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Revisiting the t0.5 Dependence of SEI Growth
Peter M. Attia,1,*,z William C. Chueh,1,** and Stephen J. Harris1,2,z

1Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States of
America
2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States of America

SEI growth in lithium-ion batteries is commonly assumed to scale with t0.5, in line with simple models of diffusion-limited surface
layer growth. As a result, this model is widely used for empirical predictions of capacity fade in lithium-ion batteries. However,
the t0.5 model is generally not theoretically sufficient to describe all of the various SEI growth modes. Furthermore, previous
literature has not convincingly demonstrated that this model provides the best fit to measurements of SEI growth. In this work, we
discuss the theoretical assumptions of the t0.5 model, evaluate claims of t0.5 dependence in six previously published datasets and
one new dataset, and compare the performance of this model to that of other models. We find that few of the purported t0.5 fits in
literature are statistically justified, although t0.5 generally describes SEI growth during storage better than SEI growth during
cycling. Finally, we evaluate how the fitted exponents in the power-law models vary as a function of time, and we illustrate the
limitations of using t0.5 for prediction without validating its applicability to a particular dataset. This work illustrates the theoretical
and empirical limitations of the t0.5 model and highlights alternatives for more accurate estimates and predictions of SEI growth.
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ab8ce4]
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Growth of the solid-electrolyte interphase (SEI), the product of
electrolyte degradation products accumulating on the surface of the
negative electrode, is among the most common lithium-ion battery
degradation modes.1–5 First reported by Peled1 in 1979, SEI growth
consumes active lithium and reduces the overall capacity of the
battery. However, the SEI has historically been challenging to
characterize.2,5,6 A better understanding of the kinetics of SEI
growth—including its dependence on time—will enable more
accurate models and predictions of battery lifetime.

The time dependence of SEI growth has been extensively
measured and modeled. Many experimental measurements of the
time dependence of SEI growth on graphitic negative electrodes
report a square-root dependence on time (t0.5). These studies
measure the capacity decrease7,8 or impedance increase9,10 during
battery storage7,9,10 and cycling,8–10 attributing all degradation to
SEI growth (in this work, “storage” refers to both open-circuit and
constant-voltage conditions, often referred to as “calendar aging”).
As a whole, t0.5 models have been reported to perform well in
capturing degradation kinetics during storage and gentle cycling, i.e.
when degradation occurs primarily from SEI growth. Accordingly,
many SEI growth models often assume t0.5 scaling relationships,7,11–15

which are often justified by comparison to simple diffusion-reaction
models of surface layer growth.16,17

Given both the complexity of SEI growth and the variety of
conditions under which it grows, it would be surprising if a model as
simple as t0.5 could accurately describe SEI growth in a wide range
of circumstances. Furthermore, due to the historical precedent of the
t0.5 model, evaluating and comparing alternative models to experi-
mental data is not common in the SEI literature. However, careful
model selection is important both for validating scientific claims of
the time dependence of SEI growth and for predicting capacity fade
and resistance growth.

In this work, we revisit both the theoretical justification and
experimental evidence for the t0.5 dependence of SEI growth. We
show that many of the assumptions in classic surface film growth
models are not satisfied for SEI growth in typical battery systems.
We then demonstrate how a comparison of multiple models can lead

to improved descriptions and predictions of SEI-induced capacity
fade. We compare the performance of the t0.5 model to two
generalized power-law models for six literature datasets and one
new dataset measuring the time dependence of SEI growth on carbon
electrodes. Our results demonstrate that 0.5 often lies outside the
95% confidence intervals (CIs) of the fitted exponents in the
generalized power laws, indicating that these t0.5 models of SEI
growth generally have poor statistical justification. Moreover, the
generalized power laws often outperform the t0.5 model in describing
SEI growth. Finally, we evaluate the sensitivity of the power-law
exponent to the timescale of the fit and illustrate the model selection
process for empirical lifetime prediction. Overall, while the t0.5

model performs adequately in some instances, we encourage the
consideration of alternative models given the poor theoretical and
empirical justification of the t0.5 model in describing SEI growth.

Theoretical Justification for the t0.5 Model

Comparison to classical surface film growth.—We start by
revisiting the theoretical underpinnings of the t0.5 model of SEI
growth. Generally, a t0.5 dependence is the signature of a diffusion-
limited process, including random walks and the Sand and Cottrell
equations in electrochemistry.18 In the simplest case of diffusion-
limited growth, the growth of surface films also scales with t0.5.
Evans16 first presented a model of one-dimensional diffusion-reaction
kinetics of surface film growth in 1924, which was adapted by later
works such as Deal and Grove17 to describe the thermal oxidation of
silicon to form silicon oxide, Si + O2 → SiO2 (Fig. 1). Neglecting the
gas adsorption term, this model has three key assumptions:

A. The diffusion of oxidant (e.g. oxygen) is faster than the
diffusion of substrate (e.g. silicon) through the surface film (e.g.
SiO2). As a result, the reaction occurs at the interface between the
surface film and the substrate. The flux of oxidant through the film,
Jdiff, is given by Fick’s first law, which can be approximated with a
linear gradient at steady state:
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Here, D is the diffusivity of oxidant in the film; Co and Ci are the
concentrations of oxidant at the outer and inner interfaces, respec-
tively; and xfilm is the thickness of the surface film.zE-mail: peter.m.attia@gmail.com; sjharris@lbl.gov

*Electrochemical Society Student Member.
**Electrochemical Society Member.

Journal of The Electrochemical Society, 2020 167 090535

https://orcid.org/0000-0003-4745-5726
https://orcid.org/0000-0002-7066-3470
https://orcid.org/0000-0002-5211-3934
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1149/1945-7111/ab8ce4
https://doi.org/10.1149/1945-7111/ab8ce4
https://iopscience.iop.org/issue/1945-7111/167/9
https://iopscience.iop.org/issue/1945-7111/167/9
https://doi.org/10.1149/1945-7111/ab8ce4
mailto:peter.m.attia@gmail.com
mailto:sjharris@lbl.gov
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ab8ce4&domain=pdf&date_stamp=2020-05-08


B. Oxidant that reaches the film/substrate interface chemically
reacts with the substrate to form the surface film. The reaction flux,
Jrxn, is a first-order reaction with respect to the oxidant:

[ ]=J kC 2rxn i

Here, k is the rate constant. While film formation generally
involves at least two reactants (e.g. Si and O), the rate is only
governed by the concentration of one species if the concentration of
the other species is in excess.

