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Abstract

Simulations of Interface Cracking and Oxidation in Layered Systems

by

Stephen Timothy Sehr

The use of ceramic materials in propulsion and power generation turbines allows for

significant improvements in efficiency by allowing for higher operating temperatures. A

central challenge in the development of ceramic systems is the propensity for cracking

driven by thermal expansion mismatch and oxidation driven by harsh environmental

conditions. Many strategies to improve durability involve geometric or material features

that have not been previously considered in simulations of failure, such as non-planar

interfaces associated with woven ceramic matrix composites and sprayed coatings, and

the impact of oxide formation underneath coatings and near cracks. This work focuses

on advances in computational frameworks tailored to address such phenomena, with suf-

ficient speed to conduct parametric studies to quantify important material and geometric

interactions.

The use of distributed cohesive zone models holds distinct advantages for simulations

of crack evolution in brittle systems, notably the ability to predict crack path evolution

(as opposed to the onset of initial advance). However, a significant drawback is that the

method is slow compared to conventional finite element models, and numerical stability

can be sensitive to the details of implementation. To address these concerns, a systematic

study of computational methods has identified methods to improve simulation speeds and

stability. Specifically, the use of sub-domains near crack tips provides a basis to limit

model size with locally refined meshes, and mitigate the cost of simulating loading that

is below the cracking threshold. The numerical accuracy and performance of these sub-
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domains has been fully quantified, and used as the basis for novel adaptive remeshing

strategies, which are capable of tracking crack tip propagation across significant length-

scales.

To illustrate the utility of these advances, a detailed examination of cracking along

wavy interfaces was conducted to quantify the potential benefits of crack deflections

driven by local geometric features. The cohesive simulation framework is ideal for such

studies, since a single simulation can determine whether an interface crack will advance

along the interface or through the adjacent bulk material, without a priori assumptions

or a broad parameter study involving an enormous range of crack configurations. The

simulations on wavy interfaces demonstrate that for specific combinations of interface

toughness, bulk toughness and interface waveforms, the far-field loading required to drive

cracking along any path can be three times higher than that associated with a flat

interface. Regime maps are presented to illustrate crack paths as a function of system

properties, which provide useful guidance regarding the potential impact of non-planar

interfaces in ceramic systems.

Even if the initial system consists of relatively planar coatings, local oxidation can

lead to non-planar features that drive cracking; for example, cracks in environmental

barrier coatings provide fast diffusion pathways to exposure the interior of ceramic-based

components to reactants that subsequently form local oxide “bubbles”. These local do-

mains drive cracking in the system due to the large volume change associated with the

conversion of the monolithic ceramic to oxide: examples include Si being converted to

SiO2 and and SiC being converted to SiO2. Unlike interface cracking problems where

the geometry is presumably constant, oxidation phenomena involves several highly cou-

pled phenomena: transport of reactants (i.e. diffusion), domain evolution (i.e. growth of

the oxide), and creep in oxides at high temperature. To address this problem, a mul-

tiphysics simulation framework was developed with features that make it amenable to
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future integration with cohesive cracking simulations. The framework integrates trans-

port, boundary evolution and time-dependent constitutive descriptions within a single

discretization scheme, such that behaviors can be evolved concurrently, with remeshing

to account for large changes in system geometry.

The multiphysics framework was then applied to several case studies to gain insight

regarding coupling between these phenomena. Oxidation of a bare circular fiber was

used to explore the development of tensile stresses on the outer surface of the evolving

oxide layer, which likely plays a role in fiber degradation. This study is compared with

previous analytical models and shown to be highly accurate. Also, local oxidation at

the tip of a crack in an environmental barrier coating was simulated to quantify the

effects of crack density and layer diffusivities. A key finding is that local tensile stresses

in the underlying substrate (which experiences oxidation) are significant and reach a

peak at a critical time. That is, the local oxide domain must be large enough to induce

significant stress concentrations, requiring a finite time based on oxide growth kinetics.

At longer times, however, creep relaxation intervenes such that local stresses decay. The

simulations have important implications for experimental studies of oxidation in ceramic-

based components, since cracking may or may not occur based on system parameters

and experimental design. Peak stress concentrations have been tabulated as a function

of system properties to guide future efforts in this area.
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Chapter 1

Introduction

1.1 Motivation and Key Challenges

Ceramic composites offer significant opportunities to improve the efficiency of propul-

sion and power generation turbines, by potentially allowing higher operating tempera-

tures than those currently enabled by coated metallic components. The principle ad-

vantage of ceramics is their creep resistance at very high temperatures (e.g. in excess

of 1500◦C); limitations attributed to the low fracture toughness of monolithic ceramics

can be overcome using high strength fibers which limit flaw size, embedded in a ceramic

matrix that controls fiber orientation [1, 2].

A typical stress-strain curve for a high-quality ceramic matrix composite is shown in

Figure 1.1; the underlying mechanisms controlling notable features of the curve are well

established [3–5]. The loss of linearity in the material is associated with matrix cracking;

the matrix will have embedded flaws (e.g. porosity from processing steps) that are much

larger than the fibers and hence fail at much smaller applied loads. When the interface

between the fibers and matrix is properly controlled, these composites exhibit significant

retained strength even after the matrix cracks, due to the fact that matrix cracks will
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deflect into the fiber/matrix interface and avoid propagation of the matrix crack through

the fibers. The modulus of the composite after matrix crack is reduced due to load

transfer to the fibers near the matrix crack plane; this load transfer is controlled by

frictional sliding between the matrix and fibers in the debonded region near the matrix

cracks. Ultimately, the fibers fragment at high loads; due to the statistical nature of

fiber fracture, fiber failures occur across a broad range of longitudinal locations prior

to complete rupture usually precipitated at a matrix crack plane. Thus, a hallmark of

high-quality ceramic composites is a tortuous fracture surface comprising fibers that fail

away from the matrix plane (at loads between the matrix cracking stress and composite

ultimate strength) and subsequently experience ‘pull-out’ from the matrix.

The interface between the matrix and the composite is paramount; interfaces that

debond too easily will eliminate any load-sharing capability of the matrix (between matrix

crack planes) and increase the likelihood of fiber failure. Interfaces that are too strong

(either in the sense that debonding is prohibited or the frictional sliding stress is too high

to permit sliding) lead to premature fiber failure, since cracks initiated in the matrix at

low loads will propagate through the fibers. To control this behavior, fibers are coated

with a thin layer prior to matrix infiltration. While there are many fiber/coating/matrix

compositions that exhibit the failure mechanisms outlined above, arguably the most

promising system consists of SiC fibers coated with BN and embedded in a SiC matrix [1].

The focus of this work is on this system, although it should be appreciated that many of

the studies are relevant to other ceramic composite systems.

While the above mechanical response for unidirectional composites reflects the ideal,

in actual service additional factors intervene to alter composite response. First, to control

transverse behavior fiber tows are woven and hence include non-planar interfaces between

the tows and the matrix. Naturally, controlling the nature of cracking between woven

tows and surrounding matrix is important to ensure overall function. Second, operation
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Figure 1.1: Schematic of CMC failure mechanisms.

in harsh environments with water vapor, oxygen and contaminants leads to chemical

reactions that degrade composite response. To limit these deleterious, environmental

barrier coatings (EBCs) are utilized to eliminate (or at least substantially decrease) the

ingress of reactive species [1]. Figure 1.2 provides a schematic overview of composite

and coating systems that are emerging as the foundation of robust components. The

figure also includes illustrations of numerous degradation mechanisms that motivate the

simulations developed in this dissertation.

Arguably, the central design consideration for the composite/coating system is control

of the thermal expansion mismatch between the composite (or substrate) and the coating
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Figure 1.2: Schematic illustration of an environmental barrier coating on a woven
ceramic matrix composite with different characteristic failure mechanisms.

[1, 6]. The combination of high operating temperatures and use of brittle materials

implies that even modest differences in coefficients of thermal expansion can produce

sufficient stored elastic strain energy to drive a host of cracking mechanisms. The two

most prevalent coating failure mechanisms are mud-cracking (cracking transverse to the

plane of the coating), and delamination (cracking parallel to the plane of the coating). In

and of themselves, these cracks do not degrade the load capacity of the system; rather,

they provide pathways for chemical attack in the interior of the composite which in turn

can trigger a host of mechanisms that lead to system failure. The principal motivation for

the simulation frameworks in this thesis is establishing links between cracking phenomena

and subsequent chemical attack; naturally, feedback loops may exist wherein chemical

attack promotes subsequent additional cracking.

Two of the most prevalent concerns relating to chemical attack are oxidation (and

subsequent volatilization) of the BN coating and oxidation of the SiC fibers, which are

associated with numerous deleterious effects [1]. Loss of the BN coating reduces stress

transfer to intact sections of the matrix, increasingly the likelihood of fiber fragmentation.

4



Introduction Chapter 1

The formation of oxides is particularly troublesome, for two reasons: oxide formation

both reduces the volume of load-carrying SiC and introduces misfit stresses that drive

cracking. The misfit stress associated with the molar volume change of SiC to SiO2 is

dramatic and much larger than typical component stresses. These stresses drive many of

the mechanisms shown schematically in Figure 1.2: for example, continued penetration

of mud-cracks that originate in the coating, delamination and premature matrix/fiber

failure. Though of a different chemical nature, contamination by mineral depositions on

the coating are an important related concern (and drive many aspects of coating selection)

[1, 7]; volumetric changes and formation of new phases with mismatched coefficients of

thermal expansion can drive similar coupling between chemical and mechanical responses.

The vast majority of analyses of these effects exploit highly idealized geometries,

principally the analysis of (i) coatings and reaction products of uniform thickness and

(ii) crack geometries that are prescribed a priori [6,8]. As shown schematically in Figure

1.2, these idealizations likely miss important aspects of local geometry that control the

mechanisms underlying failure. These aspects related to local geometric features, such as

non-planar (“wavy”) interfaces that arise from fiber tows, coating deposition techniques,

and local oxide regions generated by differences in chemical transport down existing

cracks, channels formed by coating recession, local penetration by contaminants, etc.

Such local features naturally influence the formation and evolution of complex crack

networks, which ultimately govern durability. The details of these crack networks and

evolution from one crack orientation to another (e.g. mud-cracking to delamination) are

critical, in light of the fact that some cracks will be far more benign than others in the

contexts of system lifetime. Furthermore, prior work on domain evolution - i.e. the growth

of oxide domains or recession fronts - is rather limited due to the fact that traditional

analysis methods require broad parameter studies capture the effect of time-dependent

changes in local feature geometry. (Similar behaviors also occur upon contamination by
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mineral deposits (CMAS); although not a focus of this work, many of the tools designed

to address the limitations of prior parameter studies should prove useful in this context

as well.)

It is very important to note that these environmentally-driven changes in system ge-

ometry occur at elevated temperature, and, due to volumetric changes associated with

reaction products, can generate significant stresses even without changes in operating

temperature. Conventional wisdom with regards to cracking driven by CTE mismatch

between phases is largely based on the assumption that stresses relax at high tempera-

ture, and stresses that drive cracking are generated upon cooling. While such behaviors

are undoubtedly relevant to the development of the system shown in Figure 1.2, the

generation of stress at elevated temperatures involves additional behaviors that influence

the time-history of stress in the system. Specifically, cracks may occur at high temper-

ature that serve as the initial damage that precipitates more widespread damage upon

cooling. Naturally, creep relaxation at elevated temperature plays an important role in

determining whether or not such cracking is likely to occur. In contrast to cooling from

a stress-free state, this competition is comparatively unexplored and serves as a central

motivation of the frameworks described in this work.

In this broader context, understanding environmentally-driven failure mechanisms

of ceramic systems requires new advances in integrated simulation frameworks, which

include the ability to: (i) predict the evolution of crack networks, (ii) quantify the role

of local, non-planar changes in geometry, (iii) track species transport underlying the

formation of new phases, and (iv) define domain evolution and the stresses associated

with the formation of new phases at elevated temperatures. In the next section, the scope

of efforts to address these challenges is described in conjunction with key contributions

from this work.
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1.2 Scope and Key Contributions

The broader context outlined in the preceding section provides a rationale for the

following activities, which are reasonably correlated with subsequent chapters.

• Advances in cohesive zone frameworks for simulating complex cracking

modes: Prior work has demonstrated that distributed cohesive zone approaches

are effective in capturing crack path evolution, particularly for an isolated crack

near interfaces [9]. However, early efforts were limited to tracking a single crack

over relatively small distances, due to the requirement that finely focused meshes

are needed at the crack tip. Further, the shape of the cohesive law used in cohe-

sive descriptions plays an important role in crack bifurcations; previous treatments

utilizing an elastic-perfectly plastic description are prone to delays in crack branch-

ing. To address these limitations, methods have been developed to: (i) incorporate

softening cohesive descriptions that preserve characteristics of brittle fracture while

improving branching behaviors, and (ii) integrate adaptive re-meshing algorithms

that translate refined regions as cracks advance, and critically, enable multiple

cracks to be tracked simultaneously. This includes both branching and coalescence

of different cracks. These advances, in conjunction with speed enhancements that

reduce simulation time prior to the onset of crack advance, significantly broaden

the applicable range of simulations that predict the evolution of cracking networks.

A detailed description of these advances is provided in Chapter 2.

• Crack path evolution near non-planar interfaces: The cohesive zone frame-

works described above have been utilized to conduct a comprehensive study of crack

path selection at or near non-planar bimaterial interfaces. As demonstrated by the

study, the topology “wavy” interfaces play an important role in coating adhesion,
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biological composites (e.g. dinosaur teeth [10]) and woven composites. Prior simu-

lations have illustrated that cracks along or near such interfaces can either deflect

out of the interface to enter adjacent bulk material, or remain “trapped” at the

interface; however, there was limited understanding of the quantitative connections

between interface shape, the toughness of the interface and adjacent bulk material,

and the far-field loading that is required to reach criticality. Toward that end, this

work has generated complete regime maps that clearly illustrate combinations of

system properties that dictate failure mode (i.e. bulk versus interface cracking).

These results illustrate that the geometry of wavy interfaces can provide significant

improvements with regards to the magnitude of far-field loading required to drive

continued cracking. This work has identified critical values of system properties

needed to realize these benefits, which in some cases can imply critical loads that

are a factor of three higher than those associated with flat (planar) interfaces. This

finding has important implications for coating design and processing targets, and

illustrates that interface topology is an important consideration in simulating coat-

ing failures. A detailed description of these advances is provided in Chapter 3 (and

has appeared in [11]).

• Multi-physics framework simulating chemo-mechanical behaviors and

oxidation of bare fibers: To address the behaviors outlined in Section 1.1, a

simulation framework that integrates multiple physical phenomena has been de-

veloped. The core strategy in developing the framework was to utilize numerical

descriptions that provide straight-forward communication of chemical behaviors

into the thermomechanical analysis framework used to predict cracking. As such,

a new finite element framework for tracking species diffusion was generated us-

ing triangular elements; this was combined with adaptive remeshing algorithms
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developed for the cohesive zone framework, which enable simulations of domain

evolution. The full two-dimensional field of species transport allows predictions of

oxide growth (or recession, though this feature was not studied in this work) with

concomitant remeshing to allow for large changes in geometry. In the present work,

Deal-Grove descriptions of oxidation were incorporated within the transport frame-

work to simulate domain evolution as a function of chemical environment [12, 13].

These results are then ported into the thermomechanical framework to simultane-

ously predict the stresses generated by oxidation. Toward this end, the integration

of non-linear creep behaviors into the thermomechanical analysis framework is an

important advance that enables predictions of time-dependent stress evolution at

high temperature. To benchmark the framework and provide an illustration of its

utility, simulations of oxidation on circular fibers were conducted and compared to

analytical models in the literature. In this scenario, large compressive stresses are

generated in the initial stages of the oxide formation; as early layers of oxide are

pushed radially outward by new oxide forming at the reaction front, large geometry

changes generate tensile stresses. The advances in adaptive remeshing described

above were also incorporated, and illustrate the importance of accounting for large

geometry changes. Similarly, as expected, creep plays in important role; the simu-

lations in Chapter 4 illustrates that stress states driving cracking are impacted by

multi-axial creep behaviors, indicating the importance of fully-developed numerical

solutions (even for planar problems).

• Internal oxidation beneath EBCs and near intersections of fibers and

matrix cracks: By and large previous studies of the mechanical impact of ox-

ide formation have relied on analyses that ignore the impact of growing oxide on

adjacent features, such as oxidation of a single bare fiber [14, 15], the surface of
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planar substrates [13] and uniform oxide layers growing within a multilayer [16]. A

notable exception is the analysis of oxide within a matrix crack by Xu, et al., who

addressed the possibility that oxides wedge open matrix cracks and promote fiber

failures. This latter study illustrates the motivation of the study of internal oxi-

dation in this work; the large volumetric changes associated with the formation of

oxide in a constrained space clearly plays a role in damage mechanisms associated

with internal oxidation. Toward that end, simulations of oxide formation at the tip

of a mud-crack in an EBC/substrate system have been conducted to examine the

consequences of the formation of local oxide domains in brittle systems. Though

idealized, the geometry is also similar to the formation of oxide on a fiber bridging

a matrix crack. By varying the relative diffusivity of reactant species down the

crack and through the EBC, various oxide domain shapes were generated using the

multiphysics framework described in Chapter 4, without any a priori assumptions

regarding the spatial distribution of reactant concentrations. A key finding of the

work is that the time-scale of oxide growth and subsequent creep relaxation play

a critical role in the stresses imposed on adjacent material by oxide formation.

Under certain conditions, the peak tensile stresses are reached at short times; this

has important implications for the interpretation of testing EBCs and composites

subjected to environmental degradation. A complete accounting of the results from

this study is provided in Chapter 5.
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Chapter 2

Advances in Cohesive Zone

Modeling

2.1 Introduction

In cohesive zone modeling of fracture, a traditional finite element framework is mod-

ified to include one-dimensional, non-linear cohesive elements that represent material

rupture [3, 17–28]. Whereas the traditional elements in the framework are governed by

macroscopic continuum material descriptions, the cohesive elements are described by a

traction-separation (cohesive) law, which describes the fracture process.

The traction-separation law is defined such that the cohesive element reproduces

linear elasticity for loads significantly below a critical strength, in that the effective prop-

erties of the combined model reproduce those in the conventional elements themselves.

This is essentially enforced by ensuring the initial elastic (linear) portion of the cohesive

has stiffness that far exceeds that of the conventional elements. To simulate rupture, the

cohesive law is defined to be non-linear; once the peak stress is reached, further deforma-

tion results in either constant tractions (akin to perfect plasticity) or decreasing tractions
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representing material failure. Continued deformation in the cohesive element ultimately

drive the tractions across the adjacent surfaces to zero, and the material (cohesive el-

ement) is considered to be fractured. While a great many phenomenological cohesive

descriptions exist, they all involve a characteristic peak strength, σo, and critical separa-

tion, δo [29]. The critical fracture energy of the solid, Γ, scales with their product (with

a scaling constant depending on the exact shape of the cohesive law.)

Consider a pre-crack under Mode I loading, with cohesive elements lying on the plane

of crack advance. As the specimen is loaded, the cohesive elements adjacent to the crack

surpass their peak strength; the physical distance encompassed by these elements can

be thought of as the fracture process zone, or fracture length scale. When the fracture

length scale is small in comparison to all other dimensions in the simulation, small-scale

yielding is said to persist and crack stability is entirely governed by the critical fracture

energy defined by the cohesive law. Critically, in this limit, the precise values of the

cohesive strength σo and the critical separation δo are immaterial, only their product.

This implies that for a ceramic, where cohesive strengths are on the order of 10 GPa and

critical separations are on the order of 1 nm, equivalent fracture behavior can be achieved

with a cohesive strength of 100 MPa and a critical separation of 100 nm – provided that

the fracture length scale is much smaller than any other dimension.

The fracture length scale can be defined in terms of the cohesive parameters to first

order as:

ℓcz =
EΓ

σ2
o

(2.1)

where E is the modulus of the solid. A key feature of this scaling relationship is that

equivalent fracture results can be obtained for brittle materials with artificially low co-

hesive strengths, and the corresponding fracture process zone will be significantly larger.
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This provides significant computational advantage; the requisite mesh resolution scales

with the size of the fracture length-scale, implying much faster simulations of fracture.

The drawback is that if this artifice is pushed too far, the fracture length scale will no

longer be smaller than other physical dimensions, such that the conditions of small-scale

yielding may be violated. In such cases, crack stability is influenced by the cohesive

strength itself and the critical fracture energy, and the results will be non-physical for

artificially low cohesive strengths.

It should be noted that in such simulations, the fracture process can only occur

at locations and orientations where cohesive elements are present. If the failure plane

is known in advance (due to the presence of a weak interface, for example), cohesive

elements need only to be included along the anticipated fracture plane to study the

stability of that plane [25,30,31]. In this work, cohesive elements are included between all

conventional continuum elements, such that any surface indicated by element boundaries

in the mesh represents a potential failure plane similar to Xu and Needleman and Pro

et al [9, 32]. Prior work has demonstrated that this approach accurately captures the

direction of crack kinking out of an interface, provided the mesh is of sufficient resolution

and the element boundaries are randomly oriented [9]. In these prior studies of kink crack

nucleation, only the direction of crack advance is unknown; the physical location is fixed

by the position of the crack tip, and only the onset of crack advance was of interest. This

was because the kink crack is unstable once it emerges from the parent crack, and would

not regain stability until the crack tip was at a position comparable to large specimen

dimensions, which were not considered.

In contrast, when simulating stable or unsteady crack growth in cohesive simulations,

cohesive zones must be distributed throughout the domain, with sufficient mesh density

(i.e. element sizes well below the fracture length scale) in all orientations and at all points

in the mesh. Simply put, including a refined region at the tip of the initial crack with
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course exterior regions become inaccurate as the crack propagates into the coarse region.

The obvious fix is a refined mesh everywhere, but this can be prohibitively expensive.

As such, simulations of stable or quasi-stable crack growth in geometries with multiple

length-scales (e.g. wavy interfaces, grains, etc.) are few and far between.

On top of these length scale considerations, simulations of unsteady crack growth can

be extremely expensive due to widely varying time-scales associated with crack advance

and arrest. Quasi-static loading rates may correspond to millimeters per second or mi-

crometers per second (with respect to boundary velocities that define loading rate); once

initiated, crack advance occurs at hundreds to thousands of meters per second (i.e. near

the speed of sound). This poses a conundrum: on the one hand, if highly resolved time-

stepping is used to capture dynamic fracture events, the initial loading of the specimen

to the point of fracture onset is extremely expensive. On the other hand, if the loading

rate is artificially increased, inertial effects impact crack advance; the unintentional gen-

eration of elastic waves at the loading boundary interfere with the crack tip, such that

quasi-static behaviors are not accurately captured. These complications are compounded

by the well-established link between acceptable time-step and element size, which must

be managed to ensure accurate propagation of stress across the specimen.

In summary, there are a myriad of factors that can make cohesive simulations com-

putationally expensive. Section 2.2 describes the inherent scaling of computational times

to shed a quantitative light on the above comments. Sections 2.3-2.6 detail several nu-

merical studies designed to identify approaches to speed up simulations and broaden

the bandwidth of problems that can be analyzed. These studies address the following

concepts/strategies:

• Cohesive law description: While attention is limited to small-scale yielding con-

ditions where the critical fracture energy is the sole governor of crack advance, the
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shape of the cohesive law is shown to have a strong impact on computational speed

and accuracy requirements. Specifically, crack branching that arises as a conse-

quence of diffuse cohesive failures (or near failures) leads to stochastic variability

in simulation results. Section 2.3 illustrates that a bilinear softening cohesive de-

scription can mitigate this behavior, and produce precision in critical loads. The

associated study involved hundreds of simulations with different mesh densities and

different random meshes, and ultimately provides important insight on variability

inherent to the method and how to minimize it. This study played a critical role

in improving the accuracy of the wavy interface simulations in Chapter 3.

• Interaction of loading rate and domain size: The efficiency of fracture simu-

lations can be improved by judicious choice of loading rate and domain size. This

relates to the time required to simulate the propagation of elastic waves from the

remote boundary to the crack tip. The numerical study in Section 2.4 demonstrates

that one can reduce computational time by first solving a quasi-static problem to

compute the displacements on a ring surrounding a crack tip, which by-passes the

time-stepping needed to propagate a wave to that location. The full dynamic prob-

lem is then analyzed with initial conditions over an outer thick annulus obtained

from the quasi-static solution. In essence, one truncates the simulation time for ini-

tial loading. It should be noted that one cannot simply simulate a smaller specimen,

since small-scale yielding solutions may be violated.

• Local mesh refinement: After the step size, the number of total elements in

the simulation has the strongest influence on the cost of a particular simulation.

Naturally, local crack advance requires highly resolved meshes, but there has been

relatively little effort placed on quantifying the impacts of local mesh refinement.

(A typical approach simply ensures that there are “a sufficient number” of elements
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near the crack tip to ensure convergent behavior; however, these have not produced

quantitative guidelines for how large the refined region must be in comparison to

specimen size.) Understanding the impact of the size of the refined region relative

to other features and the fracture length-scale is critical to developing adaptive

remeshing strategies.

• Adaptive remeshing: Once a strategy for local mesh refinement has been

identified, adaptive remeshing becomes possible; that is, the refined region of mesh

surrounding a crack tip can be propagated in space as the crack tip advances. This

eliminates the need for broadly refined meshes and saves considerable expense, as

refined regions are eliminated as the crack tip position evolves. Section 2.6 describes

adaptive remeshing algorithms; the central challenge is to map the solution from

one mesh to a new mesh while preserving accuracy. The potential utility of the

method is illustrated by a fracture near a castellated weak interface, reminiscent of

intra-granular cracking in polycrystalline brittle materials. The simulations track

multiple crack fronts and capture phenomena such as the emergence of a microcrack

ahead of a dominant crack tip.

2.2 A Brief Overview of Computational Cost

Calculations of the precise computational cost of a cohesive zone simulation prior to

actually running a simulation can be challenging, as the cost is strongly dependent on the

speed and number of processors, optimization of the solver, frequency that data is written

to the hard disk, etc. However, recognizing that the number of elements and number of

time steps are the dominant factors, one can make a reasonably close approximation of
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computational cost as follows. The cost, tsim, is then

tsim = Cnelementsnsteps (2.2)

where C is a constant that depends on the solver, processor specifics and the number of

threads (for parallel implementations), nelements is the number of elements and nsteps is

the number of time steps. While the requisite number of elements and number of time

steps is determined by the problem to be studied, the constant C needs to be determined

for a specific computer.

Ideally, C is inversely proportional to the speed of the processors and the number of

threads used. Unfortunately, there is a cost associated with increasing the thread count

due to overhead caused by the synchronization of threads, passing of information between

different threads and any bandwith bottlenecks between the processor and memory. If

too many threads are created, the simulation cost does not decrease even with large

simulations. The optimal number of threads varies with the number of elements and

needs to be determined experimentally. An exhaustive study of the effects of the number

of threads on performance is not presented here, although it was found that for a typical

server (Intel Xeon Processors with 8-28 cores each running at 2-3.4 GHz) the optimal

number of threads was between four and eight. For the work that follows, it is assumed

that 8 threads are used.

Unlike the pre-factor C in eqn. 2.2, the number of elements and number of time steps

is dependent on the particular problem of interest. It is well known that elements much

smaller than the fracture length scale, ℓcz, are needed to accurately model fracture. As

substantiated by numerous studies [9,11], including the mesh resolution study in Chapter

3 for wavy interfaces, an effective rule of thumb is that the required number of elements,

ncz, along a ray in the fracture process zone is at least 10. To achieve equiaxed, randomly
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oriented triangles that allow for arbitrary crack advances, the number of elements is

proportional to n2
cz. For dynamic formulations (as considered in this dissertation), the

maximum stable time step scales with the element size; in essence, the time step must be

smaller than the time required for an elastic wave to propagate across a given element.

(Extensive details regarding the relationship between element size and minimum stable

time step can be found in [33].) Since the largest stable time step is proportional to 1/ncz,

the number of time steps required for a fixed physical duration of a given simulation

is proportional to ncz. With regards to the number of elements, therefore, the total

simulation cost scales as:

tsim ∝ n3
cz (2.3)

Evidence of this scaling is shown in Figure 2.1, which uses data from the simulations in

Chapter 3 and [11].

