhattan distance among attacks. By diversity inclusion, we eliminate possible overlap in

adversarial subspaces, minimize HDC encoding overhead, and increase attack performance.

Based on the calculated distances, we first select the two most diverse attacks and provide

these attacks to the sample based attack selection process. Here, among the attacks leading

to misclassification, we select the most effective attack which gives the maximum distance

between attack hyper-vector and pre-trained HDC class hyper-vector. We then check if the attack

performance is improved, i.e., lower F1 score. If this holds, we expand the attack set until no

further improvement is obtained. The experimental results on the X-IIoTID dataset [147] show

that our attack design is able to fool HDC model significantly more compared to selecting the

same attack for all samples or random attack selection. We can improve the attack success rate

by up to 36%, and F1 score by up to 61% compared to the most effective single attack.
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Figure 7.1. Our Proposed Attack Design Framework

7.2 Related Work

In this chapter, we have used random projection encoding for HDC [148]. Training and

test steps of HDC learning are identical to presented material in Chapter 6.

Random projection encoding: Assume that a feature vector in original space F =

{ f1, f2, . . . , fn} ∈ Rn. Encoding stage maps this feature vector to a D-dimensional hypervector

H = {h1,h2, ...,hD} ∈ RD where D ≫ n. Random projection encoding first creates D dense

bipolar vectors with the same dimensionality as original domain, P = {p1, p2, . . . , pD}, where

pi ∈ {−1,1}n. The inner product of a feature vector with each randomly generated vector gives

us a single dimension of a hypervector in high-dimensional space. For encoding, we perform a

matrix vector multiplication between the projection matrix and the feature vector: H = sign(PF)

where sign is a function that maps the result to +1 or -1.

ML-based IDS is a security solution that utilizes historical IoT network data to train ML

models and detects attacks and anomalies. Different ML methods are proposed in the literature
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such as logistic regression, support vector machine, random forest, deep neural network, and

recurrent neural network [149]. Although these methods provide great prediction performance,

they are quite sensitive to small perturbations in the input data. An adversary can tamper with the

data inputted into the ML model to fool the learner, exacerbating the classification performance.

HDC can be used in ML-based intrusion detection systems due to its lightweight and

robust characteristics. Although HDC has been used in a range of applications, the security

aspect of HDC classifiers has not been completely understood under strong attacks. Existing

HDC security studies focus on distinct domains: image classification [134, 137, 138, 139],

text classification [136], speech recognition [135]. Nevertheless, they mainly utilize simple

perturbations, e.g., rotation, skew, noise, to create adversarial attacks. These attacks are easy to

detect and defend, bringing the need of understanding HDC classifiers under stronger and more

realistic adversarial attacks. One work in this direction is published by Gungor et al. [17] who

tested HDC under transfer attacks. They showed that HDC is more resilient against different

adversarial attacks than well-known DL methods. Different than the state-of-the-art, we develop

an attack mechanism that works significantly better than simple and single attack scenarios.

7.3 Adversarial Attack Design Framework

Figure 7.1 represents our diversity included adversarial attack design framework. Given

pre-trained HDC and CNN models (trained previously using the training data), the first step

is to create perturbed test data via nine different perturbation methods. After we obtain the

perturbed test data, we introduce diversity to prevent possible overlaps in adversarial subspaces,

minimize HDC encoding overhead, and increase attack effectiveness. We start with the two

most diverse attacks and then increment the number of attacks until no further improvement

(prediction performance under attacks) is observed. Given diverse set of attacks, we then perform

sample-wise attack selection to find the attack that can fool the HDC model the most based

on the distance between class hyper-vector and attack hyper-vector. Here, we assume that the
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Figure 7.2. Perturbation Framework

attacker can access the pre-trained HDC model to send a query. Overall, our attack design

framework consists of 3 main modules: perturbation creation, diversity inclusion, and real-time

attack selection.

7.3.1 Perturbation Creation

Figure 7.2 illustrates our perturbation framework which consists of two groups of pertur-

bation methods: (i) transfer adversarial attacks, and (ii) simple perturbations. Transfer attacks

start with the attacker accessing pre-trained CNN model (substitute model) and the test data.

