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CONTRACTIVE PROJECTIONS AND OPERATOR SPACES

MATTHEW NEAL AND BERNARD RUSSO

ABSTRACT. Parallel to the study of finite-dimensional Banach spaces, there is
a growing interest in the corresponding local theory of operator spaces. We
define a family of Hilbertian operator spaces Hﬁ, 1 < k < n, generalizing
the row and column Hilbert spaces R, and Cp, and we show that an atomic
subspace X C B(H) that is the range of a contractive projection on B(H)
is isometrically completely contractive to an £*°-sum of the Hfi and Cartan
factors of types 1 to 4. In particular, for finite-dimensional X, this answers a
question posed by Oikhberg and Rosenthal. Explicit in the proof is a classi-
fication up to complete isometry of atomic w*-closed JW *-triples without an
infinite-dimensional rank 1 w*-closed ideal.

INTRODUCTION

It was shown by Choi and Effros that an injective operator system is isometric
to a conditionally complete C*-algebra [6, Theorem 3.1]. The fact that an injective
operator system is the same as the image of a completely positive unital projection
on B(H) prompted a search for some algebraic structure in the range of a positive
projection, or of a contractive projection. A special case of a result of Effros and
Stgrmer showed that if a projection on a unital C*-algebra is positive and unital,
then the range is isometric to a Banach Jordan algebra [I1] Theorem 1.4]. Arazy
and Friedman [I] classified, up to Banach isometry, and in Banach space terms,
the range of an arbitrary contractive projection on the C*-algebra of all compact
operators on a separable Hilbert space. A special case of a result of Friedman and
Russo showed that if a projection on a C*-algebra is contractive, then the range is
isometric to a Banach Jordan triple system [I3, Theorem 2]. Kaup [22] extended
the Friedman-Russo result to contractive projections on JB*-triples.

A consequence of these results is that, up to isometry, the ranges of the various
projections can be classified modulo a classification theorem of the various algebraic
structures involved. Recently, the operator space structure of the range of a com-
pletely contractive projection has been studied. For projections acting on B(H ),
such spaces coincide with injectives in the category of operator spaces. Christensen
and Sinclair [7, Theorem 1.1] proved that every injective von Neumann algebra with
separable predual that is not finite type I of bounded degree is completely bound-
edly isomorphic to B(H). Robertson and Wasserman [31], Corollary 7] proved that
an infinite-dimensional injective operator system on a separable Hilbert space is
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2224 MATTHEW NEAL AND BERNARD RUSSO

completely boundedly isomorphic to either B(H) or £>°. Robertson and Youngson
[32, Theorem 1] proved that every injective operator space is Banach isomorphic to
one of B(H), (>, ¢? or to a direct sum of these spaces. Robertson [30, Corollary 3]
proved that an injective operator space that is isometric to ¢2 is completely isomet-
ric to R or C, where R and C' denote the row and column operator space versions
of £2. These results can be thought of as giving a partial classification of injectives
up to various types of isomorphisms.

Note that the word injective in these examples is what we call 1-injective below.
Also, the spaces appearing in the above results are all examples of atomic JW*-
triples, but only ¢ and B(H) are C*-algebras. Moreover, B(H),R and C are
examples of Cartan factors, while £*° is a direct sum of countably many copies of
the trivial Cartan factor C.

Operator spaces, that is, linear subspaces of B(H), are the appropriate setting
for these types of problems. They were first studied systematically in the thesis of
Ruan [33] and have been developed extensively since then by Effros, Ruan, Blecher,
Paulsen, Pisier, and others. Ruan [34, Theorem 4.5] showed that an operator space
is injective if and only if it is completely isometric to pAq for some injective C*-
algebra A and projections p,q € A. Youngson had shown earlier that the range
of a completely contractive projection on a C*-algebra is completely isometric to a
ternary algebra, that is, a subspace of a C*-algebra that is closed under the triple
product ab*c [38] Corollary 1].

Except for [I], there seem to be no results in the literature that classify the range
of a contractive projection up to Banach isometry, or up to completely bounded iso-
morphism. In this paper, we remedy this by investigating the structure of operator
spaces that are the range of a contractive projection on B(H). These are known as
1-mixed injectives in operator space parlance. We provide in Theorem [2] a classifi-
cation up to isometric complete contraction of 1-mixed injectives that are atomic.
In Theorem 3] we classify up to complete isometry all atomic w*-closed JW *-triples
without an infinite-dimensional rank 1 w*-closed ideal. As a corollary, we show that
an atomic (in particular, finite-dimensional) contractively complemented subspace
of a C*-algebra is a 1-mixed injective, that is, the range of a contractive projection
on some B(H). Most of these results have been announced in [25].

1. PRELIMINARIES

An operator space is a subspace X of B(H), the space of bounded linear operators
on a complex Hilbert space. Its operator space structure is given by the sequence
of norms on the set of matrices M, (X) with entries from X, determined by the
identification M, (X) C M, (B(H)) =B(H®H ®---® H). For the basic theory of
operator spaces and completely bounded maps, we refer to [4], [9], [10], [28], and
[29], and the references therein. Let us just recall that a linear mapping ¢ : X — Y
between two operator spaces is completely bounded if the induced mappings ¢, :
M (X) — My (Y) defined by @n([ij]) = [o(zi;)] satisty [|¢l[cb := sup,, [[on ]| < oo
A completely bounded map is a completely bounded isomorphism if its inverse exists
and is completely bounded. Two operator spaces are completely isometric if there
is a linear isomorphism 7' between them with ||T||cp = |77 b = 1. We call T a
complete isometry in this case.

In the matrix representation for B(¢?), consider the column Hilbert space C =
5p{e;1 : ¢ > 1} and the row Hilbert space R = §p{e1; : j > 1} and their finite-
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CONTRACTIVE PROJECTIONS AND OPERATOR SPACES 2225

dimensional versions C,, = sp{e;1 : 1 < i < n} and R, =sp{ey; : 1 < j < n}.
Here of course e;; is the operator defined by the matrix with a 1 in the (g, 5)-
entry and zeros elsewhere. Although R and C are Banach isometric, they are
not completely isomorphic; and R,, and C,, while completely isomorphic, are not
completely isometric.

An operator space Z is injective if for any operator space Y and closed subspace
X C Y, every completely bounded linear map 7" : X — Z has a completely
bounded extension T : Y — Z. In this case, there is a constant A > 1 such
that ||T]lc, < AT ||eb, and Z is said to be M-injective. If X\ = 1, then Z is also
called isometrically injective. A fundamental theorem in operator space theory is
that B(H) is 1-injective. This is the celebrated Arveson-Wittstock Hahn-Banach
Theorem, see [9l section 3]. It follows that an operator space X C B(H) is A-
injective if and only if there is a completely bounded projection P from B(H) onto
X with || Pl < A

The literature on injective operator spaces cited in the introduction involves Car-
tan factors. Cartan factors appeared in the classification of Jordan triple systems
and bounded symmetric domains. There are six types of Cartan factors, of which
four will be relevant to our work. A Cartan factor of type 1 is the space B(H, K) of
all bounded operators from one complex Hilbert space H to another K. By fixing
orthonormal bases for H and K, we may think of B(H, K) as all dim K by dim H
matrices that define bounded operators. To define the Cartan factors of types 2
and 3 we need to fix a conjugation J on a Hilbert space H, that is, a conjugate-
linear isometry of order 2. Then a Cartan factor of type 2 (respectively type 3) is
A(H,J) = {x € B(H) : 2 = —x} (respectively S(H,J) = {z € B(H) : ' = x}),
where zt = Jz*J. Since conjugations are in one-to-one correspondence with or-
thonormal bases of H, we may think of these as anti-symmetric (resp. symmetric)
dim H by dim H matrices that define bounded operators. A Cartan factor of type
4, or spin factor, will be described in more detail in subsection 311

The following concepts were introduced by Oikhberg and Rosenthal in [27) sec-
tion 3] in their study of extension properties for the space of compact operators.
The operator space Z is a mized injective if for every completely bounded linear
map T from an operator space X into Z and any operator space Y containing X,
T has a bounded extension 7' to Y. In this case, there is a constant A > 1 such that
I T|| < M|T||eh, and Z is said to be A\-mixed injective. A 1-mixed injective operator
space is also said to be isometrically mized injective, and X is A-mixed injective if
and only if there is a bounded projection P from B(H) onto X with ||P|| < A. An
operator space X is completely semi-isomorphic to an operator space Y if there is a
linear homeomorphism 7" : X — Y that is completely bounded. Such a T is called
a complete semi-isomorphism. If in addition ||T||c, = ||T7 Y| = 1, then X is com-
pletely semi-isometric to Y and T is a complete semi-isometry. It is shown in [27]
Proposition 3.9] that mixed injectivity is preserved by complete semi-isomorphisms
in the sense that if Y is a mixed injective, then so is X.

The Cartan factors of types 1 to 4 are examples of 1-mixed injectives. This is
obvious for types 1, 2, 3, and for type 4 it is proved in [11} Lemma 2.3]. Cartan
factors of types 5 and 6 will play no role in this paper, since neither is even isometric
to a l-mixed injective operator space. For if it were, it would follow from [13]
Theorem 2] that it would be isometric to a JC*-triple (defined below). This is
impossible, since they are well known to be “exceptional” (i.e., not triple isomorphic

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2226 MATTHEW NEAL AND BERNARD RUSSO

to the Jordan triple structure induced by an associative *-algebra; see [I5] 2.8.5] for
the Jordan algebra version of this), and surjective isometries coincide with triple
isomorphisms (the latter is proved for JC*-triples in [16]; for the more general
class of JB*-triples see [21] or [2| Lemma 1]). The space of compact operators on a
separable Hilbert space is not a 1-mixed injective, but it seems to be an interesting
open question whether it has the mized separable extension property [27], that is,
in the definition of mixed injective, only separable operator spaces X C Y are
considered.

In view of the relaxed definition of 1-mixed injectives, one cannot immediately
expect a classification of them up to complete isometry (however, see Theorem ().
It is more natural to ask for a classification of 1-mixed injectives up to complete
semi-isometry. In order to formulate our results precisely we recall some basic facts
about JC*-triples.

A JC*-triple is a norm closed complex linear subspace M of a C*-algebra A that
is closed under the operation a — aa*a. JC*-triples were defined and studied (using
the name J*-algebra) as a generalization of C*-algebras by Harris [16] in connection
with function theory on infinite-dimensional bounded symmetric domains. By a
polarization identity, any JC™*-triple is closed under the triple product

(1) (a,b,c) — {abc} := L (ab*c+ cb*a),

under which it becomes a Jordan triple system. In this paper, the notation {abc}
will always denote the triple product (). A linear map that preserves the triple
product () will be called a triple homomorphism. Cartan factors are examples of
JC*-triples, as are C*-algebras, and Jordan C*-algebras.

A JW*-triple is defined to be a JC*-triple that is a dual space. It follows from
[2, Corollary 9] that a JW *-triple is isometric to a JC*-triple that is weak operator
closed.

Note that some of the results about JC*-triples that we are going to cite were
proved for the more general class of JB*-triples. For example, [3| Theorem 2.1]
shows that all preduals of a JW*-triple are isometric. JB*-triples, in and of them-
selves, will play no role in this paper, but the interested reader can consult [35] for
a comprehensive survey from an operator algebra point of view.

A special case of a JC*-triple is a ternary algebra, that is, a subspace of B(H, K)
closed under the ternary product (a,b,c) — ab*c. A ternary homomorphism is a
linear map ¢ satisfying ¢(ab*c) = ¢(a)p(b)*¢(c). These spaces are also called, more
appropriately, associative triple systems. They have been studied both concretely in
[I'7] and abstractly in [39]. We shall use the term ternary algebra in this paper, but
we shall not need any special results about them, other than the well-known and
simple fact that a ternary isomorphism between two ternary algebras is a complete
isometry. A key step in our proof of Theorem Rlwill be to extend a Banach isometry
between two JW*-triples to a ternary isomorphism of their ternary envelopes.

If v is a partial isometry in a JC*-triple M C B(H, K), then the projections
Il =ww* € B(K) and r = v*v € B(H) give rise to (Peirce) projections Py(v) : M —
M, k=2,1,0 as follows; for x € M,

Py(v)x =lar, Pi(v)z=lz(l—7)+ (1 =Dzr, Py(v)z=(1-0Dz(1l-r).

These projections Py (v) are easily seen to have the following properties. They are
contractive projections, and their ranges, denoted by My (v), are JC*-subtriples of
M satisfying M = Ma(v) @ M1 (v) @ Mo(v). They obey Peirce calculus, by which
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is meant
{Ma(v)Mo(v)M} = {Mo(v)M2(v)M} =0, {M;i(v)M;(v)Mi(v)} C Mi—ji(v)

where it is understood that M;_;1(v) ={0}if i —j+k ¢ {0,1,2}.

The Peirce space Ma(v) plays a special role. It has the structure of a unital Jor-
dan *-algebra with unit v under the product (a,b) — a o b := {avb} and involution
a — a* := {vav}. For example, the Jordan identity (aca)o(aob) =ao((aoa)ob)
amounts to {av{{ava}vb}} = {{ava}v{avb}}, which is trivial to verify for JC*-
triples. For more general Jordan triple systems, see, for example, [24, 3.13], [23],
or [37 19.7], which are references for the general theory of (Banach) Jordan triple
systems.

