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ABSTRACT OF THE DISSERTATION 
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Time series data are one the most important data type in data science field. Analyzing the 

local patterns in time series data can be leveraged in diverse domains such as astronomy, 

biology, entomology, economics, etc. Time series analytical reports can help the experts in 

these field to not only explain the behavior of their system, but to make predictions and 

even get an insight into what has been unknown for them. For instance, the repetition of a 

behavior in a different scale or speed might have been unseen from a sight of the experts 

in a large scale time series record. Anomalies can be found in time series data fairly easily. 

Approximately conserved patterns in time series, motifs, are another term of our interest. 

Time series similarity matrices (informally, recurrence plots or dot-plots), are useful tools 

for time series data mining. They can be used to guide data exploration, and various useful 

features can be derived from them and then fed into downstream analytics. However, time 

series similarity matrices suffer from very poor scalability, taxing both time and memory 

requirements. In this dissertation, we introduce novel ideas that allow us to scale the largest 

time series similarity matrices that can be examined by several orders of magnitude. The 
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first idea is a novel algorithm to compute the matrices in a way that removes dependency 

on the subsequence length. This algorithm is so fast that it allows us to now address datasets 

where the memory limitations begin to dominate. Our second novel contribution is a 

multiscale algorithm that computes an approximation of the matrix appropriate for the 

limitations of the user’s memory/screen-resolution, then performs a local, just-in-time 

recomputation of any region that the user wishes to zoom-in on. Given that this largely 

removes time and space barriers, human visual attention then becomes the bottleneck. We 

further introduce algorithms that search massive matrices with quadrillions of cells and 

then prioritize regions for later examination by either humans or algorithms. We 

demonstrate the utility of our ideas for data exploration, segmentation, and classification 

in domains as diverse as astronomy, bioinformatics, entomology, and wildlife monitoring. 

Moreover, as noted approximately repeated subsequences in a longer time series, i.e. time 

series motifs, are important primitive in time series data mining. Motifs are used in dozens 

of downstream tasks, including classification, clustering, summarization, rule discovery, 

segmentation etc. Time series motif discovery is notoriously computationally expensive 

task. Some motif discovery algorithms are fast in the best case, but in other datasets, even 

if both the data and motif lengths are held the same, both their time and space complexity 

can explode. The Matrix Profile has the nice property that its time and space complexity are 

independent of the data. Moreover, the Matrix Profile is fast enough for datasets in the with 

say one million datapoints, which covers a large fraction of user cases. However, there are 

situations where we may wish to consider datasets which are much larger. We introduce the 

first lower bound for the Matrix Profile and an algorithm that exploits that lower bound to 
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allow orders of magnitude speeds on most real-world datasets. We demonstrate the utility 

of our ideas with the largest and most ambitious motif discovery experiments ever 

attempted.
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1 INTRODUCTION 

There are many tasks that researchers routinely perform on time series, including 

classification, clustering, segmentation, anomaly detection, etc. However, given a new 

dataset, the first task is typically to simply gain an understanding of that data, in particular 

the relationship among the subsequences within it [50][54]. One way to do this is to use a 

recurrence plot. Given a long time series and a user-specified subsequence length, it is 

possible to construct a similarity matrix with colors (or shades of gray) representing the 

distance between all possible pairs of subsequences. Variants of these plots are also called 

dot plots, self-similarity matrices, similarity plots, time series similarity matrices, etc. 

[11][28]. For concreteness we will call the variant of interest here time series similarity 

matrix plots or just Mplots. Mplots have many uses in data mining. They can be used for 

visual exploration of data, or various features can be extracted from them, and then fed into 

other algorithms. For example, the Matrix Profile is an increasingly popular time series 

analytical tool that is directly extracted from a Mplot, by recording the smallest (off-the-

diagonal) value in each column [50][54][56]. 

A simple Mplot makes comparisons within time series A, as shown in Fig.1, and we can 

also use this representation to compare and contrast between two time series A and B, with 

a variant we call an AB-Mplot. Such plots allow us to understand where two time series 

are similar and different. 

Mplots (under the different names noted above) are used in astronomy  [35], economics 

[43], music [15], physiology [46][47], neuroscience [25], earth sciences [3], medicine 

[1][53] and engineering [28]. As noted in a founding paper on the topic, “information 
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obtained from recurrence plots is often surprising, and not easily obtainable by other 

methods” [11]. 

 

Fig.1 Examples of Mplots hint at the diversity and utility of this data structure. Like many plots in the 
paper, these figures suffer somewhat from the size of reproduction. We encourage the interested reader 
to visit [41] which has larger figures and videos. Here we show binarized Mplots, but more generally 
Mplots allow a spectrum of colors to indicate degree of similarity. 

In spite of this ubiquity, it is surprising that they are not used more often in the data mining 

community. We believe that this is because of the following three bottlenecks:  

• CPU: Classic Mplots require processing that is quadratic in the length of the time series, 

and linear in the length of the subsequences. This seems to have limited their use to time 

series with a length of about 20,000 [11][28][26][35]. 

• Memory: If a researcher has spent significant resources to obtain a long time series of 

say length 100,000, she may well be willing to wait hours or even days to compute a 

Mplot, in order to glean information from her dataset. However, she is unlikely to have 

the requisite 80 gigabytes of main memory to work with.  

• Human Visual Attention/Screen Resolution: Even if a user could somehow bypass 

the two difficulties above, this would eventually lead to the situation where her ability 

to visually scan the Mplot, and the ability of a standard screen to display such a huge 

matrix, become bottlenecks. For example, in Section 3.3.5 we compute a Mplot that if 
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printed out on the scale used in the figures in this paper, would cover a soccer field. 

Clearly such Mplots would defy any attempt at human visual inspection.  

In this work we introduce techniques to solve all the above issues. We begin by showing 

how we can reduce the amortized time to compute a single cell of a Mplot to just O(1), not 

the current O(m), where m is the subsequence length. Because m can be >1,000, this means 

we can compute Mplot up to three orders of magnitude faster than is currently possible. 

Moreover, as we will show, for truly ambitious datasets, we have ported our ideas to GPUs, 

to allow us to compute a Mplot with quadrillions of cells.  

We further show how we can address the memory bottleneck by the introduction of a 

multiscale algorithm that computes an approximation of the matrix appropriate for the 

limitations of the user’s screen/memory, then performs a local, just-in-time recomputation 

of any region that the user wishes to zoom-in on. Finally, we show that for truly massive 

Mplots, we can create algorithms that can build the matrices “patchwise” and search each 

patch for features that a user may wish to have drawn to her attention. This removes human 

visual attention as a bottleneck for Mplots. 

The next two chapters cover the technical information and experimental results for Mplot. 

Chapter 2 starts with the necessary definitions and notations, along with a review of related 

work. It then provides a detailed explanation of the SPLAT algorithm. Chapter 3 offers 

guidance on how to interpret Mplot, followed by a discussion on reverse engineering to 

identify interesting patterns within it. Finally, it presents the experimental results for Mplot, 

including both anecdotal evidence and speedup results.  
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2 INTRODUCING MPLOTS: SCALING TIME SERIES RECURRENCE PLOTS 

TO MASSIVE DATASETS 

This chapter provides technical background needed to understand Mplots. We will start 

with the key definitions and notations. Then, we will explain the SPLAT algorithm in 

detail. Additionally, we will review the related work to place our contribution in context. 

2.1 Definitions And Notation  

Our data type of interest is time series. 

Definition 1: A time series	𝐓 = 𝑡!, 𝑡", … , 𝑡# is a sequence of real-valued numbers.  

For the task-at-hand, we are not interested in global properties of a time series but rather 

the relationships between small regions of the time series called subsequences. 

Definition 2: A subsequence 𝐓(%,') is a contiguous subset of values from 𝐓 starting at 

index 𝑖 with length 𝑚.  

We can measure the distance between any two time series subsequences of equal length 

using a distance measure. In this work, we use the ubiquitous z-normalized Euclidean 

distance [50]. Note the subsequence length here takes on a similar role to the embedding 

dimension in discrete dot plots [28][26]. However, the implications of changing lengths are 

more complex in our case. Making the embedding dimension larger can only make a dot 

plot sparser and decrease the length of “runs” in the plots. However, because we are 

working in the z-normalized space, longer subsequences can have a lower Euclidean 

distance, and therefore produce longer runs. We will return to the observation later in this 

work. 
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If we need to measure the distance between a short time series and every subsequence from 

a long time series, we can produce a distance profile. 

Definition 3: A distance profile 𝐃𝐏)*
(+,')  is the vector of distances between each 

subsequence in a reference time series 𝐓) and a query subsequence 𝐓*
(+,'). 

The distance can be computed very efficiently using the MASS algorithm [32]. However, 

if we are limited by time, we can perform the classic trick of computing the distance profile 

on a downsampled version of A, using a similarly downsampled version of B. We propose 

to use Piecewise Aggregate Approximation (PAA) to downsample the data [22].  If we 

wish to downsample a time series by a factor of d, we indicate this by PAA(A,d). As Fig.2 

shows, on many datasets it is possible to significantly downsample the data, while retaining 

the essential features.  

 

Fig.2 A time series A with n = 64 downsampled with PAA. left) Downsampled 1 in 4, right) 
Downsampled 1 in 16. While the 1 in 16 plot has lost significant detail, the 1 in 4 downsampling does 
preserve the basic shape of the time series.   

Note that downsampling may be a particular attractive strategy here, as the memory and 

time savings are quadratic in the downsampling rate. Although the Mplot has been 

informally introduced and compared to recurrence plots (dot plots), for concreteness we 

define it here. 

0 30 60

-1

0

1

0 30 60

A A

PAA(A,4) PAA(A,16)
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Definition 4: A Mplot is the visualized matrix of distance profiles. Each row j of this matrix 

is 𝐃𝐏)*
(+,'). 

A Mplot is, by its nature, a dense real-valued matrix. However, for better visualization 

(especially for a figure in a paper) we often binarized its values to either see the highest or 

lowest values. Binarizing Mplots helps to only display the values in the desired range. So, 

a user who is interested in subsequences with high similarity (motifs)/ low similarity 

(discords) can set a threshold to only see the values in that range.  

When A = B, this definition is logically equivalent to a self-join of A. The popular Matrix 

Profile is simply the vector of length |A| that contains the minimum (non-diagonal) value 

in each column [50][54][56]. The state-of-the-art Matrix Profile algorithms (SCRIMP, 

SCAMP) can compute this incrementally, without ever having to have the entire matrix in 

main memory at one time. When A	≠ B, this definition is logically equivalent to an AB-

join. Such joins are frequently used in recurrence plots to visualize the differences between 

two DNA sequences, but surprisingly, to the best of our knowledge, there are very few uses 

of real-valued AB-join time series.  

With these definitions and notations in place, we can now review the related work to better 

understand the context and significance of our contributions.  

2.2 Related Work  

As noted in the introduction, the basic idea of creating a matrix to represent the similarity 

of subsequences has many names, and the literature is not consistent in naming 

conventions. It is important that we differentiate Mplots from true recurrence plots. Mplots 

are superficially similar to recurrence plots (dot plots) which are often used in 
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bioinformatics, linguistics, etc. [19]. Moreover, many of the uses of recurrence plots are 

also uses of Mplots. However, it is worth explicitly pointing out some of the differences 

between them: 

• Dot plots are discrete. Every cell in the matrix is binary. In contrast Mplots must be real-

valued, as we may be interested in relative degrees of similarity. 

• As a consequence of the binary nature of dot plots, they are normally extremely sparse, 

with typical densities less than 0.000001. This means that space complexity is rarely an 

issue for dot plots (by exploiting sparse matrix support in many programming 

languages). 

• Each cell in a dot plot is the result of an equality test comparing two scalers, such as 

‘T’=‘A’? In contrast each cell in a Mplot is the result of a distance comparison between 

two vectors, which can have a length of over 1,000. Moreover, these vectors need to be 

normalized before being compared (surprisingly, normalization generally takes longer 

than the distance computation [37]). This means that Mplots may take orders of 

magnitude longer to be computed. 

• Dot plots are only useful for finding similarity (i.e., conservation). In contrast, with 

Mplots we may wish to compare two datasets where we expect conservation, and/or 

violations of conservation (i.e., dissimilarity). 

Because of these many differences between Mplots and recurrence plots, little of the vast 

literature on efficient construction of the latter is helpful in scaling up the former. 

Nevertheless, most of the utility of visualizing recurrence plots also applies to Mplots.  
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There are many creative ways to visualize time series, see [13] and the references therein. 

However, Mplots are particularly direct and intuitive. Moreover, unlike say Viztrees [24], 

they preserve the temporal information context. For example, if we examine a year’s worth 

of transaction time series and our eye is drawn to a motif that occurs at about 12% across 

and 40% down, we can use our intuition to guess that these events might correspond to 

Valentine’s Day and Mother’s Day1, two days with similar spending patterns on flowers 

and restaurants. 

Having reviewed the related work, we now turn our attention to the SPLAT algorithm, 

which serves as the foundation of our approach. We will also explain the main bottlenecks 

and how they are addressed in SPLAT. 

2.3 Algorithms That Scale up Mplots  

In this section we introduce three novel ideas that allow us to scale up the largest size of 

Mplot that can be considered by several orders of magnitude. We begin by addressing the 

CPU bottleneck. 

2.3.1 Removing the CPU Bottleneck 

It is clear that a Mplot’s time complexity must be at least O(n2) (This is not the case for 

true dot plots, which can be constrained to be arbitrarily sparse, and use various hashing-

based optimizations). However, the time complexity is actually O(m×n2) [28][35]. As we 

show in Section 3.3, m can be in the thousands. Moreover, this complexity hides some 

constant factors. As we are working with z-normalized time series, the time taken to 

perform the z-normalization is actually greater than the time needed for the Euclidean 

 
1 Here we assume the USA Mother’s Day 
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distance calculation [37]. In this section we show that we can completely remove the 

dependence on m and make Mplot’s a true O(n2) algorithm with tiny constant factor. 

The idea of making the time complexity of a Mplot independent of the m value is similar 

to the Matrix Profile algorithms proposed in [54][56]. Let us consider the formula for 

calculating a cell of distance profile (𝑑(",$)). 

 
𝑑(",$) =	$2𝑚(1 −	

𝑄𝑇(",$) −𝑚𝜇"𝜇$

𝑚𝜎"𝜎$ ) (1) 

Where, 𝑑(",$) is assumed to be the Euclidean distance of z-normalized subsequences. 𝑄𝑇(",$), 

is the dot product of corresponding subsequences. 𝜇"  and 𝜎"  are the mean and standard 

deviation of T(%,'), respectively.  

In Table 1 we introduce an algorithm that exploits these observations. We call our 

algorithm SPLAT, Scalable Processing of LArger Time series. 