Note that the scaling of simulations with the fewest elements is slightly worse that

that implied by cases with the largest number of elements. That is, fitting eqn. 2.2 to

data with fewer elements will overpredict the platform-dependent prefactor C. This is

due to overhead costs incurred during initialization, such as launching or synchronizing

threads, which are fixed and independent of mesh resolution. While the present study

does not tabulate these costs (as they are platform-specific), they are a comparatively

small contribution when the mesh resolution is sufficient to obtain accurate predictions

of crack stability.

While accurate predictions can be guaranteed by a high number of elements in the

fracture length, the scaling indicates the cost can quickly become prohibitive. For this

reason, it is usually beneficial to conduct a mesh resolution study for the problem at

hand, such that one can strike a balance between speed and accuracy. An example can

be found in [9] or Chapter 3 [11]. The work in Chapter 3 uses about 100 elements in the
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fracture length leading to a simulation cost of around 50 hours as this was determined

to be the best balance between cost and accuracy.
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Figure 2.1: Plot of the computational cost as a function of the number of elements
in the fracture length scale for the simulations used in the mesh resolution study in
Chapter 3 [11]. The dashed line shows n3

cz scaling, which arises from the combined
spatial and temporal impact of element size.

It is worth noting that Figure 2.1 shows the cost for a particular geometry and loading

state. Different problems will have slightly different cost curves, but will be similar to

the one shown here. For example, for the simulations used to generate Figure 2.1, the

mesh consists of a refined mesh near a crack tip, which dominates the number of elements

in the model. The size of the refined region is ∼ ℓcz. Increasing the size of the refined

zone size will shift the results to greater simulation costs in proportion to the fraction of

elements in the refined region to the total number of elements, while shrinking the size

of the refined zone would shift the curve down. Section 2.6 provides additional details

about the effects of such local refinements, including their impact on computational cost.
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2.3 Effects of Cohesive Law Description

As briefly described in Section 2.1, the details of the cohesive law describing the rup-

ture process (i.e. a loss of traction across adjacent surfaces) are immaterial to crack sta-

bility when the fracture length-scale is smaller than any other dimension in the problem.

Under such ‘small-scale yielding’ conditions, only the area under the traction-separation

curve, or fracture energy, is relevant. That said, even though the macroscopic conditions

needed for crack advance may not be affected by the shape of the cohesive law, local

details of deformation within the fracture process zone (cohesive elements that are on

the verge of rupture) are affected by the shape of the cohesive law, and these can have

a significant impact on numerical stability.

In this section, simulations of crack kinking are used to illustrate potential issues

arising from the shape of the cohesive law, using trapezoidal and triangular cohesive

descriptions. (For additional details on the impact of cohesive descriptions, see the work

of Chandra et al, who summarized many different cohesive descriptions and the types

of problems each has been used to solve [29]. The first laws were those proposed by

Barenblatt and Dugdale based on interatomic forces or yield stress, respectively. Other

laws have been used to tailor the results to specific features of material rupture.) To

the author’s knowledge, the impact of the mathematical form of the cohesive law on

dynamic crack path selection (e.g. the direction of an emergent kink crack) has not yet

been reported.

Motivated by the work of Tvergaard and Hutchinson [34], a trapezoidal cohesive law

was used in the work of Pro et al [9] which adopted an identical numerical framework to

that utilized in this work. It is worth noting that the unsatisfactory performance of this

law in the simulations of Chapter 3 that led to the comparisons in this section. In the

20



Advances in Cohesive Zone Modeling Chapter 2

trapezoidal cohesive descriptions, the normal and tangential tractions are given by:

σn =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

kδn ,
󰁳

δ2n + δ2t ≤ δY

kδY
δn√
δ2n+δ2t

, δY <
󰁳

δ2n + δ2t ≤ δo

kδn

󰀕
δY +δo√
δ2n+δ2t

− 1

󰀖
, δo <

󰁳
δ2n + δ2t ≤ δR

0 , δR <
󰁳

δ2n + δ2t

(2.4)

σt =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

kδt ,
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δ2n + δ2t ≤ δY

kδY
δt√
δ2n+δ2t
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δ2n + δ2t ≤ δo

kδt

󰀕
δY +δo√
δ2n+δ2t

− 1

󰀖
, δo <

󰁳
δ2n + δ2t ≤ δR

0 , δR <
󰁳

δ2n + δ2t

(2.5)

where k is the linear elastic stiffness of the initial traction-separation response, δY is the

separation at which the cohesive stress becomes constant (and equal to σo = kδY ), δo is

the separation associated with the onset of the loss of traction, and δR is the separation

at which the traction is zero, i.e. the rupture separation. Here, the subscript n refers

to tractions and displacements acting in the direction normal to the separating surfaces,

and t refers to those quantities tangential to the surface. These traction-separation

relationships shown graphically in Figure 2.2.

With purely normal or purely tangential separation, the trapezoidal law has a short

initial region where the traction increases linearly with separation until a peak stress is

reached. The traction is then constant at this plateau stress with additional separation

until a short linear decrease. The length of the plateau governs the critical fracture energy

of the cohesive law. The cohesive stiffness, k, must be high enough to recover macroscopic

elasticity; otherwise, the cohesive elements will introduce additional compliance into the
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model and the effective modulus of the continuum will be smaller than that assigned to

adjacent conventional elements.

As can be seen in Equations 2.4 and 2.5, the normal and tangential tractions are

coupled so that failure occurs when the total displacement is δR. In other words, the

total work to fracture is always constant regardless of the ratio of normal to tangential

displacement. This is shown in Figure 2.2 by the curves, which hold one displacement

fixed while varying the other. In Figure 2.2a, increasing the ratio of tangential displace-

ment to the rupture displacement from δt/δR = 0 to δt/δR = 1 decreases both the slope

of the curve as well as its maximum. Similar behavior can be seen in Figure 2.2b while

varying δn/δR. It should be noted that Figure 2.2 shows an artificially low ke in order to

illustrate the shape of the curve. With realistic material properties and useful element

sizes, the plateau where σn = σo or σt = σo is very large. In most cases, the plateau

length (δo − δY ) is greater than 99% of δR.
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Figure 2.2: Plots of the trapezoidal cohesive law, illustrating (a) the normal trac-
tion-separation law with tangential quantities held fixed, and (b) the tangential trac-
tion-separation relationship with normal quantities held fixed. Note the characteristic
plateau, as well as the fact that normal and tangential behaviors are coupled; this cou-
pling dictates a critical fracture energy that is independent of mode-mixity, commonly
referred to as an ideally brittle solid.

22



Advances in Cohesive Zone Modeling Chapter 2

The second cohesive law considered in this work is a bilinear description illustrated in

Figure 2.3; this description was used in the work described in Chapter 3 and [11], which

considers fracture along wavy interfaces. The normal and tangential tractions (σn and

σt respectively) in the bilinear cohesive law are given by:

σn =

󰀻
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where as before, δn and δt are the normal and tangential displacements, ke is the cohe-

sive stiffness, δo is the displacement resulting in the peak stress σo and δR is the rupture

displacement. As with the trapezoidal law, the normal and tangential tractions are cou-

pled together so that the total work to failure is the same regardless of the balance of

normal and tangential displacements. For pure normal or tangential displacement, the

magnitude of the traction linearly increases up to δo. After that point, the magnitude de-

creases linearly until the rupture displacement is reached. Mixing normal and tangential

displacements results in lower tractions in those direction while keeping the total area

under the curves (i.e. the work to failure) constant.

While the trapezoidal law can be used to accurately predict the macroscopic loading

parameters corresponding to the onset of crack kinking as shown by Pro et al [9], the

local details of deformation are different from those obtained with the bilinear law; an

illustrative example of this is shown in Figure 2.4. The important difference to note is the
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Figure 2.3: Schematic of the bilinear traction separation law for (a) normal and (b)
shear tractions. The bilinear traction law does not have the plateau of the trapezoidal
law but the behavior is still coupled.

presence of multiple parallel cracks emerging from the crack tip on the left (trapezoidal

description), which are absent in the crack tip on the right (bilinear description).

These qualitative differences in the distribution of damage arise from the shape of

the cohesive law itself, and can impact the mesh resolution needed to achieve accurate

results. The large plateau of the trapezoidal law leads to multiple parallel paths of

connected cohesive elements that have all ‘yielded’. This can be seen in Figure 2.4a

where it appears there are multiple cracks ahead of the dominant crack tip. The dominant

potential crack path is the lower one but a secondary path is seen just above it. Multiple

other parallel potential paths can also be seen. These cohesive elements have not yet

failed so the crack has not grown. When a cohesive element finally reaches the end of

the plateau and the traction starts to decrease, separation stored in other elements can

be transferred to the failing element. When this phenomena occurs, a significant amount

of energy can be stored in the cohesive elements prior to failing before being released

quickly into the failed element. This energy storage artificially increases the apparent
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load needed to drive fracture.

(a) (b)

Figure 2.4: Comparison of the behavior of the (a) trapezoidal and (b) bilinear cohesive
laws with an identical mesh and a characteristic simulation from Chapter 3. The
plateau of the trapezoidal law leads to many parallel, connected paths of cohesive
elements with δ > δY . The bilinear law does not have a plateau and all displacement
is localized in a single path.

This non-ideal behavior is primarily a consequence of inserting cohesive elements

between every pair of elastic elements. By doing this, there is a connected two dimensional

network of cohesive elements. Evidence of it can be seen in Figure 4 of [9] for two different

loading phase angles. Other work that uses the trapezoidal law but only includes cohesive

elements along a single plane, such as [34], does not encounter this. Furthermore, the

longer plateaus greatly increase the likelihood of multiple approximately parallel cohesive

elements yielding. For the brittle materials of interest, the initial stiffness (i.e. initial slope

of the traction curve) must be very high in order to recover elastic behavior leading to

the plateau region being orders of magnitude longer than the initial region.

The appearance of the multiple competing cohesive element paths occurs regardless

of the element size or loading. Overall, however, shrinking the element size reduces the

influence of the phenomena. By reducing the element size, the likelihood of cohesive
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elements that are highly stressed near the crack tip and closely aligned with the pre-

ferred crack growth direction increases which would also increase the likelihood of this

phenomena. However, this is mitigated by the higher prevalence of cohesive elements

that are slightly misaligned to the preferred growth direction. The energy penalty for

the crack to deviate from the preferred path is smaller for denser meshes than it would be

for coarser meshes. The misalignment of a cohesive element also means that the loading

it experiences is not purely normal, but a combination of normal and tangential displace-

ments. The mix of loading results in a reduction or complete elimination of the plateau.

A shorter plateau length leads to localization of deformation in the cohesive element due

to the softening that occurs later on in the cohesive law. The localization of deformation

mitigates the other potential crack paths and a dominate path forms sooner.

While the artificial toughening caused by this phenomena can be mitigated by de-

creasing the element size, shrinking the element size has a drastic effect on the compu-

tational cost, as shown previously. Another way to mitigate it would be to run multiple

simulations with the same mesh density, but different meshes, and average the result.

However, this is still expensive and may still artificially increase the load to failure if

the phenomena occurs. A different cohesive law without the long plateau would behave

better and allow accurate results without resorting to smaller elements.

Unlike the trapezoidal cohesive law, the bilinear law does not have a long plateau

stress under any loading conditions. As soon as the peak stress is reached further separa-

tion leads to a decrease in tractions. It is much less likely that multiple parallel cohesive

elements would pass the peak stress at the same time since the decreasing tractions would

lead to localization of the separation. This can be seen in Figure 2.4b which uses the

same mesh as Figure 2.4a. Using the same mesh with the bilinear cohesive law results

in a localization of the deformation and a single crack path emerging as shown in Figure

2.4b. With the localization of deformation the mesh dependence decreases. Slight mesh
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dependence still exists due to the possibility of a discontinuous crack as shown in Figure

2.4b, but the variation in load to failure is much smaller. This can be seen in Figure

2.5. By reducing this variation, the same results can be determined from one simulation

instead of many simulations with the trapezoidal law.
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Figure 2.5: Plot of the percent error in applied load leading to fracture in a charac-
teristic wavy interface simulation of Chapter 3 and [11]

It is worth noting that, without careful consideration of the underlying physical scal-

ing, the inputs to the specific cohesive law used also impact the computational cost of

the simulation. As mentioned previously, the initial stiffness, ke, must be high enough

to recover elastic behavior at lower stresses. Otherwise, the apparent modulus will be

lower than desired. However, if the stiffness if too high, a smaller time step is needed

to properly resolve dynamic waves. A good rule of thumb is that the stiffness must be

ke ≈ 50E/he where E is the Young’s modulus and he is the characteristic element size.

As another example, the peak stress for a truly brittle material, σo, should arguably be
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10 GPa or greater. As discussed in the previous section, small elements greatly increase

the computational cost of the simulation. In order to manage the computational cost

by allowing for larger elements, the peak stress used in both Pro et al [9] and the wavy

interface work of Chapter 3 [11] is limited to 2 GPa. Pro showed that using a lower peak

stress can still yield the same results as long as certain conditions are met (see Figure

3.6 in [33]). This lower peak stress allows for the use of larger elements thereby reducing

the computational cost. Along the same lines, the absolute value of the critical fracture

energy or toughness Γ can impact simulation time. On the one hand, smaller toughnesses

can lead to faster simulations under fixed loading rate because fracture loads and hence

simulation times are smaller. On the other hand, the fracture length scale, ℓcz, scales

linearly with the toughness. Since the characteristic element size must be significantly

smaller than the fracture length scale and element size greatly impacts the computational

cost, smaller toughnesses generally increase the computational cost. These concerns are

applicable to both the trapezoidal and bilinear cohesive laws.

The key conclusion from the study of the impact of the cohesive law is that the

artificial toughening arising from distributed damage with the trapezoidal law can be

mitigated with smaller elements, while the bilinear law appears to avoid this effect com-

pletely. Accurate results can be acquired without having to use very small elements or

having to run multiple meshes and average the results. Further work in this dissertation

is focused only on using the bilinear cohesive law.

2.4 Interactions of Domain Size and Loading Rate

Explicit dynamic simulations of fracture using cohesive elements are favored over im-

plicit or static frameworks because they provide an efficient numerical approach to deal

with the non-linear nature of material rupture, and capture inertial affects needed to ac-
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curately assess crack stability. That said, they are inherently computationally expensive

for brittle materials, due to limitations on time steps required for stability and the fine

mesh resolution needed to accurately predict crack advance. In this section, the basic

scaling relationships that guide effective computational approaches are reviewed, followed

by a discussion of simple modeling practices that limit computational cost.

The Newmark-β algorithm used to solve dynamic equations of motion dictates that

stable time-integration is achieved when the numerical time-step is:

∆tmax ≤ ∆x

αc
(2.8)

where ∆x is the size of the smallest element in the domain, c =
󰁳

E/ρ is the elastic

wavespeed in the material (where E is the elastic modulus and ρ is the density), and α is

a dimensionless factor on the order of 10-100 that arises as a consequence of the stiffness

of the cohesive elements. (Note that the stiffness of the cohesive elements is set to be

larger than that of the continuum elements in order to recapture continuum elasticity.)

For accurate predictions of cohesive fracture, ∆x = ℓcz/Ncz, where Ncz = 10 − 50 is

the number of elements in the fracture process zone (of size ℓcz). Even when cohesive

parameters are adjusted to artificially increase the size of the fracture process zone (e.g., 1

µm), the maximum allowable step size for brittle materials with c ≥ 103 m/s is typically

on the order of 10−7 seconds. This implies that realistic quasi-static loading rates involve

billions of time steps, such that significant advantage is gained if artificially high loading

rates can be utilized. The upper limit on allowable loading rate is naturally defined by the

point at which inertial effects start to influence the response. For a purely elastic domain

of characteristic size R, quasi-static response (i.e. not influenced by inertial effects) is

ensured when the applied strain rate is significantly less than c/R. (This is equivalent to
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saying the velocity at the boundaries must be significantly less than the wavespeed.)

The impact of loading rate and accuracy of the above scaling relationships are illus-

trated in Figure 2.6, which plots the critical load to fracture for a center-cracked panel

versus the applied strain rate (defined as the velocity of the panel divided by its height).

With E = 200 GPa, ρ = 4 Mg/m3 and a domain size of 1.25 mm, the characteristic strain

rate for inertial effects, c/R = 5.6x106. At this loading rate, the critical rupture load is

25% higher than expected for quasi-static loading. At much lower loading rates, say 104,

one obtains results virtually identical to the theoretical quasi-static results. Hence, even

though the corresponding applied strain rate rate is far greater than generally considered

for quasi-static behaviors, the small domain size implies that inertial effects are limited.
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Figure 2.6: Plot of the critical load to fracture as a function of loading rate showing the
small domain size allows loading rates to be used that are much higher than typically
considered for quasi-static behavior.

This example clearly demonstrates that simulation domain size should be kept as

small as possible. As the domain size increases, the maximum allowable loading rate de-
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creases; slower loading rates imply more time steps to reach the remote strain associated

with fracture. Using the above scaling, and the fact that the maximum allowable strain

is ∼ 102c/R, one can demonstrate that the minimum number of time steps scales roughly

as Nsteps = 15R/ℓc, assuming the loading rate is as fast as possible without inertial effects

coming into play.

For brittle fracture in a monolithic, isotropic material, the domain size must be at

least a factor of ten larger than the fracture process zone size to be in the limit of small-

scale yielding. Hence, irrespective of any chosen parameters or normalization, there

typically must be at least several thousand timesteps to capture quasi-static loading.

This conclusion is based on the assumption that the domain is dynamically loaded with

constant strain rate, starting from zero load (i.e. 󰂃 = 󰂃̇t. Naturally, if an accurate idea of

fracture load is known a priori, this can be reduced by running a purely static simulation

with a prescribed load known to be below that required from crack advance. The result

of the purely static calculation is then used as the initial condition for a full dynamic

solution, eliminating the early time steps prior to the onset of fracture.

The implicit cost of larger domains in dynamic fracture simulations is compounded in

problems with a characteristic length-scale that is larger than the fracture process zone.

The wavy interface problem in Chapter 3 is an example of such a case. Simulations must

be much larger than the amplitude and wavelength to capture the effect of a continuous

periodic interface with, implying minimal domain sizes that are much, much larger than

that required for small-scaling yielding (i.e. brittle fracture). That is, if the wavelength

must be at least 10ℓcz to capture fracture, and the domain must span at least ten periods,

the minimum domain size is 100ℓcz.

An effective strategy for dealing with this inherent length-scale problem (which cannot

be removed via normalization or re-scaling) involves two components. First, locally

refined meshes should be utilized at the length scale of the fracture process zone, with
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course meshes at the next scale. Strategies for defining local refinements are outlined

Section 2.5. Second, purely elastic sub-modeling should be used to identify boundary

conditions on a smaller domain that is much larger than the fracture process zone but

much smaller than physical boundaries.

For example, one can analyze a full component with tens of wavy interface periods to

determine the elastic boundary boundary conditions on an inner annulus that contains

only the interface period containing the crack tip. This tiered approach can lead to

order of magnitude reductions in computational costs, and is practically unavoidable

for problems with microstructural features on the order of several microns or more.

Generally sub-domain modeling is clear simply based on the features of interest. The

practice of local mesh refinement to reduce the mesh density requires greater attention,

and is discussed in the next section. This sets the stage for adaptive remeshing, wherein

in the local mesh region near the crack tip is propagated during the simulation to track

crack growth that exceeds the initial refined region.

2.5 Local Mesh Refinement

As noted above, the cost of a particular simulation is proportional to the number of

elements. One way to keep the number of elements tractable is to only place smaller

elements near the fracture process zone and use larger elements elsewhere. In many

problems, such as crack kinking, the direction of crack advance is not known beforehand

such that an isotropic mesh should be used in a annulus surrounding the crack tip. If

there are only small elements near the crack tip and much larger elements everywhere

else, the number of elements in a mesh is dominated by the area near the tip. The

32



Advances in Cohesive Zone Modeling Chapter 2

number of elements in a mesh can then be approximated by

nelements ≈ π

󰀕
rncz

ℓcz

󰀖2

(2.9)

for ncz elements per fracture length scale ℓcz within a radius r of a crack tip. The size of

the refined zone, r, and mesh density defined by r and ncz needs to be large enough to

not affect the results but not too large as to drastically increase the simulation cost.

To illustrate the potential benefits of a local refined zone, a pre-cracked disk of size

R = 10ℓcz with a uniform mesh with 30 elements along a ray emanating from the crack

tip is used a baseline. A refined zone is then introduced within this disk, with 30 elements

along a ray inside the refined region; as the size of the refined region is decreased, a coarse

mesh is introduced between the local refined zone and the outer boundary at R = 10ℓcz.

The critical load to fracture for (using asymptotic mode I crack tip fields along the outer

boundary) was then computed for each mesh to explore the accuracy and cost benefit of

the refined zone.

The results are shown shown in Figure 2.7a. The error bars shown on the plot

are a result of the output frequency of the simulation and are equal to ±0.25%. The

computational cost is shown in Figure 2.7b as a function of the size of the refined region

and again normalized to the results with R = 10ℓcz (all cases have ncz = 30). The results

demonstrate that while a large refined region may be more accurate, it is also quite costly.

Shrinking the refined region down greatly reduces the simulation cost. Refined regions

do not need to be much larger than the fracture length in order to get meaningful results

in a reasonable time.
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Figure 2.7: Plots of (a) the critical load and (b) the relative cost for various r/ℓcz
ratios. Both plots are normalized to r/ℓcz = 10 and show a representative disk sim-
ulation. A course mesh of ncz ≈ 30 was used resulting in some noise in the critical
load. Error bars on the critical load reflect the output frequency of the simulation.
An estimate of the cost is shown based on an estimate of the number of elements in
the refined zone.

2.6 Adaptive Remeshing

The downside to the local mesh refinement discussed in Section 2.5 is that local

refinements reduce the distance the crack can grow before remeshing is needed. This is

unimportant when only the onset of crack advance is of interest, such as kinking tests of

Pro et al [9]. In contrast, to simulate crack growth that spans multiple fracture lengths,

refined regions must always be present at the crack tip; previous approaches have simply

accepted the associated cost of a larger refined region that spans multiple fracture lengths.

Once the crack propagates past the initial fracture process zone, the refined mesh at the

position of the original crack tip is no longer necessary and represents computational

“baggage” that must be carried through the simulation. As such, if the refined region

can be propagated through the simulation to follow the crack tip, the number of elements

can be greatly reduced and the cost becomes far more manageable.
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To track the crack tip with a small locally refined mesh, a new mesh must be created

intermittently as the crack grows, and the information transferred onto it from the old

mesh. This includes not only spatial distributions of displacements and velocities, but

also geometry information that defines the crack path. In the distributed cohesive zone

method described by Pro [9, 33] and used in this work, the crack path is only defined

implicitly based on nodal displacements and must be extracted from the simulation out-

put. When a crack grows, as shown in Figure 2.8a, the elements that are connected to a

failed cohesive element are identified as in Figure 2.8b. These elements are then paired

together to find the failed cohesive elements. The cohesive elements are linked into a

continuous path and connected to the previous crack path. The crack tip is then moved

shown in Figure 2.8c.

As can be seen in Figure 2.8, there are pairs of continuum elements that are separated

but not marked as connected to a failed cohesive element. These cohesive elements

between these elements are inelastic, but not yet failed. The displacements in those

elements exceed the critical separation δo. This information must be accounted for in

the new mesh in order to preserve the correct cracking behavior. Thus, the combination

of the crack path and partially separated element pairs constitute the relevant geometry

that needs to be carried over to the new mesh.

Figure 2.9 shows the progression of determining the new relevant geometry. First,

both the elastic elements that are connected to failed cohesive elements as well as those

connected to inelastic cohesive elements are identified in Figure 2.9a. Those connected to

failed cohesive elements are used to define the new crack path as well as identify cohesive

elements that are inelastic. These different regions are highlighted in Figure 2.9b. Once

the segments are identified, a new mesh, shown in Figure 2.9c, is created. These failed

and inelastic segments are imposed as features of the new mesh to preserve continuity of

the fracture process zone between both meshes.
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Old crack tip Failed elastic elements

(a)

New crack tip

New crack path

(c)

Failed cohesive elements

(b)

Figure 2.8: Schematic of the crack tip tracking algorithm. (a) The elastic elements
that border newly failed cohesive elements are output from the solver. (b) The elastic
elements are paired up across the crack and the failed cohesive elements are found.
(c) The failed cohesive elements are then assembled into a connected path and the
crack tip advances.

Once the new mesh is created, the displacements and velocities from the old mesh

must be mapped onto the new mesh. Unlike a traditional finite element mesh, the

presence of the cohesive elements dictates that the displacement field is not continuous

between elements. For example, if six elements share the same node in the mesh, there are

six different sets of displacements and velocities for that one node corresponding to each

element present. Far away from any failed or inelastic cohesive elements, the difference

between the values is slight. However, along failed or yielded cohesive elements the

displacements and velocities can be significantly different.

This implies is easier to consider the mapping procedure on an elemental basis instead

of a nodal basis, since the presence of the cohesive elements allows for multiple nodes at
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(a)

Failed elastic elements

Yielded elastic elements

(b)

Failed cohesive elements

Yielded cohesive elements

(c)

Enforced path

Figure 2.9: Schematic illustration of the process used to extract the new geometry. (a)
The cracked and separated element pairs are found from the results. (b) The cohesive
elements joining the paired elements are found and enforced as segments in the new
mesh. (c) A new mesh is created enforcing these segments.

the same point in space. A graphical representation of how elements in an old and new

mesh may align is shown in Figure 2.10. In order to map the displacements in each new

element, the old mesh is checked to see if the new element matches an element in the

old mesh. If so, the nodal values are taken directly from the nodes of the old element.

If there is not a matching element, each node is located within the old mesh. If it exists

within an old element but does not match an old node, the displacements and velocities

are simply interpolated from the old solution.

If the node falls on an enforced path, such as the crack path, but does not match an

old node, it falls on the boundary between two elements in the old mesh. The values for

the new node are interpolated from the element in the old mesh that is on the same side
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as the element in the new mesh. Finally, if the node is coincident with a node in the

old mesh, the displacements and velocities for the new node are averaged from the nodal

values in the old mesh. While performing this averaging, if the node is on an enforced

path, the averaging only takes into account elements and nodes that are on the same side

of the path as the current new element.

Old mesh

New mesh

Enforced path

Figure 2.10: Illustration of an old mesh mapped onto a new mesh. The previous crack
path and activated cohesive elements are enforced between the two meshes. This
enforced path is used to group elements in the new mesh so that correct displacements
are applied on either side.

Since the presence of the cohesive elements creates small gaps between the elastic

elements, the displacement field is not continuous in the mapping procedure described

above. This implies the imposed displacement field on the new mesh may not be in

equilibrium. This can be corrected through the use of an elastic finite element solver

that incorporates the cohesive elements as simply linear springs. During the equilibration

step, the displacements along the outer boundary and the enforced path are fixed and

only those away from the enforced path are changed. While this does not take the
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nonlinear cohesive law into account, this adjusted displacement field is a much more

accurate mapping of the prior state. This step is also very cheap to perform.

Once the solution has been mapped to the new mesh, all the pieces are in place for

the dynamic meshing algorithm. The general flow of the dynamic meshing algorithm is

shown in Figure 2.11. During a dynamic cohesive zone method simulation, the solution is

monitored until crack growth reaches the boundary of the refined region surrounding the

crack tip. The simulation (time-stepping) is then interrupted and the new crack geometry

is extracted. A new mesh is created with the new crack geometry and displacements

adjusted as above. Meanwhile, the old velocities are mapped directly onto the new mesh

without adjustments. Once both the velocities and displacements are prescribed, time-

stepping in the DCZM simulation is restarted. This loop can repeat continuously to

allow for arbitrary crack growth of any length.

The dynamic meshing algorithm was implemented with a combination of C/C++

applications and Python scripts. Meshing was performed in a C application which utilized

Jonathon Shewchuk’s Triangle library for triangulation [35]. The static finite element

solver was written in C++. The DCZM solver was also written in C++ and used in

the work of Pro et al [9] and the wavy interface studies covered in Chapter 3 and [11].

Python was used to run the various C/C++ applications, map the solution onto new

meshes and create input files for the DCZM solver. Incorporating all the various pieces

together into one application written in C++ would result in additional, and possibly

significant, cost reductions. However, that integration is left for future work. An example

of the crack tracking algorithm in use is shown at the end of Chapter 3 studying wavy

lamellar structures.