C. The system is at steady state (i.e. invariant with time), at
which point the fluxes are equal:

[ ]= =J J J 3diff rxn

If the surface film growth rate, dxoxide/dt, is proportional to the
steady-state flux J, we arrive at the following expression after
integration with respect to time17:

( ) [ ]t+ = +x Ax B t 4film film
2

Here, A, B, and τ are constants. Thus, the thickness is predicted to
scale with t0.5 at large thicknesses and long times (i.e. µx tfilm

2 when
x Axfilm film

2 and  tt ). This model successfully describes oxide
layer growth on silicon under many conditons.17

Parabolic growth laws are commonly observed in oxidation
processes, especially at high temperatures and large thicknesses
(>600 nm).19,20 However, a wide variety of other time dependences
have been both theoretically derived and/or experimentally ob-
served, including linear ( µx tfilm ), cubic ( µx tfilm

3 ), quartic
( µx tfilm

4 ), logarithmic ( µx tlnfilm ), inverse logarithmic
( /µx t1 lnfilm ), and others.19,20 Some factors that can lead to
different growth modes include the nature of the transporting
species, morphological features including cracks and grain bound-
aries, surface chemistry and orientation, space charge effects, and
tunneling effects.19,20 Furthermore, multiple growth modes will

occur for the same system during different time regimes (i.e. initial,
intermediate, and long-term growth). For example, the Deal-Grove
model yields linear growth at short times (Eq. 4). Additionally, the
Deal-Grove model breaks down for silicon in the initial stages of
growth, where the growth rate exponentially decays with film
thickness.21

For SEI growth, two main candidates are generally considered
for the rate-limiting transporting species (at least in the one-
dimensional case): electrons reacting at the electrolyte/SEI interface
(“outer” SEI growth)1,5,7,12 or solvent/salt anions reacting at the SEI/
electrode interface (“inner” SEI growth).12–14 This uncertainty in the
true rate-limiting species leads to many possibilities for the rate-
limiting transport step beyond pure diffusion. If the rate-limiting
species is charged (e.g., electrons), more complex transport modes
such as migration must be considered in addition to diffusion.
Additionally, many of the factors that lead to non-parabolic time
scaling in the oxidation literature may be relevant to SEI growth,
such as space charge effects,1 complex and three-dimensional
morphologies,5 electron tunneling,12 complex (i.e. non-first-order)
reaction orders,3 and multiple growth regimes.15 Thus, SEI growth is
unlikely to be limited simply by diffusion, especially across different
time and length scales.

SEI growth mechanisms.—Unlike surface film growth in passi-
vation, SEI growth can be classified into three growth modes based on
the sources and sinks of lithium ions and electrons: electrochemical,
chemical, and thermal (Fig. 2). Each of these modes is expected to
have a different dependence on time and other environmental
parameters; however, only chemical SEI growth approximates clas-
sical film growth kinetics. A detailed description of reactions and
interfaces present in electrochemistry is provided by Li and Chueh.22

Electrochemical SEI growth occurs when lithium ions from the
electrolyte, electrons from the current collector, and electrolyte react
to form SEI product. Electrochemical SEI growth requires a non-
zero current, meaning it occurs during both cycling and constant-
voltage conditions. In electrochemical SEI growth, the assumptions
of the Deal-Grove model are often violated. Specifically, the
transport gradients and reaction driving forces in a battery electrode
(and its SEI) vary substantially over the course of a charge-discharge
cycle, with timescales (∼minutes–hours) typically much faster than
those of SEI growth (∼days–months). Thus, the substrate cannot be
considered time invariant at typical cycling rates, and the steady-
state assumption of classical surface-film growth models like Deal-
Grove is broken. Furthermore, the SEI growth kinetics may be
coupled to the intercalation process, as suggested by our previous
work26,27 showing that the SEI growth rate is much higher during
lithiation than during delithiation. For these reasons, SEI growth
during cycling bears little resemblance to Deal-Grove kinetics (i.e.
its growth is not strictly diffusion-limited), and thus the t0.5 scaling
that results from these models is not applicable.

Chemical SEI growth occurs when neutral lithium (i.e. a lithium
ion with an electron) in the electrode reacts with electrolyte. This
mode of SEI growth occurs during both storage and cycling and is a
dominant degradation mode during “calendar aging.” This chemical
deinsertion reaction does not involve net charge transfer, and its
driving force is the chemical potential difference between lithium in
the electrode and oxidized lithium in the SEI. In this way, chemical
SEI growth is more analogous to chemical oxidation of metals and
semiconductors. However, for graphite electrodes, the lithium
concentration in the electrode decreases due to self-delithiation,
which decreases the driving force and thus decreases the flux.
Because the timescale of major changes to the system can be much
faster than the timescale of SEI growth, the system cannot always be
assumed to be in steady state. This violation may be neglected as
long as the graphite electrode is in a phase transition, since the
chemical potential of lithium in graphite during a phase transition is
constant (and thus the SEI driving force is too). Keil et al.28

confirmed that SEI growth rates in full cells largely track to the
potential of the graphitic electrode; Single et al.29 modeled found

Figure 1. Schematic of the Deal-Grove model of one-dimensional silicon
oxidation, an example of a mixed reaction-diffusion process (scaling with t0.5

at long times). Oxidation occurs when oxygen transports through the oxide
and reacts with silicon to form silicon dioxide. Oxygen transport is diffusive
and governed by Fick’s first law (where the derivative is approximated as a

difference at steady state), ( )= -J D ,diff
C C

x
o i

film
where D is the diffusivity of

oxygen in silicon dioxide; Co and Ci are the concentrations of oxygen at the
outer and inner interfaces, respectively; and xoxide is the thickness of the
oxide layer. Oxygen reaction is approximated by a first-order kinetic model,

=J kC ,rxn o where k is the rate constant. At steady state, the diffusion and
reaction fluxes are equal. The oxygen incorporation step at the gas-oxide
interface is neglected in this depiction.
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that the diffusion of lithium interstitials was the mechanism that best
captured these data. Overall, chemical SEI growth bears some
resemblance to Deal-Grove kinetics and thus has some theoretical
basis for t0.5 scaling.

Finally, thermal SEI growth occurs when electrolyte molecules
spontaneously decompose and deposit SEI products on the electrode
surface without exchanging lithium with the electrode. Thermal SEI
growth can occur both during cycling and storage; the driving force
for this reaction is the instability of electrolyte components at high
temperature. For example, lithium hexafluorophosphate salt (LiPF6)
decomposes at around 85 °C, producing LiF and PF5.

23–25 Unlike
chemical and electrochemical SEI growth, thermal SEI growth does
not directly lead to capacity fade but could lead to an increase in
impedance. Thermal SEI growth is generally reaction-limited due to
the initiating unimolecular reaction, although diffusion limitations
could come into play (i.e. to carry product towards the surface within
the electrolyte). Furthermore, the reaction occurs within the liquid
electrolyte, not at an interface. Thus, thermal SEI growth has little
resemblance to Deal-Grove kinetics, and thus the t0.5 scaling that
results from these models is not applicable.