We shall write My(v)(®) to denote the space My(v) with this structure. If M =
M>(v), then we refer to Mo (v)(?) as an isotope of M. If M is a ternary algebra, then
Mg(v)(v) is a unital C*-algebra with product a - b = av*b, involution af = va*v,
and unit v. In this case, the identity map from May(v) to Ma(v)(™) is a ternary
isomorphism, since ab*c = av*bfv*c, and hence also a complete isometry.

A partial isometry v is said to be minimalin M if Ms(v) = Cv. This is equivalent
to v not being the sum of two orthogonal nonzero partial isometries. Recall that
two partial isometries v and w (or any two Hilbert space operators) are orthogonal
if v*w = vw* = 0. This is equivalent to v € My(w) and will be denoted by
v 1 w. Each finite-dimensional JC*-triple is the linear span of its minimal partial
isometries. More generally, an atomic JW *-triple is defined to be one which is the
weak*-closure of the span of its minimal partial isometries. The rank of a JC*-
triple is the maximum number of mutually orthogonal minimal partial isometries.
For example, the rank of the Cartan factor B(H, K) of type 1 is the minimum of
the dimensions of H and K; and the rank of the Cartan factor of type 4 is 2. Other
relations between two partial isometries that we shall need are defined in terms of
the Peirce spaces as follows. T'wo partial isometries v and w are said to be collinear
if v € M;(w) and w € My (v), notation v Tw. A partial isometry w is said to govern
vif v € Ma(w) and w € My (v). It is easy to check that v € M;(w) if and only if
{wwv} = (j/2)v, for j =0,1,2.

JC*-triples of arbitrary dimension occur naturally in functional analysis and in
holomorphy. As noted in the introduction, a special case of a theorem of Fried-
man and Russo [I3] Theorem 2] states that if P is a contractive projection on a
C*-algebra A, then there is a linear isometry of the range P(A) of P onto a JC*-
subtriple of A**. A special case of a theorem of Kaup [21] gives a bijective corre-
spondence between Cartan factors and irreducible bounded symmetric domains in
complex Banach spaces.

There is a structure theorem for atomic JW *-triples, for which we refer to [, p.
302], [18], [26] for proofs. A JW*-triple is rreducible if it is not the £*°-direct sum
of 2 nonzero w*-closed ideals. The version of the structure theorem that we shall
use is the following.

Lemma 1.1. Each atomic JW*-triple X is the £>°-direct sum X = @f\m Xy of
weak™ -closed irreducible ideals, and each summand X is the weak*-closure of the
complex linear span of a grid of minimal partial isometries. Grids come in four
types, and each X is Banach isometric and hence triple isomorphic to a Cartan
factor of one of the types 14.
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2228 MATTHEW NEAL AND BERNARD RUSSO

We shall describe the grids for the Cartan factors of types 1-4 (the so-called
rectangular grid, symplectic grid, Hermitian grid, and spin grid) when they are
needed later in this paper. As will be seen, grids only give information about the
symmetrized triple product (I), whereas the operator space structure depends on
the ternary product (a, b, c) — ab*c.

It follows from Lemmal[l.1land [13, Theorem 2] that a finite-dimensional 1-mixed
injective operator space is Banach isometric to an £*°-direct sum of Cartan factors.
Oikhberg and Rosenthal [27, Problem 3.3] ask whether every finite-dimensional 1-
mixed injective operator space is in fact completely semi-isometric to an £°°-direct
sum of Cartan factors of types 1-4. Corollary of Theorem [2 below answers this
question.

Theorem ] below is formulated for atomic 1-mixed injective operator spaces. A
Banach space X with predual X, is said to be atomic if the closed unit ball X, ; is
the norm closed convex hull of its extreme points. In particular, reflexive Banach
spaces are atomic, as are the duals of unital C*-algebras.

2. MAIN RESULTS AND REDUCTION

In this section we state Theorems[Il, 2, and B, and give a reduction for the proof
of Theorem [2

Theorem 1. There is a family of 1-mized injective Hilbertian operator spaces HF,
1 <k <mn, of finite dimension n, with the following properties:
(a) HE is a subtriple of the Cartan factor of type 1 consisting of all (Z) by
(n—2+1) complex matrices.
(b) LetY be a JW*-triple of rank 1 (necessarily atomic).
(i) If Y is of finite dimension n, then it is isometrically completely con-
tractive to some HF.
(ii) If Y is infinite dimensional, then it is isometrically completely con-
tractive to B(H,C) or B(C, K).
(c) H! (resp. H}) coincides with R, (resp. Cy,).
(d) For1 <k <mn, H¥ is not completely semi-isometric to R,, or C,,.

The spaces HY are explicitly constructed in section 6. These spaces appeared
in a slightly different form in [I], see Remark The authors are grateful to N.
Ozawa for showing us the proof of (d).

Theorem 2. Let X be a 1-mized injective operator space that is atomic. Then X
is completely semi-isometric to a direct sum of Cartan factors of types 1 to 4 and
the spaces HE.

The following Corollary to Theorem 2] together with (d) of Theorem [[, answers
the question of Oikhberg and Rosenthal [27, Problem 3.3].

Corollary 2.1. A finite-dimensional 1-mized injective operator space is completely
semi-isometric to a direct sum of Cartan factors of types 1 to 4 and the spaces HE.

We now begin the proofs of Theorems [Tl and

Let X C B(H) be a 1-mixed injective operator space. Then there is a contractive
projection on B(H) with range X. By [I3| Theorem 2], there is thus a linear
isometry &y from X onto a JC*-triple Y C A := B(H)** of the form £o(x) = pxg
for suitable projections p, ¢ in the von Neumann algebra A. Since (Eg)y, : My (X) —
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M, (Y) has the form [z;;] — diag(p,p,...,p) [xi;] diag(q,q,...,q), we have the
following lemma.

Lemma 2.2. &y is completely contractive and hence a complete semi-isometry of
X onto the JC*-triple Y.

Lemma 2.3. Suppose X is a Banach space with predual that is isometric to a
JC*-triple Y. Then X is atomic as a Banach space if and only if Y is an atomic
JW*-triple.

Proof. Since X, is a predual of Y, Y is a JW*-triple. Assume X is atomic as a
Banach space. It is shown in [14] Prop. 4c] that the minimal partial isometries v in
Y are in 1-1 correspondence with extreme points ¢ of Y, ; via the mapping ¢ — v
if ¢(v) = 1. By [14, Theorem 2] Y has an internal £>° direct sum decomposition
A @ N into w*-closed subtriples, where A is atomic and N contains no minimal
partial isometries. It follows that N'= {0} and Y is atomic.

Conversely, if Y is an atomic JW *-triple, then by [14, Theorem 1], Y, = As? N,
where N has no extreme points. It follows that N = {0}. O

Lemma 2.4. It suffices to prove Theorem [ in the case that Y (= Eo(X)) is triple
isomorphic to a Cartan factor.

Proof. By Lemma [Tl and Lemma 23] Y = @ Y, is the internal > direct sum
of a family of subtriples Y,,, each of which is triple isomorphic to a Cartan factor
of one of the types 1-4.

Suppose that T, : Y, — Z, is a complete semi-isometry. Then 7T, : Y, —
P Z, is also a complete semi-isometry, by the following commutative diagram:

isometry

Mn(@ Ya) - @Mn(ya)

(@ TQ)HJ l@(Tu)n

isometry

M,(P Zy) — P M, (Za).

To show the isometry part of the above diagram, one can use the idea of [14]
Lemma 1.3]. For completeness, we include the argument. For ¢ € M, (X @Y') with
¢ij = aij P bi;, we have ¢ = [¢;;] = [ai; 0] + [0 @ b;;] = a + b with a, b orthogonal
operators, that is, ab* = a*b = 0. Then, assuming |a|| < 1 and ||b]| < 1,

lell = lla + 0]l = ll(a +b)(a +b)*(a +b)||/*
=[la®" +b*" (L

proving that [|c[|a, (xey) < lllai] @ [bijlllar, ()@, (v)- Conversely, assume |[al| =
1. Then 1 = ||a||® = |Jaa*aa*al| = |laa*(a + b)a*al| < |la + b||, so that ||la| < |||,
and it follows that [[[as;] @ [bijlllar, 0@, (v) < llellar, (xov)- O

An ideal of a JC*-triple Y is asubspace I C Y suchthat {Y I Y}+{I Y Y} C I.
By [12, Prop. 2.1], the second dual of a JC*-triple is a JW*-triple.

57 < (la 3n)37n <93 1,

Lemma 2.5. Any JW*-subtriple Y of a C*-algebra A is completely semi-isometric
to a w*-closed JW*-subtriple of A**.

Proof. By separate w*-continuity of multiplication, the annihilator Y? is a w*-
closed ideal of Y**. By [I8] or [26, Theorem 3.5], Y** = Y2 @*" J, where J is a
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2230 MATTHEW NEAL AND BERNARD RUSSO

w*-closed ideal orthogonal to Y. Let P (resp. Q) be the projection of Y** onto
Y0 (resp. J). For each element z € Y**, there is y € Y with z —y € Y?. It
follows that Q(Y) = Q(Y**) = J, and it is easy to see by the orthogonality that
Q is a w*-continuous triple homomorphism from Y** onto .J. Since P(Y**) = Y,
Q is one-to-one on Y. As in the proof of Lemma 24] Q = 0 @ Ids is a complete
contraction. O

Theorems [I(b) and ] are immediate consequences of Lemmas 2.2 [Z4] 275 and
the following proposition. Theorem [(a) is proved in section 6 (see Remark [6:2]).
Theorem [{c) is proved in Proposition 510 and Theorem [d) is proved at the end
of section 7.

Proposition 2.6. Let Y be a JW*-triple that is w*-closed in a W*-algebra. If
Y is either of rank at least 2, or of rank 1 and infinite-dimensional, and is triple
isomorphic to a Cartan factor of type 1,2,3, or 4, then it is in fact completely semi-
isometric to a Cartan factor of the same type. A finite-dimensional JW*-triple that
is triple isomorphic to a Cartan factor of rank 1 is completely semi-isometric to
one of the spaces HE.

As a by-product of the proof of Proposition 2.6} we shall obtain the following the-
orem, which by Lemma[T1] gives a classification up to complete isometry of atomic
JW*-triples that are w*-closed and contain no infinite-dimensional w*-closed ideals
of rank 1.

We need the following definitions. If B(H, K) is a Cartan factor of type 1, then

Diag (B(H,K),B(K, H)) := {(z,2") : 2 € B(H, K)},
where the transpose is with respect to fixed orthonormal bases for H and K. We
give Diag (B(H, K), B(K, H)) the operator space structure induced by its natural
embedding in B(H @ K ® H @ K) and note that Diag (B(H, K), B(K, H)) is con-
tractively complemented therein. Indeed, first project B(H @ K @ H & K) onto
B(H,K)® B(K, H) and follow by (z,y) — ((z +y')/2, (z! +y)/2).

For a fixed dimension n and each j = 1,...,m, let H; be a Hilbert space of
dimension n with a specified orthonormal basis B; = {e;1,...,€;,}. Then
Diag ({Hj, B]}) = {(Z Ok€lk, Zakegk, ey Z akemn) Lo € (C, 1< k < m}
k k k

The space Diag ({H;, B;}) is contractively complemented in @?:1 H;.

Theorem 3. Let Y be an atomic w*-closed JW*-subtriple of a W*-algebra.

(a) IfY is irreducible and of rank at least 2, then it is completely isometric to
a Cartan factor of type 1 — —4 or the space Diag (B(H,K), B(K, H)).

(b) If Y is of finite dimension n and of rank 1, then it is completely isometric
to Diag (HF,... HFn), for appropriately chosen bases defined in section
7, and where k1 > ko > -+ > k.

(¢) Y is completely semi-isometric to a direct sum of the spaces in (a) and (b).
If Y has no infinite-dimensional rank 1 summand, then it is completely
isometric to a direct sum of the spaces in (a) and (b).

Corollary 2.7. FEvery finite-dimensional JC*-triple is completely isometric to an
£°-direct sum of Cartan factors of types 1-4 and the spaces

Diag (B(H,K),B(K,H)) and Diag(HM, ... H).
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Corollary 2.8. FEvery atomic contractively complemented subspace X of a C*-
algebra A is 1-mized injective.

Proof. By [13] Theorem 2] and Lemma 23] the map &y mentioned ecarlier is a
complete semi-isometry of X onto an atomic JW *-subtriple of A**. By Theorem/[3
and Lemma 23] X is completely semi-isometric to a direct sum of the spaces listed
above, which as noted are 1-mixed injectives. Then by [27, (3.9)], X is 1-mixed
injective. (Il

Corollary 2.9. Every atomic JW*-triple is a 1-mized injective.

We shall prove Proposition and Theorem [l case by case in the following
sections. Cartan factors of Types 3 and 4 are handled in section 3, type 2 in section
4, and type 1 in sections 5, 6 and 7. Section 6 also introduces the spaces HY, and
section 7 also gives some examples and states some open problems.

3. CARTAN FACTORS OF TYPES 3 AND 4

The Cartan factors of types 3 and 4 have a unital Jordan *-algebra structure in
which we frame the proofs of Proposition and Theorem [3.

3.1. Cartan factors of type 4. We first prove Proposition 2.6l and Theorem [3in
the case that Y is triple isomorphic to a Cartan factor of type 4. Let us first describe
the concrete model which we use for such a Cartan factor, from [15] Theorem 6.2.2]
and [16].