The applied load as a function of crack length for a simple center crack panel is shown

in Figure 2.12a for static meshes with different refined region sizes and the dynamic

meshing algorithm. The applied load is normalized by the applied load for unstable
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Figure 2.11: Schematic flowchart of the dynamic meshing algorithm. Once a cracking
simulation is run, the new geometry is extracted. A new mesh is then created and
equilibrium nodal displacements are found. The nodal velocities from the old mesh
are mapped onto the new mesh and the next cracking simulation is run.

growth in the mesh with the largest refined region (r/ℓcz = 10). Curves for each refined

region size end when the crack leaves the refined region to reduce the effects of increasing

element size. Refined regions of r/ℓcz = 0.5 and r/ℓcz = 1 are too small. They increase

the required load to drive cracking and do not accurately show the transition to unstable

growth. Larger refined regions of r/ℓcz = 2 and r/ℓcz = 5 show much closer results to

the largest refined region of r/ℓcz = 10, but do not show the same amount of growth.

Using the dynamic meshing algorithm results in errors of only about 1% out to a crack

length of nearly 10ℓcz even though the moving refined region size was kept at r/ℓcz = 2.

In other words, each successive mesh had approximately the same number of elements

but the center of the refined region moved with the crack tip.

The real benefit of the dynamic meshing algorithm is shown in Figure 2.12b. With

40



Advances in Cohesive Zone Modeling Chapter 2

Crack Growth, Δa/lcz

0 2 4 6 8 10

0.96

0.98

1.00

1.02

1.04

A
pp

lie
d 

Lo
ad

, f
/f o

r/lcz = 0.5

r/lcz = 1

r/lcz = 10
r/lcz = 2

r/lcz = 5

dynamic mesh

(A)
Crack Growth, Δa/lcz

0 2 4 6 8 10

C
os

t (
ho

ur
s)

1

2

5

20

50

10

100

dynamic mesh

static mesh

(B)

Figure 2.12: Comparisons of crack advance simulations with static refined meshes
and dynamically updated meshes (adaptive refinement): (a) the predicted applied
load relative to the benchmark, and (b) the cost of the simulations.

static meshes, large refined regions are needed to model significant growth. The large

refined regions greatly increase the computational cost. The dynamic meshing algorithm,

on the other hand, does not greatly increase in cost with increased crack growth. For

problems where the crack path is unknown beforehand, the dynamic meshing algorithm

is extremely beneficial. A more complex example of its usage with a single crack is shown

in Chapter 3.

While the previous procedure outlines tracking and remeshing around one crack, the

process can be easily extended to an arbitrary number of cracks. Figure 2.13 shows

an example of the dynamic meshing algorithm with a complex geometry with multiple

cracks. In the example, two identical materials are joined along a brittle interface with

a saw-tooth profile. The interface toughness between the two materials is a function

of position along the interface; horizontal portions of the interface have toughness Γi1

and slanted portions have toughness Γi2. For this example, the toughnesses of the two

materials are set equal, Γ1 = Γ2.
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An initial crack comes from the left and terminates at the first slanted portion of the

interface. The crack is loaded macroscopically under with farfield uniform displacements

in order to apply macroscopic mode I conditions and cracks are allowed to form and

grow. The interface toughnesses was set so that portions of it were always weaker than

the bulk materials. In one case, both the horizontal and slanted portions of the interface

were set to be equal but much weaker than the bulk materials. In the second case, only

the horizontal segments of the interface were set to be much weaker than the bulk. Likely

crack initiation points are known based on geometry. Both cases started with the same

initial mesh and conditions.

original crack tip current crack tip

crack pathΓi1 = Γi2 << Γ1 = Γ2

Γi1 << Γi2 = Γ1 = Γ2

material 1, Γ1

material 2, Γ2 Γi2

Γi1initial crack tip

Figure 2.13: Example of the dynamic meshing algorithm tracking an arbitrary num-
ber of cracks. The top row shows the initial geometry and mesh. The middle and
bottom rows show the algorithm tracking one or multiple cracks depending of the
input properties along with the final mesh for each simulation.

After significant time, significant cracking had occurred in both cases. The final crack

paths are shown in the left column. When the entire interface is much weaker than the

bulk, a single crack grows along it. The mesh for that case shows two larger refined

regions near the crack tip and smaller regions behind the tip at corners of the interface.

The more interesting case is when only the horizontal portions of the interface are weaker

than the bulk. The flat portions of the interface fail ahead of the parent crack. At either

42



Advances in Cohesive Zone Modeling Chapter 2

end of the flat segment, cracks grow and can be seen curving to the nearest (failed) flat

interface segment. In some cases, the crack impinges on the failed interface which stops

further growth.

The different size of the various refined zones in either final mesh are an example of

one feature of the algorithm. To further reduce computational cost, the refined region

at any crack tip shrinks if the likelihood for further growth diminishes. The process of

the refined zones changing in size in order to keep the cost low is shown in Figure 2.14.

Initially, all refined zones are the same minimum size. As the simulation progresses,

certain refined regions grow as needed. If a particular crack tip is still closed, the refined

region does not expand. Once the refined zone has grown to its maximum size, it is

stable until the crack closes. If the crack closes, the refined zone shrinks in size in order

to reduce the number of elements.

This complex crack evolution would be incredibly expensive to solve with a static

mesh. A uniform mesh would be need to be used all along the interface greatly increasing

the number of elements and thus the cost. The dynamic meshing algorithms allows for

the study of much more complex behaviors that would not be feasible with static meshing

techniques.

2.7 Conclusions

Simulations of fracture using dynamic cohesive zone frameworks can be in inherently

expensive, due to the need to resolve the fracture process zone and limit time steps to

ensure stability. However, there are several computational approaches that are highly

effective in reducing costs, commonly leading to decreases between one to two orders of

magnitude. These can be summarized as:

• A bilinear cohesive law with decreasing tractions immediately after their peak is

43



Advances in Cohesive Zone Modeling Chapter 2

growing refined zones

shrinking refined zones

large refined zones

small refined zones

Figure 2.14: Progression of various meshes used showing refined regions growing and
shrinking as needed.

more desirable than the trapezoidal law with a large plateau region analogous to

perfect-plasticity (used in [9]). The description drives localization of damage that

encourages precise selection of advance direction. This advantage plays a critical

role in the analysis of crack kinking along wavy interfaces, where distributed damage

with the trapezoidal law leads to variability in kinking phenomena.

• The cost of a distributed cohesive zone simulation scales with the linear mesh
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resolution raised (i.e. number of elements in a given direction) to the third power,

resulting in expensive simulations of long range crack growth. This is a consequence

of using a dynamic framework, which has a maximum time step for stability that

scales with element size.

• There is an intrinsic link between the physical size of the domain and the cost

of the simulations, due to the mesh-dependent time step and the nature of wave

propagation. Small time steps demanded by stability imply high costs for physically

realistic quasi-static loading rates; this can be offset by artificially increasing the

load rates. The upper limit on loading rate is dictated by the elastic wave speed in

the material and the domain size, implying that higher loading rates are allowable

for smaller domains.

• Regions of local mesh refinement can dramatically reduce cost by obviating the

need for a dense mesh everywhere in the simulation domain. Provided the fracture

length-scale is resolved with ∼ 30 elements, one obtains results that are equivalent

to fine meshes over much larger domains.

• The advantages of local mesh refinement can be retained throughout a simulation of

crack advance across large length scales, provided the local mesh region is translated

with the propagating crack. An algorithm has been provided that accomplishes this

with adaptive remeshing; the refined region is propagated based on the extent of

cracked interfaces. A new mesh is generated with the new position of the refined

region, and the results mapped from the old mesh to the new mesh. This produced

a factor 20 speed-up for a test case in which the crack advanced a distance ten

times the fracture process zone size.
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Chapter 3

Kinking vs. Delamination Along

Non-planar Interfaces

3.1 Introduction

The reliability of many multilayered systems is governed by the stability of interfaces;

two notable examples are ceramic thermal barrier coatings used to protect metallic engine

components [36–38], and environmental barrier coatings [39–41] used to protect ceramic

matrix composites. The vast majority of previous studies to date have considered flat

(planar) interfaces subject to mixed mode loading, which can lead to either delamination

(along the interface) or crack kinking (where the interface crack turns to penetrate the

adjacent material) [42–57]. However, many systems, such as those produced with thermal

spraying, produce interfaces with non-planar features (see for example [16, 37, 58–64]).

Indeed, textile ceramic matrix composites can inherently include wavy, non-planar inter-

faces arising from the underlying weave [65,66]. Interestingly, many biological structures

also involve wavy interfaces, such as skulls that incorporate compliant seams between

adjacent plates of bone [67–71]. These biological systems have inspired the study of
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textured interfaces [67].

In many of these systems, the size scale associated with non-planar features is much

smaller than other geometric length-scales, i.e. the crack length at failure and the con-

trolling component length scale (such as coating thickness, [6]). The multiscale nature of

such problems is shown schematically in Figure 3.1; at the length-scale of the component,

the interface appears flat, while at smaller scales the asperities influence behaviors near

the tip of an interface crack. Despite their small size, non-planar features alter the local

character of crack tip fields; even in instances where the macroscopic ‘parent’ crack can

be considered to be planar and subject to pure mode I loading, the problem is inherently

mixed mode due to local crack geometry. This is evident from the conventional finite el-

ement results shown in Figure 3.2, which depicts the energy release rate and phase angle

at the tip of a wavy crack as a function of the crack tip position for several different wave

amplitudes (relative to the wavelength). For interfaces with strong mode II toughness,

the mode mix arising from wavy interfaces can lead to increases in critical loads needed

to drive failure. (See for example [6] for a review.)

Even for ideally brittle interfaces with mode-independent toughness, however, there

is a purely geometric effect, as illustrated by Figure 3.2. Under pure mode I loading

in the far field, the driving force for interface delamination is reduced when the local

crack path turns away from the direction of the parent crack. The leads to an apparent

increase in macroscopic toughness, due to the fact that larger far field mode I amplitudes

are needed to advance the crack along the interface. That is, the critical far-field energy

release, Gc is larger than the interface toughness, Γi. This behavior is also apparent in

previous studies of crack kinking involving a putative kink crack [42, 45]. Under pure

mode I loading of the parent crack, the driving force at the tip of the putative kink crack

is smaller than that of the parent crack for all kink angles.

For wavy interfaces, the lower driving forces for certain crack tip positions (where
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Figure 3.1: (a) Schematic illustration of the parent crack, subjected to pure mode I
loading, (b) Schematic of the tested geometry with applied mode I displacements on
the outer boundary; the radius is assumed to be much smaller than the layer thickness,
(c) Close-up view of the region of wavy interface crack; the amplitude and wavelength
are presumed to much smaller than the parent crack length, (d) Close-up view of
the fine mesh region to capture the transition between interface cracking and kinking
illustrating the transition between interface delamination and kinking; the fracture
length scale is assumed to be much smaller than the wavelength.

the crack turns away from the far-field mode I direction, analogous to a kink) may lead

to crack ‘trapping’, since higher loads may be required to drive the crack past the local
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Figure 3.2: Results for purely elastic calculations (no cohesive zones): (a) energy
release rate at the crack tip normalized by that of the parent crack as a function of
crack tip position, (b) phase angle (mode-mix) of the interface crack tip as a function
of crack tip position.

minimums shown in Figure 3.2a. [72, 73]. Naturally, crack trapping requires that the

crack remains in the interface and not kink into the adjacent bulk material. That is,

the bulk toughness Γb must be large enough to suppress nucleation of kink cracks off

the interface, presumably in the direction close to that of the macroscopic pure mode I

field. In this work, we address questions that specifically address this problem: what is

the ratio of bulk-to-interface toughness, Γb/Γi that suppresses kinking, and how does it

depend on interface amplitude? What is the maximum possible apparent toughness for

a given interface amplitude, given toughness ratio Γb/Γi?

The answers to these questions are generated using a distributed cohesive element

approach, in which cohesive elements are embedded throughout the entire mesh and

allow for arbitrary crack paths. The work builds upon previous studies that examine crack

stability for wavy interfaces that did not allow for kinking into the bulk [59–61,72,74–76].

While qualitatively (and at times, quantitatively) similar, the present work captures the

effect of interacting fracture process zones (as opposed to just one along the interface) and
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specifically addresses conditions controlling kinking into the bulk material. The present

simulations also have much in common with a similar study of planar interface cracks [9],

which provides a comprehensive discussion of the numerical details, as well as detailed

description of the role of cohesive parameters that control the transition between kinking

and delamination.

Naturally, mixed-mode loading in the far-field (i.e. at the component length-scale)

often has a significant impact, particularly for large amplitudes that promote contact

between asperities in the wake of the crack. In such instances, frictional contact be-

tween asperities behind the crack tip provides crack tip shielding that raises the effective

macroscopic toughness, by lowering the local driving force at the crack tip [77]. While

such behavior is obviously important, we limit the present study to scenarios which do

not involve asperity contact, allowing us to isolate the role of interface geometry in the

competition between kinking and delamination. The treatment of asperity contact is

sensitive to the friction description and the shape of the asperities, and hence represents

a considerable expansion in scope. Simplifying the crack behind the crack tip by remov-

ing the asperities might alter the results as shown in [72]. In light of this focus, Figure

3.3 provides a map indicating the applicability of the present study; the figure illustrates

the range of loading phase angles, ψ, and interface shape that avoid asperity contact in

the wake of the crack. Outside of this range, more detailed treatments invoking friction

must be invoked, and the results will be far more sensitive to asperity geometry. To

determine the applicable range, traditional finite element simulations were run every 5◦

from a phase angle of −90◦ to 90◦ and with an increment in A/L of 0.05. At each phase

angle and amplitude combination, multiple initial crack tip locations were tested ranging

from x/L = −0.5 to x/L = 0.5 with an increment of 0.03125. As expected, results were

symmetric about a phase angle of ψ = 0.

While complete details of the simulation framework are given in the following section,
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Figure 3.3: Map of the amplitudes where crack face contact occurs for various loading
phase angles. The boundary curve was determined by interpolating between amplitude
and phase angle combinations that resulted in contact and those that did not.

it is worth emphasizing the broader context of the underlying fracture theory. Cracks

emerge as separation between elements, with a traction-displacement relationship (cohe-

sive law) that defines the energetics of the fracture process zone (i.e. the near tip region

that experiences inelastic separations). For systems with isotropic toughness and in the

limit that the fracture process zone is much smaller than all other length-scales, the

shape of the cohesive law is immaterial, with behavior governed by the area under of

the traction-separation curve, which represents the intrinsic toughness of the material

(or interface). The present approach utilizes this ‘small-scale yielding’ limit, such that

the physical mechanisms of rupture are largely immaterial. Various types of processes,

including bond rupture, can be represented by the phenomenological cohesive law, whose

details play a secondary role to the energy associated with complete separation (i.e. the

intrinsic toughness).
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For systems with heterogeneous toughness, such as those where the interface tough-

ness is different from that of the bulk, the behavior is somewhat more nuanced. Cohesive

separations in one domain (e.g. the bulk) influence separations in another (e.g. the in-

terface). In such instances, the relative strengths of the cohesive laws in both domains

can also influence fracture [9]. Motivated by completely brittle systems, we assume that

the cohesive strengths (peak stresses) of the bulk and interface are comparable, though

the associated toughness may be different. This difference in cohesive parameters has a

much smaller influence than that of the toughness difference, provided small-scale yield-

ing conditions are maintained (as they are); furthermore, the absolute scale of the critical

separation is immaterial, as the fracture process occurs over length-scales much smaller

than other features.

In this context, the present results are applicable to a variety of fracture mechanisms,

provided they occur over small length scales and can be reasonably described by equal

cohesive (peak) strengths. This largely limits the scope to brittle or quasi-brittle systems,

as ductile interfaces (e.g. adhesive layers) involve peak strengths that are much smaller

than those associated with bond rupture. For wavy interfaces, systems with a very ductile

phase often violate small-scale yielding conditions because the fracture process zone will

be comparable to or larger than the asperity size. In all instances in the present simula-

tions, the fracture process zone is much smaller than the asperity amplitude, wavelength

or radius of curvature; this is clearly most applicable to brittle systems.

3.2 Simulation Framework

The simulation framework consists of an explicit dynamic finite element method that

embeds cohesive laws between every element in the mesh, similar to the approach pi-

oneered by Xu and Needleman [32]. The stiffness of the cohesive law is set such that
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linear elasticity is recovered at small strains and controlled by the conventional elements.

Crack path evolution corresponds to a loss of traction between element faces and is a

natural outcome of the computation. Previous work has demonstrated that for random

triangular meshes, arbitrary crack paths (associated with the direction of maximum en-

ergy release rate) can be captured without a priori assumptions of growth direction or

additional fracture criteria (beyond the material toughness) [9]. An explicit solution

technique was used here (as in [32] and [9]), but an implicit solver might also be used if

the cohesive laws were modified as described by Gao and Bower [78].

3.2.1 Material Description

The cohesive law is described in terms of a peak stress σo, and the cohesive displace-

ment (element separation) associated with that stress, δo. For cohesive displacements

greater than δo, the traction exhibits linear softening, as shown in Figure 3.4. The elastic

stiffness of the cohesive law, ke, is kept large relative to Ehe, where E is the elastic

modulus of the elements themselves and he is the element size; this recovers conventional

elasticity for the bulk material, in that deformation of the elements themselves dominates

the response. The normal and tangential cohesive laws are defined such that the work to

fracture of any interface is dictated by Γ = c(δmax)σoδo, where c(δmax) is a dimensionless

constant of order unity that is weakly influenced by the maximum displacement at which

tractions go to zero. Put another way, in small-scale yielding, the material fractures as

an ideally brittle solid, without mode-dependence.

The reader is referred to our earlier work [9] for a full discussion of the influence of

cohesive parameters, and we provide only a brief summary here. Embedded cohesive
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Figure 3.4: Traction-displacement behavior of the cohesive elements embedded among
elements: tangential displacements affect normal traction, and vice versa, such that
the work to failure of the elements is constant regardless of loading.

elements introduce a fracture length scale given by

ℓcz =
EΓ

σ2
o

(3.1)

where E is the elastic modulus of the elements, Γ is the work-to-fracture of the cohesive

law, and σo is the peak strength of the traction-displacement relationship. The cohesive

length-scale describes the physical size of the fracture process zone, where separations

exceed δo. Strictly speaking, the actual length of the fracture process zone according to

this is a scalar multiple of eqn. 3.1; however, previous works indicate that this scalar is

close to unity for the cohesive description utilized here. If the fracture process zone is

small relative to all other dimensions in the model, ℓcz serves the sole purpose of dictating

the mesh required to resolve the behavior in the fracture process zone; i.e. he/ℓcz (where

he is the size of the elements) must be sufficiently small.

It is important to keep in mind that two independent cohesive laws are needed for the

present study, one for the interface and one for the bulk material (taken to be identical
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on either side of the interface). With two independent cohesive laws, there are two

corresponding fracture length scales, ℓbcz for the bulk and ℓicz for the interface. Here,

simulations are presented for ℓbcz = ℓicz; details regarding the impact of this assumption can

be found in [9]. For all simulations, the interface strength was set at σi
o = 2GPa and the

modulus was fixed at E = 200GPa. For equal cohesive lengths, ℓbcz = ℓicz, and toughness

ratios of 1.25 ≤ Γb/Γi ≤ 4, this implies 1.12 ≤ σb
o/σ

i
o ≤ 2, and 1.12 ≤ δbo/δ

i
o ≤ 2.

Unlike our previous study of kinking with this framework, the present study uses a

bilinear cohesive law like those used in [29, 79–81] as shown in Figure 3.4. As with the

trapezoidal law used in Pro et al. [9], the normal and tangential tractions are coupled

so that the work to failure is the same regardless of the balance of opening and sliding

displacements. In preparing the results presented here, we have found that the softening

law reduces the emergence of multiple simultaneous possible crack paths and strongly

favors the formation of a dominant crack. Presumably, this is because adjacent cohesive

zones do not support uniform tractions across a broad range of openings; once the cohesive

law exceeds the critical opening, deformation localizes in one of the emergent cracks and a

single path quickly becomes dominant. Put another way, the softening law more quickly

resolves competitions between multiple possible crack paths. The net effect is that slightly

coarser meshes can be used with softening laws; one can obtain identical results with an

equivalent trapezoidal law [9], but finer meshes are needed to reduce the possibility of

multiple crack paths.

The bulk material (represented with conventional constant strain triangular elements)

is described with linear, isotropic elasticity with elastic modulus E, Poisson’s ratio v, and

density ρ, assuming plane strain conditions. The material on either side of the interface

has identical properties. The color difference shown in Figure 3.1 is only used to highlight

the location of the interface. To speed the computational costs of quasi-static loading

conditions, artificial proportional damping is introduced as is typical in conventional finite
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element methods [82, 83]. A later section describes the positive impact of this artificial

damping with respect to computational speed, and the negligible impact with respect to

critical cracking phenomena.

3.2.2 Geometry and Loading

Figure 3.1b and Figure 3.1c illustrate the geometry used in the present simulations; it

is assumed that wavelength of the wavy interface L is much smaller than the parent crack,

such that the elastic fields surrounding the initial crack tip are governed by conventional

planar solutions. On either side the parent crack tip, the interface is defined by y(x) =

A sin(2πx/L) for a distance of 3L both ahead of and behind the crack tip. Outside of the

wavy region of the parent crack, the interface is flat; additional numerical simulations, not

presented in this work, as well as previous literature [72] have confirmed that modeling

additional periods does not affect the results. We present results for amplitude ratios in

the range 0 < A/L < 0.5, as shown in Figure 3.1c.

The disk surrounding the parent crack tip is loaded by applying time-dependent

displacements defined by the asymptotic crack tip field and controlled by the time-

dependent, pure mode I remote stress intensity factor K(t). (Locally, the crack tip

experiences mixed-mode fields due to interface waviness.) Ramp loading was applied

defined by:

K(t) = K̇t (3.2)

where K̇ is the loading rate. On the one hand, slow loading rates are needed to cap-

ture quasi-static behaviors; on the other, computational time increases as loading rate

decreases when using an explicit dynamic time stepping scheme. The inclusion of small

amounts of mass-damping reduces the impact of elastic waves associated with the loading

time scale and allows for larger time steps that recover quasi-static behaviors. Compu-
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tational considerations and the selection of damping parameters are discussed in the

following sections.

3.2.3 Computational Considerations: Time Stepping

The finite element framework reduces to a set of governing equations of the form

[M ] {ü} + [c] {u̇} + [K] {u} = {F (t)}, where {u} is a set of nodal displacements, [M ]

is an equivalent mass matrix, [K] is the stiffness matrix, and [c] = αD [M ] + βD [K] is

the effective damping matrix (constructed from the mass and stiffness matrices). Here,

the mass and stiffness damping parameters, αD and βD respectively, are not motivated

by material behaviors but rather are a numerical artifice intended to damp elastic waves

generated by ramp loading. Acceptable damping values for the present application were

determined as follows. First, a simple one-dimensional bar problem was analyzed with a

uniform mesh and ramp loading, to identify parameters that produce quasi-static behav-

iors at minimal cost. This numerical study identified values of αD and βD that minimized

computation time and produced uniform stress fields within 3% of the elastic solution

at the end of the loading ramp. Values of αD = 0.0181/ns and βD = 0.71ns with a

time step of ∆t = 3.75x10−5ns achieved this goal with a density of 4g/cm3. It should be

understood that the time-scale is artificial in the sense that the present results focus on

the quasi-static limit.

Subsequently, a characteristic cracking problem with an amplitude of A/L = 0.25,

initial crack tip position of x/L = 0 and a toughness ratio of Γb/Γi = 1.25 was analyzed

with a coarse mesh at various loading rates, K̇. This particular case involves kinking

from the interface. Displacements were applied at the disk boundary with loading rates

ranging from K̇ = 1x10−4Ko/ns to K̇ = 1x10−2Ko/ns where Ko =
󰁳

ĒΓi is the plane

strain toughness of the interface and Ē = E/(1− v2) The far-field applied energy release
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rate required for the kink crack to nucleate, Gc, is shown in Figure 3.5a as a function

of loading rate. As the loading rate increases, the critical value of the energy release

rate increases due to the presence of mass-damping, which dissipates energy that would

otherwise be available to drive crack growth. Since computational time increases with

decreasing time step, loading rate of K̇ = 10−3Ko/ns was chosen as it is within 5% of

the quasi-static limit while providing significantly faster computations. For example, this

choice of loading rate is twice as fast as the next slowest loading rate shown in Figure

3.5a.
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Figure 3.5: (a) Effect of loading rate on predicted fracture toughness; these results are
used to identify loading rate that will reduce computation time while still recovering
quasi-static rests. (b) Effect of mesh density on predicted toughness; these results are
used to set the size of the elements in the refined zone.

With these properties and numerical parameters, the simulation cost for a single

cracking problem with a resolved mesh (described in the next section) was ∼60 hours

running with 8 threads on a distributed cluster of servers each with two quad core Intel

Nehalem processors. The cluster allowed up to 24 concurrent simulations. The approxi-

mately three hundred simulations in this study took a total of about one month of wall

clock time.
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3.2.4 Computational Considerations: Mesh Resolution

Before discussing the mesh resolution needed for the problem, a note of the length

scales inherent to both the problem and the method is needed. The fracture length scale

ℓcz must be smaller than any geometric length scale for the small scale yielding approx-

imation to be valid and the simulations to correspond to brittle fracture. In contrast

kinking studies of flat interfaces [9], the inclusion of the wavy interface introduces two

additional length scales: the wavelength, L, and the radius of curvature of the interface,

ρc. The present simulations fixed the wavelength to 0.1R and vary the amplitude of the

interface. For a sinusoidal interface, the minimum of the radius of curvature is given by:

ρmin
c =

L2

4π2A
(3.3)

Since this is the smallest length scale present in the geometry, the fracture length scale

was set such that ℓicz = 0.28ρmin
c . Smaller cohesive zones had significantly larger compu-

tational times and a negligible affect on the results.

Finally, a mesh resolution study was performed with the same geometry as the loading

rate study, but with multiple meshes with different number of elements in the fracture

length scale. Also, a number of different meshes at the same resolution were created by

slightly perturbing the input points to the mesh generator; 10 meshes were studied at each

resolution. In each case, the applied energy release rate for the crack to grow a distance of

∼ 0.15ℓcz was then computed; the results of this study are shown in Figure 3.5b, where the

white lines show the mean of all meshes, the black lines show the minimum and maximum

selected from all the meshes, and the gray box shows one standard deviation arising from

all meshes. One observes that coarse meshes (except for the two coarsest mesh densities)

underestimate the mean from fine meshes by about 4%, while the variability due to

the use of values from a single mesh is about is about 5%. In the present study, we
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chose ℓcz/he ∼ 94 to balance accuracy and speed. Overall, when one considers all the

results in Figure 3.5, it is reasonable to expect that numerical discretization introduces an

uncertainty (variability) of about 5% with regards to the critical far-field energy release

rate that drives cracking.

3.3 Results

Figure 3.6 illustrates the far field energy release rate that must be applied to drive

cracking, as a function of crack tip position and for several toughness ratios Γb/Γi. Open

symbols indicate that crack advance occurs via kinking, while filled symbols indicate that

the crack’s initial advance is along the interface. Note that for a given property set, cracks

will advance along the interface for some crack tip positions, while others will lead to

kinking. Figure 3.6a illustrates that for close to equal toughness and low amplitudes, the

crack remains trapped on the interface with only a small difference between the critical

far-field energy release rate and the intrinsic toughness. As the amplitude increases,

kinking becomes more prevalent, and occurs for all crack tip positions: the results near

x/L = 0.25 correspond to a crest, such that interface advance is indistinguishable from

kinking.

Kinking is suppressed (i.e. the crack is ‘trapped’) if the toughness of the bulk is much

higher than the interface, as illustrated in Figures 3.6b and 3.6c. Further, the far field

energy release rate needed to drive interface cracking is much higher than the intrinsic

toughness. This is a result of the decrease in local driving force when the crack turns

away from the parent crack direction, as seen in Figure 3.2a. Indeed, the inverse of the

results in Figure 3.2a (which neglect any kinking damage) is also plotted in Figure 3.6c

for an amplitude of A/L = 0.5, and is in excellent agreement. This is a useful check on

the cohesive zone results; when kinking is suppressed, one recovers identical results to
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Figure 3.6: Far field energy release rate associated with crack advance, normalized by
the toughness of the interface, for three different toughness ratios Γb/Γi. Open symbols
indicate kinking out of the interface; solid symbols indicate interface cracking.

conventional finite elements. It is interesting to note that if this estimate is used, one

completely misses the failure mode at lower toughness ratios, as can be illustrated by

superposing the conventional ERR result onto Figure 3.6a.