Interaction between SEI and electrode chemistry.—One rele-
vant system that satisfies the basic assumptions of the Deal-Grove
model is SEI growth on lithium metal during rest. Specifically, the
assumption of a constant reaction driving force assumption holds for
lithium metal, but not graphite, because its electrode potential is
constant with lithium composition. In his early SEI work, Peled’s
theoretical analysis1 indicated that SEI growth on lithium metal
should follow t0.5 scaling at long times, but he reports that the
observed power-law exponents for its growth actually range between
0.2–0.5. This result suggests that SEI growth mechanisms are likely
more complex than standard diffusion.

Given the sub-0.5 observed exponents, we speculatively mention
that the transport of electrons or solvent through the SEI may be a
subdiffusive process. Subdiffusion is a case of “anomalous diffu-
sion” in which the mean square displacement scales as ~ br t ,2 with

b< <0 1.30 Subdiffusion is commonly reported in complex
biological systems with “traps” and/or “dead ends” along the
transport path31—a possibility for transport paths in the SEI.

Summary of the theoretical justification for t0.5.—We suggest
that our fundamental understanding of SEI growth kinetics is
insufficient to support the theoretical description of a diffusion-limited

Figure 2. Schematics of three major SEI growth modes, which are governed by the sources and sinks of lithium ions and electrons. The specific SEI reaction/
deposition interface is presented ambiguously due to our uncertainty in its actual location (i.e. “outer” or “inner” growth). (a) Electrochemical SEI growth. In this
growth mode, lithium ions arrive at the interface from the electrolyte. Electrochemical SEI growth can occur whenever current is passed (cycling and constant-
voltage conditions) and is a major contributor to capacity fade. Because an electrode cycling at typical rates experiences dramatic changes in its potential with
time (at a timescale much faster than SEI growth), the steady-state assumption of classical surface-film growth models like Deal-Grove is broken, and thus the t0.5

scaling that results from these models is not applicable. (b) Chemical SEI growth. In this growth mode, ambipolar lithium arrives at the interface from the
lithiated electrode. Chemical SEI growth can occur during both cycling and storage and is a major contributor to capacity fade, particularly during “calendar
aging.” Chemical SEI growth bears some similarities to classical surface-film growth models like Deal-Grove. However, the self-delithiation of the electrode
during this process can change the electrode composition and potential, which is dissimilar from classical surface-film growth models. (c) Thermal SEI growth.
In this growth mode, SEI products arrive at the interface from the electrolyte. Thermal SEI growth occurs when electrolyte molecules spontaneously decompose
and deposit SEI products on the electrode surface at high temperature; for example, lithium hexafluorophosphate salt (LiPF6) decomposes at around 85 °C to
produce LiF and PF5.

23–25 This type of SEI growth can occur both during cycling and storage. Unlike chemical and electrochemical SEI growth, thermal SEI
growth does not directly lead to capacity fade but can lead to impedance growth. Thermal SEI growth has little resemblance to classical surface-film growth
models like Deal-Grove, and thus the t0.5 scaling that results from these models is not applicable.

Figure 3. Problems with fitting power-law relationships with an assumed
functional form such as x0.5. (a) A dataset is generated by y = 5x0.3 and fit to
ŷ = ax0.5 + b. The model appears to fit the data well, with an R2 value just
above 0.99. (b) The residuals of the fit exhibit a systematic trend—a clear
indication that the fit does not capture the true functional form of the data.
This model will increasingly overestimate the true values of y as x increases.
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process conforming strictly to t0.5, even during later stages of growth.
Furthermore, electrochemical and thermal SEI growth modes violate
essential assumptions of the classical kinetics of surface layer growth.
Thus, while t0.5 may be sufficient for first-order estimates and
predictions of SEI-driven capacity fade—particularly in the absence
of experimental data—more advanced and complex SEI models that
capture the complex behavior of the intercalating substrate during
cycling15,27 are important steps towards modeling SEI growth under
relevant operating conditions. These efforts will be aided by advanced
experimental characterization of SEI growth.

Empirical Evidence for the t0.5 Model

In many contexts, the t0.5 model has little theoretical justification
to describe SEI growth. However, were this model to have broad
empirical support, its use in practical applications would not be
problematic and would perhaps be encouraged. However, as we
show in this section, this model is often not the best choice for fitting
experimental measurements of SEI growth. Maximizing accuracy is
important for sensitive predictions of battery lifetime, both when
incorporating models of SEI growth into physical degradation
models and when extrapolating capacity fade data to predict future
performance.

Statistical methodology.—A common practice in previous SEI
work is to fit data to a t0.5 model, such as ŷ = at0.5 or ŷ = at0.5 + b,
where ŷ is some measure of capacity fade (variables with a “hat”
represent fits, as opposed to measurements). These fits are then
justified via a visual inspection of the trend line and a high
coefficient of determination (R2). However, this approach neither
validates scientific claims of t0.5 dependence, nor demonstrates a
high-quality fit that captures the true functional form of the data.
Claims of agreement between estimated and true parameters are
incomplete without some measure of uncertainty of the estimated
parameter. Additionally, R2 has repeatedly been shown to be a
misleading measure of goodness-of-fit, as notably illustrated by
Anscombe’s quartet.32 Since R2 specifically looks at the strength of
the linear relationship between two variables, a fit can have a high R2

yet fail to capture the underlying functional form of the data.
While many statistical tools for assessing goodness-of-fit are

used today, one of the simplest yet most effective methods is
graphical analysis of the residuals. Residuals are defined as the
difference between the true and predicted values of the dependent
variable. The main criterion to evaluate in residual analysis is
randomness; any systematic trend in the residuals (autocorrelation)
indicates that the fit has failed to capture the underlying structure of

Figure 4. Comparison of t0.5 and power-law fits to the data presented in Fig. 6 of Broussely et al.7 (a) Capacity loss (l, %) vs time for two
LiNi0.81Co0.09O2/graphite [sic] cylindrical cells stored at a constant voltage of 3.8 V and temperatures of 30 °C and 60 °C (“Proto” cells). Both series are fit
to three different models: ˆ = +l at b,0.5 ˆ =l at ,b and ˆ = +l at c.b Only one of the fitted exponents contains 0.5 in its 95% CI. The Radj

2 values of all models are
comparable. (b), (c) Residuals of the three fits for (b) 30 °C and (c) 60 °C. The residuals of all models appear fairly random.

