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Abstract

This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical 

physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) 

are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main 

source code repositories are detailed together with the automated compilation and tests processes 

(Continuous Integration). We then described how the OpenGATE collaboration managed the 

collaborative development of about one hundred developers during almost 20 years. The impact 

of GATE on medical physics and cancer research is then summarized, and examples of a few key 

applications are given. Finally, future development perspectives are indicated.

1. Motivation and significance

Monte Carlo (MC) simulations are a group of computational methods that can be used for 

approximating real phenomena by sampling the known physical laws of nature encoded 

in a computer by models. MC simulations are an indispensable tool for performing 

virtual experiments involving ionizing irradiation and radiation transport phenomena. As 

such, these tools have been widely used for investigating radiation processes in medical 

imaging technologies and radiotherapy, assessing the efficiency and accuracy of imaging 

and treatment devices used in medicine. This is particularly true for the diagnosis and 

management of cancer where some of the most often used imaging (e.g. computer 

tomography (CT), single photon emission computer tomography (SPECT) and positron 

emission tomography (PET)) and therapy modalities (e.g. external beam radiation therapy 

(EBRT), Radiopharmaceutical therapy (RPT), trans-arterial radioembolization (TARE) and 

brachytherapy) use radiation for cancer characterization and management. In this paper, we 

describe the ecosystem and general structure of the GATE Monte Carlo toolkit (GEANT4 

Application for Tomographic Emission) which was originally developed as a tool for 

simulating emission tomography applications, but was later expanded to simulate a large 

range of imaging and therapy approaches for cancer management. The GATE toolkit has 

been in the research landscape for almost 20 years [62].

This open-source software is designed to help researchers and engineers to perform a 

large range of Monte Carlo simulations in the medical physics field. Typical applications 

are generally split into two sub-domains: imaging and dosimetry. The first one includes 

simulation of radiation-based imaging systems such as: PET, SPECT, Compton Camera, 

CT, CBCT (Cone-Beam CT), etc. Such types of simulation represents a keystone to 

design or improve imaging systems, to optimize acquisition parameters, and to develop 
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advanced image processing algorithms (reconstruction, segmentation, denoising, image 

corrections etc). The second domain refers to several types of radiation therapies such as 

external beam radiotherapy (including proton and carbon ion therapy). This also concerns 

absorbed dose assessment and energy deposition in imaging, such as CT or interventional 

radiology. Among numerous other applications, the most prominent examples contain beam 

characterization of various beam delivery systems or dosimetry studies.

Several review articles have already been published, accompanying the major evolution of 

the code. From a historical perspective, we can mention: the first publication on PET and 

SPECT developments in 2004 [62], the evolution towards radiation therapy in 2011 [63], 

some extensions to other dosimetry applications in 2014 [131] and, more recently in 2021, 

a specific topic for emission tomography imaging [132]. Even if the major novelties and 

applications have been already described, no description of the architecture and/or about the 

organization of the collaborative source code development have been published. Moreover, 

in addition to the core software, satellite projects have been conducted and are currently 

used by the community while having never been presented. The goal of this paper is thus 

to describe the GATE ecosystem and the technical organization of the whole project. In the 

conclusion, we describe the work in progress and the projects aiming to reshape the future of 

GATE.

2. GATE ecosystem

2.1. On the shoulders of Geant4

The underlying pillar of GATE is the Geant4 toolkit [1; 6; 7], developed at CERN about 25 

years ago (first release in 1998). This open-source toolkit offers C++ classes and functions 

allowing users to build complex Monte Carlo simulations tracking particles through matter. 

A large number of experiments in high energy physics, astrophysics, space science, medical 

physics, and radiation protection are using Geant4, having more than 34k citations on google 

scholar.

GATE is a regular Geant4 application, written in C++, focused on the medical physics and 

radiation protection field, like other Geant4 applications such as (among others): Gamos 

[11], Topas [107] or PTSIM [14]. Consequently, the core Monte Carlo particle tracking 

engine, all physics databases and models are originating from Geant4. The main principle 

of GATE is to facilitate the modeling of complex medical physics simulations such that the 

end-user only needs to write simple text files containing high-level commands in a so-called 

“macro” language. Advanced users and GATE developers collaboratively contribute to the 

same C++ source code, which is open (see next section), providing brick classes and specific 

algorithms that are accessible through macros. Once installed, GATE provides one command 

line executable taking as input a file of macro commands describing the simulation to 

run. In addition to user-friendly access to Geant4 simulations, GATE also offers the user a 

large number of tools, to both speed-up simulations (variance reduction techniques, parallel 

execution with split and merge tools, source geometries and moving volumes, interface to 

medical imaging standards like DICOM, etc) and to facilitate the extraction of input data 

and exploitation of simulation results. In this regard, GATE provides built-in support of 

additional toolkits (ROOT, ITK-RTK, and PyTorch).
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2.2. Regular releases

Because Geant4 regularly evolves, with about one major version per year (often in 

December), GATE follows the same pace. It has been decided to provide a new GATE 

version per year, compatible with the latest Geant4 release. Every GATE version is thus 

associated and tested with one single Geant4 version. In practice, however, an advanced user 

may compile GATE against some older versions of Geant4, although this is not officially 

supported. Latest versions of GATE are presented in table 1.

