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ABSTRACT OF THE THESIS

Validation of Refining Control Barrier Functions for Hardware Applications

by

Nathan Cusson-Nadeau

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2023

Professor Sylvia Herbert, Chair

Control Barrier Functions (CBFs) have gained rapid popularity in the recent years as

a method to verify and enforce safety properties in safety-critical controllers for autonomous

systems. However, developing a valid CBF that is not overly conservative can prove to be a

non-trivial task in conjunction with input constraints. Using a recently developed algorithm

called RefineCBF, this task can be made easier by providing a constructive method that iteratively

constructs a valid CBF using dynamic programming (DP) based reachability analysis. This work

seeks to validate that RefineCBF can be used with hardware-in-the-loop by demonstrating the

algorithm successfully enforcing safety online for a robotic agent. We successfully demonstrate

this by showing that a three degree of freedom robot can safely reach a goal pose in the presence

xii



of obstacle with minimal violations to safety using a safety filter whose constraint is informed

from RefineCBF. Additionally, we demonstrate that in scenarios where the obstacles change in

time in a non-adversarial way, RefineCBF can be used to adaptively enlarge the safe set online.

xiii



Chapter 1

Introduction

With the ever-increasing integration of autonomous systems into society, it is crucial to

maximize the safety of these systems while minimally compromising their utility and efficiency.

Previous research in the field of safe controls has developed robust safety tools based on Hamilton-

Jacobi Reachability (HJR) [1] and Control Barrier Functions (CBF) [2]. Both methods provide

a safe set for the system along with a control policy that keeps the system within the safe

set. However, these methodologies have certain limitations. Firstly, although HJR offers a

constructive approach to ensuring safety, it encounters exponentially increasing computational

complexity as the dimension of the state-space grows—an issue often referred to as the “curse of

dimensionality”. While CBFs overcome this computational challenge by relying on analytical

or data-driven methods, finding a valid CBF that is not excessively conservative or merely an

approximation can be quite difficult. To address these issues, Choi aimed to unify these two

theories through their work on Control Barrier Value Functions (CBVFs) [3]. CBVFs utilize

HJR to construct valid and less conservative CBFs. However, this method still faces the same

“curse of dimensionality” as HJR and the initial use of a constraint function to begin construction

of a valid safe set can lead to unsafe behavior if used online before convergence.

Recently, Tonkens and Herbert introduced an algorithm called RefineCBF, which aims to

overcome the shortcomings of CBVF [4]. RefineCBF demonstrates that safety can be guaranteed

and the effects of the “curse of dimensionality” associated with DP-based approaches can be

1



mitigated by warmstarting the DP recursion of HJR with a candidate CBF instead of the typical

constraint function.

Although the results of RefineCBF carry significant implications, the utility of the algo-

rithm within a real-time system has not yet been demonstrated or evaluated. This work aims to

showcase the practical value of the algorithm by implementing it in a real-time physics simulation

environment and on physical hardware using a differential drive-based robot. Furthermore, this

in-the-loop implementation allows us to assess the effectiveness of the algorithm in the face of

changing constraint sets that are non-adversarial1.

1Adversarial in this sense would mean that the obstacles would intersect with the current safe set.
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Chapter 2

Related Works

2.1 An Efficient Reachability-Based Framework for Prov-
ably Safe Autonomous Navigation in Unknown Environ-
ments

Previous to our work, an online enforcement of safety for autonomous systems using

reachability-based methods has been demonstrated by [5]. In this work, all unknown space is

considered to be an obstacle and HJ reachability is use to compute the backward reachable set

(BRS). The complement of the BRS is the safe set for the system. Safety is enforced by using

the least restrictive safety controller when the system would enter an unsafe state, otherwise,

it will use a nominal planner. This results in jerky behavior, and may frequently violate safety

when there are time delays or measurement noise.

To circumvent the BRS computational challenge at run time, the algorithm only locally

update the BRS when new environment information is uncovered by the sensors. This results in

a faster update of the safe set in response to exploration of the environment.

2.2 Scalable Learning of Safety Guarantees for Autonomous
Systems Using HJ Reachability

In their work, HJR is used to update safety analysis online upon receiving new information

from the environment, system dynamics, or the predictions of agents in the operating environment.

3



They circumvent the computational complexity associated with HJR using decomposition,

warm-starting, and adaptive grids, which allows safe sets to be updated by one or more orders

of magnitude faster. These results were demonstrated on simulated high dimensional 10D

quadcopters, but never tested on real-time hardware [6].

2.3 Governor-parameterized barrier function for safe
output tracking with locally sensed constraints

In this work, the authors introduce a governor-parameterized barrier function (PBF) that

can change in real-time as the governor state, system state, and sensor measurements change. The

PBF defines a local safe set by quantifying the trade-off between safety and the system’s stability.

This can be used to achieve output-tracking with formal safety and stability guarantees [7].

The ability for this methodology to enable safe autonomous navigation in an a priori unknown

unstructured environment was demonstrated using a simulated omnidirectional robot.

4



Chapter 3

Preliminaries

The following sections present the foundational theory underlying the RefineCBF al-

gorithm, as well as the theory behind the algorithm itself. These preliminary explanations

are necessary because the hardware application will directly rely on the following theoretical

framework.

3.1 Dynamical System

The dynamics of a general nonlinear control-affine (linear in the control input u) system

can be expressed by the following ordinary differential equation:

ẋ = f (x)+g(x)u (3.1)

where ẋ is the rate of change of the system state x ∈ X ⊆Rn, u ∈ U ⊆Rm is the system’s current

control input, f : Rn→ Rn is a vector-valued function that describes the drift of the system (or

open-loop dynamics), and g : Rn→ Rn×m is a matrix-value function that represents the control

influence on the system. All of which are assumed to be locally Lipschitz continuous on their

respective domains.

5



3.1.1 Nominal Policy

If the control signal is defined by a locally Lipschitz continuous on its domain nominal

policy π : Rn→ Rm, the resulting dynamics will be:

ẋ = f (x)+g(x)π (3.2)

The Lipschitz continuity of f , g, and π provide a sufficient condition for the existence

and uniqueness of the solutions to (3.2). This is required for the following theoretical results to

hold.

3.2 Constraint Set

3.2.1 Obstacle Set

We define the set of states that result in immediate failure of a system as the Minkowski

Sum of:

O∗k = A+Ok (3.3)

where A ∈ Rp is the set of vertices that comprise the boundary of some shape, and similarly,

Ok ∈ Rp is the set of vertices that comprise the boundary of the shapes of an obstacle of interest

at a discrete time k. O∗k denotes the new inflated obstacle set vertices at this same time k. This

can be viewed as inflating or enlarging the obstacles by the maximal dimensions of set A. This is

useful, as it allows a physical system with shape A to check for collisions with the shape defined

by the original obstacle set.