The SPLAT algorithm starts by initializing the Mplot matrix in line 1. The matrix row and 

column count equal the number of subsequences in 𝑇,  and 𝑇- , respectively. Line 2 

precomputes the mean and standard deviation of each subsequence of input time series. By 

updating the QT values in line 6, the distance profile of the reference time series and the 

query is calculated as shown in line 7. Finally, with line 8, the Mplot matrix value of each 

cell is updated.  
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Table 1. The SPLAT Algorithm to compute Mplots. 
Function:  SPLAT(𝑇!, 𝑇", m) 
Input:  Reference time series 𝑇!,  Query time series 𝑇",  Subsequence length m  
Output: Distance matrix Mplot 
1⬚
⬚ Mplot = nan(length(𝑇!)-m+1, length(𝑇")-m+1) 
2⬚ 𝜇, 𝜎 ← computeMeanStd(𝑇!, 𝑇", m)                                      //see [37] 
3⬚
⬚ for diag = 1 to Mplot_column_count 
4⬚
⬚     for row = 1 to Mplot_row_count – diag + 1 
5⬚
⬚       col ← row + diag – 1 
6⬚       𝑄𝑇$%&,(%) ← ComputeDotProduct(𝑇!

((%),+), 𝑇"
($%&,+))     //see [54] 

7⬚       d ← CalculateDistanceProfile(𝑇!
((%),+), 𝑇"

($%&,+))           //see (1) 
8⬚
⬚       Mplot(row, row + diag - 1) = d 
9⬚
⬚ return Mplot 

The SPLAT algorithm defined here is a general case where two distinct time series are 

compared (AB-join), however if we set both input time series as 𝑇, , this algorithm 

computes the special case of self-join similarity. For the self-join case, we can trivially 

make the algorithm twice as fast by exploiting the symmetry about the diagonal. 

By taking advantage of the techniques in [37][54] and [56] in addition to the mean and 

standard deviation, the dot product can also be calculated in O(1). So, a time complexity 

of O(𝑛") is achieved which is the minimum required to compute all the values in a Mplot 

with 𝑛 × 𝑛 cells. 

The SPLAT algorithm can efficiently compute large Mplots, but we may task it with a long 

time series that would take longer to compute than the user’s patience allows. To address 

this issue, we can create a contract algorithm version of SPLAT, parameterized by the 

maximum amount of time the user is willing to wait [55]. For example, in 

SPLAT(A,B,m,4), the user is requesting the best approximation that can be computed in 

four seconds or less.  
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To achieve this user-requested time limit, we will approximate the time series with PAA 

(Recall Fig.2). We will use the absolute minimum amount of downsampling to achieve this 

user-requested acceleration. This is easy to implement. Suppose we have previously 

performed a calibration run with a Mplot with |A| =10,000, and found it took S seconds. 

We can then predict that building a Mplot for size time series T, of length 𝑛., will take 

SplatTimePredict(T, 𝑛.) = S * (𝑛./|A|)2.  

If this is within our time budget, there is nothing to do. If this takes longer than our user 

supplied time budget, we then reduce T to create TPAA = PAA(T,p), where p = 

getPaaFactor = 𝑛./|A|, ensuring that this approximation will take exactly S seconds. 

Although the minimum possible time complexity has now been achieved with these ideas, 

we will run into issues with memory usage for a long time series. A Mplot needs all its cell 

values in memory, unlike say the state-of-the-art Matrix Profile algorithms [54][56], which 

only require keeping the minimum of each column of Mplot. Thus, memory becomes the 

next bottleneck. Our proposed solution to this issue is described in Section 2.3.2. 

2.3.2 Removing the Memory Bottleneck 

The ideas in the previous section greatly reduce the time needed to compute large Mplots, 

however as we consider ever larger Mplots we bump into a new hurdle, main memory. 

The reader may wonder why we should use the time and memory resources required to 

compute large matrices, when none of the available screens are able to display them at 

native resolution. Note that the highest resolution in a commercially available system is 

currently 8K (7680×4320 pixels).  In fact, there is a reason to compute a Mplot at a 

resolution greater than can be (currently) displayed. We propose to create multi-resolution 
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approach, which allows a user to initially see an approximation of a massive Mplot, and 

interactively zoom-in on any areas that catch her eye as requiring a more detailed 

inspection. When the zoomed-in patch is requested, one of two things happens: 

• If the zoomed-in patch was precomputed at the required resolution, we can simply fetch 

it from memory. 

• If the zoomed-in patch was not precomputed at a fine enough level, it is recalculated, 

on-demand, at the finer resolution required.  

Note that this style of user interaction echoes the widely known visual information seeking 

mantra given by Ben Shneiderman: Overview first, zoom and filter, then details-on-demand 

[42]. 

Assume that the entire area of an 8K screen is to be used to show a Mplot. Using the SPLAT 

algorithm, we could exactly compute an AB-join of two time series of length 7,680 and 

4,320 in well under one second on a standard desktop (by way of contrast, if m = 512, 

existing brute-force algorithms take about 840 seconds). This is effectively real-time or 

interactive for our purposes. We set one second as being the limit for any refresh interaction 

with our system.  

With this in mind, we propose a multi-resolution approach to allow Mplots to handle long 

time series called MultiResSPLAT. The basic intuition is as follows: 

• MultiResSPLAT accepts a threshold for user patience for screen refreshes, i.e., one 

second.   
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• The SplatTimePredict function predicts how long it would take the Mplot matrix to be 

computed.  

• If the predicted time exceeds the user’s patience, the tool downsamples the time series 

by a factor of p such that the computation time is less than that threshold. The factor p 

is computed by getPaaFactor. This matrix, computed on downsampled data, is shown 

as the Mplot.  

• The user may be satisfied with the approximate Mplot. However, if she wishes to zoom-

in to inspect any region in more detail, we recursively repeat this process for that local 

patch of the matrix. 

• Likewise, if the user is currently viewing a zoomed-in region of a Mplot, and she wishes 

to pan her view, we will not have the new patch computed at the current resolution, so 

we again compute it on-demand, at the highest resolution allowed by its size and the 

threshold for user patience. 

Table 2. The MultiResSPLAT Algorithm. 
Function:  MultiResSPLAT(𝑇!, 𝑇", m) 
Input: Reference time series 𝑇!, Query time series 𝑇",  Subsequence length m,  
Output: Distance matrix Mplot 
1 user_patience = t 
2 estimated_time ← SplatTimePredict(𝑇!, 𝑇", m) 
3 if estimated_time > user_patience 
4     p ← getPaaFactor(𝑇!) 
5     𝑇!- ← paa(𝑇!, p) 
6     𝑇"-  ← paa(𝑇", p) 
7     𝑚- ← floor(m/p) 
8     Mplot ← SPLAT(𝑇!-, 𝑇"- , 𝑚-)           // see Table 1 
9 else 
10     Mplot ← SPLAT(𝑇!, 𝑇", m)            // see Table 1 
11 return Mplot 
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In Table 2 we formalize these ideas, beginning with the main MultiResSPLAT algorithm. 

In line 1 the user patience threshold is set to t seconds. With line 2, we estimate the SPLAT 

time on the input time series. By comparing the estimated time and t in line 3, the algorithm 

decides whether a downsampling is required or not. If downsampling is needed, the PAA 

factor, p, will be calculated as shown in line 4. Then the new downsampled time series (𝑇,., 

𝑇-. ) and the reduced subsequence length (𝑚.) are set within lines 5 to 7. Finally, the SPLAT 

algorithm is applied on the downsampled time series of interest as shown in lines 8 and 10. 

In Table 3 we show how we can use the MultiResSPLAT algorithm recursively, to allow 

zooming-in on a region of an approximately computed Mplot, to show that region in a 

larger size that is more finely approximated. For clarity, Table 3 outlines the algorithm for 

one single zoom-in. However, it can be trivially extended to allow iterative zooming-in, 

where a user “drills down” to an event that catches her eye. 

Table 3. The MultiResSPLATZoom Algorithm. 
Function:  MultiResSPLATZoom(𝑇!, 𝑇", m, plt) 
Input:  Reference time series 	𝑇!, Query time series 𝑇", Subsequence length m, Existing Mplot plt 
Output: Distance matrix Mplot 
1	 [lx,rx, dy, uy] ← getUserRequestedPatch(plt) 
2	 seg. ← findExactLocationOnTimeseries(𝑇!, lx, rx) 
3	 seg" ← findExactLocationOnTimeseries(𝑇", dy, uy) 
4	 return MultiResSPLAT(𝑇!(seg.), 𝑇"(seg"), m)           //see Table 2 

The algorithm starts by obtaining the user-requested patch from an existing Mplot (plt) in 

line 1. This request normally comes from a classic rectangular selection tool. As the user 

selects a rectangle region on plt, the four corners of the selected area are returned as lx, rx, 

uy, dy, which are left/right x and up/down y values, respectively. Then in lines 2 and 3, the 

coordinates are mapped to the exact locations in both input time series 𝑇, (seg)) and 𝑇- 
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(seg*). Finally, the MultiResSPLAT is called on the new subsets of the input time series 

and the new zoomed-in Mplot is returned with line 4. 

We omit the details of the panning function, which is similar. Note that the experience of 

using these tools is completely transparent to the user. She can pan and zoom at will and 

have essentially the same experience as if the system had precomputed and stored a 

massive matrix. Using MultiResSPLAT, memory usage can be improved by orders of 

magnitude. Assume we need to run SPLAT on a time series of length 1,000,000 and return 

a matrix with a trillion cells. In MultiResSPLAT the computed matrix size is always below 

a threshold, say 7,680 and 4,320, which reduces the memory footprint by a factor of 

~31,000.  

2.3.3 Removing the Human Visual Attention Bottleneck 

In the previous two sections we mitigated both memory and time limitations to create large 

Mplots. However, this reveals two new related bottlenecks, human visual attention and 

screen resolution. It is reasonable to ask why we should bother to compute a matrix of size, 

say 50,000 by 50,000 if we are going to display it on a mere, say 2,000 by 2,000 pixel patch 

of the screen. The results in the last section partly answer this question, a downscaled 

approximation of a large Mplot is often good enough to allow a user to spot a tentative, but 

possibly “blurred” pattern, which she can then explore by zooming-in. However, for truly 

massive Mplots, the downscaled approximation may obscure patterns. There is an obvious 

solution, to compute the Mplot patchwise, and then show the user the full-scale piecewise 

patches consecutively. However, that simply shifts the bottleneck to human visual 

attention, which is an even more precious resource. 
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Note that if the user is interested in visually searching for features or patterns that can be 

objectively ranked, we can use our piecewise strategy to search for such features, and only 

save the top-k patches for later “offline” visual inspection. Assume for the moment that 

such a target feature, Tfeature, exists. In Table 4 we show how we can use the 

PiecewiseSPLAT algorithm to find the patch that contains the top-1 Tfeature. 

Table 4. The PiecewiseSPLAT Algorithm. 
Function:  PieceWiseSPLAT(𝑇!, 𝑇", m, p, ov)   
Input: Reference time series 𝑇!, Query time series 	𝑇",  Feature we wish to find Tfeature , Subsequence 
length m, Patch size p, Overlap size ov,  
Output: The patch with top-1 Tfeature  best_patch 
1 best_patch = Nan 
2 for row = 1 : 𝑇"_Length – p ; row + p - ov 
3     for col = 1 : 𝑇!_Length – p ; col + p - ov 
4       𝑇!-, 𝑇"-  = 𝑇!(col:col+p), 𝑇"(row:row+p) 
5       curr_patch ← SPLAT(𝑇!-, 𝑇"- , m)            //see Table 1   
6       best_patch ← T/012340(best_patch, curr_patch) 
7 return best_patch 

The top-1 patch is initially set to Null in line 1. Given a patch size of p, the reference and 

query time series are examined piece by piece within lines 2 to 5. Each patch is then 

compared to the best patch so far in line 6, w.r.t. Tfeature. The best patch is updated only 

when the examined score is greater than our best-so-far. Line 7 returns the best patch of 

the Mplot with regard to the user desired Tfeature. 

Note that there is some computational overhead, in that the patches must slightly overlap. 

This is because some features that we may wish to search for may span a region of pixels, 

and we do not want to miss a feature that is close to the edge of a patch. Note however that 

this overlap must be of the order m, which is typically in the range of 8 to 258. Whereas 

the patch size might be in the range of 20,000 × 20,000 (the best size depends on the main 

memory available) so the computational overhead of the overlap is inconsequential. 
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Thus far we have glossed over the nature of Tfeature. Here we can leverage decades of 

research. There are dozens of algorithms for extracting features from Mplots, some generic, 

and some domain specific. Some examples include: 

• Bioacoustics: Malige et al. use Mplots [26], to analyze humpback whale 

communications, and explicitly define specialized features on the matrix such as song 

and theme. 

• Astronomy: Phillipson uses Mplot to investigate stochastic light curves of Active 

Galactic Nuclei [35], and define a feature called optical quasi-periodic oscillation that 

can be computed from the plots. 

In addition to these domain specific features, there are hundreds of generic features that a 

user may wish to search for, including Recurrence rate (RR), Determinism (DET), 

Laminarity (LAM), Ratio (RATIO), Trapping time (TT), Divergence (DIV), 

Entropy (ENTR), etc.[28]. Note that not all proposed features can be computed piecewise 

using the algorithm in Table 4 (some features require random access to all parts of the 

matrix), but the vast majority can. 

For concreteness, in Section 3.3 we will show how this strategy can be used to solve two 

problems in which we can define simple and intuitive features that allow us to find targeted 

events in a time series that would be difficult to discover using any other method. 

2.3.4 Parameter-Free Mplots: 3D Mplots, Mplot Movies and Multifocal Mplots 

Given that we can now compute Mplots orders of magnitude faster, it is natural to ask if 

there are ways to exploit this alacrity to somehow improve Mplots or provide new services. 
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Here we briefly discuss three such examples, although we suspect that the community may 

discover many more.  

A recent paper motivates the issue we address, noting that “(Mplots) cannot handle the 

variability of discriminative region scales and lengths of sequences” [52]. The issue at 

hand is unique to Mplots and does not happen for true dot-plots. Suppose we build a dot-

plot for long string of natural language with m = 3. The plot will reveal a repeated “word” 

of length three, such as ..binge watching. If there is repeated structure longer than three, 

such as …notwithstanding her demandingnesses…, this will also be revealed in the dot-

plot, as a “streak” with a length of four, because each of the consecutive substrings in the 

motif, “and”, “ndi” “din” and “ing” have a match in the same order.  

Surprisingly for the corresponding situation with real valued time series, we cannot make 

the same claim. It is possible that two subsequences match well, but their sub-subsequences 

do not. This is because we are working with z-normalized time series. For example, 

consider the two time series A = [1 0 1 9] and B = [0 1 0 9]. Their z-normalized Euclidean 

Distance is very small, just 0.382. However, consider their subsequences A’ = [1 0 1] and 

B’ = [0 1 0], in spite of being shorter, their z-normalized Euclidean Distance is 2.829, an 

order of magnitude larger. 

The practical upshot of this is that an Mplot created with a user defined parameter m, we 

cannot guarantee that this will reveal similarities of subsequences with lengths greatly 

different to m. Before continuing, we should note (as most of the examples in this paper 

show) that in general Mplots are very forgiving to the choice of m, for almost all datasets 

and applications. For example, almost all atomic human gestures, dance moves, ASL 
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words, sport performances (i.e., a tennis serve), happen over a time range of about 1/5th to 

2 seconds. Using a m value at the shorter end of that range will tend to reveal all such 

conserved behaviors. However, there are some domains that can have conserved behaviors 

over an even wider range. An example familiar to the current authors is the behavior of sap 

feeding insects [5], [7], [17], [48], which have conserved behaviors that vary in 

performance length of at least two orders of magnitude.  

