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ABSTRACT OF THE DISSERTATION

Pruning our expectations: The implications and applications

of earth observation in developing urban forestry tools

in Los Angeles County

by

Jonathan Pando Ocón

Doctor of Philosophy in Geography

University of California, Los Angeles, 2023

Professor Thomas W. Gillespie, Co-Chair

Professor Elsa M. Ordway, Co-Chair

This dissertation, largely funded by the County of Los Angeles to optimize its urban forest

planning and management, conducts a critical examination of the implications, applications, and

limitations of remote sensing technology in applied science. Leveraging technologies such as

Light Detection and Ranging (LiDAR) and high-resolution optical data, remote sensing has

offered unparalleled insights into the Earth's surface and atmosphere. Specific applications, such

as tree crown segmentation and creation of precise 3D environmental models, have proven

invaluable in fields including ecology and urban planning. However, this technology is not

without its challenges. An over-reliance on remote sensing data, absent corroborative
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ground-truthing, can lead to flawed conclusions. Furthermore, using low-resolution imagery for

policy decisions concerning fine-scale, on-the-ground issues could create discrepancies between

the data and actual conditions, undermining the effectiveness of interventions. In my first and

second chapter of this dissertation, I demonstrate that remote sensing technology has become

indispensable, particularly for monitoring individual species over time for urban forest

management. By identifying and delineating individual tree crowns, this technology enables

accurate estimation of species composition and condition. This detailed information facilitates

species health monitoring and early disease detection, thereby aiding effective management

interventions. However, the effectiveness of remote sensing in urban forestry necessitates

continuous data update and integration of ground-based observations for validation. In my third

chapter, I transition from the practical applications of remote sensing in urban forestry, and lean

on previous research experience, including my collaboration with Los Angeles County, to delve

into the social dimensions of this technology. The concept of "socializing the pixel" provides a

critical framework for understanding how remote sensing operates within and is influenced by

sociopolitical contexts. This perspective recognizes that remote sensing is not a purely objective

tool but is embedded within social structures and power dynamics. Stakeholder engagement is

thus crucial to consider diverse perspectives in data interpretation and application, enhancing the

technology's effectiveness and local relevance. Conversely, power imbalances between remote

sensing experts and non-experts, and denial of local knowledge can lead to biased results or

misinterpretation of data. Hence, returning to the concept of "socializing the pixel" is critical to

ensure effective and equitable use of remote sensing technology.
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Chapter 1.

Overview of Socio-ecological Applications in Remote Sensing

Remote sensing is a powerful tool that has revolutionized the way we understand and interact

with our environment. Dating back to aerial photography in the 19th century and evolving with

advancements in satellite imaging in the 20th century, it involves the use of sensors to collect

data from a distance. This data can then be analyzed to gain insights into different aspects of the

Earth's surface and atmosphere. Today, remote sensing is an indispensable tool in fields such as

ecology, geography, and urban planning. In particular, remote sensing data allows for the

monitoring of urban, rural and agricultural expansion and provides a temporal understanding of

changing conditions. Specifically, remote sensing imagery provides valuable information on

ecosystem properties, and can be used alongside qualitative research, and as a complement to

ethnographic studies (Dennis et al., 2005; Isager et al., 2007; Liverman et al., 2008; Niemiec et

al., 2018). Through an exchange between remote sensing and social scientists, there exists a

reciprocity in the information gained by both, and as remote sensing pertains to local knowledge,

sometimes the best analysis lies in humans-as-sensors. This idea of validating remotely sensed

imagery with local knowledge is a method already being deployed among indigenous peoples

around the world. As indigenous peoples relearn and restore ancestral hunting and foraging

techniques as a part of a larger struggle for decolonization, they engage with science to enhance

traditional ways of knowing and the reciprocity of having this technology in-hand gives what one

Alaskan subsistence hunter equated to an “elder in a box,” (Rammage et al., 2020; Rattling Leaf

Sr. et al., 2020). Also, by including ground referenced data, especially as it pertains to

stakeholders, remote sensing can provide an observational asset in relevant technical approaches
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such as agent-based modeling, cloud computing, community science, and humans-as-sensors to

study social-ecological change (Pricope et al., 2019).

Remote sensing also allows for longitudinal studies to measure change as it occurs. To

fully comprehend the feedback mechanisms between human behavior and the

environment—how the environment impacts human decision-making, and in turn, how human

decision-making impacts the environment—data are required at appropriate spatial, temporal,

and socioeconomic scales of interest (Cumming et al., 2006). For nearly 40 years, moderate (10

– 60 m) to coarse (> 60 m) spatial and spectral resolution remote sensing imagery has been

publicly available to monitor and measure landscape changes such as deforestation or changes in

land surface temperature, which have led to deeper understandings of socio-ecological

phenomena like the impact of logging on fire regimes or the drivers of the urban heat island

effect. LiDAR (Light Detection and Ranging) and optical data are the primary sources of remote

sensing data used in ecological studies. LiDAR provides precise 3D representations of terrestrial

environments, especially useful in urban contexts. Optical data captures reflected light across

various wavelengths that correspond to different biophysical properties of the objects reflecting

or emitting light, offering insights into vegetation health and composition. When combined,

these data can be used to provide comprehensive insights, from 3D terrain models to vegetation

maps. Fine resolution remotely sensed data (< 10 m) can further address challenges in

socio-ecological systems by linking larger landscape scale drivers like drought to hyperlocal,

leaf-level observations such as canopy water content (Ordway et al., 2021).
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Chapters Two & Three: Local Applications in Los Angeles County

Remote sensing data allows for the monitoring of urban, rural, and agricultural expansion,

offering a temporal understanding of changing conditions. In Los Angeles County, trees are a

critical infrastructure as they help cool neighborhoods, clean air and water, and improve our

communities' emotional and social health. Los Angeles County manages over 800,000 public

trees, with inventory costs using traditional methods exceeding $5 million (Los Angeles County

Department of Public Health, 2020). These approaches are also limited to trees in the public

right-of-way. The ability to inventory public and private trees using remote sensing will provide

the county with a faster, cheaper, and more efficient way to inventory trees throughout the

region. Although they cannot fix our social ills, trees are still a valuable resource for the county's

most vulnerable populations, including but not limited to elderly and economically

disadvantaged communities. Redevelopment and land-use dynamics can disrupt urban tree

species' natural life cycle. Regardless of their benefits to residents, urban trees are subject to how

we reconfigure urban spaces (Avolio et al., 2015). Moreover, invasive species, diseases, and

climate change are also posing additional threats, and to address some of these challenges Los

Angeles County has partnered with the Department of Geography at UCLA to identify the best

approach in tree species identification and health assessment to help ease the burden of managing

local trees manually. Currently, no department within the county has a cost-effective or efficient

way to know where and when to plant or manage trees. Those in charge of managing the urban

forest are stretched thin and often have disparate tree inventory data, making hands-on

management difficult to scale across the region.
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Tree crown segmentation is a crucial aspect of ecological studies that utilize remote

sensing data. It involves the identification and delineation of tree crowns from other features on

the Earth's surface, such as buildings or roads. This process enables researchers to accurately

estimate key metrics such as tree height, and important crown structure such as width, length,

area, and perimeter. Tree crown segmentation also plays a vital role in species identification by

implementing detailed crown structure and tree height information. 3D differentiation between

species can help distinguish individual trees from each other within 2D optical data sets.

Chapters two and three will cover LiDAR processing for individual tree crown segmentation, as

well as classifying trees to species using a machine learning model, Random Forest, to optimize

and automate Los Angeles County's urban forest management. The goal of both chapters is to

alleviate the burden of local departments that currently conduct manual, visual assessments of

local tree stock in one of the largest and most populous counties in the United States.

Chapter Four: Beyond Science Applications – Interrogating Sociopolitical Dynamics in

Applied Remote Sensing

There is immense power and responsibility in the technology and programming conducted to

quantify and model complex, multitemporal, and multiscalar socio-ecological change, like Los

Angeles County’s urban forest. With these recent advancements and their impact on policy and

planning, and contribution to ecosystem science, it is essential to acknowledge the actors

involved in co-producing socio-ecological systems (SES) research, the agency afforded or

removed from each actor, and the narratives at play in the decision-making process (Robbins,

2001; Robbins, 2003; Turner et al., 2016). Methods used to simplify and classify landscapes
4



have a buried complexity. As classifications become institutionalized, their complexity becomes

more widely accepted and unquestioned, making a case for ground truth observations and

demonstrating that maps are representations that systemically establish their authority (Zubrow,

2003). It becomes imperative to critically analyze our methods, data collection, and models to

understand better who and what our science impacts (Runk et al., 2010).

Ground truth observations are crucial, reminding us that maps are mere representations,

yet powerful communication tools—or boundary objects—for individuals engaging across

professional or academic boundaries. We must critically analyze our methods, data, and models

to ensure our science benefits all. It is essential to note that remote sensing data can also be

misused or misinterpreted. Scientists and stakeholders may rely solely on this technology and

neglect crucial ground-truthing measures, leading to flawed conclusions and misguided

decision-making. In chapter four, I use a combination of my own experience working as a remote

sensing scientist along with surveying and interviewing participants across the geospatial

industry to interrogate how politics, like the omission of key stakeholders, influences this

all-too-common oversight.

Dissertation Road Map

The transformative power of remote sensing in urban forestry management and broader

socio-ecological systems cannot be overstated. With rapidly advancing geospatial technologies,

there arises an intricate web of data producers, scientists, users, and those directly impacted by

the decisions made as a result of geospatial studies. This dissertation delves deep into these
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interconnections, specifically within the context of Los Angeles County's urban forestry. The

first two chapters focus on more technical terrains. Chapter two and three cover my work

developing urban forestry tools for Los Angeles County. Chapter two tested five existing tree

segmentation algorithms for LiDAR processing and found that two, Dalponte2016 and AMS3D,

outperformed the other three in terms of accuracy and promise of segmenting trees within closed

canopy, but found that Dalponte2016 was faster and less computationally expensive than

AMS3D, so was the better option for County managers to use when processing future LiDAR

acquisitions.

In chapter three, I develop a Random Forest algorithm in Google Earth Engine using the

tree height information gathered from the Dalponte2016 algorithm in chapter two, as well as

spectral information from NAIP 2016 data at a 60 cm spatial resolution. A 14-band stack was

created by processing spectral and structural information, as well as transforming RGB color

space into HSV color space, shadow masking, and calculating vegetation indices. The model

performed with relative success and correctly classified an overall 89% of individual tree

species. This is another benefit for County managers as Random Forest is a simple and robust

model to use for classification purposes, and performing the analysis in Google Earth Engine

avoids heavy data downloads.

Chapter four seeks to interrogate the sociopolitical space of science-based solutions

where remote sensing is involved. This includes policy and land management decision-making in

collaboration with public and private stakeholders. I define the entire remote sensing data

handling process as spanning four distinct groups that I define as Data Producers, Data

Scientists, Data Users, and Impacted Persons. Through participant observation (including the
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collaborative process with Los Angeles County from chapters two and three), surveys with those

familiar with geospatial technologies or use them in their work and decisions, and interviews

with remote sensing experts, I come to the conclusion that Impacted Persons--or those that bear

the brunt of decisions made without their involvement--should be included in the information

exchange between Data Producers and Scientists and Data Users. To operationalize this

involvement is to give recognition to local knowledge and enhance already robust remote

sensing studies further with even more critical ground truthing.
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Chapter 2.

What's the point? A comparative analysis of individual tree segmentation algorithms using

airborne LiDAR in urban Los Angeles County

Abstract

Urban forests significantly contribute to the well-being of residents by delivering vital ecosystem

services and promoting biodiversity. Precise and efficient tree segmentation is crucial for

effectively monitoring and managing these green spaces. This research investigates the

performance of five unique tree segmentation algorithms to identify a suitable method for

large-scale, automated urban tree detection across open and closed canopies. The criteria for

determining a suitable model included a combination of computational run time, storage and

memory needed to process input and output data, and accuracy of tree crown delineation when

compared to manual tree crown segmentation. My findings demonstrate that an Adaptive Mean

Shift technique generates the most accurate tree segments, albeit with a high computational cost

and species specificity. Conversely, a less resource-intensive solution produced satisfactory tree

segments for 20 species in Los Angeles County, California. Future research should consider

employing the Adaptive Mean Shift method for structurally similar target species when

computational time and resources are not a concern or opt for the less computationally expensive

algorithm to attain suitable results for a diverse range of tree species with reduced computational

demands.
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Keywords
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1 Introduction

While trees indeed play a pivotal role in urban environments by contributing to local cooling and

enhancing social and emotional well-being, their integration into urban spaces comes with

multifaceted challenges and considerations, especially since some of the touted benefits, like

energy savings or air quality management, may be more pronounced in cities with year-round

warm climates (Mullaney et al., 2015; Roman et al., 2021). ​This is particularly true in Los

Angeles County, California, where extreme heat events are on the rise, long term droughts are

commonplace, tree canopy cover is unevenly distributed along wealth lines, and dangers

associate to wildfires and high winds impact residential areas (Beuhler, 2003; McCarthy et al.,

2010; Hulley 2012; Gago et al., 2013; Adelaine et al., 2017; Hulley et al., 2019; Grant and Hicks,

2020). Although they cannot fix our social ills, trees are still a valuable resource for the County's

most vulnerable populations, including but not limited to older and economically disadvantaged

communities (Dong et al., 2023). Redevelopment and land-use dynamics can disrupt urban tree

species' natural life cycle. Regardless of their benefits to residents, urban trees are subject to how

we reconfigure urban spaces (Avolio et al., 2015). Moreover, invasive species, diseases, and

climate change pose additional threats. To address these challenges, a remote sensing approach to
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tree species identification and health assessment is likely to ease the burden of managing local

trees manually.

Today, most urban tree inventories rely on time-intensive visual assessments deployed

unevenly and are generally expensive to execute. Remote sensing imagery offers considerable

potential as a source of information about urban forests and trees across large landscapes that

would be unfeasible to survey on foot. With freely available and low-cost space-based and

airborne datasets, remote sensing provides spatially explicit data over large geographic areas that

can be—and often is—updated regularly, enabling scientists and stakeholders to monitor large

urban areas more comprehensively, which can supplement and augment manual fieldwork. By

remotely modeling the urban forests' current state, urban foresters can proactively identify and

focus on trees that need immediate attention. In particular, the broadband, multi-spectral

QuickBird, and Landsat sensors have led to advances in using spaceborne remote sensing for

measuring vegetation cover, including urban tree canopy cover (McPherson et al., 2011) and tree

cover change (Hansen et al., 2013).

Airborne LiDAR imagery dramatically enhances our ability to segment individual urban

tree species, thanks to its remarkable increase in availability over the past two decades (Alonzo

et al., 2013). This technology not only allows for species differentiation, but also furnishes

critical crown metrics. It offers precise measurements of tree height, crown area and perimeter,

and crown length and width (Lin & Hyyppä, 2016), enabling the assessment of structural

characteristics for individual trees across the County's management area. These metrics then

serve as powerful tools for informed decision-making in tree management strategies, effectively

advancing urban forestry practices. With an inventory of tree-related data, such as location,
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species, size metrics, and health parameters collected from multiple sources (e.g., digital aerial

imagery), local government agencies can better manage their trees for sustainable urban

development.

Past urban forestry research has used several discrete return LiDAR sensors for tree

identification among structurally unique species, such as palm trees. LiDAR sensors used in

these applications have ranged from 2 to 66 points per square meter (Ocón et al., In Review).

CAO, Riegl Q560, and Optech sensors were the most common LiDAR sensors. Airborne LiDAR

alone identified 30% to 45% of the tree species (Alonzo et al., 2016; Liu et al., 2017; Yang et al.,

2019). However, with the further development of LiDAR metrics and improved classification

algorithms, it should be possible to improve the LiDAR classification of select native and

non-native trees in urban areas. Furthermore, when spectral data and canopy structure from

LiDAR are combined, data fusion provides horizontal and vertical information that has potential

for improving tree species classifications (Zhang et al., 2018; Zhang et al., 2020).

By using LiDAR for tree segmentation, local government agencies can identify trees that

are at risk of diseases or pests and prioritize their treatment accordingly. It also allows them to

systematically assess the structural characteristics of individual trees, enabling more efficient

scheduling of tree maintenance activities (e.g., pruning) that meet city safety standards and

protect public health and welfare (Lin & Hyyppä, 2016). In addition, it gives them the ability to

assess the health of trees across an urban landscape and develop appropriate strategies for their

preservation. For example, LiDAR can be used to perform canopy change analysis for forest

management (Tang et al., 2019) and identify areas with high risk of pests or diseases and

prioritize their treatment (Omasa et al., 2006). By collecting these data more efficiently and
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accurately, local governments can better understand the health of their urban forest and develop

effective strategies to protect it.

To address some of these challenges, the Los Angeles County Department of Public

Health has teamed up with the Department of Geography at the University of California, Los

Angeles, to identify the best approach in individual tree segmentation to support urban tree

management. The County manages at least 800,000 public trees where inventory costs using

traditional methods exceeded $5 million in 2020 (Los Angeles County Department of Public

Health, 2020). Traditional, boots-on-the-ground approaches are also limited to assessments of

trees in the public right-of-way. Currently, eight departments within the County have a

cost-effective or efficient way to track and manage individual trees. However, those managing

the urban forest are stretched thin and often have disparate tree inventory data, making hands-on

management challenging to scale across the region. The ability to inventory public and private

trees using remote sensing has the potential to provide the County with a faster, cheaper, and

more efficient way to inventory trees throughout the region. Accurate and efficient individual

tree segmentation can help alleviate the cost and effort burdens felt by Los Angeles County,

which I explore further in this chapter. I compare the performance of individual tree

segmentation algorithms using airborne discrete-return LiDAR data acquired in

December-January of 2015-2016 by the Los Angeles Region Acquisition Consortium

(LARIAC), and assess the suitability of applying each algorithm for management needs.
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1.1 Advantages of algorithmic individual tree segmentation

Segmenting individual trees using discrete-return LiDAR point clouds provides valuable

information for forest management, allowing researchers to measure essential crown metrics,

such as crown area, perimeter, length, and width. These metrics are needed to understand critical

structural characteristics across species and assist urban forest managers in tracking canopy

changes over time (Lin & Hyyppä, 2016). Additionally, individual tree segmentation can provide

insight into urban forest structure, including the number of trees, their size distribution, and

species composition (Zhang et al., 2015).

Applying automated tree segmentation algorithms to LiDAR point clouds and aerial

photography analysis can be much more efficient than manual field work. Algorithms can detect

and delineate each tree in an urban canopy, providing a metric for comparing different areas

without time-intensive physical measurements or visual assessment of each tree crown. In

addition, algorithmic segmentation enables researchers to assess large areas encompassing

multiple jurisdictions within a short period relative to manual methods.

1.2 Challenges Posed by urban environments

Urban environments are particularly challenging for automated individual tree segmentation

algorithms due to their complex structure, such as the presence of buildings, roads, power lines,

and high species richness. Furthermore, the varying densities of trees in urban forests further

complicate the process – some trees have large open canopies, while others may be obscured

under taller trees or other obstructions (Lin & Hyyppä, 2016). In addition, the size of individual

tree crowns can vary significantly among species, which creates noise in the LiDAR data used by
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segmentation algorithms. Finally, noise from other sources often confounds algorithm

performance (Zhang et al., 2015).

Additionally, many automated approaches to individual tree segmentation depend on

species-specific crown metrics that quantitatively define the structure or shape of the tree crown.

These metrics include the ratio of crown length to tree height and crown width to tree height,

which can deviate severely from a normal distribution per species if tree pruning is present. This

makes it challenging to set generic thresholds for segmentation, and in some cases, manual

adjustment may be required (Liu et al., 2017).

1.3 Objectives

Those currently managing urban forests are stretched thin and often have disparate tree inventory

data, making hands-on management challenging to scale across the region. I identify an approach

best suited for urban forest segmentation with broader implications for urban tree management.

In this chapter, I conduct a comparative analysis of five individual tree segmentation algorithms

using aerial LiDAR point clouds in urban Los Angeles County. I identified five individual tree

segmentation algorithms suitable for this study. These include: 'Find Trees' (Roussel et al., 2020),

'Watershed' (Roussel et al., 2020), 'Silva2016' (Silva et al. 2016), 'Dalponte2016' (Dalponte et al.,

2016), 'Adaptive Mean Shift' (Ferraz et al., 2016), and 'Li2012' (Li et al., 2012). The

performance of these algorithms was qualitatively assessed using ground-truth observations and

compared to airborne imagery from the National Agriculture Image Program (NAIP) and

high-resolution satellite imagery in Google Earth. This analysis will help assess the suitability of
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applying each algorithm for management needs and inform on the efficacy of automated methods

for segmenting individual trees in urban L. A. County.

2 Methods

By comparing different approaches, this chapter aims to help users make an informed decision

when choosing the most suitable individual tree segmentation algorithm for their urban data. I

discuss the advantages and disadvantages of each approach and their suitability for different

scenarios in urban forestry. In addition, I provide practical examples and recommendations on

which type of algorithm is best suited for a given context.

2.1 Study Area

Three unincorporated areas within central Los Angeles County were chosen as project

pilot sites (Fig. 1). These locations were chosen as representative examples of areas managed by

the County. These areas were also chosen because they represent diverse socioeconomic

backgrounds, tree species, land-use patterns, and management approaches. The three

unincorporated areas, include Altadena (1), which sits on the southwestern foothills of the San

Gabriel Mountains; East Los Angeles (2), which is located east of downtown Los Angeles and is

surrounded by three of the busiest freeways in the region; and the Marina (3), located on the

coast just north of the LAX international Airport (Fig 1).

18



Figure 1. Three unincorporated pilot sites in relation to the City of Los Angeles.

2.2 Datasets

I compared five individual tree segmentation algorithms using aerial point clouds in urban Los

Angeles County. The five methods can be divided into point cloud-based and raster-based, each

with two subfamilies - algorithms that work in two steps (Individual tree detection followed by

segmentation) and all-in-one algorithms.

2.2.1 Los Angeles Region Image Acquisition Consortium

The LARIAC dataset is proprietary aerial imagery commissioned by Los Angeles County in

contract with the Pictometry International Corporation. Flights for the County have been flown

every 2 to 4 years starting in 2002. The most recent flight was in 2020 using the EagleView-6

camera sensor suite. The full dataset covers fine-resolution multispectral (three- and four-band)

imagery and discrete-return LiDAR point clouds. The four-band multispectral Red-Green-Blue
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(RGB) and near-infrared (NIR) imagery are captured at a 10 cm spatial resolution for urban areas

and a 30 cm spatial resolution for national forest within Los Angeles County.

Additionally, oblique imagery is provided at the same resolutions for the urban and

community scales. The LiDAR imagery has a spatial resolution of 10.2 cm with vertical

accuracy of 27.7 cm at a 95% confidence level and was used to derive several structural datasets,

including building footprints, a digital elevation model, and a vegetation height dataset

(LARIAC, 2016). Derived datasets from the multispectral imagery include the Normalized

Difference Vegetation Index (NDVI), land cover, and tree canopy cover. The NDVI dataset was

calculated using the 2006 imagery. The land cover dataset has eight land cover classes that were

created using an object-oriented image analysis software called eCognition (Locke et al., 2017).

Data used to create the land cover layer included 2014 LARIAC, NAIP imagery, 2016 LiDAR,

CAMS data, 2014 building outlines, and land type data. The software was first trained to

recognize the different land cover classes and then automated the feature extraction process. The

reported accuracy for the tree class feature is 95% (Locke et al., 2017). The advantage of using

very fine multispectral data is higher accuracy when performing land cover classification. With

imagery at 10 cm spatial resolution, almost all land cover labels of interest can be classified.

However, the issue of distinguishing between grass, shrubs, and trees remains, which

multispectral data can be ill-suited to address. LiDAR data has an advantage by providing

structural information and three-dimensionality to multispectral images. These structural

parameters can distinguish between different types of vegetation and other classes, like

buildings, and help researchers derive tree canopy layers that are highly accurate.
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2.2.2 Ground-truth data

Georeferenced tree locations were collected across all four study areas and served as ground

truth data to evaluate the performance of all five algorithms. The data were collected by

contracted arborists by Los Angeles County departments (Los Angeles County Public Works,

Los Angeles County Beaches and Harbors, Los Angeles County Parks and Recreation). A total

of 16,947 tree point locations were collected from 11 target genera and species within our three

study sites, which provided sufficient information to evaluate the accuracy of each algorithm.

423 tree point locations were logged in 2013, three in 2014, six in 2015, one in 2016, three in

2017, 14 in 2018, 562 in 2109, 10 in 2020, and 9,468 in 2021. The remaining trees do not have a

collection date associated with the tree point data. The data were imported into a Geographic

Information System (GIS) software program (state software used ARC or QGIS) for further

analysis. The compiled dataset was used as the reference dataset to compare with the results

generated by each algorithm evaluated in this study. Field crews used a combination of Global

Positioning System (GPS) coordinates, canopy cover measurements, and species identification to

verify each point as a distinct tree species or belonging to a specific genera if identification to

species was impossible. These 11 target genera and species were chosen based on regional

conservation goals related to California native trees (Juglans californica, Platanus racemosa,

Quercus agrifolia, and Sequoia sempervirens), culturally significant species (Citrus spp. and

Washingtonia spp.), hazard species unsuited to L.A.'s changing climate (Eucalyptus spp. and

Pinus spp.), species responsible for infrastructure damage (Ficus spp.), and species identified as

suitable for the region's need for drought tolerance (Lagerstroemia spp., and Jacaranda

mimosifolia) (Table 1).
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Table 1. Breakdown of target species and genera with a corresponding rationale for Los Angeles
County interest and total number of ground points.

Species Target Group Reasoning Altadena
Support

East Los
Angeles
Support

Marina
Support

Total
Support

Citrus limon

Citrus spp.

An agricultural
and historical
Genera to Los
Angeles.

113 - - 113

Citrus sinensis 83 - - 83

Eucalyptus
citriodora

Eucalyptus spp.

Genera
recognized
regionally as a
hazard.

- - 132 132

Eucalyptus
cladocalyx 99 - - 99

Eucalyptus
globulus 77 - 146 223

Eucalyptus
polyanthemos 113 - - 113

Ficus
benjamina

Ficus spp.

Genera is
responsible for
high rates of
infrastructure
damage to
sidewalks and
pipes.

91 247 - 338

Ficus carica 105 - - 105

Ficus
microcarpa
nitida

1,982 214 - 2,196

Ficus
rubiginosa - - 45 45

Jacaranda
mimosifolia

Jacaranda
mimosifolia

Preferred street
tree, and
measuring the
phenology may
improve the
model.

432 375 - 807

Lagerstroemia
indica

Lagerstroemia
indica

Preferred street
tree in regards
to appearance,
maintenance,
and water
stress.

633 207 - 840

Pinus
canariensis Pinus spp.

Genera
recognized as a
hazard species

561 150 - 711
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that will not
respond well to
climate change.

Pinus contorta 135 - - 135

Pinus coulteri 46 - - 46

Pinus
halepensis 391 66 - 457

Pinus pinea 42 - - 42

Platanus
racemosa

Platanus
racemosa

Drought
intolerant
species
requiring high
water use, and
susceptible to
shot hole borer.

171 222 - 393

Quercus
agrifolia

Quercus
agrifolia

Native,
protected
species.
Symbolized
species of Los
Angeles
biodiversity.

4,046 36 - 4,082

Sequoia
sempervirens

Sequoia
sempervirens

Native
California
species,
Recognized as
a hazard tree
with high
mortality rates.

89 - - 89

Washingtonia
filifera

Washingtonia
spp.

An iconic and
symbolized
Genera for Los
Angeles
culture. These
are in the
process of
dying out
regionally.

255 - - 255

Washingtonia
robusta 2,596 313 468 3,377

Non Target
Species

Non Target
Species

To introduce a
variety of
species not
chosen as target
species to
improve model
performance.

742 1,032 492 2,266

Total Support - - 12,802 2,862 1,283 16,947
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2.3 Individual tree segmentation algorithms

Individual tree segmentation is an essential part of urban forest inventory and management,

providing helpful information on the health of urban ecosystems. The five individual tree

segmentation algorithms applied to aerial point clouds in urban L. A. County in this study can be

divided into two broad categories: point cloud-based algorithms, which do not require a canopy

height model (CHM), and raster-based algorithms, which use a CHM. To compute a CHM, I

normalized the raw point cloud by setting ground points (classified as such in the original dataset

provided by LARIAC) to an elevation of zero. This recalculates all heights for each point relative

to the ground, and makes noise classification easier (Roussel et al., 2020; Roussel et al., 2023). I

then filtered for all above ground points (removing noisy points with an elevation less than zero),

and subsetted outliers with an elevation greater than 95% of Z values for the remaining points.

Lastly, I implemented a point-to-raster algorithm to calculate a CHM for each pilot site (Fig.

2-4).
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Figure 2. Canopy Height Model for Altadena, CA at a 1 m spatial resolution and processed
using a point-to-raster, pitfree algorithm in R with LARIAC 4 discrete-return point-clouds
collected in December, 2015 to January, 2016.
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Figure 3. Canopy Height Model for East Los Angeles, CA at a 1 m spatial resolution and
processed using a point-to-raster, pitfree algorithm in R with LARIAC 4 discrete-return
point-clouds collected in December, 2015 to January, 2016.
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Figure 4. Canopy Height Model for Marina del Rey, CA at a 1 m spatial resolution and
processed using a point-to-raster, pitfree algorithm in R with LARIAC 4 discrete-return
point-clouds collected in December, 2015 to January, 2016.￼￼￼￼

There are a number of methods to calculate a CHM including subtracting a digital surface

model from a digital terrain model, which are common datasets included with LiDAR data.

However, LARIAC does not provide either dataset, and by normalizing my data, I was able to

implement the point-to-raster method instead, which rasterizes point Z values by mapping to a

user defined grid (Roussel et al., 2020; Roussel et al., 2023). I chose a grid resolution of 0.5 m
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and a triangular irregular network algorithm to compute an elevation value for each pixel in the

grid. I also applied a pitfree algorithm as suggested by Roussel et al. (2023) to avoid creating

empty pixel values during the triangulation (Fig. 5). Within these categories, the algorithms are

further divided into two subgroups: those that work in two steps—individual tree detection

followed by segmentation, and all-in-one algorithms which complete both processes in a single

execution (Roussel et al., 2020; Roussel et al., 2023). In order to determine the relative

effectiveness of each algorithm, performance metrics such as accuracy, precision, recall, and

computation time were employed to evaluate their relative merits for use in urban forest

management. Four of the five algorithms tested include the LiDAR processing R package 'lidR'

(Roussel et al., 2020; Roussel et al., 2023, R Core Team, 2023). The Adaptive Mean Shift

algorithm (Ferraz et al., 2016) was instead deployed using a forked version of the 'MeanShiftR' R

package (Knapp, 2023, R Core Team, 2023).
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Figure 5. LiDAR point-cloud processing needed to produce a CHM. a) Visualization of raw
point cloud data, followed by b) normalization (setting the ground to ‘0’), and c) rasterization
(2-D) representation of the 3-D point cloud data.