These results shed important new insight as to whether or not crack ‘trapping’ along

the interface can be effectively achieved; obviously, if the crack can kink into the bulk,
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the crack is no longer trapped. For example, consider the results in Figure 3.6b for

A/L = 1/2 (a strongly wavy interface crack) and suppose the crack tip starts at x/L = 0,

the mid-point between a trough and a crest. If the far-field energy release rate G is

roughly G = 2.8Γi, the crack advances along the interface. Since the critical value of

far-field G needed to advance the crack is less than this value for all crack positions

x/L <∼ 0.32 - and kinking does not occur - the crack advances to x/L ≈ 0.32 and

arrests, since the required driving force to advance the crack at that position is G > 2.8Γi.

Provided G < 3.5Γi, the crack neither advances along the interface nor kinks. The crack

is effectively arrested or ‘pinned’ at that position as well as ‘trapped’ along the interface.

However, if G > 3.5Γi, a kink crack nucleates and is no longer ‘pinned’. Hence, the crack

is only effectively ‘trapped’ or ‘pinned’ for G < 3.5Γi. Note that the kink crack nucleates

at G = 1.75Γb, a consequence of the difference in the local orientation of the crack tip

and the parent crack, which influences mode-mix at the local crack tip and controls kink

nucleation [9].

The results in Figures 3.6a-c illustrate that crack trapping is most effective for large

amplitudes and high toughness ratios, as one expects; when the amplitude is small or the

bulk toughness is comparable to the interface, there is a narrow range of far field energy

release rates that are relevant. Consider the results in Figure 3.6a, for the case where

the pre-existing crack somewhat luckily starts at a crest, x/L = 0.25. The crack can

be advanced and arrested only if the far-field energy release rate G is above the critical

condition and is never increased by more than ∼ 20%; otherwise, kinking occurs. As the

bulk toughness is increased, the window of ‘quasi-stable’ far-field G (where the crack will

advance but subsequently arrest) also increases, as seen in Figure 3.6b.

An interesting feature of wavy cracks with large amplitudes (relative to the wave-

length) is that the driving force is asymmetric with respect to crack tip position near the

crest of the wave. That is, the driving force is higher as the crack tip approaches a crest,
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as compared to the crack tip leaving the crest of the wave. This asymmetry occurs even

when the local crack tip angle (tangent to the interface at the crack tip) has the same

magnitude relative to the parent crack. This asymmetry is observed in the conventional

FEA results (Figure 3.2), the present cohesive zone predictions (Figure 3.6), and similar

calculations (which do not allow for kinking) published previously (e.g. [72], Figure 10).

This may be somewhat counterintuitive, since the local crack tips have positions with

equal distance to the macroscopic crack plane, and the orientation of the crack tips and

the curvatures of the cracks are equal. It should be noted that a different definition of

x/L was used in this work compared to [72].

This behavior may be understood as follows. The behavior behind the crack tip

strongly impacts the influence of the crack tip position; absent partial interface delam-

ination, the shape of the interface ahead of the crack plays no role since the material

is isotropic. For cracks approaching the crest of a wave, the full asperity in the wake

is almost fully unloaded and its influence diminishes as the crack moves into the new

asperity. That is, the crack approaching the tip of the wave (on the uphill slope) is

entering a nearly fully stressed asperity, with the previous (largely unloaded) asperity far

removed. On the other hand, for a crack tip that passes the crest of the wave (on the

downhill slope), the stress in the asperity is reduced by the presence of the crack, which

somewhat reduces the strain energy available to drive the crack. Simply put, the stress

field in the ‘active’ asperity containing the crack dominates the response; once the crack

passes the crest the small amount of strain energy in the ‘active’ asperity that feeds the

crack is reduced by crack advance. This hypothesis is supported by the fact that the

effect disappears for small amplitudes; in this case, a large portion of any asperity in the

wake of the crack is stress free and plays little role.

Wavy cracks increase the critical far-field energy release rate (of the parent crack)

needed to drive either kinking or delamination; as evident from Figure 3.6, this increase
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is optimal for intermediate toughness ratios (e.g. Γb/Γi ∼ 2). This is because the highest

critical energy release rate is obtained when there is a competition between kinking and

delamination. This is clearly illustrated in Figure 3.7, which depicts the critical energy

release rate for the parent crack as a function of toughness ratio. Two different crack

locations are shown, roughly corresponding to the locations with the steepest interface

and peak toughening from Figure 3.6 (x/L = 0 and (x/L = 0.375), respectively). One

can see that the critical energy release rate for kinking increases with toughness until a

critical value is reached; at this critical value, kinking damage is completely suppressed,

and the failure mode switches to delamination. After this point, the increase in apparent

toughness is completely controlled by the interface toughness and the amplitude ratio.

Figure 3.7 illustrates that nearly optimal toughening is obtained for Γb/Γi ∼ 2, with an

increase of about a factor of 3-4 in apparent toughness. The optimal toughening obtained

for Γb/Γi ∼ 2 has only has a slight dependence on the two crack tip positions. The value

of this transition is further explored below. The optimal toughening is a consequence

of active competition between fracture process zones at the interface and in the bulk;

note that the effective toughness is roughly the sum of both fracture toughness values.

It should be noted that the increase in apparent toughness that results from competing

fracture mechanisms can depend on the ratio of the cohesive strengths of the bulk and

interface; this is discussed in extensive detail in [9] (which covers kinking from a planar

interface crack) and the references included in that work.

Since the optimal toughening occurs near the transition between kinking and delami-

nation, predicting the transition toughness would be useful for different geometries (where

there is no crack face contact). The results of [42] and [9] can be used along with the

phase angles shown in Figure 3.2b to see if either presents a valid prediction of the transi-

tion toughness ratio. The results of this analysis can be seen in Figure 3.8 for A/L = 0.25

(a) and A/L = 0.5 (b). In this figure, the transition toughness ratio was determined to
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Figure 3.7: Apparent toughness needed to drive cracking as a function of the bulk–
to-interface toughness ratio Γb/Γi for an initial crack tip position of (a) x/L = 0 and
(b) x/L = 0.375.

be the average of the highest ratio resulting in kinking and the lowest ratio resulting in

delamination. This means there is an error in the transition toughness ratio of ±0.125.

Kinking is expected at a certain crack tip position if the toughness ratio is below the

curve and delamination is expected if it above. The He and Hutchinson model greatly

under-predicts the transition, which is consistent with the work of [9] which showed the

He and Hutchinson’s model does not accurately predict the transition toughness ratio

for flat cracks under mixed mode loading conditions (Figure 8 in [9]). Using the results

from Pro et al., the transition toughness ratio can be fairly accurately predicted only

with the local mode mixity. Differences between both models and the simulation results

around x/L = 0.25 can be explained by the curvature of the interface at that point. The

difference in the instantaneous angle of the interface and the preferred kink angle is very

small near the peak of a wave. Also, at x/L < 0.25, the interface curvature is a close

approximation of the ideal kink angle, as shown in Figure 3.8c. Delamination is then

more preferred than the predictions from Pro et al. suggest.
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Figure 3.8: Plots of the predicted transition toughness ratio from Pro et al. [9], He
and Hutchinson [42] and simulations for (a) A/L = 0.25 and (b) A/L = 0.5 as well as
(c) the calculated kink angle (from [42]) as a function of crack tip position.

The increase in toughness due to the competition between kinking and delamination

can be used to increase the critical far-field energy release rate that drives unstable

cracking. It is assumed that crack is always unstable after kink nucleation; delamination

is unstable if the crack does not arrest and does not kink prior to arrest. As shown

in Figure 3.9, the increase in critical far-field energy release rate is dependent on both
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the amplitude and toughness ratio. Even at a low toughness ratio of Γb/Γi = 1.25, the

critical energy release rate increases with increased amplitude even when kinking happens

at most amplitudes. Increasing the toughness ratio from 1.25 to 2 (an increase of 60%)

increases the critical energy release rate by almost 100%. Further increasing the toughness

ratio so that the crack does not kink decreases the critical far-field energy release rate,

Gc, but shows nearly identical results to [72] (which did not consider kinking). This

provides additional evidence of the accuracy of the present calculations. It is clear that

competitions between kinking and delamination can be a useful mechanism to toughen

a rough interface, but only if the bulk is sufficiently tougher than the interface (but not

too much tougher).
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Figure 3.9: Plot of the maximum load that can be applied before the crack grows
unstably for three different toughness ratios Γb/Γi compared the data from [72]. Open
symbols indicate kinking out of the interface; solid symbols indicate interface cracking.

Arguably, the central question regarding the development of robust coating systems

is, “for a given toughness ratio and interface amplitude, what is the maximum energy
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release rate that avoids cracking entirely (for any crack tip position)?” The answer to

this question is provided in Figure 3.10, which plots the critical energy release rate to

drive unstable cracking as function of toughness ratio Γb/Γi and amplitude ratio A/L. In

Figure 3.10, the size of each bubble is scaled to the critical toughness and closed bubbles

indicate delamination while open bubbles indicate kinking. This is a more complete view

of the results than that shown in Figure 3.9, showing the critical failure mode across the

tested parameter space. One can see immediately that the optimal apparent toughness

occurs near the kinking/delamination boundary. Increases in the amplitude ratio increase

the apparent toughness, with only weak dependence on the toughness ratio. One can

observe that for large amplitudes, staying on the kinking side of the transitions produces

the biggest gains, as suggested by Figure 3.7. The difference in toughness is lower than

that suggested by Figure 3.7 because it is a comparison of the highest delamination

critical energy release rate compared to the lowest kinking energy release rate for a given

amplitude. This slight difference can be seen in Figures 3.6a and 3.6b.

3.4 Conclusions for Wavy Interfaces

The work described provides new insights regarding the competition between kinking

and delamination for a wavy interface crack:

• The embedded cohesive zone approach is an effective tool to consider competitions

between brittle crack mechanisms, provided sufficient mesh resolution is utilized

and one takes care to utilize parameters for which the fracture process zone is

much smaller than all other length scales.

• When delamination is heavily favored (e.g. for high toughness ratios Γb/Γi), the

represent results are in broad agreement with previous studies of wavy interfaces
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Figure 3.10: Plot of the maximum applied toughness for a given toughness ratio and
amplitude. The size of each bubble is scaled to the ratio of the critical toughness Gc

to the interface toughness Γi. Closed symbols indicate interface failure while open
symbols represent kinking.

that ignore the possibility of kink nucleation. In this limit, increasing waviness

increases the critical far-field energy release rate of the parent crack for all crack

tip positions.

• For moderate toughness ratios, e.g. Γb/Γi ≤ 2, kink nucleation can occur; generally

speaking, this limits the apparent toughening to values approximately 70% less than

would be obtained if kinking were suppressed.

• Maximal toughening is obtained for specific toughness ratios that produce a compe-

tition between kinking and delamination; the benefit of this competition is roughly

10-70%, corresponding to small amplitudes to large amplitudes respectively. The

toughness ratio that maximizes apparent toughening increases slightly with ampli-

tude but generally falls in the range 1.5 ≤ Γb/Γi ≤ 2 for 0.25 ≤ A/L ≤ 0.5.
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3.5 Cracking inWavy Lamellae with Adaptive Remesh-

ing

Many biological systems, such as dinosaur teeth [10], consist of lamellae that are non-

planar, as shown schematically in Figure 3.11. Based on Brandon Krick’s observations

at Lehigh, crack patterns exhibit interesting deflections (kinking) behaviors based on the

local microstructure. For example, Krick indented dinosaur teeth to measure properties

and induce indent cracks that would then propagate; in many instances, the cracks would

propagate through many lamellae before making abrupt turns. The results from Section

3.4 illustrate that kinking behaviors near wavy interfaces are strongly influenced by the

location of the crack tip along the wave: e.g. near the crest, trough or mid-points.

These observations imply conventional “static mesh” finite element analysis of crack

stability will be exceedingly expensive. To span the range of possible crack/microstructure

interactions, crack orientation would have to varied alongside variations in crack tip lo-

cations throughout the domain (in two directions) to span the range of possible/crack

microstructure interactions. In contrast, the adaptive remeshing algorithm described

in Chapter 2 is ideally suited to simulating these interactions: an initial crack can be

placed in a few locations and allowed to evolve as desired, including the propagation

across lamellae followed by kinking when the crack hits a local feature with the “right”

orientation.

To gain some initial insight into Krick’s observations and illustrate the power of the

adaptive remeshing algorithm, a limited study was conducted using lamellae elastic prop-

erties obtained from Krick’s indentation experiments, and geometry identified by Krick’s

optical micrographs. Specifically, these studies suggest that the modulus difference be-

tween the layers is relatively small: E2/E1 ∼ 1.25. The hardness difference between

the layers is only slightly larger: H2/H1 = 1.5. The amplitude (A) to wavelength (L)
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Figure 3.11: Schematic illustration of the geometry used for the dinosaur teeth ex-
ample. At the macroscopic level, a cracked rectangular domain is loaded under dis-
placement control. The width W and height H are significantly larger than the initial
crack length a, approximating an isolated crack in a semi-infinite domain. On a smaller
length scale there are alternating lamella with wavy interfaces with the primary axis
of the wavy interface rotated an angle θ counterclockwise from the plane of the crack.
The lamella have thickness h, amplitude A and wavelength L. For reference, the point
x=0 refers to the midpoint between a trough and a peak of an interface.
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ratio ranged between 0.05 < A/L < 0.3, while the observed thickness (h) range was

0.07 < h/L < 0.175.

Motivated by these observations, a parameter study was conducted with A/L = 0.175

and h/L = 0.255; the crack angle θ shown in Figure 3.11 was varied from 0 to 90o and

various crack tip positions relative to the lamellae were considered. To simplify the

study, the cohesive strengths of the layers was set to be σ2
o/σ

1
o = 1.5; the toughness

of each layer was adjusted so that the corresponding fracture process zone sizes where

the same throughout the material. This implies Γ2/Γ1 = 1.8, and Γi/Γ1 = 1.4. The

upshot of this is that the stiffer layer is 20% stiffer and 80% tougher than the more

compliant, weaker layer; further the remote stress needed to advance an isolated crack

in a monolithic specimen of material #2 is 50% higher than if the specimen were made

from material #1.

The outer geometry consisted of an edge crack panel with height and widths of at

least 50 lamellae wavelengths, while he initial crack length spanned at least 15 lamellae

for orientations greater than 45o. The displacement at the top edge of the panel was

increased linearly with time (constant velocity) loading, at rates well below the quasi-

static threshold identified in Chapter 2. This last point is important, since it implies

all velocities along the boundaries are at least two orders of magnitude smaller than the

wave speed of the material; further, one should note that purely quasi-static response

would indicate that crack growth is stable under far-field displacement control.

The full set of simulations exhibited surprisingly consistent behavior that was inde-

pendent of the initial crack orientation and initial crack tip position. In essence, the

cracks always ran straight ahead with only minor influences of the domain waviness,

regardless of the initial angle of the lamellae to the initial crack orientation. The load

to initiation was always virtually identical to the material surrounding its tip. While

propagating, the stress needed to drive failure as a function of crack length (a proxy for
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the macroscopic R-curve behavior) jumps when moving from the brittle to the tougher

phase. In essence, no crack deflection along interfaces or kinking was experienced.

This universality is undoubtedly a consequence of dominant far-field mode I loading,

the limited difference in elastic properties between the layers, and the limited difference

in fracture toughness both between the layers and along the interface. However, there

are some interesting behaviors of crack propagation, unrelated to propagation direction,

that are also common to all simulations, and these are the focus of the remainder.

Figure 3.12a shows the level of applied stress (inferred from boundary displacements

while assuming uniform strain ahead of the crack) as a function of crack tip position. This

is, in essence, the R-curve behavior for the microstructure that is illustrated in Figure

3.12b. The corresponding microstructure that is encountered as the crack advances can

be inferred from Figure 3.12b. Clearly, the applied load that drives initial growth jumps

from that associated with cracking in a uniform brittle material (#1), to something that

is not quite that associated with cracking in a uniform tough material (#2). As the crack

moves from layer to layer, the transition is not abrupt, indicating alterations to the crack

tip fields by the advance layers. The results in Figure 3.12a raise the question: why isn’t

the resistance of the tougher phase ever experienced fully? It is interesting to note that

it is never fully reached, regardless of whether crack runs through a long portion of the

tough phase (for certain combinations of crack orientation or initial crack tip position).

While there are likely a myriad of reasons, examination of crack dynamics after the

onset of fracture exhibit interesting trends that are consistent across all experiments with

this property set. The key insight from this study is shown in Figure 3.13a and 3.13b;

Figure 3.13a depicts the critical stress needed to advance the crack as a function of crack

length, for several different initial crack tip positions. The crack always starts in the

more brittle phase, and the distance from the initial crack tip to the next interface is d.

When d = 0, the crack tip starts on the interface between the brittle and tough phases,
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Figure 3.12: An example (a) crack resistance curve with the three crack growth do-
mains marked and (b) the crack path plotted on top of the microstructure with the
domains indicated.

propagating immediately into the tougher phase. The corresponding crack speed as a

function of crack length is shown in Figure 3.13b. It is clear that as the crack tip starts

further from the tougher phase, the plateau resistance is a smaller the percentage of

expected resistance.

Figure 3.13b suggest that this is a dynamic effect; when the crack in the brittle layer

advances, it accelerates and reaches the next layer with finite speed which is far greater

than the velocity of the remote boundary. Hence, while the far field remote loading is

quasi-static, the local crack tip fields are undoubtedly influenced by inertial effects of

the propagation crack tip. These inertial effects add to the far-field loading and drive

the crack forward, even though the elastic contribution by itself is insufficient (based

on conventional elastostatic analysis). From this, it seems clear that the percentage of

maximum resistance obtained during an experiment will be impacted by differences in

wave speed between the layers (i.e. relative density), as well as all of the elasticity and

fracture parameters fixed in this study.
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Figure 3.13: Plots of (a) the crack growth resistance for different d/h values showing
that increasing the d/h value reduces the needed load for unstable growth. (b) shows
the crack speed normalized by the wave speed of material #1 for the same d/h values.

This will be a focus of future work, which will broad the range of density, moduli and

toughness mismatch between the layers. It should be emphasized that such simulations

are intractable without efficient adaptive remeshing algorithms that limit the cost of the

simulation by translating the local refined mesh with the propagating crack. Conducting

an alternative study with static meshes that have refined regions throughout the domain

of crack advance (which is limited in this case because the crack direction is relatively

fixed) would take multiple years to run.
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Chapter 4

Multiphysics Framework for

Integrated Diffusion, Oxidation and

Creep

4.1 Introduction

High temperature oxidation leads to a host of mechanisms that degrade mechanical

performance, including: (i) outright erosion (loss of material due to oxidation followed

by oxide volatilization), (ii) the generation of elevated stress driven by the volumetric

expansion associated with oxide formation, and (iii) oxide cracking during cooling, which

provides additional pathways for reactant ingress and/or propagates into the adjacent

material. These behaviors can involve strong coupling between transport (governing

the flux of reactants to oxide growth boundaries), domain evolution (describing changes

in shape of oxide domains as time progresses), and stresses (driven by the volumetric

expansion of the oxide and mitigated by creep).

The framework described in this chapter consists of computational modules for dif-

76



Multiphysics Framework for Integrated Diffusion, Oxidation and Creep Chapter 4

fusion, domain evolution and stress analysis. The principal contribution of the work in

this chapter relates to their integration, which involves coordination of solution variables

across time and space: e.g. concentrations, flux arriving at the growth boundary, dis-

placements, eigenstrains associated with oxide expansion, and creep strains. As will be

illustrated, the individual modules utilize well established numerical techniques.

The choice of numerical schemes chosen for the framework was guided by two factors.

First and foremost, the schemes utilized here provide a facile pathway to integrate this

framework with a model that tracks crack path evolution, i.e. that described in Chapter

2 and applied in Chapter 3. The present framework utilizes the same triangular mesh

to facilitate direct mapping of relevant solution variables to that framework. Further, it

uses the same mesh generation algorithms needed to track large changes in geometry; in

future work, crack tracking with local refined meshes can be combined with oxide domain

evolution. Second, because the modules utilize conventional finite element descriptions,

future modifications (to material behavior, geometry, boundary conditions, etc.) will

be straightforward. While other numerical schemes may offer advantages for any one

portion of the framework – e.g. level set methods to track domain evolution – they pose

integration challenges that outweigh their isolated benefit. Based on the learnings of

constructing this framework, future recommendations for different numerical schemes

are provided.

The principle physical motivation for the framework in this chapter pertains to ox-

idation behaviors in SiC ceramic matrix composites, utilized in gas turbines that are

exposed to prevalent amounts of water vapor and gaseous hydrogen. That said, it should

be appreciated that the modules can be easily adapted to other material systems, e.g.

with suitable changes in material descriptions, the relevant species to be tracked, and

the description of oxide growth.

In a typical application environment for SiC composites, temperatures can exceed
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800◦C, such that silicon carbide oxidizes to form silica glass SiO2. Both water vapor

and oxygen may play an important role in oxidation; to simplify the presentation of

the framework, only oxygen is assumed to be present. (Again, additional reactants and

reaction products can be tracked by expanding the numerical implementation of the

relevant modules.)

The key behaviors are illustrated in Figure 4.1. Oxidants are able to diffuse from

a gaseous environment, through existing oxide and react with underlying silicon car-

bide. The molar volume of silica is much larger than silicon carbide, which results in

a large expansion upon oxidation that can produce elastic stresses (immediately after

oxide formation) that are greater than 20 GPa in the newly formed oxide. However,

at the relevant temperatures of formation, silica undergoes non-linear viscoelastic creep.

Silica is typically assumed to behave like a Maxwell material akin to an elastic spring

and viscous dashpot in series with a non-linear, stress dependent viscosity.

The relaxation behavior for various initial stresses are shown in Figure 4.2 for a

representative temperature of 1000◦C. A significant amount of relaxation occurs within

the first few seconds, but the amount of relaxation depends on the initial stress σo.

Extreme initial stresses on the order of σo ≥ 10 GPa, such as those caused by the

volumetric expansion associated with oxidation, relax on the order of a few seconds.

More moderate stresses, like those caused by remote loading of components on the order

of 1 GPa, relax over a larger time scale due to the strongly non-linear component of the

relevant creep law. The majority of the relaxation, regardless of the level of the initial

elastic stress, occurs within minutes.

The remainder of this chapter describes how the framework incorporates relevant

behaviors as follows. In Section 4.2, the diffusion problem of reactant transport and

subsequent oxidation growth is described. Section 4.3 describes how creep is incorporated

into the mechanical analysis module. Module integration is outlined in Section 4.4. To
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Figure 4.1: Schematic illustration of oxide growth on silicon carbide. Oxidant
molecules like oxygen and water diffuse through the existing oxide, react with sili-
con carbide and advance the oxide/silicon carbide interface (shown in red) inward.
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Figure 4.2: Plots of the relative stress relaxation for various initial stresses, σo at a
temperature of 1000◦C. The non-linear viscosity is stress dependent and higher initial
stresses lead to faster initial relaxation rates.
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illustrate coupled behaviors, Section 4.5 analyzes an oxide layer growing on a circular SiC

fiber cross-section, and compares the results to previous quasi-analytical results. Finally,

the framework’s convergence behaviors, which provide practical guidelines on numerical

parameters, is summarized in Section 4.6.

4.2 Transport and Oxidation

One of the key challenges in predicting oxidation phenomena is to couple transport

of the oxidant molecules to the reaction front to evolution of the oxide domain, defined

by motion of the oxide/substrate boundary. In broad terms, this involves computing

the flux of the oxidant species to the domain boundary and computing the velocity of

the evolving boundary based on the rate of reactant consumption. To illustrate this

coupling, the Deal-Grove model of time-dependent oxidation on a flat surface is first

described to outline the key underlying assumptions. The assumptions of this model

are then generalized to non-planar surfaces to provide the mathematical descriptions of

domain boundary motion used in the present work.

While Deal and Grove first studied oxide growth on silicon in one dimension [12],

others have since shown that their approach can be applied to silicon carbide [14,15]. A

common assumption when applying the Deal-Grove oxidation model to silicon carbide is

to ignore any by-products of the oxidation. As such, the current framework implemen-

taton tracks a single diffusing species.

In Deal and Grove’s one dimensional model for silicon, diffusion and reaction are

combined into a unified model. The model relies on the assumption that the fluxes of

oxidant from the atmosphere into the oxide, through the oxide and at the oxide/silicon

interface are all equal at any instant in time. It is worth noting that any transients are

ignored, which is not necessarily the case in the current numerical framework.
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In the Deal-Grove model flux from the atmosphere into the oxide, J1, is

J1 = β (Catm − Co) (4.1)

where β is the gas-phase transport coefficient, Catm is the concentration of the oxidant in

the ambient atmosphere and Co is the concentration at the free edge of the oxide. The

flux through the oxide, J2, is described by Fick’s first law:

J2 = −Deff
dC

dx
(4.2)

with an effective diffusion coefficient in the oxideDeff which takes into account the effects

of localized ionic charges. Since diffusion through the oxide is assumed to be at steady

state, the flux through the oxide is constant and can be expressed as

J2 = Deff
Co − Ci

hox

(4.3)

where Ci is the concentration at the interface. Finally, the flux at the oxide/silicon

interface is

J3 = ksCi (4.4)

where ks is the surface reaction rate.

By setting J = J1 = J2 = J3 and eliminating Ci and Co the total flux J is

J =
ksCatm

1 + ks/β + kshox/Deff

(4.5)
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The growth of the oxide layer is controlled by the differential equation

dh

dt
=

J

No

(4.6)

where No is the number of oxidant molecules incorporated into a unit volume of oxide.

Solving this differential equation with the initial condition

hox = ho (4.7)

at time t = 0 yields

h2
ox + ADGhox = BDG(t− τ) (4.8)

which is the Deal-Grove model for oxide growth. The coefficients ADG, BDG and τ are

ADG = 2Deff

󰀕
1

ks
+

1

β

󰀖
(4.9)

BDG = 2Deff
Co

No

(4.10)

τ =
h2
o + ADGho

BDG

(4.11)

The constants ADG and BDG are based on the material properties and τ is an offset

in time based on the initial thickness of oxide. It should be noted that the gas-phase

transport coefficient is much greater than the effective diffusion coefficient such that the

oxide is saturated at the free edge and J1 reaches a constant value. Oxide growth is

then limited by diffusion through the oxide and reaction of new silicon carbide. This

simplification is used in the numeric modeling.

As the Deal-Grove model is one dimensional, it assumes the flux is unidirectional

across any surface in the model. For more complex geometries where diffusion occurs in

multiple directions, oxide growth is nonetheless a function of the flux of oxidant molecules
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to the growth interface and the reaction rate, ks. The velocity of the oxide growth

interface vΓ relative to the free edge depends on local fluxes normal to the interface, as

in:

vΓ =
Jn
No

(4.12)

where Jn is the flux perpendicular to the growth interface Γ. For a small enough time

increment dt, oxide growth must be linear. The spatial motion of the oxide boundary,

defined as ∆Γ, is then:

∆Γ = vΓ∆t =
Jdt

No

(4.13)

Thus, the boundary motion at any given time can be calculated from the flux of

oxidant that reaches the reaction surface. The flux that reaches the surface can be

calculated from the concentration profile from a diffusion analysis. Therefore, evolution

of the oxide boundary is controlled by the solution to the diffusion problem, which yields

the flux through the boundary at any given time.

Here, bulk diffusion through a solid is assumed to obey Fick’s second law which

implies

∂C

∂t
= D∇2C (4.14)

where C is the concentration at a point in space at time t and ∇ is the gradient operator.

Here, finite element formulations are utilized to generate numerical solutions for arbitrary

geometries. The finite element approximation for the diffusion equation can be written

as

[M ] {Ċ}+ [Kdiff ] {C} =
n󰁛

i

{Qi} (4.15)
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where

[M ] =

󰁝

V

[N ]T [N ] dV (4.16)

[Kdiff ] =

󰁝

V

D [B]T [B] dV (4.17)

{Qi} =

󰁝

Si

qi [N ]T dSi (4.18)

with [N ] is the matrix of element shape functions, [B] is the matrix of the derivatives of

the shape functions and qi is an imposed flux along surface Si. It should be noted here

that it is assumed that the diffusivity D is isotropic and spatially uniform.