A spin system is a subset S = {1,s1,...,s,} of selfadjoint elements of B(H)
containing the unit and satisfying s;s; + s;js; = 0;;2. It follows that spc S is a
(k + 1)-dimensional Jordan C*-subalgebra of B(H). A spin factor is a subspace X
of B(H) of dimension at least 2 that is the closed linear span of a spin system of
arbitrary cardinality.

We now recall the standard matrix representation of the spin factor Sp (n), 3 <
n < oo, for the separable case (cf. [15, 6.2.1]), which is the Cartan factor of type 4.

Let
1 o Jo 1 (oo
A=l 1|0 27100 7| i o0

be the Pauli spin matrices. Denote by % the n-fold tensor product o3 ® - -- ® 03
of o3 with itself n times in Man (C). Define

§1 =01, Sg =02, §3 =03Q 01, S4 =03 K 02...

and in general sop4+1 = 0% ® 01 and sap42 = 0% ® 03.
With the imbeddings Man (C) C Myn+1(C) given by

a»—>a®1:{g 2]

we have s, € Man(C) if k < 2n and {1, s1,...,8,} is a spin system for each k > 2.
The linear span Sp(k + 1) of {1,s1,...,8x} is a (k + 1)-dimensional spin factor
contained in Msn (C) if 2 < k < 2n. For more details and the case k = R, see [I5]
Theorem 6.2.2].

As an operator space, a spin factor X is determined up to complete isometry
by the cardinality of the spin system. Indeed, it is easy to see that two finite

spin systems with the same number of elements generate C*-algebras that are *-
isomorphic with basis consisting of all finite products of elements in the spin system
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and the unit. If a spin system {s)}aca has arbitrary cardinality, the inductive limit
Upg A(F) (norm closure) of the collection of C*-algebras A(F) generated by finite
subsets F' of {sx}aea is exactly the C*-algebra generated by the spin system. Thus,
any two spin systems with the same cardinality generate *-isomorphic C*-algebras
(cf. [36} 1.23] or [5l Theorem 5.2.5]).

Suppose now that the Y in the statement of Proposition [2.6 is triple isomorphic
to a Cartan factor of type 4. Let A denote any von Neumann algebra containing Y.
The JW*-triple Y contains a spin grid {u;,u; : j € J}, or {u;, 4, : j € J}U{uo}
in the case that Y is of finite odd dimension.

Let us recall the properties of a spin grid from [&, p. 313]. The elements u; and
4; (but not wg) are minimal nonzero partial isometries; for ¢ # j, u; is collinear
with u; and with %;, and @; is collinear with ;; and for ¢ # 7,

(2) {wivjis} = =505, {udit;} = — 5.

In case ug is present, for each i # 0, ug governs u; and 4;, and

(3) {’U,o’uiU,Q} = —111-, {’U,o’l]iU,Q} = —U;.
All other triple products from the spin grid are 0, and in particular, u; is orthogonal
to sz

It is not hard to see (cf. [§]) that the complex span Y of a spin grid has an
equivalent Hilbertian norm and is hence reflexive. It is also clear from the grid
properties that all such Y are rank 2.

Let v = i(u1+11 ), where 1 is an arbitrary element of the index set J. It is easy to
see that Y = Y3(v). As noted in the preliminaries, As(v) and A (v)(®) are ternary
isomorphic and thus completely isometric. Thus, the identity map ¥ — Yg(v)(”) is
a complete isometry.

The following lemma is easily verified by using @), ) and Peirce calculus. For
the convenience of the reader, we include some of the details.

Lemma 3.1. Y5(v)®) is a Cartan factor of type 4. More precisely, let s; = u; +
5, g€ J—{1}; t; =i(u; —a;), j € J. Then a spin system in the C*-algebra
Ao (v)®) that linearly spans Ya(v)(™) is given by
{sjste,v:jeJ—{1},ke J},
or, if the spin factor is of odd finite dimension,
{sj. te,v,up:jeJ—{1}, ke J}.
Proof. 1If j #£ 1,k # 1,
Sj Sk +SKk-S; = SjU sE+ spvs; = 2{s;vs,}
= —2i{u; + U5, w1 + U1, uk + U}

If j # k, then all 8 terms in the expansion of this triple product are zero, since the

triple product of three mutually collinear partial isometries is zero. On the other
hand,

2sj-5; = —2i{u; +4j,u1 + U, u; +a;}
= —2il{ujuru;} + {ujuaty} 4 {uytiug} + {u;taa; ]
—2il{tjuru;} + {auat;} + {aa0u,} + {a,014;}]
= —2[0—11/240—u1/2—11/24+0—u1/2+ 0] (by @)
= 2.
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Similarly, ¢; - tx + tg - t; = 2,50 for all j,k € J; and s; -t + ¢ - s; = 0 for all
jed—{1},keJ.
Next we consider the case that wug is present. If j # 1,

Sj-up+ug-s; = S;v ug+ ugv's; = 2{s;vup}
= —QZ{UJ+€LJ7’U/1 +’0,17U;0}
= —2i[{ujuiuo} + {yjtuo} + {Guiue} + {G;%1uo}].

By Peirce calculus {ujuiuo} is orthogonal to u; and is a multiple of u;; hence it is
zero. Similarly, each of the other three terms is zero, and similarly ¢; - uo+wuo-t; = 0
for all j € J. Finally, ug - ug = —i{ug, u1 + t1,uo} = v by @). |

Since Y is completely isometric to Y5(v)(*), this completes the proof of Proposi-
tion [Zf] and Theorem [3 in the case that Y is triple isomorphic to a Cartan factor
of type 4.

3.2. Cartan factors of type 3. We next prove Proposition B-6land Theorem [ in
the case that Y is triple isomorphic to the Cartan factor S(H,J) of type 3. Again,
we let A denote any von Neumann algebra containing Y.

Let us recall that an Hermitian grid (cf. [8] p. 308]) is a family {w;; : 4,5 € I} of
partial isometries satisfying w;; = wji; uij L wg if {i, 5} N{k, 1} = 0; wsj - wi if i #
Js wij Tugg if 4, j, k are distinet; {w;jujpur} = wi/2 if @ # 1, and {wijujrur } = i
if at least two of these partial isometries are distinct; and all other triple products
are 0.

Let {u;; : i,j € A} be an Hermitian grid that is w*-total in Y and let v denote the
partial isometry ), u;; (the sum is w*-convergent since u;; L u;;), and note that it
has the property that Y = Y2(v). Let ¢ : Y — S(H, J) be the triple isomorphism
determined by ¢(u;;) = Uj;, where {U;;} denotes the canonical Hermitian grid
for S(H,J), that is, U;; = ¢; ® ¢; + ¢ ® ¢; for ¢ # j and Uy = ¢; @ ¢; for an
orthonormal basis {¢y} of H.

Note that isomorphisms of JW*-triples (being isometries on spaces with unique
preduals) are automatically w*-continuous. Hence t(v) = Idy and w(ugj) =
{¥(v), ¥(uij), Y (v)} = Y(uiy)* = Uy = Uiy = ¥(uij), so that u;; is selfadjoint
in As(v). Here, af = va*v denotes the involution in Ay (v)(*). Also, recall that the
ternary product is the same whether it is computed in A or in Ag(v)(”), that is,
xy*z = xv* (vy*v)v*z.

Now define e;; = wu; - u;5, where we use a - b to denote the associative product in
Aa(v)®) that is, a - b = av*b.

Lemma 3.2. The collection {e;;} forms a system of matriz units in As(v)(®), that
18,

(a) €5j = €ji, €ij * €kl = OjkCil, V=D €ij.
Moreover,

(b) Wig = Uij = Usj - Ujj and Ui5 = 67;];4— €ji- ~

(c) ¢ extends to a *-isomorphism v : spc{esj} — spc{Eij} satisfying ¢(e;;) =
Eij, where Eij = gﬁj R ¢P;.

Proof. We first show these three identities:

(4) (i - wig = wij - ) - (wig - g — g - ujj) = 0,
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(5) (€5 - ext) - (€45 cex)f =0 for j # k,
(6) (eij - e — ea) - (eij - eji — ea)* = 0.
Note that w;; - uy; = ugv* ug, = uii(zj uf;)uii = ugi, and that similarly, for i # j,

Ugj * Uij = U + Ujj, Wgi - U5 = 0, and g5 - wy5 - U5 = uj;. Therefore, for i # j,
(s - gy — iy - ugy)* - (wii - wig — g - ujj)

= (wg - wi — ugj - wg) - (Wi - wij — i - ug;)

= i (i - wai) - ig — Uy - (Wi i i)
—(wij - wii - wig) - ugy 4 gy - (i - i) - ug,
Wij + Wi - Wi — U Uy — W g g - (Wi ) - g
= ujy — Ui — ugy+ug; =0,
proving (H) and the first statement in (b).

Next, if j # k, then
(eij - ext) - (eij - er)' = eij-ex- e - eji
g (Wkt - Wi Wik) - Ukk - Uji - Ui (Dy (D))

= U Ujj (U - Ukk) * Uij - Uis

= Ujj c Ujjc Ugk - Ugj - Uy = 0,

Il
£
<.

proving (H).
Next,
(eij - ej1 — ear) - (e - €51 — ear)F
= (eij-ej —eq)- (e -eji —en)

= (wij - Ujj - Ui - U — Wap - ugg) - (U - Wjp - Wjg e Ui — U - Ug)
= T Ugj U Ugy Uy U Ugg Uy Uy
Fij g e (g - UG - U U = Ual - UL Ul U i
= A wii gy gy g wig — B
—A+ uy +uy; — B,
where A = uij . Ujj 'u]‘l U UL and B = U4 - UL ~u]‘l 'u]‘j -uij.
To prove (), it remains to show that A = B = u;;. Here we need to distinguish
cases. Suppose first that ¢, j and [ are distinct. Then {ujjuyu;} = u;;/2, so that
A = w-ujy - Q{ujugual — wa - w - ugp)
= Ui Uy Ui — Ui U (U ) - U
= Wi — Wi5 - U5 - (Ui - uar) - uy (by the first statement in (b))

Wig

as required.
Also B = uil-u”-(2{ujlujjuij}—uij-ujj-ujl) = Usl UL Wl — U] UL Wi Ugj Uil = WUig-
Now if ¢ = j, then A = w;-wi;-wg-uy-u; = ufi = uj; and B = -y Ui Uiy =
u?; = u;;. Similarly if | = j or i = [, proving (G).
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Finally, since u;jur, = 0 if k & {3, },
€ij t €ji = Ugj * Ujj + Ugj - Uy = Ugj (Z ukk) = Ujj.
This completes the proofs of (a) and (b).

By the first statement in (b), we have

#

— (). N g — o
eij*(un'uw) = Uij « Uii = UjjUji = Cji-

Since the system of matrix units {e;;} is linearly independent, 1& defines a linear
isomorphism of sp c{e;;} onto spc{E;;}, which is by construction a *-isomorphism,
proving (c).

O

Clearly v extends to a *-isomorphism from the C*-subalgebra W”'H o

As(v)™) onto the C*-algebra of compact operators K (H). By [8| Lemma 1.14],

<, 9

*

extends to a w*-continuous isometry and, hence, *-isomorphism from sp c{e;; }W
onto B(H). Since a *-isomorphism is completely isometric, the proof of Proposi-
tion 2.8 and Theorem Blis completed in the case that Y is triple isomorphic to a
Cartan factor of type 3.

4. CARTAN FACTORS OF TYPE 2

In this section, we prove Proposition and Theorem [3 in the case that Y is
triple isomorphic to the Cartan factor A(H, J) of type 2. Again, A denotes any von
Neumann algebra containing Y. Since A(C3?,J) is triple isomorphic to B(C, C?),
which is covered in section 7, and A(C*, J) is triple isomorphic to Sp (6), which was
covered in section 3, we may and shall assume that dim H > 4.

Let us recall ([8, p. 317] that a symplectic grid is a family {u;; : i,j € I,1 # j}
of minimal partial isometries satisfying w;; = —wji; wij Tug if {4,5} N {k,1} # 0
wij Loug if {4, 5} N {k,1} = 0; 2{u;jugur } = ug; for distinct 4, j, k,I; and all other
triple products vanish. The fact that each u;; is minimal can be expressed by
(7) Wi U Wij = O(i ), (k1) Ui

Let {u;;} be a symplectic grid that is w*-total in Y. Let ¢ : Y — A(H, J) be

the triple isomorphism determined by ¥ (u;;) = U;;, where {U;;} = ¢; @ ¢; — ¢piQ ¢;
for an orthonormal basis {¢y} of H.

Lemma 4.1. For any indices i, j, k,l, m,
* *
(8) Uik Upg Uil = UijU iy Uim,

and for 1 < i < n, the elements e;; unambiguously defined by e;; = uiju;muim are
nonzero orthogonal partial isometries in A.

Proof. We shall use repeatedly the fact that u;; = —uj;.
Suppose that i, j, k, [ are distinct. Then w;;uy; = 0, and therefore

* *
UikUp Ui = 2{ W Ui Uak U Uil

* * *
(Waj Uik + Uikt tij Uk Wi

9)

* *
U U Wik U Uil +0

* * *

Wi (Ut g Wi + Wij U Uk) it
*

= 2uii{uijuinup Ui

* *
= wij(—wg) ua = uuju.
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Similarly, if m,l, 4, k are distinct, by replacing w;; by 2{wmuimus}, we obtain
Uik Uy Uil = UikUL,, Uim- Indeed,
* *
UiUp Wit = Uik 2{ WimWim Wit }

* * *
Wik Wy (Wi W, Wil + Wit Uy, Wi )

(10) = Uk Up Ui W, Wi,
= 2uip{wrWiaim } Wi
= Uik U Wim.-
Together, (@) and (I0) prove (§), and thus e;; is well defined.