2.3.1 Point cloud-based algorithms

Point cloud-based algorithms are a popular approach for individual tree segmentation due to their

ability to process large volumes of data quickly. While these algorithms can be computationally

expensive, they offer the potential for high accuracy and resolution.

1. The Adaptive Mean Shift algorithm (Ferraz et al., 2016) uses an iterative approach to

segment individual trees from LiDAR point clouds. The algorithm begins by choosing an

initial seed point that identifies the tree's center. From this point, it then calculates the

probability profile of each neighboring pixel that could be part of the tree and segments them

sequentially based on their probability values. When complete, the algorithm has
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successfully segmented all points within the LiDAR data that belong to one individual tree.

The process begins with a region-based search for candidate pixels most likely part of the

given tree. This is done by first computing a set of weights associated with each pixel, where

higher weights indicate higher probabilities that it belongs to the same tree being segmented.

Then, high-probability pixels are added to a list of valid candidate pixels. Pertinent

parameters for determining these weights include the ratio of tree crown length to tree height,

as well as tree crown width to tree height. Once a suitable clustering is obtained, all pixels

belonging to each cluster are assigned a unique label representing its identity as belonging to

one specific tree and stored within an image mask to assist subsequent image processing

operations such as multiple object tracking and branch extraction from individual trees.

Finally, all points belonging to each identified cluster can be filtered out from an original

cloud data set to obtain only points constituting individual trees that now reside in separate

containers for further analysis and interpretation. Parameter fine-tuning for Adaptive Mean

Shift can be found in Appendices D and E.

2. The Li2012 algorithm is an object-based tree segmentation algorithm based on the work of Li

et al. (2012). It works by creating objects representing a group of points with similar local

features and then merging them into segments. This algorithm is beneficial when dealing

with data collected from terrestrial-based LiDAR scanners, as it can create segments with

fewer gaps than other methods. However, this algorithm is known to be computationally time

intensive. It has an algorithmic complexity worse than O(n2), meaning there is exponential

growth in processing time associated with this approach (Roussel et al., 2020).
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2.3.2 Point cloud-derived raster-based algorithms

Point cloud-derived raster-based algorithms combine traditional aerial imagery and point clouds

to produce high-resolution results. These algorithms are practical for large datasets, as they are

less computationally expensive and quicker to execute. However, the accuracy of these

algorithms can be affected by the resolution and quality of the aerial imagery used.

1. The Dalponte2016 algorithm is a tree segmentation approach developed by Dalponte and

Coomes (2016). This method uses smooth clustering, or "superpixeling," to create data

segments from airborne LiDAR scanners. The superpixels process creates small uniform

data patches that can then be merged into more significant segments representing

individual trees. It offers a balanced trade-off between speed and accuracy, making it an

ideal choice for urban forest mapping applications in Los Angeles. This method has been

found to produce reliable results when used with airborne data from LiDAR sensors

(Roussel et al., 2020). The inputs for the Dalponte algorithm include a GIS layer of tree

tops and a CHM. I calculated tree top locations programmatically using the 'lidR' R

package by designing a function that computes a window size as a function of pixel

(CHM) height (Roussel et al., 2020).

2. The Silva2016 (Silva et al., 2016) algorithm is based on adaptive region growth. It uses a

two-dimensional surface fitting method to identify potential trees within a point cloud

and then classifies individual segments based on their characteristics. This algorithm is

more accurate than other tree segmentation methods, mainly when dealing with large,

complex datasets. Additionally, it has been shown to work better with high noise and

outliers.
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3. The Watershed function (Roussel et al., 2020) is a tree segmentation algorithm that uses a

watershed-based approach to group similar points together. It divides the point cloud into

catchment basins and then classifies individual trees based on the boundaries between

them. This algorithm is more accurate than other tree segmentation algorithms, as it can

separate closely grouped trees better than the traditional growing region methods

(Roussel et al., 2020; Roussel et al., 2023). Another version of this algorithm is the

Marker-Controlled Watershed function that combines the watershed-based approach with

marker-controlled region growth. This allows it to identify discontinuities between

segments and filter out noise not part of any tree structure.

2.4 Conducting a visual evaluation of algorithmic performance

A visual evaluation of the tree segmentation algorithms can be conducted manually (Murtha and

Fournier, 2014; Yang et al., 2022). This evaluation allows for an accuracy assessment by

comparing the generated segmentation results with reference data or aerial imagery. I conducted

a visual evaluation by preparing a dataset to use for comparison. This dataset included

high-resolution aerial imagery or reference data representing ground truth data from the study

area. Additionally, the dataset covered a range of urban settings to comprehensively assess the

algorithms' performance in different environments. The selected study areas included different

tree species, densities, canopy structures, and proximity to other urban features such as buildings

and roads.

Each algorithm generated individual tree segments for the second step using the same

input data. I ensured that the optimal parameters for each algorithm were used to achieve the best
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possible results. The generated outputs were georeferenced and overlaid on the ground points, as

well as temporally related (within six months) aerial imagery (NAIP and Google Satellite

Imagery) for quick comparison. To evaluate how well the algorithms segmented 16,947 ground

points, I randomly selected a single LARIAC tile from the pilot sites, then randomly selected 50

segmented tree crowns from the results. The results were then compared using the following

criteria:

● Correct segmentation: The percent of individual trees accurately segmented and

separated from adjacent trees and other urban features.

● Under-segmentation: The percent of instances where multiple trees are grouped as

one segment causes an underestimation of the total number of trees.

● Over-segmentation: The percent of instances where a single tree is divided into

multiple segments, leading to an overestimation of the total number of trees.

● Misclassification: The percent of instances where non-tree objects, such as

buildings or vehicles, are mistakenly identified as trees.

This qualitative assessment allows for a more nuanced understanding of each algorithm's

challenges and complexities in different urban settings, ultimately leading to better

decision-making when selecting the most suitable algorithm for a particular project.

3 Results

The comparative analysis highlighted differences between the performance levels of the five

algorithms tested. It was found that point cloud-based algorithms produced more accurate results

(range of 10% in accuracy) than raster-based algorithms (range of 30%) (Table 2). However,
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point cloud algorithms took significantly longer to produce a result than raster-based algorithms

with point cloud-based algorithms needing up to 90 minutes for tiles with the presence of dense

canopy (45-60 minutes for tiles with less dense or open canopy) versus ~30 seconds for

raster-based approaches regardless of canopy density.

Table 2. Comparing the performance between Adaptive Mean Shift (AMS3D), Dalponte2016,
Silva2016, Watershed, and Li2012 on 50 randomly selected tree crowns in Altadena. The cells
with the best performing metric for each category are highlighted in dark green (second best in
light green), and the worst performing in dark red (second worst in light red).

Criteria Dalponte2016 AMS3D Silva2016 Watershed Li2012

Correct 0.50 0.42 0.20 0.40 0.32

Under 0.12 0.28 0.42 0.30 0.58

Over 0.38 0.28 0.14 0.10 0.00

Misclassified 0.00 0.04 0.24 0.20 0.10

Overall, the analysis showed that point cloud-based algorithms are better suited for

applications where detailed accuracy is needed. In contrast, raster-based algorithms are more

suitable for applications requiring a rapid result, with Dalponte2016 providing both a rapid result

and the best overall accuracy of 50% correctly segmented trees. The Watershed (30%) and

Silva2016 (42%) algorithms had an unfortunate propensity for both under-segmentation of the

target species at a rate much higher than that of Dalponte2016 (12%). As for Li2012, it failed to

execute the task in a timely manner after each attempt, making its slow processing speed a clear

issue, as well as having the worst performing under-segmentation of all five algorithms (58%),

but ranked best in over-segmentation (0%). In addition, further research is needed to fully assess

the performance of these algorithms in different urban environments around the world. This will
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help ensure they can be used effectively and accurately in all urban forestry management

scenarios.

3.1 Adaptive mean shift

Overall, Adaptive Mean Shift performed well when given species-specific parameters describing

crown shape and demonstrated its potential as a powerful tool for segmenting individual trees

from LiDAR point clouds. After visually assessing the algorithm’s performance across 50

randomly selected crowns, Adaptive Mean Shift correctly segmented 42% of the crowns (Fig.

8-10). However, there were also limitations associated with applying the algorithm to

heterogeneous sample sites–namely, poor performance when trying to generalize across

structurally dissimilar species—and the algorithm was not tested for an all-too-common

structural change for many street trees, which is pruning. Adaptive Mean Shift under and over

segmented tree crowns by 28% each, and also misclassified 4% of crowns. Additionally, the

Adaptive Mean Shift algorithm is computationally expensive, taking upwards of one hour to run

on a single, square LARIAC tile with a length of two-fifths of a kilometer (quarter-mile—raw

data is provided individually as quarter-mile tiles projected in ‘NAD83 / California zone 5’ with

units in U.S. feet).

With over 4,000 tiles in Los Angeles County, this method would take 166 days to

complete using a single-core computer with 16-GB of RAM. The number of days needed to

process reduces significantly with the use of high performance computing, but increasing the

number of computer cores and memory to process the data is not a linear relationship. The

amount of data in need of processing for our area would take an estimated two weeks (13-15
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days) to run using a 64-core machine and over 32-GB of RAM. Moreover, this is the minimum

amount of processing needed to segment one structural type among the dozen or so found across

the project's target species.

This approach is best suited for application in structurally homogeneous forests, or if the

target species spanned a small number of structural types. For the purposes of the County's urban

forest program, implementing Adaptive Mean Shift becomes counterproductive when trying to

determine a workflow that reduces the time and effort to inventory individual trees across the

study area (Fig. 6).
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Figure 6. Visualization of the performance metrics of the Adaptive Mean Shift tree segmentation
algorithm. a) General performance when species-specific crown shape parameters are used to
delineate an individual Quercus agrifolia. b) Performance depicting individual tree segmentation
when generalized crown shape parameters are used for Quercus agrifolia. c) Visualization of the
crown shape parameters, ratio of tree height to crown length and width, used in the Adaptive
Mean Shift algorithm.

3.2 Canopy height model and ground points

The raster-based Dalponte2016 algorithm was the second best performing algorithm for tree

segmentation in this study despite correctly segmenting more tree crowns than Adaptive Mean

Shift (50% versus 42%) and having no instances of misclassification (0% versus 4%). It is

considered second best due to the high instances of over classification (38%) compared to

Adaptive Mean Shift (28%) (Table 2).
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Unlike the Adaptive Mean Shift algorithm, which required an individual calibration on

each target species, Dalponte2016 provided a generalized set of parameters that were suitable for

all target species. However, over segmentation leads to dissimilar tree species in closed canopy

being included in a single tree crown, which can throw off crown metrics and overestimate the

crown area, perimeter, and height of any given species (Table 3).

Table 3. Comparison of crown metrics between Dalponte2016 and Adaptive Mean Shift
algorithm (AMS3D) in Altadena.

Species Mean Height
(m) AMS3D

Mean
Height (m)
Dalponte

Mean
Points (#)
AMS3D

Mean
Points (#)
Dalponte

Mean Area
(m2)

AMS3D

Mean Area
(m2)

Dalponte

Citrus limon 11.67 12.94 527 1,114 61.32 103.18

Eucalyptus cladocalyx 16.43 16.74 833 1,238 99.98 131.32

Eucalyptus globulus 15.78 16.11 787 830 95.31 72.76

Ficus benjamina 10.91 10.56 322 425 55.13 46.20

Ficus carica 14.09 16.22 601 853 98.63 73.48

Ficus microcarpa
nitida 10.97 10.99 432 469 62.98 56.98

Jacaranda mimosifolia 10.77 10.91 404 551 60.39 73.76

Lagerstroemia indica 8.60 8.87 268 370 41.86 49.69

Pinus canariensis 21.21 22.92 770 907 118.79 115.02

Pinus contorta 10.60 10.81 430 520 56.19 66.74

Pinus coulteri 19.23 20.01 1,827 2,546 144.3 165.79

Pinus halepensis 15.82 17.19 828 1,263 101.84 125.25

Pinus pinea 13.20 13.30 1,113 1,377 137.56 157.39

Platanus racemosa 13.15 14.93 753 1,084 92.78 111.19

Quercus agrifolia 11.96 12.78 523 766 82.36 90.72

Sequoia sempervirens 13.98 15.38 347 518 52.94 59.66

Washingtonia filifera 15.87 17.07 359 434 44.67 48.45

Washingtonia robusta 18.22 21.52 415 323 58.24 40.78
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Furthermore, misclassification was initially a limitation for all algorithms when trees

were near large structures such as buildings and towers. Fortunately, this could be mitigated by

applying a canopy mask to remove any points from the LiDAR data not overlapping with tree

canopy (Fig. 7). These adjustments improved overall accuracy and allowed for more precise

segmentation of all target species. I also map Dalponte2016 tree crowns for all three study sites

(Fig. 8-10).

Figure 7. Visualization of erroneous tree segmentation using Dalponte2016. a) Misclassification,
and b) Applying a tree mask to point clouds to avoid misclassifications.

To provide an overview of the tree crown metrics from this study's target species, Table 4

was created utilizing the Dalponte2016 approach. This table offers detailed measurements on

various aspects, including the number of crowns (Count), average number of points per species

in the LiDAR data (Mean Points), as well as the average tree height (Mean Height), crown area

(Mean Area) and perimeter (Mean Perimeter). Figures 8 – 10 visualize the tree crowns produced

by Dalponte2016 for all public street trees across all three pilot sites.
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Table 4. Aggregate tree crown statistics utilizing the Dalponte2016 approach based on the target
species/genera.

Altadena Mean Height
(m) Mean Area (m2) Mean Perimeter

(m) Mean Points (#) Count

Citrus limon 12.94 103.18 42.37 1114 113

Citrus sinensis 13.73 78.22 34.83 946 83

Eucalyptus
cladocalyx 16.74 131.32 55.51 1238 99

Eucalyptus
globulus 16.11 72.76 34.42 830 77

Eucalyptus
polyanthemos 12.11 28.72 19.64 382 113

Ficus benjamina 10.56 46.20 29.20 425 91

Ficus carica 16.22 73.48 29.60 853 105

Ficus
microcarpa/nitid
a

10.99 56.98 32.54 469 1982

Jacaranda
mimosifolia 10.91 73.76 38.43 551 432

Lagerstroemia
indica 8.87 49.69 29.26 370 633

Pinus canariensis 22.92 115.02 45.86 907 561

Pinus contorta 10.81 66.74 36.72 520 135

Pinus coulteri 20.01 165.79 54.03 2546 46

Pinus halepensis 17.19 125.25 46.64 1263 391

Pinus pinea 13.30 157.39 53.04 1377 42

Platanus
racemosa 14.93 111.19 46.03 1084 171

Quercus agrifolia 12.78 90.72 38.02 766 4046

Sequoia
sempervirens 15.38 59.66 31.35 518 89

Washingtonia
filifera 17.07 48.45 29.41 434 255

Washingtonia
robusta 21.52 40.78 25.79 323 2596

East Los
Angeles

Mean Height
(m) Mean Area (m2) Mean Perimeter

(m) Mean Points (#) Count

Ficus benjamina 8.62 53.34 31.56 262 247

Ficus 9.09 55.81 32.33 265 214
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microcarpa/nitid
a

Jacaranda
mimosifolia 8.62 48.19 31.02 238 375

Lagerstroemia
indica 6.59 26.14 21.91 108 207

Pinus canariensis 20.03 63.92 34.69 345 150

Pinus halepensis 14.95 86.47 41.99 409 66

Platanus
racemosa 11.34 42.61 29.70 231 222

Quercus agrifolia 9.69 58.11 33.95 229 36

Washingtonia
robusta 14.26 20.42 20.51 100 313

Marina del Rey Mean Height
(m) Mean Area (m2) Mean Perimeter

(m) Mean Points (#) Count

Eucalyptus
citriodora 17.09 94.49 41.73 1408 132

Eucalyptus
globulus 18.23 167.07 55.83 2778 146

Ficus rubiginosa 10.16 79.3 35.46 1385 45

Washingtonia
robusta 16.19 19.45 17.09 351 468
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Figure 8. Individual tree crowns for Altadena, CA processed using the raster-based
Dalponte2016 tree crown delineation algorithm with CHM inputs derived from LARIAC 4
LiDAR data.
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Figure 9. Individual tree crowns for East Los Angeles, CA processed using the raster-based
Dalponte2016 tree crown delineation algorithm with CHM inputs derived from LARIAC 4
LiDAR data.

43



Figure 10. Individual tree crowns for Marina del Rey, CA processed using the raster-based
Dalponte2016 tree crown delineation algorithm with CHM inputs derived from LARIAC 4
LiDAR data.

4 Discussion

While trees are integral to urban infrastructure, offering cooling effects, air and water

purification, and enhancing community well-being (Mullaney et al., 2015), their effective

integration requires navigating challenges such as equitable distribution and misallocation of

ecosystem services (i.e., planting L. indica or W. robusta for shade purposes) (Roman et al.,
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2021). Moreover, the benefits can vary significantly based on regional climates and

socio-economic or socio-ecological contexts.. Therefore, accurate tree segmentation is a vital

component of urban forest inventory and management, as it enables the monitoring of individual

trees and the overall health of urban ecosystems. This section discusses the importance of

implementing accurate tree segmentation for urban forest inventory and its potential application

in species classification models. Specifically, accurate tree segmentation allows for the

identification and monitoring of individual trees, facilitating the assessment of tree health and

identifying individual trees to species within an urban environment, which provides valuable

information about tree species composition and distribution and can guide conservation efforts

for California natives and inform urban planning decisions to enhance and protect biodiversity

by using urban areas as a conservation space. By identifying individual trees and their locations,

accurate tree segmentation supports the integration of green infrastructure into urban planning

processes. As a result, urban forests can be strategically managed to maximize benefits such as

heat island reduction by identifying heat-prone neighborhoods with the necessary sidewalk space

fit for planting large canopy trees, or implementing a row of trees between apartment buildings

and freeways or arterial roads for noise pollution mitigation.

In this study, I compared the application of five tree segmentation algorithms and their

performance in three locations in urban Los Angeles County. Overall, Dalponte2016 (50%) and

AMS3D (42%) outperformed Silva2016 (20%), Watershed (40%), and Li2012 (32%) in correctly

segmenting trees, and also had the least amount of under-segmentation (12% and 28%,

respectively) and misclassification (0% and 4%, respectively) in the group. Silva2016 was the

worst performing algorithm tested, and Watershed (10%) and Li2012 (0%) provided promising

over-segmentation results, but underperformed elsewhere.
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My comparison of canopy metrics derived from both Dalponte2016 and AMS3D

produced expected results for most of our target species, but did have some unexpected results,

especially concerning Citrus spp. (Fig. 11). One of the parameters set for all algorithms was

specifying a minimum tree height of 4 m, or right around the maximum growth of mature Citrus

spp. trees. Although open canopy individuals were correctly measured with tree heights between

4 and 9 m, individuals in closed canopy were instead under-segmented and assigned the height of

the adjacent tree. This was especially true for Citrus spp. individuals less than 6 m in height, but

taller individuals were successfully segmented in closed canopy (Fig. 11).
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Figure 11. a) Google Street View of an example of Citrus limon under-segmentation in
Altadena. With a minimum tree height parameter of 4 m, under-segmentation can occur for
smaller (~4 m) understory trees. b) Google Street View of an example of Citrus limon correct
segmentation in Altadena. A larger understory tree, in this case 9.66 m, may be correctly
segmented since it deviates more from the minimum tree height of 4 m.

A B

Comparing my results with the literature for each algorithm, I found agreement between

their studies and mine. Ferraz et al. (2016) lacked ground measurements to accurately quantify

their model’s performance, but were able to compare the modeled crown widths and crown

depths to show that the widths were slightly larger than the depths, which agreed with field

measurements carried about by a separate study in 2006 (Ferraz et al., 2016). Dalponte and

Coomes (2016) correctly detected 100% of trees with >80 cm DBH in their validation plots, but
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failed to detect small trees (Dalponte and Coomes, 2016). Both the Ferraz et al. (2016) and

Dalponte and Coomes (2016) results align with my results. In our pilot sites, Dalponte2016

overestimated tree crowns by missing smaller trees found in close canopies with larger crowns,

and Adaptive Mean Shift had low under and over segmentation (28% each) with higher accuracy

(42%) indicating a preservation of individual tree shape.

4.1 Algorithm Performance in urban environments

While algorithmic approaches to individual tree segmentation offer valuable tools for urban

forest management, it also comes with challenges that must be addressed to utilize their potential

fully. Some of these challenges include:

● High spatial heterogeneity: Urban environments are characterized by a high degree of

spatial heterogeneity, with a mix of built-up areas, vegetation, and open spaces. This

complexity can make it difficult to accurately classify and analyze remote sensing data,

as it can be challenging to distinguish between different land cover types and tree species.

● Spectral confusion: In urban environments, various features like buildings, roads, and

different types of vegetation can have similar spectral signatures, making it difficult to

distinguish between them in remote sensing imagery accurately. This can lead to errors in

the classification and analysis of urban forests.

● Shadow and illumination effects: Urban areas often have tall buildings and structures that

can cast shadows on the ground or vegetation, affecting the quality of remote sensing
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data. Shadows can reduce classification accuracy and make detecting and assessing

certain features in urban forests difficult.

● Data resolution: Remote sensing data can vary in spatial, spectral, and temporal

resolution. High-resolution data is often required for detailed urban forest analysis, but

acquiring and processing such data can be expensive and computationally intensive.

Conversely, low-resolution data may not capture the fine-scale details necessary for

accurate urban forest assessment.

● Data availability and accessibility: Although remote sensing data is becoming more

widely available, accessing high-quality, up-to-date data can still be challenging for some

users due to cost, data sharing policies, and technical expertise requirements.

● Integration with other data sources: To effectively manage urban forests, remote sensing

data often needs to be combined with other data sources, such as land use data and

ground-based surveys.

● Skill and expertise requirements: Analyzing and interpreting remote sensing data for

urban forest management requires specialized knowledge and skills in remote sensing,

GIS, and forestry. This can be a barrier for some organizations or individuals needing

more expertise or resources to utilize remote sensing technology fully.

4.2 Recommendations for algorithm selection in urban environments

Despite these challenges, remote sensing remains a valuable tool for urban forest management.

My research demonstrates the importance of comparing the performance of several algorithmic
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approaches to individual tree segmentation and offering the best approach based on project

needs.

Should an application in urban forestry have substantial computational resources and

avoid reproducible procedures across a diverse set of platforms and accessibility or only need to

segment a minimal number of structurally homogeneous tree species, then I recommend

deploying the Adaptive Mean Shift algorithm (Ferraz et al., 2016). However, should a project

lack the financial or computational resources needed to perform a highly intensive algorithm like

Adaptive Mean Shift, or if the target species span a heterogeneous mixture of structural

variability, then I suggest deploying the Dalponte2016 algorithm using ground points as proxy

tree tops with generalized parameters and implementing a several-meter buffer on the resulting

tree crowns. For L. A. County, Dalponte2016 segmented 20 target species across an area greater

than 45 km2, producing a variety of crown metrics.

5 Conclusion

Accurate tree segmentation provides valuable information about the overall structure of the

urban forest but also serves as a foundation for individual species classification, primarily

through the application of segmentation results in species classification models. After deciding

which of the better-performing algorithms best suits a project's needs, the resulting individual

tree data can be integrated with additional information, such as multispectral or hyperspectral

imagery and field survey data. This integrated dataset can comprehensively represent each tree,

including its spectral, structural, and spatial characteristics. The integrated dataset can extract

relevant features for each tree, such as spectral indices, canopy texture, crown shape, and height.
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These features can serve as input variables for species classification models, enabling the

differentiation of tree species based on their unique characteristics. Various classification

algorithms can be applied to the extracted features to develop species classification models,

including traditional machine learning methods (e.g., Random Forest, Support Vector Machines)

and deep learning approaches (e.g., Convolutional Neural Networks). By training and validating

these models on the integrated dataset, researchers can achieve high levels of classification

accuracy, ultimately allowing for the identification of individual tree species within the urban

forest.

In conclusion, accurate tree segmentation is essential for adequate urban forest inventory

and management, providing critical information about individual trees and their spatial

distribution. Additionally, segmentation results can be leveraged in species classification models

to identify and manage tree species, further enhancing urban forest health and resilience. Species

classification information can also inform species-specific management strategies, such as

targeted pest control, customized pruning practices, and appropriate species selection for planting

initiatives. This tailored approach to urban forest management can enhance overall forest health

and resilience and direct the expertise of arborists and urban planning officials in a timely and

efficient manner.
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Chapter 3.

What’re the odds? Probabilistic tree inventories in urban Los Angeles County

Abstract

This research paper details the application of machine learning, specifically the Random Forest

algorithm, in classifying tree species within urban settings. Motivated by the need for effective

and efficient urban forest management, a data-driven model was developed to recognize and

categorize tree species based on remote sensing data from the National Agriculture Imagery

Program (NAIP) dataset (RGB, IR, Hue, Saturation, Value, vegetation indices) at a 60 cm spatial

resolution and LiDAR data from the Los Angeles Region Imagery Acquisition Consortium

(LARIAC) on tree height at a 1 m spatial resolution. The model demonstrated a high accuracy

for common street tree species (N = 10,664), such as Quercus agrifolia and Washingtonia

robusta, with an overall User’s and Producer's Accuracy of between 0.859 to 0.919 across

different neighborhoods. I also present the outputs from my model in two distinct formats: point

data, pinpointing the precise location of each individual tree, and polygon data, outlining the

canopy extent of the tree crowns. To enhance visualization and interpretability, a color-coded

map was produced that categorizes trees based on the identified species, offering a vivid display

of the species distribution across the studied area. This visualization approach not only provides

a comprehensive overview of tree species distribution but also enables users to assess and

improve the model's accuracy in real-world scenarios. Results were less robust in classifying

trees on private property and less common species (0.620 accuracy for Pinus pinea, N = 42;

0.689 accuracy for Citrus spp., N = 196), indicating a bias towards species with larger training
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samples. To mitigate this, the paper proposes strategies such as expanding the dataset to include

more instances of private trees and using a binary classification approach. The successful

application of the model will support initiatives such as public tree health monitoring,

longitudinal studies, and urban forestry management, thereby enhancing our understanding of

urban ecosystems and their roles in improving urban health. Future research will focus on

refining the model with new data and investigating further adaptations for improved accuracy.

Keywords

Airborne Remote Sensing, Individual Tree Segmentation, Light Detection and Ranging, Urban

Forestry

1 Introduction

Urban trees mitigate heat, clean air and water, and provide residents with an improvement in

general well-being (Salmond et al., 2014; Gillner et al., 2015; Lee et al., 2016; Ozdemir, 2018;

Los Angeles County Department of Public Health, 2020). In Los Angeles County, trees are a

critical infrastructure as they help cool neighborhoods, clean air and water, and improve our

communities' emotional and social health. Los Angeles County manages at least 800,000 public

trees, with inventory costs using traditional methods exceeding $5 million (Los Angeles County

Department of Public Health, 2020). These approaches are also limited to trees in the public

right-of-way. The ability to inventory public and private trees using remote sensing will provide

the county a faster, cheaper, and more efficient way to inventory trees throughout the region
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(Fassnacht et al., 2014; Hutt-Taylor and Ziter, 2022; Liu et al., 2023). Redevelopment and

land-use dynamics can disrupt urban tree species' natural life cycle. Regardless of their benefits

to residents, urban trees are subject to how we choose to reconfigure urban spaces (Pincetl et al.,

2013; Avolio et al., 2015; Bodnaruk et al., 2017). Moreover, invasive species, diseases, and

climate change are also posing additional threats (Lausch et al., 2016; Schwantes et al., 2016;

Pretzsch et al., 2017; Okin et al., 2018; Dong et al., 2023), and to address some of these

challenges Los Angeles County has teamed up with the Department of Geography at UCLA to

identify the best approach in tree species identification and health assessment to help ease the

burden of inventorying local trees manually. Currently, no department within the county has a

cost-effective or efficient way to know where and when to plant or manage trees. Those in

charge of managing the urban forest are stretched thin and often have disparate tree inventory

data, making hands-on management difficult to scale across the region (Hutt-Taylor and Ziter,

2022). This chapter will cover a remote sensing model designed to optimize and automate Los

Angeles County's urban forest management to alleviate the burden of local departments that

currently conduct visual assessments of local tree stock.

Over the last 20 years, there has been a dramatic increase in airborne and spaceborne

multispectral sensors with fine spatial (1 m) and spectral (400 nm to 2300 nm) resolutions that

can be used to identify tree individuals to species in urban settings (Xiao et al., 2004; Pu and

Landry, 2012, Alonzo et al., 2013; Ferreira et al., 2016). Multispectral data consists of medium

(10-30 m) to very high resolution (VHR) (5 cm – 5 m) imagery captured on both airborne and

spaceborne platforms (Fassnacht et al., 2016; Immitzer et al., 2016; Fang et al., 2020). The

sensors passively capture reflected energy from objects on the ground, including vegetation, and

span the visible (red, blue, green) and infrared (longwave, shortwave, and near-infrared) spectra.
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In addition, spectral datasets with high temporal resolutions, or consistent repeat observations,

can provide a reliable measure of phenological information for target tree species (Bodnaruk et

al., 2017; Gillespie et al., 2017; Pu and Landry, 2018). Another advancement in remote sensing

technology is the introduction of Light Detection and Ranging (LiDAR) data. LiDAR uses the

light from a laser to collect measurements of x,y, and z point clouds to create 3D models and

maps of objects. Discrete return LiDAR with 2-66 points per meter squared are commonly used

for urban tree identification, and airborne LiDAR alone is able to identify up to 61% of urban

trees at species level (Liu et al., 2017). Several studies show that LiDAR data increases tree

identification accuracy when combined with spectral imagery (Alonzo et al. 2014, Dian et al.

2016, Liu et al., 2017).

To map tree species across my study area, I use a supervised classification. Supervised

classification methods, such as Random Forest, offer a range of advantages when applied to the

classification of tree species using remote sensing data (Lim et al., 2019; Yang et al., 2019;

Coleman et al., 2020; Zhang et al., 2020). In addition to handling complex classification tasks

with high accuracy, Random Forest provides measures of variable importance, which can be

used to identify the most informative spectral bands or features for the classification task

(Gislason et al., 2006). This is particularly useful in remote sensing applications where

high-dimensional data are common. Random Forest also does not make any assumptions about

the underlying data distribution, making it suitable for remote sensing data that often exhibit

nonlinear and complex relationships (Rodriguez-Galiano et al., 2012). Additionally, Random

Forest is robust to overfitting, which is a common problem with decision trees (Belgiu and

Dragut, 2016). This is because it takes the mode of the output of individual trees, thereby

balancing out any individual tree's overfitting. The model can also handle large datasets with
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high dimensionality well, which is typical in remote sensing applications where you have

multiple spectral bands and derived indices as predictor variables (Belgiu and Dragut, 2016;

Yang et al., 2019).

