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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE

POPULATION SAMPLE

VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

1. Abstract

The number of individuals in a random sample with close relatives in the sample is a
quantity of interest when designing Genome Wide Association Studies (GWAS) and other
cohort based genetic, and non-genetic, studies. In this paper, we develop expressions for the
distribution and expectation of the number of p-th cousins in a sample from a population
of size N under two diploid Wright-Fisher models. We also develop simple asymptotic
expressions for large values of N . For example, the expected proportion of individuals with
at least one p-th cousin in a sample of K individuals, for a diploid dioecious Wright-Fisher

model, is approximately 1 − e−(22p−1)K/N . Our results show that a substantial fraction of
individuals in the sample will have at least a second cousin if the sampling fraction (K/N)
is on the order of 10−2. This confirms that, for large cohort samples, relatedness among
individuals cannot easily be ignored.

2. Introduction

As genomic sequencing and genotyping techniques are becoming cheaper, the data sets
analysed in genomic studies are becoming larger. With an increase in the proportion of
individuals in the population sampled, we might also expect an increase in the proportion
of related individuals in the sample. For example, Moltke et al. (2014) found in a sample of
2,000 Inuit from Greenland that almost half of the sample had one or more close relatives in
the sample. The census population size for Greenland Inuit is only about 60,000 individuals
and the effective population size might be substantially lower. Henn et al. (2012) found
5000 pairs of third-cousin and 30,000 pairs of fourth cousin relatives in a sample of 5000 self-
reported Europeans, with nearly every individual having a detected cryptic relationship.
In Genome Wide Association Studies (GWAS), related individuals are routinely removed
from the sample, but other strategies also exist for using relatedness as a covariate in the
statistical analyses (e.g., Visscher et al. 2008). These observations raise the following
question: given a particular effective population size, how many close relatives would we
expect to find in a sample? The answer to this question may help guide study designs and
strategies for addressing relatedness in population samples and improve design for GWAS.
Of particular interest is the number of individuals in the sample without relatives, i.e. the
number of individuals remaining in the sample if individuals with relatives are removed.
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2 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

Substantial progress has been made on understanding the structure of a pedigree in a
population. For example, Chang (1999) showed that the most recent common ancestor
of all present-day individuals is expected to have lived log2(N) generations in the past if
N is the population size. A great deal of progress has also been made in understanding
the difference between genealogical processes in full diploid pedigree models versus the
approximating coalescent process (e.g., Wakeley et al. 2012; Wilton et al. 2016). However,
the distribution and expectation of the number of individuals with relatives in a random
population sample is still unknown.

In this paper we will address this question by exploring two diploid and dioecious Wright-
Fisher models. We will use these models to derive distributions and expectations of the
number of individuals that have, or do not have, siblings, first, second, etc. cousins within
a sample.

3. Dioecious Wright-Fisher Model

The Wright-Fisher model (Fisher 1930; Wright 1931) describes the genealogy of a pop-
ulation with constant effective population size N . The model assumes that generations do
not overlap. Let G = {g1, g2, . . . , gN} and Ĝ = {ĝ1, ĝ2, . . . , ĝN} be two successive genera-

tions with N individuals in each. Then for each individual ĝi from Ĝ a parent gj is selected
randomly and uniformly from G.

In our study we consider a diploid population where each individual has two parents, one
male and one female. Similarly to the original haploid Wright-Fisher model, the dioecious
Wright-Fisher model (see e.g. Nagylaki 1997, King et al. 2017) assumes that generations
do not overlap and, for each individual, the parents are chosen from the previous generation
uniformly at random. The difference is that instead of a single parent, in the dioecious case,
each individual has two parents, one male and one female, which are drawn independently
from the corresponding sets of males and females in the preceding generation. We will refer
to this model as the ’non-monogamous Wright-Fisher model’ because we will also consider
a model in which female and male parents form monogamous pairs. We will refer to the
latter model as the ’monogamous Wright-Fisher model’. As we will assume exactly equal
proportions of males and females, the monogamous Wright-Fisher model is identical to the
bi-parental monoecious model in King et al. (2017).

For both the non-monogamous and monogamous models, we assume that there are
exactly N male and N female individuals. Each individual from generation Gi−1 (we enu-
merate generations backward in time starting from 0, i.e. G0 is the present generation and
G1 is the generation of parents of individuals from G0) is assigned to a parent pair (one
male and one female parent) from Gi. As we described above, under the non-monogamous
model, male and female parents are chosen independently from each other for every indi-
vidual. In the monogamous case, the parent pairs are fixed, i.e. we assume each male and
female is part of exactly one potential parent pair.