We next show that e; # 0. Suppose instead that e; = 0 for some i. For i,k,1
distinct we have w;; Tug; and wg Tug. So

* *
Ukl = UikUp Ukl + Ukl U Uik

* * * * * *
Uik Uy (Ui ue + Uk wg) + (Uit + et W) Ui, Wik

* * * * * *
(11) = (WikUUa U — Wikel; i) + (—UigelUin + Wt Ui Wi, ik)

(wirujuauiug +0) + (0 + wgruguiug,uik)

= LiLyup +up Ry R,
where L;, = uipu)y, and R, = uj,u denote the left and right support projections
of Uik -

By the definition of symplectic grid, if p, k,1, m are distinct (recall that n > 5),
then upm = 2{uprtritm; }. However, by (IIl) and the commutativity of the support
projections associated with u; and wu;; (see Lemma 5.4,

Upm = 2{upkfulkluml}

= UpkUggUml + UmiUp Upk
= Upk(LirLiwrr + wRi Rik) Wi + i (Lik L + g R Rik) " upk
UpUpy Lit (Liktmi) + (Upk Rit) Rik Wiy Umi
+ Uity Lik (Liupk) + (Umi Rik ) Riuggupr = 0,
which is a contradiction. Thus e;; # 0 and by Peirce calculus

*

* * * *
€ii€;;Cii = uikukluiluilukluik(uikukluil)

* * * *
— Uik Uy Wit Wy (Wt Wi Wil ) Uy Uik

* * * *
= UikUpy (Wit Wi ) U, Uk U Wik

* * *
Wik (Ug Wil Uiy ) Ukl Ugy Wik
* * *
— Wik Ui Wit (W Ukl Uy ) Wik
* *
— i (Ui wik)

*
= UikU;€4

Wik gy, (Wik Uy Wi )
= Uik Uy Uim = €ii-
Finally, to show orthogonality, take i, j, 1, p distinct and note that
€5i€j5 = (Uattfj i)  UjpUpyn Umj = Up Utk U UjpUpyy Umj = 0
and similarly eii€ej; = 0. O

Lemma 4.2. With the above notation,
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(a) eiufjei = eiie} ey =0 fori# j.

(b) {eii} U{uij} is a linearly independent set.

(€) wij L ex for k & {i,j}, that is, ui; € Ao(exk).

(d) {en‘en‘uij} = uij/2 = {ejjejjuij}, that is, Uqj S Al(en‘) N Al(ejj),
Proof. We have

*

)

*

* * * * *
CiilUi;€ii =  WikUppUWilUyjUikUpg Uil = — Uil Upg Wik U5 Uik Uy Wil
* *
= —ugup{uipuijuig fugug = 0,
since {wikuijuin}t € As_142(ui) = {0} by Peirce calculus. Also

*

* * * *
€ii€];€ii = WikWpy (Wit Wjp, ) UpmWj,, Wikt i = 0,

proving (a), and (b) follows immediately from (a).

To prove (c), note first that e}, u;; = (Urit],, Wem ) Uij = U, UimUjWi;, Which is
zero if {4, j}N{l, k} = 0, and similarly u; e}, = 0. Thus 2{u;;u;jexr} = Uijuiierr +
exku;;ui; = 0, which is equivalent to u;; € Ao(egk)-

Finally, we shall show assertion (d):

2{eiieiuij} = euejui + uije;eq
= UipUgyyy Wi U Uk U g, Wij Ui U Ui Uy Wi Uy, Wiy
= 2uip{upmuimuil}*ulkufkuij —+ 2uiju2‘kulk{uiluimump}*uip
(since uy,, ugl = UpiUy,, = 0)
= uipu;lulkufkuij — uiju;‘kulku;luw
= 2uip{upiintie } Ui — 2w { Uik Ui pr } Uip
= Uip(—Upi) Uij + Uijujtip
= AHuipuipuij} = uij.
O
Lemma 4.3. For i # j, define e;j = ejejuijej;e;; (product in A). Then u;; =
€ij — €44 and
(a) {ei;} is a system of matriz units in the C*-algebra As(v)™"), where v =
Z CLk-
(b) t extends to a *-isomorphism ) : spcfeij} — spc{Eij} satisfying &(eij) =
E;;, where {E;;} = ¢; ® ¢;.
Proof. By definition, ej; = ejje

and [£2]

*
27

*

.. * c. = .. .. * ..
ujiefeii = —ejjes uije;eqi, and by Lemmas 7l

€ij —€ji = €ii€;;Uij€;;€j; + €55 €5 Wij€;;€ii

* *
2{6”6“"(},”}6]-]-63‘3‘ + ejjeij{e”eiiuij}
* *
Uij€j;€55 T €j5€55Wij
= 2Adejjejiui} = uij.

Since v = ) exk, to prove (a) it remains to show that e;;v*e;, = §;1€;, and vel,v =
’ p J J 17

€ii.
Jt
e * _ * * * * * _
In the first place, if j # [, then e;jv e = eiej;ui e}, (ej;v*en)efunesext = 0.
Now consider the case j = [, so that
* * * * * * * * *
eijv” e, = eiieiiij€ei (D) €qq) €ji€) Uik Chnehr = Ciieliuii€] Uik ChrCrk-
q

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2238 MATTHEW NEAL AND BERNARD RUSSO

There are five cases to prove:

® e;;v*e;; = ey, which is true since e;;v*e;; = eji€l;€4 = €4;.

o e;v*e; = €, k # i, which is true since e;;v* e = e;;v" ejiefjuinel  erk
p— * * —
= €4i€;; UikCpCkk = €ik-

® ¢;jv¥ej; = e, © # j, which is true since e;jve;; = eiie;uije;jejjv*ejj
= eij.

® e;jv*ej; = ey, 1 # j, which is true since

* P— .. * .. * .. * .. * .. * ..
€UV €5; = e“eiiu”ejjeﬂv ejjejjuﬂeiie“
* * *
= eiieiiuijejjujieiieii

€41 €53 Wi Wy UKL WS UWji €5 €

= 2eiie;{uijujkukl}U;zujie;‘eii
(by Lemma [Z2(c), ef;ur = 0)

= —eiie;uilu;lujiefieii

= €ji€};€ii€};€ii = Eij.

® e;jv*ejr = €, 1, J, k distinct, which is true since

* * * * * *
eijviey = eiie”uij(ejjejjejjejjejj)ujkekkekk

* * *
e”elzuz‘]e]‘]u‘]kekkekk

* * * *
€33€53 Wi (Ujm UnpUjp)  Ujk €l Chik

* * * *
€33 €3 Uij U jpUmpUjpn Ujk Lk Chk

P— .. * .. . * . *
= 26“61'1{“%Jujp“mp}ujm“jkekkekk

* * *
eiie”uimujmujkekkekk

* *
2eiie5 {UimWUjmUjk } € ik

* *
= €€, Uik€eLEkk = Eik-

Finally,
* *
€i; = eiieiiuijejjejj
* * * * * *
= Wik Uy Uit Uy Wt (U Wi W ) Upim U Ujp Uy Um
= 2UiRUy Ui Wi Uk { Uik Wij Ujm Upm W Ujp Uy Ujm
* * * * *
Uik U g Uil Uy Ukl (umkul)mujp)ujpupmujm
* * * *
= Uik U Uit (U5 WIS g ) Up Uy Wi
* * *
= —uikukluiluijujpupmujm
*
= —eiiuijejj
and therefore VeV = —VEJ UV = —€5€5 i€, € = €j€7,Uji€l; €5 = €ji. This

completes the proof of (a).

Since the system of matrix units {e;;} is linearly independent, ¢ defines a *-
isomorphism of sp c{e;;} onto sp c{E;;}, proving (b). O

By the same method used in Section 3 for the type 3 case, z/? extends to a *-

isomorphism of sp C{eij}w onto B(H ). The proof of PropositionZ6land Theorem[3
is thus complete in the case that Y is triple isomorphic to a Cartan factor of type
2.
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5. CARTAN FACTORS OF TYPE 1

In this and the next section, we prove Proposition and Theorem [3] in the
case that Y is triple isomorphic to a Cartan factor of type 1. This turns out to
be more complicated than the other types, especially in the case that Y is of rank
1 (Hilbertian). Except for some important preliminary cases (see subsection [5.3)),
the rank 1 case is proved in section 7.

Let {u;j : i € A, j € X} be a rectangular grid that is w*-total in Y. Recall ([8, p.
313] that this means that each w;; is a minimal partial isometry, u;, L uy if i # j
and k # l; wjp Tuy if either j =4,k #lor j#i, k=1

(12) {ujpujuat = ui /2 if j #i and k # [

and all other triple products are zero.

We shall assume throughout this section that Y is triple isomorphic to B(H, K),
that is, |A| = dim K and |¥| = dim H. Specifically, by [8l p. 317 and Lemma
1.14], this means that the map u;; — E;; extends to a triple isomorphism of ¥’
onto B(H, K), where E;; = ¢; ® ¢; for orthonormal bases {¢; : j € £} in H and
{¢;i:i €A} in K.

5.1. A special case. Note that the canonical rectangular grid {E;;} for B(H, K)
satisfies E;; B = (Yi|Y;)¢: ® ¢; = 0 for j # k and all 4; and E}, Ej, =0 for i # j
and all k.

Lemma 5.1. With'Y as above, assume that for some fized values of i € Ak, 1 € ¥,
we have uyul, = 0 and k # 1, or for some fizved values of i,j € A,k € ¥, we have
ui e =0 and ¢ # j. Then:
(a) For all j € A,p,q € ¥ with p # q we have ujpui, = 0; and for all p,q €
A, € ¥ with p # q we have uy, ug = 0.
(b) Y is a ternary subtriple of A that is ternary isomorphic and completely
isometric to B(H, K), where A is any von Neumann algebra containing Y .

Proof. We shall give the proof in the case that u;u}, = 0. The other case follows
by symmetry.
We first take care of the “i*"-row,” where i, k, [ are the fixed values. If p & {k, [},

* *
) 2{uiluiluip}uik

* * *
(waruiuip + wipujui ) ugy,

(13) = uy(ujjuypul,) (by assumption)
= —ugujupuy (since {upupui} = 0)
= 0.

Thus, if ¢ & {p, k},

*

Uiply, = 2UjplUipUirUio)”
(14) = Uip(UikUjpUiq + UiqUsp Uik )"
= (upujguir)ujy, (by ([13))
= Ui Uipty, = 0.
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This proves the first statement in (a) when j has the value i. We next take care
of the “j*h-row” (if it exists). If p # ¢ and j # i,

*

UjpUsiq = Z{Uipuiqujq}ugq
(WipUiqUjq + WjqUigUip)Ujq
UjqUiqUipusy (by (@)
2ujquiguip{uiquiptijp}”

= ujqu;‘quip(u;‘quipu;fp + u;‘puipufq)

= 0 (by (Id) and the minimality of u;,).

This proves the first statement in (a). We complete the proof of (a) by taking

care of the “columns” (if they exist). For all p, g, r with p # ¢, choose s # r. Then

(15)

u;run = QUZr{uqsupsupr} = u;r (upru;suqs + uqsu;supr)
= Uy (Uprtty ) ugs + (tp,tigs)upstpr = 0,
by orthogonality of ugs and wp, for s # r and by ([I3)).

By (a), and the separate w*-continuity of multiplication, Y is a ternary subtriple
(closed under (a,b,c) — ab*c). Furthermore, spe{u;;} is ternary isomorphic and
isometric to spc{E;;} via u;; — E;;, and we can again use [8] Lemma 1.14] to
extend the map to a ternary isomorphism of Y onto B(H, K), which then is a
complete isometry. O

By the same arguments, we also have the following.

Lemma 5.2. WithY as above, assume that for some fized values of i, k,l, we have
ujuig =0 and k # 1, or uikuyk =0 andi+#j. Then:

(a) For alli,k,l with k # 1 we have ujjui, = 0; and for all i, j, k with i # j we

have uiku;k =0.

(b) Y is ternary isomorphic and completely isometric to B(K, H).

It is convenient to single out the rank one case.
Corollary 5.3. LetY be triple isomorphic to a Cartan factor of type 1 and rank 1,
and denote by {ux} a rank 1 rectangular grid for'Y .

(a) If wiuj = 0 for some i # j, then Y is completely isometric to B(H,C).

(b) If ufu; =0 for some i # j, then'Y is completely isometric to B(C, K).
5.2. The case of rank 2 or more. The following simple lemma will be useful in
this and the next section. Part (b) of it is referred to as “hopping”.

Lemma 5.4. Let u,v,w be partial isometries.
(a) If u and w are collinear, then the support projections uu*, ww* commute,
as do u*u, w*w.
(b) Ifv and w are each collinear with w, then vu*vw* = vw*uu* and w*uv*w =
viwutu.
Proof. We prove (b) first. Since vu*v 4+ vu*u = v and vu*w + wu*u = w,
(uuv)w* = (v — v w)w* = vw* —v(u uw*) = Vw* —v(w" — wruu*) = vwruu’.
Similarly for the second statement. To prove (a) use the same argument:
wufww* = (w —wuru)w* = ww* —wwruw®) = ww* —ww* —wruu) = ww uu’.

