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Bacteria-Inspired Nanomedicine
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Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, 
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Abstract

The natural world has provided a host of materials and inspiration for the field of nanomedicine. 

By taking design cues from naturally occurring systems, the nanoengineering of advanced 

biomimetic platforms has significantly accelerated over the past decade. In particular, the 

biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host 

interactions, has elicited substantial interest and opened up exciting avenues of research. More 

recently, advancements in genetic engineering have given way to more complex and elegant 

systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane 

ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in 

nanotherapeutic applications, as they preserve many of the features from the original bacteria 

while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed 

in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven 

successful in combatting both cancer and infectious disease.
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1. INTRODUCTION

In 1891, William Coley reported the curious observation that injection of Streptococcus 
pyogenes and Bacillus prodigiosus, later coined as ‘Coley’s toxins,’ into cancer patients 

caused tumor regression.1, 2 Ever since this discovery, researchers have had a growing 

interest in leveraging bacteria and their properties for medical advancements. Certain strains 

of bacteria are particularly suited for cancer therapy, as their anaerobic properties restrict 

their growth to the hypoxic tumor microenvironment, and their immune-simulating 

properties combined with their inherent toxicity enhance the body’s antitumor response.3 

Successful translation of this strategy came in the form of Bacillis Calmette-Guérin (BCG), 

a live attenuated obligate anaerobic strain of Mycobacterium bovis that is used in the 

intravesical treatment of bladder cancer.4 With further advancements in nanotechnology and 

genetic engineering, the complexity and application potential for therapeutic bacteria has 

grown significantly. Bacteria-based therapeutics have expanded to a variety of non-

cancerous diseases, including infection, diabetes mellitus, and inflammatory bowel disease.5 

Since bacteria interact with a wide range of processes in the human body, it is worthwhile to 

carefully consider both their cooperative and destructive impacts and posit how these 

interactions may be leveraged for therapeutically beneficial outcomes.

It is thought that many of the first landmark clinical trials evaluating administration of 

Salmonella Typhimurium to combat solid tumors failed in part because the required 

attenuation strategies led to poor tumor colonization and lack of immune stimulation.6 

Certainly, one of the ongoing challenges in bacteria-based therapeutics is the balance 

between attenuation for safety considerations and maintenance of active targeting and 

immunogenicity. While bacteria were traditionally attenuated using chemical mutagenesis 

and serial in vitro passages, attenuation strategies have become more elegant with 

advancements in genetic engineering. Strains can be genetically altered to remove 

expression of virulence factors and aromatic amino acid synthesis regulators, or alternatively 

genes may be put under a nutrient-dependent or environmentally triggered promotor that can 

be carefully controlled.7 Furthermore, various nanoscale derivatives of bacteria, such as 

membrane ghosts, extracellular vesicles, spores, and secreted proteins, oftentimes require 

little to no attenuation for safe administration8 and present a promising direction for further 

advancement.

There are many ways in which bacteria and their nanoscale derivatives can be engineered for 

biomedical applications (Figure 1). For example, quorum sensing involves the self-

production of chemical signals that can control the transcription of certain genes in the host 

bacteria when they reach a threshold concentration. This process can be utilized to control 

the production of a biomolecule of interest, including drug molecules and antibodies.9 

Advantages of employing this type of natural circuit include abundant and continuous 

payload production, as well as prevention of bacterial overgrowth.10 Along with self-

production of signaling molecules, bacteria can also be readily engineered for 

environmentally triggered payload release. Examples include arabinose-induced production 

of α-hemolysin11 and hypoxia-promoted delivery of tumor necrosis factor (TNF)-related 

apoptosis-inducing ligand to tumor tissue.12
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Certain bacteria, which often have at least one dimension on the nanoscale, also demonstrate 

taxis and swimming behavior that can improve targeting and accessibility of a 

nanotherapeutic to a site of interest. Flagella-propelled motility allows bacteria to swim deep 