3.2.2 Constraint Set

Let L ⊆ X , be defined as a 0-superlevel set of a bounded Lipschitz continuous function

ℓ : X → R. ℓ(x) will be referred to as the constraint function, which will provide a way of
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measuring the distance from a set of failure states, Lc, the complement of L. A state contained in

L can be viewed as safe, so a trajectory staying within L, can also be viewed as safe. Throughout

this work, ℓ(x) will be equivalent to the signed distance function from the closest state contained

in Lc. And, Lc will be identical to the current inflated obstacle set O∗k (i.e. Lc = O∗k ), as the

robotic system will be tasked to avoid collision with obstacles. Therefore:

ℓ(x) =


−d(x,∂O∗k) if x ∈ O∗k

d(x,∂O∗k) if x ∈ O∗ck

(3.4)

where d(x,∂O∗k) is the signed distance function from the closest boundary of the current inflated

obstacle set. Thus our constraint and failure sets will be:

L := {x ∈ X : ℓ(x)> 0} (3.5)

Lc := {x ∈ X : ℓ(x)≤ 0} (3.6)

3.2.3 Viability Kernel

The viability kernel, S(t) is defined as the largest control invariant subset of L:

S(t) := {x ∈ L : ∃u(·) ∈ U s.t.ξ u
x,t(s) ∈ L ∀s ∈ [t,0]} (3.7)

S(t)⊆ L can be interpreted as the set of all initial states from which there exists an admissible

control input which keeps the system contained within the constraint set for some set time

duration t. The infinite-time (t = ∞) viability kernel is denoted as S∗.

3.3 Control Barrier Functions (CBFs)

Recently popularized by [2], a continuously differentiable function h : Rn → R is a

Control Barrier Function (CBF) for the control affine system (3.1) if there exists an extended
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class K∞ function α such that the following inequality is satisfied:

sup
u∈U

.
h(x) := sup

u∈U
[ L f h(x)+Lgh(x)u ]≥−α(h(x)) (3.8)

A continuous function α : (−b,a)→ (−∞,∞) belongs to extended class K∞ for some a,b > 0

if it is monotonically increasing and is zero at zero (α(0) = 0). Typically, a linear function

α(z) = γz is used, where γ ∈ R+ is the maximal discount rate of h(x).

We define the 0-superlevel set of h(x) as:

Ch = {x ∈ X |h(x)≥ 0} (3.9)

3.3.1 Candidate CBFs and Valid CBFs

Candidate CBF

A candidate CBF is a continuously differentiable scalar function h : Rn→ R for a closed

set C ⊆ X if it satisfies:

1. h(x)> 0⇔ x ∈ Int(C), positive inside the set

2. h(x) = 0⇔ x ∈ ∂C, zero at the boundary of the set

which are necessary but not sufficient conditions for (3.8). Hence, a candidate CBF may not be

able to guarantee safety for all states within its 0-superlevel set, Ch.

Valid CBF

In order for a candidate CBF to also be a valid CBF it must additionally satisfy (3.8)

∀x ∈ C and C ⊂ S∗. A valid CBF is able to be used to impose a constraint on the input of the

system which can assure the forward invariance of Ch (i.e. guarantee safety).

From [2], let h be a CBF on X , then any Lipschitz continuous control policy π : X →U

such that π(x) ∈ Kh(x) where:
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Kh(x) := {u ∈ U | ḣ(x)≥−γh(x)} (3.10)

will render Ch forward invariant. In addition, a valid CBF instills asymptotic stability in Ch.

When h(x)< 0, a valid CBF describes a Control Lyapunov Function (CLF) and thus enforces an

exponential return to safety.

3.3.2 Safety-Critical Control

A valid CBF can be used for safety-critical control by formulating an optimization

problem called a CBF Quadratic Program (CBF-QP). To formulate this problem, we first define

the set of all control values Kh(x) that can render Ch forward invariant (i.e. safe) (3.10). Then by

using the derivative requirement (3.8) on this set of controls as a constraint, and the fact that this

constraint is linear in u, we can design a minimally invasive safety-filter for a safety-agnostic

nominal policy π̂(x) by solving the following quadratic program (CBF-QP):

u∗(x) = argmin
u∈Rm

||u− π̂(x)||2R

s.t. L f h(x)+Lgh(x)u≥−γh(x)

u ∈ U

(3.11)

where u∗(x) ∈ Rm is the resulting safe control signal, π̂(x) ∈ Rm is a nominal (safety-agnostic)

control policy, L f is the Lie Derivative with respect to f , the open-loop dynamics and similarly,

Lg is the Lie Derivative along the vector field g (the vector field which dictates how the dynamics

will evolve based on the control influence). Of note, U must be a convex polytope in order for

(3.11) to be a quadratic program.

Solving this optimization problem will yield the safest control possible while minimizing

the deviation from the nominal control. Notably, even when not provided a nominal policy to

filter, (3.11) returns a safety preserving control signal. Critically, the (3.11) form as a QP allows

it to be solved extremely quickly online, making it a viable safety enforcement tool in online
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control applications.

The use of a candidate CBF instead of a valid CBF in (3.11) does not mean that a system

cannot remain safe during operation. But, it will not provide safety guarantees and thus should

be avoided when possible.

3.4 Hamilton-Jacobi Reachability (HJR)

Given an initial constraint function, HJR provides a constructive method that can be used

to generate a value function, V (x, t), where the function’s 0-superlevel set defines the set of

state’s that can be reached within in a specified time frame [1].

The value function can be found by solving the Hamilton-Jacobi Bellman partial differ-

ential equation (HJB-PDE):

−∂V
∂ t

= H(x,∇V ) (3.12)

where H(x,∇V ) is called the Hamiltonian and is defined as:

H(x,∇V ) = inf
u∈U

1⟨∇V, f (x,u)⟩ (3.13)

However, solving the HJB-PDE analytically can prove quite challenging, one popular way to

solve it numerically is through the dynamic programming (DP) principle. This is typically done

through the following:

1. Discretize the state space into a grid.

2. Initialize the value function with some initial value at every grid point. This is typically

initialized as the constraint function (3.4) defined as the signed distance function from

some failure sets.

V (x,0) = ℓ(x) (3.14)
1If instead we wanted to avoid a set of target states, the supu∈U , would be used.
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3. Value iteration over the grid points until the value function converges.

In solving for V (x, t), the optimal control policy u∗(x) can be retrieved:

u∗(x) = argmin
u∈U

2⟨∇V, f (x,u)⟩ (3.15)

Constraint Function Choice

Commonly in safe control problem formulations, where the task at hand is to avoid an

obstacle set (O), the constraint function is equivalent to the SDF from (3.4). In a reach problem

formulation, where the task at hand is to reach a target set of states, G ⊆ Rn, the constraint

function is similarly the SDF from (3.4) but the instead of an obstacle set, the distance function

measures from the current state to the goal state:

ℓ(x) = d(x,G) (3.16)

3.5 Control Barrier Value Function (CBVF)

Control Barrier Value Functions (CBVFs) can be viewed as a unification of CBFs and

HJR. A Control Barrier-Value Function Bλ : X × (−∞,0]→ R [3] is defined as:

Bλ (x, t) := max
u∈U[t,0]

min
s∈[t,0]

eλ (s−t)ℓ(ξ u
x,t(s)) (3.17)

for some λ ∈ R+ and ∀t ≤ 0, with initial condition Bλ (x,0) = ℓ(x).