We proposed to address this issue in one of three ways:  

• We can produce Mplot movies, by creating a Mplot for all possible values of m and 

writing each consecutive Mplot to a frame of a video. These videos are reminiscent of 

a video showing a microscope focusing, the image is initially “blurred”, but later comes 

into focus. Critically, different parts of the Mplot video can come into focus at different 

times, suggesting a time series that has multiscale structures. 

• We can create 3D Mplots, by stacking the (sparsified) frames in the Y-axis. These 3D 

scatterplots can be rotated and viewed from various angles. 

Static examples of these two ideas are shown in Fig.3. 

 

Fig.3 left) Screen grabs from a Mplot video. right) A 3D Mplot shows how motifs change as a 
function of the subsequence length. 
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While these two Mplot variants are compelling and useful, they do not lend themselves to 

evaluation in a paper. We will therefore not further evaluate or discuss them. However, we 

invite the reader to visit [41] to see a gallery of them used in various domains.  

The final variant of Mplot that we introduce are multifocal Mplots, which do lend 

themselves to the static format of a paper. Our idea is inspired by focus stacking, a 

technique that allows photographers to create a single image where objects on various focal 

planes are all in focus. The technique involves photographing the same composition 

multiple times with various focal points. These images are then composited to create a 

single image in which everything in the photo is in focus. This is a perfectly analog to the 

task at hand, the notion of “focus” here means an appropriate choice of m. Since there is 

no single choice of m for all parts of the time series, we can simply compute all m and 

composite the final result, into a single image. Fig.4 shows an example of a multifocal 

Mplot on some insect electrical penetration graph (EPG) telemetry. 
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Fig.4 left) A Mplot with m = 30 discovers conserved periodic behavior corresponding to xylem 
ingestion [17] but fails to discover conserved behavior at longer time frames. center) A Mplot with m 
= 700 discovers conserved periodic behavior corresponding to intercellular passage but cannot 
represent the shorter xylem ingestion behavior. right) A multifocal Mplot can simultaneously represent 
conserved behavior at both scales. 

Because our problems are such a perfect analogue for focus stacking, we do not need to 

create any new software to create a multifocal Mplots, we can simply use off-the-shelf 

image processing software and input a Mplot movie, including Photoshop’s built-in focus 

stacking tool. 

Note that all three of these techniques remove the need for a user to set the Mplot’s single 

parameter, the subsequence length m, thus make Mplots essentially parameter-free.  

2.3.5 Pooling SPLAT 

If we create a Mplot that is larger than the screen resolution available, the operating system 

will rescale the image for display. The algorithms used for this, Nearest Neighbor, Bilinear, 

Lanczos, etc. are optimized for natural images but may be poor choices for Mplots. In 

Mplot m = 30 Mplot m = 700 Multifocal Mplot

0 500 1000

0 60

0 60

The motif discovered for 
m = 30, is dwarfed by the motif found for 
m = 700 (both plotted here on the same 
scale)
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particular they may obscure fine details. For example, consider Fig.5.left which shows a 

Mplot which is being downscaled with nine pixels mapping to one. Most rescaling 

algorithms reduce to averaging in such cases, and the black pixel indicating a motif is 

obscured.  

 

 

Fig.5 left) A naïve averaging of pixels can “blur” out features when downscaling. right) In contrast, while 
a MAX aggregation may create some small amount of spatial uncertainty, it preserves the strength 
(“color”) of the discovered motif. 

To mitigate this issue, we propose to take explicit control of how Mplot images are resized. 

Instead of simply averaging the pixels, we allow arbitrary aggregation functions. For 

example, to help highlight motifs we can use a MAX function as shown in Fig.5.right, and 

to preserve discords (anomalies/differences) we use a MIN function. Slightly more exotic 

functions can be defined to attempt to preserve both discords and motifs at the same time. 

In Table 5 the general algorithm is outlined. 

  

Pixel 
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Pixel MAX 
function 



 23 

Table 5. The PoolingSPLAT Algorithm. 
Function:  PoolingSPLAT(𝑇!, 𝑇", m, w, h)   
Input: Reference time series 𝑇!, Query time series 	𝑇", Subsequence length m, Mplot output size s, 
Aggregate function f 
Output: pooled_Mplot 
1 pooled_Mplot = nan(s,s) 
2 n_rowslice = number_of_𝑇"_subsequence /s 
3 n_colslice = number_of_𝑇!_subsequence/s 
4 for col = 1 to Mplot_column_count 
5     for row = 1 to Mplot_row_count 
6        d ←	compute_Mplot_value(row,col)                   //see Table 1 
7        𝑟𝑜𝑤-, 𝑐𝑜𝑙-  ← row/ n_rowslice, col/ n_colslice 
8       pooled_Mplot(𝑟𝑜𝑤- , 𝑐𝑜𝑙-) ← f(d,pooled_Mplot(𝑟𝑜𝑤-, 𝑐𝑜𝑙-)) 
9 return pooled_Mplot 

In line 1, a fixed size output Mplot is defined independent of the input time series length. 

This fixed size depends on the desired resolution of the output plot. For example, on an 8K 

monitor, a user may request an output of 4320×4320. In lines 2 and 3 we compute how 

many cells from the original Mplot will be assigned to each cell in the pooled Mplot. With 

lines 4 to 6 distance computation is done as in Table 1. As indicated in line 7, the location 

for mapping the current value in the pooled Mplot is found. We use standard image resizing 

algorithms to avoid aliasing artifacts. Then line 8 compares the current distance value, with 

the existing value in the pooled Mplot and updates that location with respect to the desired 

aggregate function’s output. Finally, line 9 returns the fixed size pooled Mplot. 

In this chapter, we have established a comprehensive understanding of how SPLAT 

operates and the improvements it offers. This foundational knowledge sets the stage for 

exploring practical applications and evaluating performance. In the next chapter, we will 

delve into practical examples and present experimental results to demonstrate the efficacy 

and efficiency of Mplot. 
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3 EXPLORING MPLOTS: PRACTICAL EXAMPLES AND EXPERIMENTAL 
RESULTS 

In this chapter, we move from theory to practical application. This section focuses on 

analyzing real-world data through Mplots, exploring their ability to reveal complex 

patterns and relationships. Through case studies and experiments, we aim to demonstrate 

the utility of Mplots in advancing knowledge and understanding across diverse fields. 

 
3.1 Interpreting Mplots 

There are many useful guides to interpreting recurrence plots/dot plots available [28]. We 

will not duplicate those efforts here. However, as we noted in Section 2.2, there are several 

differences between true recurrence plots and Mplots, and some of those differences effect 

the interpretation of plots.  In Fig.6 we show some examples of patterns that are unique to 

Mplots. When discussing the time series that created these patterns, we use the familiar 

expository trick of using text as a proxy for time series, and hamming distance as a proxy 

for Euclidean distance. 

In a dot plot with m = 4, a recurring pattern of say CATA would produce a single point on 

the plot. In a dot plot with m = 3, the recurring pattern of CATA would produce a two 

consecutive points “smeared” in diagonal line, and so on. 

In principle Mplots are similar, and a motif that was exactly m datapoints long could 

produce a single dot (U2). However, even if the natural motifs in the time series are exactly 

m datapoints long, the use of parameter m would tend not to produce a single point, but a 

smeared line. The reason is that if two subsequences beginning at locations i and k, are a 

close match, then we will still have a reasonably close match for i and k±1, i and k±2, etc. 

This is not true for the discrete strings of dot plots. Therefore, if we see a diagonal streak 
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on a Mplot built with parameter m, whose length in the x-axis is d, we should interpret this 

as the existence of a motif of length a little greater than d. Thus, the pink pattern seen 

beginning at Q2 suggests the existence of a motif of length five or six, not just four. This 

suggests a general strategy for setting the value of m. We should set it to be a little less 

than the length of the motifs we want or expect to find.  

 

Fig.6 Some examples of patterns we may see on a Mplot. Here we assume m = 4 was used to create this 
plot 

One of the patterns that are unique to Mplot is the green curved line shown in beginning at 

K2. This suggests that there is a motif, but the second occurrence begins to slow down. 

Intuitively this would be like CATA and CATTAAAAA. Naturally, the pattern can curve 

in the opposite direction if the second occurrence is speeding up instead. We call instances 

of such patterns “chirps”. If we see a streak that curves in both directions in a serpentine 

fashion this is suggestive of a pair of subsequences that match after allowing one to locally 

“warp” in order to match the other [37]. This is an important benefit, as finding motifs with 

invariance to warping (i.e. Dynamic Time Warping [37]) which is known to be very 

computationally demanding [2]. 
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The blue streak beginning at E2 shows a straight line streak that is not parallel to the 

diagonal, indicating a motif where one occurrence is a linearly rescaled version of the other, 

something like TAG and TTAAGG. As we will later show, we can use the observed angle 

of this streak to predict the amount of rescaling and then exploit this fact. 

Finally, the red streak beginning at B2 suggests a motif of about length eight in which the 

second occurrence has some spurious sub-patterns inserted at about the midway point, 

something like TAGXCAT and TAGCAT (alternatively, we can see the first occurrence 

as missing some sub-patterns). 

We have shown these examples on binarized toy examples, however more generally, using 

real-valued Mplots, the colors or shades of gray offer further information about the degree 

of pattern conservation. In our experimental section we show examples of such patterns 

discovered in real datasets. 

3.2 Interpreting Mplots: REVERSE ENGINEERED  

In the previous section we showed how to interpret some of the basic patterns and 

regularities that we regularly encounter in a Mplot. However, it is also possible to reverse 

engineer this process. We can imagine a hypothetical structure in a time series that might 

be of interest, and then further imagine how that structure would manifest itself locally on 

a Mplot. Moreover, we may be able to write a simple function to search for this local 

manifestation using the piecewise Mplot function in Table 4. To make this clear, we will 

consider a concrete example here. 
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Finding motifs is generally easy using Mplots (or the Matrix Profile [50][54]). However, 

it can be very difficult to find motifs under certain circumstances, in particular, it can be 

hard to find rare motifs, if: 

• There is a much more common motif or motif(s). 

• The rare motif is less well conserved than the common motif or motif(s).  

Note that this case is common in real world data. For example, we may have a handful of 

examples of abnormal heartbeats in an ECG that contains thousands of better conserved 

normal beats. 

Let us think about what a Mplot would look like in such cases. If we had a repeating 

common motif, we would expect to see many more or less solid lines, more or less parallel 

to the diagonal. This is a very common type of Mplot. However, some such Mplots also 

have “cross shaped” structures that have very low pixel density within the arms of the cross. 

In Fig.7 we show two synthetic examples, and Fig.1.right showed a natural example. 
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Fig.7 A hypothetical Mplot. Note that there are two “crosses” formed by the sparse rows {7,8} and the 
sparse columns {G,H} and {O,P}. 

The reader will note that there are two slight variations of this pattern shown in Fig.7. In 

the intersection shown at {7,8},{O,P} the center of the cross is also sparse. These are what 

we should expect from if either or both of the subsequences corresponding to {7,8} or 

{O,P} are noisy or unique (i.e. discords). If either of the subsequences is unique, it will be 

far from everything (except itself), thus its entire row (or column) will be sparse, including 

when that row (or column) intersects with another sparse column (or row). 

However, in contrast, consider the intersection shown at {7,8},{G,H}. Here, while the main 

arms of the cross are mostly empty, there is a diagonal line that runs through the 

intersection. This is exactly what we should expect, if the pair of subsequences at {7,8} 

and {G,H} are a rare motif. This is because a rare pattern will be different to the common 

patterns, which are by definition almost everywhere; Thus, giving us a mostly sparse row 
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(or column). However, in the infrequent places that the rare pattern encounters another 

example of the same rare pattern, it will produce a streak of black pixels. 

Having given the intuition as to how a rare motif can manifest itself, we can write a simple 

function that can test for such patches in a massive Mplot.  In Table 6 we outline such an 

algorithm. The intuition is to look for white rows and columns, which indicates the 

existence of subsequences with the minimum similarity to the majority of subsequences. 

We then aim to find a straight black line(s) within the intersection of those white rows and 

columns. This is the sign of a similarity that rarely happens in the input data. 

Table 6. The Rare Motif Algorithm.  
Function:  findRareMotifs(T, m, p, ov)   
Input: Reference time series T, Subsequence length m, Patch size p, Overlap size ov  
Output: Top k patches including the rare motifs 
1 best_patches = []; 
2 candr = [];                           // Mplot rows with less similarity to others 
3 candc = [];                           // Mplot columns with less similarity to others 
4 for row = 1: T_Length – p; row + p - ov 
5     for col = row : T _Length – p ; col + p - ov 
6         𝑇!, 𝑇" = T(col:col+p-1), T(row:row+p-1) 
7         M           Mplot = SPLAT(𝑇!, 𝑇", m)           // see Table 1 
8         candr.append(rows in Mplot | sum(rows) < mean(rows)) //rows with less black pixels 
9         candc.append(cols in Mplot | sum(cols) < mean(cols))) //columns with less black pixels 

10 for patch in intersection (candr, candc) 

11     hlines = HoughTransform(patch) 

12     if length(hlines) > 0 

13         best_patches.append(patch) 

14   return sorted(best_patches, black_pixel_count, ‘descending’) 

In line 1, we define an empty list to store the possible best patches. Lines 2 and 3 introduces 

the list of candidate rows and columns where the locations with less similarity to other 

locations are stored in. Starting from line 4 the Mplot is computed patchwise. Lines 8 and 
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9 look for rows and columns in Mplot with the highest probability to include the rare 

motifs. Since rare motifs do not match to most subsequences, we expect to see a row (or 

column) of low values in that location. In a binarized matrix that can be seen as a white 

row (or column). In line 10 and 11 we go over the intersection of candidate rows and 

columns and look for a high value, indicating a high similarity to another subsequence(s). 

This is visualized as a straight line in a Mplot. This line can be angled by some value or 

can be divided into parts, especially if the rare motif is less well conserved than the 

common motifs (which as we will later see, is empirically often the case). We use the 

Hough Transform tool to find these lines [10]. If such a line exists, line 13 stores it as one 

of the best patches. Finally in line 14 we sort the best patches such that a white cross of 

Mplot with a black line (more black pixels) is prioritized over a white cross with a few 

random black pixels. 

In Section 3.3.5 we will show a real word example of using this idea to search for rare 

motifs in a vast collection of insect data. We believe that this basic idea could be used to 

find other structures, including variations of Time Series Chains [21],Time Series 

Shapelets [50], Time Series Novelets [30], etc. More exciting is the possibility of that this 

framework will be used to discover structures that did not occur to the current authors.  

3.3 Experimental Evaluation  

To ensure that our experiments are reproducible, we have built a website [41] that contains 

all the data/code used in this work. All experiments were conducted on an Intel® Core i7-

9700CPU at 2.80GHz with 16 GB of main memory, unless otherwise stated. As noted 

above, the format of this publication does not lend itself well to Mplots. We encourage the 
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reader to visit [41] where we have large format images and videos that exploit and 

demonstrate our ideas. 

To help the reader gain some intuition for the utility and generality of Mplots we begin 

with some anecdotal examples before considering more qualitative experiments. 