When SiC oxidizes, there is an outward flux on the interface between the silicon

carbide and silica that provides the oxidant reacting with the silicon carbide. The outward

flux at any point along the interface can be computed as qrxn = ksC where ks is the surface

reaction rate and C is the concentration at that point. Since the concentration at any

point can be interpolated as C = [N ] {C}, the nodal equivalent flux on the reacting

boundary Srxn can be written as:

{Qrxn} =

󰁝

Srxn

ks [N ]T [N ] {C}dSrxn (4.19)

This expression for flux at the reaction boundary, however, leads to an implicitly

defined system, as the concentrations {C} exist on both sides of the equation. As will

be explained shortly, an explicit system is desired in order to find the solution quickly.

It must hold that there is some equivalent diffusivity matrix [Krxn] relating the concen-

trations to the reaction flux:

[Krxn] {C} = {Qrxn} (4.20)
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This equivalent diffusivity matrix is then

[Krxn] =

󰁝

Srxn

ks [N ]T [N ] dSrxn (4.21)

The finite element equations in the absence of any other imposed flux is then obtained

by combining Equations 4.15, 4.20 and 4.21:

[M ] {Ċ}+ ([Kdiff ]− [Krxn]) {C} = 0 (4.22)

This system is fully explicit and can be solved with simple time-stepping. While

here are many different techniques to solve a dynamic system of equations, this work

adopts a simple updating scheme. Over a short enough time increment, ∆t, change in

concentration must be linear. The time derivatives of the concentration, {Ċ}, are then:

{Ċ} =
{Ċt+∆t}− {Ċto}

∆t
(4.23)

Taking this into account, the finite element equations become:

󰀕
1

∆t
[M ] + [Kdiff ]− [Krxn]

󰀖
{Cto+∆t} =

1

∆t
[M ] {Cto} (4.24)

with the concentration at the previous time increment moved to the right hand side. For

simplicity, the right hand side can be defined as:

{R} =
1

∆t
[M ] {Cto} (4.25)
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As such, the final form of the diffusion equations is

󰀕
1

∆t
[M ] + [Kdiff ]− [Krxn]

󰀖
{Cto+∆t} = {R} (4.26)

At first glance, the transformation from an implicit system to an explicit system

may seem unnecessary. However, the explicit formulation with simple updating yields

finite element equations of the form [A] {x} = {B}. Many fast, well-established equation

solvers can be used to solve this system directly for each time increment.

The equations laid out above are general and can be used for multiple materials

in contact with each other, provided one assumes perfect diffusivity between materials.

(Otherwise, additional boundary conditions need to be imposed using standard tech-

niques.) Diffusion through any medium, including gases, can be modeled provided the

domain is meshed and effective properties are assigned. For example, narrow cracks can

be modeled by assigning an effective diffusivity that combines molecular and Knudsen

diffusion defined by:

Dc =
DmDK

Dm +DK

(4.27)

where the Knudsen diffusivity, DK and the molecular diffusivity, Dm, are given by:

DK =
2δ

3

󰁵
8RT

M
; Dm =

0.0018583 T 3/2

Pσ2ΩAB

󰀕
1

Mair

+
1

M

󰀖1/2

(4.28)

with δ as the crack opening, R is the ideal gas constant, T is the temperature, Mair is

the molecular weight of the air within the diffusion channel, M is the molecular weight

of the diffusing species, σ is the average collision diameter, Ω is the collision integral, and

P is the pressure. This will be used in the studies of barrier coatings in Chapter 5.
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4.3 Mechanical Deformation

The finite element discretization described in the previous section can also be used

to solve for the thermomechanical response of the entire domain, including newly formed

oxide and remaining substrate. In this section, the details of the numerical formulation

needed to account for creep is described, with an emphasis on how creep strains are

handled. Ignoring accelerations, the principle of virtual work states:

󰁝

V

{δ󰂃} [σ] dV =

󰁝

S

{δũ}{f}dS (4.29)

for a set of tractions {f}. The approximate displacements {ũ} are an interpolation of

the nodal displacements {u} using the same shape functions [N ] as used in the diffusion

problem by

{ũ} = [N ] {u} (4.30)

The total strain at any point in time is the superposition of strains due to elastic defor-

mation (󰂃el), inelastic deformation such as creep (󰂃cr), any transformation strains (󰂃tr)

and any strain implicitly stored in the description of the mesh (󰂃m). The latter arises

when the role of accumulated strain (from creep, transformation or elastic deformation)

is accounted for by updating the geometry. With this in mind, the principle of virtual

work can be written as:

󰁝

V

{δu} [B]T [E] {󰂃el}dV =

󰁝

S

{δu} [N ]T {f}dS (4.31)
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or, noting that 󰂃 = 󰂃el + 󰂃cr + 󰂃tr + 󰂃m

󰁝

V

{δu} [B]T [E] {󰂃}dV =

󰁝

S

{δu} [N ]T {f}dS +

󰁝

V

{δu} [B]T [E] {󰂃tr}dV + (4.32)
󰁝

V

{δu} [B]T [E] {󰂃cr}dV +

󰁝

V

{δu} [B]T [E] {󰂃m}dV

where [B] is the matrix of shape function derivatives and {󰂃} = [B] {u}. Since the

statement must be true for all virtual displacements {δu} the finite element equations

can be expressed as

[K] {u} = {F}+ {Ftr}+ {Fcr}+ {Fm} (4.33)

where

[K] =

󰁝

V

[B]T [E] [B] dV (4.34)

{F} =

󰁝

S

[N ]T {f}dS (4.35)

{Ftr} =

󰁝

V

[B]T [E] {󰂃tr}dV (4.36)

{Fm} =

󰁝

V

[B]T [E] {󰂃m}dV (4.37)

{Fcr} =

󰁝

V

[B]T [E] {󰂃cr}dV (4.38)

The tractions are determined by loading or boundary conditions. The various strain

components contribute to the nodal force vector. The transformation strains {󰂃tr} are

eigenstrains that result from the volumetric expansion of silicon carbide into silica. They

are handled similarly to any thermal expansion that may occur. The simulation frame-

work stores the deformation history as stored strains {󰂃m} by updating the mesh.

Creep strains {󰂃cr} are calculated using the constitutive law for the oxide. The
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common assumption is that creep in silica follows a non-linear Maxwell viscoelastic

model [14, 15]. In the Maxwell model, the strain rate is

󰂃̇ij =
1

E
[(1 + ν) σ̇ij − νσ̇kkδij] +

1

2η

󰀕
σij −

1

3
σkkδij

󰀖
(4.39)

for a Young’s modulus of E, Poisson’s ratio of ν, stress rate of σ̇ij, viscosity of

η = ηo
τ/τc

sinh (τ/τc)
(4.40)

and the Kronecker delta, δij. The viscosity is dependent on a reference viscosity of

ηo = 3.8× 10−14 exp

󰀕
712kJ/mol

RT

󰀖
Pa · s (4.41)

as well as an equivalent shear stress, τ and a critical shear stress, τc. The critical shear

stress is slightly dependent on temperature but is taken to be a constant of 100 MPa.

The equivalent shear stress is taken to be

τ =

󰀗
1

2
sijsij

󰀘1/2
(4.42)

where sij is the deviatoric stress defined as

sij = σij −
1

3
σkkδij (4.43)

It should be noted that the strain rate can be rewritten as

󰂃̇ij =
1

E
[(1 + ν) σ̇ij − νσ̇kkδij] +

1

2η
sij (4.44)

which makes it clear the creep is controlled by the deviatoric stresses. Hay states that
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the creep only occurs via the shear. [14]. A form of the Maxwell model for equivalent

shear stress relaxation rate is

τ̇ = − Eτ

2 (1 + ν) η (τ)
(4.45)

which has the solution

τ = 2τc tanh
−1

󰀕
tanh

󰀕
τo
2τc

󰀖
exp

󰀕
− Et

2ηo (1 + ν)

󰀖󰀖
(4.46)

It should be noted that [14] has some typographical errors in the expression for τ that

have been corrected above. Other stresses, such as σ11, σ22 and σ12 are taken to relax

proportionally to τ/τo. This relaxation is different from some literature but is used for

its simplicity.

4.4 Module Integration

In this section, the integration of this transport analysis and the stress analysis out-

lined in Section 4.3 is described with an emphasis on the underlying algorithms. The

multiphysics framework solves for growth and stresses through an iterative time stepping

scheme. Each time increment consists of a number of tasks, which are illustrated in

Figure 4.3 and broad summarized as follows. Start by assuming that the concentration

distribution is know at time t for a mesh defined at the same time. The concentration at

time t+ dt can be computed immediately, as it is disconnected from the stress analysis.

However, to track the domain and stress evolution, a specific sequence is need due to

their interdependency. This sequence is as follows; at time t, the next physical behav-

ior that occurs is that the oxide interface advances incrementally, because the reaction

kinetics are much faster than mechanical response. Hence, the first task is to advance

90



Multiphysics Framework for Integrated Diffusion, Oxidation and Creep Chapter 4

this boundary, and impose volumetric strains in the region that has been converted from

SiC to oxide. These imposed volume strains immediately generate stresses, which deform

the solid and change total displacements. That is, after advance, the immediate change

in displacements from volume expansion is computed assuming creep strains are fixed.

Once the stresses are found from a static analysis with fixed creep strains, the creep

strain rates are computed for that instant at time, and the creep strains are updated

to t + dt. Creep strain increments that underlie that relaxation process are added to

previous totals to retain the history of creep strains. The updated creep strains are then

used to update stress relaxation over the increment, which computes the final nodal lo-

cations at time t + dt. Hence, at the end of performing all tasks, one has obtained the

concentration distribution at time t+dt, the accrued creep strains throughout the system

at time t+ dt, and current deformed state at time t+ dt. The problem is then remeshed

to account for the motion of the domain boundary during this increment. This process

is then repeated.

Find new geometry Assemble finite
element equations

Solve for new
 concentrations

Solve for new
displacements

Apply deformation 
increment

Grow oxide

Create mesh from
new geometry

Map previous concentrations
and strains to new mesh

Solve for stresses 
just after growth

Calculate stress relaxation 

Calculate creep strain
increment from relaxation

Solve for displacements and
stresses after relaxation

Figure 4.3: Flowchart showing the major steps in the multiphysics framework. Finding
the new geometry and solving for displacements each have many tasks which are also
shown.
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During the updates associated with the time increment, the motion of the interface

converts elements from SiC to SiO2. The geometry in the simulation is described by

a series of adjacent but non-overlapping polygons. Each polygon represents a distinct

continuous material domain with uniform material properties. It should be noted that

any cracks, such as those in the system described in Chapter 5, are explicitly meshed and

are considered a continuous medium with a negligible elastic modulus and a prescribed

diffusivity. Each polygon is defined as a clockwise ordered list of coordinate points

defining the boundary.

The first step during each time increment is to find the new geometry. For the first

time increment, or t = 0, the new geometry is input into the framework and nothing

more needs to be done. When t > 0, however, the displacement increment found in the

previous time increment must be applied to the geometry used in that time increment.

The displacement increment is applied to both the material polygons and the previous

nodal positions. The stored strains associated with the previous mesh are also updated

with the displacement increment. This places the entire solution from the previous step

into the previous mesh.

Once the previous displacement solution is applied to the previous mesh, the oxide

polygon is grown based on the concentration solution. The oxide growth procedure is

shown in Figure 4.4. The growth of the oxide polygon starts by identifying the points

of the oxide polygon that are along the boundary defining the oxide silicon carbide

interface. For each of these points, the elements connected to the point that also lay on

the boundary are identified. The fluxes of these elements and the normal vectors of the

sides along the boundary are averaged as shown in Figure 4.4a. The average flux J̄ of the

connected elements is then projected onto the average of the normal vectors n̄, providing

an averaged normal flux J̄⊥ shown in Figure 4.4b. The boundary motion ∆Γ is then

calculated from the averaged normal flux, the number of oxidant molecules incorporated
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into a unit volume of oxide No, the time increment ∆t and a proportional constant f :

∆Γ = f
J̄⊥∆t

No

(4.47)

The proportional constant f is a function of the expansion strain associated with ox-

idation of silicon carbide into silica and the Poisson’s ratio of silica and accounts for

the expansion eigenstrains applied in the mechanics module as well as the plane strain

conditions imposed. Another way to think of this nuance is that the boundary is moved

by the amount of silicon carbide consumed.

This process is repeated for all the points on the oxide polygon that also lay on the

boundary with silicon carbide. The remainder of the points of the oxide polygon are

unchanged during this procedure. When the mechanics module is used, the expansion

strain is assigned to the entire oxide, but the stored strains in the new oxide layer are

zero. Since the expansion strain is not accounted for in the stored strain, the new oxide

layer expands.

(b)

SiO2

SiC

(a)

interface at time

SiO2

SiC

(c)

interface at time

SiO2

SiC

new SiO2 layer

Figure 4.4: Schematic illustration of oxide growth procedure on a subset of the ox-
ide/silicon carbide interface. (a) depicts how the elemental fluxes J1 and J2 are aver-
aged to get the average flux at the current node J̄ . The normal of the growth interface
n1 and n2 are averaged to get n̄. (b) shows how the average flux is projected onto the
average normal resulting in the perpendicular flux J̄⊥. (c) shows how the motion of
the interface is calculated and applied to the node. This procedure is repeated at all
nodes along the boundary.

While the previous discussion on oxide growth only detailed how the points on the

oxide polygon are shifted, the same movements are also applied to the points on the
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silicon carbide polygon that fall along the boundary with the oxide polygon. For more

simple geometries consisting of just silicon carbide and silica such as those used in the

verifications in the next section, the new geometry is completely defined. In more complex

geometries like the system of a cracked protective coating on top of a silicon carbide

substrate with a thin oxide layer between that is studied in Chapter 5 some further work

must be done involving the polygons for the protective coating and the crack.

Due to the large expansion that occurs with oxidation, the oxide may extrude up the

crack. When this occurs, the oxide polygon may end up slightly overlapping the coating

polygon. This overlap is very small relative to other dimensions and involves very little

material. In order to reduce computational headaches caused by the overlap, the points

on the oxide polygon that fall within the coating are removed. The polygon for the

crack is recreated from the oxide and coating polygons as well at the boundary with the

atmosphere that is defined at the beginning of the simulation. The points on each of the

polygons and boundary that do not lay on another are used to create the crack polygon.

The polygons that define the geometry, either those directly input into the framework

for t = 0 or those found when t > 0, are used to create the mesh for the current time

increment. The open source Triangle triangulation library was used to mesh the geometry

with three-noded constant strain (or flux) elements [35]. This library is freely available

and both fast and reliable. Delaunay triangulations with tens of thousands of elements

can be found in under a second and can be directly integrated into a C++ application.

The polygons that define the different material regions are resolved to a list of points

and segments which are then input into Triangle. This ensures that domain boundaries

are preserved in the mesh, i.e. no elements will be split between domains. The Triangle

subroutine allows for fine control of element size. This functionality was used to maintain

a constant average element size within the oxide domain and a gradient in size moving

away from the silicon carbide/oxide interface. By controlling the element size in this way,
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the number of elements is greatly reduced which speeds up computation time considerably

while still keeping small elements in the regions of importance. While the base mesh is

completed by Triangle, additional work must be done before the mesh can be used to

assemble the finite element matrices.

For all but the first time increment, nodal and elemental data from the previous mesh

must be mapped onto the new mesh. Mapping nodal quantities such as concentration

between meshes is trivial; the shape functions for the previous element provide the inter-

polation functions necessary to calculate a nodal value in the new mesh. The interpolated

value c̃ at a point (x, y) within an element is

c̃ (x, y) =
2󰁛

i=0

Ni (x, y) ci (4.48)

where Ni is the shape function corresponding to node i. To find the interpolated value,

the element in the old mesh that holds the point of interest must be found. In the case

where a point is on the boundary of one or multiple elements, any element can be used to

interpolate the value since field variables are continuous along elemental boundaries. No

other work is necessary to map nodal values to the new mesh. It should be noted here that

the only nodal value mapped between meshes is concentration. While the displacement

increment found in the previous time increment is a nodal value, it is mapped via the

elemental stored strains.

Mapping the elemental values of creep and stored strains is more complicated than

concentration. Interpolation cannot directly happen with elemental values. The elemen-

tal strains must first be converted to equivalent nodal strains. Before the strains can

be, an equivalent nodal creep must be found for each node. If a node is connected to n
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elements, an average for an equivalent nodal strain, {󰂃j}, can be defined as

{󰂃j} =

󰁓n
i=1 Ai{󰂃ij}󰁓n

i=1 Ai

(4.49)

where Ai is the area of element i connected to node n and strain type j (either creep or

stored). Once elemental data is converted to equivalent nodal values on the old mesh, the

nodal values for the new mesh can be individually interpolated using the same technique

as the concentrations. The elemental creep and stored strains for an element in the new

mesh are then recovered by averaging the equivalent values at the nodes that define the

element.

This averaging technique does not perfectly recreate the strain state in the new mesh

because linear elements are used and strain is discontinuous between elements in the old

mesh. This has the effect of smoothing out high gradients in strains. While technically an

error that can be alleviated with increasing mesh density, this has the benefit of smoothing

out any local numerical noise that arises from boundary perturbations generated from the

motion of nodes along the boundary. The effect of this artificial smoothing on convergence

is discussed in Section 4.6. It should be noted here that nodes that are on boundaries

between materials are handled slightly different. For those nodes, there are equivalent

nodal creep and stored strains for each material. Only elements of the old mesh in the

specific material are used to determine the equivalent nodal strains for that material.

After the new mesh is created and the data from the previous mesh is mapped if

needed, the finite element matrices are assembled. There are two sets of finite element

matrices to be assembled: diffusion and mechanical deformation. The definition of the

elemental matrices for three-noded constant strain/flux triangular elements are as follows.
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For constant strain triangles, the elemental matrix [m] works out to

[m] =
Ael

12

󰀵

󰀹󰀹󰀹󰀹󰀷

2 1 1

1 2 1

1 1 2

󰀶

󰀺󰀺󰀺󰀺󰀸
(4.50)

and [kdiff ] is

[kdiff ] = AelD [B]T [B] (4.51)

for an element with area Ael. There is not a similar elemental version of the [Krxn] matrix

as the integration is done over the surface. Instead, it is done for each elemental edge

that falls along the reaction front. For example, if element nodes 1 and 2 are along the

reaction front but node 3 is not, the elemental [Krxn] is

[krxn] =
ksLe

6

󰀵

󰀹󰀹󰀹󰀹󰀷

2 1 0

1 2 0

0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀸
(4.52)

where Le is the distance between nodes 1 and 2.

The right hand side of the diffusion finite element equations {r} contain the con-

centration at the beginning of the time increment. For constant flux elements, this is

{r} =
Ael

12∆t

󰀵

󰀹󰀹󰀹󰀹󰀷

2 1 1

1 2 1

1 1 2

󰀶

󰀺󰀺󰀺󰀺󰀸

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

c0

c1

c2

󰀼
󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰀾

(4.53)

where {c0 c1 c2}T are the concentrations at the nodes.

Assembly of the elemental matrices is done through a normal process and is not

outlined here. It is assumed the atmospheric concentration is high enough to lead to
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saturation at exposed edges. With this assumption, diffusion from the atmosphere into

material (or into a crack) is assumed to be perfect. This simplifies the diffusion prob-

lem and transformed the boundary condition into a fixed concentration along the edge

exposed to the atmosphere. The concentration constraints are applied via Lagrange

multipliers to the assembled global matrix.

In mechanical deformation, three-noded elements are referred to as constant strain.

The stiffness matrix for a constant strain triangular element is

[k] = Ael [B]T [E] [B] (4.54)

where Ael again is the area of the element, [B] is the matrix of shape function derivatives

and

[E] =
E

(1− 2ν) (1 + ν)

󰀵

󰀹󰀹󰀹󰀹󰀷

1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

󰀶

󰀺󰀺󰀺󰀺󰀸
(4.55)

assuming plane strain conditions, a Young’s modulus E and Poisson’s ratio ν. Neglecting

any applied traction, the right hand side is

{ftr}+ {fcr}+ {fm} = Ael [B]T [E] ({󰂃tr}+ {󰂃cr}+ {󰂃m}) (4.56)

where {󰂃tr} = 󰂃T{1 1 0}T for linear transformation strain of 󰂃T , creep strains of {󰂃cr} =

{󰂃cr11 󰂃cr22 󰂃cr12}T and stored strains of {󰂃m} = {󰂃m11 󰂃m22 󰂃m12}T . When the matrices are first

assembled, the creep strains mapped from the previous mesh are used. Creep that occurs

during the current time increment is handled separately.

Like the diffusion matrices, the elemental matrices are assembled into the global

matrices using traditional techniques. Displacement constraints are applied via Lagrange
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multipliers to the global matrices.

After assembly of the matrices is completed, the solution process begins. Solving for

the concentrations at the end of the time increment is straightforward. The UMFPACK

linear solver is used with the diffusion finite element equations to get the concentrations

at the end of the time increment. That is all that is needed to complete the diffusion

problem on this time increment.

Solving the mechanical deformation problem is more involved and requires solving

the full system twice. The first solution of the mechanical deformation problem finds

the displacement step without any additional creep allowed during the current time

increment. In other words, it finds the stress state immediately after growth occurs but

before relaxation can occur. Once this displacement step occurs, the elemental stresses

are computed. The expected stress relaxation for each element is then found and the

increment in creep strains is calculated from the relaxation. The increment in creep

strains is added to the current creep strains and the right hand side of the mechanical

deformation problem is assembled again. The mechanical deformation problem is solved

a second time. This second solution finds the displacement increment after relaxation.

This multistep solution technique was also used by Hay in his study of the oxidation of

silicon carbide fibers [14]. Time may then be advanced and the next iteration started by

growing the oxide polygon again.

4.5 Framework Verification

While some prior work exists that combines oxidation with stress development of

silicon or silicon carbide, differences in implementations prohibit a direct comparison.

Other implementations use slightly different assumptions about creep and the handling

of large displacements. In lieu of a full verification, two primary phenomena were in-
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dependently verified: oxide growth was compared in one dimension to the Deal-Grove

model and stress relaxation was compared to the Eyring model for various temperatures.

In addition, the combined effect of oxidation and creep behaviors during oxidation of a

single fiber was compared to results of Xu et al. and Hay [14,15].

The first verification focused on oxide growth. A flat silicon carbide substrate with an

initial thin oxide layer on top was simulated. Boundary conditions were applied such that

all growth and deformation occurred in one dimension, emulating the conditions assumed

in the Deal-Grove model derivation. The implementation matches the Deal-Grove model

quite closely for a flat surface as shown in Figure 4.5. The simulation framework slightly

under-predicts growth but the error is less than 1% out to almost 150 hours and an

oxide thickness of about 600 nm (with Deal-Grove parameters of ADG = 18.12 nm and

BDG = 0.75 nm2/s). The gas-phase transport coefficient β was assumed to be infinite

leading to direct relations between the Deal-Grove parameters and the material properties

used in the simulation framework. Dry oxygen was used as the oxidant which corresponds

to Co = 5.5x10−5 mol/nm3 and No = 22.5 mol/nm3. The effective diffusivity used in

the simulation framework was Deff = 1.54x105 nm2/s and the surface reaction rate

was ks = 1.7x104 nm/s. A time increment of dt = 500 s was used. A mesh and time

increment resolution study was performed to reduce spatial and temporal discretization

errors. An example convergence study is shown in a following section.

While in this benchmark case the flux throughout the system is constant at any given

time, that is only a consequence of the geometry and conditions applied to match the

Deal-Grove model. In general, the flux throughout the system can vary, as will be seen

on oxidation of a curved surface. In other words, the assumption that the flux is constant

in the Deal-Grove model was not enforced in the simulation but was a natural result.

Stress relaxation is accurately captured at multiple temperatures with this technique,

as shown in Figure 4.6. In these tests, the domain was prevented from displacing in one
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Figure 4.5: Plot showing the simulated oxide thickness on a flat surface as a function
of time and the thickness predicted by the Deal-Grove model. There is little difference
between the simulation and Deal-Grove model.

direction and an expansion strain equivalent to that associated with the oxidation of

silicon carbide was applied at time t = 0. This results in an initial elastic compressive

stress of 25.3 GPa. In effect, this domain is the new layer of oxide that forms on sili-

con carbide. The stress observed in the constrained direction was then extracted. The

theoretical stress as predicted by the Maxwell model and the simulation results for tem-

peratures ranging from 800◦C to 1200◦C show excellent agreement. It should be noted

here the speed at which the high initial stress is initially relaxed.

A final, more comprehensive study was conducted of oxidation of a single fiber, similar

to the work of Hay [14]. A quarter cross section of a single fiber was modeled to exploit

symmetry. Boundary constraints were applied to adequately model a full fiber. Plane

strain was assumed with no out of plane strain. The geometry is shown in Figure 4.7.

Figure 4.7a shows the beginning of the simulation where the fiber has an initial radius

of ro and initial oxide thickness of ho. After the oxide has grown in Figure 4.7b, the

total radius (r + h) is greater than the initial radius due to oxide expansion. This study
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Figure 4.6: Plot of the calculated stress relaxation with simulation results for a one
dimensional compression test. The initial stress of 25.3 GPa is representative of the
stress that occurs immediately after oxidation.

used an initial silicon carbide fiber radius of ro = 3 µm and an initial oxide thickness

of ho = 5 nm. The temperature was set to 1000◦C and the fiber exposed to dry air. A

mesh and time increment resolution study was performed to minimize errors. A time

increment of 500 s was used and a total time of about 140 hours was simulated. This

allowed a good comparison to one of the cases studied by Hay [14].

The oxide thickness on a curved radius of 3µm is shown in Figure 4.8a compared to

the Deal-Grove model. As is clearly shown, the growth on a curved surface is marginally

faster than Deal-Grove predicts for a flat surface. The Deal-Grove model assumes that

the flux is constant throughout the system, including through the thickness of oxide. As

shown in Figure 4.8b, this is not strictly true for a curved surface. In this figure, the

inward flux at each time is normalized by the flux assumed in the Deal-Grove model for

an oxide of that thickness. At the interface between the silicon carbide and silica, the flux

is greater than the Deal-Grove model while it is lower at the free edge. This increased

flux at the interface results in the marginally faster growth seen in Figure 4.8a. This is
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Figure 4.7: Schematic illustration of oxidation on a silicon carbide fiber. At time
t = to shown in (a), the fiber has a radius of ro and initial oxide thickness of ho. At
some later time shown in (b), the oxide thickness has grown and the outer diameter
has grown due to the volumetric expansion that occurs during oxidation.

consistent with results from studies of oxide growth on curved silicon surfaces [84,85]. In

those previous works, numerical models were developed to predict oxide thicknesses on

curved silicon surfaces of varying radii.

Qualitatively, the hoop stress results shown in Figure 4.9 follow the results of Hay [14].

At an early time shown in Figure 4.9a, the entire oxide layer is in compression. After

some more growth, the hoop stress in the outer layer vanishes, as shown in Figure 4.9b.

Further growth and expansion leads to the tensile hoop stresses on the outer edge seen

in Figure 4.9c. Continued growth, like that in Figure 4.9d, the thickness of the tensile

layer increases. Hay showed similar behavior; the tensile hoop stress on the outer edge is

caused by the expansion of newer oxide layers underneath pushing out older layers that

have already relaxed.

The hoop stresses through oxide at various times are shown in Figure 4.10a. The

hoop stresses at all times show similar behavior; there is compression near the increases
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Figure 4.8: (a) Shows the oxide thickness as a function of time on a 3 µm radius fiber.
(b) Shows the inward flux normalized by the flux assumed by the Deal-Grove model.
The curvature causes the flux to not be constant unlike the Deal-Grove model.

that decreases in magnitude. Later times show the stress switching into tension and

increasing in magnitude. The outer layers of oxide at any time are in a similar stress

state so that later times (thicker oxides) shows a significant tensile layer at about 750

MPa. The stress does not rise above this level, even as the oxide thickens, as shown in

Figure 4.10b. The stress does not further increase past this point due to creep.