The attacker exploits loss gradient information in the target CNN and adopts five different attack

generation methods to create perturbed test data: fast gradient sign method (FGSM) [112],

randomized fast gradient sign method (RFGSM) [127], projected gradient descent (PGD) [115],

basic iterative method (BIM) [116], and momentum iterative method (MIM) [114]. The per-

turbed data is then transferred to pre-trained HDC (target model). Although these attacks are not

HDC-specific, an attacker relies on the transferability property which is satisfied when an attack
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Figure 7.3. Diversity Calculation Framework

developed for a substitute model is also effective against the target model. Other than adversarial

attacks, we also include 4 simple perturbation methods [137]: random row perturbation (RRP),

random column perturbation (RCP), random noise injection (RNI), and Gaussian noise injection

(GNI). Each attack uses a parameter, called perturbation amount (ε), that denotes the amount of

noise added to the clean data. Based on the selected diverse set of attacks after diversity inclusion,

we encode the selected perturbed attack data and obtain the encoded attack hyper-vectors as

illustrated in Figure 7.2. These are then given to the pre-trained HDC model and we obtain class

predictions for the attack ŷi
attack and clean test data ŷnormal . We will use encoded HVs and HDC

predictions in attack selection.
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7.3.2 Diversity Inclusion

We introduce diversity to select the most diversified set of attacks due to 3 main reasons:

(i) different attacks can lead to same prediction labels due to overlap in adversarial subspaces,

(ii) HDC encoding is computationally expensive [148], and (iii) attack performance can be

increased by considering a subset of attacks. Overall, our goal is to minimize HDC encoding

overhead while keeping attack performance at a maximum level. Figure 7.3 depicts our diversity

calculation process. Given n samples and m attacks, we first calculate sample-wise distance

(δ ) among attacks. To find δ , we use Manhattan distance as a distance metric. Then, to find

the pair-wise distance between attacks i and j (∆i j), we sum the distances over all samples,

i.e., ∆i j = ∑
n
k=1 δk. To construct the distance matrix ∆ (which is hollow symmetric), we place

∆i j appropriately. For instance, the second row and the third column of ∆ corresponds to the

Manhattan distance between second and third attacks. After we generate this matrix, the next

step is to select the largest value in this matrix, providing us the set of the most diverse two

attacks D = {Ai,A j}. After sample-wise attack selection, we revisit ∆ to find the next most

diverse attack (second largest value in ∆) and add the corresponding attack to the existing attack

set. Let Ak be the next most diverse attack, then we expand D as follows: D = D∪{Ak}. We

expand the set D until we no longer improve the attack performance which we measure by F1

score.

7.3.3 Real-time Attack Selection

Given the prediction labels, we first compare attack predictions with clean data prediction

to test if an attack can fool the HD model for each sample. Let γ denote the number of attacks

that can fool HD. We analyze 3 different scenarios based on the value of γ:

1. γ = 0: This scenario represents the worst-case scenario where both clean and attack data

lead to same class prediction. In this scenario, we need to tune attacks (e.g., increase

perturbation amount ε) or generate a completely new attack.
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Figure 7.4. Attack Selection Framework

2. γ = 1: There is only one attack that can mislead HDC. We simply select that single attack.

3. γ > 1: This scenario occurs when there are multiple attacks that can mislead HDC. Here,

there is a need to select the most effective attack. Figure 7.4 presents our attack selection

framework. For each given sample, our goal is to select the attack that is able to fool the

HDC model the most. We perform the evaluation using Manhattan distance among query

hyper-vector (clean test sample class hyper-vector from HDC associative memory) and

attack hyper-vectors. We select the Manhattan distance metric since it is the most preferable

for high dimensional applications [150]. For each attack i, we calculate its Manhattan

distance δi from the query hyper-vector. Then, we select the maximum distanced attack

for a given sample. We repeat this attack selection process for all samples.
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7.4 Experimental Analysis

7.4.1 Dataset Description

To validate the proposed attack design against HDC, we use a realistic IIoT intrusion

dataset, X-IIoTID [147]. This connectivity agnostic and device agnostic dataset reflects the

changes and heterogeneity of network traffic and systems’ activities generated from various

IIoT devices, connectivity protocols, and communication patterns. To create the dataset, Brown-

