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Abstract

The visual word form area (VWFA) is a region of the cortex lo-
cated in the left fusiform gyrus, that appears to be a waystation
in the reading pathway. The discovery of the VWFA occurred
in the late twentieth century with the advancement of func-
tional magnetic resonance imaging (fMRI). Since then, there
has been an increasing number of neuroimaging studies to un-
derstand the VWFA, and there are disagreements as to its prop-
erties. One such disagreement is regarding whether or not the
VWFA is more selective for real words over pseudowords1. A
recent study using fMRI adaptation (Glezer, et al., 2009) pro-
vided evidence that neurons in the VWFA are selectively tuned
to real words. This contradicts the hypothesis that the VWFA
is tuned to the sublexical structure of visual words, and there-
fore has no preference for real words over pseudowords. In
this paper, we develop a realistic model of the VWFA by train-
ing a deep convolutional neural network to map printed words
to their labels. The network is able to achieve an accuracy of
98.5% on the test set. We then analyze this network to see if
it can account for the data Glezer et al. found for words and
pseudowords, and find that it does.

Introduction
The VWFA is a region of the visual cortex that is activated
during visual alphabetical word reading, similar to how the
fusiform face area (FFA) is responsive to faces. The idea of
the existence of a specific region in the brain specialized for
the reading process has been around since the nineteenth cen-
tury, when a French neurologist, Joseph Jules Dejerine, who
in 1892 reported a case of a patient with pure alexia due to a
brain lesion. However, it was not until the late twentieth cen-
tury, with advances in functional magnetic resonance imaging
(fMRI), that the physical existence of the VWFA was discov-
ered. Several brain imaging studies have been able to pinpoint
this region to the same location within the left lateral occipi-
totemporal sulcus near the fusiform gyrus (Cohen et al., 2000;
McCandliss, Cohen, & Dehaene, 2003; Vigneau, Jobard, Ma-
zoyer, & Tzourio-Mazoyer, 2005; Dehaene & Cohen, 2011),
shown in Figure 1. This area is found to be more respon-
sive to visual words than any other similar stimuli, as cor-
roborated by several lesion and interference studies. Lesions
in the VWFA can cause pure alexia, where subjects experi-
ence severe visual reading impairment without any changes
in ability to identify faces, objects, or even Arabic numer-
als (McCandliss et al., 2003; Dehaene & Cohen, 2011). The

1Pseudowords are usually constructed from real words by chang-
ing a consonant, and hence follow the orthographic rules of English.

Figure 1: Activation of the VWFA in the left occipitotempo-
ral sulcus near the fusiform gyrus (Dehaene & Cohen, 2011).

conclusion of this research is that the response of VWFA is
strictly visual and prelexical, such that the words are recog-
nized by VWFA visually, without giving them any meaning.

In this paper we develop a deep CNN model of the Visual
Word Form Area (VWFA). We trained the network to map
printed words to their labels. We then analyzed it to look
for properties similar to the VWFA. We are especially inter-
ested to see if the model is consistent with the neuroimaging
evidence reported by Glezer, Jiang, and Riesenhuber (2009),
that suggests that the VWFA represents words discretely, and
pseudowords in a more distributed manner. This is in con-
trast to previous studies which concluded that the VWFA is
tuned to sublexical orthographic structure, and therefore has
no preference for real words over pseudowords.

An influential descriptive model of the VWFA was pro-
posed by McCandliss et al. (2003) (Figure 2). The word is
first processed in ventral occipital regions V1 to V4, where
the neurons are tuned to features that are increasingly com-
plex and abstract, running posterior to anterior along the vi-
sual pathway. The features progress from horizontal and ver-
tical bars, to individual letters, to bigrams, and so on, until
the sequence of the letters is identified. This model is consis-
tent with some neuroimaging studies (Dehaene et al., 2004;
Vinckier et al., 2007). However, experiments have failed to
find any further evidence of selectivity for whole words in the
VWFA, leading to the hypothesis that the VWFA is tuned to
the sublexical structure of a word.

We do not have space here to review the many studies of the
VWFA. The reader is referred to (Dehaene & Cohen, 2011)
for a relatively recent review. Here we focus on a study by
Glezer et al. (2009), who used fMRI rapid adaptation (fMRI-
RA) (Grill-Spector, Henson, & Martin, 2006) to investigate
the nature of representations in the VWFA. fMRI-RA makes
use of the fact that repeated stimuli lead to a reduction in the
overall BOLD response. If a new stimulus leads to a resur-
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Figure 2: The anatomical and functional pathway model of
visual word processing proposed by McCandliss et al. (2003).