Mapping tree species serves as a critical visualization that helps end-users in day-to-day

operations, as well as other interested parties, in understanding forest biodiversity and aiding

conservation efforts. By mapping results as polygon data for tree crown extents, I gain a detailed

overview of tree distribution. Crucially, the color-coded map—for species

classification—enables a dual assessment of both species presence and model reliability. Such an

approach not only facilitates a comprehensive understanding of tree species dispersion but also

provides insights into potential areas of model refinement (Pu and Landry, 2012; Dian et al.,

2016). This leads me to my research question for this study. Can Random Forest, combined with

spectral data imagery (NAIP) and LiDAR data (LARIAC), be used to assess the classification

accuracy of urban trees in three unincorporated neighborhoods in urban Los Angeles County?

1.1 Research Objectives

Working in direct collaboration with the intended stakeholders, my research strives to understand

daily end-users' needs to operationalize and optimize their urban forest management through

remote sensing modeling. Several studies have explored the classification of tree species using

remote sensing data in non-urban areas (Immitzer et al., 2012; Ferreira et al., 2016; Immitzer et

al., 2016; Aubry-Kientz et al., 2019; Lim et al., 2019; Mosin et al., 2019; Zhang et al., 2020). For

instance, Fassnacht et al. (2016) demonstrated that the integration of optical and structural

remote sensing data significantly improves tree species classification in temperate forests.
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However, the application of these methodologies in urban areas remains varied. Current

approaches often lack the precision required for urban areas, where tree species are more diverse,

and interspersed with anthropogenic structures. This research aims to address this gap by

developing and applying a supervised classification model that combines high resolution optical

and structural remote sensing data for tree species identification in urban Los Angeles County.

This approach has the potential to refine our understanding of urban tree species composition and

contribute to more effective urban biodiversity management strategies.

Specifically, my research focuses on determining the efficacy of machine learning

algorithms in analyzing 4-band aerial remote sensing imagery, as well as assessing the potential

improvements in accuracy and efficiency as compared to manual tree inventorying. Accurate

identification of tree species plays a pivotal role in the maintenance of biodiversity, the provision

of ecosystem services, and in the overall management of urban forests. Different tree species

offer varied benefits and have distinct needs, emphasizing the necessity for accurate

identification. Moreover, understanding the species composition of urban forests is critical for

making informed decisions about future plantings, especially in the context of climate change

and invasive species. This study, therefore, addresses critical factors in urban forestry, such as

improving tree species identification (Fassnacht et al., 2016; Branson et al., 2018), optimizing

resource allocation (Meddens et al., 2013; Caughlin et al., 2019), and enhancing our

understanding of urban biodiversity (Isager and Niels, 2007; Lausch et al., 2016; Huang et al.,

2019). By filling a substantial gap in the literature, this research will provide valuable insights

that can guide future urban forestry management strategies. The proposed research will not only

contribute to methodological advances in urban forestry but also enhance our understanding of

urban biodiversity, facilitate efficient forest management, and foster resilience against emerging
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environmental challenges. This will provide data-driven insights to underpin urban forest

management decisions at the species level. Second, by integrating results from my analyses with

long-term monitoring of target species, data users/practitioners can gain a deeper understanding

of the distribution and condition of urban forest species. My approach supports urban foresters’

ability to optimize these benefits and mitigate environmental challenges such as climate change

and habitat loss, which all starts with inventorying species to begin to track their health over

time. The subsequent sections delve deeper into my study's methodology, the performance of a

supervised classification algorithm, and the practical implications of this research for urban

forest management in Los Angeles County.

2 Methodology

The methodology adopted in this research is a combination of remote sensing image processing

and random forest supervised classification, performed through cloud-based computational

software.

2.1 Pilot Sites

Public grants often opt for pilot sites to test the feasibility and efficacy of proposed research

methodologies before full-scale implementation. This allows for identification and rectification

of potential problems or challenges in a controlled setting, ensuring the method's reliability and

accuracy. Pilot sites serve as a microcosm of the larger area of interest, providing valuable

insights into how the method might perform when scaled up. They also offer a cost-effective way
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to fine-tune the approach, making it more robust and efficient before it is applied to a broader

geographic context. Hence, the selection of appropriate pilot sites is a critical component of the

research process, particularly in this study that involves technical approaches and large-scale data

analysis.

Three pilot sites were chosen to serve as a representative sample of urban Los Angeles

County. These sites include the unincorporated communities of Altadena, East Los Angeles, and

Marina del Rey. They were chosen primarily for their differences in tree species, urban forest

management, and demographics. Altadena is a community located approximately 20 km north of

downtown Los Angeles. This neighborhood is nestled directly north of Pasadena at the base of

the San Gabriel Mountains. With its diverse population, Altadena is known for its distinctive

residential architecture, ranging from modest ranch-style homes to grand historic estates with a

dense urban canopy. East Los Angeles, colloquially referred to as East LA, is one of the most

densely populated urban areas in the United States. This predominantly Hispanic community

boasts a vibrant culture, and its urban canopy is more open compared to Altadena. Marina del

Rey, located on California's southern coastline, is an unincorporated seaside community in Los

Angeles County. Known for its marina, the world's largest man-made, small-craft harbor, and is

in close proximity to the Los Angeles International Airport. Marina del Rey's urban forest is

managed by the County's Beaches and Harbors department, and it has one of the least diverse

street tree populations in the group.
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2.2 Ground Truth Data

Ground truth data (N = 16,947 total trees; 10,664 used in this study) were collected from several

departments within Los Angeles County, including Public Works, Parks and Recreation, Beaches

and Harbors, and Public Health. This data serves as an important reference point for evaluating

the accuracy of tree species identification derived from remote sensing and machine learning

techniques. It provides a “truth” against which the results of the machine learning algorithms can

be compared and validated. The ground truth data is a critical component of the study, and can

offer a reliable and objective means of assessing the efficiency and accuracy of the proposed tree

species identification methodology (Mosin et al., 2019). It is important to quality assess and

quality control ground truth data to ensure its reliability as species information and GPS location.

In the case of the County ground truth data, contracted arborists identified tree individuals to

species and used handheld GPS units to log individual tree locations at breast height (1.3 m),

after which, the data was validated through a second independent contractor to ensure accuracy

and reliability (Los Angeles County Department of Public Health, 2020). This research intends

to enhance the User's Accuracy of species identification, thus facilitating more effective urban

forest management in Los Angeles County.

This collection of 16,947 ground points were filtered to 10,664 tree locations by

removing individual tree crown segments that overlapped with two or more species ground

points. The resulting 10,664 street trees are all located in the public right-of-way that each

department is responsible for maintaining within the three study areas. Table 1 provides an

overview of the original 16,947 target tree species and Genera per community, and why they

were chosen for this study. With over 500 species in the Los Angeles metropolitan area alone
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(Pataki et al., 2013), the region has been found to be more diverse than any native forest in the

United States (Pincetl et al., 2013; Gillespie et al., 2017; Love et al., 2022). Running a full

classification model on every species available would be time consuming and computationally

expensive for this pilot project. Instead, I opted to model a select number of species/genera that

were most important for end-users. There are myriad ways of putting together such a technical

approach, which can be a drawback if the proposed model does not consider the end-user. Also,

no model is a perfect representation of our reality and acknowledging the presence of errors turns

any drawbacks into opportunities to test and validate the model. My approach's success will need

the end user to assess their expertise and feel confident evaluating the model output. Thus,

stakeholder involvement becomes a crucial step in the model's conception and throughout its

development. I surveyed regional stakeholders (Tree People, The Nature Conservancy), end

users (day-to-day managers spanning eight County departments), and scientists (UCLA, UCSB,

NASA JPL) as to which group of species would be best to test in L.A. Eleven target

species/genera (four native to California) were chosen due to their importance when considering

water stress, mortality, and hazards. The four native species were chosen for conservation and

management purposes. I provide information on each species, the reason for its inclusion, and

the number of training points included in the model in Table 1 in Chapter 2.

2.3 Remote Sensing Imagery

2.3.1 High-resolution Spectral Imagery

I used species-specific tree crowns from a Canopy Height Model derived from the Los Angeles

Region Imagery Acquisition Consortium (LARIAC). The LARIAC dataset is a comprehensive,
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high-resolution geospatial data collection covering the entirety of Los Angeles County. This is a

proprietary dataset provided courtesy of the LARIAC and EagleView (LARIAC, 2016). The

richness and depth of the LARIAC dataset are particularly beneficial for this research as it aids in

the accurate identification and classification of tree species across the diverse and expansive

urban forests of Los Angeles County. The dataset includes a 4-band (Red, Green, Blue, and

Near-Infrared) aerial imagery with a pixel resolution of 10.2 cm, enabling detailed and precise

mapping of urban areas. At 10.2 cm spatial resolution, image processing becomes

computationally expensive and timely. Instead, I used publicly available 4-band imagery

provided by the National Agriculture Imagery Program (NAIP). NAIP is an initiative by the

United States Department of Agriculture (USDA) to acquire aerial imagery during the

agricultural growing seasons in the continental United States (NAIP, 2018). A key distinguishing

feature of NAIP imagery is its high resolution, with a spatial resolution of 60 cm (NAIP, 2018),

providing significant detail.

2.3.2 Light Detection and Ranging

The LARIAC dataset also includes Quality Level 2 discrete-return Light Detection and Ranging

(LiDAR) point-clouds, which are instrumental for generating the canopy height model. The low

point density, however, introduces a spatial mismatch between the very high resolution optical

imagery provided by LARIAC and its LiDAR dataset. By using the 60 cm NAIP imagery, I can

ensure that at least one or two returns in the point-cloud data align within single pixels in my

spectral data. This alignment ensures height data is spatially located with spectral returns for a

complete spectral and structural profile for every pixel within my tree crown segments.
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2.4 Image Processing

2.4.1 Cloud Computing: Google Earth Engine

Google Earth Engine is a cloud-based platform for planetary-scale environmental data analysis

(Gorelick, 2017). The colossal computing infrastructure of Google Earth Engine provides

capabilities to run geospatial analysis at an unprecedented scale. It offers a vast array of public

datasets that include satellite imagery, geospatial datasets, and client-side functions for

manipulating and analyzing data. There are two primary reasons to use Google Earth Engine for

image processing and supervised classification. First, Google Earth Engine excels in processing

large-scale, high-resolution geospatial data, thanks to its cloud-based architecture. It performs

on-the-fly computations, allowing users to visualize the results without first downloading and

processing raw data locally. This feature is particularly beneficial for handling large-scale remote

sensing datasets like those used in this project. Second, Google Earth Engine's supervised

classification algorithms enable users to classify satellite imagery based on training datasets.

This feature allows for the precise identification and mapping of different land cover types, in

this case, tree species. By leveraging Google Earth Engine, I was able to expedite the process of

image classification and ensure a high level of accuracy, thus facilitating efficient and effective

urban forest management.

The process began with the acquisition of 2018 NAIP imagery from Earth Engine's

extensive data catalog. I also uploaded two data assets: a Canopy Height Model (CHM) and a

tree crown layer. Subsequently, the NAIP imagery underwent a series of processing steps,

beginning with the generation of shadow masks to minimize classification errors due to varying
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light conditions. This was followed by a transformation of the RGB bands into the Hue,

Saturation, and Value (HSV) color space, which is often more discriminative for vegetation

analysis (Mostafa and Abdelhafiz, 2017; Han et al., 2020; Pu, 2021; Dyson et al., 2023). I also

calculated two vegetation indices, the Normalized Difference Vegetation Index (NDVI),

Enhanced Vegetation Index (EVI), and the Soil-Adjusted Vegetation Index (SAVI), to better

capture the biophysical characteristics of the urban trees (Fassnacht et al., 2016). These layers,

along with the processed NAIP bands, were then stacked to create a comprehensive set of

spectral and spatial features.

Leveraging the tree crown layer, I sampled this stacked dataset to extract representative

training data for supervised classification of individual tree species. To construct a robust

classifier, I employed a random forest algorithm, partitioning the sampled data into an 80/20 split

for training and validation purposes. The trained model was then applied across a larger

geographic extent to perform species-level classification of public urban trees. The cloud-based

computation capabilities of Google Earth Engine allowed for this entire process to be conducted

without the prohibitive computational and storage overheads typically associated with local

systems. Through this method, I achieved a rapid and precise classification of tree species,

providing a solid foundation for informed decision-making in urban forest management.

2.4.2 Canopy Height Modeling

The CHM can be used as an alternative to point clouds for individual tree crown detection in

discrete-return LiDAR data (Zhang et al., 2015; Lin and Hyyppa, 2016). Despite the faster

processing speeds, using CHMs introduces complexities due to dependency on its construction
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parameters. For this study, I used the LARIAC LiDAR point-clouds to produce CHMs for my

study areas at a 1 m spatial resolution with a points-to-raster, pitfree algorithm for image

smoothing in the open-source lidR R package (Roussel et al., 2020; Roussel, 2023). This

algorithm avoids "holes" in the CHM to avoid issues with individual tree detection and crown

identification (Roussel et al., 2020; Roussel, 2023). The post-processing smoothing step includes

applying a median filter. In addition to helping delineate individual tree crowns, the CHM also

provides crucial height information to distinguish between species in our supervised

classification.

2.4.3 Shadow Masking and Color Space Conversion

Shadow masking is an important step in remote sensing image processing as it helps to eliminate

the effects of shadows in surface reflectance (Mostafa and Abdelhafiz, 2017; Han et al., 2020;

Pu, 2021). Shadows can distort the accurate identification and interpretation of features within an

image due to the reductions in illumination. Particularly in applications like supervised

classification of tree species, shadows cast by taller objects can obscure or alter the perceived

attributes of the underlying tree species in the imagery, leading to misclassification. By applying

a shadow mask (Fig. 1), these areas are effectively 'masked out' of the analysis, thereby

improving the accuracy and reliability of the classification results.
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Figure 1. Visualization of vegetation shadow mask in Altadena, CA using NAIP data.

The HSV color space is an alternative way of representing color data that separates the chromatic

information (Hue and Saturation) from the luminance information (Value). Unlike the Red,

Green, Blue (RGB) color space, where each dimension corresponds to a primary color, the HSV

color space is cylindrical, with hue represented as an angular dimension around the central

vertical axis, saturation as the radial distance from the axis, and value as the vertical dimension

(Mostafa and Abdelhafiz, 2017; Han et al., 2020).

The Hue in HSV corresponds to the dominant wavelength of light (e.g., red, green, blue,

near-infrared), saturation corresponds to the intensity or purity of the hue, and value corresponds

to the brightness of the color. By transforming the standard RGB color space into HSV, I gain the

ability to work with colors in a way that is more aligned with how humans perceive color. The

calculation of Hue in the HSV color space is a function of the Red, Green, and Blue (RGB)

values of a pixel. The formula for computing Hue (H) differs depending upon which RGB

channel has the maximum value.
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If Red is the maximum, then Hue (H) is computed as: `(G-B)/(max-min) * 60°`

If Green is the maximum, then Hue (H) is computed as: `60° + (B-R)/(max-min) * 60°`

If Blue is the maximum, then Hue (H) is computed as: `120° + (R-G)/(max-min) * 60°`

In these formulae, `max` and `min` are the maximum and minimum values among the Red,

Green, and Blue channels respectively. The resulting Hue value was then normalized to a range

of 0° to 360°. Note that if the maximum value equals the minimum value, the Hue was defined

as 0°, which represents a shade of gray and helps determine shadows in an image. Han et al.

(2020) also provide the arithmetic used to compute both Saturation and Value using the RGB

inputs. The formula for computing Saturation (S):

𝑆 = 1 − (3/(𝑅+𝐺+𝐵))min(𝑅,𝐺,𝐵)

The formula for computing Value (V):

𝑉 = 1/3(𝑅+𝐺+𝐵)

The Near-Infrared, Red, Green (NRG) color space can further enhance the differentiating

potential of shadows within vegetation. Near-Infrared (NIR) light, invisible to the human eye, is

strongly reflected by healthy vegetation. Thus, introducing NIR into the color space can

significantly improve the ability to discern subtle spectral differences in the vegetation, leading

to more accurate shadow detection and elimination. First, the NRG color space was calculated by

reassigning the Near-Infrared, Red, and Green bands to the RGB channels, respectively. Then,

similar to how Hue is calculated in the HSV color space, a new set of formulae is employed to

calculate the Hue in the NRG color space. The computation can be expressed as:

If Near-Infrared is the maximum, then Hue (H) is computed as: `(R-G)/(max-min) * 60°`
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If Red is the maximum, then Hue (H) is computed as: `60° + (G-NIR)/(max-min) * 60°`

If Green is the maximum, then Hue (H) is computed as: `120° + (NIR-R)/(max-min) *

60°`

Again, `max` and `min` are the maximum and minimum values among the Near-Infrared, Red,

and Green channels respectively. By normalizing the resulting Hue value to a range of 0° to

360°, it is then possible to better differentiate shadows in the vegetation, thus enhancing the

accuracy of overall image analysis and feature classification.

In the context of shadow masking, the HSV color space is particularly useful because it

isolates the luminance component (Value), which is significantly affected by shadows (Mostafa

and Abdelhafiz, 2017; Han et al., 2020). By focusing on the value dimension of the HSV color

space, it becomes easier to identify and mask out shadow-affected areas in an image.

Specifically, areas of an image that are in shadow will have a significantly lower value,

indicating less light. These can be identified and masked out, improving the quality of the image

analysis and the accuracy of subsequent classification tasks.

74



Figure 2. HSV color space infographic.

Normalized Saturation-Value Difference Index (NSVDI) is an index in remote sensing image

analysis that is particularly effective in urban environments where vegetation is mixed with

built-up areas (Mostafa and Abdelhafiz, 2017; Han et al., 2020). NSVDI is derived from the

HSV color space, specifically using the Saturation (S) and Value (V) components. The formula

for NSVDI is given as:

NSVDI = (S - V) / (S + V)

By normalizing the difference between saturation and value, NSVDI effectively accentuates the

vegetation signal in an image, while suppressing non-vegetation elements. This is because in

general, vegetation tends to have high saturation (due to the strong absorption of light in specific
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wavelengths by chlorophyll) and high value (due to the reflection of light in the near-infrared

wavelength where vegetation strongly reflects) (Huang et al., 2020). The NSVDI therefore

provides a useful tool for discriminating vegetation from non-vegetation cover types, improving

the accuracy of urban vegetation mapping and other related analyses (Mostafa and Abdelhafiz,

2017; Han et al., 2020).

The inflection point in an NSVDI plot represents a transition in the spectral properties of

the scene, often aligning with a change in land cover or the presence of a shadow (Mostafa and

Abdelhafiz, 2017). Theoretically, an NSVDI value of 0.0 should serve as the threshold for

distinguishing shadows in an image (Mostafa and Abdelhafiz, 2017). When plotted (Fig. 3),

NSVDI of 0.0 is the most prominent feature, however, previous studies have found that using the

final inflection point, or the value that experiences the greatest rate of change following the 0.0

prominence, is a better threshold to use for shadow masking (Mostafa and Abdelhafiz, 2017; Han

et al., 2020). The inflection point may vary from study to study, but by identifying this value, one

can determine an appropriate threshold for the NSVDI which can be used to create a shadow

mask. Areas of the image with an NSVDI value below this threshold can be classified as shadow,

as they represent areas with lower light saturation and value, typical characteristics of shadowed

regions. This shadow mask can then be applied to the image, effectively 'masking out' these

shadow-affected areas from subsequent analyses. In essence, the inflection point serves as a

critical parameter for differentiating shadowed and non-shadowed areas in the imagery. By

strategically applying this shadow mask, the accuracy of vegetation mapping and other related

image analyses can be substantially improved, hence compensating for any spectral distortions

caused by shadows. It is important to note that the threshold value determined from the inflection

point may vary depending on the unique lighting conditions and land cover characteristics of
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each scene. Therefore, it may be necessary to adjust this value for different images or study areas

to ensure optimal shadow detection and masking.

Figure 3. Identification of the NSVDI inflection point for shadow masking threshold.

2.4.4 Vegetation Indices

Vegetation indices (VIs) are combinations of spectral bands designed to highlight specific

properties of vegetation in remote sensing imagery. They are computed mathematical

calculations using the spectral reflectance of different bands, particularly those in the red and

near-infrared (NIR) wavelengths, where the spectral response of vegetation is most distinctive

(Huang et al., 2020).

VIs are crucial in remote sensing for several reasons. First, they enhance the visibility of

vegetation in the imagery, making it easier to discriminate between vegetated areas and other

land cover types. Second, they serve as proxies for vegetation properties such as biomass, leaf

area index (LAI), and photosynthetic activity, which are otherwise difficult to measure directly at
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larger scales. Third, as VIs are sensitive to vegetation health and stress, they are applied

extensively for monitoring vegetation dynamics, including changes in phenology, growth, and

response to stressors such as drought, pests, or disease.

The use of VIs offers several benefits in the context of identifying individual trees to

species. Similar to HSV color space, VIs can help normalize for different illumination conditions

across an image, making the classification process more robust. Also, certain VIs are sensitive to

specific physiological characteristics of vegetation, which can be used as discriminating features

in the classification process. The reliability of VIs as key indicators of tree species is attributed to

their correlation with various biophysical properties of vegetation, such as leaf area index,

canopy cover, and photosynthetic activity (Rouse et al., 1973; Jackson, 1983; Huete, 1988;

Purevdorj et al., 1998; Huete et al., 2002).

The most common VIs include the NDVI, EVI, and SAVI, each with its unique formula

and use case (Fassnacht et al., 2016). For instance, NDVI is often used for broad assessments of

vegetation cover and photosynthetic activity (Rouse et al., 1973; Jackson, 1983; Purevdorj et al.,

1998), while EVI is more sensitive to canopy structural variations and better able to penetrate

through atmospheric particles (Huete et al., 2002). SAVI, on the other hand, minimizes soil

brightness influences, making it suitable for areas with sparse vegetation (Huete, 1988).

To calculate each of the mentioned vegetation indices, one requires specific band data

from the imagery. The formulas for each index are as follows:

● Normalized Difference Vegetation Index (NDVI): NDVI is computed using the Near

Infrared (NIR) and red bands of the electromagnetic spectrum. The formula is given as:

NDVI = (NIR - Red) / (NIR + Red)
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● Enhanced Vegetation Index (EVI): EVI takes into account atmospheric corrections,

especially in areas with high aerosol content. It uses the blue band in addition to the NIR

and red bands. The formula for EVI is:

EVI = 2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 * Blue + 1))

● Soil Adjusted Vegetation Index (SAVI): SAVI minimizes the effects of soil brightness

on the computed index, allowing for better discrimination of vegetated areas in sparse

vegetation and bare soil areas. The formula is as follows:

SAVI = (NIR - Red) / (NIR + Red + 0.5) * (1 + 0.5)

2.5 Supervised Classification: Random Forest

To deploy Random Forest for tree species classification, the model is 'trained' using

labeled example objects, i.e., examples where the desired output (class labels) is known (Lim et

al., 2019; Yang et al., 2019; Coleman et al., 2020; Zhang et al., 2020). The model then learns

from these training examples and applies this learned knowledge to classify new objects.

Random Forest is an ensemble learning method that operates by constructing a multitude of

decision trees during training and outputting the class that is the mode of the classes of individual

trees (Breiman, 2001; Immitzer et al., 2012; Belgiu and Dragut 2016). In essence, it combines

the predictions of several base estimators built with a given learning algorithm to improve

robustness over a single estimator.
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2.5.1 Model Inputs

I used a 14-band image stack as a comprehensive set of data for tree species classification.

Besides the traditional RGBN (Red, Green, Blue, Near Infrared) bands, I also use HSV (Hue,

Saturation, Value) derived from both RGB and NRG. These HSV layers can sometimes highlight

subtle differences in color and brightness, crucial in distinguishing between different species. I

also include Height (CHM) as an input to add a three-dimensional component to the

classification. This captures the vertical structure of the forest, which can be a determinant in

discriminating between species, especially those with markedly different growth forms or

maturity stages. Moreover, I include all three vegetation indices to gain valuable information on

vegetation health, productivity, and structure. Each of these indices captures different aspects of

the vegetation spectral response and can be particularly insightful for differentiating between

species based on their physiological properties or adaptation to specific environmental

conditions.

2.5.2 Parameter Fine-tuning

Model Parameters

The parameters selected for this Random Forest model are crucial for its performance and

accuracy. The spatial resolution for point sampling plays a key role in determining the level of

detail captured from each tree crown, which directly influences the classification outcome. The

number of decision trees in the Random Forest is another critical parameter. A higher number

increases the robustness of the model, as it reduces the likelihood of overfitting by averaging out

anomalies, but at the cost of computational effort and time. The minimum leaf population, which
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determines the minimum number of samples required to be at a leaf node, is a parameter that

governs the depth of the trees and can be adjusted to control overfitting.

For my study sites, I chose a spatial resolution of 2 m for point sampling. While

fine-tuning this spatial scale, sampling band values at a spatial resolution of less than 1 m ran

into computational limits in Google Earth Engine, even when accounting for the other

parameters. Spatial scale less than 2 m but greater than 1 m ran for Marina del Rey and East LA,

but not for Altadena. Scales greater than 3 m saw a drop in model performance across all sites,

even when accounting for the number of decision trees and the minimum leaf population. For the

number of decision trees, I initially chose 100 prior to applying a k-fold cross validation. After

running the cross validation with 10 folds, I again ran into computational limits and reduced the

number of trees to 10 and the minimum leaf population to 1. Despite reducing the number of

decision trees, spatial resolution remained vital for determining model performance, and a

reduction in decision trees ensured a higher resolution could be used while also performing a

k-fold cross validation.
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Figure 4. Random forest crown sampling and demonstrated species classification.

To resolve the multiple species classes returned by the model for each tree crown, a result of

sampling multiple points per crown, I compute the mode - the most frequently occurring value -

of the species classes predicted for the sampled points. This mode serves as the final

classification label for that particular tree crown. This method capitalizes on the power of

collective decision-making, ensuring that the most dominant classification label, as represented

by the mode, is selected as the final output. This approach minimizes the impact of potential

outliers or anomalies in the point sampling within individual tree crowns, thereby enhancing the

overall accuracy of the tree species classification.
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Model Validation and Data Split

For the training and testing data of individual tree species, an 80/20 split was used. This means

that 80% of the dataset is used for training the model (N = 8,531 trees), and the remaining 20% is

set aside for testing (N = 2,133). This ratio ensures a sufficient number of examples for the

model to learn from, while also retaining a substantial subset for validation, thereby providing a

robust measure of the model's predictive capability on unseen data (Gislason et al., 2006).

K-fold Cross Validation is another crucial step in evaluating the robustness and validity

of a Random Forest model. This technique subdivides the original dataset into k number of

equal-sized subsamples or 'folds'. Of these 'k' folds, a single fold is retained as the validation data

for testing the model, while the remaining k-1 folds serve as training data. The cross-validation

process is repeated k times, ensuring each fold is used exactly once as the validation data. The k

results from the folds can then be averaged to produce a single estimation. This method is

particularly effective in utilizing a limited dataset as it maximizes both the training and testing

data. It provides a more comprehensive insight into how the model is performing across different

subsets of data, rather than a single holdout sample. This is especially relevant in the context of

Random Forest, where the model’s performance can vary based on the specific training and

testing split. By averaging across multiple folds, k-fold Cross Validation helps mitigate this

variability and provides a more robust measure of model performance. For my model, I

performed a 10-fold cross validation as this is a standard number of folds used in this approach

(Kohavi, 1995; Tian, 2006).
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2.5.3 Model Accuracy Assessment & Outputs

The output of this Random Forest classification model is a map and a comprehensive set of

accuracy metrics. First, a confusion matrix is produced, which is a table layout that allows

visualization of the machine learning algorithm performance. It yields the classification errors

made by the classifier, distinguishing between the true and false positives and negatives.

Second, a classification report is generated. This report is a breakdown of User's

Accuracy, Producer's Accuracy, F1-score, and support for each class. User's Accuracy quantifies

the number of positive class predictions that actually belong to the positive class. Producer's

Accuracy indicates the number of positive class predictions made out of all actual positive

examples in the dataset. F1-score is a harmonic mean of User's and Producer's Accuracy, and

support is the number of actual occurrences of the class in the specified dataset.

1. User's Accuracy (Precision): Also known as precision, this metric is the proportion of

true positive predictions (i.e., instances where the model correctly identifies a class) out

of all positive predictions made by the model. In other words, when the model predicts a

certain species, the User's Accuracy represents how often it's correct. A higher User's

Accuracy means fewer False Positives.

2. Producer's Accuracy (Recall): Also known as recall, this metric is the proportion of true

positive predictions out of all instances that truly belong to that class. In simpler terms, it

represents the model's ability to correctly identify all instances of a given class. A higher

Producer's Accuracy means fewer False Negatives.

Additionally, the model was used to predict species locations and produce a map of results. The

model, however, cannot predict species classes not included in the training data.
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2.5.4 Mapping Output

The mapping process I used starts with the classification outputs generated by Google Earth

Engine, which were obtained in a table format for all three pilot sites. These tabulated

classification outputs were spatially joined with the input tree crown polygons in the

open-source, and free GIS software package, QGIS (QGIS Association, 2023). This data merger

ensured that each tree crown polygon was affiliated with its respective classification result,

enabling a seamless integration of tree species data with spatial features. After joining my results

with the segmented tree crowns, I exported the joined crown polygons, representing individual

tree locations. These were then mapped using a random color scheme, which was designed to

differentiate tree species. This visualization method allowed for an immediate, spatially explicit

understanding of classified tree species distribution across all study sites.

3 Results

3.1 Overall Accuracy

The individual performance of the model across the three study sites showed considerable

promise, with high accuracies recorded for species identification (Fig. 6-8; Tables 1-3). However,

these are individual results for three separately trained models using the ground points in the

respective neighborhood. When attempting to scale into a single model across all three sites, I

ran into user memory limits trying to sample over 10,000 tree crowns at a spatial resolution of 2

m. I had to resample at a lower, albeit still very high, spatial resolution (3 m) to avoid impossible
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computational needs on the Google Earth Engine server. This reduction in spatial resolution

when sampling crowns was evident in the overall results and classification accuracy plummeted

across all species, from an overall average of 89% to 64%. Additionally, when I used individual

models to classify species in a different neighborhood, I saw very low agreement across all three

models (Fig. 5). Across all three study sites, there was 0.00% agreement for any tree crown to

have been classified as the same species in each model. There was an average of 31.13%

agreement for two models to classify a tree crown as the same target species, and 1.07%

agreement for non-target species. This indicated that one model could not be scaled to another

neighborhood.
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Figure 5. Agreement across all three models when each is used to classify species in all three
neighborhoods.
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3.2 Accuracy Assessments: User's vs. Producer's Accuracy

Table 1. Accuracy Assessment for 20 tree species in Altadena.