O
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Justified by Lemmas[5] and B2, we may now assume in the rest of this subsec-
tion [B.2] without loss of generality, that

(16) uiruy; # 0 and uju; # 0 for alli € A, j, k € X,
and
(17) uipuj, 7 0 and wjuje #0 foralld,j € Ak € 3.

Lemma 5.5. Suppose that Y is triple isomorphic to a Cartan factor B(H,K) of
type 1 and rank at least 2, let {u;j : i € A, j € £} be a rectangular grid for' Y, and

suppose that (I8) and (D) hold.
Then for all i € A and j € X, the projections

Pp— * P— *
L;:= H Uipyy, ond Rj:= Huljulj
kes lEA
are nonzero.

Proof. Note that by Lemma B4, the above are products of commuting projections.
We shall show that L; # 0, the proof for R; being similar.
Suppose the assertion is false, that is, for some i € A,

*
H UikUsp = 0.
keX

Choose a finite subset S C ¥ and denote it by {1,2,---,n}. Choose a j # i and
anl €S — {1}. Since uy Tu,

*

gl

* * * *
UglUjy = Uil Uy Uil Uy = Ui Uy Uit Uy
* *
%

* *
= uiluiluiguﬂuiluﬂ

n
* *
H uikuik uilujl
k=1,k#l

n
* *
H Uik Usp Uil'U;jl.

k=1

Since [y wirujy, is the w*-limit of the net {[[;cg uiruj,}s)<oo, it follows by
separate w*-continuity of multiplication that uyu}, = 0, which contradicts (7). O

In the rest of this subsection, for convenience, we shall write the above infinite
products as if they were finite products. The relevant assertions are valid by passing
to the limit.

Lemma 5.6. Let Y be as in Lemmalidl Let
p = T wiruj,
iCA kex

which is a sum of nonzero orthogonal projections. The maps Y 3y — py € pY and
Yoy— (1—p)y € (1—p)Y are completely contractive triple isomorphisms. Also,
pY L (1-p)Y.
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Proof. We begin by showing that {pu;;} is a rectangular grid that is w*-total in its
w*-closure. We start by showing that pu;; is a minimal partial isometry, using the
criterion (). We have

* P— .. * L. — .. * * .. * . .
Ui (Pur1) Plij = PUijUug pui; = Puijuy, E Uq1Uqy ** UgnUgp | Wij-
geA

By Lemma [E4{a), this is zero if k # . For k = 4, we have
puij (PUkt) " puij = puijuguaiugy -« - Winly, Uij,
which is zero for j # [, since by Peirce calculus, u;juju;; = 0. On the other hand,
(puij) (puiz)* (puiz) = pugiui;uin g -« - Ui, ij = puij,

and it is nonzero by Lemma BB This proves that pu,; is a minimal partial isometry.
We next show that puj;r L puy for i« # j and k # [. On the one hand,
pujk(pua)® = pujruj;p = 0; and on the other hand,

*

* _ * . _ * * - * . _ * ) * R . . —
(puir)"pujr = ujpujp = E uil(uqluql anuqn)ujk = Ug Uit Uy - UinUgp Uik = 0
geEA

by Lemma B4(a).
We next show that pu;; Tpuy for k #£ 1. We have
Uik (puik) i + pui(puir)* puak
= PURUTLPUG + PUGU DUk
= (upuy - UinU, ) Uit PU
F(wirufy - - - Ui, ) Uit Pl
= (upuj - UinUj, )ug + 0 (since wfuyuf, =0)
= PUqg,
as required.
We next show that for ¢ # j, puji Tpu;,. To this end, we shall show that
Pk (pujr)*puik = 0 and puk (pujr)*pujr = puik. In the first place,
pujk(pujk) puix = (pujrujy)(puin) = (wjiujy -« wjnuj, ) (winw - winug,) = 0.
In the second place,
puik(pujr) pujr = puiku;k(pujk)
= puguwi( [T wpwi)us
1<i<n,l#k
= puik(Ujp — U1 U UG Uj2 WS, Ujn WSy Uk

— . * . * P . * .
= puzkujk(u]2uj2 u]nujn)ujk
* *
= pukujiuje = p(Uik — UjkUjEUik) = PUik.

Finally, we shall show that {pu;i, puji, pua}t = pu/2 for j # i and | # k. It
suffices to prove that pujku;lpuu =0 and puilu;lpujk = pu;k.
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On the one hand,

* * * *
PUjRUG DU = E Um1 Uy *** U Uy U U PUGL
meA
P . * DY . * . * . P
= Uji1Ujy cc Ujn U, Uik Uy Py = 0,
: ER T T
since uju;puy = 0.
On the other hand,

* * * *
puyuypujr = E PUIU i Um1 Uy - Umn Uy Usk
meA
p— . * . * PR . * .
= pugujujiugy Uiy,
(where wjjuj, and ujruj, are not present in the [ - |)
P . * — * - * . * ... 3 * .
= Dpui [Ujl ujlujlujl]uﬂuﬂ UjnUjnUjk

— . * . * « e . * -
= PULU; U 2Ujo - UjnUjn Ujk

— *
= DPUjujUjk

*
= plup — ujpuju)

*
= DUk — PUjrUj Uil

* * *
= DUk — E Um1Upm *** Umn Uy Uik U Wil
meA

— . — . * P . * . * .
= PUik — Uj1Ujy - Ujn U Uikl Us]

= puix since ujujruj; = 0.

It now follows that the map y — py is a triple isomorphism, and hence an isom-
etry, from the norm closure U of sp¢ {u;;} onto the norm closure V' of spe {pui;}.

We claim that the map y — py is an isometry of the w*-closure U = Y of U
onto the w*-closure V of V, and is thus a complete contraction as well.

First we show that if py = 0 and y € Y, then y = 0, from which it follows
that the map y — py is a w*-homeomorphism when restricted to the unit ball of
U. Then by [19, (3.1)], y — py extends to an isometry of U onto V, which is
w*-continuous by the uniqueness of the preduals. This w*-extension must agree
with y — py on Y, which proves the claim.

To prove the above statement, suppose py = 0 for some y € Y. Then L;y =0
for each i € A. We may write y = > Ajju;;, where the sum converges in the w*-
topology and Ajjui; = lijyrij, where lij = u;ju; (resp. 7 = ufjuij) is the left
(resp. right) support of w;;. Since L;u;; R; = L;u;; # 0, we have 0 = LiyR; =
Lilijy’l“inj = /\ijLi’U,inj, and so )\ij =0 and Yy = 0.

We can similarly show that {(1 — p)u;;} is a rectangular grid and that hence,
as above, the map ¥ 5y — (1 —p)y € (1 — p)Y is an isometry and a complete
contraction. For example, to prove that (1 — p)u;x T (1 — p)uk, it suffices to show
that

(1 = p)uje[(1 — p)uir] (1 — p)uik =0
and

(1 = puirx[(1 = p)ui]" (1 — plujr = (1 — plujg.
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For the first statement,

(1 = plujruy (1 = pluge = (1 = plujruguin — (1 — p)ujpui,ptiic
(1 = pujrugpuir — (1 — plujpug, (winwy - - wintg, )uik
= (L= pujruguir — (1 — plujrujuix = 0,
since in the second term, for [ # k, ujruf,ugul; = wjn(uf, — ujugul,) = ujpul,.
For the second statement,
(1 = puwug(I —pluje = (1= pluaruipur — (1 — pluintiippuje

= (1—-pugujur+0

= (1= p)(uje — ujpuguir) = (1 — plugy.

We omit the entirely analogous calculations showing that the other grid proper-
ties hold.

As above, the fact that y — (1—p)y is a complete semi-isometry follows from the
fact that it is one-to-one on Y. To see that it is one-to-one on Y, suppose (1—p)y = 0
for some y € Y. Writing y = >~ \j;ju;; leads to Z” Aij (1 — Li)u; 5 = 0. If there
were indices (4, j) such that (1 — L;)u; ; = 0, then since (1 — L;)u; j = (1 — p)uyj,
we would have uj u;; = uj;pu; = uj; Liui; = 0 for some k, violating @.

Finally, we show that pY L (1 —p)Y. It suffices to show that basis elements are
orthogonal. First,

puis[(1 = phus]™ = pugjul; (1 — p) = (] [ winup)uijug; (1 —p) = p(1 — p) = 0.
k

Next, if j # k, pujjufy (1 —p) = (I, wau))uijul, (1 — p) = uijujp(l —p) = 0.
Finally, if k& # 1,
n
puijui;(1=p) = pugup; —puiguy; [ weu
I=1,l#j

n
= puigujy — puglug; — uguiun ] [ e,

1=2,l#j
n
= pugujy —pugui; [
1=2,l#j
= puijug; — puijug; = 0.
Clearly [(1 — p)y]*pz =0 for all y, z € Y, finishing the proof. O

Proposition 5.7. Suppose that Y is triple isomorphic to B(H, K) and is of rank
at least 2, and that ([IB) and (IT) hold. Then Y is completely semi-isometric to
B(H, K) and completely isometric to Diag (B(H, K), B(K, H)).

Proof. For k # j,
puik(puij)” = puikui;p
= PUKUUiTU - UinUy, = 0.

So Lemma Bl applies to show that pY is completely isometric to B(H,K). By
Lemma B8] Y is completely semi-isometric to B(H, K).
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Similarly, Lemma Bl applies to show that (1 — p)Y is completely isometric to
B(K, H). Indeed,

(1 = puir][(1 —plugk]” = (1 —plumujy(1 —p)
= (1— [Juauy)uirup,(1 - p)
1

= wiy (1 = p) — ([ ] wavi)wanufy (1= p)
1
= wujp(l —p) —uiuj (1 —p) =0,
since for | # k we have U U UK Uy = (uik — uikufluil)u;k = Uik,
As in the proof of Lemma 24, pY @*" (1 — p)Y is completely isometric to
B(H,K)&"" B(K,H). O

This completes the proof of Proposition and Theorem [3] in the case that YV
is of rank 2 or more and triple isomorphic to B(H, K).

5.3. The case of rank 1. Preliminary cases. Assume now that Y is finite
dimensional and of rank 1. Let us denote a finite rectangular grid of rank 1 for Y
by {u1,...,un}. For the record, let us note that this means precisely that u; is a
nonzero partial isometry: {w;u;u;} = u; # 0; u; is minimal:

(18) {uuju;} = 0 for i # j;

and that u; is collinear with ug: {u;uur} = ug/2 for i # k. By the grid properties
and the identity ||yy*y|| = ||y||?, Y is isometric to a Hilbert space with orthonormal
basis {u;} (see [8, p. 306]).

We shall denote, for J = {ji,...,5i} C {1,2,...,n}, uj ujuj,uj, - uju; by
(u*u)y. By commutativity of the projections ujuy, we may and shall assume that
1 <1 <--- <j; <n. Similarly (uu®); will denote wj, u} uj,uj, -« - ujuj,.
Lemma 5.8. If (uu*); = 0 for some J with |J| = i, then (uu*); = 0 for all J
with |J| =i. If (u*u)y =0 for some J with |J| =i, then (u*u); = 0 for all J with
|J| =i.

Proof. Suppose that (uvu*); = 0 for some J with |J| = i. Then for s € Jand k & J,

(wu™) - shogry = () - (syuruy,
= (wu") (o) (upugus + usuzug)uy
= (uu")j_{syurugusuy
= upug(uu”)_syusuy (by Lemma [5.7)
= upuzusug(uu®)j_(syusuy
= wupul(uu®)jusuy = 0.

The proof of the second statement is similar. O

Lemma B8 makes it possible to define i to be the largest ¢ such that (uu*); # 0
for any J with |J| = ¢, and i1, to be the largest ¢ such that (u*u); # 0 for any J
with |J| = 4. The numbers ig and iy, are indices which depend on how a JC*-triple
sits in its ternary envelope. We use the numbers ip and iy, to define projections

PR = 2| jj=ip(wu®) s and pr = 37 5, (uu).
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Lemma 5.9. Each of the maps y — pry, y — ypr, y— (1—pr)y, y — y(l—pr)
is a completely contractive triple isomorphism of Y into A. Also prY L (1—pgr)Y
and Ypr, L Y(1 —pyp).

Proof. To prove the first statement, it suffices to show that each of these maps
takes the rectangular rank 1 grid {u}}_, into a rectangular grid of rank 1.

We carry out the proof for y — pry and y — (1 — pr)y, the proofs for the other
maps being identical. For notation’s sake, we let p = pr and w; = pu;.