Given CBλ
(t) := {x |Bγ(x, t)≥ 0}, a CBVF recovers the viability kernel, ∀t ≤ 0, λ ∈R+,

CBλ
(t) = S(t). As such, a CBVF recovers the largest (time-varying) control invariant set for

maintaining safety, similar to the converged HJR value function from the solution of (3.12) in

an avoid case. To practically implement this, we would begin by spatially discretizing the state

space into a grid and solving for Bλ using dynamic programming recursion [8]:

2For an avoid problem, this would be the argmaxu∈U
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Bλ (x, t) := max
u∈U

min{ min
s∈[t,t+δ ]

eλ (s−t)ℓ(ξ u
x,t(s)),e

λδ Bλ (ξ
u
x,t(t +δ ), t +δ )} (3.18)

with the initial condition Bλ (x,0) = ℓ(x). This requirement of the initial condition as the

constraint function is a key requirement for CBVFs.

As opposed to a standard HJR value function, using a CBVF in a safety filter (3.11) (i.e.

h(x) = Bλ (x, t)) allows for resulting trajectories to approach the boundary of the safe set, which

is preferable in many robotic applications as it allows for more efficient goal reaching.

Analogous to (3.10), a control set satisfying the CBF derivative inequality (3.8) for a

CBVF is described by:

Kγ

Bλ
(x,s) := {u ∈ U | Ḃλ (x,s)≥−γBλ (x,s)} (3.19)

where λ is the discount rate for the offline DP-recursion, and γ is the maximal discount rate for

the online CBVF constraint (3.8).

As a final remark, CBλ
(t) ⊆ S(t), therefore Bλ satisfies the requirements to be a valid

CBF almost everywhere.3

3.6 Refine CBF

Thus we finally arrive at the core recent theoretical development to be applied in this

work, RefineCBF. In essence, RefineCBF warmstarts the dynamic programming recursion of

(3.18) with a candidate CBF h(x) instead of the constraint function ℓ(x) (i.e. Bλ (x,0) = h(x)

not Bλ (x,0) = ℓ(x)). The idea being, an initial candidate CBF will be a better initial condition

for the DP-recursion of (3.18). This also allows for expert crafted and data-driven CBFs to be

utilized effectively - as they make excellent initial candidate CBFs to warmstart the DP-recursion.

3Because a CBVF an have points of non-differentiability, (3.8) cannot always be satisfied.
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In order to practically implement and leverage the theoretical guarantees from warmstart-

ing developed for HJR [9], it was proposed that applying a maximal discount rate of γ in the

safety-filter (3.11) online for a CBVF constructed from (3.17) maintains control invariance of

the safe set [4].

In [4], theorem 2 is key to enabling the online implementation of this work, as it states

that each iteration of RefineCBF will either maintain the current level of safety4 or become less

unsafe5. We refer the reader to [4], for details and proofs regarding the theorem. The implications

of this theorem are that at every iteration of RefineCBF, the safe set is contained in the union of

the viability kernel and its previous iteration:

Ch(t−δ )⊆ S∗∪Ch(t) (3.20)

∀t ≤ 0, δ ∈ R>0, where δ is a time step. In other words, the safe set is at all times contained

within the safe set of the union of the viablity kernel and candidate CBF. This also means that

if the initial candidate CBF is contained within the viability kernel, then the refined CBFs safe

set will be contained within the viability kernel at all times. Inversely, if the viability kernel is

contained within the initial candidate CBF, proceeding refined CBFs will be contained within

the prior iterations safe set. Importantly, this means that if at any point during the DP recursive

process the CBF is valid, it will remain valid for every further recursion!

As well as improving or keeping the current level of safety between iterations, RefineCBF

similarly alters the conservativeness of the current iteration of the CBF. Each iteration of the

current CBF will be as conservative or less conservative than the prior. Conservativeness is

measured by how much coverage the safe set Ch has within X . Figure 3.1 depicts a high-level

visual of the provisions of RefineCBF.

4If the 0-superlevel set of the candidate CBF is conservative compared to the viability kernel.
5If the original candidate CBF was not valid.
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3.6.1 Practically Implementing Refine CBF

In [4], steps were provided to implement RefineCBF in an offline or online setting. In

this work, we will be following these steps explicitly. The steps are as follows:

1. Spatially discretize the initial analytical CBF ho(x), which will require the evaluation of

the CBF for every point across this grid.

2. Apply RefineCBF (see algorithm 1 for full breakdown):

(a) Use λ = 0 to update the CBVF (3.17) and use γ ≥ 0 for the safety filter (3.11).

Larger values of γ in the safety filter will result in a faster exponential decrease to the

boundary of the safe set.

(b) Initialize the recursion process of (3.17) with the current discretized h(x). Theorem

2 from [4] guarantees that recursive updates do not become more unsafe while

converging to a valid CBVF.

3. The safety filter from (3.11) will be implemented using spatial finite differences for

computing the Lie derivatives at the grid points and interpolation to determine the CBF

and its time derivative.
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Algorithm 1. RefineCBF Algorithm

Require: State space discretization X , control space U , time step δ , discount factor γ = 0,
iteration count k, initial candidate CBF ho(x)

1: Initialize Bγ,0(x,0) = ho(x) for all x ∈ X
2: while not converged do
3: if new ℓ(x) then
4: update ℓ(x)
5: end if
6: for all x ∈ X do
7: HJ Reachability Value Update:
8: Compute the gradient ∇xBλ ,k
9: Find the optimal control u∗ = argminu∈U H(x,∇xBλ ,k)

10: Compute the Hamiltonian H∗(x,∇xBλ ,k) = ⟨∇V, f (x,u∗)⟩
11: Update the value function Bγ,k+1(x, t) = max(ℓ(x), Bγ,k(x, t)+δ H∗(x,∇xBλ ,k)
12: end for
13: Update Bγ,k← Bγ,k+1
14: Update iteration count k = k+1
15: end while
16: return Bγ,k
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Figure 3.1. Refine CBF High-Level Representation [4]. In the top left is an initial 0-levelset of
an overly conservative CBF. Through applying RefineCBF, this initial CBF can be refined to be
less conservative. Thee 0-levelset of the refined CBF is shown in yellow and then green from
left to right. Similarly, starting from the bottom right, an initial unsafe CBF can be refined to
become more safe, as shown by the 0-levelsets of the yellow and green refined CBFs from left to
right on the bottom.
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Chapter 4

Refine CBF ROS Implementation

To provide modularity and ease of use of the software packaged developed for this project,

we elected to implement RefineCBF in the Robot Operating System (ROS). Specifically, with

the Ubuntu 20.04 LTS distribution of ROS2, Foxy Fitzroy. This was chosen due to its current

live support and modernity1.

ROS is an open-source middleware software package that allows computer program

scripts (written in C++ or Python) to communicate with one another asynchronously. It is widely

used in the robotics community in both academia and industry which allows the work developed

here to be easily shared and utilized. [10]

ROS achieves a high degree of its modularity through how robotics software packages

can be structured within it. Typically, different processes of the robot are written into distinct

nodes, or programming scripts, which can exchange data with one another over topics.

4.1 RefineCBF: ROS Package

The core Refine CBF implementation in ROS can be seen as three distinct interfacing

nodes in a network, these nodes being: Dynamic Programming, Safety Filter, Nominal

Controller. Nodes communicate to each other over topics through a publisher/subscriber model.