The two diploid models are similar to each other in that the marginal distribution of
the number of offspring of each individual is binomially distributed with mean 2. However,
they differ from each other in the correlation structure among parents. The important
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 3

•
Individual 1

•
Individual 2

• • Shared father • Mother 2

• • • •
Shared grandparent

•

Figure 1. The two offspring (Individual 1 and Individual 2) related by
this genealogy are half-siblings and first cousins at the same time. Notice
that Individual 1 has a tree-like genealogy (no cycles, no inbreeding). The
second individual though has inbreeding in its genealogy.

difference between these two models is that the monogamous model does not allow for
half-siblings (we say that two individuals are half-siblings if they share only one parent).
On the other hand under the non-monogamous model, full siblings (individuals which share
both parents) have a very low probability of appearing.

We note that other dioecious versions of the Wright-Fisher models could be considered
with varying degree of promiscuity, but most would likely have distributions of relatedness
that are somewhat intermediate between these two models, as long as they otherwise main-
tain Wright-Fisher dynamics. We also note that none of these models probably accurately
describe the behaviour of human populations, which likely have a much higher variance in
offspring number, variable population sizes, etc.

As mentioned above, individuals are siblings if they have the same parents. If individuals
share only one parent, we call them half-siblings. We say that two individuals are p-th
cousins if there is at least one coalescence between their genealogies in generation Gp+1.
Of course, the amount of shared genetic material would depend on the number of shared
ancestors in a certain generation. For two individuals, the number of shared ancestors
is given in the supplementary materials of King et al. (2017) (see the discussion below).
Notice, that two individuals can have different relations simultaneously. An example of such
a situation is given in Figure 1: the individuals related by this genealogy are half-siblings
and first-cousins at the same time.

Let S be a random sample of size K of individuals from the present-day generation
G0 of a population described by either a monogamous or non-monogamous Wright-Fisher
models. In this paper we derive the number UT (notation for monogamous case) or VT
(notation for non-monogamous case) of individuals in S which do not have (T − 1)-order
cousins (T = 1 would stand for (half-)siblings, T = 2 for first cousins, etc.) within S and
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4 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

have genealogy with no cycles. We will derive the probability distribution of U1 and V1
and expectations of UT and VT for T ≥ 2 in terms of Stirling numbers of the second kind.
Further we present a simple analytical approximation of expectations of UT and VT . We
derive this approximation as an exponential function of the ratio of the sample size to the
effective population size.

The condition that individual’s genealogy does not have cycles means that there is no
inbreeding in the history of the individual. Indeed, a cycle appears when two mating
individuals share an ancestor, hence they are related to each other. On the contrary, if
there is no inbreeding within T generations of ancestors of a certain individual, then all
the ancestors have different parents, hence in the Gk (k ≤ T ) there are exactly 2k ancestors
of the individual under consideration.

Notice that the requirement that there is no inbreeding is satisfied as long as 2T is small
compared to the effective population size N . In this paper we are particularly interested
in large populations. We will compute the fraction of individuals with siblings (T = 1)
or p-th cousins (T = p + 1) in a sample in the limit of the effective population size N
going to infinity. For fixed values of T and the sample size, K , the number of siblings
and cousins goes to zero in the limit of large N . However, for a fixed ratio K/N , there is
a positive expected number of siblings and offspring, but the expected number of cycles
in the genealogy is small compared to K. This observation follows from the fact that the
probability that two individuals share a parent is 1/N , which is a rare event for large N .
Hence for large N all the ancestors of an individual are unrelated with high probability. We
will, therefore, approximate the number of individuals who have siblings (or p-th cousins)
by K−UT or K−VT depending on the model. We notice that using this method we cannot
characterise, for example, the overlap between the set of individuals who have siblings and
the set of individuals who have first-cousins, so we cannot provide an approximation of the
number of individuals who have at least some kind of relatives within several generations.

Every genealogy has the same probability under the model. Hence our problem is equiva-
lent to counting the number of possible genealogies with certain properties. To enumerate
different genealogies, we will use the following approach. Firstly, we divide a sample S
into subsets of siblings (in case of non-monogamous model, we create two independent
partitions of the sample, one of partitions corresponding to shared fathers and the other
corresponding to shared mothers). Then we assume that individuals from the same subset
have the same parent couple (in the case of the monogamous model) or the same father or
mother (in the case of the non-monogamous model), and individuals from different subsets
have different parents. This approach is the basis for our analyses and leads us to the proof
of formulas for expectations of UT and VT .