In addition to the source code, GATE can be installed from Virtual Machine system (the 

so-called vGATE) or with a Docker version that can easily be deployed for example on 

clusters.

Openness and users contributions.—The philosophy of GATE is that everyone can 

contribute to the source code, from simple typo corrections in the documentation up to 

the addition of new features. Indeed, when users want to propose additional code, they 

contact the collaboration. They can either directly propose their own code on the platform 

or discuss with the developers about its integration. In practice, all developers’ contributions 

are managed via the GitHub PullRequest (PR) mechanism. Once the new source code is 

proposed, it is discussed and integrated in the main source code by maintainers. Thanks 

to the GitHub Actions mechanism, every time a modification is proposed in any part of 

the source code, the whole code is recompiled and tested on several architectures (Linux, 

MacOS), with different options. In principle, any new contribution should be proposed via 

PR with 1) source code, 2) documentation and 3) test case (or benchmark). Once a year, all 

changes are integrated into the new release.

2.3. The GATE ecosystem and open organisation

Through the years, the GATE ecosystem evolved a lot and is now - in 2022 - the following. 

All source files are stored in Git repositories, currently hosted on the GitHub platform, in 

one single organization named OpenGATE. The Git system is the cornerstone of the GATE 

software development as it allows to host the source code, to manage all user proposed 

modifications (enhancement or bug correction), as well as the documentation, benchmarks, 

software tests, example simulations, and related tools. Note that, even if everything is 

currently hosted on the GitHub platform, the intrinsic decentralized nature of Git would 

allow to easily move to alternative hosting systems. Four main repositories are included 

under OpenGATE organization name: the main source code is in Gate, the benchmarks 

are gathered in GateBenchmarks, GateContrib regroups some user contributions and 

GateTools propose additional convenient Python tools. They are detailed below.

Gate repository.—This repository contains all the C++ source files of the main 

executable. It is composed of approximately 600 classes, in 3200 files and 780,000 lines 

of code. The source code is divided into folders grouping classes of related functionalities. 

Figure 1 shows a description of the main classes in GATE. The main folders are:

• geometry. Contains classes related to volume definition, shape, material, 

position etc, including management of voxelized volumes;
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• physics. Contains classes related to physics lists, cuts management and all 

types of particle sources (such as voxelized source or source dedicated to pencil 

beam scanning in hadrontherapy);

• digits_hits. Contains classes related to all scoring methods (see section 2.4), 

including all actors and management of digitization process of detectors (such as 

coincidence sorter for PET systems);

• general. Contains generic tools and classes used to manage a complete 

simulation;

• externals. Contains external open source code developed by other 

organizations, such as some ITK methods used to read and write image.

In this repository, several Git branches are used. The main ones are the following: 1) the 

develop branch containing the last work in progress version of the source code. 2) the 

branch GateRTIon containing the specific version for GATE-RTion (see section 2.6). Every 

released version has its own tag (v9.1, v9.0, etc.) making it easy to retrieve previous stable 

versions.

GateBenchmarks repository.—This repository contains a set of test cases. They are used 

to check and evaluate every new change in the source code. Every time a modification is 

proposed in the source code, the whole list of tests is executed and analyzed. Every test 

is composed of a (ideally simple and short) GATE simulation, described by macro files 

and is associated with a Python script comparing the simulation output with a reference 

output. If differences exceed a given test-specific threshold, a flag is raised requiring 

further investigation. There are currently more than 20 different benchmarks, each of 

them evaluating a specific feature, such as energy deposition or dose scoring in voxelized 

geometries or quantification of NECR (Noise Equivalent Count Rate) in PET systems.

GateContrib repository.—Examples of GATE simulations provided by users that can be 

used as reference or template, are provided in this repository. Note that these simulations are 

not evaluated and remain at the responsibility of the users to be tested. These simulations 

mainly serve as examples and show-how for the different applications of GATE.

GateTools repository.—This repository contains a companion project aiming at 

providing Python functions and command-line tools to help create or analyse outputs from 

GATE simulations. Provided functions deal with various tasks such as images’ management 

(conversion from and to DICOM format, resampling, etc), DVH (Dose Volume Histogram), 

gamma index, phase-space analysis, etc. It heavily relies on the ITK toolkit‡.

2.4. Focus on three key concepts: Volumes, Actors, Digitizer

In this section, three key concepts of the GATE architecture are highlighted: “Volumes” the 

handling of the geometry, “Actors” that serve several scoring purposes, and the “Digitizer” 

specific for imaging systems.