Species User's
Accuracy Producer's Accuracy F1-Score Support

Non Target Species 0.799 0.798 0.798 742

Citrus limon 0.648 0.717 0.681 113

Citrus sinensis 0.631 0.783 0.699 83

Eucalyptus cladocalyx 0.753 0.707 0.729 99

Eucalyptus globulus 0.855 0.844 0.850 77

Eucalyptus polyanthemos 0.890 1.000 0.942 113

Ficus benjamina 0.819 0.747 0.782 91

Ficus carica 0.690 0.829 0.753 105

Ficus microcarpa nitida 0.977 0.992 0.984 1,982

Jacaranda mimosifolia 0.863 0.729 0.790 432

Lagerstroemia indica 0.870 0.918 0.893 633

Pinus canariensis 0.786 0.845 0.814 561

Pinus contorta 0.790 0.837 0.813 135

Pinus coulteri 0.660 0.761 0.707 46

Pinus halepensis 0.854 0.747 0.797 391

Pinus pinea 0.759 0.524 0.620 42

Platanus racemosa 0.964 0.953 0.959 171

Quercus agrifolia 0.907 0.921 0.914 4,046

Sequoia sempervirens 0.806 0.933 0.865 89

Washingtonia filifera 0.919 0.804 0.858 255

Washingtonia robusta 0.906 0.875 0.890 2,596
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Figure 6. Confusion Matrix for 20 tree species in Altadena.

In Altadena, for Eucalyptus polyanthemos, the model had perfect Producer's Accuracy (1.000),

which means it identified all instances of this species correctly. The User's Accuracy for this

species was also high (0.890), implying that when the model predicted an instance to be

Eucalyptus polyanthemos, it was correct about 89.0% of the time. For Pinus pinea, the model

had the lowest Producer's Accuracy (0.524), indicating that it identified only about 52.4% of all

actual Pinus pinea instances correctly. This implies a high False Negative rate for this species.

For Citrus limon, the model had the lowest User's Accuracy (0.648), suggesting that when the

model predicted an instance to be Citrus limon, it was correct only 64.8% of the time. This

implies a high False Positive rate for this species.
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The overall accuracy of the model in Altadena was approximately 0.889 for both User's

Accuracy and Producer's Accuracy, which indicates a balanced performance in terms of False

Positives and False Negatives. The species with the highest support (i.e., the most instances in

the dataset) is Quercus agrifolia, with a count of 4,046 trees in the dataset. This species also had

high User’s and Producer’s Accuracies, suggesting the model performed well on this species.

The model appeared to perform well overall, with many species showing high User's Accuracy,

Producer's Accuracy, and F1 scores. However, there were a few species (e.g., Pinus pinea) where

the model's performance could be improved.

Table 2. Accuracy Assessment for nine tree species in East Los Angeles.

Species User's Accuracy Producer's Accuracy F1-Score Support

Non Target Species 0.954 0.968 0.961 1,032

Ficus benjamina 0.921 0.939 0.930 247

Ficus microcarpa nitida 0.908 0.921 0.914 214

Jacaranda mimosifolia 0.968 0.957 0.962 375

Lagerstroemia indica 0.985 0.928 0.955 207

Pinus canariensis 0.932 0.907 0.919 150

Pinus halepensis 0.886 0.939 0.912 66

Platanus racemosa 0.986 0.986 0.986 222

Quercus agrifolia 1.000 0.583 0.737 36

Washingtonia robusta 0.938 0.962 0.950 313
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Figure 7. Confusion Matrix for nine tree species in East Los Angeles.

For East Los Angeles, the model performed well for most species, with both User's Accuracy

and Producer's Accuracy often above 90%. However, for Quercus agrifolia, the User's Accuracy

was perfect (1.000) but the Producer's Accuracy was quite low (0.583). This means that all

instances predicted as Quercus agrifolia were indeed Quercus agrifolia (no false positives), but

out of all actual instances of Quercus agrifolia, the model only correctly identified

approximately 58% of them (high false negatives). Interestingly, there was confusion at this site

between Quercus agrifolia and the two Pinus species (P. canariensis and P. halepensis).
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Platanus racemosa showed excellent performance with both User's and Producer's

Accuracy close to 1 (0.986). This suggests that the model was both precise and robust for this

species. Ficus benjamina, Ficus microcarpa nitida, and Jacaranda mimosifolia showed good

performance with both User's and Producer's Accuracy over 0.9. However, Pinus halepensis had

relatively lower User's Accuracy (0.886), indicating a higher false-positive rate for this species.

The group with the highest support (i.e., the most instances in the dataset) was "Non Target

Species", with a count of 1,032.

Table 3. Accuracy Assessment for four tree species in Marina del Rey.

Species
User's

Accuracy Producer's Accuracy F1-Score Support

Non Target Species 0.892 0.937 0.914 492

Eucalyptus citriodora 0.866 0.977 0.918 132

Eucalyptus globulus 0.969 0.651 0.779 146

Ficus rubiginosa 0.738 1.000 0.849 45

Washingtonia robusta 0.989 0.968 0.978 468

92



Figure 8. Confusion Matrix for four tree species in Marina del Rey.

In Marina del Rey, for Eucalyptus globulus, User's Accuracy was relatively high at 0.969,

indicating that when the model predicted this species, it was correct about 96.9% of the time.

However, the Producer's Accuracy was only 0.651, meaning the model only correctly identified

65.1% of all actual Eucalyptus globulus instances. This implies a high rate of False Negatives for

this species.

Ficus rubiginosa had perfect Producer's Accuracy of 1.000, indicating that the model

identified all instances of this species correctly. However, the User's Accuracy was relatively low

at 0.738, implying that when the model predicts an instance to be Ficus rubiginosa, it was

correct only 73.8% of the time. This suggests a high rate of False Positives for this species. The

model generally confused Ficus rubiginosa with non-target species and Washingtonia robusta.
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Washingtonia robusta had both high User's Accuracy (0.989) and Producer's Accuracy (0.968),

suggesting the model performed very well in identifying this species with both low False

Positives and False Negatives.

3.3 Mapping Results

Figures 9 through 11 represent a species composition map, color-coded by tree species for all

three pilot sites. All figures visualize model results of tree distribution through polygon data. The

data is color-coded by species prediction and this methodology ensures an opportunity to

visualize tree species prediction across all study sites (Fig. 9-11).
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Figure 9. Classified tree species map for public street trees in Altadena, CA. A total of 19
species were classified using NAIP imagery and a random forest supervised classification in
Google Earth Engine.
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Figure 10. Classified tree species map for public street trees in East Los Angeles, CA. A total of
nine species were classified using NAIP imagery and a random forest supervised classification in
Google Earth Engine.
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Figure 11. Classified tree species map for public street trees in Marina del Rey, CA. A total of
four species were classified using NAIP imagery and a random forest supervised classification in
Google Earth Engine.
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In addition to the classification results, I computed feature importance to better understand which

input variables were most influential in the species classification process (Fig. 12). Feature

importance provides insights into the relative importance of each feature in making accurate

predictions. In the context of this study, the height variables and HSV color space variables

emerged as the most important contributors to the differentiation of species. Conversely, the

NDVI and SAVI, which are primarily used to assess vegetation productivity, proved to be the

least important in species classification.

Figure 12. Feature importance using Random Forest to identify 22 of tree species in Altadena,
East Los Angeles, and Marina del Rey.

4
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Discussion

4.1 Feature Importance

Understanding which features from my remote sensing imagery were most important for

distinguishing species using a Random Forest model in Google Earth Engine is critical for fine

tuning model hyper parameters and exploratory future work. The most important feature for

identifying individual public street trees was tree height derived from my LiDAR data. This

structural information is critical when separately species classes and corroborates findings from

previous studies demonstrating an ability to increase classification results when including

LiDAR with spectral information (Alonzo et al., 2014; Dian et al., 2016; Liu et al., 2017). HSV

bands were unexpectedly of greater importance for classification than the original RGB spectral

information or the vegetation indices that are commonly used in remote sensing studies of

vegetation.

4.2 Accuracy Assessment

The accuracy assessments, particularly User's and Producer's accuracy, are critical in assessing

the performance of a classification model. They allow us to understand not only how often the

classifier is correct, but also what kinds of mistakes it was making (e.g., false positives versus

false negatives). This can help guide efforts to improve the system and assess its suitability for

future applications, or for its use in targeted studies for specific species. In general, the accuracy

of the model was very good: for Altadena, the overall User's Accuracy and Producer's Accuracy

are both 0.889; for East Los Angeles, they are both 0.919; and for Marina del Rey, they are 0.859
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and 0.869 respectively. This suggests that when using this model to classify species, it gives

accurate and reliable results.

In comparison with other studies that also used LiDAR and multispectral sensors, the best

performing model used WorldView 2 and 3 imagery to classify eight species with an overall

accuracy of 0.820 in St. Louis, MO, USA (Hartling et al., 2019). My model not only

outperformed this study across all three pilot sites, but it is also the only study to use NAIP

imagery and HSV color space as input variables in urban tree species classification. The higher

spatial resolution of NAIP in addition to the variable importance of HSV demonstrated in this

study likely explain the higher overall accuracies and lend important considerations for future

studies.

Table 4. Articles that use remote sensing to identify urban trees to species in chronological order
and total number of species examined, mean number of tree individuals per species and total
number of individuals included in study, overall accuracy, sensors, and location.

Source
Species

(#)
Mean Indiv.
per Species

Total

Indiv.
Overall
Accuracy Sensors Location

This study

20 603 12,060 89%

LARIAC/

NAIP

Altadena, CA

9 203 1,830 92% East L.A.,
CA

4 198 791 86% Marina del
Rey, CA

Pu & Landry
2012 7 81 573 63%

IKONOS/

WV2
Tampa, FL

Zhou et al.,
2016 11 63 697 73% Digital

camera
Shanghai,
China

Pu et al.,
2018 7 111 777 61% Pléiades Tampa, FL

Hartling et
al., 2019 8 194 1,552 82% WorldView

2/3 St Louis, MO
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Fang et al.,
2020 19 868 16,486 61% WorldView 3 Washington

DC

Mesquita et
al., 2020 16 50 1,329 70% WorldView 2 Teresina,

Brazil

WV = World View

However, there is still room for improvement in certain areas. For instance, the model has

trouble recognizing Pinus pinea in Altadena (Producer's Accuracy of 0.524) as well as Ficus

rubiginosa in Marina del Rey (User's Accuracy of 0.738). This indicates that either more data or

a different model may be needed to improve the accuracy of the classifier. Furthermore, while it

is possible to scale this model across different neighborhoods, the results are not always

consistent. This suggests that one model cannot be applied universally, and must incorporate

local characteristics, like species present or tree maturity, to perform adequately.

4.3 Mapping Output

In this study, I have demonstrated that Random Forest in Google Earth Engine can classify

public street trees with relative success with an average overall accuracy of 89% across my three

pilot sites. However, the urban forest in Los Angeles is incredibly diverse, and although my

training data set provided a well-documented and representative sample of trees planted in the

public right-of-way, it does not capture the species variety on private property. Without

geolocated and validated ground data for private lawns and commercial properties, my model

lacks the ability to adequately classify and map privately managed trees. Mapping my results

shows the discrepancy between model performance with public street trees and private trees (Fig.

13-15).
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Figure 13. Mapping correctly classified public street tree crowns with Google Street View
validation.
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Figure 14. Mapping incorrectly classified private property tree crowns with Google Street View
validation.
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Figure 15. Visualization of poor model performance across trees on private property.

4.4 Future Work

The performance of the model appears to be biased towards the largest training samples

by height, delivering good performance for street trees, which are the most representative sample

in our dataset. However, the performance falters significantly for private trees, which are

non-representative in our dataset (Hutt-Taylor and Ziter, 2022). To combat this, I propose a few

adaptations:

1. Train a different model on new data that includes more instances of private trees.
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2. Build profiles for unknown crowns and compare them to known crowns. This will yield

insights to whether it is possible to distinguish between species with high confidence

without needing to acquire accurate data for private trees.

3. Switch to a binary classification approach, where each tree species is distinguished from

all others (i.e., oak vs everything else, palm vs everything else, etc.).

The applications of these adaptations are broad, including monitoring public tree health and

longitudinal studies (Hart and Veblen, 2015; Byer and Jin, 2017; Furniss et al., 2020; Furniss et

al., 2020). With further development, this method could be used to support smart city initiatives

such as tree mapping and urban forestry management (Xiao and McPherson, 2005; Timilsina et

al., 2020). This approach has the potential to improve our understanding of the relationship

between landscape elements and their ecological role in improving urban health, as well as

helping cities monitor and protect their unique ecosystems (Pretzsch et al., 2017; Zhu et al.,

2019; Rodman et al., 2021; Cavender-Bares et al., 2022). Furthermore, the impending

availability of new LARIAC data in 2024 is expected to further refine and upgrade the model.

This progress, however, brings to light certain limitations. The classification of private trees, for

instance, may necessitate additional methodologies, entailing a greater demand for resources and

efforts to boost model accuracy in such contexts.

Nevertheless, the application of these methods must contend with the inherent disparities

in data access and quality across different urban areas. Cities like Los Angeles County, equipped

with ample resources and advanced technologies, are at the forefront of sophisticated data

collection and analysis. Conversely, smaller municipalities often grapple with limitations in

resources, resulting in data that may be less detailed or accurate. This divergence in capabilities
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highlights a crucial challenge: the potential for uneven application of urban forestry management

and policy implementation across various urban settings. While the advancements in urban

forestry management methodologies are promising, their implementation is nuanced and requires

consideration of the disparities in data access and technological resources among different

municipalities. This understanding is critical for ensuring that urban forestry management and

smart city initiatives are effectively and equitably applied across diverse urban landscapes.

Contemporary urban forest planning is also shaped by the history of land use and land

cover in various ways. The lasting impacts of past land uses, known as legacy effects, directly

influence the current infrastructure needed for tree planting, such as soil quality and the presence

of brownfield sites. These factors necessitate a careful selection and management of tree species

suitable for the specific conditions of each site. Historical biodiversity is also a critical factor in

current decisions about species selection and biodiversity conservation. Urban planners often

focus on native species that are well-suited to the local environment to maintain ecological

balance. For instance, in Los Angeles, the diverse urban forest seen today is a relatively recent

development. Aerial photographs from the 1930s and 1950s compared to present-day images, as

shown in Appendix A, illustrate the evolution of the urban forest canopy in the city. Moreover,

the development history of an urban area determines its present structure, affecting how urban

forest planning can be approached. In older, densely populated neighborhoods in Los Angeles,

limited space requires creative greening strategies, whereas newer or less developed areas might

provide more space for extensive tree planting.
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5 Conclusion

My research has focused on the application of machine learning algorithms, specifically the

random forest algorithm, for categorizing tree species and assessing individual health status. My

model showed strong performance for the most common species in the dataset, such as Quercus

agrifolia and Washingtonia robusta. Conversely, instances of uncommon or private tree species

were less accurately predicted, indicating the model's bias towards species with larger training

samples. To enhance model performance, I suggest several strategies, including expanding the

dataset to include more instances of private trees, and shifting to a binary classification approach.

The model's benefits extend to monitoring public tree health, conducting longitudinal studies,

and predicting vulnerabilities to climate change, drought, and natural disasters. Ultimately, this

research equips relevant stakeholders with the necessary tools for effective and efficient urban

forest management.
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Chapter 4.

“Eyes” on the street: Perspectives, promises, and the practice of geospatial technology in

science applications and public engagement

Abstract

This chapter critically examines the intersection of geospatial technologies, public engagement,

and science applications within the context of socio-environmental research and policy making.

It dissects the inherent complexities of the transformation steered by the synthesis of technology

and data science, focusing specifically on the curation and utilization of remote sensing and GIS

data. The chapter underscores the roles and responsibilities of various stakeholders in shaping the

outcomes of this data-driven process. These range from Data Producers who collect raw data and

Data Scientists who interpret and model this information, to Data Users who apply the findings

to new management practices and Impacted Persons who experience the real-world

consequences of these interactions. I emphasize the often overlooked or marginalized voices of

Impacted Persons. Recognizing the 'knowledge gap' that arises from the technical intricacy of

geospatial data, this chapter discusses the necessity to democratize geospatial data knowledge.

This chapter also emphasizes how boundary objects, such as maps, aid in enhancing

communication and shared understanding between stakeholders from different disciplines. I

conducted interviews and surveys along with past participatory science applications to provide

recommendations for more inclusive engagement and cooperative processes in policy initiatives.
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The overarching aim is to shape policy-making processes that are not only informed by data but

are also inclusive, equitable, and responsive to the needs and perspectives of all stakeholders.

Keywords

Remote Sensing, GIS, Political Ecology, Socio-environmental Systems, Boundary Objects

1 Introduction

In recent years, remote sensing and Geographic Information Systems (GIS) technology

advancements, from enhanced satellite imagery resolution to cutting-edge machine learning

algorithms, have significantly transformed data analysis and visualization (Acevedo et al., 2008;

Pettorelli et al., 2014). This evolution affects many stakeholders, including government agencies,

businesses, researchers, and civil society organizations. Remote sensing data is pivotal in

tracking urban, rural, and agricultural changes, offering a dynamic understanding of evolving

scenarios (Galvin et al., 2001; Foster and Dunham, 2015; Peek et al., 2020). This data facilitates

longitudinal studies that gauge real-time changes. Understanding the interplay between human

decisions and environmental impacts necessitates data that spans appropriate spatial, temporal,

and socioeconomic scales (Cumming et al., 2006). For nearly four decades, public access to

moderate (10 – 60 m) to coarse (> 60 m) spatial and spectral resolution imagery has enriched

insights into phenomena such as effects of logging on fire patterns (Dennis et al., 2005) or

factors behind urban heat islands (Hulley et al., 2020). High-resolution data (< 10 m) further
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sharpens these insights by connecting broad issues, like drought, to hyperlocal, leaf-level

observations, such as canopy water content (Ordway et al. 2021). The majority of existing

studies primarily focus on empirical evidence, often overlooking the importance of diversity in

stakeholder perspectives. In this study, a comparative analysis is conducted between the modern

applications, promises, and practices in applied remote sensing and those discussed 25 years ago

in People and Pixels (Rindfuss et al., 1998). The aim is to investigate if the recent intentional

trends towards diversity, equity, and inclusion have succeeded in establishing more accessible

standards and inclusive environments in the production of geospatial knowledge.

Emerging from the global COVID-19 pandemic and Black Lives Matter movements,

agencies and institutions have experienced a shift in diversity, equity, and inclusion politics,

aimed at overcoming the inequities and unfair power dynamics previously criticized by scholars,

community members, and those underrepresented within the sciences. Analyzing the extent to

which this transformation has been successful can yield valuable insights into the opportunities

and challenges faced by remote sensing in achieving its full potential as an actionable,

co-produced science. The primary focus lies beyond merely "socializing the pixel" which

integrates spatially explicit social data within remote sensing applications. Instead, the focus will

be on how socio-ecological insights have been incorporated into remote sensing applications in

the past 25 years, celebrating the anniversary of this seminal concept in Land Use and Land

Cover Change (LUCC) science (Geohegan et al., 1998). I also explore a possible redefinition of

this concept, shifting from just spatially explicit social data to a broader examination of the

sociopolitical components that form the pixel pipeline.
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1.1 Applications of Geospatial Technology

The growing reliance on remote sensing data has led to an expanding array of applications and

user groups. From ecological monitoring (Kerr and Ostrovsky, 2003; Svoray et al., 2013; Kugler

et al., 2019) and disaster response (Peek et al., 2020) to urban planning and political

decision-making (Hartmann et al., 2015; Heider et al., 2018; Niemiec et al., 2018), remote

sensing provides unparalleled insights for understanding diverse processes and tackling various

challenges. Contemporary remote sensing and GIS technologies have advanced beyond mere

mapping and monitoring capabilities to offer sophisticated data analysis, integration, and

visualization tools. These advancements enable interested parties to access, manipulate, and

interpret geospatial data in novel ways. For example, recent developments in satellite imagery,

drone technology, and machine learning have improved the accuracy and accessibility of remote

sensing data, broadening its appeal to a broader range of users (Ustin and Gamon, 2010; Jones,

2011; Aval et al., 2018; Zhou et al., 2018; Aubry-Kientz et al., 2019).

Remote sensing technologies inherently have various ethical, economic, and

environmental implications (Robbins, 2001; Robbins, 2003; Dennis et al., 2005). On the one

hand, these technologies have the potential to vastly improve decision-making by providing

accurate, timely, and comprehensive data (Walker and Peters, 2007). This can lead to more

efficient resource allocation (Isager et al., 2007; Oestreich et al., 2020), better environmental

management (Isager et al., 2007; Berger et al., 2019; Germestani et al., 2020), and increased

economic opportunities (Walters et al., 2008). On the other hand, issues such as privacy,
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surveillance, and data ownership have emerged alongside the proliferation of remote sensing

technologies (Rissman et al., 2017). In addition, unequal access to geospatial data and resources

can exacerbate existing socioeconomic inequalities and power imbalances between stakeholders

(Rindfuss et al., 1998; Chrisman, 1999; Lave et al., 2014; Adler et al. 2018; Arnaiz-Schmitz et

al., 2018; Allan et al., 2022). Different stakeholder groups, including businesses, governments,

and local communities, perceive and interact with remote sensing data differently. This, in sum,

has significant implications for policy and decision-making processes. For example, remote

sensing data have been co-opted by powerful entities to pursue their agendas, leading to the

marginalization of local communities with limited access to or understanding of the data

(Escobar, 1996; Rindfuss et al., 1998; Liverman and Cuesta, 2008; McGinnis and Ostrom, 2014;

Envvist et al., 2018; Dinko and Nyantakyi-Frimpong, 2023).

1.2 Developing a Common Language: Boundary-spanning Terminology

In remote sensing and GIS data application, stakeholders—from Data Producers to Impacted

Persons—each assume distinct, pivotal roles. Each group has unique perceptions, roles, and

responsibilities. Understanding the dynamics between these groups and the potential issues that

arise from their interactions is crucial to addressing broader concerns related to equity and power

dynamics:
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● Data Producers: These actors generate the foundational raw data that propels remote

sensing and GIS technologies—the data's accuracy, quality, and accessibility hinge on

their priorities and objectives.

● Data Scientists: As the intermediaries, my fellow data scientists and I, interpret and

translate this raw data, utilizing diverse modeling techniques to render the data into a

format that can be understood and applied by a broader audience. We ensure data

integrity, select the most appropriate analytical methods, and continually recognize and

communicate our work's intrinsic limitations.

● Data Users: This group harnesses the refined data to dictate policies, formulates

decisions, and guides actions across sectors, from urban planning to public policy. Their

task demands critically examining data and discerning potential biases, uncertainties, and

ethical implications. However, late inclusion or inadequate engagement with these users

can compromise data processing and outcomes. Such arrangements often demand added

time for alignment and potentially extra resources for training.

● Impacted Persons: Often an expansive group, these individuals and ecosystems bear the

direct or indirect consequences of the choices made by Data Users. Yet, many among

them, especially those from marginalized communities, might find their voices silenced

or overlooked entirely.

● Boundary Object: A tool or product, such as maps, facilitating effective communication

often between Data Producers, Scientists, and Users. While scientists might derive

measurements from these, stakeholders might utilize them for conceptualizing and

marking significant activities.
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Impacted Persons, who bear the brunt of changes and impacts due to such science, are often

missing from the table. Too often, collaborative projects predominantly feature Data Producers,

Scientists, and Users—representatives from government, academia, industry, and occasionally

non-governmental organizations. Such discrepancies in access to and control over geospatial data

can amplify prevailing power disparities, leading to skewed benefits and further marginalization.

The intricacy of geospatial data presents a formidable barrier to its understanding and

utilization, particularly to those not well-versed in its technical aspects. Geospatial data, which

includes remote sensing and GIS data, involves complex concepts and methodologies that

require a specialized education to comprehend fully. This data is often multi-dimensional,

time-variant, and spatially referenced, necessitating an understanding of advanced mathematical

and statistical concepts, as well as proficiency in specialized software tools. This technical

complexity can inadvertently lead to a 'knowledge gap.' Stakeholders, particularly the Data Users

and Impacted Persons, may struggle to grasp the implications of the data, interpret the results

accurately, or voice their concerns effectively. The education needed to understand geospatial

data, therefore, becomes a hurdle in achieving meaningful and inclusive collaboration.

Furthermore, this gap can exacerbate existing power dynamics, with those possessing the

technical knowledge potentially dominating the discourse. It underscores the necessity for efforts

towards democratizing geospatial data knowledge—whether through accessible education

initiatives, transparent communication, or intuitive visualization tools—that make the data

understandable and usable to all stakeholders, irrespective of their technical acumen.
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1.3 Situating My Work: Political Ecologies of GIScience and Technology

The aspiration to "socialize the pixel" continues to be an interdisciplinary research mainstay in

applied remotes sensing (Geoghegan et al., 1998; Liverman and Cuesta, 2008; Tellman, 2018;

Dinko and Nyantakyi-Frimpong, 2023). The processes underlying the technology and

programming to model intricate, multi-temporal, and multiscalar socio-ecological changes wield

significant power and responsibility. Given the profound effects of recent advancements on

policy, planning, and ecosystem science, recognizing the agents co-producing SES research and

comprehending the dynamics in decision-making become paramount (Keshkamat et al., 2012;

Kramer et al., 2017; Perz 2020). As landscape classification methods gain institutional traction,

their embedded complexities often go unchallenged. This acceptance necessitates ground truth

observations and a perception that maps, as Zubrow (2003) noted, are authoritative

representations. Thus, rigorous scrutiny of our methodologies, data collection techniques, and

models, is essential to discern their broader societal ramifications.

The advent of remote sensing and GIS has transformed spatial data acquisition, analysis,

and visualization. Despite the undeniable progress they've spurred, critical scholars around the

turn of the 21st Century highlighted the potential for imbalanced power dynamics in applied

remote sensing and GIS, which sometimes culminated in detrimental consequences (Escobar,

1996; Rindfuss et al., 1998; Liverman and Cuesta, 2008; McGinnis and Ostrom, 2014; Envvist et

al., 2018; Dinko and Nyantakyi-Frimpong, 2023). With the recent and deliberate move towards

diversity, equity, and inclusion (DEI) in scientific applications (Swartz et al., 2019), this chapter

probes the endurance of these inequities within geospatial sciences and the adoption rate of more
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equitable standards in the field. As Escobar (1996) suggests, understanding the synergy between

self-awareness and the world and between knowledge and its societal underpinnings might usher

in a renewed biology and ecology. Introducing discursive analysis to materialistic understandings

can blur the traditional boundaries separating nature, culture, and science (Escobar, 1996; Blue

and Brierley, 2016).

1.3.1 Theoretical Frameworks

As geospatial technologies become more accessible and embedded in different aspects of our

lives, it is essential to critically examine their broader sociopolitical implications. My trajectory

as a remote sensing researcher underscores the urgency to harmonize dialogues among geospatial

technology developers, users, and the communities they impact. The dominant structures in

contemporary science and technology, laden with historical biases, necessitate a fresh

perspective, challenging prevailing norms. Historically, remote sensing propagated Western

ideologies, often packaged within the Global North's development paradigms (Olbrich, 2019;

Vurdubakis and Rajāo, 2022). The persistent colonial undertones in Western science have

metamorphosed from overt racial biases to subtle intellectual dominance over emerging

economies (Roy, 2018). I take this one step further and suggest that scientific exploitation also

extends into citizen science and co-production among local stakeholders. Within applied

sciences, the unchecked authority of scientists often overshadows the local knowledge or

indigenous expertise of those intimately involved in data collection and processing (Carroll et al.

2019; Carroll et al., 2020; Rammage et al., 2020: Rattling Leaf Sr. et al., 2020). Moreover, the
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technology's history is tainted by its misuse for diverse ulterior motives especially in

resource-rich areas like the Amazon (Vurdubakis and Rajāo, 2022), including using remote

sensing science as a mechanism in the expulsion of local, indigenous, and traditional knowledge

(Rajāo, 2013). Convergent research naturally introduces a mosaic of stakeholders and various

disciplinary traditions. A comprehensive evaluation demands recognizing all actors in

knowledge production, understanding the dynamics of agency, and scrutinizing narratives

driving decisions.

Sociology of Geospatial Technology: Delving into the sociology of remote sensing unveils how

societal undercurrents mold the creation, interpretation, and deployment of GIS data (Geoghagen

et al., 1998; Olbrich, 2019; Vurdubakis and Rajāo, 2022). Societal norms and production

contexts influence data interpretation, with consequent societal effects. An integrative

sociological approach transcends the technical grasp of remote sensing and GIS, offering a

holistic view of the nexus between technology and society and facilitating informed and

inclusive policy decisions (Tellman, 2018).

In their seminal work, Geoghegan et al. (1998) posited the notion of "Socializing the

Pixel and Pixelizing the Social" to articulate the intersection of geospatial technology and

sociological paradigms. The central tenet of this theory underscores the reciprocal influence

between the digital representation of geographical space (pixels) and the social dynamics

inscribed within these spaces. The crux of the discourse pivots around two thematic axes:
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"Socializing the Pixel" and "Pixelizing the Social," each diving into distinct yet interlinked facets

of this interdisciplinary dialogue.

"Socializing the Pixel" underscores the imperative of embedding social paradigms within

the digital abstraction of geographical space. It brings a departure from a quantitative appraisal

of land-use and land-cover change, instead urging a more nuanced understanding fostered

through the integration of social science insights. This strand of thought accentuates the

contextual social processes that shape and are shaped by land-use dynamics, thereby enriching

the interpretative lens through which geospatial data is analyzed and understood. Conversely,

"Pixelizing the Social" entails the digital representation of social phenomena within the

geographical space, bringing a nuanced understanding of social dynamics through a geospatial

lens. This facet underscores the potential of geospatial technology in rendering visible the spatial

manifestations of social phenomena, thereby fostering a more grounded understanding of social

processes and their spatial correlates.

Fast forward nearly three decades, the resonance of this concept in applied remote

sensing still rings true. The advances in geospatial technology have significantly enhanced the

capacity to articulate and analyze the spatial dimension of social phenomena. Concurrently, the

growing discourse in social science has continually informed the methodologies and

interpretative frameworks employed in geospatial analysis. The synthesis of these domains has

brought a more holistic understanding of land-use and land-cover change, embodying the ethos

of "Socializing the Pixel and Pixelizing the Social." The discourse has evolved in contemporary

research, spanning advancements in remote sensing technology and computational
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methodologies. The growing body of research underscores the ongoing relevance of this

conceptual framework in understanding complex socio-ecological systems.