3.3.1 Hunting for Exoplanets 

Exoplanets can be discovered by examining the time series of flux (light intensity) of a star. 

When a planet passes between the star and the observatory on Earth (or orbiting Earth), its 

shadow causes a slight dimming of the flux. In some cases, as in Fig.8.top.right, the effect 

can be quite dramatic. This is true if the planet is very large (Jupiter-sized), with a short 

orbital period, and the data is relatively noise-free. These ideal cases are visually apparent 

and/or can be easily discovered with Fourier techniques. However, if the planet is small 

(Mercury-sized), with a longer orbital period, and the data is noisy, this is a much more 

difficult problem.  
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Fig.8 top.left) A star-light curve from a star believed not to have an exoplanet. top.right) A star light curve 
from a star known to have an exoplanet. bottom.left) The Mplot of the planetless star is relatively 
featureless. bottom.right) The Mplot of Exo9 reveals not only the existence of an exoplanet but tells us 
its orbital period.  

As Fig.8 hints at, we believe that Mplot may be a useful tool to examine these difficult 

cases, as the evenly spaced diagonal lines not only offer evidence for an exoplanet, but their 

spacing tells us the period. Note that it is possible that some lines could be missing due to 

noise (cloud cover, sensor noise, etc.). Consider Fig.9, does it show an Exoplanet? 

 

Fig.9 The star light curve for Exo25. Does it suggest the existence of an Exoplanet?  

In an attempt to answer this question, we built a Mplot in Fig.10, using the same 

parameters as in Fig.8. 
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Fig.10 The star-light curve for Exo25 with its Mplot (m=100). While there is noise reflecting the original 
data’s noise, there is the unmistakable signature of an exoplanet with an orbital period about three times 
longer than Exo9 (Cf. Fig.8.bottom.right).  

A visual inspection offers strong evidence for the existent of an exoplanet. As the call-out 

in Fig.8.right shows, we can clearly see four periods. The much weaker, barely visible fifth 

period is presumably explained by the noise in the original figure. In [41] we have a gallery 

of additional exoplanets discovered with this technique. 

To be clear, we are not advocating Mplot as a tool for hunting exoplanets. This is an 

important problem, and it is worth creating bespoke tools that consider the many physical 

constraints in this domain. This example merely serves to show that Mplots can reveal 

structure that is not readily apparent in raw time series.  

3.3.2 Mplot Filtering 

Our ability to create massive Mplots presents both opportunities and problems. One 

problem is that Mplots can be very “busy”, and as we noted earlier, human visual attention 

is a precious resource. One solution to this issue is to apply filters of various kinds to 

emphasize patterns that we may be interested in. This can be done in many ways, most of 
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which are trivial to implement. For example, a traffic manager might choose to highlight 

motifs that happen within five days of a holiday, or on rainy days (using out-of-band data), 

etc.  

In this section we show a novel filtering strategy that corresponds to a high-level and subtle 

semantic question; “Show me patterns common between two sequences, but absent from 

one or more other sequences.”  

First, a quick review. Recall that Mplots are conceptual precursors to Matrix Profiles 

[50][54]. In particular, a self-join Matrix Profile can be created by collapsing an 𝑛	 × 	𝑛 

similarity matrix using the smallest value of each column (excluding values on the 

diagonal). There is a similar correspondence for the AB-join Matrix Profile which is either 

the row or column collapsed-min of the Mplot between two different time series. 

The Contrast Profile [29] is a recent tool for discovering contrasting patterns across time 

series, that is, behaviors that are repeated within one time series but are absent from 

another. Since the Contrast Profile is defined “lego-like”, by combining several Matrix 

Profiles, this suggests that its definition could be retroactively generalized to Mplots.  

The Contrast Profile is defined as the difference between AB-join and self-join Matrix 

Profiles: 

𝐂𝐏 = 𝐌𝐏𝐀𝐁–𝐌𝐏𝐀𝐀 

We adapt this to create the semantic definition we desire: 

𝐂𝐨𝐧𝐭𝐫𝐚𝐬𝐭𝐌𝐩𝐥𝐨𝐭 = 𝐌𝐏𝐡𝐚𝐛𝐢𝐭𝐮𝐚𝐭𝐞𝐝–𝐌𝐏𝐭𝐚𝐫𝐠𝐞𝐭𝐞𝐝 
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The Mplots cannot be directly subtracted due to dimensionality incompatibilities, however 

this equation serves as a reference when reasoning about how to complete the desired 

operation. The motivating question: “Which behaviors are common between two sequences 

but absent from one or more other sequences?” hints at a methodology. When thinking 

about this on a pair-wise basis, we would like to focus on self-join subsequence pairs with 

high similarity but suppress those which are similar in the “habituating” sequence.  

We can achieve this with one Mplot and two AB-join Matrix Profiles. Given two target 

time series 𝑇, and 𝑇-,  and one or more habituating time series 𝑇;  we generate a Mplot)* 

between 𝑇,  and 𝑇- , then compute two Matrix Profiles MP)<  and MP*< . We habituate 

through the following indexed definition: 

𝐂𝐨𝐧𝐭𝐫𝐚𝐬𝐭𝐌𝐩𝐥𝐨𝐭(=,>) = min(𝑀𝑃,;% , 𝑀𝑃-;
+ ) – 𝑀𝑝𝑙𝑜𝑡,-

(%,+) 

It may be unintuitive to consider why we are combining elements from two different 

structures. In a Mplot, we are interested in the pair-wise structure across the entire matrix, 

however when habituating, we are only interested in whether a low distance nearest 

neighbor exists. Thus, we can collapse the habituating similarity matrix into a Matrix 

Profile. 

We will perform a demonstration using a time series representation of mitochondrial DNA. 

The conversion from DNA to time series is done with this classic transformation. 
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T1 = 0,   for i = 1 to length(DNAstring) 

if DNAstringi = A, then Ti+1 = Ti + 1  

if DNAstringi = C, then Ti+1 = Ti - 1  

if DNAstringi = G, then Ti+1 = Ti - 2  

if DNAstringi = T, then Ti+1 = Ti + 2  

The two closest species to humans are Chimpanzees (Pan troglodytes) and Bonobos (Pan 

paniscus). Chimps and Bonobos are more similar to each other than to humans (Green et 

al. 2008), so we will investigate whether there exist DNA subsequences shared between 

them, but which is absent from humans. 

We structure the problem by setting Bonobos to 𝑇,, Chimpanzees to 𝑇-, and humans to 𝑇; . 

One type of DNA mutation is subsequence reversal. The Contrast-Mplot can reveal this by 

simply concatenating the reversed Bonobo sequence to itself before processing.  

In the ContrastMplot shown in Fig.11, the black streaks represent sequences which are 

conserved between Bonobos and Chimps, and also dissimilar to humans. White represents 

subsequences pairs between Bonobos and Chimps where either subsequence is conserved 

at least as well in humans. The dominant visual feature is the patchy diagonal which lies 

along the reference 1:1 diagonal (blue). This is expected since most of the DNA sequences 

between the two species are conserved in order. What is more interesting are the off-

diagonal visual features. Features occurring above the reference diagonal in the reversed 

region (purple) indicate subsequences which occur earlier in the Bonobos relative to 

Chimpanzees. One such feature is highlighted in red. Additionally, this feature occurs in 
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the reversed Bonobo region, suggesting that the original DNA was transposed relative to 

the Chimp’s sequence. 

Using the BLAST [38] we have identified that the subsequence in question occurs within 

the COX2 gene, which is known to be closely conserved between Bonobos and Chimps, 

but divergent in humans [20]. While our demonstration focused on DNA, we anticipate 

that Contrast-Mplots will have broader applicability to domains where we want to visually 

reason about shared and unshared patterns in sets of data.  

 

Fig.11 A Contrast-Mplot revealing mitochondrial DNA subsequences are shared between Bonobos and 
Chimps, but absent from Humans. The region highlighted in red indicates a reversed and offset Bonobo 
subsequence relative to the Chimp sequence.  

3.3.3 Finding Rescaled Motifs using PiecewiseSPLAT  

As we noted in Section 2.3.3 we can use PiecewiseSPLAT to find arbitrary 

features/structures/regularities in massive Mplots that could not fit in main memory. 

However, for concreteness here we will consider a structure with a direct and immediate 

visual interpretation, scaled motifs; subsequences of different lengths that would have a 
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small Euclidean distance if they were scaled to the same length. If the difference in scale is 

very small, say <8%, then the simple Matrix Profile will probably work s. If the difference 

in scale is relatively small, say <8 to 20%, then there are a handful of techniques to address 

such cases [49]. However, here we are interested in motifs that may dramatically differ in 

scale, say up to 300%. 

To discover such rescaled motifs, we can search Mplots with PiecewiseSPLAT. Fig.12 

illustrates the main insight.  

 

Fig.12 top) A toy time series with three sine-wave patterns embedded. Note that instance C is about 37% 
longer than the other two instances A and B. bottom) The corresponding Mplot shows that the difference 
in lengths manifests as a difference in angle. 

Suppose we have two occurrences of a motif, A and B, of length L, and we create a Mplot 

with m set to a number less than L. We would expect to see a “streak” of length about L-m 

× √2, parallel to the diagonal (or 135° to vertical). 

However, if we have two motifs that differ in length, as with A and C, we should expect 

a similar streak, but at non-zero angle relative to the diagonal. The relationship between the 

scaling factor and the angle is given by: 

A B C
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ScalingFactor(A,C) = !
?@A()ABCD(),<)EFG°)

 

Thus, we can reduce the rescaled motif discovery problem to the task of finding lines in 

an image, and that problem is easily solved by the classic Hough [10]. There is a minor 

caveat; while the start point and angle of the discovered line reveal the location and scaling 

factor respectively, they may be a little “blurry”, so we need to run a localized brute-force 

search on the identified area to refine the best motif. 

To hint at the utility of this idea, consider Fig.13.  

 

Fig.13 top) Telemetry from an insect pest feeding on a plant. bottom) A multi-scale motif discovered in 
the data can only be seen as conserved after one instance is rescaled by a factor of 1.25. 

Here we see a motif discovered in telemetry from an insect. Because the two instances 

of this motif differ in length by a factor of 1.25, classic methods cannot find them (Yeh et 

al. 2016). 

3.3.4 Hunting for Chiroptera with PiecewiseSPLAT 

In the previous section we showed that PiecewiseSPLAT could allow us to find motifs 

with invariance to scaling. However sometimes we may explicitly desire to discover only 

those motifs that exhibit scaling.  

For example, suppose a biodiversity survey needs to examine audio recorded at night to 

look for examples of bats. Existing bat classifiers have only been tested on a handful of the 

1,400 known species [45]. We would like to have a general method to capture any species 
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of bat. The problem is compound by the fact that many birds and insects also sing at night, 

not to mention inevitable human noise pollution.  

 A well-known fact about bats may be useful. Bats use echolocation to find prey, 

producing bursts of sound and analyzing the returning echoes build a picture of the external 

world. Critically, the rate at which the bat emits sounds is not constant but changes, as [38] 

notes “Over the course of an attack, bats increase call production rate”. It is important to 

note that this change in call production rate is not an accidental side-effect of the bat’s call, 

but an intrinsic part of the bat’s hunting strategy, trading off the energetic cost of producing 

sounds with the finer spatial resolution of rapid bursts [38]. 

 This suggests an exploitable idea, we might expect that these changes in call rate would 

produce Mplot structures not parallel to the diagonal, as discussed in Section 3.1. Consider 

Fig.14.right. 

 

Fig.14 Five randomly chosen six-second snippets of animals that both fly and produce sound at night. 
The four leftmost examples are all birds. The rightmost example is a bat, which is unique here in having 
“stripes” that are not perfectly parallel to the diagonal. 

These Mplot snippets are diverse but note that the bird examples all have structure that 

is parallel to the diagonal. In contrast, the bat call is unique in that it has lines that are at an 

angle to the diagonal, telling us that the bat produced the motif twice, at two different speeds. 

Emballonura alecto
Laterallus jamaicensis

Charadrius vociferus
Icteria virens

Antrostomus vociferus 
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Birds are only using sound to communicate2, bats are using sound for a completely different 

purpose, and occasionally producing this unique feature.  

To test our hypothesis, we embedded a twenty-second snippet of bat hunting audio into 

a one-hour audio file containing diverse bird songs. We searched for lines that had an angle 

of at least ±9.5° to the diagonal, indicating a rescaling factor of 1.40. As shown in Fig.15 

 

Fig.15 top) A one-hour dataset containing bird sounds, and a total of 20 seconds of bat sound. bottom) If 
we use PiecewiseSPLAT to search for motifs that have at least 1.35 rescaling, the top-1 motif is a bat 
vocalization. 

The top-1 motif was indeed a bat vocalization. This experiment took 81 minutes, which 

is just slightly slower than real-time. Note that for the classic Matrix Profile, the top-10 

motifs are all bird (occasionally possibly insect) sounds. This example hints at the utility of 

Mplots, with only the vaguest of domain knowledge we can search large complex datasets 

for behaviors of interest that can be described in high-level abstract terms. 

3.3.5 Searching Massive Mplots  

Recall that in Section 6.2 we discussed the possibility of “reverse engineering” the 

interpretation of Mplots. We noted that it may be possible to think of some structure we 

would like to find, hypothesize what the structure would look like on a Mplot, then build a 

 
2 A few birds such as oilbirds/swiftlets do use a weak form of echolocation.  
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simple image processing filter to search for this structure. Here we show a complete worked 

example of this idea.  

Sap feeding insects in the order Hemiptera feed by removing plant sap from transport 

vessels, such as phloem and xylem elements [5][48]. This behavior is typically not 

destructive by itself but can spread pathogens from plant to plant. One of the most studied 

insects is the Asian citrus psyllid (Diaphorina citri), which is responsible for billions of 

dollars in crop losses each year.  The primary tool used to study these insects is the 

electrical penetration graph (EPG), which as shown in Fig.16, produces a complex and 

noisy time series that reflects the behavior of the insect’s straw-like mouthparts as they 

navigate within the plant tissues. 

As shown in Fig.16.A One of the most common behaviors seen is xylem ingestion. Psyllids 

spend approximately 22% of their lives engaged in this behavior, with bouts of xylem 

ingestion lasting an average of about forty minutes [17]. It is known that it is rare to observe 

a perfect run of xylem ingestion lasting tens of minutes, the behavior is occasionally 

interrupted by noise. In the EPG literature, “noise” is often used somewhat informally. The 

device must be very sensitive to record such tiny insects, and as such it is very sensitive to 

ambient interference (some researchers place the entire apparatus in a Faraday cage in an 

attempt to mitigate electronic noise interference [33]). However, some authors use “noise” 

to simply mean any behavior that is not stereotypically part of a known behavioral 

waveform. 

Based on a hunch from an experienced entomologist, we wondered if some of these 

sections attributed to “noise” could be behaviors that are less well conserved than the 
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typical xylem ingestion waveform. To test this idea, we implemented the image processing 

filter in Table 6, and searched a 2.7 hour long recording. 

 

Fig.16 An Mplot with the three corresponding pairs of time series extracted from an Asian citrus psyllid 
(Diaphorina citri). The value of m was forty (the length of the colored prefix in the call-out plots), and 
we show the following eighty datapoints for context. A) A typical bout of xylem ingestion shows 
metronome-like regularity. B) The white cross with an empty intersection corresponds to a section of 
noise (cf. Fig.7). C) The white cross with diagonal strip in its intersection corresponds to a rare motif, 
that occurred between two bouts of xylem ingestion. 