The rate at which the publishers and subscribers send or receive messages over topics is tunable

1ROS2 is becoming the de facto standard version across academia and industry.
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by the user2.

Table 4.1. RefineCBF ROS Publishers and Subscribers. *Because the State Estimation node
will be different depending on if Gazebo or the Vicon arena is used, a general node name State
Estimation and topic name /odom is used.

Node Published Subscription 1 Subscription 2
Dynamic Programming /cbf availability - -

Nominal Controller /nom policy /odom* -
Safety Filter /cmd vel /odom* /cbf availability
TurtleBot3 - /cmd vel -

State Estimation* /odom* - -

4.1.1 Dynamic Programming

This node is the core of RefineCBF algorithm the implementation. Initialized with

a discretized candidate CBF over a predefined grid, the node executes the DP-recursion of

(3.18) with a provided δ , admissible control set u ∈ U , and the dynamics of the system ẋ of the

designer’s choice. The CBF is iteratively updated indefinitely according to algorithm 1.

Upon completion of every iteration, the new CBF is saved to the remote PC. After saving,

a boolean message of True is published over the topic named /cbf availability.3

4.1.2 Nominal Policy

This node contains the nominal controller logic for the package. The choice of nominal

controller does not matter, and is the designer’s choice. If feedback is required, this node

subscribes to a predefined /odom topic of ROS navigation message type Odom. The computed

nominal policy will be published over the /nom policy ROS geometry message type, Twist.

2This is only to a limit. If computation time within a node is too large, the frequency will be bottle-necked at a
lower limit by the computation time.

3This was done because ROS2’s default message types do not support arrays of dimensions typically used to
represent the discretized CBF. Through the clever crafting of a custom message type or packaging of the array, it
may be possible to avoid the saving CBF process, but this implementation presented no issues during our work.
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4.1.3 Safety Filter

This node is the software implementation of the CBF-QP as seen in (3.11). It subscribes

to the current system state through the topic /odom, nominal control topic /nom policy, and

finally /cbf availability. Upon receiving a True from /cbf availability, the node will load the most

recent CBF for use in the constraint of the CBF-QP.

With this information, it indefinitely computes the minimally invasive safe control

by solving (3.11) with the most recent values of the CBF and nominal policy. h(x) will be

interpolated if the current state does not lie excatly on a grid point. This safe control is then

published over the ROS geometry message type, Twist, as the topic /cmd vel.
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Chapter 5

Experiment

5.1 Hardware Platform: Turtlebot3 Burger

To validate RefineCBF, we elect to use the Robotis Turtlebot3 Burger robot. The robot’s

specifications can be found in Table 5.1. Notable specifications are the maximum linear and

angular velocities and the radius, as these will be utilized in the applied theory discussed later.

5.1.1 Modifications

We chose to slightly modify the tires of the Turtlebot by stretching rubberbands around

them. This was reduce slippage in the wheels by increasing the coefficient of friction of the tires

on our surface. Figure 5.4 shows these modifications at various angles.

Table 5.1. Turtlebot3 Burger Specifications

Turtlebot3 Burger Specifications
Maximum Linear Velocity (m/s) 0.22

Maximum Angular Velocity (rad/s) 2.84
Radius (mm) 105

Size (L x W x H) (mm) 138 x 178 x 192
Weight (SBC + Battery + Sensors) (kg) 1

SBC (Single Board Computers) Raspberry Pi 3 Model B
MCU (OpenCR) 32bit ARM Cortex-M7 w/ FPU

Actuators XL430-W250
Battery Lithium polymer 11.1V 1800mAh / 19.98Wh 5C
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5.1.2 Differential Drive Dynamics

The Turtlebot3 Burger’s dynamics can be modeled as a differential drive robot (sometimes

also referred to as a bicycle model), which is a control-affine system (3.1) that can be expressed

as:

ẋ =


ẋ

ẏ

θ̇

=


vcosθ

vsinθ

ω

 (5.1)

where x ∈ R3 is defined as x := (x,y,θ) where x and y are the systems x and y coordinates

respectively, and θ is the heading angle of the robot. The control input u ∈ R2 is defined as

u := (v,ω) and is composed of the robot’s linear velocity v and angular velocity ω . The f (x) term

from (3.1) does not appear because this system does not contain any drift (i.e. f (x) = 0 ∈ R3).

Lastly, g(x) ∈ R3×2 is defined as:

g(x) :=


cosθ 0

sinθ 0

0 1


5.2 Physics Simulation: Gazebo

Gazebo, an open-source 3D robotics simulator, was used for the physics simulation envi-

ronment. Gazebo accurately simulates real-world physics, providing a high-fidelity simulation

environment. It enables developers to quickly test algorithms and design robots within digital

environments. In our work, we utilize Gazebo for sim-to-real comparison purposes by subjecting

the Turtlebot3 to identical tasks in both simulated and real-world settings. Conveniently, Robotis

offers a Turtlebot3 package specifically designed for Gazebo, which includes a physical model
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of the robot with accurately scaled visual and collision geometry. Additionally, this package pro-

vides precise state estimation for our robot. An example of the Turtlebot3 model in a simulated

environment is shown in Figure (5.1).

Figure 5.1. Turtlebot3 in Gazebo World. The positive y-axis is represented in green, positive
x-axis in red, and positive z in blue. Each grid square is 1 meter by 1 meter. The Turtlebot3
Burger is in white. The residual obstacle is represented by the dark gray cylindrical obstacle.
The goal set of states G is represented by the green semi-translucent cylinder.

5.3 Hardware: State Estimation

In order to get near perfect state estimation of the Turtlebot3 during hardware operation,

we elected to use a Vicon motion capture camera system. By attaching light and reflective

motion capture balls1 about the robot asymmetrically, and using up to 30 infrared cameras to

track the robot (5.4), the Vicon system can get a very precise2 estimate of where the robot’s pose

is in relation to a predefined world frame origin. The defined body frame origin of the robot is
1Pearl Markers manufactured from B&L Engineering
2Within millimeters of the true position.

22



determined by the centroid of the object formed by the motion capture balls, depicted in Figure

5.3.

Figure 5.2. Hardware Setup. A black mat was laid out within the UCSD aerodrome which
contains 30 IR cameras. The orange dotted lines represent 1 meter by 1 meter squares. The
positive y-axis is in the direction of the green arrow at the bottom right and the positive x-axis
the red. The Turtlebot3 Burger is the black wheeled robot within the red circle. The red circle
represents the 0-levelset of the initial candidate CBF. The final obstacle set is represented by the
blue lines and chalk bucket in the center. The green circle represents the goal set G.

5.3.1 Defining the World Frame Origin

To define the x,y,z origin for the world frame of reference, the Vicon system uses an

infrared (IR) laser cross (see Figure 5.5). While laying IR laser side up, the long and short

handles of the wand point in the positive y, and positive x axes directions respectively. Following
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Figure 5.3. Turtlebot3 Centroid In Vicon. The Turtlebot3 object in the Vicon software. Orange
spheres are detected MoCap balls, red-green-blue coordinate axis stems from the centroid of all
of the balls. Coordinate axis colors follow typical convention, red for +x, green for +y, blue for
+z with origin centered at the body frame origin. (x,y,z) coordinate is determined by body frame
origin in relation to the world frame origin.

the right hand rule, the positive z axis is defined as coming up from the ground the wand is lying

on. The wand must be placed as level with the ground as possible to make the x− y plane as

parallel as possible with the ground the robot is to traverse.