Table 1: Some examples of prime-target word pairs that were
used in the experiments done by Glezer et al. (2009).

Prime Target Word
same 1L different

car car bar lie real words
plane plane place cross real words
health health wealth ground real words

dut dut dun pim pseudowords
nount nount naunt spibe pseudowords
shatch shatch chatch jounge pseudowords

gence of activation, that is taken as evidence that different
neurons represent that stimulus, i.e., the brain sees it as dif-
ferent from the prime stimulus.

The subjects in the experiments were presented with
prime/target pairs of real words and pseudowords, each with
three different conditions: (1) “same”, where the prime and
target words are the same, (2) “1L”, where the prime and tar-
get words differ by one letter, and (3) “different”, where the
prime and target words share no common letters. Examples
of pairs that were used in the experiments are shown in Table
1. Of greatest interest here is their third experiment, which
presented these stimuli in a within-subject design. The re-
sults (consistent with the first two experiments) showed that
single letter changes gave rise to recovery of the BOLD signal
that was equal to the recovery for completely different words,
suggesting that even words with one letter different did not
share representations. On the other hand, responses to pseu-
doword changes were graded, suggesting that their represen-
tations were overlapping.

Experimental Methods
As a first step in this research, we needed to develop a real-
istic model of the VWFA that we could analyze to look for
properties that are similar to the VWFA. In order to do so, we
designed a convolutional neural network for this task, created
a large dataset of word images, and trained the network to
recognize visual words by mapping them to their labels. Here
we describe the dataset, the network, our training procedures,

Figure 3: Mean percent signal change in the VWFA of par-
ticipants in Glezer et al.’s third experiment.

and finally our experimental design to test the network on the
stimuli used in Glezer et al. (2009).

Visual Words Dataset
To minimize the scope of the project, we used the 850 words
of Basic English, that was created by Charles Kay Ogden.
He claimed that these words are sufficient for ordinary com-
munication in idiomatic English. The words are split into 3
different categories: (1) Operations, consisting of 100 words;
(2) Things, consisting of 400 general words and 200 pictured
words; and (3) Qualities, consisting of 100 general words and
50 opposite words. In order to model Glazer et al., we added
47 sets of three words each that they used for their stimuli.
Since some of these words were already in the Basic English
set, this resulted in 899 unique words.

Using MATLAB, the words were printed in black onto a
227x227 blank white background, and saved in PNG format.
To generate an adequate variety of word images, we used 75
different font types, with three different sizes: 12, 15, and
18 pt. We also rotated the words slightly, with a rotation an-
gle ranging from -15◦ to 15◦, and translated the center of the
text to be at least 75 and 100 pixels away from the top/bottom
border and left/right border, respectively, maintaining enough
space for longer words. In this manner, we generated 1,296
images per word, totaling over 1.1 million images. Some
sample images in the dataset are shown in Figure 4. The im-
ages were then divided randomly into 3 sets: a training set of
899,000 images (1,000 images per word), a test set consisting
of 170,000 images (200 images per word, plus four images
each of the Glazer et al. words for simulating their experi-
ments), and a validation set consisting of 86,304 images (96
images per word).

VWFA network model
Consistent with recent work in computer vision, we used a
convolutional neural network (CNN) for the VWFA model.
A CNN is a feed-forward neural network that uses the convo-
lution of repeated features with small receptive fields across
the image to create several feature maps. After a nonlinear-
ity is applied, these maps are then downsampled by comput-
ing the max of a small patch of them, and the process is re-
peated. In this way, the receptive fields of the units get larger
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Figure 4: Example of some visual words images in the dataset

Figure 5: Architecture of the VWFANet, a modification of
the LeNet-5 architecture, trained to classify visual words.

in deeper layers of the network (Krizhevsky, Sutskever, &
Hinton, 2012), just as they do in visual cortex. CNNs are
therefore biologically-inspired variants of multilayer percep-
trons (Bengio, Goodfellow, & Courville, 2015).