Fig.16 allows us to illustrate the three possibilities that make up our dataset. Fig.16.A shows 

a dense run of parallel lines, corresponding to the typical xylem ingestion waveform (in the 

literature, this is often called the G phase or G waveform [5][48]. Such patterns make up 

more than 99% of the Mplot. Fig.16.B shows a white cross with an empty intersection. This 
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corresponds to a noisy region in the time series. Fig.16.C shows a white cross with diagonal 

lines in intersection. This corresponds to what we have dubbed an interstitial motif. In 

Fig.17 we show this motif at a larger scale, to allow the reader to appreciate how well 

conserved it is.   

 

Fig.17  A larger reproduction of the interstitial motif shown in Fig.16.C.  

We illustrate the similarity of the two time series by showing the Dynamic Time Warping 

alignment between them [37]. The is only a small amount of warping but is enough such 

that these two 120-datapoint long subsequences are not similar under the classic Euclidean 

distance. In a sense, we can see the Mplot as revealing a “piecewise” Euclidean distance 

similarity by showing a diagonal (but slightly wavy) line. 

One of the current authors is entomologist who is an expert on EPG data [7]. Although not 

involved in the collection of this dataset, she believes the interstitial motif shows the insect 

is transitioning between C phase (navigation through the mesophyll tissue) and the G 

phase. In [5] they observed that waveform G was always followed by a return to waveform 

C. This would also explain why it is somewhat regular but not 100% consistent, as C phase 

has some variability depending on the nature of the tissues the stylet (the insect’s needle-

like mouthpart) is traveling through. 

0 20 40 60 80 100 120
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We use piecewise Mplot to search 1,000,000 datapoints (2.7 hours) for the telltale white 

crosses. Each patch was of size 10,000 by 10,000 and took about 5.3 seconds to process. 

As there are 10,000 patches, the entire process took about 8.5 hours.  To give the reader an 

appreciation as to how large a Mplot this is, if we printed out the entire Mplot at the scale 

shown in Fig.163, it would comfortably cover a soccer field.  

Finally, we want to demonstrate that the “white cross” heuristic can be a general technique 

for finding rare motifs in the presence of common motifs, so we will consider a completely 

different data domain. Here we address the problem of examining telemetry from 

Contraction in Cardiac Tissue (CCT), which are mechanical contractile signals at the tissue 

level (the signals are related to, but distinct from the more familiar ECGs [27]. As shown 

in Fig.18.bottom.right, most of such data looks like noise with periodic spikes. This 

generally produces the classic pattern of diagonal stripes in a Mplot. However, as shown 

in Fig.18.left, when comparing two traces with an AB-Mplot, we occasionally see a white 

cross with a diagonal strip in the intersection. Here we can use the annotations provided by 

the creators of the dataset [27] to understand that, as illustrated in Fig.18.top.right, this is 

a rare motif of slow pulse decay. 

 
3 100 datapoints is about one centimeter, given the scale shown in Fig.16 and this journals 

format. 
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Fig.18 left) A zoom-in of an AB-Mplot created with CCT telemetry from two mice. right) The value 
of m was eighty (the length of the colored prefix in the call-out plots), and we show the following 
160 datapoints for context.  

 

3.3.6 Mplot Based Segmentation  

Many researchers have independently noted that if the time series being examined in a 

Mplot comprises of multiple regimes, the Mplot will reflect that fact with a “block-like” 

structure. Fig.19 illustrates this with a toy example. This suggests that we could formalize 

this observation to produce a Mplot semantic segmentation algorithm. To search for 

segmentation points we slightly adapt the method defined in [14], that is used in audio 

signal information retrieval. This process involves searching for transitions between block 

structures using the correlation of a checkerboard kernel with the diagonal of the matrix. 
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Fig.19 Regime changes produce block-like Mplots.  

The result is a 1D function called the novelty function. The change point events are 

represented by local maxima (peaks) in the novelty function, which are then discovered 

with a peak finding algorithm. To test the utility of this algorithm we compared to three 

state-of-the-art semantic segmentation algorithms on a benchmark of thirty-two diverse 

datasets. We use the evaluation metric suggested by the creators of the datasets [18]. 

Table 7 summarizes the results. 

Table 7. A comparison of Mplot with three SOTA algorithms. 
 FLOSS AutoPlait HOG-1D 

win |lose|draw over Mplot 20 | 7 | 4 8 | 22 | 2 17 | 13 | 2 

In interpreting these results note the following: 

• Our algorithm is better than AutoPlait, about the same as HOG-1D, and worse, but not 

dramatically so, than FLOSS. 
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• We could have done better by tuning our algorithm, but to avoid overtuning we set m to 

be the same value as used by the authors of [18] for FLOSS. Thus, these results should 

be seen as a lower bound for SPLAT’s performance.  

SPLAT segmentation has a significant advantage over the other methods, it can give 

insight into the cause of the regime change. For example, consider the PulsusParadoxusSP02 

problem shown in Fig.20.top. Note that SPO2, also known as oxygen saturation, is a 

measure of the amount of oxygen-carrying hemoglobin in the blood relative to the amount 

of hemoglobin not carrying oxygen.   

As noted in [18], this problem cannot be solved by visual inspection. The ground truth 

is known by access to out-of-band data. Nevertheless, both SPLAT and FLOSS correctly 

segment it. But what caused the change? If we saw non-linear structure in the blocks off 

the diagonal, we could attribute the regime change to a change of heart rate, but this is not 

the case here.  

 

Fig.20 top) The PulsusParadoxusSP02 segmentation problem is very subtle. bottom.left) A zoom-in of the 
Mplot close to the regime change revels a break in the diagonal streak. bottom.right) A zoom-out indicate 
that these breaks happen once in every eight beats.  

However, there is an interesting clue as shown in Fig.20.bottom. There is a slight 

reduction in the degree of conservation of heartbeats, that happens about once every eight 

18000
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beats. The reader will appreciate that the ratio of typical respiration rate to heartbeat rate is 

about eight-to-one. 

Normally we should not expect respiration to effect SPO2. However, if the pericardium, 

a sac-like structure surrounding the heart, is damaged during surgery, it can fill with fluid 

and then deep breaths can cause pressure on the heart (this is called Cardiac tamponade) 

and reduce its efficiency in producing oxygenated blood. According to Dr. Greg Mason 

(Clinical Professor of Medicine, David Geffen School of Medicine at UCLA) this is exactly 

what we are seeing here. 

3.3.7 Speed and Scalability 

In Fig.21.left we evaluate the time needed for SPLAT for increasingly long time series 

(n) when the subsequence length (m) is set to 100. Then, in Fig.21.right we hold the length 

of the time series to a fixed 16,000, and test the effect of increasingly large values of m. 

 

Fig.21 SPLAT execution time vs. brute-force algorithm – Note that both the left figure’s axis are in log 
scale. 

The reader will observe that we can compute a million length time series in about 9.5 

hours using PiecewiseSPLAT. This is extremely fast given that the brute-force algorithm 

would take 5.4 years.  
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We can further accelerate our algorithm by leveraging the hardware. To test this, we 

ported SPLAT to GPUs. As the results in Table 8 show we can process a time series of 

length one million in just 6.3 seconds. We refer the reader to visit [41] for more results and 

the GPU code. 

Table 8. Pooled Mplot Timing Results (in seconds) on 1×Nvidia GPU P100. 
Time series length Mplot 100 × 100 Mplot 1k × 1k Mplot 4k × 4k Mplot 8k × 8k 

128k 0.20 0.21 0.26 0.46 
256k 0.49 0.47 0.55 0.73 
512k 1.58 1.57 1.64 1.84 
1M 6.01 5.99 6.05 6.27 

In a just published paper the authors introduce PyRQA, “a software package that efficiently 

conducts recurrence quantification analysis… leveraging the computing capabilities of a 

variety of parallel hardware architectures” [39].They also consider a dataset of size 1M, 

finding it took 68.94 seconds to process. This is an order of magnitude slower than the time 

we required. Moreover, our results in Table 8 used a single Nvidia P100 GPU, whereas 

[39] use four, much faster NVIDIA GeForce GTX 690 GPUs. The two software packages 

are not identical in features, nevertheless, this comparison does hint at the efficiency of our 

proposed algorithms.   

3.4 Conclusions 

We introduced SPLAT, an algorithm that allows us to construct Mplots that are orders of 

magnitude larger than those that are typically computed. We have shown that such Mplots 

can be used for tasks in domains as diverse as astronomy, medicine, entomology, and 

biodiversity monitoring.  Our proposed algorithms are so scalable that for the first time, 

space and time complexity are no longer bottlenecks, but human attention is. Therefore, 
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we further show that our ideas can support patchwise search of massive Mplots, to find a 

handful of patches that are worth bringing to the attention of a user. 

We have made all code and data freely available to allow the community to confirm our 

results and build upon our ideas. 
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4 MOTIF-ONLY MATRIX PROFILE: ORDERS OF MAGNITUDE FASTER 

While SPLAT has significantly advanced our ability to generate and utilize Mplots across 

various domains, the exploration of large-scale data often requires not just visualization 

but also the efficient detection of patterns within the data. To further enhance our ability to 

manage and interpret vast datasets, we now shift our focus to the critical task of motif 

detection in time series data. This transition from large-scale visualization to rapid pattern 

recognition underscores the next step in our journey. 

In this chapter, we introduce a novel, multi-resolution algorithm that accelerates motif 

detection by orders of magnitude. Additionally, we establish the first-ever lower bound for 

the matrix profile, providing a new theoretical foundation for this important task. This 

advancement complements our previous work by addressing both the visualization and 

pattern recognition needs in large datasets. 

 
4.1 Geometric Intuitions 

Before introducing our definitions and notation in the next section, we will take a moment 

to visually review the ideas behind lower bounding, the triangular inequality and the 

combination of these two techniques. While the triangular inequality is a commonly used 

tool for indexing etc., our work is unusual in that it exploits triangular inequality twice, 

hence this review may help sharpen the readers intuition for the contributions in Section 

4.3.  

In Fig.22.left, we show two points, R1 and B1 that are 9.0 units apart in Euclidean space. 

 

Fig.22 left) We know points R1 and B1 are 9.0 units apart. center) We further know that B2 is 1.5 units 
from B1, and that R2 is 1.0 units from R1. right) Here we assume we do not know the true distance between 
R1 and B1 but we know a lower bound for it, 8.1. 

ED(R1,B1) = 9.0 ED(R1,R2) = 1.0ED(B1,B2) = 1.5 LB(R1,B1) = 8.1
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Further assume that we know B2 is 1.5 units from B1 and that R2 is 1.0 units from R1, as is 

illustrated in Fig.22.center. From this we can derive a new fact, a lower bound of the 

distance between B2 and R2 is 6.5, which we computed as a Lower Bound with two 

applications of Triangular Inequality:  

LBTI(B2,R2) = ED(R1,B1) – [ED(R1,R2) + ED(B1,B2)] = 6.5 

 Note that while the LBTI here is positive, if the “circles” shown in Fig.22.center were 

relatively large, then this function could be negative, which we snap to zero.  

We can generalize this idea to the case where we do not know the exact distance ED(R1,B1) 

but, as shown in Fig.22.right, we only have some lower bound for it, i.e. LB(R1,B1) ≤ 

ED(R1,B1).  We can still compute a (now weaker) lower bound between B2 and R2 by 

changing a term in LBTI. 

LBTI(B2,R2) = LB(R1,B1) – [ED(R1,R2) + ED(B1,B2)] = 5.6 

To make it clear that how we can exploit this information imagine that we know “for free” 

the information in Table 9. 

Table 9: Incomplete information about pairwise distances between objects in R & 
B 

 R1 R2 B1 B2 

R1  1.0 ? ? 

R2  ? ? 

B1  1.5 

B2 LB(R1,B1) = 8.1 

Further imagine we are tasked finding the closest pair between any R point and any B 

point. Naively, we could compute the four missing values in Table 9 and select the 

minimum. But instead, we leverage the intuitions presented in Fig.22 to find the answer, 

while doing less work. 

Suppose that we randomly choose one of the four missing values to compute, say 

ED(R2,B2) and discover it is 6.5, establishing a best-so-far. In this case we can see that: 

• {R1,B1} cannot be a closer pair, because we have: 
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ED(R1,B1) ≥ LB(R1,B1) which is 8.1 

Since 8.1 is greater than our best-so-far. {R1,B1} is pruned. 

• {R1,B2} cannot be a closer pair, because we have: 

ED(R1,B2) ≥ LB(R1,B1) - ED(B1,B2), which is 8.1 – 1.5 

Since 6.6 is greater than our best-so-far. {R1,B2} is pruned. 

• {R2,B1} cannot be a closer pair, because we have: 

ED(R2,B1) ≥ LB(R1,B1) - ED(R1,R2), which is 8.1 – 1.0 

Since 7.1 is greater than our best-so-far. {R2,B1} is pruned. 

Thus, in this case, we only had to compute one new distance calculation, not four.    

There is an obvious generalization of the above ideas. Suppose as shown in Fig. 23 we 

have many points in the R and B sets. 

 

Fig. 23 We can generalize the triangular inequality pruning to include a cohort of points, simply by 
recording the distance between an anchor point and the most distant member of the cohort. 

We could record each of these point’s distance from its “anchor point” R1 or B1. However, 

this would require significant memory overhead. It sufficient to record just the largest 

distance and use that as a bound for all its cohort. 

4.2 Definitions and Background  

We begin by outlining the definitions and notations used in this work. We start with the 

data type of our interest, which are time series. 

Definition 4: A time series	𝐓 = 𝑡!, 𝑡", … , 𝑡# is a sequence of real-valued numbers.  

We are not interested in the global properties of a time series but rather shapes of small 

regions called subsequences. 

Definition 5: A subsequence 𝐓(𝒊,𝒎) is a contiguous subset of values from T starting at 

index 𝑖 with length 𝑚.  

ED(R1,any(R)) = 1.0ED(B1,any(B)) = 1.5

B1can be seen as 
an “anchor point”

R1can be seen as 
an “anchor point”
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The Z-normalized nearest neighbor distance for all subsequences of length m in T can be 

stored in a meta time series, the matrix profile [50].  

Definition 3: A matrix profile MP of time series T is the vector of the z-normalized 

Euclidean distance between all subsequence T(%,') and their nearest neighbor T(+,') in T.  

When finding the nearest neighbor to each subsequence, we enforce an exclusion zone of 

m/2 before and after location i to avoid considering the trivial matches  [8]. The lowest 

values in a Matrix Profile (there will always be a tied pair) correspond to the Top-1 motifs, 

that is to say, the pair of subsequences that have the lowest mutual Euclidean distance.  

4.3 Lower Bounding the Matrix Profile  

As the examples in the previous section hinted at, we plan to create a lower bound for the 

MP. This lower bound will be the same length as the true MP, but faster to compute. As 

shown in Fig. 24 our starting point is to use the Piecewise Aggregate Approximation (PAA) 

[22] to downsample T.  

 

Fig. 24 left) A course 16-to-1 approximation of a time series 𝑻. right) A fine 4-to-1 approximation of the 
same time series. 