5.4 Experimental Objective

We task a grounded robot agent to navigate in a known environment from an initial state

xo, to a goal state x∗. The agent will attempt to complete this objective safely (i.e. never being in

an unsafe state x /∈ Lc) using the same nominal policy π̂(x) filtered by a CBF-QP safety-filter

with constraints defined by the control limits u ∈ U and the current CBF h(x) using the same

initial candidate CBF ho(x) under three different scenarios:
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(a) Front (b) Right

(c) Back (d) Left

Figure 5.4. Turtlebot3 Burger With Motion Capture Balls. Balls are manufactured from BL
Engineering, and are coated in an IR reflective material which makes the balls easily discernible
by the Vicon cameras for near perfect state estimation from the Vicon system. Balls arranged
asymmetrically about the center of the robot for the robot’s orientation to be easily determined
by the system.

25



Figure 5.5. Vicon Wand Defining The World Origin. Short end of wand determines the x-axis,
long handle points in the positive y-axis direction. Following the right hand rule, positive z is up
from the ground, in the direction of the IR sensors.

1. Without updating the constraint function ℓ(x) and use RefineCBF to iteratively update

h(x). Motivation: This is to serve as a stress test for the algorithm online. Because the

robot cannot ever reach its goal, this allows us to see how well safety can preserved on the

boundary of the safe set.

2. Update the constraint function ℓ(x) at 5 predetermined Refine CBF iterations k, but do not

use RefineCBF to iteratively update h(x).3 Motivation: This case is to serve as a baseline

comparison for the algorithm - a naive approach just taking into account the complement

of the obstacles as the safe set.

3. Update the constraint function ℓ(x) at 5 predetermined Refine CBF iterations k, and use

RefineCBF to iteratively update h(x). Motivation: A successful navigation to the goal in

this scenario would demonstrate that RefineCBF can successfully be used in the loop and

3Because RefineCBF isn’t used for this experiment, k will refer to an artificially incremented k, where it is
incremented regularly at intervals of 0.5 seconds. This very roughly matches the time k would increment when
using RefineCBF.
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in an environment with a changing constraint set.4

5.4.1 Nominal Policy of Choice

To construct the nominal policy for this experiment, we elected to use a precomputed

nominal policy table of dimension equal to the dimension of the grid the CBF is discretized

into.5 The table was computed from deriving the optimal control at each point over the grid

using reachability based methods as shown in (3.15). This table was saved to the remote PC and

loaded upon launch of the nominal controller node. To query the table, the nominal controller

node takes the current known state x and interpolates between grid points if this state does not

lie exactly on a grid point.

5.5 Experimentals

5.5.1 Environment

The robot is to navigate in a 2×2 meter space where bounding walls lie on the perimeter

of the space. The robot’s initial pose is:

xo =


0.5

1.0

0

 (5.2)

where x and y are expressed in meters and θ expressed in radians. These units for these state

components will remain the same throughout the remainder of this work.

The goal pose of this robot is:

4albeit this constraint set must be changing favorably - i.e. updated obstacles do not occupy states of the current
safe set

5The table’s dimensions could have been larger, but computational time of the policy would scale exponentially
with diminishing returns.
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x∗ =


1.5

1.0

0

 (5.3)

with a tolerance padding of ±0.1, ±0.1, and ±π for the x∗,y∗ and θ ∗ states respectively. There-

fore, the robot’s goal will be a set within a circle of radius 0.1 at any orientation. We will call this

set of goal states G. A depiction of the initial starting environment can be seen in Figure 5.5.1.

This same environment for the hardware experiment can be seen in Figure 5.3. The simulation

initial configuration can be seen in the prior Figure 5.1.

In the hardware experiment, the orange tape represents a grid composed of cells of 1×1

meter in dimension. The red circle depicts the initial 0-superlevel set of the initial candidate

CBF. The green circle depicts the target pose with padding, G. Finally, the light blue lines

depict the final obstacle set without padding, Ok=40. The bucket in the center is to represent a

residual object after crowd of people disperses. Similarly, in the simulation environment, the

gray cylinder represents the residual object and the green cylinder the goal pose with padding, G.

Within the environment, the robot is presented with obstacles that make it impossible

for the robot to traverse safely to the goal using safety-agnostic controls. For our experiments

we attempt to simulate scenarios where the goal is blocked initially by a crowd of people that

cover the entire right half side of the space. In scenario 1, this crowd never disperses, thus ℓ(x)

never updates and the robot can never safely traverse to its goal (see Figure 5.5.1). In scenarios

2 and 3, the crowd disperses and the obstacle set is updated at discrete iterations k, where k is

the number of iterations the RefineCBF algorithm has underwent.6 Obstacles are assumed to be

static at every iteration, and eventually disperse enough to provide a safe path to the goal.

6This was done for ease of implementation, but means that the obstacles could be introduced at different times
into an experiment run depending on the δ chosen. A higher δ would mean iterations take longer so obstacle
updates would also take longer.
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Figure 5.6. Initial Constraint Set In Relation to Starting Position and G. In light blue is the
constraint set L for our experiments. It is determined from the 0-superlevel set of the constraint
function, ℓ(x) (the signed distance function), this is the set of states that would not immediately
result in failure. In pink is this sets complement, the failure set Lc which, because of our choice
of ℓ(x), is exactly the inflated obstacle set O∗0. The goal set, G, is represented by the green circle
in the right hand side of the environment. The initial position of the robot is denoted by the green
x. Notably, the goal is contained within Lc making it unsafe to traverse to initially.

Obstacle Inflation

In order to consider the robot as a point traversing through the space, it was necessary

to inflate the obstacle set by an appropriate amount to accommodate the maximal radius of the

Turtlebot. Using a Minkowski Sum, the obstacle set was inflated by the Turtlebot3’s maximal

radius plus a small amount of buffer (as shown in (3.3)). We will refer to this obstacle padding

value as p. Using the maximal radius of 105mm from the Turtlebot3 Burger’s specifications (5.7)

and a small buffer of 5mm, we define this padding as p = 0.11. See Figure (5.8) for visualization

of this inflation for the final constraint set of scenarios 2 and 3.

Table 5.3 provides the definition of these sets at the iterations that they are updated and
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Figure 5.7. Turtlebot3 Burger’s Dimensions and Weight. The maximal radius of 105mm will be
used to compute the padding used to inflate the obstacles.

Figures 5.9 and 5.10 will aid in visualizing what these will look like in the environment. The

following section describes what each obstacle set is composed of.

Obstacle Set Compositions

Scenario 1, bound to the left hand side of 2×2 environment:

O0→∞ = {(x,y) | x /∈ [0,1],y /∈ [0,2]}

With padding this becomes:

O∗0→∞ = {(x,y) | x /∈ [p,1− p],y /∈ [p,2− p]}
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Table 5.2. Padding p components and final padding value the obstacles will be inflated by.