IIoTbed testbed is used which is a holistic and end-to-end IIoT security testbed developed

based on an industrial Internet reference architecture (IIRA). This dataset contains 18 different

attacks: generic scanning, scanning vulnerabilities, fuzzing, discovering resources, brute force

attack, dictionary attack, malicious insider, reverse shell, MitM attack, MQTT cloud broker-

subscription, Modbus-Register reading, TCP relay attack, command and control, exfiltration,

false data injection, fake notification, crypto-ransomware, and ransom denial of service. Overall,

with the normal data, we have a classification problem with 19 labels. The collected data is

related to the end-to-end network traffic (i.e., from physical field devices to the edge gateway

and from the edge gateway to the cloud and enterprise devices), host device logs, and the host

device’s resources, physical properties, and alert logs. The period for capturing normal data

began on December 5, 2019, ran for many hours each day, and ended on March 23, 2020 (not

continuous). The experiments on the collected attack data took place over different times and

days from January 7, 2020 to March 27, 2020, with each attack experiment repeated multiple

times to collect more data.

7.4.2 Experimental Setup

We run all experiments on a PC with 16 GB RAM and an 8-core 2.3 GHz Intel Core i9

processor. For CNN, we selected SGD optimizer with learning rate 0.01, relu activation function,

and batch size of 32. For HDC, we set hypervector dimensionality, D, to 1000 and used random

projection encoding. To measure attack performance, we use three different metrics: (untargeted)
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Figure 7.5. Attack Performance Comparison (ε = 0.1)

attack success rate, accuracy, and F1 score. Attack success rate is the ratio of misclassified

number of samples to the total number of samples under any attack. Accuracy is the ratio of

number of correct predictions to the total number of samples. F1 score is formulated as follows:

F1 = 2 · precision · recall
precision+ recall

(7.1)

where precision =
T P

T P+FP
and recall =

T P
T P+FN

.

7.4.3 Experimental Results

We compare our diversity-induced attack design with two benchmarks: (i) selecting the

same attack for all samples (denoted by the attack name, e.g., FGSM), (ii) random attack selection

for a given sample (denoted by Random). We experimented with different perturbation amounts
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Figure 7.6. Our Attack Design Performance

(ε) from {0.1,0.2,0.3,0.4,0.5}. Figure 7.5 demonstrates attack performance comparison where

ε = 0.1. While y-axis provides percentage values, we have our metrics on the x-axis: attack

success rate, accuracy, and F1 score. In this figure, green denotes our attack design (leftmost

bar), random selection is represented with orange, and selected single attacks (best performing 6

attacks) are represented with distinct colors. We can see that our approach is far superior to the

single attacks. Our attack design can reach 77.2% attack success rate while the most effective

single attack (FGSM) can only achieve 49.3%. In terms of accuracy and F1 score, we observe the

best attack performance under our approach. We can decrease the prediction accuracy to 35.9%

and F1 score to 30.5%. However, with FGSM, we obtain 51.6% and 39.9% accuracy and F1

score respectively. Random selection approach is somewhere in between different single attacks.

Figure 7.6 illustrates our attack design performance under selected ε values. We present

attack success rate, accuracy, and F1 score with blue, green, and orange colors respectively.

99



Table 7.1. Improvement over the best single attack (FGSM)

Perturbation Amount (ε) Attack Success Rate (%) Accuracy (%) F1 Score (%)
0.1 36.2 30.5 23.7
0.2 26.8 24.1 30.1
0.3 22.2 27.8 45.9
0.4 18.1 41.7 61.1
0.5 15.8 52.5 57.1

Average 23.8 35.3 43.6

Table 7.2. Attack Selection Overhead

Number of Attacks 2 3 4 5 6 7 8
Elapsed Time (ms) 0.91 1.47 1.49 1.52 1.75 2.08 2.12

We can observe that as ε increases, our method became much more effective while prediction

performance (both accuracy and F1 score) decreases significantly. We can reach up-to 97.6%

attack success rate, 9.4% accuracy, and 4.9% F1 score (when ε = 0.5). With chosen ε values,

the selected number of attacks are 6, 5, 5, 5, and 7 respectively. This selection consistently

gives us the lowest F1 scores. We also make a comparison with the single best attack (FGSM)

under different ε values. Table 7.1 presents the results for our method’s improvement over

FGSM. As ε increases, attack success rate improvement decreases while accuracy and F1 score

improvement increases. We can reach up-to 36.2% attack success rate improvement, 52.5%

accuracy improvement, and 61.1% F1 score improvement over.