Journal of The Electrochemical Society, 2020 167 090535



the data. Residual analysis is useful as both a comparative and
absolute tool for assessing goodness-of-fit. This method, while
qualitative, offers an intuitive, visual understanding of model
performance; in contrast, summary statistics like R2 are quantitative
metrics but can often be misleading.

Figure 3 illustrates both the pitfalls of relying on R2 and
“eyeballing” trend lines, and the advantages of residual analysis.
We generated noiseless data with an x0.3 functional dependence
(Fig. 3a). A x0.5 model, y = ax0.5 + b, appears to fit the data well: the
trendline passes through the data, and the R2 exceeds 0.99. However,
graphical examination of the residuals reveals a systematic trend
(Fig. 3b). Any curvature observed in the residuals (taking the shape
of a “U” or “inverted U”) indicates the presence of a nonlinear effect
that is not captured by the model. Thus, this model does not capture
the true functional form of the data; the model will be increasingly
unreliable when used to predict the value of y at larger values of x.

In this section, we reevaluate the time dependence of SEI growth,
and its purported t0.5 dependence, for six selected datasets from the
SEI literature and one new dataset. These datasets were selected for
their prominence in the literature, likelihood of all measured

degradation being from SEI growth, and/or their data quality (i.e.
large number of data points and low noise). However, we emphasize
that other effects may convolute these measurements of SEI growth,
such as SEI growth on the positive electrode in full cells, active
material loss, impedance growth, current inhomogeneity,33 electrode
interactions (“cross-talk”),34–37 and overhang effects.38,39 We also
selected datasets that quantify SEI growth by measuring either
capacity fade or impedance growth, during either storage or cycling,
and in either half cells and full cells. All datasets measure SEI
growth via electrochemical techniques, which are generally precise
(low noise). Electrochemical measurements capture the effects
averaged over the entire cell, which ensures all regions of the cell
are equally represented but may mask heterogeneities in local SEI
growth rates.33

Our statistical approach has four components:

1. Compare multiple models for each series. Specifically, we
choose three nonlinear univariate models for comparison:
ˆ = +y at b,0.5 ˆ =y at ,b and ˆ = +y at c.b We emphasize that
these models are empirical and have little theoretical

Figure 5. Comparison of t0.5 and power-law fits to the data presented in Fig. 1 of Wright et al.10 (a) Discharge resistance (Rdis, mΩ) vs time for three
LiNi0.8Co0.1O2/graphite cylindrical cells stored at temperatures of 40 °C, 50 °C, and 70 °C (the 60 °C data was difficult to extract). The three series are fit to three
different models: ˆ = +R at b,dis

0.5 ˆ =R at ,dis
b and ˆ = +R at c.dis

b The exponents of the three-term power-law fit are close to 0.5, but 0.5 falls outside of the
95% CIs for all fitted exponents. The Radj

2 values of the t0.5 and three-term power-law models are comparable. The two-term power-law fit performs poorly, likely
due to the small variation in R̂dis relative to its initial value. (b, c) Residuals of the three fits for (b) 40 °C and (c) 70 °C. The residuals of the t0.5 and the three-term
power-law models appear fairly random, while the two-term power-law model exhibits an obvious systematic trend.
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justification; the generalized power-law fits were inspired by the
many power-law scaling relationships in the oxidation
literature,19,20 and by no means is this model set exhaustive
(we evaluate additional functional forms for one series in Fig.
S1, which is available online at stacks.iop.org/JES/167/090535/
mmedia). The use of power laws also provides a basis for
evaluating claims of t0.5 dependence. All models are fit with an
unweighted nonlinear regression solver (as opposed to linear
regression of transformed functions).

2. Include 95% confidence intervals (CIs) for the exponents in the
power-law models. The 95% confidence interval of a parameter
is the range of values for which the true value of parameter lies
within, to 95% confidence. We include these to evaluate claims
of t0.5 dependence; if 0.5 falls outside the range of the 95% CI
for the exponents in the power-law fits, the t0.5 model is not
statistically justified (at least with the selected power-law
models). Here we use profile likelihood CIs calculated using
the F test for nested models, which are asymmetric around the

estimated value of the parameter. These values are more
representative of the true CIs for nonlinear regression models
than the asymptotic approximate symmetrical CIs, which al-
ways underestimate the true CI.40–42 However, we found that
the difference between the two methods was negligible for these
datasets; as a result, we represent the 95% CIs symmetrically
(i.e. using ±) for simplicity.

3. Include adjusted R2 (Radj
2 ) for each fit. Specifically, we calculate

Radj
2 between the predicted response and the observed response,

as opposed to between the observed response and the predictor
(which is not valid for nonlinear regression). One problem with
R2 as a comparative metric is that it always increases with more
parameters, which unfairly penalizes simpler models. In con-
trast, Radj

2 penalizes the use of additional fitting terms. We
include this metric for three purposes: first, to compare models
via an (overly) simple summary statistic; second, to illustrate
that high values of Radj

2 can obtained for most fits, making it an
unreliable metric of goodness-of-fit; and third, to illustrate how

Figure 6. Comparison of t0.5 and power-law fits to the data presented in Fig. 7 of Smith et al.8 (a) Total irreversible capacity (mAh/g) vs time for graphite/
lithium coin cells cycling at temperatures of 30 °C, 40 °C, and 50 °C and a rate of C/10 (the C/10 data was used since more data points were available). The data
were measured using high-precision coulometry and temperature controlled to within ±0.1 °C. The three series are fit to three different models: ˆ = +y at b,0.5

ˆ =y at ,b and ˆ = +y at c.b The fits from the power-law models generally have higher Radj
2 values, and their exponents are much lower than 0.5. None of the

fitted exponents contain 0.5 in their 95% CIs. Note that we evaluate additional functional forms for the 30 °C series in Fig. S1; again, none of the 95% CIs of the
fitted exponents for the functional forms tested contain 0.5. (b), (c) Residuals of the three fits for (b) 30 °C and (c) 50 °C. The residuals of the t0.5 model generally
exhibit systematic trends, while the residuals of both power-law models exhibit stronger trends at 50 °C than at 30 °C.

Journal of The Electrochemical Society, 2020 167 090535

http://stacks.iop.org/JES/167/090535/mmedia
http://stacks.iop.org/JES/167/090535/mmedia


the models with the best correlative metrics (such as Radj
2 ) may

not have the bets predictive metrics (relevant if prediction is an
objective of the fitting process).

4. Include residual analysis for selected series from all datasets.
Note that residual analysis will always favor higher-parameter
models, since this method has no penalty for overfitting. Unlike
our use of Radj

2 as a comparative metric, we use residual analysis
as an absolute method for determining goodness-of-fit. That is,
we should use a model with enough complexity to obtain an
acceptable fit, but not overly simple to avoid underfitting nor
overly complex to avoid overfitting.