The combinatorial technique used to obtain exact formulas for expectations of UT and
VT is very similar to the technique used in King et al. (2017) (see supplementary materials
S1). In particular, we have to keep track of the number of ancestors at each generation
which is the question of interest of the section S1.1 of King et al. (2017). Notice, that
results in our paper and the result of S1.2 of King et al. (2017) complement each other. We
find the expected number of individuals in a sample which do not have any relatives with
respect to a certain generation, hence we know approximately the number of individuals
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 5

which share at least one ancestor in that generation with at least one more individual
from the given sample. However we cannot characterise finer relatedness (e.g. the number
of shared ancestors in a given generation,) as more than one coalescence per generation
between genealogies of two individuals is possible. The pairwise analysis of individuals
can be performed using King et al. (2017) results, though it can be computationally
challenging. The asymptotic behaviour derivation for E(UT )/K and E(VT )/K (for fixed
K/N ratio) is a completely new result to the best of our knowledge.

We remind the reader that the Stirling number of the second kind S(n, k) is the number
of ways to partition a set of size n into k non-empty disjoint subsets. A generalisation of
this is the r−associated Stirling number of the second kind, Sr(n, k) (Comtet 1974), which
is the number of partitions of a set of size n into k non-empty subsets of size at least r.
We provide more detailed information on the Stirling numbers of the second kind in the
Appendix.

4. Probability distribution U1

We say that two individuals are siblings if they have the same parents. In this section
we study the number of individuals U1 without siblings within a sample of a population.
We derive both the probability distribution and expectation of U1.

Theorem 1. Let U1 be a random variable representing the number of individuals in a
sample S of size K without siblings in S under monogamous dioecious Wright-Fisher model.
Then

• the probability distribution of U1 is

P(U1 = u) =

(
K
u

)∑bK−u
2
c

t=1 S2(K − u, t)
(
N
u+t

)
(u+ t)!∑m

t=1 S(K, t)
(
N
t

)
t!

;

• the expectation of U1 is

E(U1) = K(1− 1/N)K−1;

• if K/N = α

lim
N→∞

E(U1)

K
= e−α.

Proof. We begin the proof by computing the number of possible partitions of S into u
subsets of size 1 and t subsets of size greater than or equal to 2. Each subset of such a
partition corresponds to the descendants in S of the same couple of parents from G1. There
are

(
K
u

)
S2(K − u, t) such partitions (see figure 2). Here the first multiplier corresponds to

the number of choices of the first u individuals and the second multiplier corresponds to
the number of partitions of the remaining K − u individuals into t disjoint subsets.

Now we need to assign u+ t subsets to different couples of parents from G1. There are(
N
u+t

)
possibilities for choosing couples that have descendants in S and (u+t)! permutations

which assign these particular couples to different subsets of the given partitions of S.
Finally, summing over all possible values of t we get
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6 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

• • • • • • • • •

• • • • • • • • •

• • • • • • • • • •

Figure 2. Illustration to the proof of Theorem 1. Each dot correspond to
an individual. The bottom set of points corresponds to the individuals in
the sample S. This sample is divided in disjoint subsets (the set of points in
the middle): this partition corresponds to sets of siblings, or in other words
individuals from each subset will be assigned to the same couple of parents.
The top row corresponds to the set of couples in the parent generation.
Subsets of siblings (from the middle row) are assigned to different couples
of parents (from the top row).

P(U1 = u) =

(
K
u

)∑bK−u
2
c

t=1 S2(K − u, t)
(
N
u+t

)
(u+ t)!∑m

t=1 S(K, t)
(
N
t

)
t!

,

where b·c stands for the floor integer part.
The expression for expectation of U1 is much simpler. The probability π1 that an

individual I does not have any siblings in S is π1 = (1 − 1/N)K−1, because all other
individuals from S \ {I} can be assigned to any couple of parents except for the parents
of the individual I. By linearity, the expectation of U1 is

E(U1) = Kπ1 = K(1− 1/N)K−1.

To prove the last statement of the theorem it is enough to rewrite

E(U1)

K
= (1− 1/N)−1

(
(1− 1/N)N

)K/N
= (1− 1/N)−1

(
(1− 1/N)N

)α
,

because K/N = α by definition. Now notice that

lim
N→∞

(1− 1/N)N = e−1.

Hence the last statement of the theorem is proved

lim
N→∞

E(U1)

K
= e−α.

�
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 7

5. Expectation of U2

In this section we will provide an expression for expectation of the number U2 of indi-
viduals in a sample which do not have first cousins in this sample. We will also establish
a limit for E(U2)/K in the case of a fixed ratio between K and N .

Theorem 2. Let U2 be a random variable representing the number of individuals in a
sample S of size K without first cousins in S under a monogamous dioecious Wright-Fisher
model. Then the expectation of U2 is

E(U2) = K

∑K
m=1 S(K,m)

(
N
m

)
m!N(N − 1)(N − 2)2m−2∑K

m=1 S(K,m)
(
N
m

)
m!N2m

.