A common approach in computer vision is to start with a
pre-trained network, such as “Alexnet,” the network that won
the 2012 Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) (Krizhevsky et al., 2012). However, for the task
of recognizing images of words, Alexnet did not work well
at all, presumably because it is tuned to objects, not words,
which require fine-grained discrimination.

Hence we designed a modified version of LeCun’s zip
code reading network, LeNet-5 (LeCun, Bottou, Bengio, &
Haffner, 1998). We used several refinements following ideas
by Krizhevsky et al. (2012). We chose LeNet-5 as the ba-
sis for our VWFA network because both tasks involve visual
character recognition. An illustration of the VWFANet archi-
tecture is shown in Figure 5.

The input to the VWFANet is a 227x227 pixel image,
scaled so each pixel is in the range [0,1]. The first convolu-
tional layer filters the input image with 20 kernels of size 5x5,
and uses a stride of 2. The stride is the offset of each kernel
with respect to its neighbor, so here the kernels are overlap-
ping. This results in a feature map of dimension 112x112x20.
We used Rectified Linear Units (ReLU) as the nonlinear ac-
tivation function for this layer. The ReLU function is de-
fined as f (x) = max(0,x). It has been shown empirically to
learn faster than saturating nonlinearities, such as the hyper-
bolic tangent function f (x) = tanh(x) or the sigmoid func-
tion f (x) = (1+ e−x)−1. Using ReLU for this layer, which

has a high dimension, produces sparse activations. These
sparse features have been shown to improve the network’s
discriminative ability (Jarrett, Kavukcuoglu, Ranzato, & Le-
Cun, 2009).

The next step is pooling the responses of the first convolu-
tional layer. We used max pooling on each 2x2 patch (i.e., the
output of this operation is the maximum response of the four
units), reducing the dimensionality to 1/4 of its previous size.
Using a stride of 2, adjacent pooling units do not overlap.
This produces a feature map of dimension 56x56x20.

We then applied Local Response Normalization to this
output, which normalizes the activation over local regions.
This scheme has heuristically been shown to aid general-
ization and make training faster. Each unit is divided by
(1+ (α/n)∑i x2

i )
β, where x is the activation of the units, n

is the size of each local region, and the sum is taken over
the region that is centered at that unit (Jia et al., 2014). All
constants, n,α,β, are hyper-parameters. We used the values
n = 5,α = 10−4, and β = 0.75, which are the same values
used by Krizhevsky et al. (2012).

The third layer is another convolutional layer with 50 ker-
nels, each of size 5x5x20, with a stride of 1. The output of
this layer is a 52x52x50 feature map, to which we apply the
ReLU activation function. We then use max pooling on this
layer with the same parameters as before, and again use re-
sponse normalization. This produces a feature map of dimen-
sion 26x26x50.

At this point, we use a fully-connected (non-convolutional)
hidden layer of 2048 units, each with 26x26x50 inputs from
the previous layer. Again we used ReLU as the activation
function. Finally, the output of this layer is connected to an
899-way softmax. This produces a probability distribution
over the 899 classes (850 Basic English words plus 49 extra
words used in Glezer et al.), P(word|input).

Training the Network
In order to train the network, we used Caffe, a framework
designed for deep neural networks (Jia et al., 2014). We
trained the weights of the VWFANet from scratch, on a single
NVIDIA GeForce GTX TITAN GPU which contains 2688
cores with 6GB of memory.

The network was trained using cross-entropy loss, the
minibatch stochastic gradient descent method, with momen-
tum and weight decay. The minibatch method computes the
error over a small “batch” of training examples, and then
changes the weights. In our case, we used a minibatch size
of 32. We used an initial learning rate of 0.01, momentum of
0.9, and weight decay of 0.0005. The learning rate was ad-
justed using the inverse policy, where λn = λ0×(1+0.0001×
n)−3/4, where λ0 is the initial learning rate and n is the cur-
rent iteration number. The weights initialized to have 0 mean
and standard deviation equal to 1/

√
m, where m is he fan-

in to the unit. The bias in each layer was initialized to 0.
We trained the network for a maximum of 100,000 iterations,
while checking the validation set accuracy after every 5,000
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iterations so we could stop training once the accuracy started
to go down. However, even after 100,000 iterations, the error
was still dropping on the validation set.