The PAA can be defined as [22]: 

Definition 4: The PAA of time series T of length n can be calculated by dividing T into k 

equal-sized windows and computing the mean value of data within each window. More 

specifically, for each window i, the appropriate value is calculated by the following 

equation: 

𝑡K̇L = 	
𝑘
𝑛		N 𝑡+

#
M.%

+O	#M(%E!)Q!
 

0 640 64

T

PAA 4 to 1 
compression rate

PAA 16 to 1 
compression rate

T
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Note that the examples in Fig. 24 and all subsequent examples assume that the length of 

the time series is a power-of-two. This is not a requirement, the PAA is defined when m 

and/or n are arbitrary integers, this just simplifies exposition.  

Assume we apply PAA to T using a downsample rate (𝑑𝑠𝑟) producing an output T. with 

length n/𝑑𝑠𝑟. If we compute the MP on T. then the computation is 𝑑𝑠𝑟" times faster than 

computing the MP on T. This “proxy” MP has two issues. First it is too short by a factor 

of 𝑑𝑠𝑟. This is easy to fix by upsampling, simply repeating each value 𝑑𝑠𝑟 times. The 

second issue is that the proxy MP is “weak”. The true MP records the distances between 

subsequences of length m, but the proxy MP considers distances between subsequences of 

length just 𝑚 𝑑𝑠𝑟⁄ , which in general have a lower value. To correct this we multiply T. by 

√𝑑𝑠𝑟 [22]. We call the result the Approximate Matrix Profile.  

Definition 6: The approximate Matrix Profile AMPdsr is the MP vector computed on T.. 

The computed MP is then upsampled by the same factor, by repeating every value for  dsr 

times, and multiplied by √𝑑𝑠𝑟.  

Note that a special case of the AMP is AMP1-to-1 which is simply the original Matrix Profile. 

In Fig. 25 we show how this notation harkens back to the examples in the previous section.  

Note that each 𝑡% (i = 𝛽d+1), is an Anchor point, and the following 𝑑𝑠𝑟-1 values are called 

cohort points.        

 

Fig. 25 left) (cf. Fig. 23) The geometric example considered in the previous section has a perfect analog 
with the AMP (right). 

Why did we make this connection? As shown in Fig. 26, if we plot AMP and MP together 

it appears that the AMP lowers bounds the MP, however this is not the case! 

0 64

PAA

T

R1 can be seen as 
an anchor point

All other points 
are cohort points

ti , (i = d+1) can 
be seen as an 
anchor point 

All other points 
are cohort points
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Fig. 26 The MP and the AMP8-to-1 for time series 𝑻. Visually the AMP appears to be a lower bound for the 
MP, but this is not the case. 

The AMP is only guaranteed to be a lower bound for MP only at locations that are aligned 

to anchor points, and only then it is lower bounding to other subsequences that also happen 

to align to anchor points. 

 To define a true lower bound for all values in MP, including all the cohort subsequences, 

will take additional work. We begin by introducing the K-Triangular Inequality Profile. 

Definition 7: A K-Triangular Inequality Profile KTIP, is defined as 𝑑(%,R) for x∈ (i, j), 

where 𝑡% and 𝑡+ are two consecutive anchor points and 𝑡R is 𝑡%’s furthest cohort point. 

The individual values in the KTIP can be seen analogous to the circle shown in Fig. 25.left. 

They can be seen as defining a region of variability or uncertainty of subsequence shape 

around the anchor point. To make a true lower bound, we must “compensate” for this 

uncertainty by subtracting it from the true lower bounding information that we do know. 

In the example in Section 4.1, we did this with 

LBTI(B2,R2) = LB(R1,B1) – [ED(R1,R2) + ED(B1,B2)] 

In the notation below, we show a perfect analogue of this, a final lower bound that 

comprised of a lower bound, minus the sum of two triangular inequality-based 

compensation.  

Based on the intuition explained in Section 4.1, we propose using KTIP to define Lower 

Bound Matrix Profile. 

T

1-in-8
1-in-1Zero	

Line



 58 

Definition 8: A Lower Bound Matrix Profile lbMPdsr, is a vector of distance values, lbdsr 

= [𝑙𝑏!, …, 𝑙𝑏#E'Q!]. Where 𝑙𝑏% = max[𝑎𝑚𝑝STU% – (𝑘𝑡𝑖𝑝% + 𝑘𝑡𝑖𝑝+)] for j ≠ i.  

lbMPdsr is a parameterizable lower bound for the MP. Note that it has an interesting special 

case; when 𝑑𝑠𝑟 is 1 we have lbMP1-to-1 = MP. Thus, the MP is a special case of lbMPdsr.  

More generally, as 𝑑𝑠𝑟 is set to larger values, the time needed to compute it decreases, but 

the tightness also decreases. To see this, we need a formal metric. We define TLB, the 

Tightness of the Lower Bound as: 

TLB =  1- [  ED(MP, lbMPdsr)/ ED(MP, ZeroLine) ] 

As illustrated in Fig. 27.right, TLB ranges from zero to one, with zero being a useless lower 

bound, and becoming more effective as it approaches one. 

 

Fig. 27 left) Five lbMPs of time series 𝑻 for various levels of downsampling. Note that the special case of 
lbMP1-in-1 is just the normal Matrix Profile. right) The Pareto frontier of the time needed to compute each 
lbMPdsr vs. its tightness. 

How can we use a lower bound? All Matrix Profile algorithms initialize a best-so-far 

variable (bsf) to infinity, and then incrementally reduce it until it is the true distance of the 

top-1 motif pair.  This suggest a simple pruning rule; any region of the time series that 

corresponds to a section of the lbMP that is greater than the current bsf can be admissibly 

pruned.  

As shown in Fig. 27, we have a parametrizable lower bound. This suggests the need for 

careful consideration of the trade-off involved. We could invoke a fast computation, but 

only obtain a weak lower bound. Alternatively, we could spend additional computational 

resources to obtain a tighter lower bound. This will almost certainly allow us to prune more, 

but will this more aggressive pruning pay for itself? This is a very difficult thing to 
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optimize, as the minimum useful tightness of a lower bound depends on the current value 

of bsf variable. However, the current value of bsf variable will change as the algorithm 

runs. Moreover, the current bsf variable itself depends on two things: 

• The final true distance of the top-1 motif pair. Clearly that is a lower bound for the best 

bsf variable we can see. 

• How fast the algorithm finds at least a good (i.e. low) bsf variable. This in turn depends 

on the algorithm’s search strategy, and the data itself. 

To make this concrete, consider the two timeseries shown in Fig. 28. In Fig. 28.left, a 

lbMP8-to-1 is sufficient to prune almost all the data. A lbMP2-to-1 used here would take 

sixteen times longer to compute but is no more effective at pruning. In contrast, in Fig. 

28.right, a lbMP8-to-1 can prune almost nothing and is simply a waste of computation. 

 

Fig. 28 In these examples, the pruning algorithm has a bsf that is ~8% greater than the true final motif 
distance. left) A 8-to-1 aMP can prune almost all the data. right) A 8-to-1 aMP cannot prune any data. 

In the next section we introduce MOMP, an algorithm that solves this issue. MOMP begins 

with a coarse lbMPdsr, and then iteratively passes any surviving (i.e. unpruned) data to finer 

lbMPdsr steps. In the limit, the finest lbMPdsr is the lbMP1-in-1, which is just the classic 

Matrix Profile.  

This strategy has two notable effects, it removes the “guesswork” of choosing the right 

down-sampling level. In addition, this strategy tends to quickly reduce the bsf variable. 

This in turn has two positive effects. It maximizes the pruning effectiveness, hence 

speeding up the algorithm, and it makes the algorithm strongly anytime.  

lbMP8-to-1

bsf

lbMP8-to-1

Ts1
Ts2
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Zero	
Line

bsf



 60 

4.4 MOMP 

In this section we introduce the MOMP algorithm. For simplicity of presentation, we 

consider only the case of Top-1 motif, self-join, and m is a power-of-two. However, all the 

generalizations of these assumptions are trivial and have already been implemented [31].  

4.4.1 Introducing MOMP 

We begin by giving the intuition behind MOMP. The core idea is to attempt to prune as 

much of the time series as possible with the coarsest (and therefore cheapest) lower bound. 

Any time series that survives that pruning is then considered at sampling rate that is twice 

as fine. The fact that the data is twice as fine means that the Matrix Profile computation 

would be four times as slow if all the data was unpruned. However, if any amount of data 

was pruned, this finer computation will have been accelerated. We iteratively continue this 

prune-then-upsample step until the unsampled data is at the original (i.e. 1-in-1) sample 

rate. At this point the Matrix Profile algorithm searches the remaining data and returns the 

true best motif pair. 

This algorithm is formalized in Table 10. 

Table 10: The MOMP algorithm 
Function: MOMP(T, m) 
Input: T : Input time series 
        m:  Subsequence length 
Output: momp_out: Distance matrix 
1 T0 = T 
2 dsr = m/32     # Set initial coarse down sample rate 
3 bsf = inf 
4 full_ktip = computeKTIP(T0, m, dsr) #Table 11 
5 while true 
6   ip = full_ktip(:, log2(dsr))  
7   lbMP, local_bsf = computeLBMP(T, m, dsr, ip) #Table 12 
8   bsf = refineBSFloc(T0, m, local_bsf, bsf) #Table 13 
9   prnT = prune(T0, m, lbMP, bsf) #Table 14 
10   T, dsr  = prnT, dsr/2 
11   if dsr == 1 
12      mp, motifloc = SCAMP(T, m) #Or any other MP algorithm  
13      return min(mp), prnT.indices(motifloc) 
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The algorithm starts by taking in the input time series, T and the user’s choice of 

subsequence length m. In line 1, the input time series is assigned to TG as the original input. 

Then in line 2, the initial downsampling rate (𝑑𝑠𝑟) is set. In line 3 the bsf value is initialized 

to infinity. Line 4 computes the full KTIP matrix explained in Table 11 on TG. Each column 

of which is later used at the appropriate downsampling level.  

The prune-then-upsample loop starts at Line 5. Line 6 selects the corresponding KTIP 

array, then uses it in line 7 to compute the lbMP. The lower bound algorithm outlined in 

Table 12 returns the lbMPdsr along with a bsf value. We call this the local bsf. This local 

bsf only represent motifs that start at an anchor point (recall Fig. 25.right). However, a 

tighter motif pair might be possible if we also consider the cohort points around the anchor 

point. Thus line 8 executes a quick local tuning on TG to refine the local bsf value and return 

the (generally smaller) current bsf.  

In Line 9 the algorithm admissibly prunes any section of the time series that has a 

corresponding region of the lbMP that is greater than the bsf, and in line 10 the pruned time 

series is promoted to the next iteration. Moreover, the downsampling rate is divided by 

two, so that the next iteration is working with data that is twice as finely sampled. Line 11 

checks to see when downsampling rate reaches one, at that point the exact MP computation 

is done on whatever regions of the time series has survived pruning up to that point. Line 

12 computes the final MOMP results and line 13 returns the output. 

Note that there are no parameters for MOMP. We do need to pick a starting downsample 

rate. As shown in line 2 of Table 10, we use (m/32)-to-1, but replacing the 32 with 128, 64 

or 16 makes no measurable difference. The number of times the loop beginning at line 5 

iterates is log2(m/32). 

This outline explained MOMP. We can now consider it subroutines in more detail, by 

further examining the details of KTIP computation (Table 11), lbMP computation (Table 

12), refinement (Table 13) and pruning (Table 14) in more detail. 

In line 2, the KTIP matrix is initialized as all NaN values. This matrix is the length of 

the MP array, and its column count is set to the number of MOMP steps. A temp variable 

is defined in line 3 for temporary storage of minimum values.  
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Then lines 4 to 13 compute the minimum distances, and in line 12 and 13 the required 

KTIP values are stored. Finally, line 14 returns the full KTIP matrix. The KTIP is then 

used in computing the lbMP using the algorithm in Table 12. 

Table 11: K-Triangular Inequality Profile Algorithm 
Function: computeKTIP(T, m, dd) 
Input: T: Input time series 
 m:  Subsequence length 
 dd5: Initial downsampling rate 
Output: ktip: lower bound Matrix Profile 
1 n = len(T) 
2 ktip = nan(n-m+1, log2(dd0)) 
3 temp = nan(n-m+1, 1) 
4 for diag = 1:dd0 
5     for rr = 1:n-m-diag+2 
6         cc = row + diag – 1 
7         dist ← ED(T(rr:rr+m-1), T(cc:cc+m-1)) 
8         if dist < temp(rr) 
9             temp(rr) = dist 
10         if dist < temp(cc) 
11             temp(cc) = dist 
12     if ispow2(diag) 
13         ktip(:, log2(diag)) = temp 
14 return ktip 

Table 12: Lower Bound Matrix Profile Algorithm 
Function: computeLBMP(T, m, dd, ip) 
Input: m:  Subsequence length 
 dd: Downsampling rate          
         ip: ktip for dd step 
Output: lbMP: lower bound Matrix Profile 
1 lbMP = nan(size(amp)) 
2 dT = PAA(T, dd) 
3 amp = SCAMP(dT, m/dd) 
4 for i = 1:len(amp) 
5     lbMP(i) = max jϵ[1: len(amp)], j ≠ i (amp(i)-ip(i)-ip(j)) 
6 lbMP ← upsample(lbmp, dd) 
7 return lbMP, min(lbMP) 



 63 

In line 1, the lbMP array is initialized as NaN values. Then in line 2, the input time 

series is downsampled by 1 in dd using PAA (recall Definition 4). Line 3 computes the MP 

on the downsampled time series. This allows lines 4 and 5 to compute the lower bound for 

every value in amp. Line 6 upsamples the computed lbMP by factor dd to maintain the 

original length. Finally line 7 returns the lbMP and its minimum value which is an 

approximate bsf.  Recall that, as shown in Fig.22.right, this bsf is limited to representing 

motifs that start at an anchor point. In Table 13, we use a refinement function to adjust the 

approximate bsf locally, by considering the cohort points to the right of the anchor points 

that currently have the bsf value.   

Table 13: Best-so-far Local Refinement 
Function: refineBSFloc(T, m, local_bsf, bsf) 
Input: T: Input time series 
 m:  Subsequence length 
 local_bsf: bsf found by lbMP 
 bsf: current bsf value 
Output: bsf: updated bsf value 
1 i,j ← local_bsf.loc 
2 segA = T(i-dd+1: i+m+dd-1) 
3 segB = T(j-dd+1: j+m+dd-1) 
4 [mp, minloc] = SCAMP([segA, segB], m) 
5 If min(mp) < bsf 
6     bsf ← min(mp) 
7     bsf.loc ← T.indices(minloc) 
8 return bsf 

In line 1, the location of the local motifs found by lbMP is assigned to i and j. Then in 

lines 2 and 3, two small segments of time series are made, covering the approximate motif 

locations and the dd cohort points to the right. Then in line 4, a classic matrix profile is 

computed on this tiny subset of T. Lines 5 to 7 updates the bsf value if a better motif is 

found, and Line 8 returns the bsf. Then we use the approximate and refined bsf values to 

prune T, using the algorithm in Table 14 and continue to the next iteration. 