If w,, = 0, then

0 = wywj = (pux)(pur)* = pugujp = > (uu’),.
|J|=in.ke]

A sum of orthogonal projections cannot be zero unless each one is. Thus (uu*); =0
for any J containing k with |J| = ig, which is a contradiction. Hence, wy, # 0.
Next, for i # j,

* * *
wiwjw; = pui(pug) pu; = puiuipu;

= puu; Z (wu™)y | u; =0,

|7|=ir

since if i € J, then u;uj (uu*); =0, and if ¢ € J, then (uu*) u; = 0.
Similarly,

* * * *
wwiw; = pu,;(pu;)*pu; = pujupu; = E (uu®) g | u;
|J|=ig,i€J

and w; = pu; = ZIJI:iR (uu*) ju; = E‘J‘:m’ie](uu*)t}ui, so that w,wfw; = w;.
Now we shall show that w; and wy are collinear. It suffices to show that for

1%k,

pui(pu;) puk + pur(pui)*pu; = pus,
or equivalently (by using Lemma on the middle term),

DU PURUT, + PULUT PUUL, = PURUY.
As noted above,
(19) PURUY, = PURULD = Z (uu®)y.

|J|=ir,kEJ

On the other hand, we have

(20) DU PURUS, = Z (uu®)y
|J|=iRr,i,ke]
and
(21)  pugulpuuy = Z (uwu™) g | wpu? Z (wu™) g | wiug.
|J|=ir,igJ |J|=ir,k&J

It remains to show that the right side of (ZIJ), call it A, when added to the right
side of (20)), equals the right side of (I9).
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We have

A = Z (wu™) g, | upuf Z (wu™) g, | wiug

|[J1|=ir,i¢€J1 |J2|=ir,k&J2

* * * *
= E (uu®) g, upu] (uu™) Luug.
[J1|=|J2|=iR, i€ J1, k& ]2

Now each term in this sum for which k & J; is zero, as is each term for which
i & Jo. On the other hand, if ¢ € J, and k € Ji, then by Lemma [(5.4]

(uu™) g upw; (uu™) uuy, = (uu™) g, (uu™) g, — oy urw; uug,
which is zero unless J; = Jo U {k}, in which case it equals (uu*) s, upulu;ug, where

ke anding.
Conversely, if K € J and ¢ ¢ J, then

(uu™) jupu; wiuy, = (uu®) g upu] (vu®) g, uul,

where Jy = J, Jo = (J — {k}) U{i}, |h]| = |J2]| = iR, i & Ji, k & Jo. Therefore,

* * *
A = E (wu™) Jupul uuy,
|J|=ir ke JigJ

= Z (wu™) g (uk — wiulug)uy,
|J|=ig ke ig]

= Z (uu™) juguy,

|J|=ig k€ J,igJ

= Z (uu™) g,

|J|=ig, ke, igJ

as required. This proves that {prus}y_, is a rectangular rank 1 grid.
Let us now prove that (1 — p)u; T(1 — p)ug, that is,

(1 = pui[(1 = pui]" A = plur + (1 = plur[(l — p)ui]* (1 = pJu; = (1 — pux.
As before, it suffices to prove
(22) (1 — p)usui (1 — pluguy, + (1 — plugu; (1 — plujuy, = (1 — p)uguy,.
For the first term on the left side of (22,
(1 = pusu; (1 = p)uguy,

(23) = (1 =pluwiuruy, — (1 — plugupuguy,
= (1 —puujuruy, (since u;uf commutes with p).
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For the second term on the left side of (22),
(1 = pupu (1 = pujuy,

= (1= plurujuuy — (1 — plugu] puuy,

= (1 -puguiuug — (1 — plugu; Z (uu®) g | wuy,

|J|=ir

= (1 -pluguiuug — (1 — plugu; Z (uu®)y | wiuy,
|J|=ir,icJkgJ

(24) = (1 -pluguiuul, — (1 — plugu; Z (uu®) g | wsu
|J|=ir—1,i@J,kgJ

= (1 -puguiuuy, — (1 —p) Z (uu®) g | upuiuug
|J|=ig—1,i@J,kgJ

= (1 —pluruuuy, — (1 —p) Z (uwu™) g | wpuiuug,
|J|=ig,ig k€]

= (1 —pluru;uuy, — (1 — p)puruu;uj,
= (1 - pluru;uug,.
By @3) and (24), the left side of 22)) is equal to
(1 — plugujuu; + (1 — plugu;uuy, = (1 — p)ug(uguiu; + wiuuy) = (1 — pluguy,

as required.
We omit the analogous proof that (1 — p)u; is a minimal partial isometry.
Finally we show that pY" L (1 — p)Y. It suffices to show that basis elements are
orthogonal, that is, pu;[(1 — p)u;]* = 0 for all 4, j. First, if  # 7, then

pui[(1 = plu]® = puui(l —p)

= Z (uu®) s | wiuji(l —p)

4,j¢J,|J|=ir—1

= wul > ()| (1-p)

i,j@J,|J|=ir—1
= wu| Y (w)y | (1-p)
igJ,|J|=ir
= uu;p(l —p)=0.
Next, pu;[(1 — p)u;]* = puuf — puufp = puuf — puul = 0.
Clearly, (pz)*(1 —p)y=0forall y,z €Y. O

The next proposition proves Theorem [[{c) (see Remark for the definition of
the spaces HY).
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Proposition 5.10. If either of ig or iy, is equal to 1 or n, then Y is completely
semi-isometric to R, or to C,.

Proof. If ig = 1, then ujus = 0; so by Corollary B3[b), Y is completely isometric
to B(C",C). If iy, = 1, then uju} = 0; so by Corollary E.3[a), Y is completely
isometric to B(C,C").
If ir = n, then, with p = pg,
pur(puz)” = purusp = (uu*) 12, pyurusp = 0,

since uduiuy = 0. So by Corollary[53(a), pY is completely isometric to B(C,C™),
and by LemmaB9, Y is completely semi-isometric to B(C,C™). Similarly, if i, = n,
then Y is completely semi-isometric to B(C", C). O

In preparation for the next two sections, let us consider the remaining case where
1 <iR,ip <n.

Lemma 5.11. In general, ir+ir, > n+1. Let p = pr and w; = pu;. Leti} andily
denote the corresponding indices for the grid {wi,...,w,}. Then i} + i =n+ 1.

Proof. Note first that if i, < n, then
(25)
(U'*U'){I,Z,...,iL}
= (u'u){1,2,. iy —1} U7, Wiy
= (W) 12, g1y, (Wi U7, qUip 1 + Wip 41U, 41 Uiy
=0+ (' u) (1,2, i —1}U;, Wiy +1U;, 41 Wi,

* * * *
(1.2, i — 13U, Wi 4105, (Ui UJ) oUip 42 + Uiy 42Uy, oy )

= (u*u
(W u) 1,2, i —1y Ui, (Wi 4107, 41 Wip +2U5, 12)Wip,

(U*u){m,...,ihuuﬂ (U'U'*){iL+1,iL+2,..A,n}U"L'L

_ * * * .
= (U U){l,Q,...,iL—l}uiL (UU ){iL,iL+1,iL+2,...,n}uzL~

If n—ip +1>ig, then [{ip,ir +1,...,n}] > ig; so (vu*)f12,.. i,y = 0, which is
impossible. Hence iy, +ir > n + 1, proving the first statement.
It is easy to see that iy = ig. Indeed, for any r > 1,
(ww*){1,2,..r} = PUIUTPURUS - - - PUFULD
= Z (uu™) ;.
|J|=ir,{1,...,r}CJ
Moreover, for any r > 1,
(W'w)(1,..;y = UTPULUGPUZ - - - USPU,
(26) = Y luf(u®) ] g (u®) g,
where the sum can be taken over all |Ji| = ig with k € J;, and ({1,2,...,7} —

{k})NJp = 0. Indeed, if k & Jy, then uj(uu*)s,ur = 0; and if there is a j €
({1,2,...,7} = {k}) N Jj, then by using Lemma B4b), the corresponding term
would vanish by (IF]).

Thus if r = ¢}, we have ig = |Ji| <n — (i}, — 1), that is, ir + i}, <n+ 1. Since
ir =1 and i’y + i, > n+ 1, we conclude that i, + iy =n+ 1. O
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6. THE HILBERTIAN OPERATOR SPACES H¥

In this section we shall begin by assuming that Y is a JW*-triple of rank 1
and finite dimension n given by a rectangular rank 1 grid {ui,...,u,} such that
ir+ir =n+1 Ifip =1orif ig = 1, then Y is completely isometric to the
type 1 Cartan factors R, or C, by Corollary 5.3l Otherwise, we shall show in
section 7 that Y is completely isometric to a space HIR which is a subtriple of a
Cartan factor of type 1, proving Proposition[2.6] in this case. This will be achieved
by constructing, from the given grid {u;}, a rectangular grid {ur;} whose linear
span is a ternary algebra containing Y and which is ternary isomorphic to a Cartan
factor of type 1, namely the (Z) by (Z;) complex matrices.

After this, in section 7 we shall prove Proposition[Z.6 in case Y is infinite dimen-
sional and of rank 1.

Here is the construction. We define some elements which are indexed by an
arbitrary pair of subsets I, .J of {1,...,n} satisfying

(27) [I|=ir—1, |J|=iL—1
Note that the number of possible sets I is (ian) (= (")) and the number of such

n
ir

Jis (") (= (';)) Moreover, if [I N J| = s > 0, then |(I U J)¢| = s+ 1. Hence

7
we may write

I={i1,...,ik,d1,....ds}, J={j1,.-,j1,d1,...,ds},

where INJ = {dy,...,ds}. Let us write (JUJ)® = {c1,...,cs41}, and let us agree
(for the moment) that the elements are ordered as follows: ¢; < ¢3 < -+ < Csy1
and di <dy <--- < ds.

Definition 6.1. With the above notation, we define
(28) urg = urg = (UWU) 1 glc, UJ UeyUg, -+ - Ue, Uy e, (U U) 1.

Remark 6.2. We are going to show (cf. Propositions 6.3 and [6.10) that there is a
choice of signs (1, J) = £1 such that the family {e(I, J)ur s} forms a rectangular
grid which is closed under the ternary product (a,b,c) — ab*c, so that its linear
span is ternary isomorphic and therefore completely isometric to a concrete Cartan
factor of type 1. By restriction, from (34)) below, ¥ will be completely isometric
to its image, which we shall denote by H'®. We will then show that all HF are
actually rank 1 triples (and thus Hilbertian) and satisfy k = ig,ig + i = n+ 1,
thus proving the existence of the Hilbert spaces discussed in this section (see the
paragraph preceding Example 1 in section 7).

Proposition 6.3. Let uy j be defined by (28). Then:
(a) wur.y is a minimal partial isometry; that is,
’LL],J[’LLI,J]*U,LJ =ur,J and U],J[U]/,J/]*U],J =0 fO?” all (I, J) 75 (II, J’).

(b) Orthogonality: ur.y Lup gy if I # 1 and J # J'.
(c) Collinearity: ur yTuyp g if either I =1" or J =J (but not both).
(d) Associative orthogonality:

wp glup, " =04 I #1'; [ur g up g =0if J#J'.

(e) “Weak” quadrangle property: ur jlur, /) up y = tup .
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Proof. Throughout this proof, we use the fact that all elements of the grid {uq,...,
un} are present in each uyy. To avoid cumbersome notation we will also often
denote an element u., where ¢ € (IUJ)°, by ¢;;, and similarly for u4. For example,
in (]2_9[) below, d denotes u%; , where d%j/ eInJ, and 01 denotes Ucl s where

e (JuJ)e.
Proof of (e): By definition,

d17

urglur ol ur .y = [(uu )i-scijdy; - 'dgjcg]+l(U*u)J—l}

(29) X [(u*u)J, - dlek, (uu*)l,J,]

X |:(7.L7.L )I/ J/C/ /dz’]/ . ds /C (’LL U)J/7]/i| .
This quantity remains unchanged if the factors
(wu)j_r(uwuw)y—; and (wu™);_p(uu®)p_p
are removed. Indeed, since J — I C (I°NJ')U (I°NJ’) (disjoint union), by using
Lemma[5.4] (u*u);—; can be absorbed into the ¢;j:’s or into (u*u)y _r. Similarly,
(uu*)p—y can be absorbed into the ¢;;/’s or into (uu*)r—j. After this has been
done, (u*u)s _r can be absorbed into the dj ;’s or into (u*u)y—p, and (uu*)r—
can be absorbed into the d;;’s or into (uu*);—,

Thus
(30)
ur,glur, g up g
= (uu*)—sejdy; - d};c f;rl :]+1d77» cedigiclicidl - d5 ,J]r,l(u*u)y,p.

We claim next that in fact
(31)
wr,glur, g up g

_ q q+1 7"+1 T 1 1 s+1/ %
= (uu ) 1jdij .. 'd’Lj ij ’L] d """ d’leCi_]/Cl /d/ o d?, jlc’b/j’ (u u)‘]fl/.

To get from @0) to BI), we proceed as follows. Consider first an element
x € I'— J. Either x € T or x ¢ I. In the latter case, x € (I U J)¢, so that u,
is one of the ¢;;, and so u,uj can be split off from u, = u,uju, and absorbed
(using Lemma [E4]) into the (uu*);—; term. In the former case, no absorption is
necessary. Doing this for every such z allows us to replace the term (uu*);_; in

B0 by (UU*)(IUI’)fJ

We now have
(32)
ur,glur, ] ur g

* 1 g1 +1 r41 11 1 7 1/,

= (uu") (qur)—scijda; - - Al C;;;'_ dijr -+ - dijicijrcingidi g - "df'j'cf'; (u u) g .

Now consider an element x € I — J. Either x € J or x ¢ J'. In the first case,
x € INJ’, so that u, is one of the d;;; and therefore any such u,u’ can be absorbed
from the term (uw*)(uy—s into a dijr. On the other hand, if = ¢ J', then either
x € I’, in which case no absorption is necessary, or « ¢ I', so that x € (I' U J)®

and u, is one of the ¢;;, and hence u,u}; can be absorbed. Doing this for every
such z allows us to replace the term (uu*)rury—s in B2) by (uu*)p ;.
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By an entirely similar two-step argument, we may replace (v*u) - in (B0) by
(u*w)j—1s, which proves (3II).

To complete the proof of (e), we need to show that the right side of (3I]) has the
form

i(uu*)lf_Jc%,jd%,j . -dfljcﬁfgl(u*u)J_Iz.