As can be seen in Figure 4.10b, the results from the current framework do not quanti-

tatively match those from Hay [14]. The discrepancy is due to subtle differences between

Hay’s model and the framework used here. First, stress relaxation is handled slightly

differently. Hay calculates relaxation for the hoop stresses by decreasing them propor-

tionally to the relaxation in the effective shear stress and the difference between the

hoop and radial stresses. Radial stresses are not relaxed at all. Hay assumes that the

radial stresses are small enough that appreciable relaxation would not occur. In this

work, all stress components are relaxed proportionally to the effective shear stress and

no assumption is made about stress components not relaxing.
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Figure 4.9: Contour plots of the hoop stress at (a) an early time where the oxide layer
is in compression, (b) when the hoop stress at the outer layer is approximately zero,
(c) the hoop stress at the outer boundary hits a maximum of around 1 GPa and (d)
the tensile layer thickens with time.

The second, and arguably more important, difference between Hay and this work is

how large deformations are handled. Both works assume small displacements when relat-

ing deformation to strain. Hay references back to the undeformed, initial configuration;

when geometric changes are small, this is entirely acceptable. However, the large geo-

metric changes associated with oxide growth inherently implies large deformations; i.e.

an incremental change such as relaxation should be referenced to the most recent geome-

try. In the present formulation, the current geometry is updated using the displacement

at each time increment, and this is used to compute incremental changes. Small strain

kinematics can still be used during an update, since the displacement increment is small

relative to the current deformed configuration. During development, an alternate version

of the framework was created that continuously referenced the undeformed configura-
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Figure 4.10: Plots showing the hoop stress in the oxide as the simulation progresses.
(a) shows the hoop stresses through the thickness of oxide at various times. (b) shows
the hoop stress at the outer edge of the oxide as a function of time as well as data
from Hay [14] and a previous implementation.

tion, as done by Hay. The hoop stresses at the outer edge of a fiber for that version

are shown in Figure 4.10b and are much closer to the stresses Hay found. Remaining

differences arise from Hay’s neglect of radial stresses in the multi-axial creep law, which

are accounted for in the present framework.

4.6 Simulation Convergence

In the present multiphysics framework, the time-step and element size have strongly

interconnected impacts on numerical performance that are different from those associated

with isolated modules. Independently, each module exhibits the well-established conver-

gence behaviors expected for finite element frameworks. Once integrated, the overall

numerical performance of framework is impacted by several factors.

Remeshing requires mapping data to the new mesh, which unavoidably introduces

spatial smoothing since the mapping involves averaging between elements in the old mesh.
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This effect is most pronounced for creep strains (and hence stress), which are constant

within each three-noded element. While decreasing element size alleviates smoothing ef-

fects, it also limits the allowable time step in the diffusion analysis. (Decreasing element

size while holding the time step fixed leads to decreasing accuracy in the diffusion anal-

ysis.) As the time step is decreased, the increment in boundary motion decreases, and

in turn, the mesh resolution of newly formed oxide decreases. In essence, simultaneously

decreasing mesh size and time step can improve the inaccuracies associated re-mapping

only up to a certain point; eventually, it leads to artificial smoothing due to repeated

mappings and spatial variations in stress arising from a courser mesh in the new oxide.

On the one hand, the effects of spatial smoothing during remapping and spatial vari-

ations along the domain boundary are negligible with respect to the diffusion/growth

behavior. Spatial smoothing arising from remapping concentrations is negligible since

concentrations are continuous along element boundaries (being nodal variables); the

mapping is exact. Spatial variations along the boundary when considered relative to

the dimensions of the oxide domain are minimal. This is illustrated in Figure 4.11, which

provides the convergence behavior of the location of the growth interface for the fiber

problem discussed in the previous section. For a fixed time step (Figure 4.11a), the

position of the interface (averaged along its length) is highly accurate and insensitive

to element size. For a fixed element size (Figure 4.11b), the boundary motion is highly

accurate and insensitive to time step, provided it is not so large that a first-order inte-

gration scheme becomes inaccurate. (That is, for smaller elements, larger time steps can

violate the assumption that the flux is approximately linear over the time interval; e.g.

5 nm2 elements and time step of 5x103 secs).

On the other hand, spatial smoothing during remapping and spatial variations along

the domain boundary have a much bigger influence on stress evolution. First, consider

the effect of remapping, using the stress at the outer edge of the fiber oxidation problem
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Figure 4.11: Plots of the deviation in thickness on growth of a round fiber compared
to that predicted by the Deal-Grove model as a function of (a) element area for a fixed
time increment and (b) a function of time increment for two different element sizes.

described in the previous section. Figure 4.12 illustrates convergence behaviors associated

with adjusting element size and time step. For a desirable time step that avoids errors

in the boundary motion (i.e. the diffusion analysis), Figure 4.12a illustrates that the

stress at the outer edge of the fiber clearly asymptotes to a fixed value independent of

the element size. However, if the time step is decreased too far for a given element size,

spatial smoothing during remapping can artificially smooth the stress distribution, as

shown in Figure 4.12b.

Second, consider the impact of the size of the time step on spatial variations in the

sliver of new oxide formed at the interface during the time step. For fixed mesh size,

increasing the time step increases the number of elements in the new oxide domain.

Regardless of how many elements are swept up during domain advance, the boundary

will always cut a row of elements, since the boundary must be advanced based on the

current mesh. This cutting of elements introduces spatial variations along the interface

because elements that fall mostly inside the new oxide will experience significant creep
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Figure 4.12: Plots of the tensile stress at the outer edge of the fiber as a function of (a)
element area with a fixed time increment and (b) time increment with two different
element sizes.

strains, while those that fall mostly inside the SiC will have no creep strains. Thus,

the distribution of creep strain increments along the interface will have larger spatial

variations than those surrounded by identical material.

This behavior is inherent to the present formulation and can only be alleviated by

more sophisticated remeshing that is based on tracking of two interfaces, one at the

previous time step and one based on the growth increment, such that the updated mesh

includes only elements that fall entirely on one-side of the interface. It is interesting to

note that the problem arises from the interface itself, not the physical size of the new

oxide domain: taking larger time steps to advance the interface multiple elements does

not avoid cutting those along the boundary, and has proven ineffective in mitigating

spatial variations in creep strains and hence stress. It is worth noting that a complete

parallel study on the use of higher order elements (e.g. six-noded triangles) only partially

alleviates these behaviors, while leading to increases in computational costs.

That said, the spatial influence of this interface behavior is confined to thin slivers
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on either side of the boundary that scale with the mesh resolution. This is illustrated in

Figure 4.13, which depicts stress profiles near the domain boundary at various instances

in time. The position is shifted such that x = 0 always falls on the interface. Ahead of

the boundary, the stress distribution is relatively unimpacted by the cutting of elements

along the interface. For a fixed element size, increasing the time step leads to far more

noise near the interface. Holding the time step fixed and increasing the area increases the

distance smoothing occurs and decreases the stress in the substrate near the interface.

The practical implication of this is that stress quantities should be extracted from the

simulation only at locations that are a fixed distance away from the interface, i.e. at a

distance that spans at least several elements. While the physical extent of this “no go

zone” near the interface can be limited to some extent by increasing mesh resolution, the

concomitant adjustment in time-step (demanded in the diffusion analysis) mitigates the

effectiveness due to dramatic increases in computational speed, as well as noise introduced

during infinitesimally small evolutions of the oxide domain.
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Figure 4.13: Plots of the stress profiles near the oxidation boundary for (a) a constant
element size and various time steps and (b) constant time step with various element
sizes.
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In summary, the selection of time step and mesh resolution in the coupled framework

involves quantifying competing effects that arise from module integration, which do not

arise when the modules are used in isolation. These competing effects are associated with

discretization limits along the interface itself. Figures 4.11-4.12 provide illustrations of the

behaviors that guide selection of numerical parameters, as discussed further in Chapter

5.

4.7 Conclusion

The multiphysics framework described in this chapter combines oxidation growth

with stress evolution in order to study complex oxidation problems. The framework

can replicate one-dimensional oxidation and match the Deal-Grove model despite not

enforcing a priori all of it underlying assumptions. Oxidation and stress results from the

more complex case of a bare silicon carbide fiber exposed to dry air are consistent with

previously published work, but differ do to different assumptions regarding stress state

and relaxation. Convergence behaviors for the integrated modules are more nuanced

than those arising from the use of isolated modulues, due to coupling that occurs at

the domain boundary. For a given case, a convergence study is needed to identify time

increment and element size that balance computational speed, the impact of remeshing,

and the presence of spatial variations along the boundary.
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Chapter 5

Oxidation Under a Protective

Coating

5.1 Introduction

Ceramic composites offer significant opportunities to allow higher operating temper-

atures than those currently enabled by coated metallic components, which translates

into impactful performance gains for power generation and propulsion systems [1,86,87].

One of the most promising material systems consists of fine-grained SiC fibers (with high

strength and creep resistance) embedded within a SiC matrix [1]. In many operating envi-

ronments, the presence of oxygen and water vapor can lead to oxidation and volatilization

of SiC, which must be managed to ensure component durability [1, 88]. Environmental

barrier coatings (EBCs) are the prevailing strategy to protect CMC components from

such chemical attack (see Figure 5.1), by slowing or eliminating the transport of reactive

species to the underlying load-bearing structure [16, 58, 89, 90].

Rare earth silicates have emerged as a leading candidate for EBC systems on SiC

composites, as they offer relatively good resistance to chemical attack and have coeffi-

112



Oxidation Under a Protective Coating Chapter 5

gaseous H2O and/or O2

barrier coating

ceramic composite

mud-cracks

fast diffusion,
high flux (high Dc) 

slow 
diffusion,
low flux 
(low Db) 

evolving oxide
domain governed

by local flux

thermally 
grown 
oxide 
(TGO)

bond
coat

large compressive
stress in new oxide

stress reduction from
creep in old oxide

tension induced 
by oxide expansion

Figure 5.1: Schematic illustration of an environmental barrier coating (EBC) on a
ceramic matrix composite (CMC), with a close-up view of the tip of a crack in the
coating. The crack serves as a fast-diffusion pathway that drives local oxidation, which
generates high stresses that promote substrate cracking and/or coating delamination.

cients of thermal expansion (CTEs) that are relatively close to that of SiC [16,58,89,90].

Matching the CTE of the coating to that of the coating is critical, since misfit stresses

(from deposition and/or exposure high temperatures) promote delamination of the coat-

ing and/or penetrating cracks. As shown schematically in Figure 5.1, penetrating cracks

then serve as fast diffusion pathways for reactants that drive internal degradation, which

may induce further cracking and progressive degradation mechanisms. For example,

amorphous oxide typically forms at elevated temperature; even at high temperature,
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the volume changes associated with oxide formation may drive cracking, which open

new pathways for fast diffusion. In some operating conditions, crystallization and phase

transformations in the oxide trigger additional dimensional changes that drive cracking,

as shown in Figure 5.1 [90].

While the ideal solution is the development of fully-dense coatings that simply avoid

cracking to maintain a hermetic seal, this either requires extremely thin coatings (which

suffer from shorter lifetimes due to volatilization by water vapor) or reduced operating

temperatures that arguably defeat the purpose of using ceramic systems. Assuming

that some degree of cracking may be inevitable, the question naturally arises: what

degree of cracking is acceptable? A qualitative answer is obvious: the degree that limits

internal oxidation over the lifetime of the component and avoids premature component

failure. Quantitative answers, however, require new insight regarding the connections

between chemical transport, the evolution of interior reaction domains (e.g. newly formed

oxides or cavities created by volatilization) and the resulting stresses that drive cracking.

Such connections require an integrated modeling approach that simultaneously addresses

species transport, evolution of domain boundaries driven by local reactions, and stress

analysis (including the possibility of creep).

In this work, we utilize an integrated multiphysics simulation framework (shown

schematically in Figure 5.2) that integrates these components to simulate a vertically

cracked EBC bonded to a SiC substrate exposed to water vapor. Relevant parameters

are chosen assuming oxygen is chosen as the reactant species, although it should be ap-

preciated that water vapor under certain conditions causes much faster growth of SiO2

(oxide) on exposed SiC surfaces [89, 91, 92]. The principal driver of oxidation is largely

immaterial to the present contributions for reasons that will become clear; it is worth

emphasizing the multiphysics simulation framework is materials agnostic and compara-

ble simulations can be easily conducted for other compositions. Evolving oxide domains
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are arguably the central culprit driving mechanical degradation of such systems, owing

to the large molar volume change that generates large compressive stresses in the oxide.

In and of themselves, even for planar oxide films (of uniform thickness), these stresses

can generate significant strain energy that drive coating delamination [16]. For localized

oxidation, where the oxide domain has an irregular shape, the large compressive stresses

generated in the oxide can induce large tensile stresses in the adjacent material [14, 15].

While this behavior is examined in this chapter for cracked EBCs, it also has critical

implications for oxidation of SiC fibers that bridge matrix cracks in CMCs. Simply put,

the formation of localized oxide domains within a number ceramic systems plays a central

role in degradation mechanisms that limit high temperature performance.

It should be emphasized that the mechanisms described above may be deleterious

even at high temperature, albeit to an unknown degree (a point addressed in this chap-

ter). This is in stark contrast to conventional wisdom in design of multilayers for high

temperatures, which typically assumes that misfit stresses are relaxed at high temper-

ature and are generated upon cooling, such that cracking occurs at low temperature.

The origin of damage that may occur at high temperature is comparatively unexplored.

Naturally, relaxation also occurs in the oxide at high temperature; hence, it is critical to

include creep relaxation in the stress analysis to judge the competing effects of volume

change and inelastic relaxation. Although the focus of this work is behavior at elevated

temperature, cooling can trigger additional damage, notably phase transformations in

crystalline silica (if present) that involve further large (contractile) volume changes. The

present calculations for high temperature behavior can be viewed as the starting point

for such studies by identifying the misfit strains that are retained at the onset of cooling.

These misfit strains are critical to assessing cracking during cooling.

The idealized geometry considered here representing a cracked barrier coating on

a planar substrate is shown at the bottom of Figure 5.1. The fast transport channel

115



Oxidation Under a Protective Coating Chapter 5

CURRENT STATE UPDATED STATE

DISCRETIZATION
& ASSEMBLY

• Update nodal locations
with displacements and

boundary movement

• Remesh using updated
domain boundaries

• Assemble new FE
matrices

CHEMISTRY
(domain evolution)

• Use interface flux with
reaction kinetics to

extend oxide domain

• Impose volumetric
growth strains to new

oxide formed by
moving interface

MECHANICS

Solve equilibrium eqns.
for stress/strain with

creep for updated geom.

TRANSPORT

Solve diffusion eqns.
for concentrations & flux

for time t+dt

remeshing

diffusion/domain evolution

creep relaxation

cracking
(elastodynamic)

loop to simulate system evolution

Elastodynamic fracture
with cohesive zone

framework

FAILURE

physical updates discretization updates

simulation time increments in various modules

(a)

(b)

Figure 5.2: (a) Schematic diagram of the multi-physics framework that simulates
chemical transport, domain evolution driven by oxidation, and creep relaxation in
newly formed oxides. Adaptive remeshing is used to enable accurate simulations of
large geometric changes. (b) Schematic diagram of different time scales that must be
synchronized to integrate various physical processes. In the present work, numerical
efficiency is sufficient to allow the use of a single time step for all processes.
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representing the crack has a uniform, fixed width set as one of the parameters of the

model. Coatings with larger CTE than SiC (e.g. ytterbium and yttrium monosilicates),

deposited at temperatures above operating temperatures, are prone to cracking upon

cooling. Upon reheating, the crack will remain open provided the effective deposition

temperature is above the operating temperature. This picture is likely overly simplistic,

since other mechanisms can intervene to ensure cracks remain fast diffusion pathways

regardless of specific misfit strains, as crack waviness and small amounts of inelastic de-

formation may wedge the crack open. Hence, more sophisticated treatments of channel

openings based on cracking phenomena are difficult to specify, since they will vary signif-

icantly with the choice of EBC material, the reference temperature associated with zero

misfit stress (typically taken as an effective deposition temperature), and any inelastic

relaxation in the coating or the adjacent material.

Here, the dominant role of the crack opening is simply to dictate the flux of reactant

species at the location of the crack, which will be different to diffusion through the intact

coating. Diffusion through the coating is allowed for two reasons: (i) many deposition

methods result in porosity and micro-cracking that likely decreases the barrier perfor-

mance of fully dense base materials [93–95], and (ii) some amount of porosity in the

coating may be beneficial, as it reduces the strain energy in the system driving failure.

Diffusion down the open channel is modeled using an effective continuous medium with

zero elastic modulus and a diffusivity calculated from a series approximation based on

gaseous molecular diffusion and Knudsen diffusion down a confined channel. As will

be demonstrated, the most deleterious scenario corresponds to an isolated crack (with

crack spacing much greater than the coating thickness) with a wide channel, i.e. large

crack opening displacements. This creates large gradients in oxide thickness that set up

significant tensile stresses in the substrate.

The remainder of this chapter is organized as follows; Section 5.2 reviews the clas-
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sical Deal-Grove model for time-dependent oxide growth and generates the correspond-

ing model for the case with a coating over the oxide. This provides context for the

multiphysics simulation framework described in Section 5.3. (Additional details of this

framework are provided in Chapter 4.) Section 5.4 presents results from parametric case

studies of the cracked EBC problem, elucidating the evolution of the oxide domain at the

tip of the crack and associated stresses. Section 5.5 discusses the implications of these

results in the context of EBC failure mechanisms, and potential areas of future study.

5.2 Oxide Growth Under Barrier Coatings Based on

One-Dimensional Diffusion

Diffusion through multilayers is a complex problem, due to differences arising from

the atomic state of the diffusing species, material-dependent saturation concentrations,

and permeability differences across material interfaces. An elegant and comprehensive

model for transport through an EBC to form an underlying oxide has been provided by

Sullivan fully describing such effects [13]. In this work, we take a simplified version of

their approach, neglecting differences in saturation concentration and permeability be-

tween layers (which can produce concentration jumps across interfaces). The rationale

for this is twofold; first, the simplified approach reduces the number of parameters in

the simulations, many of which have not been rigorously established for many materials

of interest. Second, while many enhancements can lead to important changes regard-

ing the kinetics of oxide growth, those changes are unlikely to impact the interaction

between local oxidation and stress evolution. It should be understood more sophisti-

cated treatments of diffusion through multilayers may be required to rigorously establish

quantitative agreement with oxide formation experiments.
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The simplified model presented next (as in the work of Sullivan [13] is an adaption of

the classical Deal-Grove growth model, with modifications that address the presence of

a coating on top of the oxide. Transport of the reactant is at steady-state, which implies

a constant flux through the system. In the Deal-Grove model, which considers only

transport through the growing oxide layer, the corresponding descriptions of flux are: (i,

surface) J = β(c∞−cs), where J is the flux, β is a adsorption coefficient that depends on

atmospheric conditions, c∞ is the concentration of the reactant in the atmosphere, and

cs is the concentration of at the surface of the oxide, (ii, film) J = D (cs − ci) /h, where

D is the diffusivity of the film, h is the film thickness, and c is the concentration at the

reaction front, and (iii, interface) J = ksci, where ks is the interface reaction constant.

Since all three fluxes are equal, cs and ci can be eliminated from the three equations to

produce a single equation for the flux at the interface, J(β, D, ks, c∞, h). This defines the

rate of change of film thickness as ḣ = J/No, where No is number of reaction product

molecules per unit volume and the dot denotes the time derivative.

The Deal-Grove analysis is extended here to consider oxide growth as an interlayer

between a barrier coating and substrate. Differences in saturation concentrations in the

layers are neglected. Defining Db as the diffusivity of the barrier coating, Dox as the

diffusivity of the oxide layer, and hb as the thickness of the coating (with h retained

as the thickness of the oxide), the model for a coating on top of the oxide that follows

Deal-Grove assumptions produces the following:

J = Noḣ(t) =
Dbc∞Doxβks

hbDoxβks +DbDoxβ +DbDoxks +Dbβksh(t)
(5.1)

In the limit that the adsorption coefficient (controlling the difference in concentration

between the atmosphere and exposed surface) is large, this can be simplified to the
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following:

Noḣ(t) =
c∞DbDoxks

DbDox +Doxhbks +Dbksh(t)
(5.2)

This can be re-casted in the classical form of the Deal-Grove growth law, using the

following parameters:

ḣ(t) =
B

A(1 + α) + 2h(t)
(5.3)

where

A =
2Dox

ks
; B =

2Doxc∞
No

; αb =
kshb

Db

(5.4)

The parameters A and B are identical to those in the Deal-Grove model, with αb as

an additional dimensionless parameter that reflects the impact of the barrier coating

overlaying the oxide. The solution to eqn. (3), for an initial oxide thickness defined by

ho, is:

h(t) =
1

2

󰀗󰁴
4Bt+ [A (1 + α) + 2ho]

2 − A (1 + α)

󰀘
(5.5)

where again, α = 0 for an uncoated substrate. Increasing α leads to decreases in oxide

thickness h(t) at any given time. Thus, increasing α by increasing coating thickness hb

or decreasing its diffusivity leads to inhibited oxide growth under the EBC. Note that A

has a dimensions of length (thickness); for A >> ho, where ho is the initial thickness, the

thickness scales as h(t) ∝ t. At longer times, when h(t) << A, the thickness scales as

h(t) ∝
√
t. The initial thickness ho may represent a native oxide layer that forms prior

to coating deposition.
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The time to reach a critical oxide thickness under the EBC can be determined via

eqn. (5); this is given by

tcr =
(hcr − ho) (hcr + ho + A (1 + α))

B
≈ h2

cr

B
+

hcrA (1 + α)

B
(5.6)

where hcr is the oxide thickness deemed critical. The approximate form corresponds to

neglecting any initial (native) oxide. A more insightful form for the time to reach critical

oxide thickness is:

tcr =
Nohcr

2ksc∞

󰀕
1 +

kshcr

Dox

+
kshb

Db

󰀖
(5.7)

The first term in the parentheses corresponds to cases with small critical thickness and

small coating thickness, where the critical time is reaction-controlled. The second two

terms dominate cases with larger critical thickness, and reflect diffusion-limited growth

controlled by either the coating or transport through the oxide itself. Note that, in eqn.

(7), the reaction constant ks cancels when the second two terms dominate: this is a

reflection of diffusion-controlled growth.

For typical turbine operating conditions related to oxidation of SiC, the latter two

terms are on the order of 10-1000; for example, the second term (reflecting diffusion

through the oxide) is ∼ 50 for a critical thickness of 2µm, while the third term (reflecting

diffusion through the coating) is ∼ 2500 for for a low diffusivity (dense) coating that is

25µm thick. Thus, for diffusion-limited growth under barrier coatings, the time to reach

a critical oxide thickness should be well approximated by:

tcr =
Noh

2
cr

2Doxc∞

󰀕
1 +

hb

hcr

Dox

Db

󰀖
(5.8)

This provides a simple dimensionless parameter to estimate the impact of including a
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barrier coating.

The above analysis also provides some insight regarding the presence of a crack in

the barrier coating. Assume transport occurs only in the direction of the crack and

lateral diffusion is negligible, even in the oxide. With this approximation, the above

barrier analysis holds, only with the parameter αc = kshb/Dc, where Dc is the effective

diffusivity of the crack. (That is, the crack behaves as barrier layer with enhanced

diffusivity.) Diffusion down the narrow crack can be treated using a combination of

molecular and Knudsen diffusion, defined by:

Dc =
DmDK

Dm +DK

(5.9)

where the Knudsen diffusivity, DK and the molecular diffusivity, Dm, are given by:

DK =
2δ

3

󰁵
8RT

M
; Dm =

0.0018583 T 3/2

Pσ2ΩAB

󰀕
1

Mair

+
1

M

󰀖1/2

(5.10)

with δ as the crack opening, R is the ideal gas constant, T is the temperature, Mair is

the molecular weight of the gas within the diffusion channel, M is the molecular weight

of the diffusing species, σ is the average collision diameter, Ω is the collision integral,

and P is the pressure. For oxygen at 1000◦C and a crack opening of 1µm, the diffusivity

down the crack is within the diffusivity of free space for openings of 10µm or greater; it

drops to about one-half of the molecular diffusivity for an opening of 1µm and 10% of

the free space diffusivity for openings of 0.05µm.

Figure 5.3a shows the predicted diffusivity in the crack as a function of crack opening,

assumed to be constant along the crack. (The validity and implications of this assumption

is discussed in Section 5.5 of this chapter.) Over a range of relevant conditions, the crack

opening at 1µm is within a factor of three of the molecular diffusivity, indicating the
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crack does not inhibit diffusion very much relative to open atmosphere. Crack openings

less than 1µm can have a dramatic effect; however, even at such small openings, the

effective diffusion constant is many orders of magnitude faster than those associated

with EBCs. Figure 5.3b shows time-dependent oxide thickness under an intact coating

for several plausible coating diffusivities [16, 96]. For a 25µm thick coating, any coating

with a diffusivity above above O[10−6cm2/s] will exhibit the same oxide growth as a bare

surface. With this in mind, and in light of the values shown in Figure 5.3a for the crack,

the oxide thickness at the tip of the crack – neglecting any lateral diffusion – should

be very close to that observed for an uncoated substrate. In essence the characteristic

time controlling transport down the crack is much smaller than that controlling transport

through the coating, such that diffusivity in the crack plays a negligible role. This has

been verified using simulations described in Section 5.4.
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Figure 5.3: (a) Predicted diffusion constants down a narrow channel that combine
Knudsen and molecular diffusion mechanisms, for 1% water vapor and 100% molecular
oxygen at two temperatures. (b) Prediction of oxide thickness under an intact barrier
coating for several coating diffusivities; for Db > 10−5cm2/s, oxide growth is virtually
identical to a bare surface, and controlled by diffusivity in the oxide layer itself. This
implies reactant transport down even the most narrow of crack openings is likely never
a limiting time scale for the growth of the oxide at the tip of a crack.

Since the diffusivity in free space is so much larger than that of the oxide or coating,
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the growth of the oxide will be much larger directly under the crack, as compared to a

remote location with an intact barrier. As will be demonstrated, this local penetration of

the oxide produces local stresses that are much higher than those in fully intact systems.

An approximate measure of the extent of local penetration is obtained using eqn. (5);

consider the limit where diffusion-controlled growth is operative. Neglecting any initial

oxide thickness, the ratio of oxide thickness under the crack to that under the intact

barrier is given by:

hcr
ox

hb
ox

=

󰁳
τ + (1 + αc)2 − (1 + αc)󰁳
τ + (1 + αb)2 − (1 + αb)

(5.11)

where τ = ksc∞t/No is the dimensionless measure of time. Note that at sufficiently large

times, the thickness of the oxide under the crack will be identical to that under the intact

barrier coating; in this limit the oxide has thickened to the point that diffusion through

the oxide itself is the controlling factor. This limit will corresponds to extremely thick

oxides that are deleterious for many reasons, and as such is not of significant practical

interest to the present study.

5.3 Multiphysics Simulation Framework

A schematic overview of the multiphysics finite element framework utilized in this

work is shown in Figure 5.2a. The framework combines three different physics modules:

(i) the analysis of transport to determine the spatial distribution of reactant species that

enter through the top of the coating and diffuse through the coating, down the crack and

through the oxide layer, (ii) the prediction of the evolving oxide domain shape based

on flux to the oxide/substrate interface, and (iii) the analysis of stresses that evolve

through the system, assuming the coating and the substrate are elastic and the oxide
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domain creeps according to a non-linear viscoelasticity description. These three physics

modules are combined with a discretization module that performs on-the-fly remeshing

that facilitates accurate prediction of stresses near the moving boundary that defines

oxide growth. The colored modules in Figure 5.2a have been integrated with previous

cohesive element frameworks for simulating crack evolution; however, to limit the scope

of this chapter, related simulations involving oxide-driven fracture is left for future work.

In this section, we summarize the essential features of the modules in Figure 5.2a used

in the present simulations and key aspects of their integration. Complete details of the

mathematical descriptions and numerical implementation were provided in Chapter 4.

5.3.1 Overview of Material Descriptions and Oxide Growth Law

The transport module in Figure 5.2a solves the standard linear diffusion equation

∂c/∂t = D∇2c, where c is the concentration of reactant, and D is the diffusivity; the

diffusivity is assumed to be isotropic but different in each domain, i.e. the barrier coating

(Db), the oxide (Dox), and the crack (Dc). The diffusion equation is solved using a

conventional finite element approach, with first-order time integration. The crack opening

is modeled as a fixed-width channel that is explicitly meshed to obtain two-dimensional

concentration distributions governed by Dc. Diffusion is assumed to be perfect between

material domains; the concentrations are continuous across material interfaces.