Selectivity to Real Words Experiments
We analyzed the VWFAnet to see if it has a similar selectivity
for real words as the VWFA, as suggested by Glezer et al.
(2009). We compared the analysis of the highest accuracy
model to the results of the within-subject experimental results
shown in Figure 3.

The main question now is how to model the release from
adaptation effect. We assume that this effect is proportional to
the difference in activation between stimuli. Hence we mea-
sure the Euclidean distance between stimuli as a proxy for
signal change - a small distance means most neural activities
are shared, and so there should be no or a small rise in the
BOLD response, whereas a large distance means that the two
stimuli do not share neural activations, so there should be a
large change in the BOLD response. We measure this dis-
tance in the softmax layer. This is because each unit in this
layer can be thought of as representing either a single neuron
responding to a word, or a group of neurons (a Hebbian cell
assembly) that work in unison.

The softmax layer imposes extreme values on the probabil-
ities of outputs, that are likely to be more differentiated than
actual neural activities. Hence we “soften” the output activity
with a temperature parameter T on the softmax, as follows:

P(wordi|input) =
exp(xi/T )

∑
n
j=1 exp(x j/T )

(1)

where x is the input to the softmax layer. A high temperature
parameter will distribute the probability evenly, such that for
T → ∞, all words will have probability 1/n. On the other
hand, a low temperature will distribute the probability to only
the highest value. We chose a temperature of T = 4, which
creates a smoother probability distribution, such that there are
a few labels that have non-zero probabilities, without losing
the actual label information. We chose this number arbitrar-
ily, but it is a parameter that could be fit to the data.

To model the Glezer et al. (2009) experiments, we ran each
word in a pair through the network and measured the distance
between their output activations. For each pair of words, we
took the average of all possible input image pairs that we cre-
ated out of the four generated images per word.

Results and Discussion
Network Performance
The VWFAnet achieved 98.5% accuracy on the test set. We
deemed this sufficient to proceed with testing the network in
a paradigm similar to that used by Glezer et al. (2009).

Some samples of correct and incorrect predictions by the
VWFANet can be seen in Figure 6. We can see that even
though the VWFANet overall accuracy in visual words clas-
sification task is high, there are a few outliers with less than
60% accuracy: “tall” with an accuracy of 38%, and “hour”

Figure 6: Some examples of correct and incorrect predictions.
On the right, the incorrect predictions, and their frequency,
are listed below the panels. Embiggen the pdf to see these
better.

Figure 7: Euclidean distance between the activations in the
output layer, with the softmax temperature set to 4. The blue
bar represents the distance in activation of two instances of
the same word (or pseudoword, on the right), while the or-
ange bar represents the distance between the activations of
two words or pseudowords differing by one letter. The gray
bar represents the distance between two different words or
pseudowords. Error bars represent the standard error of the
mean. In each case, these are averages over the stimuli used
in the human subject experiments.

with an accuracy of 52.5%, respectively. However, as can
be seen in Figure 6, the network makes reasonable mistakes.
Out of the 200 images in the test set for the word “tall”, 124 of
them are predicted incorrectly; 113 of those 124 images are
categorized as “tail” which is very similar to “tall”. Similarly,
for “hour”, 89 out of the 95 incorrectly predicted images are
predicted to be “how” which has high resemblance to “hour”.

Selectivity Analysis of VWFANet
Figure 7 shows the result of calculating the euclidean distance
between the activation in the last layer of the two input im-
ages. Even though we cannot compare directly to the results
of the Glezer et al. (2009) study, since the measurements are
not the same, we can still observe a trend similar to the find-
ings shown in Figure 3.

It should be noted that there is a small distance between
the activations in the last layer in the “same” condition. This
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is because we use different images of the same word to com-
pute the response. For the “1L” and “different” conditions, we
observe a bigger Euclidean distance compared to the one in
“same”, but the difference between the two conditions are not
significant. This indicates that in each condition, the prime
and target words activate disjoint groups of neurons, or dif-
ferent units in our model’s output layer. This shows that even
when the two stimuli differ only by one letter, the model is
still able to discriminate them and so they activate different
neurons, similar to when the two inputs share no common
letters. A sample of the activations in the output layer for a
given pair of real words is shown in Figure 8.