Proof. Similarly to the case of E(U1), we need to find the probability π2 for a single
individual not to have first cousins within S. Then the expectation E(U2) = Kπ2. Denote
individuals from GT which have descendants in S by ST .

Choose an individual s0 ∈ S, let p01 and p02 be parents of s0. If s0 does not have first
cousins, then p01 and p02 are assigned to different couples from G2 and those couples do not
have other descendants in S1.

Similarly to derivation of distribution of U1, we first partition S into m disjoint subsets.
We choose m couples from G1 and establish a one-to-one correspondence between the
subsets and the couples. There are N possibilities to choose a couple of parents for p01,
N−1 choices for p02 and (N−2) choices for all other 2m−2 individuals from S1. Summing
over m we get

E(U2) = K

∑K
m=1 S(K,m)

(
N
m

)
m!N(N − 1)(N − 2)2m−2∑K

m=1 S(K,m)
(
N
m

)
m!N2m

.

�

Our next goal is to find the limit of E(U2)/K for a fixed ratio of sample size to the
population size. We assume that K/N = α for some constant 0 ≤ α ≤ 1 and we consider
the limit of E(U2)/K for K →∞.

Theorem 3. Let 0 ≤ α ≤ 1 and set K = αN . Then

lim
N→∞

E(U2) = e−4α,

The following lemma states that the sum of the first βK terms of the series in the
formula for E(U2) is small for large values of K. This makes it possible to make further
approximations under the hypothesis that m = O(K).

Lemma 1. Let K = αN for some 0 ≤ α ≤ 1 and set β = (2 ln 2)−1. Then

lim
N→∞

∑bβKc−1
m=1 S(K,m)

(
N
m

)
m!N2m

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=1 S(K,m)

(
N
m

)
m!N2m

= 0.
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8 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

Proof. Denote

TK,N (m) = S(K,m)

(
N

m

)
m!N2m.

First, notice that

0 ≤ TK,N (m)

(
1− 1

N

)(
1− 2

N

)2m−2
≤ TK,N (m)

We will show that for β = (2 ln 2)−1 < 1/2

(1) lim
N→∞

∑bβKc−1
m=1 TK,N (m)

TK,N (bβKc)
= 0,

which will immediately prove the statement of the Lemma.
Our goal is to prove that

TK,N (m) & c1e
c2mN2m

for some constants c1, c2 and K large enough.
We begin by approximating the following ratio for m ≤ bβKc

TK,N (m)

TK,N (m+ 1)
=

(
1 +O

(
1
K

))(
1 +O

(
1
K

))√ K −m
K(1−G1)

K(1−G2)

K −m− 1
(2)

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m (
K −m
e

)K−m( e

K −m− 1

)K−m−1 (
K
m

)(
K
m+1

) 1

N −m
1

N2
,

by applying approximation (11). Here G1 = G(K,m) and G2 = G(K,m+ 1).
Notice that 0 < G1 < G2 < −W0(−2e−2) < 1/2. The following term is bounded by a

constant (we remind the reader that 0 < m ≤ βK < K/2)√
1−G2

1−G1
≤ 1√

2(1 +W0(−1/2e−1/2))
.

After simplification, all the factorials in the formula are of the form (constK)!, hence
they can be approximated uniformly in K by Stirling’s approximation

n! =

(
1 +O

(
1

n

))√
2πn

(n
e

)n
.

For simplicity of notations we drop all terms 1 +O(1/K) in (2). We also notice that(
K −m

K −m− 1

)K−m−1
=

(
1 +

1

K −m− 1

)K−m−1
= e+O(1/K).

So for K large enough the ratio (2) has the following approximation

TK,N (m)

TK,N (m+ 1)
≈
√

K −m
K −m− 1

1−G2

1−G1

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m m+ 1

N −m
1

N2
.
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 9

The derivative of G(x)1/x(x−G(x))1−1/x (x ≥ 1) with respect to x is

(3) H(x) =
G(x)

1
x (x−G(x))

x−1
x (ln(x−G(x))− lnG(x))

x2
.

H(x) has one real root x = 2 ln 2 if x ≥ 1.The derivative H(x) is positive for x > 2 ln 2,

so G(x)1/x(x − G(x))1−1/x is an increasing function of x for x > 2 ln 2. Hence as soon as
K/m > 2 ln 2, or m < K/(2 ln 2), the following inequality holds

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m < 1.