Attack Selection Overhead: When we analyze our real-time attack selection, we observe

that it has a small computational overhead while increasing attack effectiveness significantly.

Table 7.2 shows attack selection overhead with respect to increasing number of attacks. As the

number of attacks increases, the attack selection overhead also increases. In the worst case, the

overhead of our framework is limited by 2.12 ms, and on average 1.75 ms.
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7.5 Conclusion

IIoT security is one of the major obstacles that prevent the widespread adoption of IIoT

technology [14]. Intrusion Detection Systems (IDSs) dynamically monitor the behavior of a

system to detect and respond to malicious activity. Machine learning methods are quite popular

in IDSs due to its accurate prediction performance. Hyperdimensional computing (HDC) is a

brain-inspired learning solution for robust and efficient learning which can be a beneficial ML

solution for IDSs. However, HDC is sensitive to adversarial attacks, hence increasing the need

for investigating its security aspect. In this chapter, we proposed a novel adversarial attack design

targeting HDC. After we find out the most diverse set of attacks, we select the most effective

attack sample by sample. Our experimental results show that we can improve attack success rate

by up to 36%, and F1 score by up to 61% compared to the most effective single attack.
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Chapter 8

Summary and Future Work

The Industrial Internet of Things (IIoT) is the connection of industrial assets with the

information systems and the business processes. It continuously monitors and analyzes collected

data towards better system efficiency and reliability. It is crucial to utilize collected system

data towards high-level business decisions. Machine learning (ML) solutions are deployed for

predictive analytics which aims to predict the likelihood of future outcomes. There are numerous

challenges that should be addressed to widely deploy ML solutions in IIoT environments: (i)

difficulty of selecting a single ML method that can perform well across different IIoT settings,

(ii) impact of adversarial attacks on ML prediction performance, and (iii) creating efficient ML

solutions to be used at resource-constrained IIoT devices.

8.1 Thesis Summary

This thesis aims to devise intelligent, secure, and efficient ML solutions for IIoT predictive

analytics. It presents novel methods to increase prediction performance, secure ML algorithms

against adversarial attacks, and deploying lightweight learning approaches for IIoT environments.

We first design novel ML solutions which are capable of great prediction performance under

varying IIoT conditions. Nevertheless, to implement these intelligent learning solutions, IIoT

environments employ various sensors and edge computing devices. This dramatically increases

IIoT security vulnerabilities. Notably, attackers can conduct adversarial attacks to significantly
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affect ML prediction performance. In secure learning, we aim to solve this problem by proposing

resilient learning solutions against adversarial attacks. Although these intelligent and secure

learning solutions bring many benefits, they also increase the computational burden of IIoT

systems, which rely on small computing devices. Hence, there is a need to deploy efficient

learning solutions in resource-constrained IIoT devices. For that purpose, we devise efficient

learning solutions for IIoT predictive analytics. The following discussion summarizes thesis

contributions briefly:

8.1.1 Diversity-induced Optimally Weighted Ensemble Learner

To address training overhead in ensemble learning, we propose a diversity-induced

ensemble learning solution. To keep ensemble accuracy at a certain level, we solve a quadratic

programming model for optimal weights discovery. For diversity, we select the most diverse

learners. Our approach provides 39.2% faster retraining than only accuracy included ensemble

with only 3.4% loss in accuracy.

8.1.2 Ensemble Few-Shot Learning under Limited Labeled Data

We present a novel few shot ensemble learning to solve limited labeled data problem.

Our approach combines five different Siamese neural network architectures using an iterative

majority voting classifier. Our approach improves the best algorithm significantly while using

very limited labeled data. We obtain up to 16.4% improvement over the best algorithm by only

using 0.3% of the training data.