For the pseudowords experiment, we again notice that the
smallest Euclidean distance happens when the two stimuli are
images of the same pseudoword, even though the model has
not been trained on these. However, what is different from
the real words experiment is that we observe a gradual in-
crease in the Euclidean distance from the “same” condition
to “1L” to “different”. This is also sensible because the net-
work is trained for real words. Therefore, when the model
is given a pseudoword, it activates partial representations of
many different words. Figure 9 shows that the neurons from
the softmax layer that get activated on pseudowords are more
distributed (compare to Figure 8), but there is more overlap
when the stimuli are similar, compared to when the stimuli
are completely different.

Figure 8: The activation patterns in the output layer for each
pair of real words: two instances of arm, one of arm and art,
and (bottom right) arm and key. arm’s activation is shown
in blue. The words are sorted alphabetically, so in the upper
right, the highest activation for art is right next to arm.

Conclusions
We developed a model (VWFANet) of the Visual Word Form
Area using a deep convolutional neural network. Our model
was trained on over a million images of almost 900 words,
and achieved a very high accuracy of 98.5% on the test set.

Figure 9: The activations patterns in the output layer for each
pair of pseudowords: two instances of bot, bot and sot, and
bot and lan. bot’s activation is shown in blue. Note that while
bot, sot and lan are all real words to computer scientists, the
network does not know that!

Most of the mistakes made by the network, while few, were
very reasonable, such as confusing “tall” with “tail.”

Our model of the fMRI-RA results was predicated on the
idea that the amount of release from adaptation upon the pre-
sentation of a new stimulus should be proportional to the
difference in their representations. We measured this as the
Euclidean distance between the representations of words at
the output layer of the network. This is consistent with pre-
vious modeling work that measures the distance between
stimulus representations as the distance between their out-
put activations, and fits human judgments of similarity quite
well (Dailey, Cottrell, Padgett, & Adolphs, 2002).

Using this interpretation of release from adaptation, VW-
FANet was able to qualitatively reproduce the data that Glezer
et al. (2009) observed in their human neuroimaging study.
That is, real words, no matter how similar, were equally dis-
tant from one another at the output layer of the network. The
representations developed at the output layer were also rel-
atively sparse (Figure 8). On the other hand, pseudowords
displayed more graded distances, and less sparsity at the out-
put layer (Figure 9). These results suggest that Glezer et al.’s
interpretation of their fMRI-RA results are quite reasonable
- real words are represented by different populations of neu-
rons, while pseudowords are represented by distributed pat-
terns of activation over the representations of real words.

It is of considerable note that the fMRI-RA results support
the Interactive Activation Model’s representation of words
versus pseudowords(McClelland & Rumelhart, 1981). In that
model, words were represented by separate nodes in the net-
work at a “word level.” The word superiority effect in letter
perception was explained in the model as feedback to the let-
ter level from the word level. On the other hand, the pseu-
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doword superiority effect, for example in the pseudoword
“mave,” was explained by the sum of feedback activation
from many partially activated words at the word level (e.g.,
“save,” “have,” “wave,” etc.). The current results are consis-
tent with that account.

The current model is just the first step in modeling the
VWFA. There are many other experiments that could be mod-
eled by this same architecture. For example, Dehaene et al.
(2004) compared activation to the “same” words in differ-
ent cases and positions, but they also include “circular ana-
grams,” where pairs of words can transform into one another
simply by moving a single letter from the front to the back,
and vice versa. An example of circular anagrams are the
French words “reflet” and “trefle.” If we can find some pairs
of English words that are circular anagrams, we can add this
to our experiments. This goes a step further than the “1L”
condition because the target word is made up of exactly the
same letters as the prime word, but with one location shift,
instead of one letter change. If we still observe the same high
percent signal change in the fMRI data, or high Euclidean
distance in the VWFANet, then we provide an even stronger
support for the hypothesis that the neurons in the VWFA are
highly selective to whole words, instead of a broader tuning
to sublexical orthographic structure of the words.

In conclusion, we have successfully trained a convolutional
neural network to model the VWFA by trying to map the
words to their labels. This network might not be as deep as
the latest state of the art for object recognition, but it seems to
perform well for the task of modeling the VWFA. The VW-
FANet model is able to support the recent fMRI-RA evidence
that there is a preference for real words over pseudowords in
the VWFA. This VWFANet model may open up more op-
portunities to study the VWFA and its properties further, es-
pecially with the recent increase in the neuroimaging studies
for the VWFA.
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