To do this we must examine each of the elements ¢;;, d;;/, ¢;7j in (B3I) (call them
“outer” elements, since they are not “starred”) and d;;, ¢;;/, d;rj+ (call them “inner”
elements, since they are “starred”) and decide whether to leave the element there
or absorb it into one of the end terms (u*u);_p or (wu*);—;. This is achieved in
the following lemma.

Lemma 6.4. Retain the above notation.

(a) Each “outer” element c;j,dijr, cirjo on the right side of (BI) either is equal
to a cy; oris equal to a unique other element on the right side of (31),
together with which it can be absorbed into one of the terms (u*u)yj_y or
(wu*)p—y. Conversely, every cii; is equal to one of these “outer” elements.

(b) Similarly, each “inner” element d;;,c;jr,dy ;s either is equal to a dy; or is
equal to a unique other element, together with which it can be absorbed into
one of the terms (u*u)j—p or (uu*)p_ ;. Conversely, every dy; is equal to
one of these “inner” elements.

Proof of Lemmal6.4} For three mutually collinear partial isometries w,v,w, the
term “flipping” in this proof refers to the fact that uv*w = —wv*u.

Let ¢;; € (IUJ)°. Either ¢;; € I’ or ¢;; € I'. In the second case ¢;; is a ¢y
and no absorption is necessary. In the first case, either ¢;; € J" or ¢;; ¢ J'. If the
former, ¢;; € I' N J', so that ¢;; is equal to a dy;» with which it can be paired by
“flipping” and ¢;;cj; can be absorbed into (uvu*)p—y by Lemma [54] If the latter,
¢ij € (IUJ')¢, so that ¢;; is equal to a ¢;;» with which it can be paired and absorbed
as above by repeated use of Lemma [5.4]

Let dijy € I'NJ'. Either d;jy ¢ I' or d;j» € I'. In the second case d;j» € I', so
that d;;; € I'NJ" and d;j: is equal to a dy j/, so can be flipped and absorbed. In the
first case, either d;;» ¢ J, in which case it is a ¢;; and no absorption is necessary,
or d;jy € J, so that d;; is equal to a d;; and can be flipped and absorbed into
(u*u)J_p.

The proof for the third type of “outer” element, as well as the proofs for the
“inner” elements are similar.

For the converse statements, note that

cry €' NnJCcINnJYUuInI)uI'“nJ")
and
di;el'nJcINnJyuInJ YU nJg). O
With Lemma [6.4] the proof of (e) is completed. O

Proof of (d): If we let w denote ur, j[us j|*, then

w = [(wu*) - yedy; - e (u ) 1)
+1 11
X [(u*u)J/,I/cz,j, dfzj/ cee di,j/ci/j,(u*u)p,y].
Since I # I’, there are two possibilities: either there exists i € I — I’ or there
exists iy € I’ — I. We shall deal with the first case only, since the other is similar.
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So assume first that 7o € I — I’ and consider the two cases: ig € J and ig & J.
In the first case u;, is one of the d;;, and hence either u;, is also a ¢y, in which
case w = 0 by “flipping” and minimality; or ig € J' — I’, in which case w = 0 again
by “flipping” and minimality.

Now consider the case that ig ¢ J. In this case ig € I — J, and hence either
io € J', in which case ig € J' — I’ and w = 0 by “hopping” and minimality; or
io & J', in which case u;, is a ¢yj» and w = 0 again by “hopping” and minimality.

This proves the first statement in (d). The proof of the second statement is
achieved in a similar way. O

The reader will note that “maximality” (meaning for instance that (u*u); = 0
if |J| > ir) was not used in the above proof of (d). Its main use is in the proof of
the important decomposition (34) below.

It being clear that (a) and (b) follow immediately from (d) and (B)), it remains
to prove (c).

Proof of (c¢): In view of the strong orthogonality already proved, it will suffice
to prove that wur s[ur,j]*ur g = up g for all I, I'. We have

urglur g upy = [(we®) - gejdy; - des () -1
(33) e sy - dijel; (uut) -]
X [(uu*)[/_JC%/jdzllj Tt d:/]C:/—;l(u*u)J_I/]

The term (u*u);—; in ([B3) can be absorbed into the d;/;’s or into (u*u)s_; by
Lemma [E4l Then in turn, the products Cffl(cffl)*, d3;(ds;)*, . .., cij(ci;)* can
be alternatingly absorbed into the combination of (uu*)r_; and the ¢;y/;’s, or the
combination of (u*u);_r and the d;;’s.

Finally, both occurrences of the term (uu*);_; can also be absorbed into ei-
ther (uvu*)p—y or a ¢y;, and what remains is uy/ ;. This completes the proof of

Proposition 63} ([

Definition 6.5. In the special case of (28) where I NJ = (), we have s = 0, and
ur,s has the form

ur,g = (uu™)ruc(uu) s,
where, since ip +ir =n+1, TUJ U {c} = {1,...,n}. We call such an element a
“one”, and denote it by uz ;.

Lemma 6.6. For any c € {1,...,n},
(34) Ue =) Urg = Ulec,
I,J I,J

where the sum is taken over all disjoint I,J satisfying 22) and not containing c.

Proof. For convenience, let us say that for collinear partial isometries u and v,
the formula u = wv*v + vv*u is the result of “applying v to u”. Given ¢, write
{1,...,n} ={c,ca,...,cn}. The equation (34)) is obtained by first applying u., to
U, then applying u., to all occurrences of u., and in turn applying u.,, ..., u., to
all occurrences of u. that are created in the previous step.

We thereby obtain

Ue = Z(uu*)luc(u*u)J,
where the sum is over all disjoint subsets I, J of {1,...,n} — {c} with
(35) TuJu{e} ={1,...,n}.
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A term in this sum is zero unless |I| < ig—1and |J| < iy —1. By (B5) and the fact
that ig +4ir =n+1 we have |I| =ig — 1 and |J| =iy — 1, and so (B4) follows. O

Note that a change in the order of the u.’s or ug’s in (28) can at most change the
sign, since any such change can be accomplished by “flipping.” In the next lemma,
we consider elements defined by the right side of ([28) but without specifying an
ordering of the ¢’s and d’s. This lemma will enable us to define the signature ¢(I, J)
of uy y and prove the important Proposition 610
Lemma 6.7. Given I,J with |I| = ir — 1,|J| =i — 1, let C = (I U J)° and
D =1nJ. For any permutations (c1,...,cs4+1) of C and (d1,...,ds) of D, the
element

(U™ ) 1 ey U, ey Uy =+ - Ue, U U, (W) -1

(which equals tuyy) decomposes uniquely as a product of “ones”:
(36)
[wry er, 0 ) [Wry dy Ly | UL o0, 2 (UK do L] - (U, eo g (UK do L] [UT 4y eain o]
where the I;, J;, Ky, L; are uniquely determined by I, J and the c’s and d’s.
Proof. Let us first prove the existence. Each of the steps in the following equation
array is achieved by “expanding” (for example, uc, = tc,u};, tuc,) and/or “hopping”:
(™) 1 JUe, Uy, ey U, -+ - Ue Ug Ue,, (WU) 7T
= (UU*)(IfJ)U(Cfcl)Ucl [Ufhucgu;z T UC.;UZSUC.;H](U*u)(JfI)u(Cchl)
= (u®) (1—pu(c—er)Uer (W n) g1 [ug, tey g, - - e, ug Ue, (W) (- 1UC—coir)
= (uu”)(1- 1)U —er) ey (WU) (1 -1yUD
X (g, ey U, « + e, Ug, Ue, | (W) (- 1U(C—cop1)
= (UU") (1-7)U(C—er)Uey (W U) (- 1)UD
X (U Uey gy, -+ - Ue Uy (WU ) (1= 1yUD U,y | (W W) (J—DU(C=corr)
= [(uu™) (1= yu(C—c1)Uey (W) (- 1)UD]
X [(u™ ) (1-nyuges g, es U, -+ e, g, (WU") (1) Ufeos}]
X [(uu™) (17— ryuDUc,yr (WU (T-1)U(C—cap)]

This shows that (uu*)r— jue, wjy e, u, -+ - Ue U Ue,,, (Wu) -1 equals

[U(1—1)U(C=c1)ser,(J=DUD) (I =T)U{cosr ). (T—D)Ufer }) U= T)UD,cos1,(J—T)U(C—cor1))s

which is of the form uy, ¢, s, [Ur,,7,] U e, 1,755 5O the existence follows by induction.

We now prove the uniqueness. Look at the first three factors of (36). Since
ury # 0, by Proposition[63] (d), we must have Iy = K7 and L, = J2. Furthermore,
since I U{c1 }UJ; = K3 U{d1} ULy, we have J; = (J1 U{c1}) — {d1}. Continuing,
we see that all the sets I;, J;, Ki, L; are uniquely determined by Ji, Js11, and the
¢’s and d’s. Indeed, a close look at (BB) and the use of Proposition (d) and (e)
reveals that

*
ury = fug g, [un g v 0.

which equals £uy, s, by Proposition6.3l (e); so urs[ur, ., s,]* # 0. Then by Propo-
sition63] (d) again, I = Is;41 and similarly J = Jp, completing the proof of unique-
ness. U
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Definition 6.8. We assign a signature to each “one” ury s as follows: Let the
elements of I be i1 < i3 < --- < i, (where p = ig — 1) and the elements of J be
J1 < Jjo <--+<jq (where g =1ir —1). Then e(I,k, J) is defined to be the signature
of the permutation taking the n-tuple (i1,...,ip, &k, j1,...,Jq) onto (1,2,...,n).

The signature €(I,J) of an arbitrary uy s is defined to be the product of the
signatures of the factors in its decomposition (36]) (recall that uy; is defined so that
the ¢’s and d’s are in increasing order).

The next lemma will consider a 3-tuple (us j/,ur g, ur y), with I # I' and
J # J', so that by Proposition [6.3] wr, ;L up 5, ur,pTury and ur, ;Tup .

Let us further assume that each element of this 3-tuple is a “one”. Then it is
clear that I' = (I — {a}) U {b} and J" = (J — {c¢}) U {b} for suitable elements
ac€l, ceJandbe (IUJ)°. Hence the 3-tuple has the form
(37) (Up e, (J—c)Ub}> UI,b,Js U(I—a)Ufb},a,d)-

By direct calculation and simplification,

urgrfurg] up g = (uu*)ue (W) g up (vu™)pug (v u) .
Since a € J,b ¢ J and I N J = (), Lemma [5.4] shows that
urgfurg] ur g = (vu®)rucuy (uu®)r uq (W u) ;.
Similarly, since b € I, ¢ ¢ I, we can remove the term (uu*); to obtain
(38) urgurg] up g = (wu™)r ueugug (uu) g,
which also equals euys j/, where e = £1.

Thus, from (B8) and the uniqueness in Lemma every such 3-tuple (1) of
“ones” uniquely determines a corresponding 3-tuple of “ones” (wp» s, wp» yr,wp j)
such that
(39) UINJ/ [’LLINJN]* uI’J” = —EUIIJ/ = ('U:'U,*)I uauZuc ('U,*'U,)J,
where I = (IU{c}) — {a} and J" = (JU{a}) — {c¢}. The given 3-tuple and the
derived one thus have the forms
(40) (Ug e, (T—c)ufbys  ULbJs  U(I—a)U{b}.a,)
and
(41) (u(lu{c})—a,a,(J—C)U{b}v U(TU{c})—a,b,(J—c)U{a}s u(I—a)U{b},c,(J—c)U{a})-
Lemma 6.9. Retain the above notation.

(a) wuygr [’U,IJ]*UI/J = —Uujrj [uIIIJ//]*uI/J//,

(b) e(IJNe(I)e(I'J) = —e(I" T )e(I" J")e(I'T").

(c) For every 3-tuple B0) of ones,
[E(IJ/)UIJ/][E(IJ)U[]]*[E(I,J)UI/J] = [E(I/,J,)UI//]/][E(I”JH)U]NJN]*[E(I/J/,)UI/JN].
Proof. (a) follows from (B8]) and (39).

(b) We shall use the more precise notation of (@0 and (@I). Write

ULb,g = (W) {iin,isiastrmitroii g1 YU (WU Gy GG dusdust ooty 1}
where i, < ¢ < iyy1, it =a, js =cand j, < a < Jy41-

We can calculate €(1,b, J)e(I”,b,J") by counting the number of transpositions
required in “moving” a from I to J” and ¢ from J to I”. These are

(42) (ir—1)—t+14+(v+1)
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and
(43) (s=1)+14+(Gr—1)—u

respectively.

We can calculate (I’ a, J)e(I’,c, J") by counting the number of transpositions
required in “moving” a from the “middle” to J” and ¢ from J to the “middle”.
Taken together, this is

(44) v+ (s—1).

We can calculate €(I, ¢, J')e(I"”,a,J"”) by counting the number of transpositions
required in “moving” ¢ from the “middle” to I” and a from I to the “middle”.
Taken together, this is
(45) (ir—1)—u+ (i —1-1).

The sum of [@2)-{E3) is 2(s + v — u — t) — 1, which is odd. So exactly one or
three of the numbers

e(1,b, D)e(I”,b,J"), e’ a,])e(I’,c,J"), eI ,c,J)e(I" a,J")

equals —1. In either case, (b) follows.
(c) follows from (a) and (b). O

Proposition 6.10. The family {e(IJ)us j} forms a rectangular grid that satisfies
(46) E(IJ)UI][E(IJ’)U[]/]*E(I/J,)UI/J/ = E(I,J)UI/J.