Consequently, for sufficiently large K we obtain the following upper bound for (2)

TK,N (m)

TK,N (m+ 1)
≤ 1√

2(1 +W0(−1/2e−1/2))

β
1
α − β

1

N2
=:

A

N2

Hence, by recursion for m < bβKc

TK,N (m) ≤
(
A

N2

)bβKc−m
TK,N (bβKc).

Now we use the obtained inequality to prove limit (1)
(4)

lim
N→∞

∑bβKc−1
m=1 TK,N (m)

TK,N (bβKc)
≤ lim

N→∞

bβKc−1∑
m=1

(
A

N2

)bβKc−m
= lim

N→∞

A

N2

(1−A/N2)bβKc−1

1−A/N2
= 0,

where the second equality holds by summing over the geometric progression. �

Lemma 2. Let K = αN for some 0 ≤ α ≤ 1, set β = (2 ln 2)−1. Then for any m such
that bβKc ≤ m < K

TK,N (m)

TK,N (m+ 1)
≤ O

(
1

K

)
.

Proof. From the proof of Lemma 1, for K large enough and for β ≤ m/K ≤ 1

TK,N (m)

TK,N (m+ 1)
≤ C

√
1−G2

1−G1

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m 1

N2
.

Notice that xex = −1/e + O((x − 1)2) near x = −1. Hence 1 − G(x) = O(|x − 1|)
and x − G(x) = O(|x − 1|) for x → 1. By definition, the Lambert W -function (Olver et
al. (2010)) is the inverse function of xex. If x1 > −1 and x2 < −1 are two points in the
neighbourhood of −1 such that x1e

x1 = x2e
x2 , then |x1 − x2| = O(|x1 − 1|) = O(|x2 − 1|).

For x > 1, −xe−x ∈ [−1/e; 0]. The value of the main branch, W0(xe
x), is in the interval

[−1, 0]. So −x and W0(−xe−x) correspond to x1 and x2.
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10 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

Hence √
1−G2

1−G1
=

1−K/(m+ 1)

1−K/m
= O(1).

Now we use mean value theorem to approximate
(5)∣∣∣∣∣Gm+1

2

(
K

m+ 1
−G2

)1−m+1
K

−Gm1
(
K

m
−G1

)1−m
K

∣∣∣∣∣ ≤
∣∣∣∣Km − K

m+ 1

∣∣∣∣ max
[K/(m+1),K/m]

|H(x)|,

where H(x) is given by expression (3). Denote ∆x = |x− 1|, and notice that

Ĥ(x) :=
H(x)

ln(x−G(x))− lnG(x)
=
G(x)

1
x (x−G(x))

x−1
x

x2

and lnG(x) are continuous near x = 1 and Ĥ(1) = 1, lnG(1) = 0. So for small ∆x

H(1 + ∆x) = O(ln ∆x),

and hence
max

[K/(m+1),K/m]
|H(x)| = |H(K/(m+ 1))| = O(lnK)

which leads to the approximation of (5) with m = O(K)∣∣∣∣∣Gm+1
2

(
K

m+ 1
−G2

)1−m+1
K

−Gm1
(
K

m
−G1

)1−m
K

∣∣∣∣∣ ≤ K

m(m+ 1)
|H(K/(m+ 1))| . lnK

K

We use this estimate and the Taylor expansion of logarithm to get

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m .

(
1 +

lnK

K

)K
≈ K.

Finally, we estimate the ratio TK,N (m)/TK,N (m+ 1) for K large enough

TK,N (m)

TK,N (m+ 1)
≤ C0

K

with some constant C0, which depend on α. �

Now we are ready to prove the theorem.

Proof. Firstly, notice that

1 ≥
(

1− 2α

K

)2m

≥
(

1− 2α

K

)2K

≥
(

1− 2α

K

)4α K
2α

≥ e−4α,

and (1− 1/N)(1− 2/N)2 → 1 as N →∞. Hence, the lower bound is valid for any α and
K

E2(α,K)

K
=

∑K
m=1 TK,N (m)

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=1 TK,N (m)

≥
(

1− 1

N

)(
1− 2

N

)−2
e−4α,
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 11

where the right part trivially converges to e−4α with N → ∞ (we remind that K = αN
for some constant 0 ≤ α ≤ 1).

Now we prove that this bound is sharp by applying subsequently Lemmas 1 and 2

lim
N→∞

E2(α,K)

K
= lim

N→∞

∑K
m=1 TK,N (m)

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=1 TK,N (m)

= lim
N→∞

∑K
m=bβKc TK,N (m)

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=bβKc TK,N (m)

≤ lim
N→∞

∑K−1
m=bβKc TK,N (m) + TK,N (K)

(
1− 1

N

) (
1− 2

N

)2m−2∑K−1
m=bβKc TK,N (m) + TK,N (K)

= e−4α,

because from Lemma 2 it follows

0 ≤ lim
N→∞

∑K−1
m=bβKc TK,N (m)

TK,N (K)
≤ lim

N→∞

∑K−1
m=bβKc

(
C0
K

)K−m
TK,N (K)

TK,N (K)
= lim

N→∞

C0

K

1−
(
C0
K

)K
1− C0

K

= 0.