Socio-ecological Systems: SES, rooted in the human-nature dichotomy, probes intricate systems

across spatial and temporal scales (Liu et al. 2007; Turner et al. 2016). It embraces

interdisciplinary networks and diverse knowledge sources, emphasizing equitable solutions to

global challenges while prioritizing environmental integrity. As represented by LENS, SES's

collaborative ethos fosters dialogue among diverse stakeholders, raising critical questions about

existing power dynamics and research objectives.

Applied remote sensing, with its ability to provide valuable data on ecosystem properties

and socioeconomic metrics, finds a significant application within the SES framework​. This

technological intervention enables the capture of nuanced environmental dynamics, thus

facilitating a more robust understanding of socio-ecological interactions. Particularly, remote

sensing data, with its varying levels of spatiotemporal resolution, unveils novel attributes and

interactions within these systems.

Within the SES framework, LENS represents a collaborative ethos that promotes

dialogue among a diverse array of stakeholders. This dialogue is imperative for addressing power

dynamics, ethical concerns, and aligning research objectives with broader societal and

environmental goals. For example, the critique extends to data curation and its role as boundary

objects in this discourse. Data, in its curated form, acts as a bridge, facilitating communication,
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understanding, and collaborative action among varied stakeholders. However, the process of data

curation itself is imbued with power dynamics and ethical considerations. Who curates the data,

how it is curated, and whose perspectives are represented or marginalized in this process, are

critical questions that echo the broader concerns of justice, equity, and transparency within the

SES framework. Thus, the nexus between applied remote sensing and SES is a rich,

multidimensional interface. It embodies the potential for harnessing technological advancements

in remote sensing to foster a deeper, more nuanced understanding of complex socio-ecological

systems, while simultaneously challenging and re-evaluating existing power structures and

ethical paradigms. Through this lens, remote sensing transcends its technical utility, morphing

into a potent tool for social and environmental justice, as well as a catalyst for meaningful,

collaborative engagement in addressing global challenges.

(Geo)Science and Technology Studies: Science and technology studies present robust

frameworks delineating the nexus between technology, society, and culture. This research

amplifies this dialogue by assessing knowledge and policy co-creation within remote sensing

(Liverman et al., 1998; Dennis et al., 2005; Liverman and Cuesta, 2008; Haraway, 2016; Kugler

et al., 2019). In synthesizing the Geo STS narrative, the sociological and policy co-creation

dimensions within remote sensing are shown. They echo the STS ethos of dissecting the

socio-technological dialogues and the co-evolution of society and technology. The intertwined

pathways of knowledge creation, policy discourse, and technological innovation within remote

sensing show the enduring relevance of the STS frameworks in applied geoscience. Through the
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lens of STS, the socio-technological landscapes of remote sensing offer a fertile ground for

academic discourse, policy deliberation, and societal engagement in the further development of

geospatial technology and curation of spatial data.

Critical GIS & Remote Sensing: Robbins (2001) emphasizes that while remotely sensed data can

shed light on complex systems, it cannot address foundational disagreements regarding the

nature of the environment. Critical GIS literature underscores the need to confront power

imbalances, ethical dilemmas, and justice concerns. This study extends this critique, examining

how data curation impacts its role as boundary objects. Robbins (2001) also underscores a

critical limitation of remotely sensed data, emphasizing that while it can help uncover complex

environmental systems, it falters in addressing foundational disagreements regarding the nature

of the environment. I extend this critique to data curation and its role as boundary objects, thus

fostering a nuanced understanding of applied remote sensing within these socio-technological

and ethical frameworks​.

Local Ecological Knowledge: While indigenous populations manage over half of the Earth's

terrestrial expanse, only 10% receive formal recognition by nation-states (Ramage et al., 2020;

Rattling Leaf Sr., et al. 2020), emphasizing the historical discord between indigenous landscapes

and colonialism. Carroll et al. (2019) query the prospects of data-driven futures for communities

entrenched in data inequities. Although geographical traditions present certain overlaps,
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indigenous data sovereignty is a stark challenge in SES integration. Carroll et al. (2020) offer a

potential solution through the CARE principles for Indigenous Data Governance, fostering

responsible knowledge transfer while preserving indigenous data rights. Furthermore, aligning

remote sensing with Local Ecological Knowledge (LEK) can amplify its potential. The

symbiotic relationship between remotely sensed imagery and LEK provides a novel method

already gaining traction among global indigenous communities (Rattling Leaf Sr., 2022).

Ground-referenced data integration can elevate SES, combining technological tools like cloud

computing, citizen science, and "humans-as-sensors" for comprehensive socio-ecological

evaluations (Pricope et al. 2019).

The integration of LEK with remote sensing brings a distinctive methodological pursuit

that targets equitable and contextually nuanced rangeland management schemes​. The

convergence of LEK and remote sensing grows across diverse realms of natural resource

management, including fisheries, forests, and rangelands, with local expert opinion highly valued

for map validation, comparison, and evaluation​​. This symbiotic relation unveils a

landscape-scale synergy, where LEK complements remote sensing in monitoring species,

conservation endeavors, and capturing ground-level data pivotal for discerning threats visible

through remote sensing, such as overhunting and overfishing​.

The ethos of SES accentuates the imperative of understanding and integrating LEK,

fostering enhanced sustainability and resilience of social-ecological systems. Most protected

areas rely on scientific ecological knowledge alone, albeit the infusion of LEK can augment the

understanding of ecosystem service provision and landscape vulnerability, thus enriching the
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sustainability science paradigm​. The CARE principles for Indigenous Data Governance, as

posited by Carroll et al. (2019, 2020), emerge as a potential avenue for nurturing responsible

knowledge transfer while safeguarding indigenous data rights and sovereignty. This discourse

resonates with the novel approaches touched on by Rattling Leaf Sr. (2022), where the

synergistic relation between remotely sensed imagery and LEK brings about a growing

methodological paradigm among engaged indigenous communities.

Furthermore, the integration of ground-referenced data ultimately augments SES research

beyond indigenous communities, amalgamating technological tools like cloud computing, citizen

science, and "humans-as-sensors" for exhaustive socio-ecological evaluations (Pricope et al.

2019). This narrative accentuates the indispensable role of LEK in both an (non)indigenous

context, and in navigating the complex socio-ecological landscapes through remote sensing

applications, whilst fostering a dialogue aware of the intentional inclusive politics growing

within the scientific community.

1.4 Research Objectives

In our data-centric era, the weight of remote sensing and GIS data in steering policy and

decision-making is undeniable. The ripple effects from generating and applying such data

influence the decisions that sculpt our local, regional, and global landscapes. Yet, each

stakeholder brings a unique perspective to the table within these conversations. Those who

engage with data largely through research, either in the procurement of new information, or
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through its analysis, hold the technical acumen and nuanced understanding of data

methodologies that lay the foundation for all subsequent science applications. Meanwhile,

interested parties that wish to apply spatial analysis to real-world scenarios directly shape the

policies and decisions enacted. At the receiving end of these decisions stand private citizens,

sovereign nations, communities of varying sizes, and more-than-human individuals, experiencing

tangible repercussions on their lives and surroundings.

This convergence of varying perspectives underscores the importance of inclusivity and

grounded realism in policy-making. It necessitates the creation of policies that, while being

data-driven, are also sensitive to the varied experiences and narratives of those they impact. This

is where the concept of GIS data as 'boundary objects' comes into play, bridging the gap between

different stakeholders and fostering a shared understanding that transcends individual biases and

viewpoints (Caughlin et al., 2019). Boundary objects, such as remote sensing data, can be a

common language for interdisciplinary engagement to communicate in mutual understanding.

However, these objects can also become sites of contestation, as different Data Users may

interpret and utilize them for diverging purposes. Within this dense web of roles, GIS data's role

as 'boundary objects' offers a potential convergence point. Maps and visualized GIS data can

bridge disparate viewpoints, serving as a shared visual language. Emphasizing inclusive

engagement in applied science becomes an ethical mandate. By prioritizing public engagement,

we can shape co-production processes that benefit all involved. This chapter intends to critically

explore the inclusive dynamics of spatial data's lifecycle, spotlighting stakeholder engagement

techniques, co-production processes, and the art of cross-disciplinary communication.
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By viewing remote sensing and GIS data through this multi-faceted lens, we can begin to

envision a model of policy-making that is not only driven by hard data but is also deeply rooted

in the complex realities of (non)human experiences. A model that acknowledges the power of

maps as boundary objects and leverages this power to create more inclusive and grounded

policies. As I continue this exploration, I dive deeper into these concepts, shedding light on how

a more holistic approach to data utilization can guide the development of policies that truly

reflect the complexities and nuances of our world. I advocate for a policymaking model anchored

in empirical data yet woven with the intricacies of (non)human narratives. This model

acknowledges maps as instrumental boundary objects, capitalizing on their potential to architect

inclusive and nuanced policies.

My central questions for this chapter are:

1. How do diverse stakeholders, including Data Producers, Data Scientists, Data Users, and

Impacted Persons, engage with and interpret remote sensing and GIS data, and how does

this interaction influence the development of inclusive policies in geospatial sciences?

2. Which stakeholders remain underrepresented or absent within the discourse around

remote sensing and GIS data, and what are the implications of this exclusion on

policy-making and the resulting tangible changes felt by Impacted Persons?

Question 1 integrates aspects of curation, application, and interpretation of remote

sensing data, as well as the roles and perceptions of different stakeholder groups. By focusing on

engagement and interpretation, I conducted interviews, surveys, and participant observation to

focus on the various engagements with GIS and remote sensing data and interrogate participants'
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interpretation of such data. Question 2 emphasizes the gaps in the discourse, which can be

particularly relevant when evaluating the comprehensiveness and inclusivity of policies and

practices in the geospatial domain.

2 Methodology

By examining the experiences and perspectives of various stakeholders across a broad spectrum

in the remote sensing domain, I am able to provide a unique look into the tensions and synergies

between public engagement with governmental agencies, public interest groups, or for the

implementation of public policy, and private collaboration through Non-Governmental

Organizations (NGO) and private corporations in the field of applied remote sensing. By using a

combination of participant observation, anonymized interviews, and surveys, this research aims

to weave together a narrative that reflects the diverse voices and experiences of those who

interact with remote sensing data in different capacities.

2.1 Multi-faceted Analysis of Engaged Perspectives

Incorporating stakeholder perspectives is critical to addressing the main research question of this

study. Stakeholder perspectives not only enrich our understanding of practical applications of

GIS data, but also reveal the power dynamics, biases, and social implications inherent in the data

production and usage. As a result, integrating these perspectives can lead to more democratic,

inclusive, and grounded decision-making processes, bridging the gap between technical
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knowledge and societal realities. Ultimately, by viewing stakeholder perspectives as an integral

part of the data life cycle, we can ensure that the potential of remote sensing and GIS data is

realized in a manner that is both technically robust and socially relevant.

In order to gain a comprehensive understanding of the interaction between various data

users and geospatial technologies, such as remote sensing and GIS, a systematic examination is

essential. This examination entails identifying Data Producers, Scientists, Users, and Impacted

Persons, and understanding their unique roles, responsibilities, and interests. My methodological

approach is rooted in an examination of the distinct perspectives and expertise of the Data

Producers, Scientists, and Users. This adopts a focus on how these technologies are developed,

applied, and the subsequent effects on Impacted Persons. By scrutinizing the multifaceted

interactions these data users have with boundary objects, such as remote sensing data, I can build

a more intricate picture of the obstacles and possibilities within the pixel pipeline.

2.1.1 Anonymous, Semi-Structured Interviews

The decision to employ semi-structured interviews as a primary data collection tool is

interwoven with my research objectives. These interviews provide a strategic medium to delve

into the complexities of diverse stakeholder engagement and interpretation of remote sensing and

GIS data. They offer the quantitative robustness necessary to address the who and what of

underrepresentation, while simultaneously retaining the qualitative richness that permits a

nuanced exploration of the why and how. They serve as a conduit to capture the subtleties of
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Data User experiences and attitudes, highlighting areas of policy-making that may have been

influenced or overlooked due to the exclusion of Impacted Persons. Thus, the conversational, yet

structured nature of these interviews aligns seamlessly with the goal of investigating the

interdisciplinary landscape of geospatial sciences and the socio-political implications of

socializing the pixel.

These interviews are conducted with predetermined questions (Appendix B) that allow

room for dialogue and exploration of ideas among participants. The interviewer has the

flexibility to ask follow-up questions or prompt participants to explore certain topics further,

while the participants are encouraged to share their perspectives on a variety of topics. This

approach requires thoughtful preparation before each interview session, including the creation of

a detailed agenda and list of questions. It is essential that the interviewer has a clear

understanding of their role and the purpose of the interview before beginning each session.

Throughout, I adhered to ethical guidelines, including obtaining informed consent from

participants and ensuring confidentiality and anonymity throughout the research process.

In the preparation of this chapter, I interviewed two professionals specializing in remote

sensing. Both experts possess advanced degrees in forestry applications of geospatial technology

and currently contribute their expertise to the private sector. They provide consultancy services

for global carbon offset projects, applying their specialized knowledge and skills to address

pressing environmental challenges. Their insights form a significant part of the discussion in this

chapter, enhancing its academic rigor and real-world relevance.
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2.1.2 Surveys

In a bid to broaden the scope of my research and gain a more comprehensive understanding

beyond my direct interactions with Data Producers, Scientists, and Users, I collected additional

data through a targeted survey. The survey consisted of 10 questions aimed at professionals

across academia, public institutions, and private industries. The survey's objective was to assess

the respondents' familiarity with geospatial technology, including their prior experiences with its

application. Additionally, it sought to gauge their perception of the role and significance of

remote sensing in scientific applications. The survey was completed by 30 individuals,

representing a diverse mix of professionals from all three sectors: academic, public, and private.

The responses gathered offer valuable insights into the practical usage and perceived importance

of geospatial technology and remote sensing across different fields and sectors. The distribution

of respondents based on years of experience (Fig. 1) reveals the spectrum of expertise and

knowledge encompassed within the sample. The range of experience, from novices to seasoned

professionals, augments the depth and breadth of perspectives garnered through the survey.
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Figure 1. Distribution of survey respondents’ years of experience.

Additionally, a categorization of respondents by field (Fig. 2) unveils the varied domains where

geospatial technologies find application. This diversity epitomizes the interdisciplinary nature of

geospatial sciences and its resonance across distinct fields of inquiry.
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Figure 2. Distribution of survey respondents’ roles grouped by field of work.

The industry-wise distribution of respondents (Fig. 3) accentuates the number of sectors

employing geospatial technologies. The data underscores the variety of geospatial applications

across different industrial sectors, reflecting its role in contemporary professional landscapes.
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Figure 3. Distribution of survey respondents’ roles grouped by industry.

2.1.3 Participant Observation

Participant observation is a qualitative research method highlighted by the researcher’s dual role

as both observer and active participant in the group or community under study. This approach

involves immersion in the participants' everyday life, enabling the researcher to gain a

comprehensive understanding of their social context, behaviors, interactions, and beliefs. Such

immersion, unlike more detached methods, yields rich, nuanced insights as the researcher

experiences and interprets group dynamics firsthand.
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In my research, especially in science-led projects, participant observation is instrumental

in exploring the ethics of stakeholder engagement. Actively engaging in these processes allows

me to grasp the dynamics within different stakeholder groups, transforming abstract concepts

into tangible experiences. For example, I can directly observe the nuances of conversations, the

diversity of perspectives, and how maps evolve into 'boundary objects' that facilitate

communication across groups. Moreover, this method allows witnessing the practical application

of GIS data in policymaking. It offers real-time insights into potential biases and

misinterpretations and areas needing improvement. Direct interactions with individuals affected

by policies provide a deeper understanding of the actual implications of these decisions,

highlighting the importance of ground realities in shaping data-driven policies.

Conducting participant observation involves initial steps like gaining access to the

community and establishing rapport, which requires building trust and understanding community

norms. As a researcher, I maintain a balance between participation and observation, ensuring an

objective collection of data. Detailed field notes documenting events and interactions, coupled

with personal reflections, are critical for analysis. This methodology also includes informal

interviews and gathering additional insights, enriching the understanding of the social context.

Reflective practice is vital, where I continually assess my role and influence within the group.

Data analysis then involves identifying themes and patterns, an iterative process where

participant feedback is sought to validate findings.

Ethical considerations extend to reporting, ensuring confidentiality and anonymity of

participants. Post-research, maintaining relationships with the community and sharing findings
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back are part of the ethical commitment. This comprehensive approach in participant observation

not only enriches the research with in-depth, firsthand experiences but also significantly

enhances our understanding of the complex processes involved in the journey from remote

sensing and GIS data curation to policy implementation.

My participant observation is grounded in three prior case studies that demonstrate the

practical application of remote sensing and GIS technologies for societal benefit. The first case

study covers my involvement developing urban forestry tools for the Los Angeles County

Department of Public Health, and is the main subject of my first two chapters. I focused on the

development of an automated remote sensing model to alleviate the financial and logistical

challenges associated with manually inventorying the county's public street trees, underscoring

the potential of remote sensing technology in enhancing urban planning and resource

management processes. Additionally, as part of my urban forestry research in collaboration with

the County of Los Angeles, I surveyed users of the model discussed in the preceding chapters.

This was an integral part of our process, aiming to understand and incorporate the perspectives of

those who would directly interact with and benefit from the model. One of our project managers,

an employee of NASA, devised a structured survey framework inspired by the agency's change

traceability matrix. This framework allowed us to systematically record the needs and aspirations

of stakeholders before embarking on the model development phase. Such a methodological

approach ensures that the resulting model is tailored to address specific user requirements, thus

enhancing its practical value and usability. The insights gained from these preliminary project

meetings are also incorporated in this analysis. These findings provide a crucial understanding of
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the stakeholder landscape, shedding light on the diverse needs and expectations that guide the

use and application of our urban forestry model. These data collection and analysis strategies

illustrate the importance of stakeholder engagement and user-centric design in developing

effective geospatial models.

The second case study was a joint venture between the University of California, Los

Angeles (UCLA), and Arizona State University (ASU), that critically evaluated the efficacy of

remote sensing-derived land surface temperature measurements as a tool for informing

hyperlocal extreme heat interventions. This research provided a counterpoint to an existing

collaboration between the City of Los Angeles and NASA's Jet Propulsion Laboratory (JPL),

thereby emphasizing the need for empirical validation in such technologically advanced,

data-driven initiatives.

The third case study is my ongoing involvement as a steering committee member for the

Landscape Exchange Network for Socio-environmental Systems research (LENS), which seeks

to advance a basic scientific understanding of integrated SES and the complex interactions--via

dynamics, processes, and feedback--within and among the biophysical and social components of

these coupled systems. LENS is a five-year research coordination network funded by the

National Science Foundation and invites researchers interested in SES to work within the

National Ecological Observation Network (NEON) Airborne Observation Platform (AOP)

landscapes. Within this framework, members are encouraged to co-produce research with

stakeholders working in and inhabiting these landscapes to push conceptual boundaries and

theoretical constructs for SES by leveraging NEON AOP data. Members are encouraged to
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develop proposals that push conceptual boundaries and build new frameworks for understanding

SES while deploying NEON AOP in their analysis. The intention is that network members will

explore a connected and integrated SES within the NEON AOP landscapes or domains,

including a detailed analysis of the processes and dynamics between the environmental and

human components of the chosen landscape.

Three main objectives guide the steering committee while developing educational

programs around NEON AOP data and analysis, practical steps for choosing and implementing

an SES research framework, and providing an engaging and safe environment to share expertise

and common language around the co-production of research questions between (non)experts.

These objectives include 1) characterizing SES, 2) establishing remote sensing as an SES

boundary object, and 3) utilizing translational ecology within the NEON context, fostering an

interdisciplinary dialogue between stakeholders. Translational Ecology (TE) represents a shift in

ecological research, emphasizing the integration of ecological knowledge into decision-making

processes by melding scientific insights with social dimensions (Enquist et al. 2017). This

approach recognizes the need for improved communication among different knowledge

producers, including indigenous peoples, local communities, and academic researchers.

These case studies collectively exhibit a commitment to participatory research,

demonstrating the importance of integrating cutting-edge technology, stakeholder engagement,

and considerations of equity in addressing societal challenges. They also highlight the ongoing

need for research and discourse to ensure the effective and inclusive use of these technological

tools, as well as provide an opportunity to consider how these tools can be employed to 'socialize
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the pixel'. Much like the principles underpinning the mentioned case studies, 'socializing the

pixel' advocates for stakeholder engagement, equity, and inclusivity in the use and distribution of

digital resources. It is a call to action for researchers and policymakers alike to continue their

efforts in making technology a tool for societal enhancement, rather than a source of disparity.

3 Results

My work reveals that Data Producers, Data Scientists, and Data Users generally view and

interact with remote sensing data as an essential tool in their respective fields. These

stakeholders recognize the potential benefits of using remote sensing, such as providing timely

and accurate information for decision-making, environmental monitoring, or policy evaluation.

However, they also acknowledge the challenges and limitations associated with remote sensing

data, such as issues of data quality, accessibility, and interpretation. This section presents the

results from the research by method, beginning with the semi-structured interviews, followed by

the survey, and finalized with my participant observation across three case studies.

3.1 Semi-structured Interviews

My interviews with two remote sensing experts, both with advanced degrees and now working in

forestry applications within the carbon credit market, revealed a highly structured interaction

between Data Producers, Scientists, and Users within the private sector. The intricate protocols

and meticulous auditing processes underscore the diligence applied in dealing with remote
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sensing data. My interviewee shared, "Mapping is one of the initial steps for any of our projects.

We do a lot of remote sensing for mapping the area." This clearly demonstrates the rigorous

standards that govern geospatial data production and interpretation. The interviewee also

highlighted the use of advanced technologies like machine learning, specifically the Random

Forest algorithm, for land classification, thereby reflecting the exactness involved in curating this

data, "For our reforestation projects and Reducing Emissions from Deforestation and

Degradation (REDD) projects, we used land classification using a machine learning algorithm

called Random Forest."

Yet, within these codified interactions and stringent protocols, there's a glaring omission:

the absence of Impacted Persons. The interviewee states, "Quite often, we don't go to the field to

measure it ourselves because we try to hire local actors for that." This tacitly implies that while

the local community is involved in the data validation process, they are not part of the larger

discourse, a key determinant of their own environment. This trend is symptomatic of the broader

issue of the systematic exclusion of Impacted Persons from the process of 'socializing the pixel.'

In reframing our perspective of 'socializing the pixel,' it becomes evident that the power

dynamics involved in defining, interpreting, and applying pixel-based data are heavily skewed.

While the existing protocols exhibit a high degree of rigor and precision, they fall short in

engaging those most affected by the spatial realities these pixels represent. Thus, the process of

'socializing the pixel' calls for more inclusivity and a shift in power dynamics, ensuring that

those impacted by the interpretation of pixels are not left on the sidelines but become active

participants in the process.
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3.2 Survey Work

In addition to the case studies from my work, this analysis included a dedicated survey with a

total of 30 responses, providing a glimpse into the diverse demographic landscape of individuals

engaged in geospatial technologies and related fields. The respondents represented a blend of

experience, fields, and industries, from Urban Sociologists and Public Health Specialists to

Environmental Scientists and Urban Planners, underscoring the multidisciplinary nature of

geospatial applications. This section delineates the demographic contours of the survey

respondents, setting a foundation for the ensuing discussion on the findings. Based on my

analysis of the survey data, there are several key findings that reinforce the argument that

Impacted Persons are relatively absent from any meaningful engagement in remote sensing

applications.

● Interactions with Data Users: A significant portion of the respondents (n=11), including

Urban Ecologists and Public Policy Analysts, shared insights related to their engagement

with Data Users, or stakeholders as they described them. They highlighted the increasing

significance of stakeholder interactions, which corroborates the central premise of my

thesis that emphasizes community participation and stakeholder involvement. These

responses shed light on the necessity of balancing scientific integrity and stakeholder

interests. However, the lack of engagement with Impacted Persons directly could indicate

a gap in the integration of qualitative, subjective narratives into remote sensing data

analysis.
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● Scale Mismatches: Concerns over scale mismatches were raised by a smaller group

(n=3), comprising roles like Environmental Scientists and Geospatial Analysts, who

stressed the importance of localized, culturally-sensitive approaches. This aligns with the

study's focus on the relevance of hyperlocal data and its integration.

I found that only five respondents, including those in climate science, urban planning, and public

health, reported working directly with Impacted Persons in various areas such as tourism,

recreation, climate science, public health, and urban planning. They emphasized the value of

communication and educational initiatives, suggesting potential avenues for increased

community engagement.

The survey also reveals distinct perspectives based on professional roles in geospatial

analysis. The curation and utilization of remote sensing and GIS data exert significant influence

on the perspectives of various stakeholder groups. Additional survey results indicated that:

● Data Scientists (n = 18), the predominant group among our respondents,

emphasized the importance of scientific rigor, often grappling with external

pressures from other stakeholders. Most notably, they highlighted the challenge of

explaining complex geospatial concepts and aligning project goals with various

stakeholder demands.

● Data Producers and Data Users (n = 12), including roles like Remote Sensing

Analysts and Geospatial Projects Directors, underscored the importance of

contemporary geospatial technologies, with GIS being the most utilized. This
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utilization underscores the centrality of GIS in shaping stakeholder interactions

and perceptions.

● The absence of respondents categorized as Impacted Persons, with only a

minority (n=5) regularly interacting with community members, indicates a crucial

gap. These interactions, reported by professionals like Public Health Officials and

Urban Planners, underscore the need for policies promoting clear communication

and stakeholder engagement.

The responses collectively highlight a conflict between scientific rigor and end-user expectations

across various roles. Government officials, for instance, often demand rapid results, leading to

conflicts in objectives, as reported by Urban Planners and Environmental Analysts.

Environmental concerns, such as climate change impacts, were frequently mentioned,

particularly by roles like Climate Impact Forecasters and Ecologists. Balancing diverse interests,

a challenge faced by nearly half of the respondents, including those in tourism and business

sectors, points to the complexities of managing different stakeholder expectations. The frequent

emphasis on scientific rigor, especially among Data Scientists, suggests that policies must

prioritize the integrity and accuracy of geospatial data. The challenges faced in collaborating

with non-experts, such as managing expectations, indicate a need for policies that foster clear

communication and public engagement. The reliance on geospatial technologies, particularly

GIS, highlights the need for policies that ensure the accessibility and usability of these tools

across various stakeholder groups.
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Despite the respondents’ differences in focus, as shown above, the respondents agreed

that there is often a conflict between scientific rigor and end-user expectations. The list below

highlights this recurring theme in responses:

● Government Expectations: There appears to be a recurring theme of government officials

wanting swift results or having different expectations, such as in the first response where

urban planning was in conflict with the need for sociological studies (n = 7).

● Environmental Concerns: 80% of respondents highlighted conflicts arising from

environmental concerns, such as climate change impacts or the fragility of alpine

ecosystems.

● Balancing Interests: 47% of responses indicate that professionals often find themselves

balancing diverse interests, such as tourist interests, business interests, and environmental

conservation.

Challenges of collaborating with non-experts in geospatial projects:

● Balancing Different Objectives: As seen in the responses, two respondents struggle to

balance urban development with sociological insights or business interests with

conservation.

● Managing Expectations: Several respondents mention the challenge of managing the

expectations of non-experts.

● Conservation vs. Development: The challenge of promoting conservation while

addressing development or business interests recurs in the responses.
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The qualitative responses shed light on the intricate challenges faced by geospatial professionals.

While they emphasize scientific rigor, they often grapple with external pressures from various

Data Users. These pressures range from the demand for swift results, balancing diverse interests,

addressing misinformation, to managing expectations, and "[o]vercoming climate change denial

or misinformation.," as one climate scientist mentioned. The responses underscore the

importance of effective communication across groups.

3.3 Participatory Work

3.1.1 Participatory Work: Urban Forestry in Los Angeles County

While building an automated remote sensing model for the optimization of Los Angeles County's

urban forest, project objectives underscored the intersection of environmental justice and public

health. It's crucial to note that while special interest groups often express a fondness for trees,

their capabilities are sometimes overstated. A review by MIT unveiled a report by The National

Academies of Sciences, Engineering, and Medicine which suggested converting up to four

million hectares of land—roughly the size of the U.S. state of Maryland—into permanent forests

to sequester 150 million metric tons of carbon annually (Temple, 2020). However, considering

the US emits approximately 5.8 billion tons of carbon across various sectors, the required land

would be almost 155 million hectares, more than double the size of Texas (Temple, 2020). The

availability of such vast lands is minimal in most countries, including the U.S. Repurposing
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lands also has far-reaching implications for agriculture, logging, and other industries, but this

does make urban forests an interesting alternative (Temple, 2020).

We conducted a survey among County Data Users spanning eight departments to identify

their operational needs and refine our methodologies for providing tech solutions. A project

manager on our team, who was formerly employed with NASA JPL, incorporated the Change

Traceability Matrix approach from the agency into our project planning (Stavros, 2021). This

matrix was adjusted to inquire about the stakeholders' project expectations, data requirements,

and the most effective method of delivering our results. Moreover, we also asked how this

project could produce societal benefits. The dominant themes included:

● Equity and Impact: Stakeholders underscored the significance of "mindful impacts

related to equitable access," emphasizing the collective vision of ensuring urban forests

benefits are accessible to all community members (n = 4).

● Historical Context: Stakeholders expressed concerns about addressing historical

injustices, emphasizing that the project should contribute to a more inclusive urban

environment (n = 3).

The social and cultural contexts shaped by historical land use patterns play a vital role in

influencing public perceptions and values regarding urban green spaces and are acknowledged in

the survey responses. This aspect is crucial for ensuring fair and equitable access to and

distribution of urban forests, especially in areas that have historically been neglected or

underserved. Understanding these multifaceted impacts of historical land use and cover across all

three pilot sites (Appendix A) is essential for effective and inclusive urban forest planning.

155



Demographic Insights on Survey Respondents

The survey pulled in views from 15 individuals across a broad mix of groups involved in urban

forestry within Los Angeles County. At the top of the list was The Nature Conservancy, a global

group known for its work in protecting nature. Not far behind was TreePeople, an active group in

Los Angeles, working hands-on to make the city greener. These two, along with others in the

survey, ranged from community groups to government offices, highlighting the wide range of

voices in the discussion on urban forestry. County departments like the Department of Parks and

Recreation and Beaches and Harbors brought insights from the viewpoint of rules, guidelines,

and city planning. The California Department of Forestry and Fire Protection (also known as

CALFIRE) also participated in the survey, showing the project’s special connection between city

trees and fire.