Once the transport module has solved for the concentration profile, the chemistry

module takes over to compute the oxide growth. The velocity of the oxide growth front

is controlled by the flux normal to the interface. The oxide is advanced by marching

along the existing interface and determining the outward flux normal to the interface

at all points. The Deal-Grove model for one dimension assumes the rate of change in
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thickness in oxide is

ḣ(t) =
J

No

(5.12)

where J is the flux of oxidant molecules reaching the reaction front and No is the number

of oxidant molecules consumed to create a unit volume of oxide. While this relation is for

one dimensional, unconstrained growth, it is useful for developing a general oxide growth

rule. In general, the velocity of the oxide front vn is

vn = γ
J

No

(5.13)

with the proportionality constant a function of the oxide’s Poisson’s ratio and the ratio of

the molar volumes of oxide and silicon carbide, γ = f(ν,Ω). The proportionality constant

takes into account the volumetric expansion that occurs concurrent with oxidation as well

as the plane strain approximation used within the framework.

In addition to the molar volume of silica being significantly larger than silicon carbide,

silica exhibits non-linear viscoelastic relaxation in shear. An Eyring model is used to

approximate this relaxation. The Eyring model states that the shear strain rate is

τ̇ = − Eτ

2 (1 + ν) η (τ)
(5.14)

with an elastic modulus of E, Poisson’s ratio of ν, effective shear stress τ and stress

dependent viscosity of

η = ηo
τ/τc

sinh (τ/τc)
(5.15)

for a reference viscosity of ηo and critical shear stress τc. The critical shear stress is

slightly dependent on temperature but is taken to be constant of 100 MPa. The effective
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shear stress is

τ =

󰀗
1

2
sijsij

󰀘1/2
(5.16)

where sij are the deviatoric stresses. The equivalent shear stress at any time t after an

initial stress of τo is

τ = 2τc tanh
−1

󰀕
tanh

󰀕
τo
2τc

󰀖
exp

󰀕
− Et

2ηo (1 + ν)

󰀖󰀖
(5.17)

The stress components σ11, σ22 and σ12 are assumed to relax proportionally to τ/τo.

Creep is only allowed to occur within the oxide domain; all other materials are assumed

to be completely elastic.

The mechanics module in Figure 5.2a solves for the increment in displacement over

the time step. Similar to the transport module, the mechanics module utilizes a finite

element approach but in a multistep solution technique. Similar to the work of Hay [14],

the displacements are solved for twice: once to determine the state at the beginning of

the time step immediately after oxide growth and a second time to find the displacements

at the end of the time step after relaxation occurs. The strain state is a combination of

the creep strain and deformation history and is applied though equivalent nodal forces.

Between the two solution steps, the creep strain is incremented based on the stress state

at the beginning of the time step and the relaxation law. In other words, the stresses are

determined immediately after oxide growth, they are relaxed, the change in creep strain

is computed and the displacements are found with this relaxation.

5.3.2 Module Integration and Synchronization

The reactant concentrations and associated fluxes outputted from the transport mod-

ule are used as inputs in the chemistry module, which evolves the boundary of the oxide
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domain according to Deal-Grove growth models described in the previous section. That

is, the oxide/substrate interface is translated in space to simulate oxide growth according

the condition vn = ks∇c · n, where vn is the velocity of the growing interface normal to

the interface, ks is the reaction constant, and n is the surface normal of the interface.

This corresponds to a flux boundary condition; all reactant molecules that arrive on the

interface are consumed in the oxidation process to generate a new layer oxide. As such,

the diffusivity of the layer below the oxidation front is immaterial.

After the boundary advances (i.e. a new layer oxide is created), the geometry is

passed to the mechanics module; this module imposes growth strains in the new oxide

film (generated by the motion in the chemistry module) and solves for creep-mediated

stress relaxation. At any point in time, the output from the transport and mechanics

modules can be passed to a discretization module that remeshes all domains to ensure the

mesh is appropriate for a given domain size and shape. This module maps field variables

from the old mesh to the new mesh using techniques described in Chapter 4.

In general, the characteristic time scales of physical processes addressed by the frame-

work can be very different, as illustrated in Figure 5.2b. Since the current implementation

invokes the assumption that flux to the oxidation front controls domain evolution, the

time constants for transport and boundary motion are the same. Creep relaxation in the

oxide, however, occurs over much shorter time scales, since the oxide near the boundary

experiences extremely high stress due to large volume changes generated by oxide for-

mation. That is, a typical time for relaxation is on the order of seconds, as opposed to

the minutes or hours that may be needed for meaningful oxide growth. (As illustrated

in Figure 5.2b, cracking may involve even smaller time steps to capture elastodynamic

crack advance.)

Conceptually, one can use different time steps in each module provided there is

synchronization between the global times marking the beginning and end of each pass
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through entire framework. (E.g., one can use smaller time steps to simulate rapid creep

relaxation provide the total time increment of all the steps combined matches that used

in the transport module.) Remeshing can be done with arbitrary frequency throughout

the simulation, since this simply involves mapping one spatial discretization at fixed time

to another. In the present work, the synchronization between modules is rendered moot

by using the same time increment in each module; transport, domain evolution and stress

relaxation are computed using identical time increments. The disparity between creep

and oxidation time scales is handled by developing a non-linear analytical solution to

accurate predict relaxation over large time scales. Simply put, a higher order update

to creep relaxation is used to ensure accurate stresses are obtained even over large time

steps.

5.3.3 Overview of Numerical Implementation and Convergence

All three modules utilize the same mesh of triangular elements with three nodes;

both concentration and displacements are interpolated linearly in each element. These

low order elements were used for several reasons. First, there are existing open-source

codes for automatic meshing of these elements that have been highly optimized and

allow for extremely rapid mesh generation. This is a critical advantage for problems that

simulate large motions of boundaries that generate strong gradients. In such cases, refined

meshes are needed to capture these gradients regardless of its position; using a fixed mesh

that was not tied to domain evolution would require exceedingly fine meshes throughout

the entire domain. (This is true even for more elegant boundary tracking approaches

such as level set or phase-field methods: while boundary stability is more favorable

in such methods, they do not obviate the need for a refined mesh near the boundary,

unless strong gradients are not present.) Second, constant strain triangles are generally
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preferred for cases involve highly nonlinear material response and strong gradients, as

higher order elements can be prone to convergence issues. Third, the advantages are

currently exploited in highly parallelized codes with distributed cohesive elements to

simulate cracking, such that the transport and stress analysis framework can be used to

generate inputs to additional modules for simulating damage.

Motion of the oxide growth front is tracked as follows; for simplicity, the process is

explained here for growth in one dimension. At the start of each increment (defined by

time t) the interface is defined by a node with an oxide element on one side and substrate

element on the other. At the end of the increment (time t + dt) the front is advanced

by the distance ∆x = vndt. The concentration distribution is used to calculate vn as

previously described. This converts a region from SiC to SiO2 and is not tied to element

size; the converted region may be a small fraction of an element or multiple elements. The

conversion corresponds to assigning oxide properties and the volumetric strain associated

with the conversion to the region for the following time step.

The elemental matrices and nodal force vectors for the mechanics module are formu-

lated with the oxide domain as it exists at the beginning of the time increment, i.e. prior

to any growth. The initial solution in the mechanics module is found to determine the

state at time t immediately after the oxide grows. After relaxation occurs, the nodal

force vectors are reformulated with the additional creep strain that occurs over the time

increment dt. The displacements are then calculated for time t + dt, but before any

additional oxide growth is allowed.

Prior to the next increment in time, the positions of the nodes along the interface are

updated according to both the boundary movement and any mechanical displacements.

This updated collection of points along the interface are then used to define the growth

boundary at time t + dt (by interpolating between the nodal positions obtained at the

end of the step). A new mesh is automatically created using the updated boundary; this
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can be generated so that the average element size along the boundary remains fixed even

if the line length of the boundary increases due to growth. Field variables (such as creep

strains) from the old mesh are mapped onto the new mesh, finalizing the transition from

a solution at time t to the new time t+ dt.

The convergence of the transport and mechanics modules was verified individually

with respect to both spatial discretization and time stepping. This included establishing

the convergent behavior of the non-linear analytical solution used to predict relaxation

over relatively large time intervals. The chemistry module that predicts motion of the

oxidation front was verified using Deal-Grove analytical solutions for both planar and

cylindrical surfaces. Using the transport module to predict the spatial distribution of

concentration, the evolution of oxide domain was proven to be independent of mesh

density and time step and in complete agreement with analytical solutions. The coupling

between the oxidation front and the mechanics module (i.e. creep) was also shown in

Chapter 4 to be independent of mesh density and time step, and shown to reproduce the

spatio-temporal distribution of stress obtained elsewhere. Finally, the convergence of the

re-meshing algorithm was verified by altering the re-meshing frequency in relation to the

time step (i.e. re-meshing every time step or multiples of the time step) for various mesh

densities.

5.4 Oxide Growth & Stress Evolution Under Cracked

Films

The multiphysics framework described in the preceding section was used to the ide-

alized problem shown in Figure 5.4. In all cases, the coating thickness is 25µm and

the crack opening is modeled as a narrow channel with fixed width of 1µm. The model
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comprises one period of an array of cracks separated by the distance s. (For efficiency,

only one half of the period shown in Figure 5.4 is discretized with appropriate symmetry

conditions; depictions of the actual geometry obfuscate the model by compressing the

image.) A thin initial oxide layer with uniform thickness of ho = 0.1µm is included to

start the calculation.

crack spacing, s
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initial oxide
thickness, ho

barrier coating
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Figure 5.4: (a) Schematic illustration of the idealized geometry used in the current
simulations, with transport properties and boundary conditions. (b) Schematic illus-
tration of the mechanical properties and boundary conditions used to predict stress
evolution in the system.

Only the bottom interface shown in red in Figure 5.4, between the initial oxide layer

and the substrate, evolves during the simulation due to oxidation of the underlying

substrate. The channel representing the crack is modeled as as continuous medium

with zero elastic modulus and a diffusivity calculated from the width of the channel, as

described in Section 5.2. A fixed concentration of reactant is applied to the top surface,

with zero flux conditions on the vertical boundaries as dictated by symmetry. Table 5.1

provides a summary of the range of properties considered in this work.

The idealizations of the geometry shown in Figure 5.4 are largely motivated by the
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the fact they limit computational times and enable a broad parameter study of coupling

between transport, reactions and stress. The physical implications of several obvious

approximations in this approach are discussed in the next section, following illustrations

of the resulting behavior.

Coating Channel Oxide, SiO2 Substrate, SiC

Thickness, h 25µm δ = 1µm ho = 0.1µm 500µm
Elasticity, E, v 180 GPa, 0.27 0, 0 70 GPa, 0.17 400 GPa, 0.35
Creep, ηo, τc n/a n/a ηo = 620x104 GPa · s n/a

τc = 100MPa
Diffusivity, D 0, 0.1, 1,10 µm2/s 1.72x108µm2/s 0.73 µm2/s n/a
Channel spacing, s n/a 25, 50, 100, 200 µm n/a n/a

Table 5.1: A summary of properties used in the simulations; the channel represents
the crack, while the oxide thickness refers to the initial uniform layer thickness at
the start of the simulation. Creep is only allowed in the oxide. The oxide growth
law dictates that all reactants are consumed at the interface, such that diffusivity
in the substrate (SiC) is irrelevant. Properties are computed at T=958oC assuming
oxygen as the reactant; the associated reaction rate constant is ks = 10µm/s. The
concentration held at the top of the coating is c∞=5.5x104/µm3 which corresponds
to the solubility limit of the oxide.

The spatial distributions of concentration and stress are show in Figures 5.5-5.8, at

three different times and for three different coating diffusivity values. In all cases shown,

the remote applied stress is σa = 1GPa. There are several features of these results

that are characteristic of system behavior across the entire range of the parameter space

considered here.

To begin, the distribution of reactant and resulting shape of the oxide domain is

dominated by the diffusivity of the coating (Figure 5.5). At low coating diffusivity, the

oxide directly under the crack is localized to the location of the crack, and adopts a semi-

cylindrical shape arising from radial diffusion away from the crack tip. The boundary of

the oxide domain is shown by the contour with zero concentration, since all reactant is

consumed at the growing interface. (The boundaries are more crisply visible in the stress

plots.) At high coating diffusivity, transport through the coating reduces this effect and

leads to more uniform oxide thickness. Figure 5.6 illustrates that thick oxide regions
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Figure 5.5: Contours of concentration for at three different times, for three different
coating diffusivities and relatively large crack spacing (low crack density); low diffu-
sivity in the coating leads to local oxide thickness under the crack that is much greater
than that under the intact portion of the coating.
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Figure 5.6: Contours of direct stress parallel to the coating interface at three different
times for three different coating diffusivities; increasing the coating diffusivity leads
to smaller differences between the crack and intact regions of the coating, and smaller
tensile stresses in the substrate. The system is subjected to a fixed strain in the
x-direction that generates σxx = 1GPa at the remote boundary.
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Figure 5.7: Contours of direct stress perpendicular to the coating interface at three
different times for three different coating diffusivities; increasing the coating diffusivity
leads to smaller differences between the crack and intact regions of the coating, and
smaller tensile stresses in the substrate. The system is subjected to a fixed strain in
the x-direction that generates σxx = 1GPa at the remote boundary.
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Figure 5.8: Contours of shear stress at three different times for three different coating
diffusivities; increasing the coating diffusivity leads to smaller differences between the
crack and intact regions of the coating, and smaller tensile stresses in the substrate.
The system is subjected to a fixed strain in the x-direction that generates σxx = 1GPa
at the remote boundary.
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localized under the channel produce locally high stresses in the substrate; creep in the

oxide layer mitigates the stress in the newly formed oxide. With low stress in the oxide,

the local oxide domain under the crack effectively serves as a notch in the underlying

substrate, with stress concentrations proportional to the depth of the oxide under the

crack relative to that under the intact coating.

The stresses normal to the coating/substrate interface are significantly lower, as seen

in Figure 5.7; this is a consequence of the absence of remote loading in this direction.

(Indeed, without any remote loading, all stresses are significant lower, due to creep

relaxation in the oxide.) At the end of the coating next to the channel, the interface

stresses are compressive due to the fact that the oxide expands upwards and pushes

on the edge of the coating. This compressive interface stress is balanced by tensions

that develop along the interface to the side of the channel. This likely has important

implications for coating delamination, which may initiate at high temperature. The

shear stresses shown in Figure 5.8 are similar in magnitude to the direct stresses acting

perpendicular to the loading direction.

Since the stresses are governed by the relative depth of the oxide near the crack (as

compared to that under the intact coating), it is worth examining the nature of oxide

growth prior to considering the evolution of stress in the system. Figure 5.9 illustrates

the time-dependence of the oxide thickness directly under the crack, and under the in-

tact coating (at the symmetry plane between cracks). Two features have important

implications.

First, the depth of the oxide directly under the crack is close that expected for an

uncoated substrate, regardless of the diffusivity of the coating. This is a consequence of

the behavior shown in Figure 5.3, which demonstrates diffusion down the crack is orders

of magnitude faster than diffusion through either the coatings or the oxide itself. The

thickness under the crack is somewhat smaller than for a bare surface because lateral
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Figure 5.9: Oxide thickness directly under the crack and under the intact coating
(at the symmetry plane between cracks) for several different coating diffusivities. The
oxide at the crack location is smaller than bare surface oxidation due to lateral diffusion
away from the crack plane.

diffusion detracts from the amount of reactant reaching the crack front at the symmetry

plane. I.e., it is the difference between one-dimensional diffusion in a uniform system and

two-dimensional diffusion from a point source. This is further illustrated in Figure 5.10,

which depicts the ratio of the oxide depth under the crack to that of one-dimensional

diffusion. The difference becomes larger as time progresses because the radial diffusion

path length becomes larger. It is interesting to note from Figure 5.10 that the crack

spacing is largely immaterial, indicating the cracks act as isolated diffusion sources.

Second, the difference between crack growth under the crack and under the intact

coating is a strong function of coating diffusivity; larger coating diffusivity is closer to

oxidation of an uncoated surface and hence the thickness difference is smaller. This has

important implications for stress, since flatter oxide fronts (more uniform oxide thickness)

are associated with smaller stress concentrations arising from shape. From Figure 5.10,

it is clear that irrespective of crack density, there is a critical change in behavior at a

coating diffusivity of approximately Db = 1µm2/s; for higher values, the oxide thickness
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Figure 5.10: Oxide thickness directly under the crack, normalized by the thickness pre-
dicted by by Deal-Grove for an uncoated substrate; four crack spacings are shown for
four different coating diffusivity values. The decay with time in the relative thickness
arises from two-dimensional diffusion away from the crack tip; for high coating dif-
fusivity, two-dimensional diffusion is effectively eliminated by fast transport through
the coating itself. Crack spacings greater than at least one coating thickness play a
relatively minor role.

in reasonably close to that associated with an uncoated surface. It is worth noting that

the reported range for candidate EBC materials falls in the range Db = 0.1− 10µm2/s,

with the upper end associated with porosity arising from processing. Naturally, this
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critical threshold depends on the coating thickness, which is discussed further in the

next section.

The implications of these differences in oxide thickness (under the crack versus under

the coating) with regards to stress evolution are shown in Figures 5.11-5.13. The focus

of these figures is on the tensile stress that develops in the substrate directly under the

thickness part of the oxide domain. Unlike the evolution of oxide geometry, crack spacing

and the level of remote stress play an important role.

Figure 5.11 plots the stress in the loading direction (parallel to the coating/substrate

interface) at several instances in time, for three different coating diffusivity values. There

are two central features of the stress distribution in all simulations. (i) The stress in the

newest oxide, adjacent to the oxidation front, are highly compressive; creep, however,

dramatically mitigates the magnitude of these stresses. The O[20GPa] stress that arises

from volumetric expansion is relaxed over time scales on the order of seconds, which

is far smaller than the propagation of the front. (ii) A large tensile stress develops in

the substrate, immediately adjacent to the oxide domain, as required to balance the

compressive stresses in the oxide and maintain equilibrium along this plane. Arguably,

the critical aspect of behavior shown in the results in Figure 5.11 is that the peak stress

in the substrate reaches a peak at intermediate times when the coating diffusion is low,

indicating that oxide growth controls mechanical response. However, for higher coating

diffusivity, the highest stress occurs is at the onset of the simulation (i.e. from the stress

concentration of the channel), such that any deleterious effects of oxide growth is offset

by creep.

Figure 5.12 illustrates the time-dependence of the peak stress computed in the sub-

strate. The noise seen in Figures 5.12a and b are a consequence of averaging element

stresses from the constant strain triangles; this noise can be mitigated by higher resolu-

tion studies that come at great computational expense but do little other than reduce
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Figure 5.11: Direct stress distribution in the loading direction at the plane of the
crack, for several times and several different coating diffusivity values. Higher coating
diffusivity reduces the gradient in oxide thickness from the crack plane to the intact
region of the coating, and mitigates stress.

the noise. The open circles in Figures 5.12a and b reflect the values at the start of

the simulation, and are controlled by the stress singularity at the corner of the channel

and the initial oxide thickness. At very short times, before significant oxide growth, the

maximum stress in the substrate falls due to creep relaxation in the initial oxide that

is present, as illustrated by the inset to Figure 5.12a. Once the oxide thickness under
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the crack increases by a factor of 3-5, oxide growth becomes the controlling factor and

stresses may again rise. Whether or not stress in the substrate rises or falls after the

initial loading is controlled by the shape of the oxide front (i.e. the difference in oxide

thickness between the crack and symmetry plane), which is in turn controlled by coating

diffusivity.

Note from Figure 5.12b and Figure 5.12c the crack spacing and remote loading have

an important impact on the stress behavior, unlike their negligible role in the formation

of the oxide. This is a consequence of the fact that stresses induced by the presence of the

crack are significant over a length-scale controlled by the coating thickness, as opposed to

the oxide thickness. (That is, at higher crack density, the initial stresses in the substrate

at the bottom of the oxide are lower.) The stress concentration is slightly lower at high

levels of remote loading, presumably due to the reduction in misfit strain arising from

oxide growth.

The effect of crack spacing and remote loading is illustrated in Figure 5.13, which

tabulates stress concentration factors as a function of crack spacing, applied loads and

diffusivity in the coating. The key implication of these results is that for higher levels of

coating diffusivity, the accelerated growth of the oxide under the crack is not sufficient to

elevate stresses beyond those experienced at the outset of the simulation. At high levels

of diffusivity in the coating, the initial stresses due to the presence of the crack, and any

elevation due to differential oxide growth, are completely mitigated by creep in the oxide.

5.5 Discussion

The results clearly illustrate that the largest driver of high stress in the substrate is

the geometry change associated with enhanced oxide thickness directly under the crack.

Geometry changes are controlled by diffusion differences between the location of the crack
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Figure 5.12: (a) Peak stress experienced in the substrate directly ahead of the local
oxide that forms at the tip of the crack as a function of time, for several coating
diffusivities and a single crack spacing. (b) Peak stress experienced in the substrate
directly ahead of the local oxide that forms at the tip of the crack as a function of
time, for several crack spacings and a single diffusivity. (c) Stress concentration in
the substrate as a function of time, for several different levels of remote loading and
two coating diffusivities. Higher levels of remote loading somewhat mitigate the stress
concentration by enhancing creep relaxation in the oxide.

and under the intact coating; in turn, since diffusion down the crack is by comparison

instantaneous, these are governed by the difference in diffusion through the oxide formed

144



Oxidation Under a Protective Coating Chapter 5

σa = 3 GPa

σa = 0.3 GPa

0.10 1 10
Barrier diffusivity, Db [μm2/s]

0
1

2

3

4

5

S
tre

ss
 c

on
ce

nt
ra

tio
n,

 σ
m

ax
/σ

a 

σa = 1 GPa

@ t = 300 hrs

s/h = 8

(b)
0 2 4 6 8 10

Crack spacing, s/h

1

2

3

4

5
S

tre
ss

 c
on

ce
nt

ra
tio

n,
 σ

m
ax

/σ
a 

Db = 0.1 μm2/s
tmax ~ 100-200 hrs

tmax ~ 100-200 hrs
Db = 0

elastic (t=0)

σa = 1 GPa

(a)
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at a distance equal to the initial oxide thickness. (b) Comparison of stress concen-
trations at 300 hours (which is quite close to the peak concentration) as function of
coating diffusivity, for three different levels of remote loading.

at the tip of the crack (akin to an oxide on a bare surface) and that formed under the

coating. Phenomena that increase diffusion through the oxide itself, or slow diffusion

through the coating (e.g. a thicker coating), generally produce larger tensile stresses

that could drive damage in the substrate even at elevated temperatures. In light of the

results for the case with no diffusion through the coating, however, there is clearly an

upper limit to the geometric changes that generate stress; in the limit that the transport

through the oxide is much much greater than the coating, the local oxide adopts a semi-

cylindrical shape whose radius evolves with time. For very thick substrates (such as those

considered here), the stress concentration associated an equiaxed “oxide notch” in the

substrate is independent of depth; hence, stress concentrations in the substrate become

nearly constant as time progresses.

It should be noted that when the thickness of the oxide under the crack is similar to
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that under the intact coating – as occurs for coatings with poor barrier properties – the

stresses in the substrate are not appreciably changed from that associated with remote

loading. In the present simulations, the stress in the substrate directly under the crack

and the oxide layer starts an elevated value, due to the stress concentration associated

with that of the crack; this value depends strongly on the initial oxide thickness, i.e. the

distance from the corner singularity at the bottom of the crack. Over time, as the oxide

thickens, the peak stress in the substrate decreases because the top of the substrate moves

away from the singularity point and local variations in oxide thickness do not intervene

to elevate substrate stress.

Given the large volumetric change associated with oxide formation, it may be temping

to conclude that this expansion itself – i.e. the large compressive stresses in the oxide

– drive large tensile stresses in the substrate. While this may be a contributing factor,

the results shown in Figure 5.14 suggest this effect plays a second role, if any. In Figure

5.14, the stress in the substrate adjacent to the oxidation front is shown as a function of

time for two low levels of remote loading. Cases with small coating diffusivity and large

geometry changes result in high tensile stresses; cases without geometry change (i.e. high

diffusivity, Db = 1µm2/s) exhibit compressive stresses immediately adjacent to the oxide

interface. This strongly suggests that the results presented earlier for elevated stresses

can not be viewed simply as the superposition of stresses induced by oxide growth and

those associated with remote loading; if the large tensile stresses reflected in Figures 5.11-

5.13 were generated by the oxide regardless of remote loading, they should remain tensile

(and arguably quite high) even at low levels of remote stress. This is clearly not the case;

in Figure 5.14, high stresses are only generated for cases that exhibit significant geometry

change, and those stresses scale with remote loading. The notion that substrate stresses

are dominated by geometry change and remote loading and not by oxide expansion is

further evidenced by the results in Figure 5.13b, which demonstrates that scaled stresses
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(i.e. the stress concentration factor) are relatively insensitive to level of remote loading.
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Figure 5.14: Stress in the substrate immediate beneath the moving oxide boundary
for three different coating diffusivities and two different values of remote tension.

That said, it is not fair to conclude that the expansion of the oxide plays no role

in the generation of stress in the substrate. It is simply that this role is mitigated by

the presence of creep in the oxide, which quickly reduces the stress over the majority of

the oxide domain. That is, extremely high compressive stresses due to oxide formation

persist over relative short times, and hence are confined to a highly localized sliver of oxide

adjacent to the growth front, i.e. the newly formed oxide. The stress in the oxide bubble

directly under the crack does contribute to the stress in the substrate to some degree;

this is evidenced by the fact that higher remote stresses decrease the stress concentration

of the bubble. It is reasonable to infer that expansion of the elastic medium surrounding

the bubble accommodates part of the oxide expansion; the more oxide expansion is

accommodated, the less it contributes to substrate stresses. This inference is supported

by the fact that stress concentrations in the substrate are 4-5 for low levels of remote

loading, but only 3-4 for higher levels of loading. Even for the same oxide geometry,

increasing remote loading decreases the contribution of oxide expansion to the overall
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stress concentration.

Despite the extensive number of simulations in the current parameter study (e.g.

variations in coating diffusivity, crack spacing and applied loading), there are number of

issues remaining that warrant additional study. Some of this can likely be reduced by

considering the present results in terms of dimensionless variables that account for com-

peting effects. For instance, the influence of coating thickness can likely be re-interpreted

by adjusting the diffusivity of the coating, and vice versa. The characteristic transport

time through the coating is defined by h2
b/Db, such that results for thicker coatings (e.g.

100 µm) can be inferred by examining results for lower diffusivities, which will have the

same transport times. Similarly, changes in oxidation rate (i.e. the Deal-Grove param-

eters controlling oxidation front velocities, and imposed boundary concentrations) are

likely well-captured by adapting the ratio of oxidation rate to transport through the

oxide. Since diffusion down the crack will be significantly faster regardless of such pa-

rameters, the only influence of the crack is the width of the opening relative to the crack

spacing, as this sets the area fraction of substrate surface that is exposed to rapid diffu-

sion. However, the crack opening of 1µm is never more than 4% of the crack spacing;

for most purposes, it can be reasonably thought of as a point-source for the oxidant.

As such, with regards to time scales associated with diffusion and oxidation, the

present results can be expected to provide applicable insights across a broad range of

possibilities. Future work should focus on a more rigorous study that identifies the

dimensionless parameters that define system response, with an emphasis on the range of

behaviors observed from this study. Naturally, there may be a host of enhancements to

the diffusion analysis that may be warranted, such as a jump in saturation concentration

between layers (assumed here to be negligible), the influence of adsorption coefficients

on the outer surface, etc.

Arguably, the greatest limitation of the present parameter study is the consideration
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of a fixed creep properties, i.e. those computed at 958◦C. Oxide creep properties are

a strong function of temperature and composition, such that future study is strongly

warranted to evaluate the competition of creep time scales and oxidation time scales.