�

6. General case: expectation of Up for p ≥ 2

Similarly to the expectation of U2, we can find the probability of the expected numbers
Up (p ≥ 2) of individuals which do not have (p − 1)-cousins and with pedigrees without
cycles.

Lemma 3. Let S be a set and S ′ ⊂ S be a subset of size |S ′| = k.The number of partitions
of a set S of size N into M disjoint subsets such that all elements of S ′ are in different
subsets is

Qk(N,M) =
k∑
t=0

(
k

t

)
S(N − k,M − t)

(
M − t
k − t

)
.

Proof. Let S ′′ ⊂ S ′, S ′′ = {e1, e2, . . . , et}, such that each element, ei ∈ S ′′, makes its own

subset Pi = {ei} in the partition of S. If t = |S ′′| there are
(
k
t

)
ways to choose such a

subset. Then, S \ S ′ should be split into M − t non-empty subsets, Pt+1, Pt+2, . . . , PM , to
obtain a partition of S into exactly M subsets. There are S(N −k,M − t) possible ways of
doing that. Each of the k− t elements of S ′ \ S ′′ are then added to distinct subsets among

the remaining M − t subsets, Pi, i > t, which can be done in
(
M−t
k−t
)

ways.
Summing over all possible values of t we prove the statement. �

Remark 1. For k = 1, Lemma 3 turns into the well-known recursive formula for Stirling
numbers of the second kind.

The next theorem establishes the expression for the expectation of Up and its limit for
fixed K to N ratio in the general case. Due to the size of the formula we had to introduce
additional notations for readability.
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12 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

Theorem 4. • For any natural p ≥ 1 the expectation of Up is

(6) E(Up) = K

∑K
m1=1R1

∑2m1
m2=2R2 . . .

∑2mp−2

mp−1=2p−2 Rp−1N
2mp−1W (p)∑K

m1=1R
′
1

∑2m1
m2=2R

′
2 . . .

∑2mp−2

mp−1=2p−2 R
′
p−1N

2mp−1

,

where by convention we assume 2m0 := K,

Rj = Q2j−1(2mj−1,mj)

(
N

mj

)
mj !,

R′j = S(2mj−1,mj)

(
N

mj

)
mj !

and

W (p) =

(
1− 2p−1

N

)2mp−1−2p−1 2p−1∏
s=1

(
1− s

N

)
• If K = αN (i = 1, 2, . . . , p), then

(7) lim
N→∞

E(Up)

K
= lim

N→∞

(
1− 2p−1α

K

)2p−1K

= e−(2
2p−2)α.

Proof. To prove the first statement, we apply repeatedly the same arguments as used for
Theorem 2: for each generation, we split the ancestors of the sample into subsets of siblings
while controlling that ancestors of the given individual are not in the same subsets.

The proof of (7) is similar to the proof of Theorem 3. First we can show that we can
substitute summations over mi > βK for some constant β (see Lemma 1). Then we use
estimations for Qi that are similar to those obtained in Lemma 2. �

7. Non-monogamous Wright-Fisher model

Similar results to those obtained for the monogamous case also hold for the non-monogamous
dioecious Wright-Fisher model. However, in contrast to the monogamous case, the proba-
bility that two individuals are full siblings or full p-th cousins (i.e. sharing two ancestors) is
rather small. Most familial relationships would involve sharing only one common ancestor
at a given generation, i.e. related individuals would typically be half siblings or half p-th
cousins.

Let Vp be a random variable representing the number of individuals in a sample S of size
K without half siblings or full siblings (p = 1) or half p-th cousins or full p-th cousins (p ≥ 2)
in S under the non-monogamous Wright-Fisher model. The next theorem established the
expression for the expectation of Vp and its limit for K → ∞ in the case of fixed ratio
between K and the population sizes N .

Theorem 5. • For any natural p ≥ 1, the expectation of Vp is

(8) E(Vp) = K

∑K
m1=1 P1

∑2m1
m2=2 P2 . . .

∑2mp−2

mp−1=2p−2 Pp−1N
2mp−1W 2(p)∑K

m1=1 P
′
1

∑2m1
m2=2 P

′
2 . . .