Distances Value
Turtlebot3 Burger Radius (mm) 105

Buffer (mm) 5
Padding (p) (mm) 110

Scenarios 2 and 3, initially bound to the left hand side of the 2×2 environment but obstacle set

updates at discrete k iterations:

The bounding box of the entire environment:

R = {(x,y) | x /∈ [0,2],y /∈ [0,2]}

with padding:

R∗ = {(x,y) | x /∈ [0+ p,2− p],y /∈ [0+ p,2− p]}

Initial bounding box:

B =O0→∞ = {(x,y) | x /∈ [0,1],y /∈ [0,2]}

with padding:

B∗ =O∗0→∞ = {(x,y) | x /∈ [p,1− p],y /∈ [p,2− p]}

Circular object:

C1 = {(x,y) | x ∈ (x− xc)
2 +(y− yc)

2 ≤ r2}

with padding:

C∗1 = {(x,y) | x ∈ (x− xc)
2 +(y− yc)

2 ≤ (r+ p)2}

Dispersing people at different k′s. C2,k and C3,k are the upper and lower circular groups of people

respectively:

C2,10 = {(x,y) | x ∈ (x−1.75)2 +(y−1.75)2 ≤ (0.75)2}
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Figure 5.8. Scenario 2 and 3 k = 40 Inflated Obstacle Sets. The inflation is determined by the
Minkowski sum using the Turtlebot3 Burgers radius and some buffer distance.

C3,10 = {(x,y) | x ∈ (x−1.75)2 +(y−0.25)2 ≤ (0.75)2}

C2,20 = {(x,y) | x ∈ (x−2.0)2 +(y−2.0)2 ≤ (1.0)2}

C3,20 = {(x,y) | x ∈ (x−2.0)2 +(y−0)2 ≤ (1.0)2}

C2,30 = {(x,y) | x ∈ (x−2.0)2 +(y−2.25)2 ≤ (1.0)2}

C3,30 = {(x,y) | x ∈ (x−2.0)2 +(y+0.25)2 ≤ (1.0)2}
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C2,40 = {(x,y) | x ∈ (x−2.0)2 +(y−2.25)2 ≤ (1.0)2}

C3,40 = {(x,y) | x ∈ (x−2.0)2 +(y+0.25)2 ≤ (1.0)2}

with padding:

C∗2,10 = {(x,y) | x ∈ (x−1.75)2 +(y−1.75)2 ≤ (0.75+ p)2}

C∗3,10 = {(x,y) | x ∈ (x−1.75)2 +(y−0.25)2 ≤ (0.75+ p)2}

C∗2,20 = {(x,y) | x ∈ (x−2.0)2 +(y−2.0)2 ≤ (1.0+ p)2}

C∗3,20 = {(x,y) | x ∈ (x−2.0)2 +(y−0)2 ≤ (1.0+ p)2}

C∗2,30 = {(x,y) | x ∈ (x−2.0)2 +(y−2.25)2 ≤ (1.0+ p)2}

C∗3,30 = {(x,y) | x ∈ (x−2.0)2 +(y+0.25)2 ≤ (1.0+ p)2}

C∗2,40 = {(x,y) | x ∈ (x−2.0)2 +(y−2.25)2 ≤ (1.0+ p)2}

C∗3,40 = {(x,y) | x ∈ (x−2.0)2 +(y+0.25)2 ≤ (1.0+ p)2}

5.5.2 Initial Candidate CBF

Initially, we warmstart the DP recursion of the RefineCBF algorithm using a conservative

and unsafe candidate CBF. Conservative in the sense that the resulting 0-superlevel set of the

CBF, Ch, does not cover a large set of states in the environment and unsafe in the sense that we
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Table 5.3. Obstacle Sets at Iterations k. Because the signed distance function is ℓ(x), the failure
set will be exactly obstacle set. The obstacle sets will be a union of shapes defined above in the
Obstacle Set Compositions section. And these obstacle sets will change in their definition based
on what iteration of the RefineCBF algorithm is at.

Iterations Obstacle Set
k = 0 O∗0 = B∗

k = 10 O∗10 = R∗∪C∗1 ∪C∗2,10∪C∗3,10
k = 20 O∗20 = R∗∪C∗1 ∪C∗2,20∪C∗3,20
k = 30 O∗30 = R∗∪C∗1 ∪C∗2,30∪C∗3,30
k = 40 O∗40 = R∗∪C∗1 ∪C∗2,40∪C∗3,40

(a) k=0 (b) k=10 (c) k=20

(d) k=30 (e) k=40

Figure 5.9. Constraint Sets at Different Iterations For Scenarios 2 and 3. k = 0 set also represents
scenario 1’s constraint set for all time. The failure set’s evolution is meant to simulate a crowd of
people dispersing and leaving behind a residual obstacle represented by the pink circle near the
center.
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Figure 5.10. All Constraint Sets Overlayed. This depicts the evolution of the obstacle sets to
show how the people disperse.

know this initial CBF is only a candidate. Thus, without refining the safety filtered trajectories

would collide with the obstacle set if the defined safe set were close enough to the boundary of

L. This initial CBF choice would be akin to a user defining some region in their operating space

they know will be largely free of obstacles.

Our formal definition of the initial candidate CBF is as follows:

ho(x) := 0.332− (x−0.5)2− (y−1.0)2 (5.4)

This function describes a circular paraboloid f (x) := r2− (x− xc)
2− (y− yc)

2 centered at

(xc,yc) = (0.5,1.0) with a radius of r = 0.33. This initial CBF is depicted in (Figure 5.11).
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Figure 5.11. Initial Control Barrier Function. The 0-levelset of this function is depicted by the
red circle, and is centered at (0.5, 1.0) with a radius of 0.33. This initial CBF is conservative and
unsafe. It is conservative because it does not allow for traversal of much of the safe parts of the
state space when using a safety filter. It unsafe because a circular set will have unsafe states at
the edge corresponding to the current heading angle. (see Figure 5.12)

While this initial CBF is only a candidate, it will quickly converge to a valid one. Because

the radius of Ch is greater than the minimal turning radius of the robot when using a linear velocity

of 0.1 (the lower bound) and angular velocity of 1.3 (maximum), the robot can certainly stay

within the defined circle of Cho for all time - except for a handful of states at a corresponding side

of the circle based on the current heading angle. In other words, a similarly sized safe-set will

resemble a peach-like shape as shown in figure 5.12. Thus, in very few iterations of RefineCBF

this type of shape will be achieved. So, although the initial CBF will be a candidate, we can

expect in very few iterations of RefineCBF, the CBF will become valid. Therefore, online, we

should expect to see a persistent preservation of safety shortly after initialization.
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Figure 5.12. Valid Control Barrier Function 0-levelset for Differential Drive Robot. Corresponds
to a heading angle pointing upwards. We observe the resulting 0-superlevel sets of the refined
CBFs take on this shape after very few iterations. Iterations thereon will be guaranteed to be safe
because of the preserving safety guarantees of RefineCBF.