‡ https://www.itk.org 
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Volumes.—In Geant4, all geometrical elements that compose a simulation are described 

with three concepts. LogicalVolumes represent the properties (e.g. material composition), 

PhysicalVolumes manage the spatial positioning, and Solids define the shape of 

a geometrical element. In GATE, the three concepts are encapsulated into a single 

GateVolume that abstracts those notions. The user only manipulates Volumes without 

the burden to manage the three different concepts. This allows to simplify the simulation 

description, but some advanced Geant4 capabilities are not available within GATE (e.g. 

“parallel world”).

Actors.—The Actors are scorers that encapsulate several Geant4 concepts. They are used 

as a callback from the Geant4 engine to score information or modify the default behavior 

of particles during a simulation. An Actor combines the Geant4 SensitiveDetector and 

Actions callbacks within a single class that can perform tasks each time a Run, Event, 

Track or Step starts or ends in a given volume. Actors are mainly used to record parameters 

or information of interest calculated during the simulation, but they can also be used to 

act on the current particle, for example to stop tracking it. About 30 Actors are currently 

available. Among the most used are:

• the GateDoseActor: recording of the absorbed dose (or energy deposited) in a 

volume according to a 3D matrix whose dimensions are defined by the user. The 

Actor also records the uncertainty on the calculated dose value in each voxel;

• the GatePhaseSpaceActor: recording of the characteristics of the radiation 

(type of particles, energy, direction, creation process, etc.) passing through a 

volume;

• the GateKillActor: stop tracking a particle if it reaches the volume, in order 

to save computation time. It is the responsibility of the user to ensure that the 

physics is correct (it is always recommended to the users, to validate their results 

to justify the appropriate use of the Actors).

It is also possible to associate each Actor with one or more filters allowing to select a type of 

particle, an energy or even a specific direction. Figure 2 depicts the structure of the Scorers 

and Actors in GATE.

Digitizer.—The response of the photodetection components, for example in PET, SPECT 

or Compton Camera detectors modeling, is managed by a suite of analytical models that 

form a Digitizer (Figure 3). This module is based on Geant4 virtual methods dedicated 

for such functionality. It takes as input a list of interaction events, the Hits gathered in 

a HitsCollection, within a crystal or detector element (Sensitive Detector), and generates 

digital pulses, called Digits, with associated information (energy, position, time, etc) 

gathered in DigiCollection. In a digitization, a digit represents a detector output, such 

as an ADC/TDC count or a trigger signal. The first step of the Digitizer is to construct 

Single digits, each of them mimics one specific hardware response with their associated 

uncertainty. Currently, there are 37 signal processing modules available in GATE that can be 

enabled by users to represent hardware output (see examples in Figure 3 and in [62], [37]). 

In the case of PET imaging, a specific Digitizer part for constructing coincidences exists. 
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It passes, firstly, by a CoincidenceSorter where coincidence candidates are pre-selected. 

Then, they can be processed by one of the 5 dedicated Coincidence Digitizer Modules. A 

Digitizer chain may also be separated from the main Monte Carlo simulation (offline): the 

simulation stores hits and/or singles in a large root file, and the digitization can then be 

performed with this file as input, allowing to compare several digitization chains with the 

same hits.

2.5. Collaboration with other toolkits

In addition to Geant4 which GATE is built on, several toolkits cooperate with GATE. The 

ROOT [25] data analysis framework is heavily used throughout the hits analysis to store 

and organize all physical information during a simulation. Note that, since version 9.0, an 

alternative NumPy [55] output can also be used. The Python module UpRoot is used within 

the GateTool to efficiently process ROOT files [110]. Also in GateTools, all 2D and 3D 

images are managed with ITK [89]. SpekCalc [112] can also be used to define the X-ray 

beam source characteristics for X-ray based imaging devices. Image reconstruction from 

simulated list-mode or projections may be performed with other open-source toolkits such as 

STIR [141], CASToR [94] or RTK [117]. Indeed, STIR implement analytical and iterative 

reconstruction methods for PET [71] and SPECT [67] imaging devices using GATE’s 

output as input. CASToR also proposed iterative PET reconstruction algorithms and can 

conveniently read GATE generated ROOT output [64]. RTK [117] performs tomographic 

reconstructions from GATE generated projection images. While initially designed for CBCT 

images, it can now also be used for SPECT reconstruction (OSEM, with attenuation, scatter 

and PSF corrections) [120; 121] and contains specific features for motion compensated 

reconstruction. It is also used internally within the GATE code to perform variance reduction 

algorithms (see section 3.1). All those toolkits helped GATE to build this ecosystem on 

medical physics.