∑2mp−2

mp−1=2p−2 P
′
p−1N

2mp−1

,
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 13

where we assume m0 = K and

Pj :=

mj−2j−1∑
n=2j−1

Q2j−1(mj−1, n)Q2j−1(mj−1,mj − n)

(
N

n

)(
N

mj − n

)
n!(mj − n)!,

P ′j :=

mj−2j−1∑
n=2j−1

S(mj−1, n)S(mj−1,mj − n)

(
N

n

)(
N

mj − n

)
n!(mj − n)!

and

W (p) =

(
1− 2p−1

N

)mp−1−2p−1 2p−1−1∏
s=1

(
1− s

N

)
.

• If population sizes K = αN , then

lim
N→∞

E(Vp)

K
= e−(2

2p−1)α.

The proof of the theorem is similar to the case of the monogamous model. The function
Pj counts the number of possibilities to have exactly mj parents (male plus female)

In particular,

E(V1) = K(1− 1/N)2(K−1).

Corollary 1. The qualitative behaviour of Ui and Vi is the same, more precisely

lim
N→∞

E(Vi)

K
=

(
lim
N→∞

E(Ui)

K

)2

.

8. Numerical results

In this section we present numerical results for expectations of Up and Vp, p = 1, 2, 3.
Every plot of figures 3 and 4 represents the behaviour of E(Up)/K or E(Vp)/K for a
particular p = 1, 2, 3. Those values are computed by formulas (6) or (8) for different values
of N (N = 20, 100, 200) as a function of the ratio K/N . We also add corresponding limiting
distribution to every plot to illustrate the convergence.

Because the effective population sizes are typically rather large (at least thousands of
individuals) we might expect a satisfactory approximation of E(Up) and E(Vp) by its
limiting distribution even for relatively small K/N ratios. One can also check that in our
proofs the errors in the estimates are of the order of 1/N , hence for the desired ratio we
can estimate the absolute error for smaller values of K,N numerically and then increase
N to get the desired precision.

9. Discussion

In this paper we analysed the expected values of the number of individuals without
siblings and p-th cousins in a large sample of a population. To do that we used two
extensions of Wright-Fisher model which keeps track of the two parents of an individual.
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(a) p=1, individuals without siblings.
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(b) p=2, individuals without first cousins.
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(c) p=3, individuals without second cousins.

Figure 3. E(Up)/K as a function of the K/N ratio for N = 50 (•), 100
(N), 200 (�) and the corresponding limiting distribution (?).
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 15

The first extension corresponds to a monogamous population and the second to a non-
monogamous population. The two models represent two extremes in terms of degree of
promiscuity, and we might expect that in most other dioecious versions of the Wright-
Fisher model, with intermediate degrees of promiscuity, the number of individuals without
siblings or p-th cousins is somewhere in between those two regimes - as long as the models
otherwise maintain Wright-Fisher dynamics.

Under both models we derived expressions for these expectations under the hypothesis
that the pedigrees have no cycles (except for the one appearing in full sibs). Notice that
this restriction is not too strong, because one can easily show that the chance that an
individual has a pedigree with a cycle is a second-order effect as soon as the number of
ancestors (≤ 2p) in a generation is much smaller than the effective population size N .

The important result of the paper is the limiting distributions for E(Up)/K and E(Vp)/K.

It turns out that E(Up)/K and E(Vp)/K converge point-wise to e−cK/N where the constant
c is 22p−2 for Up and 22p−1 for Vp.

We notice that even when the sampling fraction is relative low, the proportion of in-
dividuals in the sample with no close relatives can be small. For example, for the non-
monogamous model and a sampling faction of 5%, the proportion of individuals with at
least a second cousin is approx. 70% if the population size is at least N = 200. For a
sampling fraction of 2% the proportion in individuals with at least a second cousin is close
to 50% for reasonably large population sizes in case of random mating population or almost
30% in case of monogamous population. For sampling fractions on the order of 0.01 or
larger, we expect a large proportion of individuals to have at least one other individual in
the sample to which they are closely related. This fact should be taken into account in all
genetic, and non-genetic, epidemiological studies working on large cohorts.

In the study of Danish population structure, Athanasiadis et al. (2016) discovered 3
pairs of first cousins and one pair of second cousins in a sample of just 406 individuals.
Based on their estimate of an effective population size of 500, 000, we would expect to find
1.32 individuals with first cousins under the monogamous model and 2.63 individuals with
first cousins under the non-monogamous model. The empirical number of 3 first-cousins
in the sample is therefore not significantly different of the expected number of 1.32 under
the monogamous model assumption. It is also not statistically significantly different from
the expected number of 2.63 under the non-monogamous model. The expected number of
second cousins in the sample is 5.24 and 10.41 under the monogamous and non-monogamous
models, respectively. The inferred number of 1 is much smaller than this, likely because it
is difficult to infer second cousins empirically. We would in general expect that the true
number of second cousins is larger than the true number of first cousins.