5.5.3 RefineCBF Term Definitions

From the experiment we can now define the corresponding mathematical terms to be

used in the RefineCBF algorithm. Given that the robot’s operating environment is a 2×2 grid,

we define the state space as X = {(x,y,θ) | x,y ∈ [0,2], |θ | ≤ π} ∈ R3. Our control space must

operate within the limits defined by the limits of the Turtlebot3 Burger (5.1). In order to induce an

interesting safe control problem7, we do not allow the robot to stop and define a minimum linear

velocity of 0.1 m/s. Therefore, our control space is given by U = {(v,ω) | v ∈ [0.1,0.21], |ω| ≤

1.3} ∈ R2.8

7If we did not make the minimum speed greater than 0 m/s, the robot could stop instantaneously, making safety
a trivial task.

8The keen reader will be quick to notice that the maximal bounds in both the linear velocity and do not match
those specified as the maximums in Table 5.1. The linear velocity maximum velocity cannot actually reach the
specified value on the physical hardware as noted by Robotis developers. While the angular velocity can indeed
reach the maximal defined limits, rapidly switching angular velocity controls cause erroneous behavior on hardware.
To avoid this it is necessary to restrict the maximal jump in ω to 2.6 rad/s
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Across all experiments, γ = 0.25 for the safety filter is used. We found this to be a

nice middle ground between efficiency and cautious behavior for the system. Finally, the time

step chosen for each DP iteration is δ = 0.15 seconds. A longer δ would result in a larger

computation time between each iteration, thus the reactivity to a changing constraint set would

be slower. A smaller δ would result in higher reactivity, but is gated by read/write speeds in

our implementation. This time value, after some tuning, seemed to provide a fast update speed

without compromising reactivity.

5.6 Results

For each scenario, 3 runs were completed for analysis. These scenarios were completed

in simulation and on the physical hardware. Multiple runs were done on the simulation because

there is still small inherent elements of randomness encoded into each run. For example,

computation time can very slightly depending on things such as the current CPU temperature,

quickly creating cumulative deviations from a different run.

For each of these runs, there was an accommodating RVIZ9 video which depicts the

trajectory of the robot (in yellow), the current inflated obstacle set O∗k (white), the 0-superlevel

set of the initial candidate CBF (red) and finally the current 0-superlevel set of the refined CBF

at the theta slice of the current heading angle of the robot (green). A keen viewer will notice

that even upon convergence of the refined CBF (i.e. the viability kernel), the set will appear to

change. This, as mentioned just prior, is caused by the change in heading angle of the robot. See

Figure 5.6 for an example of RVIZ plots during a run.

Figures (5.6.2 through 5.6.3) provide visuals of the results for a run of interest for each

of the scenarios. All other runs can be found in the appendix.

9RVIZ is “ROS” Visualization. It is a software for visualizing ROS topics.
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Figure 5.13. RVIZ example figure. Red circle represents the 0-levelset of the initial candidate
CBF for the experiment. The yellow series of arrows depicts the trajectory of the robot through
time during the experiment. The light green line depicts the 0-levelset of the current refined CBF
at the current theta slice corresponding to the heading angle of the robot. The dark green circle
represents the boundary of the goal set G. The white lines represent the boundaries of the current
obstacle inflated obstacle set. Each grid square here is 1 meter by 1 meter. Besides the trajectory,
the lines shown are approximate to the real corresponding values.

5.6.1 Videos

Due to the heavily qualitative nature of this work, a set of accompanying videos was

created for analysis. The associated videos for each scenario and hardware and simulation

can be found in the Youtube playlist: https://youtube.com/playlist?list=PL- gS2FerBEOP

CrxeBosCAPUTwxcKlte

Each hardware experiment is divided into 2 videos, the RVIZ visualization and the actual

hardware video in the UCSD Vicon aerodrome.

5.6.2 Software Package

The software package developed for this work can be found here: https://github.com/

ncussonn/turtwig.
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Figure 5.14. Gazebo Simulation Trajectory for scenario 1 run 1. The blue line represents a safe
trajectory, while the yellow is when the trajectory is unsafe, or in other words, takes on a 0 or
negative safety value informed from the CBF h(x).

5.6.3 Observations

Scenario 1

In scenario 1, during all runs on simulation and hardware we observe the safe set swiftly

expanding to take up all space within L with small backwards reachable tubes at the boundaries

corresponding to the current heading angle. The robot also swiftly reaches the closest edge of the

safe set to the goal, as the nominal policy attempts to steer the robot towards the goal. However,

because the goal is completely obstructed, the robot cannot safely progress to the goal and the
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safety filter steers it to the left or right. From here, the robot would bounce off the barrier closest

to the goal, slightly violating safety at each bounce. This would continue until the robot reached

the wall on the top or bottom of the state space. At this point it would turn around and repeat the

barrier bounce.

While not surprising the robot did not reach the goal in this scenario, it is nonetheless

important to highlight the importance of how RefineCBF must be integrated with an update to

the constraint set to extract its maximal utility. Additionally, the repeated violations to safety

here are of note - as theoretically this should not occur.

Scenario 2

With updates to the obstacle set now being acknowledged by the robot, it is now able to

steer to the goal. However, while we see the robot traverse to the goal eventually, it frequently

violates safety. In both simulation and on hardware we observe this behavior. Additionally, the

hardware experiments exhibit greater safety violations than the simulation.

This scenario illustrates why simply using the SDF for a safety constraint is not a viable

solution to ensure safety. The SDF will always be a candidate CBF and thus cannot ensure

forward set invariance of its 0-superlevel set. Because of this, it highlights the importance of

needing alternative methods to adjust the safe set depending on environmental changes while

also remaining safe.
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Scenario 3

Now combining both RefineCBf and updating the constraint set, in theory the robot

should be able to reach to the goal with minimal safety violations. And in fact, this is what we

observe. For both the simulation and hardware experiment, the trajectories can10 safely navigate

to the goal region even in the face of a changing constraint set. As such, we can solidly conclude

that RefineCBF can be used for hardware in-the-loop and in the face of a changing constraint set!

10In some runs on hardware, we see slight violations to safety (see Figure (5.6.3)) This will be discussed in the
conclusion.
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Figure 5.15. Parameters for scenario 1 run 1 on hardware. Depiction of all of the parameters
for the experiments in time. From left to right, top to bottom: X is the x position of the robot
(in meters), Y is the y position of the robot (in meters), Theta is the heading angle of the robot
in radians which loops at ±2π , V Nominal is the safety-agnostic linear velocity control given
to the robot in meters per second where the upper and lower bounds are shown with a dashed
blue line. Safety Value h(x) is the level of safety based on the current state where the red dashed
line represents where safety is 0, V is the safety filtered linear velocity with the same bounds
as V Nominal, Omega is the safety filtered nominal angular velocity in radians per second with
upper and lower bounds shown by the blue dashed line, and finally, Omega Nominal is the
safety-agnostic safety filtered control with the same bounds.
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Figure 5.16. Hardware Trajectory for scenario 1 run 1. See figures (5.6.2) and (5.5.1) captions
for full description of visuals in image.
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Figure 5.17. Parameters for scenario 1 run 1 on hardware. See the caption of Figure (5.6.2) for
general description of graphs. Notable differences from the simulation graphs is that the Theta
value loops at different values due to intricacies associated with quaternion conversions when
receiving information from the Vicon system.
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Figure 5.18. Gazebo Simulation Trajectory for scenario 2 run 1. See figures (5.6.2) and (5.5.1)
captions for full description of visuals in image.
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Figure 5.19. Parameters for scenario 2 run 1 in Gazebo simulation.
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Figure 5.20. Hardware Trajectory for scenario 2 run 1. See figures (5.6.2) and (5.5.1) captions
for full description of visuals in image.
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Figure 5.21. Parameters for scenario 2 run 1 on hardware.
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Figure 5.22. Gazebo Simulation Trajectory for scenario 3 run 1. See figures (5.6.2) and (5.5.1)
captions for full description of visuals in image.
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Figure 5.23. Parameters for scenario 3 run 1 in simulation. See the caption of Figure (5.6.2) for
general description of graphs.
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Figure 5.24. Hardware Trajectory for scenario 3 run 2. See figures (5.6.2) and (5.5.1) captions
for full description of visuals in image.
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Figure 5.25. Parameters for scenario 3 run 1 on hardware. See the caption of Figure (5.6.2) for
general description of graphs. Notable differences from the simulation graphs is that the Theta
value loops at different values due to intricacies associated with quaternion conversions when
receiving information from the Vicon system.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