2.6. Slow pace development: GATE-RTion

GATE was historically the first Geant4-based application for medical physics. Over the past 

15 years, its usage and interest in the field of light ion beam therapy has been growing 

considerably, with the first modeling of an IBA pencil beam scanning system [50] and 

several subsequent applications related to beam modeling [8; 35; 45], dosimetry [22; 44; 

51; 52; 114; 128] and associated imaging applications [93; 122; 123]. The idea of the 

Gate-RTion project was initiated in 2017, with the purpose of easing the implementation of 

GATE in clinical centers [53]. The first Gate-RTion version was released in 2018. It provides 

a stable and long term GATE release, including validation tests (available in the GateContrib 

repository) for dosimetric applications in light ion beam therapy (mainly scanned proton 

and carbon ion beams). It provides a collection of tools necessary for the clinical users to 

interface GATE with the clinical environment (available in the GateTools repository). Gate-

RTion establishes a bridge between researchers and clinical users, to facilitate the transfer 

of research applications into the clinics and allows users to establish more standardized 

guidelines [152]. The next version of Gate-RTion is currently planned for 2023.
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2.7. The OpenGATE collaboration

The OpenGATE scientific collaboration currently brings together 25 public and private 

institutions (list of partners available on www.opengatecollaboration.org) committed to 

develop, maintain, and promote the GATE software by respecting the rules set by the 

steering committee. The collaboration is based on a Gentleman agreement and is open to 

every group willing to contribute. The collaboration is represented by a spokesperson and 

its developments are supervised by a scientific coordinator. Twice a year, the collaboration 

organizes a scientific workshop during which current developments and the latest validations 

are presented. During these workshops, the limits and priorities for each development are 

identified. In addition, a group of developers meets regularly with the scientific coordinator 

to solve technical challenges. The group is open to everyone who wants to contribute. 

The current GATE mailing list contains more than 2000 registered people, it may give an 

indication on the number of users.

Twice a year, the collaboration organizes training for beginners as well as training to help 

advanced users in their analyzes of simulation data with the Python language. These courses 

are open to researchers from the academic and private sectors. The collaboration supports 

any initiative to use the platform in the university environment for teaching. As an example, 

all medical physics students that are following the DQPRM diploma in France (required 

to be certified as medical physicist) follow a GATE initiation course. In addition, several 

schools are set up internationally to train master’s level students. These training courses 

are organized mainly remotely, participants can practice exercises under the supervision 

of expert collaborators by accessing a complete IT environment on a dedicated remote 

server. For example, the OpenGATE collaboration in association with IEEE Nuclear and 

Plasma Sciences society are organizing two schools per year in different parts of the world 

by adapting the scientific content to the needs of the students in collaboration with the 

academics of each country (schools have been organized in Asia and Africa, and will be 

extended to North and South America).

2.8. Limitations

The collaboration does not manage money (except from a small amount dedicated to the 

organisation of one-time events or to pay GitHub servers) and the collaboration does not 

employ engineers and developers directly. All contributions are performed by researchers 

according to their own projects and budgets, inherently limited in duration. It is indeed a 

very flexible organisation but depends on the success of the members to grant applications. 

Hence, the long-term management and maintenance of the software is challenging as authors 

of some specific features may leave. The number of active developers is also relatively 

small: around 20 people contributed to the source code in the last 3 years.

3. Impact on cancer research and medical physics

This section briefly reviews the impact of GATE regarding cancer-related medical physics 

applications. A representative part of the available applications is presented here focusing to 

the most recent developments. For clarity, the section is split into two main parts dedicated 

to imaging and dosimetry. Previous papers are referred, wherever appropriate, for illustration 
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of the ecosystem’s applications. Figure 4 depicts an estimation of the number of publications 

throughout the lifetime of GATE, covering all the available applications in medical physics 

(with almost 900 publications from 2004 until 2021). The graph is provided by the Scopus 

platform (www.scopus.com) and incorporates the different publications in the fields of 

medical imaging, dosimetry and radiotherapy. Figure 5 summarizes the main applications of 

GATE that can be found in the literature, also separated into two main fields, imaging and 

dosimetry.

3.1. Imaging-related applications

Nuclear medicine imaging.—In the last few decades there has been a dramatic evolution 

of nuclear medicine imaging, which provided methods for earlier and more accurate 

cancer diagnosis, therapy and therapy response assessment. This period coincided with 

the development of GATE, which since its first release in 2004, has been used to advance 

nuclear imaging capabilities and accuracy, particularly in PET and SPECT imaging [16; 

146]. GATE has been extensively used and is a well-validated tool for: i) the design and 

the development of new imaging systems , ii) the evaluation and the optimization of image 

processing algorithms, iii) the development of new radiotracers. Recent developments of 

GATE MC simulations for emission tomography were presented in a topical review [132].