All literature data were extracted from the published figures using
WebPlotDigitizer,43 which has been shown to be a reliable data
extraction method.44,45 We found that triplicate extractions agreed
within <0.1% on average (relative standard error). All data and code
used in this analysis are publicly available online.46

Literature review.—We now reevaluate the time dependence of
SEI growth in each of the seven datasets. We mention that these
results may be sensitive to data manipulations such as baseline

subtraction and normalization; for instance, a baseline subtraction
will change the goodness-of-fit for the two-term power-law model,
but not for the selected t0.5 model and the three-term power-law
model (since both have intercept terms).

Broussely et al.7 performed some of the earliest published studies
of capacity fade in lithium-ion batteries. Figure 6 of Broussely et al.7

presents two LiNi0.81Co0.09O2/graphite [sic] cylindrical cells stored
at a constant voltage of 3.8 V and temperatures of 30 °C and 60 °C
(“Proto” cells), with periodically evaluated capacities. The timescale
of this dataset exceeds 400 d.

We evaluated fits to these data in Fig. 4. We find that the Radj
2

values of all models are comparable, and the residuals of all fits to
both datasets generally appear random. The exponents of the power-
law fits are quite close to 0.5 (maximum deviation = 0.11).
However, only one fitted exponent (three-term power law, 60 °C)
contains 0.5 in its 95% CIs. In this case, the t0.5 model actually yields
similar results to the generalized power-law models; however,
strictly speaking, an exponent of 0.5 is only justified in one of the
four fits.

Wright et al.10 also performed early studies of SEI growth in
LiNi0.8Co0.2O2/graphite cylindrical cells during storage and cycling.
This work quantified SEI growth using the increase in the discharge
resistance (Rdis) from a reference performance test. The timescale of
these experiments is approximately one month.

We evaluated the storage data at temperatures of 40 °C, 50 °C,
and 70 °C from Fig. 1 of Wright et al.10 in Fig. 5. The Radj

2 values of
the t0.5 and three-term power-law models are comparable, and the
residuals of the t0.5 and three-term power-law models are compar-
able and generally random. The exponents of the three-term power-
law fit are close to 0.5 (maximum deviation of 0.05). Again,
however, none of the 95% CIs of the fitted exponents contain 0.5.
The two-term power-law fit performs poorly, which is likely due to
the non-zero initial value of the data; in other words, a constant
offset is needed to accurately fit this dataset. Again, we find that
while the t0.5 model performs similarly to the three-term power-law
model, an exponent of 0.5 is technically not statistically justified for
all three series.

Smith et al.8 published seminal work on capacity fade in
graphite/lithium coin cells during low-rate cycling (C/24–C/10). In
this dataset, the capacity loss was carefully measured using high-
precision coulometry. Additionally, by using a lithium metal counter
electrode, the electrochemically-measured capacity loss can be
attributed solely to the graphitic electrode. Because the total capacity
of the lithium metal counter electrode is much larger than that of the
carbon electrode, its potential remains essentially constant during
low-rate cycling (even accounting for the redox potentials of SEI
reactions). Additionally, chemical SEI growth of lithium metal does
not influence the measured electrochemical signals. Thus, the only
measurable source of lithium inventory loss is SEI growth of the
graphite electrode. The cells were temperature controlled at various
temperatures to within ±0.1 °C, and the timescale of these experi-
ments is approximately 17 d.

We evaluated the C/10 cycling data at temperatures of 30 °C,
40 °C, and 50 °C from Fig. 7 of Smith et al.8 in Fig. 6. The fits from
the power-law models generally have higher Radj

2 values, and their
exponents are much lower than 0.5 (ranging from 0.16 to 0.37).
None of the 95% CIs of the fitted exponents contain 0.5.
Furthermore, we evaluate additional functional forms for the
30 °C series in Fig. S1; none of the 95% CIs of the fitted exponents
for the functional forms tested contain 0.5. The residuals appear
highly non-random for the t0.5 model of the 30 °C series; for the
50 °C series, all the residuals appear non-random. Overall, the t0.5

model performs poorly relative to generalized power-law models,
particularly for the 30 °C and 40 °C series.

Smith et al.47 also performed capacity fade studies in commercial
cells during cycling using high-precision coulometry. Figure 8 of this
work presents capacity fade measurements in a LiMn2O4/graphite
18650 cylindrical cell cycled at C/14 and 40 °C. The timescale of this
experiment is approximately 48 days.

Figure 7. Comparison of t0.5 and power-law fits to the data presented in Fig.
8 of Smith et al.47 (a) Capacity loss (l, %) vs cycle number for a
LiMn2O4/graphite cylindrical cell cycling at C/14 and 40 °C. The data
were measured using high-precision coulometry. The data are fit to three
different models: ˆ = +l at b,0.5 ˆ =l at ,b and ˆ = +l at c.b The fits from
the t0.5 and three-term power-law models have high and comparable Radj

2

values. None of the fitted exponents contain 0.5 in their 95% CIs.
(b) Residuals of the three fits. The residuals of all fits exhibit systematic
trends, but the trends in the two-term power-law model are most pronounced.
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We evaluated the data from Figure 8 of Smith et al.47 in Fig. 7.
The t0.5 and the three-term power-law models have comparable Radj

2

values and residuals. The fitted exponent from the three-term power-
law model is 0.48 ± 0.01. In contrast, the two-term power-law model
has a considerably lower Radj

2 value and more non-random residuals.
Overall, the t0.5 model performs comparably to the generalized
power-law models, although 0.5 is just outside of the 95% CI of the
exponent in the three-term power-law model. However, we note that
the residuals for all models have a systematic trend (“inverted U”
shape), implying that a different model yet may best capture the true
functional form of the data.

Fathi et al.48 also used high-precision coulometry to study
capacity loss during cycling. This dataset is notable due to its
experimental timescale of over ten years. Figure 2 of Fathi et al.48

displays capacity fade data from LiCoO2/graphite prismatic cells
cycling at rates of ∼C/6 and ∼C/150 for charge and discharge,
respectively, and a temperature of 37 °C.

We evaluated one cell each from the two aging groups (G3 and
G4) in Fig. 8. Here, we plot 1−Q/Q0, instead of Q/Q0, so that the
data is monotonically increasing and consistent with the other

datasets. The fits from the power-law models have somewhat higher
Radj

2 values, with fitted exponents of ∼0.4. However, none of the
95% CIs of the fitted exponents contain 0.5. The cell from Group 3
exhibits random residuals for all series; in contrast, the cell from
Group 4 exhibits systematic trends in the residuals, particularly for
the t0.5 model. Overall, generalized power-law models offer at least
slightly better performance than the t0.5 model.