The respondents, representing a cross-section of stakeholders in Los Angeles County's

urban forestry landscape, provided diverse insights, shedding light on their unique perspectives

and preferences. There were three specific insights: the need for community engagement,

common tools, and diverse means of data collection. In the context of grant funding allocations,

the emphasis was unmistakably on community engagement. Respondents repeatedly underscored

the need for "meaningful community engagement" and active "community involvement". These

responses, more than just a call for participation, highlighted the desire for deep-rooted and

impactful involvement of the community in decision-making processes. When asked about the

tools they employed in their work, the answers varied widely. The lack of commonality in the
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responses suggested that stakeholders in urban forestry use an array of tools tailored to their

specific needs and tasks. This diversity of tools possibly mirrors the multifaceted challenges and

objectives within urban forestry, from tree health monitoring to community engagement and

policy planning.

Similarly, when it came to data format preferences, the respondents' answers did not

converge on a single or few formats. The breadth of answers here again reflects the diverse

nature of the stakeholders involved. Different roles and responsibilities within urban forestry

might necessitate various data formats, from spatial GIS data for planners to tabulated data for

researchers or community engagement professionals.

This survey, with its broad range of respondents, paints a picture of an applied remote

sensing landscape that is both diverse in its stakeholder makeup and complex in its needs and

preferences. Whether it's the tools they use, the data formats they prefer, or the emphasis on

community engagement, the respondents' answers underline the multifaceted nature of urban

forestry in Los Angeles County. Notably, three years after data collection, when the project

findings were presented, the stakeholder feedback on how the analysis could be used shifted

towards monitoring trees on private property for code enforcement purposes. This shift raises

important questions:

● Alignment with Initial Expectations: The new objective seems significantly different

from the initial Data Users’ expectations of equitable access and addressing historical

inequities. Monitoring trees for code enforcement on private properties introduces
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potential concerns related to privacy, property rights, and potential inequities in

enforcement.

● Public Engagement and Trust: The shift in objectives might affect public trust due to the

project's initial framing and the emphasis on equity and historical context (Appendix A).

Data Users who expected a project focused on broader societal challenges might perceive

this shift as a deviation from the project's original intent.

This evolution in project objectives highlights the complexities of public engagement. While

projects must remain adaptive and responsive, significant shifts in objectives, particularly those

diverging from initial stakeholder expectations, can have repercussions on community trust and

project outcomes.

The urban forests project in Los Angeles County demonstrates the challenges and

opportunities of public engagement in applied research. The significant shift in end-user

objectives from the project's original framing serves as a reminder of the dynamic nature of

stakeholder engagement and the need for research projects to remain both adaptive and aligned

with community needs and expectations. As research projects evolve, maintaining transparency,

continuous engagement, and alignment with initial commitments becomes crucial to preserve

trust and achieve meaningful outcomes. The stakeholders' previous emphasis on equitable access

and historical context suggests that they expected the project to provide data on urban forests and

address broader social and environmental justice issues, but those became juxtaposed against

wanting to use the results as a means to levy fines and citations.
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The shift directly impacts the study. For instance, if the study is intended to be used for

monitoring, an accuracy of 80% for a single species introduces some error and could send

County personnel to a location under false pretenses, as would be the case for my model

developed in Chapter 3. This is arguably a misallocation of County resources, however, when the

model gets it right more often than it gets it wrong, the aggregate amount of time and money

saved deploying resources outweighs the potential waste. This application provides a net positive

in efficiency and effectiveness for managing the urban forest on public right-of-ways. However,

if the model is adopted for code enforcement of private property to ensure property owners or

renters are properly caring for a protected species, any error in classification or assessment could

lead to falsely administered fines. The difference in impact demonstrates the need for continuous

stakeholder engagement to reduce negative unintended consequences for scientific studies.

The survey responses, when viewed through the lens of public engagement, underscore

the critical role of the voices of Data Users in shaping and guiding research projects. Users, from

public works workers to data scientists and managers, bring diverse perspectives that enrich the

project and ensure its relevance to community needs. Their concerns about equity and historical

context highlight the importance of not just collecting data but also interpreting and using it in

ways that address broader societal challenges. The survey responses provide invaluable insights

into stakeholder expectations and concerns related to the urban forests project in Los Angeles

County. Situating these findings within the broader context of public engagement emphasizes the

need to ensure that research projects are not only scientifically rigorous but also socially relevant

and responsive to community needs. By incorporating diverse stakeholder perspectives, projects
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like the urban forests study can contribute to more inclusive and equitable urban planning and

policy-making. This would include broaching the topic of remote sensing as a surveillance tool

for code enforcement and ethical considerations when private citizens are kept in the dark about

such practices.

3.1.2 Participatory Work: Urban Form and Thermal Comfort in the Southwest U.S.

One case study that shows the need for the inclusion of Impacted Persons is my previous work

studying the impact of urban form on thermal comfort across three Transformative Climate

Communities in California. These communities were identified as vulnerable populations based

on a number of socioeconomic, demographic, and environmental data, including exposure to

extreme heat events. As a city located in a hot, dry, arid environment, the issue of heat in Los

Angeles is not merely about temperature. It is also about thermal comfort and the urban design

interventions that mitigate extreme heat. In fact, as our team found, shade is the most important

factor when it comes to human comfort–more than air temperature, more than humidity, more

than wind speed (Turner et al. 2021; Mars & Berube, 2023). This close relationship between

human thermal comfort and mortality and illness due to heatstroke cannot be overstated.

However, current interventions by NASA and the City of Los Angeles, through the use of remote

sensing measurements of land surface temperatures (LST) (Hulley et al. 2020), are inadequate.

Our findings suggest that shade is a better predictor of both simulated LST and mean radiant

temperatures (MRT) than remotely sensed LST. Thus, these measurements are not sufficient for

guiding heat mitigation at hyper-local scales in cities.
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Our study underscored the dire need for incorporating the perspectives of Impacted

Persons in the development and implementation of geospatial technologies and science

applications. The cool pavement initiative, which was based on LST, was designed to mitigate

urban heat by reflecting incident radiation back into the atmosphere. However, it failed to

account for the lived experiences of those on the ground. By increasing the albedo of the

pavement, the intervention inadvertently intensified radiation absorption for pedestrians,

children, and commuters—Impacted Persons—who had to bear the brunt of an additional 10%

radiation during the hottest parts of the day. This unintended consequence underscores the

importance of including direct involvement and designing research questions around

perspectives of Impacted Persons. Their inclusion would have provided crucial insights into the

practical implications of the initiative and likely would have led to a more effective and

human-centered approach to urban heat mitigation. Thus, this case study emphasizes the

profound importance of diverse stakeholder engagement in shaping the application of geospatial

technologies for societal benefit.

During the Surface Biology and Geology community workshop organized by NASA in

Washington D.C., October 2022, a question was put forth to the urban heat group. The group,

having just announced a tripling in financial backing from the City of Los Angeles for their cool

pavement project, overlooked the query entirely. They responded, "The glint issue was

effectively resolved by transitioning from white paint to another NASA-developed paint

technology for tanks, which is gray and does not reflect sunlight into drivers' eyes." However, the
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question never raised the issue of glint, instead, it demanded attention to the problem of incident

radiation being reflected back onto vulnerable populations - a concern that went unaddressed.

Arguably, the cool pavement project may have served as an exceptional promotional tool

for NASA's science application team, demonstrating its efficacy in mitigating the urban heat

island effect. However, this triumph may have inadvertently marginalized the very individuals it

was designed to assist. The apparent disregard for these concerns suggests that both NASA and

the City of Los Angeles are satisfied with the preliminary results of the cool pavement pilot

project. Sam Bloch, a CityLab journalist, conversed with a resident of a street treated with cool

pavement. This interaction revealed that, from their perspective, the initiative did not deliver a

tangible cooling effect (Bloch, 2019).

3.1.3 Participatory Work: Landscape Exchange Network for Socio-environmental Systems

The use of remote sensing technologies plays a crucial role in policy-making and

decision-making scenarios, particularly within the context of the LENS Research Coordination

Network, where I serve on the steering committee. As a committee member, we facilitate SES

research using NEON AOP data, which are pivotal for SES research. This data serves as a

consensus-building tool for stakeholders and researchers, capturing landscapes through its

high-quality imaging capabilities. AOP's sensor suite offers intricate measures of vegetation

dynamics, biodiversity, and ecosystem functionalities. These metrics grant insights into how

ecosystem characteristics reciprocate with human and natural system interactions, a core SES
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concern (Ordway et al., 2020). The challenge lies in ensuring data quality and consistency across

platforms and years, making it accessible to everyone involved in the pixel pipeline. Achieving

this paves the way for remote sensing to serve as a practical boundary object.

At LENS, Impacted Persons living and working within NEON AOP flight boundaries

have been identified for a number of sites, but engagement remains low. Much of the discourse

surrounding science applications through LENS involves mention of these persons, but lacks

discrete protocols to engage with them. Additionally, integrating remote sensing within a

translational ecology framework holds its own challenges:

● Remote sensing data can be challenging to interpret and understand.

● There is a lack of agreement on using remote sensing data to inform conservation

decision-making.

● There is a need for improved communication and collaboration between remote sensing

experts and other stakeholders.

This intensive engagement, while ensuring a rich and holistic understanding of ecological issues,

can strain the bandwidth of researchers (James et al., 2022). The continuous back-and-forth, the

need to address diverse stakeholder concerns, and the merging of scientific rigor with local

insights can be taxing. This places a significant onus on researchers, potentially leading to

burnout or diluted engagement quality over time (Safford et al., 2017; Goodrich et al., 2020).

Leveraging boundary organizations offers a strategic solution to this limitation. These entities,

designed to bridge the gaps between academia, communities, and policymakers, can act as

intermediaries, easing the burden on individual researchers. With their expertise in engaging with
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(non)experts, boundary organizations can facilitate effective communication, streamline

interactions, and ensure that researchers' insights and community feedback are harmoniously

integrated. Moreover, they can provide logistical, administrative, and even emotional support,

ensuring that researchers can focus on their core strengths without being overwhelmed by the

multifaceted challenges of community engagement. In essence, while translational ecology’s

intensive engagement model can test individual researcher bandwidth, boundary organizations

present a viable solution. By acting as intermediaries and providing necessary support, they can

ensure sustained, effective, and enriching engagement with Data Producers, Scientists, Users, or

Impacted Persons.

4 Implications for Future Geospatial Research and Applications

My research is a call to action for the remote sensing community to rectify a persistent

information imbalance. It is clear from the nearly universal lack of engagement with Impacted

Persons, with the exception of five survey respondents, we need advocates for the inclusion of

Impacted Persons in every step of the data pipeline, to create a comprehensive, pixel-level

narrative that truly reflects the human-environment relationship. By doing so, we can ensure that

decisions are based on a more complete and nuanced understanding, thereby enhancing the

accuracy and relevance of our investigations. Incorporating the perspectives of Impacted Persons

into geospatial metadata is more than a nod to inclusivity; it's a transformative approach that

elevates the quality and depth of geospatial data. By weaving in the lived experiences and

insights of these individuals, we add a layer of qualitative richness to a domain that is
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predominantly quantitative. This interplay between qualitative and quantitative data adds a

nuanced dimension to geospatial sciences, making the findings more holistic and contextually

grounded. Including Impacted Persons' perspectives brings with it a fresh wave of interpretative

depth, especially beneficial for socio-environmental research. By understanding the human

implications and interpretations of spatial phenomena, researchers can draw more robust and

comprehensive conclusions, bridging the gap between numbers on a screen and realities on the

ground.

Furthermore, this integration is a significant stride towards data sovereignty, granting

communities, often sidelined in geospatial dialogues, a voice and stake in the data that concerns

their lands and lives. This not only reshapes the narrative around data ownership and authorship

but also democratizes the geospatial discourse, extending its reach beyond the confines of labs

and into the community gatherings. Such an inclusive approach is particularly vital for Data

Users working in areas like public health, environmental justice, and equity, or like those of us at

LENS. By having access to data that is both scientifically rigorous and socially informed, they

can craft solutions and interventions that resonate with the community's needs and aspirations.

Moreover, this approach can re-envision public engagement in geospatial sciences, fostering a

collaborative space where community insights and scientific expertise coalesce, driving forward

both the science and its societal impact. Some key themes and points include:

● Levels of Engagement: From "Inform" and "Communicate" to "Engage", highlighting the

gradient of involvement and decision-making shared with communities, as we saw from
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five survey respondents working across fields that regularly interact with Impacted

Persons, such as tourism, recreation, public health, urban planning, and education.

● Ethics of Community Engagement: With only one survey respondent discussing the

importance of understanding cultural differences while working in the field, there is a

clear and demonstrated need to emphasize the ethical considerations when engaging with

communities among Data Producers, Scientists, and Users.

● Community-Based Scholarship and Public Engagement: Of the five survey respondents

working closely with Impacted Persons, education programs like workshops or general

community engagement activities and spaces of interaction were integral in

communicating their expertise to a non-expert audience. Scholarship opportunities, or

additional funding to create more of these spaces is needed.

Public engagement ranges from simply informing Impacted Persons to fully empowering them in

decision-making processes. Within this spectrum, the curation and utilization of remote sensing

and GIS data mold the perspectives and responsibilities of different stakeholder groups:

● Data Scientists: While many academic and professional spaces predominantly operate

within the "Inform" and "Communicate" stages of public engagement, Data Scientists

often find themselves navigating the complexities between maintaining scientific rigor

and addressing diverse stakeholder demands. As one survey respondent highlighted,

"Officials wanted to dismiss climate change impacts. I presented clear data and case

studies to emphasize its importance," signifying the tension between expert knowledge

and external pressures.
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● Data Producers and Data Users: These groups, deeply engaged in data curation, play a

critical role in informing public understanding. Their reliance on tools like GIS, as

reflected in common acknowledgments within the survey that "GIS is the most frequently

used geospatial technology," underscores their pivotal position in the public engagement

process.

● Impacted Persons: While our data predominantly captures the perspectives of

professionals, the indirect implications for Impacted Persons resonate through challenges

like "balancing business interests with coastal conservation," according to one survey

respondent who described themselves as a Coastal Policy Expert. In the broader context

of public engagement, their voices and experiences are paramount in shifting from mere

consultation to meaningful collaboration and empowerment.

The detailed narrative from my interviews offer an intimate lens into the nuanced ways

professionals engage with geospatial data. Personal narratives, rich in detail and grounded in

experience, serve as vital bridges in public engagement, translating high-level data into relatable

insights and actionable knowledge. The global scope of the interviewee's work, spanning

"Vancouver to Indonesia and Central America," emphasizes the universality of certain challenges

and the need for a globally inclusive approach to public engagement.

Science-led projects like LENS serve as a site of encounter and action. They are full of

unequal power relations stemming from the supposed status and prestige of the science being

done, who is doing it, and who it is being done for (Sundberg 2004). How are these identities

brought into being and enacted in time and place? Ethical community engagement, especially in
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academia and research, demands an alignment between data-driven insights and community

needs. Policies must prioritize data integrity, as reflected in the sentiment shared by all survey

respondents rating the importance in following scientific methods 4 or 5 out of 5, ensuring that

community decisions based on this data are both reliable and representative. The challenges of

"explaining complex geospatial concepts" point to the broader issue of effective communication

in public engagement, emphasizing the need for education and awareness initiatives. And as the

interviewee's reliance on proprietary software like ArcGIS suggests, public engagement

frameworks should ensure widespread accessibility to essential geospatial tools, bridging the gap

between expert knowledge and community understanding.

The interplay among the actors in all four groups shape the sociopolitical landscape of

remote sensing applications, with each actor embodying a distinct role. Data

Producers--originators of raw data--harness remote sensing technologies to capture geospatial

information. The SES framework, intertwined with LEK, augments data production, fostering a

richer understanding of environmental dynamics. The nexus of remote sensing and data science

enables the transformation of raw data into actionable insights. Data Scientists, armed with

computational prowess, delve into the complexities of geospatial data, extracting patterns, and

trends that inform decision-making processes. The "Socializing the Pixel" framework

exemplifies the imperative of a nuanced understanding and representation of social dynamics

within this digital abstraction.

Spanning from policy-makers to conservationists, Data Users leverage the insights

gleaned by Data Scientists to inform decisions, policies, and strategies. However, the challenges
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of data inequities and indigenous data sovereignty underscore the criticality of equitable data

access and representation in this stage. Often relegated to the periphery of the data pipeline,

Impacted Persons bear the ramifications of decisions made upstream.

"Socializing the Pixel" emerges as a potent narrative in redressing this disconnect. By

fostering a more inclusive dialogue among the actors, particularly by integrating Impacted

Persons in the co-production process, a more equitable, just, and sustainable data pipeline can be

envisioned. This engagement not only enriches the data ecology but also engenders a more

democratically constructed, socially aware, and contextually nuanced remote sensing praxis.

Moreover, frameworks like the CARE principles for Indigenous Data Governance, emphasize

responsible knowledge transfer and preservation of indigenous data rights, providing a blueprint

for a more inclusive and equitable remote sensing data pipeline beyond indigenous collaboration.

Synthesizing these concepts calls for a paradigm shift in applied remote sensing—a

transition from a technocentric to a more socio-ecologically conscious, inclusive, and equitable

practice. Through such a lens, the data pipeline transcends mere technical processes, changing

into a conduit that honors the multiplicity of knowledge, values, and impacts inherent in the

realm of applied remote sensing. My work brings a fresh perspective to the field by integrating

multiple narratives and disciplinary insights, effectively bridging the gaps between applied

science, policy-making, and stakeholder engagement. It ventures beyond the conventional

scientific discourse, incorporating personal narratives to highlight the complexities and nuances

of interactions with boundary objects like remote sensing and GIS data. Furthermore, it

addresses the often overlooked element of equitable stakeholder participation in the data life
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cycle, thus paving the way for more inclusive, grounded, and effective policy development. The

nuanced critique of standard practices and the proposed strategies for improvement reflect a

comprehensive understanding of the multifaceted nature of this field, marking a significant

contribution to the discourse on integrating remote sensing and GIS technology into policy

development. To move towards a more grounded and inclusive application of remote sensing and

GIS information, several key recommendations emerge from my work:

● Promote Cross-Disciplinary Collaboration: Facilitating interaction between applied

scientists, policymakers, and stakeholders from diverse backgrounds can enable a deeper

understanding of how data is interpreted and used across different contexts. This can also

help identify any biases or blind spots that may exist in current practices.

● Incorporate Experiential Learning: Hands-on workshops and training sessions can help

stakeholders understand the technology and its implications, fostering a sense of

ownership and participation in the data life cycle.

● Foster Transparent Communication: Clear and open dialogue about data collection,

processing, and usage can build trust among stakeholders and ensure that any concerns or

ideas they have are addressed.

● Ensure Equitable Access to Data: Policies should be put in place to ensure the data is

accessible to all interested parties, reducing the potential for misuse or misinterpretation.

● Develop Context-Specific Applications: Understanding that the utility of remote sensing

and GIS data varies across different contexts, applications should be developed with a

keen focus on the specific needs and realities of each context.
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These recommendations, while seemingly straightforward, encompass a myriad of experiences

and nuances. They aim to capture the complexity of integrating remote sensing and GIS data into

a holistic, inclusive, and grounded policy-making framework, taking into account the multitude

of stakeholder perspectives, the intricacies of the technology, and the diverse societal contexts in

which it is applied. By implementing these recommendations, we can strive towards a more just

and inclusive use of remote sensing technology. As we continue to navigate the complexities and

challenges inherent in human-environment interactions, it is crucial to remain critical, reflexive,

and open-minded in our pursuit of knowledge and action. Ultimately, it is only through a

collaborative, inclusive approach that we can harness the full potential of remote sensing to

address the pressing social and environmental issues facing our world today.

4.1 Ongoing and Future Work

The initial findings presented in this chapter illustrate the early stages of an ongoing

investigation, the scope of which is anticipated to widen in the future. The subsequent stages of

my research will aim to delve deeper into the interactions with geospatial data by broadening the

spectrum of my survey questions. This approach will allow me to examine the dynamics beyond

applications and explore the intricate relationships among individuals that contribute to defining

the pixel. In order to achieve a more holistic understanding, my future interviews will encompass

all participants integral to the remote sensing data pipeline, rather than solely focusing on Data

Scientists within the private sector. Of significant importance is my intention to incorporate the

perspectives of Impacted Persons from previous case studies I have collaborated on. This
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approach offers an invaluable lens through which I can amalgamate participant observation with

the real-world experiences of individuals impacted by our research. Future work in this direction

is crucial to unravel the complexities inherent in this field.

4.1.1 Limitations and Challenges

Despite the substantial benefits of implementing these co-production recommendations, there are

critiques which warrant thoughtful consideration. Firstly, cross-disciplinary collaboration, while

ideal, may face considerable challenges due to the differing terminologies, methodologies, and

priorities of distinct disciplines. Secondly, experiential learning may inadvertently exclude those

who lack the time, resources, or physical capability to participate fully. Thirdly, fostering

transparent communication may be inhibited by privacy concerns, proprietary interests, or fear of

misuse. Fourthly, ensuring equitable access to data may inadvertently result in unqualified

individuals misinterpreting or misusing complex data sets. Lastly, developing context-specific

applications could potentially lead to an overemphasis on local needs and overlook broader,

interconnected environmental issues. These critiques underscore the need to approach these

recommendations not as definitive solutions, but as starting points for ongoing discussions and

adaptations within the ever-evolving realm of remote sensing and GIS technology.

Additionally, this study's limitations include the potential biases in participant selection

and the challenges associated with capturing a representative sample of stakeholder perspectives.
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Moreover, the rapidly evolving nature of remote sensing technology means that some of the

findings may not apply to emerging capabilities and applications:

● Cost of satellite imagery

● Access to hard- & software

● Lack of local capacity

● Uncertainty around free data & software

○ Will it be discontinued? Will it be maintained and documented?

● Difficulties carrying out fieldwork.

○ These challenges have been reported for > 20 years, and are largely the same

today.

Engaging Impacted Persons in geospatial projects promises a richer, more holistic approach by

incorporating local expertise. However, this integration isn't without complexities. The first

challenge lies in the variability of local knowledge. While the depth and nuances of community

insights are invaluable, they can vary widely, potentially introducing inconsistencies in data

interpretation and application. This diversity, while a strength, can pose challenges in

standardizing data collection and interpretation.

Cultural and language barriers further add layers of complexity. Effective communication

is the bedrock of any successful engagement, but differences in language, customs, and traditions

can sometimes create misinterpretations or misunderstandings. Addressing these differences

requires sensitivity, patience, and often additional resources. Another significant concern is the

logistical and resource constraints. Comprehensive community engagement might require
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extended timelines and increased budgets. The challenges can escalate when working in remote

or challenging terrains, where accessibility itself can become a hurdle. Merging local insights

with scientific methodologies is a delicate balance. While local knowledge provides context,

scientific methodologies ensure rigor. Striking the right balance between the two, ensuring that

one doesn't overshadow the other, can be intricate. Ethical considerations, from informed consent

to data ownership and rights, are also paramount. The engagement process must be transparent,

respectful, and must prioritize the rights and wishes of the community.

4.1.2 Impactes Persons

As our society becomes increasingly reliant on geospatial technologies, it is crucial to critically

examine their broader implications for equity and inclusivity. To navigate the intricate landscape

of community engagement in geospatial projects, a structured and empathetic approach is

essential. Collaborative research frameworks can offer a solution to individual burdens. By

fostering team-based research, tasks can be distributed, resources shared, and diverse expertise

leveraged. Such collaboration becomes even more potent when boundary-spanning organizations

are involved. These entities, designed to bridge academia, communities, and policymakers, can

provide the necessary expertise and tools to streamline engagement, ensuring that it's effective

and meaningful.

Local partnerships can further augment the engagement process. Institutions like local

universities, NGOs, and community organizations bring with them a wealth of local knowledge
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and logistical support. They can act as bridges, helping researchers navigate the local context and

ensuring that community voices are genuinely represented. Training initiatives are pivotal in this

landscape. By equipping researchers with the skills needed for community engagement, they can

navigate the complexities of local interactions with confidence and efficacy. These trainings can

cover a range of topics, from cultural sensitivities to effective communication strategies.

The digital age offers tools that can significantly enhance community engagement.

Digital platforms, from communication tools to data collection apps, can provide cost-effective

solutions, making engagement more accessible and wide-reaching. Feedback mechanisms, both

for researchers and the community, can ensure that the engagement process remains dynamic,

adjusting to challenges and evolving based on insights. Finally, emphasizing the shared benefits

of projects, from mutual learning to tangible project outcomes, can foster a sense of joint

purpose. This mutual understanding and respect can lay the foundation for geospatial projects

that are not only scientifically robust but also community-centric and inclusive.
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Chapter 5.

Conclusion

This dissertation serves as a valuable contribution to the field of urban forestry management and

highlights the need for interdisciplinary collaboration in addressing complex challenges facing

urban environments. By incorporating both technical and sociopolitical perspectives, my

chapters provide insights that can inform practical applications and recommendations for future

research. The sociopolitical dimension of science-based solutions, as explored in the fourth

chapter, underscores the imperative need to include Impacted Persons in the data exchange

continuum. Their inclusion not only democratizes the decision-making process but also

augments remote sensing studies with richer ground truthing, recognizing and harnessing local

knowledge. Technical investigations in chapters two and three have offered valuable tools to

urban forestry managers in Los Angeles County. The LiDAR processing analysis revealed the

advantages of using the Dalponte2016 algorithm to segment individual tree crowns, which will

provide technical assistance for future LiDAR acquisitions, ensuring that County managers are

equipped with the most effective tools for the task.

Furthermore, the development of the Random Forest algorithm in Google Earth Engine

showcased the potential of integrating spectral and structural data for tree species classification.

With an overall accuracy rate of 89% for 20 species across three pilot sites, this model showcases

the power of combining robust classification methods with cloud-based platforms, eliminating

the need for cumbersome data downloads. In sum, this dissertation, through its methodical
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investigations and critical analyses, offers a holistic view of remote sensing in urban forestry. It

emphasizes the symbiotic relationship between technical prowess and sociopolitical

understanding, ultimately aiming for more sustainable and equitable urban forest management

practices in Los Angeles County and potentially beyond.

Moving forward, my research will continue to focus on enhancing interdisciplinary

collaboration in urban forestry management, with a keen awareness of the diverse challenges that

cities of varying sizes and management practices face. A key priority will be advancing tree

crown segmentation methods and refining remote sensing technologies. These improvements are

crucial for providing more accurate and detailed data on urban forests, which is fundamental for

effective management and policy-making. However, it is important to recognize the limitations

and potential obstacles in this area of research. One major challenge is the disparity in data

access and quality between different urban areas. Larger municipalities like Los Angeles County

often have more resources and advanced technologies at their disposal, enabling more

sophisticated data collection and analysis. In contrast, smaller cities may lack such capabilities,

leading to less detailed or accurate data. This disparity can result in uneven urban forestry

management and policy implementation.

Additionally, future work must account for varying management practices across

different urban settings. Urban forests in different cities are managed under diverse policies and

guidelines, influenced by distinct sociopolitical and environmental contexts. This diversity

necessitates tailored approaches to urban forestry management, ensuring that solutions are

effective and relevant to each unique urban environment. Another critical aspect is the continued
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integration of technical expertise with socio-political understanding. My work has underscored

the importance of this integration in providing a comprehensive understanding of the dynamics

at play in urban forestry management. Future research should continue to bridge this gap,

ensuring that technical advancements in remote sensing and tree management are informed by

and responsive to the needs and dynamics of the communities they serve. While future work

holds significant potential for enhancing urban forestry management, it must be approached with

a realistic understanding of the varying capabilities and contexts of different urban environments.

Balancing technical innovation with socio-political awareness will be key to developing

sustainable and equitable solutions in urban forestry across diverse urban landscapes.
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Appendix A. Historical Aerial Photographs of Los Angeles County Pilot Sites

A.1 Aerial photographs of Altadena in 1933 (a) and 1966 (b). Spence Air Photos Collection,

UCLA Department of Geography Air Photo Archives.

a)
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b)
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A.2 Aerial photographs of East Los Angeles in 1931 (a) and 1951 (b). Spence Air Photos

Collection, UCLA Department of Geography Air Photo Archives.

a)
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b)
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A.3 Aerial photographs of Marina del Rey in 1938 (a) and 1951 (b). Spence Air Photos

Collection, UCLA Department of Geography Air Photo Archives.

a)

195



b)
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A.4 References

Historical aerial imagery courtesy of The Benjamin and Gladys Thomas Air Photo

Archives, Spence Air Photos Collection, UCLA Department of Geography.

197



Appendix B.

B.1 Applied Remote Sensing Survey: Survey Questions and Anonymous Responses

Questions

1. Your role or position.
2. Years of experience in geospatial science.
3. Which geospatial technologies do you most frequently use?
4. On a scale of 1 to 5, how important is it to follow scientific methods and standards in your projects?
5. Which type of interested parties do you usually collaborate with?
6. Have you ever had to modify your methodology to cater to an interested party's request?
7. If yes or sometimes, did this change impact the scientific validity of the results?
8. Briefly describe a situation where there was a conflict between scientific rigor and client's expectation, and

how you resolved it.
9. On a scale of 1 to 5, how effectively do you believe you communicate complex geospatial data to

non-experts?
10. What do you believe is the most challenging aspect of collaborating with non-experts in geospatial

projects?

Responses

Respondent Answers

Response 1 Urban Sociologist

Response 1 3-5 years

Response 1 GIS

Response 1 5

Response 1 Government, NGOs

Response 1 Yes

Response 1 Negatively

Response 1 In my recent collaboration with city planners, government officials were pressing for insights
into specific urban development plans. I had to assert the importance of conducting
comprehensive sociological studies, which are crucial for sustainable urban planning. Quick
results could overlook vital community needs and lead to ineffective or detrimental policies. By
integrating detailed social research, we ensure that development plans are equitable and aligned
with the actual requirements of the residents. Despite the push for speed, I advocated for a
balance between expediency and meticulous, community-focused planning. I've found that
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integrating quantitative data with qualitative community feedback is vital for a holistic
understanding.

Response 1 4

Response 1 Balancing urban development with demographic and socioeconomic insights I aim to ensure that
both historical trends and future projections inform urban planning initiatives.

Response 10 Public Policy Analyst

Response 10 5-6 years

Response 10 Remote Sensing

Response 10 5

Response 10 NGOs, Government

Response 10 Sometimes

Response 10 No impact

Response 10 The pushback on recognizing climate change impacts from some officials was concerning. To
counter this, I compiled longitudinal temperature records and frequency analyses of extreme
weather events, which clearly documented the changing patterns. I supplemented this with case
studies from similar regions where climate change mitigation strategies had successfully been
implemented, highlighting both environmental and economic benefits. By presenting this
evidence in a series of workshops, I was able to foster a more informed dialogue and emphasize
the critical need for proactive measures. This approach led to a gradual shift in perspective, with
officials eventually acknowledging the significance of the issue and considering policy
adjustments. It's critical to bridge the gap between scientific data and public perception to foster
informed decision-making.