For more than 20 years, imaging systems like CT, PET and SPECT modalities have become 

essential tools in cancer diagnosis and for therapeutic efficiency evaluation. GATE is widely 

used to characterize and investigate/optimize image quality of scanners produced by most 

main manufacturers (e.g. Siemens [4], General Electric [134] or Philips [147]) as well 

as to design, optimize and validate new systems that will be put on the market. GATE 

is for example used to optimize the choice of the detection medium (crystal or liquid 

scintillator, semi-conductor, etc.), the light collection system (PMT, APD, PSPMT, SiPM, 

etc.), the geometry of the scanner (dead zone reducing, packing fraction optimization, 

etc.), to improve the spatial and temporal resolution, the sensitivity and the image contrast 

recovery. All these parameters are critical in image quantification for oncology applications. 

GATE is also widely used for prototype detector developments and the next imaging system 

generations integrating concepts like heterostructured scintillators for ultra-fast TOF-PET 

scanners [76], total body acquisition [98; 146], or Compton Camera systems [40; 41; 43; 

101; 102] with a dedicated module [37]. GATE has been also used to optimize PET detector 

design for proton therapy range monitoring that is particularly challenged by low signal-

to-noise ratio with respect to the diagnostic PET scanners (see section 3.1). In addition, 

GATE is also used in the field of data correction and tomographic reconstruction where the 

production of simulated data is crucial to validate the interest of new algorithms to improve 

quantitative analysis.

Optical imaging—Optical imaging techniques such as bioluminescence imaging [116], 

fluorescence imaging [82], and Cerenkov luminescence imaging [124] are essential for 

translational cancer research. GATE can simulate optical imaging techniques by modeling 

the optical photon transport inside biological tissues [32] as validated against MCML optical 

simulation software [150]. The optical properties of biological tissues such as refractive 

index, absorption and scattering coefficients can be defined as a function of wavelength 
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thereby allowing realistic simulations optical imaging and near-infrared thermal therapy 

[33]. In addition, an optical lens was implemented into GATE for more realistic optical 

imaging simulations of bioluminescence and near infrared fluorescence (NIRF) imaging 

[66]. Moreover, GATE also allows the Cerenkov luminescence simulations (see examples 

in Figure 6) that can be used as a basic research tool for both nuclear medicine [30] and 

radiotherapy [68; 140].

Positronium imaging.—The GATE platform can be used as a tool to develop novel 

PET imaging methods beyond the conventional two-photons tomography. In particular, 

GATE/Geant4 is capable to simulate positronium decay, a bound atomic state of an 

electron and a positron, that is formed before annihilation occurs. The measurement of 

positronium properties, e.g. its mean lifetime, can provide supplementary information about 

the metabolic processes in the patient’s body [99]. In tissues, the positronium properties are 

influenced by the size of inter- and intramolecular voids and the concentration of molecules 

such as molecular oxygen in them, and the extraction of this information may provide 

insight into disease progression [98]. This approach opens a new field of applications in 

cancer diagnosis [97; 135]. The positronium tomography technique is especially suitable for 

large field-of-view high-sensitivity scanners. Positronium imaging performance studies for 

several large-field-of-view plastic-based scanner prototypes has been described in [100].

X-ray imaging.—GATE is also used for X-ray medical applications, either for imaging 

or/and dosimetry, as in CT [18; 56; 73; 103], dual energy CT (DECT) [77], Cone-Beam 

CT (CBCT) with kV beams [13; 26; 57; 86; 149; 153; 154] and MV beams [19; 20], 

or mammography [38; 38; 39]. Imaging systems were simulated either to assist image 

improvement methods (such as scatter estimation), or to estimate the dose to the patient 

(such as organ dose calculations). SpekCalc [112] can be used to define the X-ray beam 

source characteristics. GATE also proposes various variance reduction techniques dedicated 

to X-ray imaging, like the Fixed-Forced Detection (FFD) that makes use of the fast ray-

tracing capabilities of the RTK library [27; 154]. More recently, a module was added to 

GATE in order to perform X-ray phase-contrast imaging [36], as well as processes for 

the refraction and total reflection of X-rays and an analytical wave optics algorithm for 

generating Fresnel diffraction patterns. All these tools specific to X-ray imaging techniques 

were successfully validated against data.

Ion imaging.—Patient imaging using particles like protons or ions is also a promising 

research field and several studies have been done with GATE for simulating ion beams in 

complex configurations (voxelized volumes, detectors, etc.). Using GATE capabilities for 

both imaging and dosimetry, these works mainly investigate potential benefits of proton 

radiography and tomography techniques while optimizing reconstruction algorithms [9; 72; 

75; 113; 118; 137]. Imaging with uncommon beams such as with muon [2] or with Helium 

[108] was also proposed.

Proton range monitoring.—Among the applications of GATE for radiation therapy, a 

newly implemented multi-stage GATE framework, ProTheRaMon [23], joins and extends 

GATE capability to simulate proton therapy treatments, secondary radiation induction 
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(Sec. 3.2), and PET imaging including reconstruction with CASTOR package (see Sec. 