Next, we evaluate a dataset from our own work26 on capacity
fade of carbon black/lithium coin cells during cycling. Carbon black
has high surface area and thus grows large amounts of SEI. These
cells were cycled at C/20 and a temperature of 30 °C; additional
experimental conditions are detailed in Attia et al.26 Similar to Smith
et al.,8 the SEI growth on lithium in carbon/lithium half cells is not
measured, so all measured lithium inventory loss can be attributed to
the carbon electrode. To study the effect of cell-to-cell variation in
fitting exponents, we selected three cells with identical cycling
conditions. Note that the high initial value arises from the anomalous
first-cycle SEI growth reaction.26,49

The fits to this dataset are presented in Fig. 9. The power-law fits
have much higher Radj

2 values and more random residuals than the

Figure 8. Comparison of t0.5 and power-law fits to the data presented in Fig. 2a of Fathi et al.48 (a) Capacity loss (l, %) vs time for LiCoO2/graphite prismatic
cells cycling at rates of ∼C/6 and ∼C/150 for charge and discharge, respectively, and a temperature of 37 °C. One cell from each aging groups (G3 and G4) was
selected for analysis. The two series are fit to three different models: ˆ = +l at b,0.5 ˆ =l at ,b and ˆ = +l at c.b The fits from the power-law models have
somewhat higher Radj

2 values, with exponents of ∼0.4. None of the fitted exponents contain 0.5 in their 95% CIs. The exponents from cells from the same group
do not vary substantially, indicating cell-to-cell variation is not a major effect in exponent determination. Note that the y-axis was flipped from the original figure.
(b), (c) Residuals of the three fits for (b) Group 3 and (c) Group 4. The residuals of all fits are fairly random, with the exception of the t0.5 model fit for Group 4.
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fits from the t0.5 model. The exponents are approximately 0.20 for
the two-term power-law models, and 0.5 is well outside of the 95%
CIs of all fitted exponents. The large and offsetting a and c terms of
the three-term power-law model indicate that these parameters may
be difficult to physically interpret. The exponents from these
nominally identical cells do not vary substantially, indicating cell-
to-cell variation is not a major effect in exponent determination for
these cells. Overall, the t0.5 model performs poorly for this dataset.

Finally, we evaluate a previously unpublished dataset from our
own work on capacity fade of carbon black/lithium coin cells during
open-circuit storage. As the carbon black electrode delithiates during
rest to grow SEI via a chemical reaction, the electrode potential
decreases. Thus, we can combine the voltage vs time during the rest
with the voltage vs capacity during delithiation to obtain SEI
capacity vs time during rest. A similar technique was previously
proposed by Levi et al.50 In our experiments, we cycle each cell for a
predetermined number of cycles between 0.01 V and 2.0 V at C/10
and 30 °C, ending in the fully lithiated state; subsequently, we
measure voltage vs time and convert to SEI capacity vs time. This

experiment allows us to evaluate both the time dependence of SEI
growth in carbon black during storage, as well as how this time
dependence changes as a function of “pre-cycling” (i.e. previous SEI
growth). The raw voltage vs time and voltage vs capacity traces are
presented in Fig. S2; details about cell construction and experimental
apparatus are identical to Attia et al.26

The fits to this dataset are presented in Fig. 10. Generally, the
power-law fits have higher Radj

2 values and more random residuals
than fits from the t0.5 model. All estimated exponent values are less
than 0.5, and 0.5 is well outside of the 95% CIs of all fitted
exponents. Interestingly, the exponents approach 0.5 for cells with
more pre-cycling. This result could indicate that SEI growth
approaches the diffusion-limited regime as the SEI gets thicker.
However, the lower values of the exponent (∼0.3) for cells with
little pre-cycling are surprising; exponent values above 0.5 are
typically expected in the reaction-limited regime. Overall, the t0.5

model performs poorly for this dataset. Importantly, this experiment
highlights how chemical SEI growth on carbon electrodes diverges
from the theory of classical diffusion-limited growth kinetics: the

Figure 9. Comparison of t0.5 and power-law fits to capacity fade in carbon black during cycling. (a) Total irreversible capacity (Qirr, mAh/g) vs time of three
carbon black/lithium coin cells cycling at C/20 and a temperature of 30 °C. Additional experimental conditions are detailed in Attia et al.26 The three series are fit
to three different models: ˆ = +y at b,0.5 ˆ =y at ,b and ˆ = +y at c.b The fits from the power-law models have much higher Radj

2 values, with exponents of ∼0.2
for the two-term power-law model. All fitted exponent values are far from 0.5; none of the fitted exponents contain 0.5 in their 95% CIs. The large and offsetting
a and c terms of the three-term power-law model indicate that this fit is somewhat unreliable. The exponents from these nominally identical cells do not vary
substantially, indicating cell-to-cell variation is not a major effect in exponent determination. (b), (c) Residuals of the three fits for (b) Cell 1 and (c) Cell 3. The
residuals of the t0.5 model exhibit the most pronounced systematic trends in both cells.
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electrode potential, and thus the driving force, changes as the SEI
grows due to self-delithiation. This effect is especially pronounced
in carbon black electrodes, which does not have phase transitions
and thus always has fairly large changes in voltage per unit of
capacity (see Fig. S1b).

Summary of literature re-analysis.—The experimental condi-
tions from the literature datasets, and our results from the fits, are
summarized in Table I. Overall, only 1 of the 17 series considered in
this work (and 1 of the 28 power-law fits) had a fitted exponent with
0.5 contained in its 95% CI. Additionally, in Fig. S1, we confirm that
other variations of exponential functional forms also do not contain
0.5, at least for the C/10, 30 °C series in Smith et al.8 Our results
suggest that the statistical justification for the t0.5 model in
describing SEI growth is weak. Additionally, few factors emerge
as strongly correlated with high performance of t0.5 models,
indicating the importance of evaluating the goodness-of-fit for

each dataset individually. The two most prominent trends regard
the growth conditions and the cell type.

First, SEI growth trends during storage (“calendar aging”) generally
have power-law exponents not too far from 0.5, although 0.5 only
rarely falls within the 95% CIs of the fitted exponents. In contrast, SEI
growth trends during cycling (“cycle aging”) are almost always fit best
by a generalized power law with an exponent less than 0.5. Bloom
et al.9 found the same result in their early studies of capacity fade:
calendar aging scaled roughly with t0.5, while cycle aging scaled with
an exponent less than 0.5. This result is consistent with our theoretical
description: while SEI growth is a complex phenomenon that is not
necessarily strictly diffusion limited, SEI growth during storage, likely
dominated by chemical SEI growth, is at least more consistent with
standard film growth kinetics than SEI growth during cycling, which is
likely dominated by electrochemical SEI growth.