6.1.1 Issues

The primary issue encountered with this implementation was evident during scenarios 1

and certain runs of scenario 3. During these scenarios, we observed repeated safety violations at

the edge of the safe set with oscillatory behavior. This behavior we believe could be attributed to

a few factors for both simulation and hardware:

1. Time delays in the inputs caused by latency in the system.

2. Numerical inaccuracies as the system trajectory gets too close to the safe set boundary.

3. Grid density. With a denser grid, the accuracy of the interpolation of the current safety

value would also increase. In turn, this would allow for more accurate safety preserving

controls.

and for strictly hardware:

1. Additional time delays associated with the hardware experimental setup.

2. A mismatch between the differential drive model and the real dynamics of the Turtlebot3

Burger.
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6.1.2 Time Delays

Most of the aforementioned issues cannot be addressed without causing some sort of

other issue. For instance, the numerical inaccuracies and grid density could be addressed through

means which would require additional computational power, but this would increase the time

between CBF computations which is not ideal. Possibly, the model of the robot could have

been improved upon, but, besides being a nontrivial thing to improve upon, if it involves adding

more states to the space to get a closer model to reality, this could also pose a computationally

problematic issue. So this leaves us with time delays.

The time delays in the control input are a practical challenge for any theoretical to

pragmatic implementation of a control problem. It is almost impossible for state information to

be updating instantaneously as is assumed in theory. In both the simulation and on hardware, this

delay in state information is present. In Gazebo, although minute, the state information was not

obtained instantaneously, it only updated at a frequency of 20Hz. While fast, this is still enough

time to partake in unsafe control actions at the boundary of the safe set, as any slight deviation

in the current heading angle would steer the system towards unsafety. This issue is made even

worse on hardware, where there are 6 contributors to latency between the observed state and the

control action based on that state being executed. These contributors are:

1. The Vicon system processing the robot’s pose by the camera information.

2. The state information being sent from the router to the Remote PC wirelessly.

3. The safety-preserving control action being computed based on the received state.

4. Sending this control action back to the router wirelessly.

5. The router wirelessly sending the control action to the Turtlebot3 Burger.

6. The Turtlebot3 Burger interpreting this control action and performing it.
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So clearly, there is much more at play with the hardware experiment in terms of latency.

While circumventing this issue is not possible with this current implementation of RefineCBF,

potential ways to address this problem will be discussed in the Future Directions section 6.2.1.

6.2 Conclusion

In this work, we have verified the applicability of RefineCBF in real-time hardware

setting. By employing a Turtlebot3 Burger as the base hardware platform and packaging the

RefineCBF algorithm in a ROS2 software package, we were able to demonstrate an enforcement

to safety online with minimal safety violations. Using a CBF constraint based safety-filter whose

constraints were updated dynamically from RefineCBF, we have also shown that in real-time the

algorithm can be robust to updates in its environment and remain safe.

6.2.1 Future Directions

However, this implementation is nowhere near perfect, and there are seemingly endless

future research directions to go in from here. A few of the most interesting are mentioned here:

1. Test RefineCBF on higher dimensional systems such as Ackermann Drive (4D) or quad-

copter (6D+). This would stress test how the slower iteration speed will effect the efficiency

of the system.

2. Addressing time-delays. Work like that from [11] provides safety guarantees for CBF

based safety-critical system in the presence of time-delays. By incorporating their work

in the control loop, it may be possible to mitigate the latency issue mentioned prior. This

would require to model the time-delay on the system and using a state predictor.

3. Update the constraint set using real sensor information, rather than artificial obstacles.

This would present a more realistic scenario to test RefineCBF in the loop with.
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4. Validate RefineCBF’s robustness in online scenarios where the dynamics, control space,

and disturbance change during operation.

5. Present the robot with adversarial obstacles. In these series of experiment we only introduce

neutral or beneficial obstacle changes. In other words, the obstacles will either keep the

viability kernel the same size and shape, or allow it to expand. However, if an obstacle

were to move into the safe set it would be interesting to see how safety could be recovered.

Clearly, if the obstacle was too adversarial and moved on top of the current system state,

there is no preserving safety, but nonetheless through some leeway built into the constraint

function and the inherent reactivity of RefineCBF (i.e. the new viability kernel will be

converged to), safe navigation is still possible.

We are excited to see where this core implementation is expanded upon and utilized in

the future, and hope this work can be used to facilitate research for a safer autonomous world.
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Appendix A

Additional Result Figures

Figure A.1. Hardware Trajectory for scenario 1 run 2.

59



Figure A.2. Hardware for scenario 1 run 2 on hardware.
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Figure A.3. Hardware Trajectory for scenario 1 run 3.
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Figure A.4. Parameters for scenario 1 run 3 on hardware.
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Figure A.5. Simulation Trajectory for scenario 1 run 2.
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Figure A.6. Parameters for scenario 1 run 2 in simulation.
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Figure A.7. Gazebo Simulation Trajectory for scenario 1 run 3.
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Figure A.8. Parameters for scenario 1 run 3 in simulation.
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Figure A.9. Hardware Trajectory for scenario 2 run 2.
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Figure A.10. Parameters for scenario 2 run 2 on hardware.
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Figure A.11. Hardware Trajectory for scenario 2 run 3.
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Figure A.12. Parameters for scenario 2 run 3 on hardware.
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Figure A.13. Gazebo Simulation Trajectory for scenario 2 run 2.
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Figure A.14. Parameters for scenario 2 run 2 in simulation.
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Figure A.15. Gazebo Simulation Trajectory for scenario 2 run 3.
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Figure A.16. Parameters for scenario 2 run 3 in simulation.
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Figure A.17. Hardware Trajectory for scenario 3 run 1.
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Figure A.18. Parameters for scenario 3 run 1 on hardware.
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Figure A.19. Hardware Trajectory for scenario 3 run 3.
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Figure A.20. Parameters for scenario 3 run 3 on hardware.
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Figure A.21. Gazebo Simulation Trajectory for scenario 3 run 2.
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Figure A.22. Parameters for scenario 3 run 2 in simulation.
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Figure A.23. Gazebo Simulation Trajectory for scenario 3 run 3.
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Figure A.24. Parameters for scenario 3 run 3 in simulation.
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