Response 10 4

Response 10 Overcoming climate change denial or misinformation I'm committed to engaging with the
community through educational programs to demystify scientific data.

Response 11 Ecologist, Mountain ecosystems

Response 11 1-2 years

Response 11 GIS

Response 11 4

Response 11 Academics

Response 11 No
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Response 11 No impact

Response 11 Tourism stakeholders wanted more mountain activities. I highlighted the fragile nature of alpine
ecosystems and proposed sustainable alternatives. I'm passionate about finding the equilibrium
where human enjoyment doesn't compromise ecological sustainability.

Response 11 4

Response 11 Addressing tourist interests while conserving ecosystems My strategy includes developing
environmental education programs for tourists and stakeholders alike.

Response 12 Coastal Policy Expert

Response 12 7-8 years

Response 12 Remote Sensing

Response 12 5

Response 12 Government

Response 12 Yes

Response 12 Negatively

Response 12 Local businesses opposed certain coastal policies. I organized community meetings to address
concerns and find a middle ground. My goal is to advocate for policies that are informed by
long-term ecological forecasts, not just short-term economic gains.

Response 12 5

Response 12 Balancing business interests with research findings I prioritize collaborative projects that align
business models with sustainable practices.

Response 13 Remote Sensing Analyst

Response 13 5-10 years

Response 13 Remote Sensing, GIS

Response 13 5

Response 13 Private firms

Response 13 Sometimes

Response 13 Positively
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Response 13 Farmers wanted to use older, less accurate data for land monitoring. I demonstrated the benefits
of newer technology for better crop yields. I believe in leveraging the latest in technology to
provide the most accurate data to support sustainable farming practices.

Response 13 4

Response 13 Managing expectations I focus on communicating the long-term benefits of precision agriculture
to stakeholders.

Response 14 Geospatial Intelligence Analyst

Response 14 11-20 years

Response 14 GIS, GPS

Response 14 5

Response 14 Government

Response 14 Yes

Response 14 Negatively

Response 14 During a flood event, there was a push for quicker results. I had to balance speed with accuracy
to provide reliable flood maps. I had to leverage not only my technical expertise but also my
crisis management skills.

Response 14 4

Response 14 Balancing between quick results and accuracy I strive to maintain precision without sacrificing
the urgency required in emergency situations.

Response 15 Geospatial Projects Director

Response 15 11-20 years

Response 15 GIS

Response 15 4

Response 15 Private firms

Response 15 No

Response 15 No impact

Response 15 A client wanted to develop a piece of land identified as having high ecological value. I provided
alternatives that were less impactful. This required not just technical know-how but also
diplomacy and strategic negotiation skills.
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Response 15 3

Response 15 Explaining the implications of geospatial data My approach involves translating complex GIS
data into actionable insights for all stakeholders.

Response 16 Ecosystem Restoration Adviser

Response 16 5-10 years

Response 16 Remote Sensing, GIS

Response 16 5

Response 16 Public stakeholders, NGOs

Response 16 Yes

Response 16 No impact

Response 16 An NGO wanted to highlight deforestation in an area, but the data showed mixed results. We
collaborated on a more nuanced report. I found myself in the midst of a moral dilemma,
balancing ecological integrity with the needs of the community.

Response 16 5

Response 16 Ensuring data is interpreted correctly I navigate these challenges by advocating for the voiceless
environment, ensuring its story is told and understood.

Response 17 Machine Learning Insights Architect

Response 17 Less than 5 years

Response 17 Remote Sensing, GPS

Response 17 4

Response 17 Private firms

Response 17 Sometimes

Response 17 Positively

Response 17 The company wanted real-time data integration, but this would have compromised data quality. I
proposed a slight delay for better accuracy. The challenge was to innovate at the speed of
thought, making data sing in real-time.

Response 17 3

Response 17 Translating technical jargon to understandable insights I translate algorithms into business
strategies, bridging the gap between data science and practical application.
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Response 18 Strategic Operations Overseer

Response 18 More than 20 years

Response 18 GIS, GPS

Response 18 4

Response 18 Private firms

Response 18 No

Response 18 No impact

Response 18 There was pressure to expedite shipments at the expense of environmental concerns. I used data
to show long-term benefits of eco-friendly routes. It was a test of my ability to remain
unflappable under pressure and make data-driven decisions swiftly.

Response 18 3

Response 18 Making long-term decisions based on data My focus remains on aligning immediate action with
the overarching strategic vision for sustainable growth.

Response 19 Spatial Data Strategist

Response 19 5-10 years

Response 19 Remote Sensing, GIS

Response 19 5

Response 19 Public stakeholders

Response 19 Yes

Response 19 Positively

Response 19 Park officials wanted to open a new trail, but satellite images showed it could disrupt wildlife.
We found an alternative path. Devising a new trail required a balance of ecological foresight and
visitor satisfaction.

Response 19 4

Response 19 Balancing recreational use with conservation My approach is to synthesize environmental
stewardship with community access.

Response 2 Marine Biologist

Response 2 3-5 years
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Response 2 Remote Sensing

Response 2 5

Response 2 Academics, Government

Response 2 Sometimes

Response 2 Positively

Response 2 Funding agencies wanted to focus on popular marine species. I advocated for studying
lesser-known but ecologically crucial species. I had to champion the less charismatic species that
play key ecosystem roles.

Response 2 5

Response 2 Highlighting the importance of lesser-known marine species I strive to shine a light on all marine
life, ensuring a holistic approach to ocean health.

Response 20 Predictive Geospatial Analyst

Response 20 More than 20 years

Response 20 Remote Sensing

Response 20 5

Response 20 Government

Response 20 No

Response 20 No impact

Response 20 During a storm event, the media wanted early predictions. I emphasized the need for more data
before making accurate storm path predictions. The key was to deliver accurate predictions while
managing the chaotic nature of storms.

Response 20 5

Response 20 Managing public expectations during high-stakes events It's about balancing precision with the
urgency demanded by real-time events.

Response 21 Innovation Pathway Leader

Response 21 1-2 years

Response 21 Remote Sensing

Response 21 5
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Response 21 Academics, Private firms

Response 21 Yes

Response 21 No impact

Response 21 Investors wanted quicker results from our tech platform. Collaborated with academics to ensure
scientific accuracy. Steering a startup means aligning investor timelines with real product
development cycles.

Response 21 4

Response 21 Balancing tech innovation with scientific accuracy I prioritize transparency in innovation,
ensuring stakeholders understand the development journey.

Response 22 Social Impact Coordinator

Response 22 2-3 years

Response 22 GIS

Response 22 4

Response 22 Academics, NGOs

Response 22 Sometimes

Response 22 Negatively

Response 22 Donors wanted specific results to support their cause. I emphasized the importance of unbiased
research and data. The challenge was to align donor desires with on-the-ground realities and
longer-term goals.

Response 22 4

Response 22 Navigating between donor expectations and scientific rigor I endeavor to mediate between
immediate results and the need for sustainable impact.

Response 23 Urban Planner

Response 23 4-5 years

Response 23 Remote Sensing

Response 23 5

Response 23 Government, Academics

Response 23 No
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Response 23 No impact

Response 23 City officials wanted quick solutions for traffic. Used remote sensing data to propose long-term
effective solutions. I used data-driven analytics to illustrate the potential outcomes of various
traffic solutions.

Response 23 5

Response 23 Communicating the importance of long-term planning My focus is on marrying immediate fixes
with the broader vision of urban sustainability.

Response 24 Professor of Environmental Studies

Response 24 More than 20 years

Response 24 Remote Sensing, GIS

Response 24 5

Response 24 Public stakeholders, Private firms

Response 24 No

Response 24 No impact

Response 24 Had to convince local authorities about the importance of preserving a local forest. Presented
empirical evidence from satellite images to show the forest's ecological significance. I leveraged
my extensive publication record to underscore the validity of my arguments.

Response 24 5

Response 24 Explaining technical details I aim to distill complex research findings into actionable insights for
non-academic audiences.

Response 25 Ph.D. Student

Response 25 5-10 years

Response 25 Remote Sensing, GIS, GPS

Response 25 5

Response 25 Public stakeholders

Response 25 Sometimes

Response 25 Positively
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Response 25 A project sponsor wanted quicker results, but this would have required using lower resolution
images. I demonstrated the value of higher resolution data using past research. Patience and
persistence were key as I balanced sponsor expectations with academic rigor.

Response 25 4

Response 25 Managing expectations

Response 26 Associate Professor

Response 26 11-20 years

Response 26 Remote Sensing, GIS

Response 26 5

Response 26 Public stakeholders, Individual clients

Response 26 Yes

Response 26 Negatively

Response 26 Dealt with a tourism company wanting to minimize the impact of coastal erosion on their reports.
Demonstrated the long-term value of sustainable coastal management. I drew upon my fieldwork
to provide a nuanced perspective that transcended commercial interests.

Response 26 5

Response 26 Balancing between scientific accuracy and stakeholder interests

Response 27 Senior Research Fellow in Urban Studies

Response 27 More than 20 years

Response 27 Remote Sensing, GPS

Response 27 4

Response 27 Government, Private firms

Response 27 Yes

Response 27 No impact

Response 27 Faced pressure from a local government to underreport the severity of a drought. Collaborated
with international NGOs to present a unified and accurate assessment. I navigated political
pressures while maintaining academic integrity in my urban development research.

Response 27 4
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Response 27 Ensuring the data is not misused or misinterpreted I emphasize the ethical use of data to inform
sustainable urban planning.

Response 28 Assistant Professor

Response 28 5-10 years

Response 28 Remote Sensing, GIS

Response 28 5

Response 28 Interest groups, Public stakeholders

Response 28 Sometimes

Response 28 Positively

Response 28 Had to balance between providing detailed satellite images for a defense project and ensuring
that sensitive information is not compromised. Used data encryption and secure channels.
Precision was paramount, as the satellite data I provided would inform critical environmental
policies.

Response 28 5

Response 28 Security concerns Ensuring the security of sensitive data is a top priority, as it has far-reaching
implications.

Response 29 Environmental Analyst

Response 29 Less than 5 years

Response 29 GIS, GPS

Response 29 4

Response 29 Private firms

Response 29 No

Response 29 No impact

Response 29 City officials wanted a more optimistic portrayal of urban heat islands. I organized a workshop
demonstrating the health impacts of heat islands.

Response 29 3

Response 29 Translating research into actionable insights

Response 3 Climate Impact Forecaster
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Response 3 5-10 years

Response 3 Remote Sensing

Response 3 5

Response 3 Government

Response 3 Sometimes

Response 3 No impact

Response 3 Media wanted alarming reports on ice melts. I ensured data accuracy and presented a balanced
view. I aimed to communicate the seriousness of climate trends while avoiding unnecessary
alarmism.

Response 3 5

Response 3 Avoiding sensationalism in climate data I am committed to providing a balanced view that is
informative yet measured.

Response 30 Researcher/Academic

Response 30 Less than 5 years

Response 30 Remote Sensing, GIS (Geographic Information Systems)

Response 30 5

Response 30 Public stakeholders, Interest groups

Response 30 Sometimes

Response 30 Sometimes

Response 30 During a forest conservation project, there was a push to use certain satellite images that were
readily available but lacked the resolution required for accurate forest density mapping. I had to
explain the importance of using higher-resolution data to ensure the reliability of the study. After
some discussions and demonstrations, we decided to invest in acquiring the appropriate satellite
data to maintain scientific rigor. I focused on integrating indigenous knowledge with scientific
research to inform conservation efforts.

Response 30 4

Response 30 Explaining technical details I demystify scientific data for stakeholders to aid in effective
policy-making.

Response 4 Robotics Engineer

Response 4 4-5 years

209



Response 4 GIS

Response 4 5

Response 4 Private firms

Response 4 No

Response 4 No impact

Response 4 Investors wanted flashy robotics demos. I stressed the importance of foundational research. I had
to align investor expectations with the practical realities of robotics engineering.

Response 4 3

Response 4 Balancing tech innovation with foundational research I maintain a balance between showcasing
cutting-edge robotics and ensuring technological reliability.

Response 5 Mineral Resource Analyst/Geologist

Response 5 6-7 years

Response 5 GIS

Response 5 5

Response 5 Academics, Private firms

Response 5 Yes

Response 5 Negatively

Response 5 Private firms wanted quick mineral studies. I stressed the importance of understanding
geological structures. I insisted on comprehensive studies to avoid costly errors in mineral
exploration.

Response 5 4

Response 5 Communicating the importance of thorough geological studies My approach is to clarify the
value of meticulous geological surveys in guiding investment.

Response 6 Public Health Specialist

Response 6 8-10 years

Response 6 GIS

Response 6 5

Response 6 NGOs, Government
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Response 6 Yes

Response 6 Positively

Response 6 Funding agencies wanted large-scale interventions. I emphasized the need for localized,
culturally-sensitive health campaigns. I focused on sustainable, evidence-based interventions
rather than quick fixes.

Response 6 5

Response 6 Ensuring public health data is culturally sensitive I ensure that health initiatives are not only
effective but also resonate with local cultural values.

Response 7 Environmental Scientist

Response 7 3-5 years

Response 7 GIS

Response 7 5

Response 7 Academics, NGOs

Response 7 Sometimes

Response 7 Positively

Response 7 NGOs wanted immediate action against deforestation. I emphasized the need for thorough
studies before interventions. I championed a methodical approach to tackle deforestation without
overlooking community needs.

Response 7 5

Response 7 Balancing conservation with economic interests I aim to harmonize the dialogue between
ecological preservation and development agendas.

Response 8 Urban Ecologist

Response 8 4-5 years

Response 8 Remote Sensing

Response 8 4

Response 8 Government

Response 8 No

Response 8 No impact
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Response 8 Government officials wanted to reduce green spaces for development. I showcased the
importance of biodiversity in urban settings. I advocated for the integration of green spaces as
vital urban infrastructure.

Response 8 4

Response 8 Explaining the importance of urban biodiversity I translate the ecological significance of urban
greenery into urban planning language.

Response 9 Arid Region Environmental Coordinator

Response 9 2-3 years

Response 9 GIS

Response 9 5

Response 9 Academics, Government

Response 9 Yes

Response 9 Negatively

Response 9 Local communities resisted certain conservation measures. I collaborated with them to
understand their needs and adapted my approach. I worked closely with local communities to
find mutually beneficial conservation strategies.

Response 9 5

Response 9 Navigating local cultural and environmental needs I navigate the complex intersection of
environmental science and cultural dynamics.
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B.2 Applied Remote Sensing Semi-structured Interview

B.2.1 Interview Questions

1. In your own words, how would you describe the significance of remote sensing in contemporary geospatial
applications?

2. Could you tell me more about the types of projects you have recently worked on? How did you incorporate
geospatial technology, specifically remote sensing, into these projects?

3. What methods or standards do you adhere to when using geospatial technology?
4. How do you ensure that your clients' needs are met when incorporating geospatial technology into your

projects?
5. Could you provide an overview of the key challenges you face when working with remote sensing data in

your projects?
6. Are there any specific tools or software platforms you prefer when handling and analyzing remote sensing

data? Why?
7. In what ways do you think the advancements in geospatial technology have influenced the expectations of

your clients or stakeholders?
8. How do you maintain the balance between cutting-edge technologies in remote sensing and the reliability

or familiarity of older methods?
9. How do you ensure the ethical collection and use of data, especially when handling sensitive geospatial

information?
10. Can you describe a project where integrating remote sensing posed unique challenges, and how you

navigated through them?
11. Are there instances where you had to make trade-offs between data accuracy and other project

requirements?
12. How do you stay updated with the rapidly evolving standards and best practices in remote sensing and

geospatial sciences?
13. Can you shed light on the interdisciplinary nature of your work? How does collaborating with professionals

from other fields influence the application of remote sensing in projects?
14. Are you familiar with feedback loops in an environmental context? What role do feedback loops play in

your projects, especially when refining geospatial methodologies?
15. Could you explain the peer review or validation processes you undergo to ensure the scientific integrity of

your geospatial applications?
16. How do you handle uncertainties or errors in remote sensing data, and how do you communicate these to

clients or stakeholders?
17. Can you describe a time when you had to adapt your approach based on the specific cultural,

environmental, or social context of a project?
18. In what ways do you think public perceptions of geospatial technologies, particularly remote sensing, have

changed over the years?
19. How do you envision the future of remote sensing, and what role do you see yourself playing in it?
20. Are there lessons or insights from your academic journey in geospatial science that you often find relevant

or applicable in your professional projects?
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B.2.2 Anonymized Interview Transcript: Interviewee #1

I have about 20 questions. I don't know if we're going to hit them all. I would like to keep this, you know, something
to your volunteering, your time here. And so i'm going to try and keep keep this. Within reason and there is a chance
that i could ask one question and in your response depending on how detailed you want to be, you may answer the
next five questions that i had planned.

Um, so we could end up, you know, only covering five questions and 20 minutes or we could cover all 20 in about
45 minutes. So so i don't feel like that. I, you, i fail. Same way information gathering from an expert like yourself
and i'm really grateful that that you're spending time with me today.

So for sure, I guess my first question is in your own words. Oh and i'm sorry if you you know you've noticed i've
been reading off my tablet here. Yeah. If at any point you're talking and you see me looking down, i'm not trying to
be rude and just taking notes in addition reporting.

Okay, okay. In your own words. How would you describe the significance of remote sensing in contemporary
geospatial applications?

Okay, my question, my answer is going to be completely biased to the To the field. Of work that i specialize, which
is the carbon market. So, It is of the Of great importance because we, we are going to advance with this technology
interview, you're going to be able to monitor.

And verify and report, the aboveground biomass or the carbon that's being either removed, or Uh, stored in in In
different porn stars from all over the world. So, I think it is a great important that we start developing that the
certificate the the registers start developing tools and methodology, just so we can apply that tool.

Um, could you tell me more about the types of projects you have recently worked on and how did you incorporate
you a spatial technology specifically remote sensing into those projects? Sure. So i am a forest carbonado this
basically. So all I to you, and i have a forestry background, so i'm a forest engineer with the undergrad.

Masters inclusi enforce management. So yes, mapping is one of a of our, like, i would say steps zero for any of our
projects, try. You do a lot of the most sensing for mapping for mapping the area. Uh, when we are doing when we
first seeing, if that project is Is worth of our time.

The first thing i do is open a google earth or go to my ArcGIS. And literally, just Analyze that or is that area? That
could be here around vancouver but also in indonesia or the areas that i've been working more soft American Central
America. So, laryn while i'm looking for is to see How is the poorest covert, how is the land cover and the utilization
of the classification of the land water?

Soil, pasture and material forest. So, this is one of the first things that i use that for and then for sure, for the projects,
i basically written before station projects, in red projects, so projects, therefore called conservational, force. Um, we
did use for one of our projects. Now, these lend classification we are using uh Machine learning algorithm called
random forest, but one of my colleagues has that was training that model and developing.

The model is to talk to the public. That was the second first person that i would, Our suggest you So one of the
things that we need to prove when we developing a carbon project is okay, if you're doing reforestation and we
starting off with pasture, then you need to prove that 10 years before the project started.

Low force was cut. And how do we do that? Well, that's one of the first use of remote sensing getting an image from
10 years prior and then use the land classification model with random or is to distinguish between what was for and
what was known forest and show to the auditors show to the That's water.
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So the registry look no forest was cold was cut or this is how the area looked like 10 years ago. This is how the area,
you know, looked like before the project is studied, And, We're not very far away. But sooner, were you going to be
using that even more from monitoring that this person?

So after we validate and verify the credits and being Uh, retired. We need to keep mind during those projects.
Talking about projects that last 40 years. So every five years you would need to verify again. So i think in it's very,
it's an assumed feature, we will be Uh, using remote sensing for that monitoring too.

So anytime we have our monitoring plots in our inventory, well done. We're just going to use your non-sizing to
keep like, seeing how the above ground balance is growing. That's great. I think. Jumping off what he said here. This
isn't a question and down, but you did mention art, gios and google earth.

Are there any other software or platform that you utilize to do some some of that initial visual assessment?

No. Yeah i said google earth pearl. Okay. That would be the the easiest ones because we usually get kml files. Okay
and articha. Yeah. See google earth pro. And our js are the main softer that i use yet and then google earth engine to
get some old image for sure.

Okay. Engine as well. And then Onto assuming anything, but do all the subsequent methods that you use stay within
sort of these software, architectures arcGIS google earth engine. Yeah. Okay. And then, Kind of expanding from sort
of the initial visual assessment that you can duct. What methods or standards do you hear to when using remote
tempting?

Okay, so for project disability again suppose you're my client. You were my client that comes to the company and
say look i have this farm, my parents have this area. Could we do a carbon project? Um, Depending on the size and
how undecided the people that. What we call the front line here, the frontliners, right?

So those are you wouldn't. You wouldn't come and talk to me as because i'm the technical. So i stay in the basement,
crunchy numbers, just so my boss and people from the finance working, look good. So, yes. But then they, they get
in doubt very like, uh, This is worth that's when it comes to my head.

We don't have, i don't apply the land classification for that because again We are not making money out of the
project yet. So, how much of my time are going to spend into doing a detail analysis, and getting, because we need
to get some sort of, like, some acid.

It's some rough assimilates of how much carbon would With that area generate. And then i spend it back to the
financial team meeting on the combination models and decide it's worth not worth it. Uh, we don't, so i usually i just
do like a visual, it's visual And what i'm looking for is construction, so buildings Um, And basically, Seeing the land
cover the difference in.

Forest area, what i'm seeing as that. Usually, about the shade by the texture of the image. Um, Yeah, and then i go to
my google, to rgs to basically create shape files of this areas. Estimate the area. The projected area. And then have
some sort of accurate estimates of that, how much area we would have for each type of project.

So, okay, of course, station or are we going to do conservation here and based on that area? I do the rough estimates.
I wish we could do a more detail using, maybe now that we have this land classification model with random floor is
ready. That we could use for our feasibility, for doing the visibility.
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Um, because again it's something fast i shouldn't be A lot of work and energy that you put on doing it. It's almost the
same amount of work that i would have done for any other project. Because when i'm doing those estimates, i want
to be as accurate. As possible.

I'm not looking for precision and looking for accuracy. Well, accuracy and precision blood. Yeah, we want to be
accurate because we don't want to be Penalized for, Having some uncertainty and yes, in those Those carbon. Okay.
Because we, we gap. Analyzed that. Yes, some errors. So i feel like the devote sensing application and i feel it's
going to come to increase that accuracy and transparency.

And doing some trust to our clients and all the stakeholders. Say of how things are done, how things are estimated,
how the monitoring is done. And i'm going to talk about monitoring is not just how the forest is growing. But is
there any sort of leakage So have the pores being cut or we can monitor.

Natural disturbance was a fire, like trees were blown down. Landed with the monsters who we have access, much
more feasible to do this at them. That's great. No i think in the in your answer, there, you kind of touch on a few of
my future questions that Like to jump to right now.

Um one of them you're talking about, sort of building trust and accuracy and the fact that you would get penalized
And so, i guess, my question here is, how do you handle uncertainties or errors and remote hunting data? And how
do you communicate these to clients and stakeholders? And i guess if you could also expand on sort of how you get
penalized and foods making, The decision as to whether you would be penalized.

Okay. Yeah. So when i was talking about the penalization is related to begin certainty when we estimating the
carbon stalks, So when we estimating in the above ground, by the mass or above ground below ground, It it just, i
don't know, depending on the tools that you can include soil.

So, we use a The main registries that we've been working on. The certifications is Vera. Is yes. So PCS has a
modules and tools. That tells you how how you get a calculate those the common stocks and how are you going to
calculate that uncertainty in those estimates on those askings?

The the module that touches on remote sensing is being prepared. Now, it hasn't been released. So so far There's no.
The the use of remote sensing, at least for the carbon word, it's not. I'm gonna call regulated, but it's not, i shouldn't
that shouldn't say regulated. What i want to say is like there's no tour methodology.

That. Yeah, decorates that sets. The procedures, the standard operating procedures for using remote sensing than
calculating their background by. We could use, then we've been using by, in the end, we will need to come back to
the exhaust spreadsheets and for all monitoring mentors. So the uncertainty comes or the penalization comes with
the uncertainty when assimating those average Uh, cabin so when you're asking any, so if your standard deviation is
pretty high which is pretty common.

If you've talking about flexibility for a station, you have small tree, they have big truth. So how you simply that?
Can lead you to. A higher uncertainty. So if you pass an asserting threshold of 10 percent, you're going to start
getting finalization. So, the amount that you estimating will be deducted by 15, 20 percent due to that uncertainty.

Wow. Okay. So, i feel that with the use of remorsements Again, all we By our goal is to be accurate, is to be as close
as possible to the true value, to actually, what's up there. So i feel that the remote system can help us there. But that
doesn't mean that we are giving up on the monitoring.

Network of plots and going to the field and things that. As of course, A lot of experience is on measuring, dbh and
deviation hides. So i feel we we are dissenting in media going fast with that, but for our projects, we will always
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start to some sort of like launcher blocks calibrating those removal since you models making sure that they are, you
know, the deer accurate the in making and even understanding that the air that we coming out of that.

Right? So we can control that for the management that's going to come after. Again, i'm talking about projects that
it's going to last 40 years. I don't know if i'm going to be involved in the project anymore, but my role is to set up the
rules and conditions and all the procedures that it should have.

So i feel the remote sensing comes, at least for the carbon market to help with that monitoring and being more
active. Um, The methodology that outlines the procedures for using that in assuming the background mask. At least
for vera for VCS, it's not yet released or it should be released pretty soon.

Very we already announced.

Okay.

I guess going into sort of how those penalties work in coming outside certain I'm certainties you had a certain rash
cold and then how you end up getting penalized there and in your role setting up sort of the rules and regulations for.
Like you mentioned a 40 year project in which you might personally not be.

A part of by then, could you explain sort of maybe the peer review or validation process? You undergo to ensure the
in scientific integrity of your applications for your client. Just to Of correct. Something that you said i don't set up
the rules, i obey the rules and look at it set up by the cdn by the clean development.

And even by the byvera, by the rest of, it could be Uh, the American standards, or the, the car, the climate action
reserve. I've been working a lot this data, and we see us, So it's they set up the methodology and as a project
developer i'm close, we are responsible to get that project.

Out of the whatever is happening on the ground already. My row is okay. Translate to vera and put it into the project
design, right? That document, that outlines all the details of the project. That's so that's kind of my room my role.
And when i say, well, the procedures, i think my role is also to outline the procedures of how we are gonna.

For example, how are we going to monitor? How are we going to do this inventory? Or how we're gonna, how to
calculations are going to be performed, so, which equations. The following the methodology that was already
outlined by their, Um, the mineralization so we have The finalization comes with the higher uncertainty when i'm
assuming that average above ground biolence.

So we have one way that we can calculate that that equation is established by there. And actually not by there. It's
Statistics that basically, what makes? Um, Uh, But and then, but what happens first when you have a project,
REDACTED comes in my team comes in. We're helping you to post that project and translate what you're doing on
the ground to put that on a dockman.

And show that to vera so that we can start. Indicating the verified carbon units, right? So we are reviewed and the
first level of review is called the auditors or the dvd. Uh, so that's independent. Company third-time company that is
listed. On the vera website. So, There is some conditions, for those, someone to become an auditor.

But they come to the site. And they. The evaluate a proportion of the monitoring law. That's And they calculate.
What they call it. It's The percentage differences. So whatever i presented to them, as the result of my inventory,
they come back and be very beside that. So they we measure a percentage of plots.

And get some sort of error out of that. So that's what you show. That's what we got. Those errors could be associated
and basically, what they want to try to do is to catch that Welcome to six. That's systematic errors, right? So the

217



errors there, come from It could be a number that you put on long, the way that you're doing the measures, Say
wrong.

So the verification wants to catch that. Uh, but for example, we got one project that the way we were doing, the
inventory was criticized, in the sense of Uh, we should be doing an asset therapist approach. Instead of doing just the
simple five because of the high variability. So we have big individuals.

And we haven't natural regeneration happening. Yeah, by using an ass to the privilege. And those areas, we
extrapolate, That biomass to the area so you have smaller interviews being measured in smaller areas but big
individuals being imagined bigger use Then your standard deviation is it's pretty low. Yeah, because of the way that
you assembly, i mean, that way the uncertainty is going to be creative.

The uncertainty is higher than 10 percent. We're getting. Be getting realized. Okay, 10 or 15 percent of the, the
credits are going to be discounted. Uh, into that. Again, that's without using any sort of remote sensing. That's that's
how it is. But i feel like, even if we use remote sensing, the otters would need to go back then.

And verify the work that was done. So whatever we do with remote sensing from now on at least with the youths. In
the carbon line it needs to be very they need is to be transparent. It needs to do with the business. Because the the
audience comes as for us with peer reviews, when you're trying to publish, But they're gonna question.

Yeah, and they're going to try to repeat your work. So having shareable codes. So that's been using, you know,
google earth engine or something so arctic could be an issue. Because it's a paid software. So not all the orders.
Have that allow license. So you need to be using either kgs or something or just google or pro everything you can.

Now it's easier for them to verify right? The maps. Um, But exactly where my less. How the peer you happen? Yeah.
No that's very good. I'm actually interested in In that one approach in which he would critique the name, they
offered up a new methodology. Is that now Your standard moving forward or is, you know, when a new or different
methodologies proposed to reduce uncertainties, that's something you adopt going forward, or is it project-based?

Yeah. So Each project you realize that each project's quite unique? Because, It depends on many factors. It could be
that it's starting from the zero. We had a project this year. That people have been doing Google Forestation since
2013. So the implant ventures the NGOs that are working on the ground.

They highly experience. But we and then we when you go and you decide to certify that to turn, Whatever that
they're doing. To a carbon project just different. The fact that they're doing with more stationery Now we got to
translate that into we're going to be done a carbon project under the on the vcs Uh, certification.

Um so we can do what they call the allow vcs and most of those magistry allow what they call the methodology
deviation. So if they propose something but you've done something different, As long as you. Justify and show the
logic. And then it's ability to convince, right? So if you got your references in everything, good references, a good
large day.

So, Just like in academia, how lensing, the And when you're defending your or even like, for your comprehensive
things, and so yeah. Um yeah the ability to convince and show what you did and why did you do? Now, did that? To
that critique in which method was recommended, where you given the chance to Sort of redo your estimates before
getting penalized using a new recommendation, or where you given the chance to defend the method in which you
chose them.