Interestingly, oxidation rates peak at intermediate temperatures [97], while creep rates

will be lower. This strongly suggests that the present calculations may represent the lower

bound for stresses that develop as a result of oxide growth. Future simulations should

focus on a study of the interaction between creep rates and oxide growth kinetics by

varying dimensionless parameters involving oxide growth rates and characteristic creep

rates as defined by the viscosity of the creep law. In scenarios where creep rates are

limited but oxide growth rates are similar, one can anticipate larger effects from oxide

volume expansion due to the fact creep relaxation will be less pronounced.

The present study has important potential implications for embrittlement of CMCs

at the fiber level, although the inferences should be qualitative rather than quantitative

in nature. On the one hand, the cracked coating is similar to CMC matrix cracks serve

as fast diffusion pathways that enable attack of internal fibers; the present geometry

is similar to that of a “unit cell” of a bridged matrix crack with a single fiber. On

the other hand, there are two critical differences that require further simulations to

address the bridged crack problem. First, the relevant bridged crack unit cell is obviously

axisymmetric, as opposed to the plane strain case considered here. This will likely have

critical differences in light of that creep relaxation plays a critical role and is strongly

influenced by multi-axial stress states. Further, the fiber problem likely involves oxide

thickness that is comparable to the “substrate” dimension, i.e. the fiber radius. This will

change the nature of how the elastic SiC phase accommodates the oxide volume expansion

and subsequent crepe behavior. Naturally, it will also imply a far greater impact of the

“notch” formed by local oxide penetration, since comparable oxide thickness will produce

significant increases in net section stress, i.e. the stresses in the SiC fiber at the matrix
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crack plane.

Finally, while the focus of the present work has been on the behavior that occurs

at elevated temperatures while the oxide is forming, it is clear that cooling will induce

additional behaviors that are known to be deleterious. Cooling can lead to fracture in

the oxide, which may penetrate into the adjacent SiC layer. This is cracking is driven

not only by thermal expansion mismatch, but also by phase changes in the silica upon

cooling that have significant volume contractions. (This is only relevant if it forms in the

crystalline phase at higher temperatures (e.g. greater than 1200◦C.) This leads naturally

to a cyclic damage mechanims: oxide growth drives cracking upon cooling, which upon

re-heating serve as fast diffusion pathways to continue oxidation. The next cooling cycle

extends the cracks and the process is repeated.

In this context, the present study makes an important contribution by establishing

the “baseline” of residual stress present at the start of a cooling period; it is clear from the

calculations that assuming the oxide is stress free at elevated temperatures — as is typical

of analyses that assess the likelihood of cracking during cooling [16] — is not justified.

While creep deformation is significant, it does not alleviate the compressive strain in

the oxide at elevated temperatures. This will lower the crack driving force arising from

cooling, as since any compressive stress remaining in the oxide will help offset tensile

misfit strains. Indeed, the present analysis provides insight into a disconnect between

experimental observations of damage and simple estimates of crack driving forces; if the

system was stress-free at temperature and then subject to the full misfit strain upon

cooling, cracking driving forces would likely be high enough drive cracking after short

exposure times [16]. It is clear that simulations of cooling, starting from the present

calculations, will generate important insights regarding environmental damage to EBCs

and CMCs.
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5.6 Concluding remarks

This study of local oxidation near fast diffusion pathways through protective barriers

revealed several important insights that will be useful in developing durable environmen-

tal barrier coatings. The main insights can be summarized as follows:

• For realistic crack openings, even those at the nanoscale, diffusion down cracks

is much faster than diffusion through protective coatings, even for relatively poor

barriers with relatively high diffusivities. As such, cracks can be viewed as “point

sources” for environmental reactants, and oxide growth at these locations is quan-

titatively similar to that which occurs for bare surfaces.

• The difference in reactant supply at the location of the crack and that under the

intact portion of the coating drives the formation of an oxide “bubble” that adopts

a semi-cylindrical shape when the difference is large. The depth of the oxide bubble

is less than oxide thickness on bare surfaces, due to diffusion of the reactant in all

directions once it exits the crack tip. Nevertheless, a simple and fair approximation

to the geometry of the bubble corresponds to the intersection of a half-circle with

a radius equal to the bare surface oxide thickness, and the oxide thicks that would

form under an intact coating.

• This geometry change to the underlying substrate is the principal factor in the

evolution of tensile stresses that are likely a significant contributor to substrate

damage. Stress concentrations in the substrate range from 3 (for high remote

loading) to 5 (for low remote loading).

• Creep in the oxide layer significantly mitigates the misfit stresses arising from the

volume expansion triggered by oxide formation, and reduces the region of high
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compressive stresses to a narrow sliver adjacent to the moving oxide front. Nev-

ertheless, compressive stresses in the oxide persist over long times and will likely

affect what happens upon cooling.

• The interaction of oxide formation (i.e. volume expansion), remote loading and

creep is nuanced, due to the fact that higher remote loading can both drive faster

creep and provide some strain accommodation for local oxide “bubble”. Neverthe-

less, the stress concentration in the substrate is dominated by the geometry change;

in effect, the oxide bubble creates a semi-cylindrical notch.

• Additional simulations for behaviors at high temperature are warranted, particu-

larly those that explore the interplay between reaction kinetics and creep relaxation;

the facts that oxide growth rates can be faster and creep relaxation slower at inter-

mediate temperatures indicates such simulations will be critical to understand the

role of ‘pesting’ damage in CMCs.

• Future analyses of cooling are critical to understanding the evolution of environmentally-

driven damage; the present calculations suggest that conventional analyses that

assume the system is stress-free when computing crack driving forces will not be

accurate. In that regard, the present simulations provide reasonable estimates for

the reference state that defines stresses after cooling.
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Chapter 6

Summary and Recommendations for

Future Work

This dissertation provides important insights into both stress evolution and cracking of

brittle ceramic multilayers. Tools and techniques were also presented that allow other

problems to be solved that were previously not possible due to computational cost or the

multiple physical phenomena that are involved. The contributions in this dissertation

support the following conclusions and recommendations for future work:

Advances in cohesive zone modeling

• The distributed cohesive zone method is a powerful tool to study arbitrary crack

growth but simulations can be very costly. The proper selection of a cohesive law

decreases mesh dependence and increases precision allowing for accurate results to

be obtained faster. Excluding near the crack tip, the simulation is mostly elastic

and this can be exploited to greatly reduce the computational cost by reducing the

effective domain size. Further cost improvements in performance can be had by

controlling element size and restricting refined meshes to only near crack tips. An

advanced adaptive and dynamic remeshing algorithm was developed that promises
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further reductions in computational cost.

• The increases in computational performance allow for the study of problems that

were previously prohibitively expensive. The dynamic remeshing algorithm al-

lows for the tracking of multiple crack tips. Dynamic crack growth that includes

branching is possible in a reasonable time. An arbitrary number of cracks and how

they interact with each other and internal geometric features are easily studied. An

interesting application would to be to study how cracks interact with internal inter-

faces, such as between a coating and substrate or between grains. With the ability

to track multiple simultaneous cracks, interesting behavior such as spallation of a

coating could be observed.

• While the current reduce in the computational cost allow for many more types of

problems to be studied, the current implementation of the dynamic remeshing algo-

rithm has significant limitations. Currently, it is implemented with a combination

of C++ and Python and reliability can be a problem as the various components

interface with each other. Future improvements could include incorporating all

components into a unified application and to improve reliability. Many of the tech-

niques that were employed in the multiphysics framework to transfer data between

meshes can be applied to the dynamic remeshing algorithm as well.

Cracking near wavy interfaces

• Through the use of the distributed cohesive zone method, the transition from de-

lamination along to kinking off of wavy interfaces was found. It was also determined

that while wavy interfaces increase the apparent toughness, the ratio of the tough-

nesses of the materials controls how much toughening occurs. If the toughness

of the bulk material is too low relative to the toughness of the interface, kink-

ing can occur. This kinking generally results in a lower toughening effect unless
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there is competition between the two modes. Crack growth through wavy lamellar

structures can lead to partial delamination along interfaces and kinking between

delamination sections. The lamellar structure increases the apparent toughness of

the material. This behavior suggests patterning interfaces may be beneficial by

preventing delamination and spallation.

• The current study was focused on macroscopic mode I loading with no material

mismatch on either side of the interface. Only a single case with material mismatch

was tested but the effects of material mismatch were not fully explored. Likewise

different loading conditions were not investigated. The current work also avoided

larger amplitudes where crack face contact occurs. Crack face contact may further

enhance the toughening behavior.

• Expanding the work by looking at material mismatch as well as orientation of the

crack relative to the interface would help answer questions about the behavior of

channel cracks in protective coatings. With the dynamic meshing algorithm, more

complex scenarios could be studied to determine how a channel crack impinges on

an interface and either deflects or penetrates into the substrate. Further extensions

could be made by including the effects of thermal residual stress.

Multiphysics framework

• An integrated computational framework was developed that combined the physics

of diffusion, oxidation, creep and elastic deformation into a unified solver. The

framework explicitly solves for the boundaries between materials as oxidation oc-

curs. This multiphysics framework was shown to recreate one dimensional oxide

growth on silicon carbide and match the classic Deal-Grove model as well as ac-

curately model stress relaxation at multiple temperatures. Further simulations on
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a curved silicon carbide substrate illustrated how the hoop stresses in the growing

oxide layer transition from compressive to tensile stress.

• The current implementation of the framework does suffer from some limitations.

Notably only being able to track a single oxidation front within a single material lim-

its what problems can currently be modeled. Further, the way the explicit material

boundaries are defined and strain information mapped from one mesh to another

introduces errors. In particular, the mapping procedure artificially smoothes data

in a way that can not be directly controlled. While the smoothing helps reduce

noise, it also may remove highly stressed regions.

• The current limitations can be addressed with future improvements to the frame-

work. The addition of the capability to track multiple oxidations fronts or oxidation

through multiple materials would allow other problems of interest to be studied.

For example, a matrix crack in a silicon carbide CMC could be modeled with oxi-

dation of the silicon carbide matrix, boron nitride coating and silicon carbide fiber.

This scenario is of great interest as CMC usage increases in turbine engines. Fur-

ther improvements such as changes to the mapping procedure or using elements

that provide continuity in strain may help reduce the introduction of errors.

Internal Oxidation

• The multiphysics framework was used to study the effects of oxidation on silicon

carbide under a protective coating. Diffusivity of an oxidant down a crack in a

protective coating is significantly faster than through the coating. The relative

difference in diffusion rates under a crack versus under an intact coating lead to the

formation of an oxide “bubble” which is comparable in size to that predicted by

the Deal-Grove model. The formation of this bubble causes a stress concentration
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to form in the substrate at high temperatures. These stress concentrations may

lead to substrate damage. Creep within the oxide layer greatly diminishes the

compressive stress caused by oxidation so only highly compressive stresses are seen

near the reaction front. Lower compressive stresses are seen throughout the oxide,

however, that will likely affect behavior upon cooling. Applied loading interacts

with creep in a nuanced way and higher applied loads do not result in larger stress

concentrations.

• The current work was restricted to a single temperature and did not study how

diffusion and reaction kinetics may change as the specimen is heated or cooled.

Likewise, residual thermal stresses were ignored but could affect the stress state.

Since no cooling was allowed, strains caused by differing thermo-mechanical prop-

erties or phase changes in the oxide were not addressed. Also, only the oxidant

was tracked and any products from oxidation other than silica were ignored. Other

work has shown both creep and diffusivity to depend on impurity concentrations

(such as carbon).

• The limitations of the current work lead to many additional studies that could be

performed. With the current framework, studies at varying constant temperatures

can address the interplay between reaction kinetics and creep. The addition of

cooling would also help to determine what stress states evolve, especially as the

oxide undergoes a phase transformation. Varying creep and diffusion properties

would help elucidate the effects of impurities within the oxide. It would also be of

interest to look at full thermal cycling.
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Appendix A

DCZM User Manual

A.1 Introduction

This document covers how to use the distributed cohesive zone method solver by
covering installation, outlining the input files, how to run a simulation and the output
files that are produced. The background of the method and a rigorous explanation on the
requirements on various inputs are not included, but can be found elsewhere. Likewise,
how certain input files are created is not outlined in detail, just the structure that the
files need to be in. Some tips on their creation are included, though. The first version
of the code was written by Will Pro and then optimized in v2.x by Rone Kwei Lim.
Further slight modifications, notably the addition of a bilinear cohesive law, was done
by Stephen Sehr. The name Will used was evolver-x (for reasons unknown) but Rone
referred to this solver as UEC. Final versions of all of Rone’s codes were uploaded to a
Github repository, but the bilinear law might not be a part of this upload. The bilinear
law is present on the versions of the source code present on the Begley group servers
(brg1 and brg2) under the brfiles user and the GPU servers labeled as v2.07.

A.2 Installation

The source code consists of fifteen header files and three main files. The header files
are those from Will and those from Rone’s research group. The required header files are

• arrays.h

• block.h

• Command.h

• declare.h

• defs.h
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• elementProp.h

• helper threads.h

• helper.h

• initialize.hpp

• interface.h

• Parameter.h

• process.hpp

• rand.h

• Thread.hpp

• Vector.h

and the main files are

• checksum.cpp

• inverse.cpp

• main.cpp

Each header file will not be fully explained, as they are quite complex and obtusely
written. The only exception to this is interface.h. This header file implements the co-
hesive law to be used in the simulation. As the code is written now, the law cannot be
changed on the fly and must be recompiled to switch laws. Furthermore, restrictions on
inputs limit cohesive law parameters to three. The original law implemented was the
trapezoidal law, but this was switched by Stephen to a bilinear law that used the same
three inputs. The trapezoidal cohesive law is implemented in the functions utz normal
and utz tangential while the bilinear law is in the functions bilinear normal and bilin-
ear tangential. To switch between the two laws, the definition of sep x2 must be changed
in the function InterfaceForce and the function calls switched in the function Force. An
additional cohesive law could be added similarly

Of the three main files, the bulk of the solution is computed within main.cpp. The
file inverse.cpp computes a matrix inverse and when compiled, creates inverse.o. Finally,
checksum.cpp is a checksum function used to verify the output files. The source is
compiled by navigating to the correct directly and calling make. There are a number of
dependencies, but are not spelled out here.
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A.3 Input Files

A total of eight different input files are needed for the solver to run. An explanation
of each input file can be found below.

A.3.1 Nodes

The nodes file contains a simple listing of the (x,y) positions of each node in the
mesh with one point on each line. Numbering is done implicitly starting at row 0 and
the coordinates are comma separated.

A.3.2 Elements

The elements file contains a simple listing of the three nodes that define an element
with one element per line and each node number separated by a comma. The node
number listed corresponds to the implicitly numbered node list stored in the nodes file.
Each element is listed in counterclockwise order, but there is no importance to the first
node in each element.

A.3.3 Element Properties

The element properties file contains a simple listing of the elemental properties to be
assigned to each element. Each line is a different element and the properties are comma
separated. The properties needed for each element are

A. Ex: Young’s modulus in x direction

B. Ey: Young’s modulus in y direction

C. νxy: Poisson’s ratio in xy plane

D. νyz: Poisson’s ratio in yz plane

E. νzy: Poisson’s ratio in zy plane

F. νxz: Poisson’s ratio in xy plane

G. Gxy: Shear modulus in xy plane

H. ρ: Density

I. αx: Coefficient of thermal expansion in x direction

J. αy: Coefficient of thermal expansion in y direction

K. αz: Coefficient of thermal expansion in z direction
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L. region: Region label for the element, can be used for interface

M. αd: Mass damping parameter

N. βd: Stiffness damping parameter

O. orientation: Orientation of the material relative to the global x axis

For isotropic materials, many of the parameters are repeated and the orientation is set
to 0. Determination of the damping parameters is problem and property dependent and
is covered elsewhere. The region label is mostly used with the interface file.

A.3.4 Initial Conditions

For the vast majority of simulations, the initial conditions file is a blank file. If a
simulation is being restarted or some other initial condition imposed, this file contains a
list of the displacements and velocities to be applied to each node. It is organized as a
list of entries with one entry per line. Each entry contains six comma separated values:
the element number, the local node number, the x displacement, the y displacement, the
x velocity and the y velocity. The local node number is number locally to the element,
ranging from 0 to 2. Initial conditions can be applied to any number of nodes and can
be written in any order.

A.3.5 Parameters

The final input file is the parameter file which holds various parameters that the
simulation needs to run. The parameters in the file are

• stepSize: Time step size

• totalSteps: Total number of time steps:

• dumpInterval: the number of time steps before the code saves an output file

• rseed1: a random number seed

• rseed2: a random number seed

• displacementAmp: a scaling factor to be applied to displacement results

• valueAmp: a scaling factor to be applied to other output values

• planeType: 1 for plane strain, 2 for plane stress

• threadCount: the number of threads to be used
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A.3.6 Interface

The interface file contains a snippet of C code that is used to define the cohesive
properties. Upon a simulation being run, the interface file is read in and compiled into
a custom function. This allows for quite a bit of control over the cohesive properties. In
the most simple form, four quantities must be defined: stiffness, strength, toughness and
contact k. The first three correspond to the three parameters of the cohesive law and
the last is the stiffness of a cohesive element upon contact after it breaks. Much more
complex functions can be written. As mentioned earlier, the region label is useful in
the interface file because it makes it easy to define cohesive properties in different mesh
regions as well as along the boundary between the regions.

Some built in variables can be used within the function. At this time, the known
variables are vertex1, vertex2, center1 and center2 where the vertex variables are the
vertexes along the cohesive element and the center variables are the center points of the
elements on the cohesive element. Each variable is a coordinate pair and contains both
x and y positions. For example, the x position of vertex1 is given by vertex1.x().

Likewise, there are some built in functions that can be used to create random variation
in the cohesive properties. The main function for a random number is rand.genRandNormal
which takes ten inputs: the mean, standard deviation and 8 seeds. To determine these
8 seeds, the two functions getSmallerPoint and getBiggerPoint cant be used with the
vertices and centers to come up with the same four points for a cohesive element. Then
taking both the x and y components of these four points yields the eight seeds needed.
When the seeds are the same, the returned number will be the same, so it will be con-
sistent. Many different ways of controlling the cohesive properties could be devised such
as the orientation of the cohesive element or its distance from some point in space.

A.3.7 Loading

The loading file is a list of loads to be applied to specific elements and nodes. Each
line specifies a specific constraint to apply and contains four entries: the element number,
the local node number, the loading type and a loading tag. The element and local node
numbers are those used in the initial conditions file. The loading type is an integer from
1 to 5. Types 1 and 2 are displacements and 3 and 4 are forces in the x and y directions,
respectively. Type 5 is temperature control. If simulating a temperature change, the
constraint only needs to be applied to one node in each element. The final entry is an
integer tag value that can be used in the loading function file.

A.3.8 Loading Function

The loading function file is like the interface file in that it is a snippet of C code
that is compiled when the simulation runs. In this snippet, a loadValue is assigned that
can depend on the load type, element or node indices, nodal position, loading tag or
simulation time.
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A.4 Running the Solver

The solver takes a total of 22 input arguments with the file names requiring their full
paths:

• Custom directory: a directory used to save the compiled interface and loading
function files

• Node file

• Elements file

• Element properties file

• Initial conditions file

• Parameters file

• Interface file

• Loading file

• Loading function file

• Stress11 file: mathematica format output, pass /dev/null

• Stress12 file: mathematica format output, pass /dev/null

• Stress22 file: mathematica format output, pass /dev/null

• Yield count file: mathematica format output, pass /dev/null

• Kinetic energy file: mathematica format output, pass /dev/null

• Strain energy file: mathematica format output, pass /dev/null

• Total kinetic energy file: a listing of the total kinetic energy at each output time
step

• Total strain energy file: a listing of the total strain energy at each output time step

• Velocity file: a listing of the nodal velocities at all nodes for all output time steps

• Acceleration file: a listing of the nodal accelerations at all nodes for all output time
steps

• Checksum file

• VTK file prefix: prefix for the main output files that contains the stresses, displace-
ments, kinetic and strain energies
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The main output files are a series of sequentially numbered files created with the VTK file
prefix and saved as a vtu file. This file standard is read by ParaView or other programs.
It contains all the output data except of the velocities and accelerations. The other
output files were specifically used by Will and Rone, but not ideal nor space efficient.

A.5 Conclusion

While not fully exhaustive, this working document hopes to hold some information
about running the distributed cohesive zone solver. It is my hope that a reader has gained
some knowledge about running a simulation but it is understood that further questions
may arise.
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B.1 Introduction

This document explains how to install and use the alpha version of the multiphysics
framework developed by Stephen Sehr at UCSB. The framework is limited to a single
geometry exposed to oxygen but the user may change geometric and material parameters.
In this version, the source code is not available. To minimize compatibility issues, the
framework executable is distributed as a Docker image. The only requirements are:

A. Docker Desktop to run the framework

B. ParaView to view the results

Both pieces of software have versions for Windows, macOS and various Linux distribu-
tions. Docker is a system to run software within a “container” instead of natively on a
host computer. The container is essentially a small virtual machine used to emulate the
operating system the executable needs to run. A container is run from an image file that
includes all necessary files and applications.

B.2 Installation

A. Download and install Docker Desktop (www.docker.com/products/docker-desktop)

B. Download and install ParaView (www.paraview.org/download/)

C. Download and unzip the archive named mp solver.zip which contains the Docker
image file (as a tar file), an example input file and a copy of these instructions.

D. Open a terminal window and load the image with the command:
docker image load -i path/to/image/file

The multiphysics framework should now be installed and ready to be run.
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B.3 Running the Solver

B.3.1 Examples

To run, the multiphysics framework needs an input file that defines certain geometric
and material properties. An example input file in located within the example directory.
To run the example simulation, open a terminal window and enter the command
docker run -v <PATH>:/data mp solver:0.9

where <PATH> is the full path to either of the example geometry directories (either
fiber example or EBC example). Either simulation should complete within a few min-
utes. The results will be written to the correct example directory and can be viewed
with ParaView.

Each simulation should exist within its own directory and the input file should be
named input.txt within that directory. If that is the case the simulation is run by the
command
docker run -v /path/to/simulation/directory:/data mp solver:0.9

The -v option maps /path/to/simulation/directory on the host computer to /data

within the container.

B.3.2 Options for docker run

Many optional flags are available for the docker run command. The reader is directed
to the Docker web documentation (or docker run --help for a full listing. A few of the
flags that may be useful are:

• -v: Maps a directory on the host computer to a specifically created directory within
the container. The path on the host computer must be the full path, not a relative
path from the current working directory.

• --rm: Removes the container once it has finished.

• -d: Detaches the running container from the current terminal. This allows multiple
simulations to be started from the same terminal window.

It should be noted that -v and -d used a single dash while --rm uses two.

B.3.3 Arbitrary Input File

Input files named other than input.txt can be used by passing the name of the input
file as an argument at the end of the docker run command. For example, if the input
file is named new input.txt the run command is
docker run --rm -d -v <PATH>:/data mp solver:0.9 new input.txt

with the recommended options.

166



Multiphysics Solver User Manual Chapter B

B.4 Example Geometries

B.4.1 Bare Fiber

The first example geometry is a single uncoated silicon carbide fiber. For simplic-
ity, only a quarter of the cross section of the fiber is modeled. Appropriate boundary
conditions are applied to approximate a full fiber. The outer edge of the fiber is a thin,
existing oxide which is exposed to dry air.

SiO2

SiC

ho

ro

(a) SiC

h

SiO2

r

(b)

Figure B.1: Example single fiber geometry.

B.4.2 Oxidation Under an EBC

The second example geometry included in this package is shown in Figure B.2. A
silicon carbide substrate has a protective coating applied with a thin initial oxide layer
between the silicon carbide and the protective layer. The top edge of the protective layer
is exposed to oxygen at a constant temperature. A through-thickness crack exists in the
protective layer that acts as a fast diffusion pathway.

B.5 Input Files

The input file is a simple text file of space separated keywords and values. The first
keyword must be geometry followed by a value of fiber or EBC. If this first line is not
present an error will be thrown and the simulation terminated. The parameters that may
be altered in a simulation are shown in Table B.1 along with their default values. Each
default is overridden by including a line in the input file such as
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crack spacing, s

width, δ

substrate 
thickness, H

initial oxide
thickness, ho

barrier coating
thickness, hb

fixed atmosphere
concentration

no flux

evolving
oxide/substrate

boundary

no flux fixed uniform
displacement

Db

Dc

Dox

elastic
Eb, vb

elastic
Es, vs

zero 
modulus

nonlinear
viscoelasticity

(A) (B)

(NOT TO SCALE)

x

y

x

y

Figure B.2: Example geometry included in this alpha version.

keyword value

The example input files show how to override the defaults for some different parameters.

B.6 Summary of Outputs

With default parameters, the multiphysics framework outputs three types of files to
the base path directory:

• log.txt: Output log primarily showing when an output file is saved

• errors.txt: Error log file that will be blank if there are no errors

• file prefix*.vtu where * is an integer: Series of result output files that can be
read by ParaView.

Three additional output file types are optional and are primarily used for debugging:

• file prefix <region> *.vtu: ParaView compatible file for each geometric do-
main (crack, oxide, substrate or coating)

• file prefix segments *.vtu: ParaView compatible file with the points and line
segments used to create the triangulation

• timing.txt: Timing log file showing specific time information for various parts of
each step

If an error occurs, the segments and <region> files are written with ERROR in the
name in order to help diagnose the source of the problem. Errors are discussed below.
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Table B.1: Table of default parameters
Keyword EBC default Fiber default Description Source
base path ./ ./ Path to the directory where output files are

written relative to the simulation directory
file prefix EBC fiber File prefix for the output files
crack width 1 µm - Crack opening

crack spacing 25 µm - Horizontal distance between
crack centerlines

coating thickness 25 µm - Thickness of protective coating
fiber radius - 3µm Fiber radius
D coating 0.1 µm2/s - Diffusivity of protective coating

substrate thickness 500 µm - Thickness of the silicon carbide substrate
ox t 0.1 µm 0.005 µm Initial thickness of oxide layer

num growth steps 2000 99 Total number of time steps in simulation
dump int 20 10 Number of time steps between outputs

dt 1800 seconds 500 Time step size
min area 0.001 µm2 5× 10−6 µm2 Minimum element size

refine radius 0.1 µm 0.1µm Controls the transition from
small to large elements

D SiC 0 µm2/s 0µm2/s Diffusivity of silicon
carbide substrate

E SiC 400 GPa 400 GPa Young’s modulus of
silicon carbide substrate Hay (2012) J. App. Physics

nu SiC 0.35 0.35 Poisson’s ratio of
silicon carbide substrate

rxn rate SiC 10 µm/s 10µm/s Surface reaction rate
E coating 180 GPa - Young’s modulus of protective coating
nu coating 0.27 - Poisson’s ratio of protective coating

D SiO2 0.725 µm2/s 0.725µm2/s Diffusivity of the oxide Norton (1961) Nature
eps SiO2 0.3 0.3 Linear expansion strain

associated with oxidation
E SiO2 70 GPa 70 GPa Young’s modulus of oxide Hay (2012) J. App. Physics
nu SiO2 0.17 0.17 Poisson’s ratio of oxide Hay (2012) J. App. Physics
D crack set by crack width - Diffusivity of the crack

Temperature 1000◦C 1000◦C Temperature
point equal 1e-6 µm 1× 10−6 µm Tolerance for distance

measurements
applied strain 0 - Applied horizontal strain
applied stress 0 GPa - Applied horizontal stress
output polygons false false Output material polygons (debugging)
output segments false false Output points and segments used

to create the mesh (debugging)
output timing false false Output timing log (debugging)

B.7 Troubleshooting

The multiphysics framework includes limited error handling and does not check for
invalid inputs. Most computational errors are first observed when the displacement or
concentration finite element equations are solved. If the results include non-numeric val-
ues (such as NaN), the solver outputs an error message and saves debugging information
before attempting to back up to the previous saved output. It was found that this some-
times allowed the simulation to proceed. If the simulation still failed at the same step,
it exits showing an error message.

In general, the solver is fairly stable when provided valid inputs. Few, if any, crashes
were observed with the single fiber geometry. The majority of crashed simulations occur
with the EBC geometry are preceded by geometric instabilities where multiple domains
meet. Specifically, the instabilities typically occur at the junction between the crack,
oxide and protective coating domains. The source of the instability is not currently
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known but is more likely to occur by increasing either the crack spacing or the applied
stress. It was observed that a simulation that fails might be able to be successfully run by
slightly altering the crack spacing, crack width or D coating by less than 1% allowed
the simulation to run to completion.
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