Proof. Since uy g [ury]* = 0 for I # I', the property ([2) will follow from (Eg).
The other grid properties are contained in Proposition B3

To prove (@), we apply Lemma [67] to decompose its left and right sides into
“ones.” To avoid cumbersome notation let us denote any “one” with u. in the
“middle” simply by (¢) and its signature by €, with an identifying subscript. With

this convention, we have, for suitable z;, yx, 21, w; € {1,...,n} and €, = %1,
eI urgle(IT Yurp) eI’ T Vup g = (e1171)(€1272) - (€120 41%241)
(47) x[(€21y1)(€22y2) - - - (€2,25+1T2541)]"

X (63121)(63222) ce (63,2t+122t+1)

and
(48) e(I' Jupy = (es1w1)(€s2w2) - - (€4,2n+1Wan+1)-
Recall that from Proposition[(3l(e) that we have
eI urgleIT Yurp ] eI’ T Yup o = Fup .

Now each wj is either an x;, yi or z; by the proof of Lemmal6.4] and by that same
lemma, the x;,yx, z; that are not used, call them vy, ..., v, occur twice with an
even number of elements between them. Also, by Lemma [69)(c) we may rearrange
terms so that the right side of (7)) becomes

[(65101)(65101) ce (€5mvm)(€5mvm)] [(66111)1)/(6621112)' s (66,2n+1w2n+1)l]7
where the notation (ew)’ indicates that the I and J in (w) may have changed.
Since (vj)(v;)* (w1) = (w1) by collinearity, this collapses to

(49) (Gﬁlwl)/(€62w2), e (66,2n+1w2n+1)/-
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Since X)) and (49)) are each equal to fujs 7, by the uniqueness in Lemma B.7]
(egiw;)’ = (e4w;), which proves (HHl). O

7. CARTAN FACTORS OF RANK 1

Proof of Proposition in the finite-dimensional rank 1 case. It follows
from Propositions 6.3 and 6.10 that the map e(IJ)ury — Ejs is a ternary isomor-
phism onto (;;) by (n_[; +1) compleg matrices. By Remark and B4), YV is
completely isometric to a subtriple H'F of a Cartan factor of type 1. In view of
Lemma 5.9 this completes the proof of Proposition 2.6]in the case that Y is of type
1 and rank 1 and finite dimensional.

Note that the numbers n and k determine a simple algorithm for constructing
the unique matricial space H* (see the paragraph preceding Examples 1 and 2
below). The spaces HY are examples of the rank 1 JW*-triples whose existence
was assumed in section 6, as the following lemma shows.

Lemma 7.1. The spaces HF are rank 1 Hilbertian JC*-triples with ir = k and
ip+ir=n+1.

Proof. We will denote the generator >, ;€(IJ)Ey,1 of the space HF by u.. Note
that the sum is orthogonal by Proposition 6.3; so the u. are partial isometries. It is
essential to notice that, for each E; . j, there are exactly k (resp. n—k+1) elements
Ej o psuchthat By o p[Ep o 1" Eger = Ejer (vesp. Ejei[Ey e v Ey o p =
Ejc1), namely, those Ejr o p with (J'—{c})U{c'} = J (resp. (I'={c})U{c'} =1).
In all other cases [Ey o ]*Ejecr = 0 (vesp. Ejcr[Ey.e.r]* = 0). With this
in mind, using Proposition 6.3, it is a straightforward verification to show that
{ueg ug upt = (1/2)up, and {u, up u,} = 0. Lemma 6.9 (a) and the comments
preceding it together with Proposition 6.3 show easily that {u, us u.} = 0. Hence,
the HX are rank 1 JC*-triples, and are thus Hilbertian, as discussed at the start of
section 5.3.
To see that k = ig, consider the expression

(50) Uplly -+ - UgUG U -

If r > k, then, by the remarks above, for each term e(IJ)E 11 in the expansion of
u1, there must exist a number ¢, 2 <4 < r, such that u;ue(IJ)E 1 1 = 0. Hence,
(BO) is zero. Now assume r = k. Suppose [ = {2,---,r} and J = {r+1,--- ,n}.
Again by the above remarks, for each 2 < ¢ < r, there exists exactly one element
Ey ;1 in the expansion of u; such that Ey ; p/[Ey ;i p|*Ej1,1 = Ej1,1, ensuring
at least one nonzero term in the expansion of (5{). Since all possible nonzero terms

of (B0) are e(IJ)E ;1,1 and those are independent, (50) is not zero. It follows that
ir = k. A similar argument shows that iy =n —k+ 1. O

The following lemma implies the statement in Theorem 1 that the H* are 1-
mixed injectives.

Lemma 7.2. For each matriz x = a;u; in HF,

o1\ /2
tr((xm*)l/Q) _ <k_1‘> (Z |ai|2)1/2~

Proof. We first show that zz* can have at most one nonzero eigenvalue. Indeed,
if zz* has two or more distinct nonzero eigenvalues, then we may write xz* =
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f(zz*) + g(xx*) for two nonzero disjointly supported even continuous functions
f and g that vanish at zero. Hence, zz*z = f(xzz*)r 4+ g(axz*)z is a nontrivial
orthogonal decomposition of the element xz*z in the rank one JC*-triple HY, which
is impossible by definition of rank. Hence the eigenvalues of z2* are ||z||? = 3 |a;|?
and possibly zero.

However, since each wu; is the sum of exactly (Zj) orthogonal matrix units

multiplied by +1, we have that tr(zz*) = (Y~]) 3 |as|? . Thus the multiplicity of
the eigenvalue > |a;|? is (Zj), and tr((zz*)Y/?) = (Zj) 1/2(2 |ai|?)1/2. O

Corollary 7.3. The linear map P defined by Px = Ztr(muj/(;’j)lm)ui is a
contractive projection from (Z) by (nfz +1) complex matrices onto HY.

Proof. Let m denote the multiplicity (Zj) Using Lemma and the fact that
the HF are Hilbertian, we see that

Z |tr(IuZ/m1/2)|2 _ tI‘(J?(PJ?)*)/ml/Q
HxHtr[(Pm)(Px)*]lﬂ/ml/z
2D [er(aus /m*/2)[2)V2 = ||| Pz

[Pcdlly

IN

O

We now prove Proposition in the case that Y is of type 1 and rank 1 and
arbitrary dimension. The key to the proof is the following lemma.

Lemma 7.4. Suppose Y is a JW*-triple of type 1 and rank 1 with grid {uy : X €
A}. Then either (uu*)r # 0 for all finite subsets I C A, or (u*u)y # 0 for all finite
subsets J C A.

Proof. Tf (w*u); = 0 for some finite subset I = {i1,...,9n+1}, we may assume that
(u*u)(,,....iny 7 0. Then, as in (25]),

(W) iy, iy = (W) gy a1y, (W) (i i 11, m) Ui

for all m > i,. Hence (uu*), i,+1,....m} 7# 0 for all m > i,,. Then by Lemma B8]
(uu*) s # 0 for all finite subsets J C A. O

Proof of Proposition 2.6 in the rank 1 type 1 case. We may assume dim(Y) =
oo. For definiteness, we assume that (uu*); # 0 for all finite subsets I C A. The
other case in Lemma [[4] is proved similarly. Let E) denote 1 ® ¥y in B(H,C),
where dim H = |A] and {¢,} is an orthonormal basis for H. By Proposition B0l
for all finite subsets I C A, the map ¢(uy) = E) is a complete semi-isometry from
Yr :=sp{ux: A€ I}tosp{Ey: e I}. As areflexive space, Y is the norm-closure
of the union of all the Y7 as I varies over all finite subsets of A. So it follows that
Y is completely semi-isometric to B(H, C). O

The proofs of Theorems [1] [2 and Bfa) being complete, we now finish the proof
of Theorem [3] give some examples of the spaces H¥, and pose some questions.

Proof of Theorem (3] for the rank 1 case. Let Y be an n-dimensional JW*-
triple of rank 1. It follows from Lemma and Proposition [B1I0 that ¥ =
Diag (pY, (1 — p)Y'), where pY and (1 — p)Y are triple isomorphic to Y, and pY
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is completely isometric to some Hi%. One now observes that the number ig for
(1 — p)Y is strictly less than the ig for Y. Indeed, with w; = (1 — p)u;, we have

(ww)12,.iny = (I =puiui (1 —pluguz(l —p) - (1 = pluiug, (1 —p)
(1- p)(U'U*){l,Z...,iR}

1- Z (wu®)y | (wu) 12, in}

|J|=ir

= (UU*){l,Q,...,iR} - (UU*){LQ,...,'LR} = 0.

Now set Y1 =Y, p1 = p, and k1 = ig. Then, setting Y2 := (1 — p1)¥7 and
letting ko denote its ig, we get ko < ki. Continuing in this way, we see that
Y = Diag(p1Y1,p2Y2,...,pmYm), where each p;Y; is completely isometric to the

space HY . An application of Lemma B4 completes the proof of Theorem Blb). O

Note that the spaces Diag (H', ..., H¥m) are examples of Hilbertian rank 1 triples
with ig + i1 > n+ 1, since tg = ky1, i =n—k,, +1 and k1 > ... > k,,. Note also
that the spaces H® can be explicitly constructed. Simply index columns (resp.
rows) by combinations I (resp. J) of {1,---,n} of length ig — 1 (resp. i — 1).
Then define an orthonormal basis {U;} for H: by the requirement that U; equals
the sum of all elements ¢; jE;; where INJ = and (I U J)® =i . Then choose
signs €7, by the procedure detailed above. We now give some examples.

Example 1. Suppose that Y = spe {u1,u2,us3} and ig = i, = 2. The rectangular
grid given by Proposition 610 is depicted by the following array:

I
{1} {2} {3}
{1} UgUius UgUFUIUTUT  —U3UZULUT UL
J {2} | —wuiusudusg —ujuius usuiuuiug
{3} | wmujuguius —uguduiuius uguiug

By (B4)) the ternary isomorphism from the span of this rectangular grid to the
canonical grid in B(C?), when restricted to Y, satisfies

0 00 00 -1 010
w0 0 1|, ug—s |00 0, ug—| -1 00
0 -1 0 10 0 00 0

Thus H? is the subtriple of B(C?) consisting of all matrices of the form

0 a —b
—a 0 c |,
b —c 0

and hence in this case Y is actually completely semi-isometric to the Cartan factor
A(C?) of 3 x 3 anti-symmetric complex matrices.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2260 MATTHEW NEAL AND BERNARD RUSSO

Example 2. Suppose that Y = sp¢ {u1,us,us,us} and ig = 3,ip, = 2. The
rectangular grid given by Proposition[6.10 is depicted by the following array:

I
(L2} {13} (L4} {23} {24} (3,4
{1} 22314 —33214 44213 —2233411 2244311 —3344211
J {2} 11324 1133422 —1144322 33124 —44123 3344122
{3} —1122433 —11234 1144233 22134 —2244133 44132
{4} 1122344 —1133244 11243 2233144 —22143 33142

Here we have used the abbreviation 22314 for usujusujuy, and so forth.
By (B4)) the ternary isomorphism from the span of this rectangular grid to the
canonical grid in B(C®, C*), when restricted to Y, satisfies

0000 00 0 0000 —1
L0000 01 e |0 0000 0
! 0000 -1 01> ™ 0O 0100 0]

0001 00 0 -1 000 0

and
00 0010 000 —1 00
s |00 =10 00 e 010 000
3 00 000O0UO0O] ™ -100 00 0}
10 00 0 0 000 000

so that Y is completely semi-isometric to Hj, which is the subtriple of B(C%, C*)
consisting of all matrices of the form

0O 0 0 —d ¢ —b
0 d —c 0 0 a
—-d 0 b 0 —a O
c —b 0 a 0 0

We now show that H3 is not completely semi-isometric to R3, as suggested to us
by N. Ozawa. It is clear that similar arguments can be used to prove Theorem[(d).
Since R3 is a homogeneous operator space, if there were a complete semi-isometry
of H? onto R3, then every isometry from H2 onto Rz would be a complete semi-
isometry. In the notation of Example 1, let U : H? — R3 C M3(C) be the isometry

defined by
0 00 0 0 1 0 0 -1 0 1 0
0 0 1|~|]0O0 0], 00 O0Of|~|]0O0O0],
0 -1 0 0 0 0 10 0 0 0 0
0 1 0 100
-1 0 0|~ |0 O O
0 0 0 0 0 0
Then U is not a complete contraction, since
0O -1 0 00 -1 0 00
1 0000 00 01]|=v2
0 0010 O0O0-10
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10 001 00 01
00000O0GO0O0 O0]|=v3
000 0OO0O0OO0OTO0ODO

Problem 1. What is the completely bounded Banach-Mazur distance d., (HY, R,,)?

Problem 2. What can one say about an arbitrary 1-mixed injective operator
space? What can one say about an arbitrary JW*-triple up to complete isometry?

Remark 7.5. The authors hope to classify all 1-mixed injectives possessing a predual
in a future publication by using the known structure theory of JBW *-triples in [18]
and [20].

Remark 7.6. After completing this paper, the authors discovered that the spaces
HF appear, in a slightly different form, in [I] in the solution to the contractive
projection problem on the compact operators on a separable Hilbert space. The
methods and proofs are different from ours. In the special case that the projection
is weak*-weak* continuous and H is separable, Theorem 2 can be derived from the
results of [1]).
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