Second, the two datasets where the t0.5 model has the worst
performance both consist of cycling carbon/lithium coin cells, with

Figure 10. Comparison of t0.5 and power-law fits to capacity fade in carbon black during open-circuit storage. (a) Self-delithiation capacity (Qself-delith, mAh/g)
vs time of three carbon black/lithium coin cells resting at a temperature of 30 °C. “Pre-cycles” refers to the number of cycles performed before the rest; the
fractional cycle indicates that the pre-cycling ended with the electrode in the lithiated state. The pre-cycling occurred between 0.01 V and 2.0 V at C/10 and a
temperature of 30 °C. The raw data used to derive these traces are presented in Fig. S2; additional experimental conditions are detailed in Attia et al.26 The three
series are fit to three different models: ˆ = +y at b,0.5 ˆ =y at ,b and ˆ = +y at c.b The fits from the power-law models have higher Radj

2 values than the t0.5

model. All fitted exponent values are far from 0.5; none of the fitted exponents contain 0.5 in their 95% CIs. Interestingly, the exponents approach 0.5 with
increasing pre-cycling. (b), (c) Residuals of the three fits for the cells with (b) 1.5 pre-cycles and (c) 50.5 pre-cycles. The residuals of the t0.5 model exhibit the
most pronounced systematic trends in both cells. The residuals are lower in magnitude for the cell with 50.5 pre-cycles than the cell with 1.5 pre-cycles.
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Table I. Summary of literature review and fitting results. The fitted exponents are listed for the two-term and three-term power laws, respectively. All cells are aged at constant temperature (see text
and references for additional details).

Figure number
in this work References

Figure
number in
reference Cell specifications Aging conditions SEI growth metric

Timescale
(days)

Fitted exponents in power-law
models (±95% CI)

4 Broussely et al.7 6 LiNi0.81Co0.09O2/graphite
[sic] cylindrical cells

Constant-voltage
storage at 3.8 V

Capacity loss
(%)

451 30 °C: 0.61 ± 0.02, 0.61 ± 0.02
60 °C: 0.53 ± 0.01, 0.48 ± 0.05

5 Wright et al.10 1 LiNi0.8Co0.2O2/graphite
cylindrical cells

Open-circuit
storage (initially
at 3.918 V)

Discharge
resistance
(Rdis)

27 40 °C: N/A, 0.55 ± 0.04
50 °C: N/A, 0.55 ± 0.04
70 °C: N/A, 0.55 ± 0.02

6 Smith et al.8 7 Graphite/Li coin cells Cycling (C/10
charge and
discharge)

Total irreversible capa-
city (Qirr)

17 30 °C: 0.156 ± 0.002, 0.21 ± 0.01
40 °C: 0.175 ± 0.002, 0.267 ± 0.008
50 °C: 0.177 ± 0.006, 0.37 ± 0.04

7 Smith et al.47 8 LiMn2O4/graphite
cylindrical cell

Cycling (C/14 charge
and discharge)

Capacity loss
(%)

48 40 °C: 0.68 ± 0.03, 0.48 ± 0.01

8 Fathi et al.48 2 LiCoO2/graphite prismatic
cells

Cycling (C/6 charge,
C/150 discharge)

Capacity loss
(%)

3,995 Group 3: 0.43 ± 0.01, 0.39 ± 0.03
Group 4: 0.413 ± 0.008, 0.35 ± 0.02

9 Attia et al.26 N/A Carbon black/Li coin cells Cycling (C/20
charge and discharge)

Total irreversible
capacity (Qirr)

124 Cell 1: 0.205 ± 0.004, 0.08 ± 0.02
Cell 2: 0.195 ± 0.004, 0.053 ± 0.004
Cell 3: 0.194 ± 0.006, 0.011 ± 0.010

10 This work N/A Carbon black/Li coin cells Open-circuit
storage (initially
at 0.01 V)

Self-delithiation
capacity (Qself-delith)

40 Cell 1: 0.339 ± 0.002, 0.226 ± 0.003
Cell 2: 0.401 ± 0.002, 0.311 ± 0.002
Cell 3: 0.4477 ± 0.0002, 0.4358 ± 0.0005
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the SEI growth metric being the total irreversible capacity loss (the
cumulative sum of the difference between charge and discharge
capacities). These measurements are notable because they only
capture SEI growth on the carbon electrode (and not on the lithium
metal counter electrode). However, given that the t0.5 model has little
theoretical basis during cycling, we refrain from speculating on the
origins of this observation. We note that in both cases, the estimated
values of the exponents are much lower than 0.5 (∼0.2). In fact,
most of the exponents from cycling datasets are less than 0.5, while
most of the exponents from storage datasets are greater than 0.5.

We recognize that other effects may convolute these measure-
ments of SEI growth, such as SEI growth on the positive electrode in
full cells, active material loss, impedance growth, current
inhomogeneity,33 electrode interactions (“cross-talk”),34–37 and
overhang effects38,39; these effects may lead to the observed
deviations from t0.5 scaling. However, many of the selected datasets
were designed specifically to measure SEI growth in isolation from
other effects. In our own work on carbon black,26 we detail why
many of these effects are likely minor contributors at best.
Furthermore, we emphasize that our claim in this section is simply
that the existing empirical evidence for the t0.5 growth of SEI is
weak; future advances in SEI growth metrology may provide
empirical evidence in favor of this model.

Transitions between different time regimes of SEI growth.—In
our analysis, we use all data in each of the series to fit one model.
However, the exponents in the power-law fits may vary locally in

time for either theoretical or empirical reasons. Theoretically, the
SEI may exhibit transitions in its time scaling as the film grows—an
idea that has been considered by the SEI modeling
community.11,14,15 These types of transitions are common in the
oxidation literature.19,20 In fact, even the simplest models of surface
film growth (such as Deal-Grove) are initially reaction limited at low
film thicknesses (yielding a linear time dependence for first-order
reactions). Experimental measurements of first-cycle SEI growth
demonstrate that the overpotential is exponential as a function of
rate, indicating Butler-Volmer kinetics and an initial SEI limitation
by surface reaction kinetics.51 Empirically, power-law fits are often
strongly influenced by the early time values and can easily overfit
data with only 1–3 decades of temporal variation.52

In Fig. 11, we fit seven neighboring points at a time to both
power-law expressions to examine the dependence of the fitted
exponents as a function of cycle number in four series. This
procedure can be thought of as a moving-window calculation with
a window size of seven. In all but one series, the exponents remain
fairly constant using either model; in panel (c), the exponents in the
two-term power law decrease smoothly from ∼1.2 to ∼0.6, although
we note that this model performed poorly in Fig. 7 and is likely an
unreliable fit. This result suggests that the SEI does not experience
major transitions in its time dependence beyond the first cycle or the
formation procedure for the commercial cells, at least for these four
data series.