3.1). ProTheRaMon was developed to be executed on a computational cluster with the 

aim to simplify multi-parameter simulation studies exploiting large number of patient 

CT images and treatment plans, all needed to design, test and compare PET detector 

designs and precision of proton therapy range monitoring in clinical environment [74; 85]. 

ProTheRaMon was developed in the frame of a research project aiming at designing and 

optimizing a range monitoring detector based on J-PET technology [96–98; 100] at CCB 

Krakow proton therapy centre (Poland) [61; 127]. It is an open-source GATE repository 

available on ProTheRaMon. Currently, ProTheRaMon is also used by researchers from Paul 

Scherrer Institute (PSI, Switzerland) within the scope of the PETITION project (Swiss 

National Science Foundation, Grant CRSII5_189969), a collaboration between ETH Zurich, 

Le Centre hospitalier universitaire vaudois (CHUV, Lausanne) and PSI [119], which aims 

to develop a dedicated proton therapy PET scanner for brain and head-and-neck tumours, 

aiming at hypoxia guided proton therapy [84] and proton therapy range monitoring [92]. 

Others online proton range monitoring methods are also studied with GATE, such as line-

cone reconstruction with Compton Camera [80].

3.2. Dose-related applications

External beam radiation therapy.—GATE has been used to provide answers to 

complex issues that cannot be resolved with clinical software available for photon 

radiotherapy. These are, for example, dose calculations with large heterogeneities [17], skin 

dose for breast cancer treatments [10], or double calculation of radiotherapy treatment plans 

[79]. However, GATE is less used for external photon beam therapy than, for example, 

EGSnrc [70]. GATE has a stronger impact in light ion beam therapy centers supporting 

research and development, as well as clinical applications derived from the Gate-RTion 

release in particular. AUTOMC was the first Gate-RTion-based proton Independent Dose 

Calculation (IDC) system. It has been set-up in clinical operation since the start of the 

Christie NHS Foundation Trust, a proton therapy facility that opened in December 2018 in 

Manchester (UK) [3]. It is used to support the Patient Specific Quality Assurance (PSQA) 

Process. AUTOMC/Gate-RTion was successfully validated against more than 730 clinical 

plans, for which physical QA measurements were performed with a 2D detector array and a 

thimble ionization chamber. AUTOMC is a stand-alone software directly providing the IDC 

output in terms of gamma pass rate [81]. IDEAL (Independent DosE cAlculation for Light 

ion beam therapy) is an alternative Gate-RTion-based IDC system for light ions. IDEAL 

was designed in a DICOM-in/DICOM-out fashion, in order to be compatible with standard 

DICOM interfaces available at light ion beam therapy centers. IDEAL is a proton and 

carbon ion IDC system and the first version was released in March 2021 [54] (available on 

the Git repository of OpenGATE). It is being used at the MedAustron ion therapy center 

in Austria, mainly for carbon ion IDC. Current hot topics in the field of proton and carbon 

ion therapy, such as variable proton Relative Biological Effectiveness (RBE) depending 

on Linear Energy Transfer (LET) [136] (see next sections), the influence of fragmentation 

spectra on carbon ion RBE [115], influence of new stopping power tables (e.g. ICRU90) 

for 3D dosimetric applications with protons and carbon ions [22] are fully supported by the 

Gate-RTion release.
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Radionuclide therapy.—The impact of GATE on cancer research significantly increased 

after the addition of radiation therapy and dosimetry applications in 2014 [33; 54; 131], MC 

simulations serve as gold standard for dosimetry calculations and can now be conveniently 

used for combined imaging and therapy applications in GATE, which is of high importance 

for theranostics [95; 145]. Emulated by Geant4 to model the energy deposition in biological 

media, GATE allows dosimetry through full Monte Carlo, dose point kernels (DPKs), or 

more recently deep learning (DL) for fast dose computation [42; 47; 48; 78; 106]. GATE 

has been used for image-based dosimetry in research and clinical practice [10; 20; 24; 

34; 125]. Specific to nuclear medicine, high-precision dosimetry becomes an essential tool 

for targeted radionuclide therapy with 177Lu or 90Y [111; 125], and is poised to continue 

growing in importance with the development of short range alpha emitters [143]. In Targeted 

Alpha Therapy (TAT), the understanding of the dose deposition in tissue such as the bone 

marrow close to bony metastases is essential to develop efficient and safe therapeutics. Very 

recently, GATE was extensively validated for brachytherapy applications incorporating both 

high dose rate (HDR) and low dose rate (LDR) sources with 192Ir and 125I respectively 

[29]. The GATE platform combining high precision dosimetry and well-validated image 

modeling has the potential to become a tool of choice for investigating and developing novel 

approaches using a plethora of radionuclides.