Yeah, so for this project will continue for No, we couldn't use the estimates bone that came from that monitoring
inventory, because the monitoring inventory gave up an air. Verification that was race. A period that we couldn't
explain and that was because it was not using permanent plots. Okay, an asset approach.
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So And again when when REDACTED in my team, came to the project, all those things were already done. So we
were, we could Are we we try to explain to the other, but it's one thing is related to the other. If you cannot, if you're
monitoring inventory, cannot be verified and that will be the same with if we using remote senses.

Yeah. If it's not very fileable it's like if they cannot reproduce what they did and come up with the same results. And
for sure, when we're talking about forest, Trees grow. In the tropics tree grow trees, grow really fast. So six months,
there's going to be a difference, they do expect it, but that difference cannot be higher than 10%.

But, And you can justify. Okay. If before was standing now, high is 12 which would be good but they cannot be
cannot be six. I cannot be 20. So even if we're dealing with students or whatever tool that we're using, It got to be
very gotta be reproducible.

Great. So i guess There's one question i have here that you might have already explained but i'm going to ask it just
in case. Are there instances where you had to make trade-offs between data accuracy and other project
requirements?

Okay, i think i'm not gonna answer exactly what you're saying but i can just find something that happened and i see
that it could be.

It could restrain the use of, for example, we need it, i told you that for one of our products, we need a high quality
image to prove that no trees were removed. No forest was came back down. In the last two years. The image that
we're available for free.

That we could have retained from google engine. Yeah. I have resolution was awful. And the auditor was not on
convinced. We put an even distinguish. What wasn't true, like the boundaries.

Try to get a better resin, shouldn't age and enter the price of it came, as a I'm gonna call it as an issue, but it wasn't
necessarily an issue. Oh yeah. But made for many projects without purpose or i'm seeing from my field, right? It can
be. Because then, The threshold is how much of your life, the scientific approach.

How much are we going to, you know, specialize tools and being very Um, Very scientific. For those projects.
They're going to become very expensive.

To get out to, to get certified. And then in the end, That their price is going to be pretty hot. And then my questions i
is it going to be sustainable in the long run. I would get able to sell the credits that come from of forestry projects
compared to the To the plastic projects or even from the technology.

The cost type of projects that you just switch or some sort of material and that's much easier to To catch it. So i see,
for example, the price of those image or, for example, the user rgs like the license of the software. Well, these things
could come as a As a As a struggle and yeah there could influence in the end in the accuracy of the data in the in the
actress of how you estimated this.

Even though that's a that i know that's what their This tracking for this is how you're going to build trust. Yeah. What
we doing? This is not cryptocurrency. Even though it sounds like, because we cannot see it, Yeah. Right. But Yeah, i
see. We are constantly debating that how much of this, how much science we should be using because it's not a lab,
you're not associated to university, be it?

On those projects and how much of the accuracy You're losing and just using, i'm going to call a rudimentary, you
know, like simple things. Yeah. Simple to yes, free tools. Free image.
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There's, This brings up a really new question in my mind. And this comes that You know, you're hitting on a really
important topic here of sort of trade-offs between, you know, cutting at the science versus what's tried to tested. And
maybe a just certain point becomes a bit easier to implement.

Um, And i'm wondering if with your clients that Um, you go through this entire process and everything. How many
of them are mandated to sort of have a science-based solution? And do you believe in your association with these
projects that they understand that this might not be the cutting edge of science that this might not be.

Um, a method or an approach that You know, when When it's reported on in bloomberg or New York Times and it
says you know, science has estimated this and that Um that we are using simpler cheaper more affordable, open
source method versus maybe the cutting edge of science which you alluded to might be expensive.

All each project is what you need, right? And it depends on. Again, it comes to show to show so that we can have
evidence. I'll come back to that example because it just happened. That was something that we were discussing last
week, right? And then the price of the image came as a Yeah.

As okay. Let's push on the brakes now here. Um, i'm not talking about problems about thousands of dollars, right
talking to indian 500 of dollars, maybe. But that comes as an element surprise, it's like, Oh, i did not see that. Is this
really Why. Now during the second round of water is of audit of finding that you bringing that up, You know, and
Um, and again, you need to limit manage the clients expectations.

Sometimes you're dealing with people that are very intelligent too, And they want to know everything that we just
and And all the airs and say they want to be a part of that. Yeah. Uh, i think you imagine something that about that
reminds me of the I'm going circles, i'm not, i'm Not falling.

A logic here, but let's see. The, the guardian article that came out this year. Which the government criticized in the
assets and most of those credits are The ghosts, they did not exist. And the question, the way, the transparency, the
how the How the data was disclosed. So yes as project developers as a company.

Lean and make sure in my team. Most of us. We either have PhD or masters. So that's to say, we always choosing to
use the scientific approach, so we always questioning each other, like, where's the evidence? Like, what's what's the
reference for this? Seem to logic. Seems that makes sense? The results that we get.

We always going to go for like that. Um, A solid. Scientific approach. Of that, once it's global implementable very
father. And then it's also the two of them. As i swear, i could not share a shape files. With the auditors. I share KML.
Because that's something that you can open any one of those tools.

I cannot share very complex models with them. Are, you know, our Package. Well, because they may not and they
may not have the technical expertise. So, That's something. Don't live it up for you guys. And the most interesting to
think and solve that, okay? Uh, i know that if we need something more specialized, we realize We had some people
for another project doing some sort of like lighter.

So we subcontract those Um, But again, it's that discussion how much Um, Science. And How much money? I will
an invest in this. The price. The credits that can.

This has been incredibly informative. I loved spending some time and hearing about. Yeah, some of you are data
thing blind with your projects pain points and getting an insight into sort of the process and how it relates back to
your own academic training and everything and Um, where it goes from here.

So, And i know this for a minute over and, um, I think covered all the questions i had and i'd love to follow up in
case you had anyone else that you'd recommend, i talk to. And i just wanted to thank you again.
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B.2.3 Anonymized Interview Transcript: Interviewee #2

Okay, so Um, So i've had the privilege like i mentioned before to witness transformative impacts the geospatial
technologies. Um, recognized this dynamic. It's a dynamic landscape. A lot of people involved in the curation of
applied Uh, geospatial methods, in your words, how would you describe the significance of remote sensing in
contemporary geospatial applications?

Um, I mean there is a really big significance of a special in our felt. I cannot really tell for any other fields. Um, but
in forester and especially in the forest carbon projects, I can even see the trend of being like, pushed father. And
father is just So, we have a lot of, for example, of projects that are located like in the very isolated places and quite
often, it's not even possible to get there to measure their background on themas to do like, any other field
measurements.

So i feel like js, or remove something allows you to measure it and also reduce your carbon emissions while you're
doing that project. So it is highly significant and it's gonna get more and more significantly mistakes. That's
interesting. Um, you mentioned sort of isolation of some of these field sites.

How are you able to validate the remote sensing data or the remote sensitive imagery that that is collected for these
sites? So quite often what would do is, um, We use lidar data. Okay, which is a little bit more precise and for
example using a sentinel or Lancet which is like go max to 30 meter resolution Uh definitely allows you to measure
by my small precisely because for example you can Are quite often measure there at the height of the trees, you can
measure the crown closure, you can measure the slope and from there you can estimate the biomass.

Um but you definitely need to center this data to something. So, for example, if you collect the lighter data, Um,
And then you say, like, okay, this product already has this amount of card one of this amount of biomass, but there's
of course, going to be something variation, some of this places going to be less than we're others.

Are going to have, for example, like a A higher. Like species, richness. So for that what we're usually do, you still
send the crew? Sometimes unfortunately to isolated places and you put a GPS point. Um, so the plot center is going
to be there. Uh, and once you collect the data, at least it knows where the plots are located.

So you can like equally put it or like mop layer two layers on each other. Oh, that's interesting. Um, In, i'm guessing
that you're working in landscapes that Can change season overseason, i think prevalence of were then forestry.
There's forest fires. How often is the lighter data collected. How often are crews going out there to get that x y or To
sort of validate the data.

Do you have any issues with biomass estimation in such? Or issues with fire in general, especially with these
isolated areas. Yes, certainly Um, so once the data is collected, it's unfortunate not quite cheap to apply lighter or
even like, even if you want to get a better resolution box.

Um, so once you start a project and once you estimate biomass, You kind of stay with that. Because it's going to be a
start of the project but then you supposed to remember everything. Um, Every five years. So that's going to be
money to work. Yes. Um, you're supposed to remember it.

And then there is going to be some buffer that would let you like. For example, the biomass is still there. Uh, you're
gonna get like more credits. In a future if biomass unfortunately, there was affected by fire or by natural disturbances
or even by illegal logging, Uh that those credits, those buffer credits are going to be taken from your project so you
kind of lose them.

Um, how often it happens? Unfortunately you see it quite a lot of fun. There is definitely going to be a fire there.
There's definitely going to be um natural disturbances depending for example They were a couple of projects that we
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worked on like even not our projects but we saw that they were acting like hurricane, So if that happens, they have
to speed up the money touring.

Like reward of the monitoring red measurements like once it happens and once they know the ear, it was affected
that they will measure everything from the start. They will send a team evaluate the The fact of it, they will get the
new data and they will, they will have to report it.

An ideal word. Nice interesting. You mentioned this timing of every five years, you go back very luncher. Is that a
standard is the client codes. Standard operating, where is that five years coming from? It's coming from the registry
and from them. Yeah, that you decided to use. But most of them methodologies, still use like five years but like um,
period.

Okay. Great. And then Bit of a personal curiosity here. When he said, Things like illegal logging could affect. Um,
client's ability to to gain or lose credits. Um do these credits get insured for things like that? Or are there protections
against things like illegal operations? Oh yes, certainly. Um So, for example, if there is a project that works with So
there are two different projects, for example, of forestry, if we're talking only about like, Their frustration,
deforestation, there's avoided plan, and there is avoided unplanted for a station.

So quite all find these days people prefer not to work with avoided unplanned, the first station just because It's really
hard to justify it. It's really hard to measure it and It's been getting more and more criticism these days. So what we
prefer and what many other companies prefer to work instead is with avoided plant deforestation and that's where
you, for example when The.

The. The land owner, for example, he would have a Illegal paper saying that if it wasn't for the project i have
applied, for example, for like a pyramid to deforest or my neighbor has this forced the area and applying to do
something like that, something similar. So you kind of like measure what would happen And to protect, you still
need to protect that area because quite often like even if it's a private property even if he's doing everything he can or
she is doing everything, um they can To protect the error, they're still going to be some of the legal login.

So what they need to do as a part of the product, they need to hire Rangers that would go around the theater once in
a while. And look for the signs of deforestation or look of the sign for the people being present there.

So, it sounds like there's Multiple aspects to one of these credit projects. And if the client is, Tasks with hiring
rangers. Check on everything i'm wondering REDACTED doing the measurements. They have the client client has
other obligations in responsibilities. How involved is clamco in the entire process? Or is it just on sort of the
Measurement.

Um, Side of things. All either came. It depends on a project. Um, But if, for example, Was started from the scratch.
Then we're gonna be involved in everything that includes like project setup doing a literally literature research on.
What has happened around the land. I do, for example mapping i check how the land looked 10 years ago.

I'm checking um The historic and land use. So you're trying to estimate like what was, for example, the main agent
of deforestation Um, that would be other culture. Um, that could be just timber harvesting, that could be any other
potential. Waste, uh, two layout together for i guess to deforest that.

Um, so we would be included in that. We also would be included in calculating carbon Um, quite often, we don't go
to the field to measure it ourselves because we try to hire a local actors for that. But we go with them to. Check on
the results and we will go there with auditing team to make sure that everything is correct.

222



And then also includes also like registering the project selling the credits and Although other. Okay. Awesome.
Thanks for that overview. That's super interesting. If Sounds like there's A lot of work, especially when client goes
brought in in the beginning, it seems like there's a lot of work to look at sort of social contexts of sites as well.

Um, How does any of of those i guess social impacts on the land that you might come come across in your lit review
or your Uh, Sort of site history. How then do those play into the more quantitative measurements and registries and
standards that you do with GIS implements and how do you account for for historical content?

So i could just lay clefrite again. Yeah, so you mentioned the Um, you might do a lit review on the history of the
site. Uh, you might hire local actors to go in and kind of look at Aside to see what has been done. What's currently
happening, what are some of the land uses around there?

So there's Some social aspect. There's some human involvement on the landscapes, and i'm wondering how how do
you measure those? And how do they play into some of you or more credit specific or forestry application? When?
When registering the project and and Your screen credits. Yeah. Um, so you mean like the people that we hire or you
mean like, uh, how do we?

Like, i guess. Yeah, sorry, it's confusing. I guess. When you conduct the lit review, when you look at the history of
the site, how to how is that informing. All the subsequent work that comes after that. Okay, so you're trying to like
find the relation. Okay, my bad i was like, oh no, no that's that's totally on me.

Yeah. Yeah. No no it also misunderstood it. Um, so yeah, you definitely need to Check the historical land use. It's
because it helps you to identify and calculate deforestation rates. So, for example, if i go back, using the sentence
telling you, as a go, NAC that like, 20% of the forest was deforested.

And then they Check the server accounting, iris and i do year by years. So, for example, i check to sell 2010. I'll
check this out on 11 to sell 2012 and i usually, i believe them at theology, ask you to check it for the 10 years of for
10 years.

You see how much of the land was used and how or how was, how much of the force was lost? How much of the
land was used for private purposes etc? Um that way you can calculate deforestation rate and knowing that number
you can calculate how much carbon would be preserved.

Because the project is there. Interesting. Okay. So the 10 years is set by the registry and then you use remote sensing
to get those measurements and then do a comparison deforestation rate, which then plays into Accrediting. Okay.
Paper, interesting. Okay. Um, In what ways do you think the advancements in geospatial technology have influenced
the expectations of your clients or stakeholders?

I definitely improved that. Um, in a way that clients are now, like are quite familiar with the data set available there.
So quite often they don't even want to work was a 30 meter resolution which is like a while ago was considered to be
like good. Now like you hear project having like for example nastly it is having a project if force carbon project
right now.

I believe in indonesia. Maybe malaysia somewhere in a celsius to Asia and they using 30 centimeters resolution
bombs. So, like the bar is very high. Yeah. So quiet, definitely ask you to provide you better moms and then the
auditing team also comes in like they were cases with auditing team questioned our use of landset which is quite
understand because with the data available, Like these days.

A lot that is really bad. That's so interesting. I've been One of my own projects, we had access to 10 centimeter data.
I'm working on forestry applications, and over a really large. Space. Client thought, this is amazing. We're going to
be able to do some lunch and Coming from remote sensing perspective.
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I'm thinking this is too fine of a resolution for our project. We really don't need this fine resolution if anything. It's a
bit cumbersome. Do you have any sort of Conflicts with clients or stakeholders in or auditors, in trying to justify
your methods and being like, no, in this case, landsat is good for this application.

And how do you go about that? Yeah, um, yeah. One the audit like Clients. Usually don't question it as long as like
okay and like that would be happy to have good resolution maps and i think they Often wanted like for the personal
use because then they can look at put a picture of the project.

And like it's very fine resolution. You can see every tree, they can see like what's happening there where the 30
meters resolution. Looks like like something blurry, right? But auditing team quite often questioned that and There
were times where we used, we used landsats for land classification. Uh an auditing team question.

How we were able to like get the training data with such a bad quality mouse? Oh interesting. And which is a like a
fair point. And how we justified it is we use the arcGIS default map as a reference Um, because like, for example, I
believe it's i don't remember what is default map of RJS.

It is definitely 50 centimeters resolution but i don't remember the The region of it, but anyways, Quite often you can
see if it's like, You can check the year of the place surface, for example, something 2014 and the lands are dated
some of the 15 and if there is a clearing like, of course, declaring is still would be there.

So like you can still see the like the the color is going to be different, you would definitely try to apply spectral
indexes. Um, Like see if there is even identified bear crown more but yeah like auditing auditing team is still
pushing. Forward high resolution loves these days. Got.

Interest. That's good to know. But um, Really still helpful. With your historical content, the the expectation of using
the archgis default map, you know, keeping things of the same resolution and needing to provide that justification. I
think it's interesting. But the client kind of goes. About your recommendations on questioning, like, not questioning
them or Or anything.

But i did want to and sort of on the same vein, are there any instances where you had to make trade-offs between
data accuracy, or data, resolution and other project requirements?

Um, I feel like we're still go for. Data accuracy over deer, like the higher resolution. Like yes, client clients don't
usually like they do one like gain better moms, but of wanting it like a day, you explain them that you were able to
Like to estimate the force that era that would be fine with that.

The my like fight over a little bit like, oh, if you use the better resolution months, there's going to be more forest. Oh
it is an on really true? Yeah of yourself. Like sometimes like even higher resolution like it just creates to my noise.
Yeah. And, Which is. Yeah.

We we still can use Lance and like we're still trying to use not like landsat is probably not our top choice. Like
sentinel two is still the one that will work them with but i give the project. Like, for example, if the project started in
2013, then we have no choice but to use a landset.

So yeah, we try to still like go over accuracy, for accuracy, over resolution and of course, once do the like
classification, you like you do the confusion matrix, you do accuracy assessments and when they see, like, good
results. If if statistically speaking everything is, okay, they're okay with that, okay?

And so on that note, um, one of the things that i found in my own work was meeting to sort of explain those
statistics and accuracy results and user and producers, and what these meant, and why they were differing numbers

224



on the most part, in your clients, just stakeholders is that a basis of understanding, or do you have to find or do you
find your Your, your team explaining?

Um, Enter to get detailed, technical details to clients all the time. No, no, we don't, we don't go over like into details.
I still, i usually give them like a brief overview of what happened. How we did it and show them the confusion
matrix. Uh, i try not to go for the user accuracy and like, producer accuracy, because that might be a little bit too
confusing.

I just use it overall one. Uh, and then you show them like how many pixels will miss identified just in general, just
like show the matrix because i feel like it's easier for them to connect with numbers like when it's in the table. Um,
and that's pretty much sad.

And then, of course you show them like Like visually. How correct? Where results? Okay. Yeah. So yeah. You yeah.
Um, Also, in a similar vein. You know, you're working with people with different expert. Expertise backgrounds.
How does collaborating with professionals from other fields, influence the application of remote sensing in your
projects?

There were times where We worked a couple of times with people from ubc, so university, british columbia. Um,
because Our company. Like, People from my company, from my team used to work there. So they know people. So
you definitely have access to like The most recent updates in the field and like quite often they recommended us on
the best way to approach, for example.

Um, like classification again. So yeah, like we tried to stay updated, we try to chat with them. And um in general we
try to like go to webinars whenever it's possible. We try to pursue our team members to like finish little courses that
as we provides that archet provides just to stay updated.

Okay, okay.

Um, Oh, you touched on this one? So, we've mentioned auditors. Mentioned. But there's this group of people that
are asking for justification on methods. Um i guess my question here is, can you explain a little bit more sort of the
peer review or validation processes that you undergo to ensure the scientific integrity of your applications?

Yeah, so they're gonna Usually two to three circles with auditing team. Okay, so first thing they go to the field. Um,
they randomly select a couple of plots, a couple of permanent forestry, a forest plots. Uh, do your measure
everything, including a wolf ground by moss depending like what it was included in the project.

Like see his diversity. Sometimes slope like tree height, siding index, etc. They were measure it. And i for
everything is dean, correct. They okay with that even if they're not happy with like some of the things that will
measure it and sometimes they like, it gets very like, very many peaking, um, really go very into details.

Um, like for example, the equation could not be correct. Or like they did not use that. Like the most updated like, for
example equation to extrapolate the biomass numbers. Or like, the dbh was not measured from like the the How do
you say the high that they seem to find the best?

Um, for? So for example, for mangrove Um, projects. Um, there, for example, whatever you measure, dbh of the
three, they're going to be some of the like higher and lower like, Like parts of the tree and if you just like rotate
around, then you're losing quite a lot. So you need to be very respect to actually like hold it here, like move it there
to make sure you get into every priest.
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They will read and they will know if you hit them, right? Interesting. And i'm That would be the first round, then
they give you time to respond, you can try to find it, but some of the things like the auditing team, there is for you to
make the project better.

So usually you don't want to find them if they find something wrong in calculations, you just want to fix it. You like
it's something weird to find them on that. Yeah. Um, So, you try to fix it the new standard again, they find something
else then Uh and the end of the day, they don't have any comments and they find with that.

They give you a paper saying, like they think you fix everything they found and then you go with this feeder to the
registry. Okay. As there ever been any conflict in the sense that they found something that you needed, correct? You
follow their their recommendations, you've tried to correct it, but you keep coming to a difference between project
and auditor.

Or does it usually? Their recommendation was usually what you needed to do. That recommendation is usually what
you need to do, and like, Um, not like when you set up a project again, we have the connection to UBC, you like
some of the people, you know, our team of like come with a heavy, like four strip background.

So i'd like to think they know where they're doing. So we usually don't get like, That of a bad comment. If they find
something incorrect, we're a measure it, or like, we like, we apply it. But there were times where we took the
projects that were non-developed by us.

And, We saw their auditing. The reviews and they were bad, like they were really bad and you could see they were
like, trying to fight it over and like sometimes Sometimes they were not even trying to fight it. Sometimes there was
like A simple miscommunication or a simple problem with a language barrier.

Um, The auditing team would tell them to do something and they would not tell them to like they would not do it.
Then again, they said me that for the second round auditing team again, would tell them to fix it. They would not do
and then they said me to the gate and we saw that auditing team at some point.

We were like losing their mind and they would like, put it in the cups. Yeah. And like less so like, yeah.

That's there, that's interesting. It's almost like a peer review, paper process.

Great. I guess my last question here is we have about a little less than five minutes left and we got through the meat
of the questions that i wanted to ask you. Can you describe a specific project, where integrating remote sensing
posed, unique challenges, and how you navigate it through that?

Uh, sure. Um, There were times where we had to estimate forested area in some of the Places. And Sometimes
there's like a game but data set, which was 10 meter resolution, which is, i guess it's okay. Yeah, but we did not only
take into the account that the place was very hilly, very sloppy that like the sloperation was insane.

So every time like even with 10 meter resolution, I've ever try and we try to do line classification and train the data. I
like all of the sides, all of the like shady sides or all of the trays that were on a side of the hill, they were identified.

As clearing. Oh because yeah, like the the spectral signature for some reason was like, working more for the bigger
grounded, it could not see that. It was forest. Um, And i feel like, They're like, how we got over it. In the end of the
day, is that? Yeah. Like we applying the slope again into the lung qualification that didn't prove a little bit results.

We collected more data, but the more data if the date like the more data we added, the more variation will we're
getting and then of the end like the such as typical results were dropping. So what we did and we actually consolid
was auditing team If we could clip those areas out so like you just do parts you clip.
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Uh they're like the One area out. You do like classification there? And then you do the shady heels on a different
classification. And then you kind of like whatever thing together which is not the most elegant way out. Yeah. But
you're a good results and auditing team was fun with that, okay?

Fine. With that fun out. We'll see you. They'll get back to us. You might have to say you said it was fine. Yeah i
mean we're past perfect first auditing like circle. When i was fine. No sometimes they don't notice something in the
first round and they look i'm back to you with the third one.

How long does that process usually take for each round? About with like three four months. Oh, okay. So then if
you're doing it, two to three rounds, you've already gone a year into the project. Okay. Three months, three. Um, The
leftovered. All the questions i wanted to ask you did anything pop-up that you wanted to ask me at all.

Oh, Up. Don't think so. Yeah. Not at 25. Any questions you can always, don't you? Yes, definitely. Please do if you
think of anything and thank you again so much for your time. I really enjoyed chatting learning a lot. Um, And yeah,
if anything pops up at all, shoot me an email if you can.
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B.3 Change Traceability Matrix: Los Angeles County Tree Inventory Project

WKID Innovation (Stavros, 2021)

Decision Context Application Traceability

Policy, Economics and Sociocultural factors that govern
people and the Technology (processes) that drive their
interactions

Process Knowledge Mapping

What is
the
expected
impact
or
change
that you
want to
mitigate
?

What is the
decision
that needs
to be made?
Who is
responsible
for making
that
decision?

What are the
driving
motivations
(policy mandate,
$, etc.) for
making that
decision?

What
current
technology
/tools are
used to
inform
those
decisions?

On what
informati
on those
decsions
rely and
the
condition
s under
which its
useful
(e.g.,
latency,
accuracy,
etc.)?

What data
exists from
which to
create the
necessary
information
to inform
the decision?

What
are the
current
limitati
ons of
the
existing
aproach
? What
would
improv
e this
process
?

Stakehol
ders

1.
Enhance
tree
canopy
to
achieve
all the
benefits
of trees:
reduced
heat,
improved
water
quantity
&
quality,
job
training
& job
creation,
improved
air
quality,
etc.

Research
and
Education to
provide tree
management
guidelines
and assign
interdepartm
ental
responsibiliti
es as often
as necessary.

The County
Board of
Supervisors and
the County Chief
Executive Office
(CEO),
accountable to
residents, need to
address the
near-term priority
action in the "Our
County
Sustainability
Plan".
Motivations
include equity,
resilience (e.g.,
tree health), and
resource
efficiency.

Coastal
Commission

Collector
App,
ArcGIS (w/
capability
to read
Tree Assets
data),
Davey
Treekeeper,
Inventory
manageme
nt software,
LA County
Tree
Canopy
Map
Viewer,
UFMP
Toolkit,
i-Tree,
GHG
calculation
s,

Accurate,
up-to-date
(i.e.,
annual)
tree
ownership
(private
vs.
public) by
location

LA County
Parcel Level
GIS Layers

Tree
Inventor
ies
require
site
verificat
ion
which is
a huge
human
resource
constrai
nt.
Some
sites
require
identific
ation of
only one
species
(e.g. oak
trees,
joshua
trees)

USFS;
DPR;
TreePeop
le; The
Nature
Conserva
ncy
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2.
Improve
tree
canopy
equity,
improve
urban
forest
resilience
,
streamlin
e tree
establish
ment and
maintena
nce

3.
Preservat
ion and
promotio
n of
healthy
urban
tree
canopy
while
ensuring
public
safety

4.
Support
biodivers
ity and
endanger
ed
species

5.
Improve
corridors
for
wildlife
moveme
nt

Public Works
Administration

Specifically:
OurCounty Goal
2, Strategy 2D,
Action 43, the
Marina del Rey
Land Use Plan,
Health and Safety
Plans

City Council
specific Private
Tree Ordinances

Federal Clean
Water Act under
the Los Angeles
Safe Clean Water
Program

Certified
arborists,
Urban
foresters,
Grants
(Minimum
Data
Collective
Attributes-
MDCA),
Plan it
Geo,
TreePeople
/LMU tree
viewer,
Google
Tree
Canopy
Lab
CalEnviros
creen
GIS-Net
Google
Earth,
Google
Earth
Engine,
R,
TNC-deriv
ed data
products,
CNDDB

and
could
facilitate
more
expediti
ous
review
of
permits
where
only one
species
type
needs to
be
verified

Existing
approac
h is
fragmen
ted
driving
needs
for
bigger
budgets
and
more
people
in urban
forestry
to
update
tree
inventor
y.

There is
a need
for a
coordina
ted
effort
for
UFMP
across
entities
responsi
ble to

Urban Forest
Management
Planning
(UFMP):
Government
agencies
(e.g., the
City), land
owners,
residents,
non-profits,
and others
with the
jurisdiction
of the
land/trees
need to
regularly
determine
maintenance
of trees
(Pruning,
removing &
replanting
trees) AND
determine
what should
be planted,
when, and
where to
maximize
urban forest
health,
succession
plantings
that are
climate-appr
opriate and
pest-resistan
t species
diversity

Accurate,
up-to-date
(i.e.,
annual)
informati
on on tree
managem
ent

Californi
a Dept.
of
Forestry
and Fire
Protectio
n (Urban
&
Commun
ity
Forestry
Program)
; LA
County
Chief
Sustaina
bility
Office;
CALFIR
E; DPR;
TreePeop
le; L.A.
County
Beaches
&
Harbors;
Conserva
tion
Corps;
UCLA /
LA
Urban
Cooling
Collabor
ative;
County
of Los
Angeles
Public
Works
Road
Maintena
nce
Division;
The
Nature
Conserva
ncy

Accurate,
up-to-date
(i.e.,
annual)
tree health
condition
(disease/i
nsect
type/soil
conditions
, etc.) of
trees,
needed
annually
or every
3-5 years.

Data fusion
of Sentinel
2/1/Landsat/
AVIRIS/LiD
AR/VHR
Airborne

Potential
tree
planting
sites

Maxent
Modeling/Mi
llion Tree
Plan

Canopy
cover

Lidar +
Optical
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identify
common
datasets
and
needs to
overcom
e
funding
limitatio
ns
through
collabor
ative
planning
and
dedicate
d
funding.

Sharing
urban
forest
data
from
private
lands

Inventor
ies are
too few
and far
between
to assess
meaning
ful
change-
over-tim
e data

Technol
ogy that
allows
the
inventor
ies to be
done
accurate
ly &
remotel
y to

Funding
allocations
for grants,
conceptual
studies,
construction
documents,
installation
and
maintenance
; decisions
made by
various
stakeholders

Priority
neighborh
oods for
planting
and
maintanen
ce

Census track
data + Land
Surface
Temperature

Los
Angeles
County
Public
Works;
CALFIR
E;
TreePeop
le; Los
Angeles
Conserva
tion
Corps

Staff
biologists at
the LAC
Department
of Regional
Planning and
TNC
identify
Sensitie
Ecologocal
Areas of
unincorporat
ed LA
County to
facilitate tree
preservation
in project
design phase

Various biological
preservation
programs,
General
Plan/Area Plan
policies, and Title
22 regulations
implemented by
the Department of
Regional
Planning to
protect native
trees

Species
(of
interest)
Type and
Location

Data fusion
of Sentinel
2/1/Landsat/
AVIRIS/LiD
AR/VHR
Airborne

LAC
Departm
ent of
Regional
Planning
; The
Nature
Conserva
ncy

Recommend
ations for
areas for
habitat
restoration
to agencies,
policymaker
s, NGOs,
funders, and
others with
the authority
and funds to
carry out
such projects

Regulatory and
public
comment/input
requirements/exp
ectations

Finer
scale
resolution
of the
“Californi
a Wildlife
Habitat
Relations
hips
System”
data
products
for the
urban
environm
ent

The
Nature
Conserva
ncy
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provide
map-dri
ven data
at a
municip
al or
jurisdict
ional
level

A
Taskforc
e
dedicate
d to
securing
funds
and
channeli
ng them
into tree
planting
projects
for
underser
ved
commun
ities or
park
poor
areas

Ease of
use in
the
Field

Prioritized
sites for
green
infrastructur
e
recommenda
tions to
agencies,
policymaker
s, NGOs,
funders, and
others with
the authority
and funds to
carry out
such projects

The
Nature
Conserva
ncy
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