Notice, that the probability for two individuals to be p-th cousins is approximately
π̂p(N) = cm(2p+1−1)2p/N , where cm is 1 for monogamous model and 2 for non-monogamous
model. Hence, the expected number of pairs of p-th cousins in a sample of size K is approx-
imately π̂p(N)K2/2. Henn et al. (2012) found approximately 5000 pairs of third cousins
and 30000 pairs of fourth cousins in a sample of only 5000 individuals with European an-
cestry, which would be expected for effective population sizes of 2 · 105 − 3 · 105 under the
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16 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

monogamous model and twice that (4 · 105 − 6 · 105) under the non-monogamous model.
These numbers are roughly compatible with estimates of effective population sizes obtained
for modern European populations (e.g., Athanasiadis et al. (2016)). We note that effective
population size is a tricky concept for a spatially distributed population such as European
humans, but the breeding structure observed in these samples suggest that the degree of
relatedness in the sample is compatible with population sizes on the order of 105 − 106.

10. Appendix: Stirling numbers of the second kind and their generalisation

In this section we provide definitions and properties of Stirling numbers of the second
kind.

The Stirling number of a second kind S(n, k) is the number of ways to partition a set
of size n into k non-empty disjoint subsets. These numbers can be computed using the
recursion (Abramowitz and Stegun 1972)

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1),

with S(0, 0) = S(n, 0) = S(0, n) = 0 for n > 0. Notice that S(n, n) = 1.
An r−associated Stirling number of the second kind, Sr(n, k) (Comtet 1974), is the

number of partitions of a set of size n into k non-empty subsets of size at least r. These
numbers obey a recursion formula (Comtet 1974) similar to that for Stirling numbers of
second kind

Sr(n+ 1, k) = kSr(n, k) +

(
n

r − 1

)
Sr(n− 1, k − 1)

with Sr(n, 0) = Sr(1, 1) = 0. In particular, for r = 2

S2(n+ 1, k) = kS2(n, k) + nS2(n− 1, k − 1).

10.1. Uniformly valid approximation for S(n, k). The following useful approximation
of Stirling numbers of the second kind is established by Temme (1993)

(9) S(n, k) =

(
1 +O

(
1

n

))√
t0

(1 + t0)(x0 − t0)
eAkn−k

(
n

k

)
,

where t0 = n/k − 1, x0 6= 0 is the non-zero root of the equation

(10)
k

n
x = 1− e−x,

and

A = −n lnx0 + k ln(ex0 − 1)− kt0 + (n− k) ln t0.

The following form of this approximation is known

(11) S(n, k) =

(
1 +O

(
1

n

))√
n− k

n(1−G)

1

Gk (nk −G)n−k

(
n− k
e

)n−k (n
k

)
,

with G = −W0(−n/ke−n/k), where W0 is the main branch of Lambert W -function (Olver
et al. 2010).
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We did not find a reference for the formula (11) in the literature, so we provide briefly

the proof. Notice that −1/e < −n/ke−n/k < 0, hence G ∈ (0, 1). Let us show that
x0 = n/k −G is the non-zero root of equation (10)

1−e−x0 = 1−e−
n
k e−W0(−n/ke−n/k) = 1−e−

n
k
W0(−n/ke−n/k)
−n/ke−n/k

=
k

n

(n
k

+W0(−n/ke−n/k)
)

=
k

n
x0,

where the second equality is due to the Lambert function property e−W (x) = W (x)/x.
Substituting t0 and x0 in approximation (9) by their values and simplifying the formula,
one gets the needed result. Obviously,√

t0
(1 + t0)(x0 − t0)

=

√
n− k

n(1−G)
.

Now consider eAkn−k

eAkn−k = (n/k −G)−n(en/k−G − 1)ke−k(n/k−1)(n/k − 1)n−kkn−k =

= (n/k −G)−n

(
e
n
k
−n/ke−n/k

W0(−n/ke−n/k)
− 1

)k (
n− k
e

)n−k
=

= (n/k −G)−n
(
n/k

G
− 1

)k (n− k
e

)n−k
=

= (n/k −G)−n+kG−k
(
n− k
e

)n−k
,

which finished the proof of equivalence of approximations (9) and (11).
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(a) p=1, individuals without siblings and half siblings.
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(b) p=2, individuals without first-cousins and half first cousins.
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(c) p=3, individuals without second cousins and half second
cousins.

Figure 4. E(Vp)/K as a function of the K/N ratio for N = 50 (•), 100
(N), 200 (�) and the corresponding limiting distribution (?).
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