Radiobiology.—GATE is becoming extensively used to predict the effect of radiation 

at micro and nano scales, from preclinical cell irradiations to advanced hadrontherapy 

treatments [87; 88; 105; 109; 126; 136; 138; 139; 148]. The platform is the preferred tool 

to simulate preclinical or clinical beam characteristics that are detailed in a phase-space file 

before being combined to Geant4-DNA simulations [21; 58–60] to assess radiobiological 

effects. To date, GATE is not able to fully handle multi-scale simulations from the 

calculation of dose to organs to an accurate identification and understanding of cellular and 

molecular damage. Upcoming developments will favor the integration of relevant features 

that have been tested so far through Geant4-DNA simulations. As example, we can mention 

the integration of various cell population models, specifically 3D cell populations, from 

the C++ Cell POPulation modeler (CPOP) already compliant with the Geant4 toolkit [83]. 

We will propose the same integration for the IDDRRA platform to score radiation induced 

DNA damage with a user-friendly simulation of different DNA molecules [28]. Recently, 

specific actors are being developed for proton and carbon ion therapy to calculate LET or 

biological dose-based clinical treatment planning. Linear energy transfer (LET), especially 

dose-averaged LET (LETd), either as a physics component of variable RBE models [91] or 

alone, as a physical treatment planning parameter [90; 144], is increasingly considered in 

clinical practise. The recent literature indicates that the LETd alone may not be predictive 

of biological effectiveness in proton radiotherapy [15; 46; 65; 104]. The GATE framework 

offers access to information on single particle interactions, thus, enabling calculation of 

single particle LET in a voxelized patient geometry. Figure 7 shows dose and LETd 

distributions, as well as LET spectra for 150 MeV therapeutic proton pencil beam at the 

Bragg peak depth computed with GATE and measured experimentally with a TimePix 

detector [49]. In addition, the estimation of the biological dose will be proposed through 

the BioDoseActor [5]. The input data of this new actor are pre-calculated α and β cell 

survival parameters for Human Salivary Gland (HSG) cell line produced with mMKM [69] 
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and NanOx [31] biophysical models for monoenergetic ions (hydrogen, carbon, helium, and 

oxygen) and energies ranging from 0.1 to 400 MeV/n. Some biophysical models, like the 

NanOx model, also consider the physicochemical and chemical consequences of radiation 

at nano scales by evaluating the oxidative stress undergone by cells during water radiolysis. 

In the future, one can expect ongoing developments concerning the simulation of chemical 

species reactions during water radiolysis for different dose rates [142] will be gathered in a 

new open-source release and could help to better estimate treatment outcomes.

3.3. General considerations

There are several advantages of GATE for medical physics research. First, GATE offers 

Monte Carlo simulation environments for medical physics with user-friendly macro 

command lines as well as interactive visualization capability thereby allowing users to 

conveniently develop and debug their own simulation. Second, various pre-defined medical 

imaging systems such as PET, SPECT, Compton camera, X-ray CT, and optical imaging 

are readily available thus researchers can implement new studies based on those systems. 

In addition, the radiotherapy and internal dosimetry simulations are available with well-

validated physics models thereby allowing researchers to investigate the new cancer therapy 

strategies and concepts in conjunction with the radiation exposure to patients. One drawback 

of GATE is that Geant4 multi-threading is not available. GATE provides however job 

splitting tools in which the simulation tasks can be separated and assigned to multiple CPU 

cores thereby reducing the overall simulation time substantially. Another drawback of GATE 

is that the users are limited to the pre-defined imaging systems with their fixed system 

hierarchy.

GATE is one among several other Monte Carlo codes which have been and are in use in 

Medical physics applications. These codes include GEANT4 itself, EGSnrc [70], MCNP 

[151], TOPAS [107], GAMOS [11; 12] and each of them has its own advantages and 

limitations. The collaborative approach which is a feature of both GATE and GEANT4 

provides both advantages (broad and powerful feature enrichment) and limitations (code 

coherence and efficiency). While other code systems have focused mostly on accuracy 

(EGSnrc, MCNP), efficiency (EGSnrc) or a particular application (TOPAS), GATE is fully 

open-source and would be competitive in the realms of detailed modeling of the imaging 

and supporting instrumentation process (e.g. signal digitization by electronic modules), 

obtaining results for both imaging and dosimetric interpretation in a single simulation, ease 

of use, original AI-based methods (see next section), and broad international support and 

education program.

4. Future directions

The GATE software is constantly evolving, trying to propose new features and new 

improvements from release to release.

Digitizer.

The aim of the first ongoing collaborative project is the restructuring of the “digitizer 

module”. As described in previous sections, this module simulates the response of the 
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photodetection components in several imaging systems (PET, SPECT, Compton Camera 

etc). This central module has evolved a lot since the beginning of the project and has become 

complex and hard to maintain with multiple layers of interdependencies. The main goals of 

the current development are: to preserve the current functionalities, to modularize the code, 

to keep it as close as possible to the Geant4 framework. The main basic components of 

this module will be based on the notion of HitsCollections, DigiCollections and 

DigitizerModule. The first manages a list of “hits” corresponding to some interactions 

in given volumes, described by several attributes (energy, position etc.) that may be selected 

dynamically according to user’s needs. The second notion, DigitizerModule manages 

procedures that will take as input some HitsCollection and DigiCollection and 

create another ones. At the end of a complete digitization task, composed of several chained 

DigitizerModules, the user will get the simulation of the photodetector response.