In line 1, the pruned time series is initialized as an empty array. The target subsequences 

are found in line 2 by applying the best-so-far threshold to lbMP values. Then in lines 3 

and 4, the target subsequences are concatenated. The overlaps and alignment of 
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concatenation are handled in the original code, but this is glossed over for brevity. Line 5 

returns the pruned time series. 

Table 14: Pruning Algorithm 
Function: prune(T, m, lbMP, bsf) 
Input: T: Input time series 
 m:  Subsequence length 
 bsf: refined bsf value 
Output: prnT: pruned time series 
1 prnT = [] 
2 tgts ← locate(lbMP ≤ bsf) 
3 for t in tgts 
4   prnT.concatenate(T(t:t+m-1)) 
5 return prnT 

4.4.2 MOMPs Cost Model 

The cost for MOMP is almost completely dictated on the final prune rate at the time we 

finish computing on the 2-to-1 down-sampled data, and are about to pass the non-pruned 

data at full resolution to the classic MP algorithm in line 13 of Table 10. Thus, the speed 

achieved over classic MP is basically: 1/	(1 − 𝑝𝑟𝑢𝑛𝑒	𝑟𝑎𝑡𝑒	𝑎𝑡	𝐷𝑆𝑅&'()'*)&. 

However, this model ignores the overhead cost of lines 1 to 12 of Table 10. Here there is 

some variability. In the best case, the coarsest down-sampling might prune almost 

everything, and this overhead would be almost immeasurably small. However, let us 

consider the worst case, in which nothing is pruned. The overhead would consist of fruitless 

computation of the SCAMP algorithm at down-sampled data with 𝑑𝑠𝑟 of 2-to-1, 4-to-1, 8-

to-1 etc. These would have a cost of 1 2# !
 , 1 4# !

 , 1 8# !
  etc., which sums to an overhead of ~33%. 

There is also a small amount of overhead for down-sampling/up-sampling, computing the 

KTIP, refining the bsf etc. Empirically, the total overhead is typically less than a factor of 

two. Thus, as shown in Fig. 29, the acceleration achieved by MOMP over MP is well 

modeled as: Speedup = (1/	(1 − 𝑝𝑟𝑢𝑛𝑒	𝑟𝑎𝑡𝑒	𝑎𝑡	𝐷𝑆𝑅&'()'*)&) 2⁄  
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Fig. 29 The cost model for MOMP 
As show in Fig. 29 this implies that MOMP can “breakeven”, that is to say, cover the cost 

of the overhead, once the prune rate reaches about 40%.  As the prune rate gets higher than 

that, the speed up rapidly makes the overhead inconsequential. For example, if we can 

prune 90% of the data, the speed-up is about forty-one times faster, and if we prune 99% 

of the data, the speed-up is about 1,250 times faster. Remarkably, as we will show in 

Section 4.5, we do see such prune rates and speedups in real-world datasets.  

4.4.3 Observations about MOMP 

Here we discuss some of the properties of MOMP. 

• MOMP is independent of the base Matrix Profile algorithm used. It can use STAMP, 

STOMP, SCAMP, SCRIMP, SCRIMP+, or their GPU multi-threaded versions or their 

reduced precision versions [36] etc.  

• Some of the original MP algorithms, notably SCRIMP++ are strongly anytime 

algorithms. As we show in Fig. 34, MOMP not only inherits this property, but it can 

convert the currently batch-only MP algorithms such as STOMP or SCAMP to become 

strongly anytime algorithms. 

• MOMP is independent of the lower bound used. In principle MOMP could be used with 

any new lower bound invented in the future. There is a simple test to see if any newly 

proposed lower bound could help accelerate MOMP, it needs to be above the Pareto 

frontier shown in Fig. 27. For the simpler problem of time series similarity search, there 

is a rich history of alternative lower bounds [22], we suspect this will be a fruitful area 

for future research. 
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• Since the introduction of the Matrix Profile in 2016, the community has produced many 

extensions including Motif-Joins, Consensus Motifs, Chains, K-motifs, Novelets, multi-

dimensional motifs etc. MOMP can be used to accelerate all these primitives. For brevity 

we confine our demonstration to Motif-Joins in Section 4.4.4. Note that MOMP does not 

accelerate discord discovery, but there is already DAMP, an ultra-fast upper bound 

method for this task. 

• MOMP is more sampling-rate invariant than classic MP algorithms. Imagine Alice and 

Bob both record the exact same hour of EOG data using a Edanusa X12 recording device 

[12], but Alice at the lowest setting of 50 Hz, and Bob at the highest setting of 400 Hz. 

As shown in Fig. 32, in this case they both find the same top motif of length twenty 

seconds, but while Alice’s search takes 109 seconds, Bob’s search takes 117 minutes. 

This is about sixty-four times longer, as we expect from the O(n2) time complexity of 

SCAMP. However, MOMP is only 5.1 times slower when using the finer resolution data4. 

This is because the performance of MOMP is more influenced by the intrinsic 

dimensionality of the data, and not the actual sampling rate. This is a very useful property, 

as many datasets are arguably greatly oversampled. 

• The worst-case time overhead for MOMP as shown in Fig. 29 is remarkable. Most 

algorithms based on lower bounding in the dimensionality reduced space have good best 

cases, but in the worst case they can be orders of magnitude slower than a simple brute 

force search. For example, the recently introduced Attimo5 has a good best case for motif 

discovery [6], but as we show in [31], in the worst case it is hundreds of times slower 

than brute-force.  

• The worst-case space overhead for MOMP is also remarkable, it is just O(n). Once again, 

many time series algorithms have best cases, but untenable worst cases. For example, the 

space complexity for QuickMotif is O(m + survivors) [23]. In the best case the number 

of survivors might be small, but in the worst case there can be O(n2) survivors. Previous 

 
4 MOMP’s subquadratic scaling is due to its improving pruning ability in the finer data. For the low-sample-rate data MOMP prunes 

91.4% of the data, but for the high-sampling-rate data it prunes 96.9% of the data. Full details in [31] 
5 Attimo is not an exact time series motif discovery algorithm. It finds the best motif with a user specified probability [6].    
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work noted that “the memory footprint for Quick-Motif tends to be very large” [51], and 

that was when considering datasets that are less than one-hundred the size of the datasets 

we consider in this work.  

4.4.4 Limitations of MOMP 

There are two bad cases for MOMP. Interestingly, they are essentially two opposite cases: 

• Nothing is a Motif: If the data is just random noise, then the BSF variable will never be 

significantly smaller than any part of LB (see line 2 of  Table 14) and no pruning will 

take place. Of course, in such a situation, there are no semantically meaningful motifs, 

because the closest pair of subsequences will only be slightly closer than any random pair 

of subsequences [4].  

• Everything is a Motif: Suppose the data consists of perfect sine wave with a little noise. 

Here there are visually satisfying motifs, but any random subsequence with its nearest 

neighbor will almost be as similar. Because of this, all lower bounds will be close to zero 

everywhere and no pruning is possible. 

Obviously, we do not normally expect to work with such pathological datasets, however 

real datasets may approach either case. There are two other scenarios where MOMP does 

not offer significant improvements. First, if n is small, SCAMP is so fast that there is little 

room for improvement. The second case is if m is small. Given that MOMP is doing a 

multi-resolution search, if m is very short, there simply are not multiple resolutions to 

search over. 

4.5 Experimental Evaluation 

To ensure that our experiments are reproducible, [31] which contains all data/code for 

the results, in addition to many experiments that are omitted here for brevity.  

Unless otherwise stated, all experiments were run on a Dell XPS 8920, with Intel Core 

i7-7700 CPU @ 3.6GHz and 64GB RAM. While there is great interest in using HPC for 

time series motif discovery [36][54][56], here we intentionally use a dated and 

underwhelming machine.  
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Note that we mostly consider motif lengths that are a power-of-two. This is not a 

limitation of our work; the PAA representation is defined for arbitrary lengths [22]. 

However, later research may wish to build alternative lower bounds based on wavelets or 

DFT, and both those representations have their best cases for n and/or m equals a power of 

two [22].  

We use a highly optimized MATLAB version of batch-only SCAMP as both the base 

algorithm for MOMP and our rival strawman [56]. Because both approaches use the same 

base algorithm on the same hardware, any speed differences can be solely attributed to our 

algorithm.  

There is almost no other algorithm we can compare to. The recent Attimo [6] and HIME 

[16] are approximate algorithms, but we are interested in exact search. Quick-Motif [23] 

is an exact algorithm, and we do compare to it. 

There are dozens of papers that expand on the Matrix Profile. However most, such as 

Motiflets [40], use a standard algorithm such as SCAMP, but offer different ways to extract 

the motifs once the Matrix Profile has been computed. 

4.6 Establishing Two Important Facts  

We begin by establishing two facts that we will use for the rest of our empirical 

evaluations. 

• We can perfectly predict how long SCAMP will take, given only length of the input time 

series (see Appendix B).  

• The cost model introduced in Section 4.4.2 is reasonable. 

To see this, we can conduct an experiment to measure the speed up obtained by MOMP 

in the face of increasing noise. We created a random walk of length 220, and using SCAMP 

we measured how long it takes to find the Top-1 motifs of length 211. As shown in Fig. 

30.right, it takes SCAMP about 4,976 seconds (about 1.38 hours). 
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Fig. 30 left) The first 256 datapoints of the increasingly noisy datasets considered. right) The time 
for SCAMP is independent of noise level. However, while MOMP is initially two orders of 
magnitude faster, it slows down in the face of increasing noise. 

We can see that MOMP is impressively fast, about 115 times faster than a direct use of 

SCAMP.  However, as we add noise to the dataset, MOMP begins to slow down. This is 

to be expected. In the limit, a very noisy dataset puts us in the “nothing is a motif” situation 

explained in Section 4.4.4. 

  Now let us consider the raison d'etre for this experiment.  

• Here it took 4,976 seconds for SCAMP to process n = 220 datapoints. How long would it 

take to process say n = 654,321? Using the formula in Appendix B we predict it would 

take 1,937 seconds. Empirically measuring it, it takes 1,939 seconds, less than 1% error. 

• Consider the speed up obtained for the noisiest experiment. Our cost model predicts we 

should take 84.8% of the time for SCAMP. We actually took 73.8% of the time. This 

suggests our cost model is, if anything, a little conservative. 

These observations tell us that we can report either the wall-clock time or just the cost 

model’s predicted speedup. This is useful for two reasons. For some of the experiments we 

wish to do, SCAMP would take years or longer, we clearly cannot wait that long. Secondly, 

the speed up numbers are independent of the MP algorithm, the quality and optimization 

of the algorithm, and the hardware used. We use the most appropriate of the two measures 

on a case-by-case basis below, all measures are archived at [31]. 
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4.7 MOMP’s Speed Up on Diverse Datasets 

In Table 15 we evaluate MOMP on a collection of diverse datasets from science, 

industry and medicine. The times for MOMP, and the times for SCAMP that are less than 

12 hours are measured wall-clock times. Longer times are extrapolated as discussed in 

Section 4.6. 

Table 15: SCAMP vs. MOMP on various datasets. 
Name Length n Time SCAMP Time MOMP SpeedUp 
EOG400 Hz (Fig. 32) 1,439,997 2.03 hours 0.03 hours 60.7 
SWaT Attack 7 449,919 12.0 minutes 2.3 minutes 5.0 
HumanY-chromosome [6][16] 26,415,043 28.6 days 0.11 days 259.3 
EEG P2O2 2,472,001 6.1 hours 1.75 hours 3.3 
SleepElectromyography 5,983,000 35.5 hours 0.85 hours 41.1 
EOG (during sleep study) 8,490,000 71.05 hours 4.82 hours 14.7 
Respiration (Challenge) 1,799,997 3.19 hours 0.15 hours 20.4 
Insect EPGKryder trifoliata 7,583,000 2.36 days 0.64 days 3.6 
Insect EPGPoncirus trifoliata 7,583,000 2.36 days 0.033 days 231.5 
Chicken Behavior 8,595,817 3.02 days 0.107 days 28.1 
Kittiwake (Flying wild bird) 1,288,330 1.63 hours 0.11 hours 13.6 
HAR Ambient Sensor 1,875,227 3.27 hours 0.098 hours 35.4 
Electroencephalography 6,375,000 1.67 days 0.01 days 144.3 
WaterDemand 2,100,777 4.35 hours 0.131 hours 32.8 
Micro PMU 62,208,000 158.9 days 0.19 days 800.3 
Stator Winding 1,330,816 1.74 hours 0.033 hours 52.4 
Household electrical demand 5,153,051 1.09 days 0.0087 days 125.6 
Wind Turbine 5,231,008 1.12 days 0.068 days 16.4 
NASA SolarWind 8,066,432 2.67 days 0.012 days 220.0 
ECoG (Finger Flexion) 23,999,997 23.65 days 0.126 days 188.2 
SpanishEnergy 25,232,401 26.15 days 0.51 days 51.3 
EEG CinC  (Fig. 33) 1,593,750 2.50 hours 0.013 hours 181.2 

WearablesWetLab (Fig. 35) 4,031,969 16.0 hours 0.097 hours 165.4 
Physical Activity in Youth NIH 4,741,248 22.2 hours 0.17 hours 123.8 
OSA Sleep Apnea 8,340,000 68.3 hours 2.2 hours 30.9 
Random Walk 67,108,864 164.64 days 0.064 days 2565.8 
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While negative speedups are logically possible (see Fig. 29), none are observed. The 

speedups range from 3.3 (EEG P2O2) to 800.3 (Micro PMU) with a mean of 117.5. It is 

difficult to see any obvious predictors of speedup (beyond the factors discussed in Section 

4.4.4). The two insect EPG datasets are not visually distinct yet have dramatically different 

speedups. It is only with a post-hoc analysis we see that Insect EPGPoncirus trifoliata happened 

to have a better conversed motif, allowing for more aggressive pruning. 

We do not have space to provide detailed provenance for each dataset, but this 

information is archived at [31]. However, in most cases the motifs make intuitive sense the 

domain experts we asked to review the findings. For chicken behavior dataset the motif 

reflects dustbathing. For small values of m, pecking is the most conspicuous and frequent 

motif in chickens. However, here we take advantage of the scalability of MOMP to look 

for much longer motifs in 24-hour period. Healthy chickens normally only dustbathe every 

two days [34], so this discovery of two bouts in a single day offers evidence of possible 

infestation by parasitic mites.       

For the Kittiwake dataset, the motif reflects the bird (Rissa tridactyla) transitioning from 

gliding behavior to flapping flight.  For EOG data, the motif represents corneal reflex 

blinks. For WearablesWetLab, the act of pouring. 

In Fig. 31 we show representative examples of the motifs found during these 

experiments. 
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Fig. 31 Six representative motifs found during the experiments described in Table 15. Inset in gray are 
the entire original datasets. 

Note that we deliberately included one tiny dataset, SWaT-Attack-7 in Table 15, as it is 

the only dataset Quick-Motif could process without running out of memory [23]. When we 

use the original m = 16,384, Quick-Motif still ran out of memory6. But by reducing m to 

4,096 we got it to work. Quick-Motif was about seventeen times slower than SCAMP. 

Quick-Motif has three parameters w/l, λ and ε, it is possible that better settings of these 

parameters could close the time gap, but its memory footprint issue seems insurmountable. 