8.1.3 Resilient Stacking Ensemble Learner Against Adversarial Attacks

To address adversarial attacks in IIoT domain and create a resilient learning solution, we

devise a novel stacking ensemble learning-based framework. Our ensemble learner combines

the most resilient DL method predictions based on our iterative selection procedure. We show

that adversarial attacks can impact the performance of DL-method considerably, leading up to
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120× prediction performance loss. The proposed stacking ensemble improves resiliency against

adversarial attacks by up to 60% compared to the most resilient single method.

8.1.4 Diversity Promoting Ensemble Adversarial Training

We present a novel defense framework against adversarial attacks. Our defense first mea-

sures the loss gradient similarity among pre-trained ML models and selects the most dissimilar

ones to promote diversity. Then, we create perturbed training instances using the selected diverse

base learners and augment those examples into our training data. Our defense improves the

resiliency by up to 97% compared to state-of-the-art training settings.

8.1.5 Hyperdimensional Computing for Resilient IIoT Predictive
Analytics

To present an efficient and robust learning solution for IIoT systems, we apply hyper-

dimensional computing (HDC) for intelligent fault diagnosis. We also test HDC against various

adversarial attacks. HDC leads to a more resilient and lightweight learning solution than the

state-of-the-art deep learning methods. HDC has up to 67.5% higher resiliency compared to the

state-of-the-art methods while being up to 25.1× faster to train.

8.1.6 Hyperdimensional Computing Novel Adversarial Attack Design

To further explore HDC resiliency against adversarial attacks, we devise a novel adver-

sarial attack design. We select the most diverse set of attacks and perform a real-time attack

selection. Compared to the most effective single attack, our design strategy can improve attack

success rate by up to 36%, and F1 score by up to 61%.
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8.2 Future Work

8.2.1 Intelligent Learning

Although this thesis addressed certain IIoT predictive analytics challenges, there are

other key challenges that require attention. These are (i) dynamic nature of real industrial

environments, and (ii) black box aspect of state-of-the-art ML models. IIoT is a dynamic and

ever-changing system where deployed ML models might lose their accuracy across time. Keeping

their performance requires frequent model updates leading to high computational cost. ML

solutions should be adaptive to constantly changing IIoT environments by learning continuously.

Lifelong Machine Learning (LML) can be a suitable solution to address this issue. LML is

capable of adapting past knowledge to handle unseen situations [151]. Another challenge with

deploying ML models is their lack of transparency, trustworthiness, and explainability. Most ML

models are black box where it is not possible to explain the output based on inputs. Explainable

Artificial Intelligence (XAI) helps AI decisions to be understood, interpreted, and explained by

humans [152]. Implementing XAI for IIoT is critical since it facilitates the understanding behind

certain predictions for industrial stakeholders.

8.2.2 Secure Learning

There are two main adversarial attack challenges to be addressed for IIoT: (i) offline

static adversarial attacks/defenses, and (ii) labeled data assumption in adversarial attack/defense

creation. IIoT is a dynamic system where collected data and operating conditions can change

continuously. Thus, adversarial attacks can happen in real-time with unknown perturbations

and frequencies [153]. To address this challenge, there is a need to create real-time adversarial

attacks and defenses. Other than this challenge, most state-of-the-art adversarial attacks and

defenses rely on the existence of labeled data which might not hold for IIoT systems. To break

this assumption, it is crucial to create adversarial attacks and defenses in an unsupervised manner.
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8.2.3 Efficient Learning

There are two possible paths for HDC to be widely used in IIoT: (i) HDC algorithmic

novelties, and (ii) HDC-based adversarial defense mechanisms. HDC is an emerging learning

paradigm which requires further investigation to apply it safely for the IIoT domain. To illustrate,

hyper-vector size, encoding algorithm, and data type (e.g., image, time-series) significantly

affects HDC prediction performance. Thus, there is a need to develop efficient algorithmic

HDC solutions, e.g., novel encoding methods, integrating ML with HDC, and implement those

solutions for the IIoT domain. The second path is related to designing HDC specific defense

mechanisms. In Chapter 7, we showed that HDC can be vulnerable to adversarial attacks. Hence,

it is imperative to protect HDC against adversarial attacks. For that purpose, novel defense

designs should be created for HDC-based predictive analytics.
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