Artificial Intelligence.

Another ongoing experimental project aims to investigate the potential interest of AI, and 

more specifically GANs (Generative Adversarial Networks), for the modelling of phase-

space or activity sources [130; 132; 133]. The main idea is to build a neural network model 

of a given probability distribution of particles such that they can be quickly generated, 

avoiding the tracking phase. Proofs of concept have been published but there are still a lot 

of unknowns and uncertainties in those approaches that remain to be studied. There is, in 

particular, some ongoing work on conditional GANs that may allow to model a family of 

GANs, and to avoid time-consuming re-training [129].

Python.

Finally, a third long-term project has started, aiming to completely rethink the way the 

simulations are described by the user. Indeed, the Geant4 messenger system, based on 

a text file of so-called “macro commands”, has been used for years. This is a powerful 

system, but has some limitations and is not always very user-friendly. For example, while 

feasible, it is not really convenient to create complex simulation structures involving loops, 

variables or computations. By acknowledging the fact that the Python language and its 

associated very large environment is de-facto a standard for data analysis, it has been 

decided to investigate whether simulations can be directly described in Python instead of 

macro files. The interests of such a mechanism are: a simulation can be described with 

regular Python scripts with loops or any type of variables, part of the simulation can be 

modularized and easily reused (with import), users do not have to learn a new language. A 

first prototype is currently showing the feasibility of such an approach. The mechanism is 

based on the Geant4 python binding thanks to pybind11§ that exposes to Python a fraction 

of the Geant4 API. The GATE engine is hence split into two main parts, one directly in 

Python that takes care of everything related to the simulation initialization part, and the 

second part, in C++, in charge of tasks occurring during a simulation run. Communication 

between Python and C++ is designed such, that only the computing-intensive parts of the 

simulation are still described in C++, leaving all other management to Python for simpler 

§ https://github.com/pybind/pybind11 
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development. With this approach, there is no computation time penalty due to the use of 

Python, the core engine remaining Geant4. Multithreading capabilities of Geant4 are also 

maintained (thanks to the possibility to release the Python Global Interpreter Lock before 

going multi-thread). A potential drawback of this approach is the need to use two different 

coding languages to develop and add functionalities. However, by separating more clearly 

what is performed during initialization from what is done during run-time, and by moving to 

Python all high-level tasks, it is hoped that maintenance and development will be simplified. 

The first public experimental version of this approach, that may become the future GATE 

10.x series, is planned in 2023.

5. Conclusion

GATE is a living open-source project run by the OpenGATE collaboration, contributing 

since around 20 years to medical physics cancer research. The associated community 

is the real strength of this initiative gathering people from different fields (radiology, 

nuclear medicine, radiotherapy, radiation protection, etc.) with complementary backgrounds 

(researchers, engineers, teachers, medical physicists, physicians, etc.).
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Figure 1. 
Main GATE classes architecture and link with Geant4 classes. Singleton classes are depicted 

with a small “1” icon.
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Figure 2. 
Classes architecture of the GATE scorers and actors module.
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Figure 3. 
A schematic of the GATE digitizer main workflow and elements: a) digitizer module within 

the GATE environment and its interaction with other modules; b) digitizer module. An 

example of a scintillation detector containing two scintillation crystals and a photocathode is 

illustrated.
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Figure 4. 
Estimated number of publications of GATE from 2004 to 2021 regarding imaging, 

dosimetry and radiotherapy applications.
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Figure 5. 
Main applications of GATE in medical physics.
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Figure 6. 
a) GATE Cerenkov luminescence imaging setup with optical imaging system and positron 

sources inside a water phantom, b) GATE Cerenkov luminescence imaging simulation 

geometry, c) the CCD image that collected Cerenkov luminescence light for 10 seconds.
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Figure 7. 
2D dose (left panel) and LETd of protons (middle panel) distributions in water for 

therapeutic pencil proton beam at 150 MeV and the corresponding LET spectrum (right 

panel) for the measurement point at the Bragg peak depth, 45 mm from the beam 

axis, indicated with red squares on left and middle panels. Proton, electron and photon 

contributions to the LET spectrum are calculated with GATE and compared to the 

measurement with a TimePix detector. Wide range of proton LET values is approximated by 

the averaged LETd given in the legend.
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Table 1.

Latest GATE releases and their corresponding Geant4 version.

GATE Geant4 Year

9.2 11.0 2022

9.1 10.7 2021

9.0 10.6 2020

8.2 10.5 2019

8.1 10.4 2018

8.0 10.3 2017

7.2 10.2 2016
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