We also find that the exponents are much more stable across
cycle number ranges, and have much lower 95% CIs, using the

Figure 11. Power-law exponents from fits to subsets of four selected series: (a) Fig. 6 of Broussely et al.,7 60 °C series; (b) Fig. 7 of Smith et al.,8 C/10 and
30 °C series; (c) Fig. 8 of Smith et al.47; and (d) Fig. 2 of Fathi et al.,48 Group 3. Seven points were used per fit, and the x-axis indicates the first index used in the
seven-point moving window average. The power-law models used include ˆ =y atb and ˆ = +y at c.b In all but one series, the exponents remain fairly constant
using either model; in panel (c), the exponents in the two-term power law decrease smoothly from ∼1.2 to ∼0.6, although we note that this model performed
poorly in Fig. 7. Additionally, the exponents of the ˆ = +y at cb model generally have both much wider CIs and more variance as a function of the moving
window due to the additional degree of freedom.
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ˆ =Q atirr
b model over the ˆ = +Q at cirr

b model. The more complex
model is quite sensitive to the specific data used given the low
number of data points used for fitting (i.e. low number of degrees of
freedom). In general, simpler models are recommended when few
data points are available for fitting.

Predictions of future SEI growth.—A common use case for
models of SEI growth is extrapolating into the future for lifetime
prediction, which is essentially a time series forecasting problem.53

For this use case, the choice of functional form is essential for
accurate predictions. A simple approach for evaluating the predictive
ability of candidate models is to fit to initial data, while holding out
the final few points as a test set, and then to compare the root-mean-
square error (RMSE) of the test set among various models.

Figure 12 illustrates this approach for the C/10, 30 °C series in
Smith et al.8 We selected this series for analysis to illustrate the
dangers of using t0.5 for prediction without comparing to multiple
models. The model is trained on the initial 80% of the data (fifteen
data points), while the final 20% of points are held out for testing
(four data points). The RMSE of the test set is highest for the t0.5

model. We also show the extrapolated trend lines at longer times in
Fig. 4a, showing how t0.5 overestimates the degradation as estimated
by the power-law models. The additional predicted Qirr from the t0.5

model at 1000 hours is 66% larger than that of the two-term power-
law model.

We also include the 95% prediction intervals in the figure; we
note that these classical prediction intervals only incorporate
uncertainty from the random error term, not the parameter estimates,
and thus likely underestimate the error.54 Only the two-term power-
law model consistently produces predictions with prediction inter-
vals that contain the true (measured) values in the test set.
Interestingly, the three-term power-law model had a higher Radj

2

value when fitting all the data. This result illustrates how models that
maximize correlative metrics may not maximize predictive metrics.

To empirically identify a suitable functional form for a dataset,
we again propose the use of residual analysis. A fit without a
systematic trend in the residuals will have low bias, which is
particularly important for accurate predictions at long times. In Fig.
S1, we investigate nine different functional forms fit to the same
series (C/10, 30 °C) in Smith et al.8 All functional forms considered
exhibit a systematic trend in the residuals; however, the two t0.5

models are among the lowest-performing candidate functional forms
for this series. As previously discussed, SEI growth during cycling is
not expected to follow t0.5 scaling, so identifying a fit without
systematic trends in the residuals may be challenging.

We end with a brief discussion of battery lifetime prediction.
Broadly speaking, models of battery lifetime fall into one of three
categories: first-principles, semi-empirical, and machine learning. In
first-principles modeling, the only inputs are the physics and
chemistry of battery degradation. In semi-empirical modeling (like
that demonstrated here), the inputs are typically a combination of
first-principles understanding and data from a single cell. Finally, in
machine learning models, the inputs are data from many cells,
perhaps with data transformations guided by battery domain knowl-
edge. First-principles and semi-empirical models offer the ability to
learn behavior over a broad range of operating conditions. However,
their accuracy is predicated on our understanding of the relevant
battery degradation modes. One implication of this work is that a
previously established tenet of battery degradation—the t0.5 scaling
of SEI growth—is on less solid ground than previously believed. As
such, machine learning methods are a compelling alternative in lieu
of major advances in our understanding of battery degradation.

Conclusions

We reviewed the theoretical and experimental justification for t0.5

models of SEI growth in lithium-ion batteries. Theoretically, the t0.5

growth law only holds during steady-state growth—an assumption
that may approximately hold during storage but rarely holds during
typical cycling rates. The complexity of SEI growth also does not
lend itself well to simple scaling relationships. Empirically, we
found that t0.5 scaling is not statistically justified in 16 of the 17
series investigated in this work. However, t0.5 generally performs
better for literature data measuring SEI growth during storage than
for data measuring SEI growth during cycling. Finally, we found that

Figure 12. Comparison of predictions using t0.5 and power-law fits to the
data presented in Fig. 7 of Smith et al.8 for graphite/lithium coin cells cycling
at C/10 and 30 °C. (a) Irreversible capacity loss vs time and fits via three
different models: ˆ = +Q at b,irr

0.5 ˆ =Q at ,irr
b and ˆ = +Q at c.irr

b The fits
are performed using the first 80% of the data, i.e. the fifteen points to the left
of the dotted line. The predicted trends of Q̂irr at longer times from the three
fits are also displayed, along with their 95% prediction intervals (possibly
underestimated54). (b) Predictions of the last four data points using the three
fits, along with their 95% prediction intervals. Only the two-term power-law
model consistently produces predictions with prediction intervals that
contain the true (measured) value; note that the three-term power-law model
had a higher Radj

2 value when fitting all the data, illustrating how models that
maximize correlative metrics may not maximize predictive metrics. The t0.5

model exhibits the highest RMSE; in contrast, the power-law fits exhibit
relatively small RMSEs. The error from the t0.5 model rapidly grows with
increasing time.
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power-law exponents are relatively stable throughout different
datasets, and we illustrated the pitfalls of using t0.5 for capacity
fade predictions without validating its applicability to the dataset of
interest. We suggest that multiple models (certainly not restricted to
power-law models) should be compared and evaluated via residual
analysis—both for scientific claims of the time dependence of SEI
growth and for extrapolation of capacity fade data in lifetime
prediction applications.

Box55 claimed that “all models are wrong, but some are useful.”
t0.5 serves as a simple, straightforward model of the time dependence
of SEI growth, but we hope this discussion leads to more useful
models of SEI growth and more accurate predictions of battery
lifetime.
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