4.8 Searching The Entire Human Genome  

In Table 15 we converted the Human Y chromosome (HY) to a time series using the 

algorithm in Appendix A andsearched it for motifs. This dataset’s length is 26,415,043 bp 

(base pairs), and it was used as a capstone experiment in two papers that could only 

searched it approximately [6][16]. Note that it is by far the smallest of the 23 human 

chromosomes. 

To demonstrate the scalability of MOMP we consider an experiment that would be 

otherwise untenable. We began by converting the entire human genome (2,727,047,427 

bp) into 23 time series representing all the human chromosomes. We searched H1 for the 

best motif of length 65,536. We now can ask the following question. Which of the 

remaining 22 chromosomes have a motif as well conserved as H1?  

 
 

HAR Household Solar Wind

Spanish ED Water Demand  Finger ECoG
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To answer this question, we simply placed MOMP in a loop that ran 22 times. The only 

difference to normal MOMP is that instead of initializing the bsf in line 3 of Table 10, we 

initialize a global bsf outside of MOMP, and pass that value into MOMP. We can the 

exploit the anytime algorithm property of MOMP by stopping the search of a chromosome, 

if we find a qualifying small motif distance. 

The largest chromosome is H2 with a n = 238,357,386. To find the exact motif in just 

H2, we must compare or prune 25,734,779,520,915,612 candidate subsequence pairs of 

length 65,536. If each comparison took one microsecond, this would require 815 years. 

SCAMP cleverly reduces the factor in m to just O(1), and thus takes only 5.07 years. Here 

MOMP did a full search, taking 1.08 hours, about 41,000 times faster.  

In five of the twenty-two Chromosomes anytime MOMP’s early abandoning did work. 

For example, on H9 (n = 121,526,601) anytime MOMP found a qualifying motif in 12.4 

minutes, whereas SCAMP takes 1.32 years. 

Note that the H1 motif does not have zero distance, as zero-distance motifs can be found 

in linear time. Consider these excerpts we mapped into the original DNA string:   

Motif-1 (103,286,375 bp omitted) ..TGGCACAATGTCAC.. 

                               |||||| ||||||| 

Motif-2 (103,426,107 bp omitted) ..TGGCAC-ATGTCAC.. 

We can see that there are small local micromutations (either the insertion of A into 

Motif-1 or the deletion of A from Motif-2) that happened after the transposition event. By 

counting these micromutations it is possible to approximately predict when the 

transposition event occurred.  

4.9 AB Join MOMP 

The genomes of the Human and Chimp are nearly identical in structure, except for five 

large-scale inversions (and one chromosome fusion, which we ignore here). Let us use a 

join to find one such large-scale inversion. Here we follow the notation of the original MP 

paper [50], and generalize the MP to consider JAB, which is simply a motif consisting of 

the subsequence in B, that is closest to some subsequence in A. We denote this 

generalization JAB-MOMP.  
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A DNA inversion appears as a time series subsequence reversed in time. So, if the ith 

chromosome does not have an inversion, we should expect that the Euclidean distance of 

the Top-1 join-motif between the Human’s ith chromosome (Hereafter Hi) and Ci is much 

smaller than the Top-1 join-motif distance between the Hi and Backwards (Ci), as the 

reversal will not reveal hidden structure.  

If, however, the chromosome does have an inversion, we should expect the Euclidean 

distance of the Top-1 join-motif between the Hi and Backwards (Ci) to be about the same 

as the top-1 join-motif distance between original chromosomes. This is because our digital 

reversal undoes a biological inversion that took place sometime after the human chimp 

split six million years ago. 

We first consider H21 and C21 which have lengths of size 35,186,393 and 32,724,802 

respectively. Here the reversed search found a motif pair with a distance of 164.49, which 

is dramatically (and visually, see Fig. 32) further apart than the normal motif pairs distance 

of just 27.33. 

 

Fig. 32 Top-1 motifs pairs from the four AB-join experiments. The pair corresponding to the reversal of 
C21 is visibly less conserved than the others, looking no better conserved that random chance, suggesting 
that this chromosome is not the source of an inversion. 

We then considered H17 and C17 which have lengths of size 79,910,446 and 81,665,723 

respectively, finding that the reversed search found a motif pair with a distance 54.45, 

which is actually slightly less than the normal motif pairs distance of 76.87, strongly (and 

correctly, see [44]) indicating that this pair of chromosomes has a large-scale inversion. 

The average pruning rate for all four joins was 0.934 which means that our experiments 

ran about 139 times faster than JAB-SCAMP. Note that the pruning rates are not particularly 

high here because for most of the joins, we are in the “everything is a motif” situation as 

described in Section 4.8. Furthermore, note that the anytime convergence is so fast here, 

JAB(H21,C21)

JAB(H17,C17) JAB(H21,backwards(C21))

JAB(H17,backwards(C17))
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that as a practical matter we could have answered the original question in a few minutes on 

a typical laptop. 

This is not an original biological finding, and it could be done better/faster in the original 

DNA representation. Our example simply shows that MOMP allows accelerated time 

series similarity joins between massive datasets. To the best of our knowledge, these joins 

are, by two orders of magnitude, the largest time series joins ever attempted [50].  

4.10 MOMP as an AnyTime Algorithm  

Consider the 8.8 hour-long EEG CinC example in Table 15. As shown in Fig. 33.top 

the discovered motif is unusually well conserved and perfectly periodic, something we do 

not expect to see in real medical data. A few seconds of introspection by a medical 

technician would have them realize that the motif does not reflect a biological signal. After 

about 6.69 hours, the electrode patch that holds the sensor to the patient’s skin became 

loose. When this happens the sensor does not “flatline”, but instead emits a calibration 

signal, this is what this motif represents.  

 

Fig. 33 top) The Top-1 motif discovered in the EEG CinC dataset is just a calibration signal. It looks 
too well conserved to be natural, given how noisy the data is (gray inset). After removing the calibration 
signal, the Top-1 motif is a biological signal (bottom). 

When a user sees this, she can delete the calibration signals and rerun motif discovery. 

However, consider the three following scenarios. If we had used SCAMP to find this motif, 

this cycle would have taken 2.50 hours. Using MOMP as a batch algorithm, it would have 

only taken about 79 seconds. However, using MOMP as any anytime algorithm and 

visually inspecting the current bsf motif, we would have seen this calibration motif after 

about eight seconds. 
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This observation motivates the use of an anytime framework for motif discovery. 

Although the full algorithm may take minutes or hours to finish, often a visual inspection 

in the first few seconds will allow the user to stop because: 

• It is clear that the motif that will be returned is pathological, as in the EEG case above, 

or 

• The current best-so-far motif is already interesting enough to warrant investigation that 

there is no point in continuing, or at least the current run can be run in the background 

while the user examines the current motif. 

A useful property of MOMP is that it is an anytime algorithm, even if the underlying 

MP algorithm is not. To see this, let us conduct an experiment. We created a random walk 

of length 220 and using SCAMP (a batch-only algorithm) we measured how long it takes 

to find the Top-1 motif m = 212. Fig. 34 shows that this takes 34.7 minutes. 

 

Fig. 34 The time needed for SCAMP and MOMP to find the Top-1 Motif. For MOMP, we also plot 
its anytime convergence rate. 

We repeated the experiment with MOMP, this time also measuring how fast it 

converges. This convergence is the normalized difference between the final motif distance 

and the bsf distance recorded each time through the loop in line 8 of Table 2. We defined 

a score to evaluate the convergence rate. The score is:  

Convergence = 1 −	 VWUUX#Y-Z[	E	\%#]^-Z[
%#%Y%]^-Z[

 

Here we define initialBSF as the average distance between two random subsequences 

(empirically determined). Because MOMP is data dependent, we averaged over one 
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hundred runs. As Fig. 34 shows MOMP is an ideal anytime algorithm, quickly converging 

on high-quality motifs.  

4.11 The Utility of Motif Discovery 

While the utility of motif discovery as a subroutine in downstream analysis is well 

established, for completeness we will show a concrete example. Suppose we wish to 

annotate a long video. If we have a companion time series, it may be easier to find motifs 

in the time series, and visually check if the corresponding video snippets show semantically 

similar behaviors. As shown in Fig. 35, this idea does bear fruit.  

 

Fig. 35 left) We searched for motifs in time series recorded in parallel to a 40.5 minute video showing 
benchwork in a wet lab. right) The motifs do correspond to a repeated behavior, pouring. 

Here MOMP took 5.8 minutes, much faster than real time. Our cost model predicts 

SCAMP would take 16.0 hours. We took advantage of the relatively small data size to run 

SCAMP to competition, finding it took 15.8 hours. 

Similarly, for a doctor to annotate a sleep study, they must examine about eight hours 

of sleep telemetry. Working with Dr. <blinded> we performed a simple experiment to see 

if motif discovery could reduce this labeling burden. The task was to annotate a dataset for 

an Obstructive Sleep Apnea (OSA) study. OSA is characterized by “repetitive episodes of 

intermittent hypoxemia” [9], and of course “repetitive” strongly suggests “motifs”. As 

shown in Fig. 36 we searched a seven-hour respiration dataset for motifs of length 80 

seconds (the length was suggested by Dr. <blinded>). 

~21 min ~34 min40.5 minutes: Y-axis, right hand

~21 min

~34 min



 78 

 

Fig. 36 This motif corresponds to “cycles of intermittent hypoxemia with cyclical desaturation-
reoxygenation”. inset) the full seven-hour respiration dataset. 

Having found a motif of interest, we can simply search for other occurrences to help 

label the dataset. 

Here, MOMP took 2.21 hours, which is faster than real time. Our cost model predicts 

SCAMP would take 68.5 hours. We again took advantage of the small data size to run 

SCAMP to completion, finding it actually took 68.3 hours. 

4.12 Conclusions 

We introduced lbMP, the first lower bound to the Matrix Profile, and we further 

introduced MOMP, a parameter-free algorithm that exploits lbMP to accelerate exact motif 

discovery. We have shown that MOMP accelerates motif discovery by up to two orders of 

magnitude. There are many opportunities for future work. In the past motif discovery was 

always compute-bound. The use of MOMP is bringing us close to the point were dealing 

with secondary memory will become an interesting research challenge. In addition, 

precedent in time series similarity search, suggests that once a lower-bounding framework 

for an important problem is introduced, the community is very creative in inventing 

increasingly tighter lower bounds [22]. 

5 FUTURE WORK 

The research presented in this thesis opens several exciting avenues for future work. Below, 

we outline potential directions for extending the contributions made by SPLAT and 

MOMP, as well as addressing new challenges and opportunities that have emerged from 

our findings. 
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1. Generalization of SPLAT: 

o Introduction of New Patterns: While SPLAT has demonstrated its utility 

across diverse domains, there is significant potential to generalize its 

applicability further. This can be achieved by introducing new patterns that 

cater to specific use cases in various fields such as climatology, genomics, 

and social network analysis. Developing a library of such patterns will 

enhance SPLAT's versatility and impact. 

o Exact Computation on GPUs: Currently, SPLAT leverages GPU 

computing for near-approximate results. Future research should focus on 

adapting SPLAT to utilize GPU acceleration while maintaining exact 

computation. This would involve optimizing algorithms for parallel 

processing, reducing approximation errors, and ensuring computational 

integrity. 

o Integration with Real-Time Data Streams: Extending SPLAT to handle 

real-time data streams can greatly enhance its applicability, particularly in 

domains like finance, environmental monitoring, and online behavior 

analysis. This would require the development of robust algorithms that can 

process and analyze data in real-time without compromising accuracy. 

o Collaborative Filtering and Recommendation Systems: Leveraging 

SPLAT for collaborative filtering can improve recommendation systems by 

identifying patterns and similarities in user behavior, preferences, and 

interactions. This application can enhance the performance of e-commerce 

platforms, social networks, and content delivery services. 

2. Enhancement of MOMP and Matrix Profile Algorithms: 

o Memory Management and Optimization: As MOMP significantly 

accelerates motif discovery, the next challenge lies in managing memory 

efficiently. Research should be directed towards developing innovative 

memory management techniques and optimizing data structures to handle 

large datasets without compromising performance. Exploring hybrid 
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storage solutions that balance between RAM and secondary memory could 

prove beneficial. 

o Tighter Lower Bounds: Building on the introduction of lbMP, future work 

should aim to develop tighter lower bounds for Matrix Profile calculations. 

Drawing inspiration from the community’s creativity in time series 

similarity search, researchers can devise new algorithms that further 

enhance the efficiency and accuracy of motif discovery. These 

improvements could unlock new applications and deeper insights from time 

series data. 

o Scalability to Ultra-High Dimensional Data: Extending MOMP to handle 

ultra-high dimensional datasets will broaden its application scope, 

particularly in fields like bioinformatics, neuroimaging, and sensor 

networks. This involves addressing the curse of dimensionality through 

advanced dimensionality reduction techniques and parallel processing. 

o Adaptive and Incremental Learning: Developing adaptive and 

incremental versions of MOMP that can learn from new data without 

retraining from scratch will enhance its efficiency and applicability. This 

can be particularly useful in dynamic environments where data evolves over 

time, such as stock market analysis and adaptive control systems. 

3. Human-Centric Enhancements: 

o Patchwise Search Optimization: Given that human attention has become 

the primary bottleneck in analyzing massive Mplots, enhancing patchwise 

search methodologies is crucial. Future work should focus on refining these 

search techniques to ensure that the most relevant and insightful patches are 

identified quickly. This can involve integrating machine learning models to 

predict user interests and streamline the search process. 

o User Interface and Experience: Developing intuitive user interfaces that 

facilitate interaction with large Mplots and enable efficient patchwise 

searches is essential. Incorporating visual analytics and interactive 
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exploration tools will empower users to extract meaningful insights with 

minimal effort. 

o Personalized Visualization and Reporting: Customizing visualization 

and reporting tools to align with user preferences and expertise levels can 

significantly improve user engagement and decision-making. This includes 

developing dashboards that highlight key findings and trends relevant to 

specific users or applications. 

4. Exploration of Secondary Memory Challenges: 

o Addressing Secondary Memory Bottlenecks: As MOMP brings motif 

discovery close to the limits of compute-bound constraints, dealing with 

secondary memory becomes a pertinent research challenge. Future work 

should explore advanced storage solutions, such as distributed file systems, 

cloud-based storage, and memory-mapped file techniques, to handle large-

scale data efficiently. 

o Efficient Data Retrieval and Indexing: Improving data retrieval and 

indexing mechanisms to minimize latency and maximize throughput when 

accessing large datasets stored in secondary memory is critical. This could 

involve developing new indexing algorithms and optimizing existing ones 

to ensure rapid data access and retrieval. 

o Fault Tolerance and Data Integrity: Ensuring fault tolerance and data 

integrity in secondary memory storage solutions is vital, particularly for 

applications requiring high reliability and accuracy. Future research should 

focus on developing robust error detection and correction mechanisms, as 

well as backup and recovery strategies to safeguard data integrity. 

By pursuing these future directions, the research community can build upon the 

foundational work presented in this thesis, further advancing the fields of time series 

analysis, motif discovery, and scalable algorithm design. The continued evolution of 

SPLAT and MOMP will undoubtedly contribute to solving increasingly complex problems 

across a wide range of scientific and industrial domains. 
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