into tissue, differentiating live bacteria from traditional therapeutics that can only passively 

diffuse and often fail to effectively penetrate tissue.13 Bacterial taxis, defined simply, is the 

bias of movement towards or away from a certain stimulus, such as light, nutrients, or 

magnetic forces.14 Coupled with bacterial motility and chemosensory pathways, taxis 

provides a mechanism for active targeting. This behavior has proven beneficial in both 

natural settings, where whole bacteria use taxis to accumulate in a specific tissue,15 and 

synthetic settings in which it is modeled to improve delivery and accessibility of 

nanomedicine to its targets.16

Hypoxia provides the most prevalent tumor-targeting mechanism for bacteria. Due to the 

anaerobic growth conditions of many bacteria, proliferation can be limited to the hypoxic 

tumor microenvironment and excluded from healthy tissues.3 Interestingly, in addition to 

tumor tropism, bacteria such as Listeria can infect antigen-presenting cells (APCs) and 

myeloid-derived suppressor cells in a sort of “immune cell hijacking” that helps them avoid 

clearance. Due to the accumulation of these immune cells in tumor tissue, Listeria can be 

selectively delivered to the tumor site using this mechanism.3

In the field of immunotherapy, bacteria can act as potent immunostimulatory agents and 

targeted delivery vehicles. Bacteria can directly lyse tumor cells, generating an abundance of 

tumor antigens that may accelerate an immune response. Further, bacteria-derived factors, 

including pathogen-associated molecular patterns (PAMPs), can initiate proinflammatory 

cytokine secretion that enhances immune cell recruitment.3 Various bacteria components, 

including flagellin,17 lipopolysaccharide (LPS),18 and exotoxins,19 can also act as potent 

adjuvants for nanovaccine formulations.

Informed by these design principles, this review explores the extensive use of bacteria and 

bacteria-inspired nanomaterials in payload delivery and immune modulation applications.

2. PAYLOAD DELIVERY

To maximize clinical benefit, therapeutic payloads should be capable of selectively targeting 

the tissue of interest. Therapeutics, nanoparticles in particular, may be conjugated with 

antibodies, aptamers, peptides, and other targeting moieties to help improve delivery;20–23 

however, these conjugated formulations can still face significant penetration and retention 

challenges at the organ, tissue, or cell level. Beyond reaching the target tissue, successful 

therapeutics should have tunable payload release to maintain efficacy over the required time 

period without generating systemic toxicity. Controlled release can be achieved through 

responsiveness to various triggers. Internal stimuli, such as pH changes in the endosome or 

intracellular stress, can induce drug release once the payload has been taken up by the cell of 

interest. External stimuli such as temperature, ultrasound, magnetic forces, or local nutrient 

conditions can help tune the release of the payload into the surrounding microenvironment.
24, 25 Bacteria, with their inherent tumor-targeting properties, self-propulsion, and taxis 

behavior, can act as delivery vehicles to a variety of tissues with tunable payload release 
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kinetics.3 While bacteria-related safety issues represent an ongoing concern, they may be 

mitigated by the use of biocompatible carriers, genetic engineering strategies to reduce 

immunogenicity and toxicity, and bacterial subunits or synthetic mimics with inherently 

lower risk.5

2.1 Live Bacteria

The use of nanoparticle-carrying bacteria for payload delivery was introduced a decade ago, 

where it was demonstrated that the approach could be used for DNA-based model drugs.26 

Consequently, bacteria have begun to be exploited as microbial actuators instead of mere 

vectors for the delivery of therapeutics.27 Due to engineering advances, the biological 

functions of microorganisms can be readily modified, allowing for advanced customization 

of therapeutic activity as well as spatiotemporal control.27 In particular, live bacteria offer 

selective colonization and targeting, controlled taxis behavior, and prodrug delivery 

capabilities.

2.1.1 Selective colonization—By harnessing bacterial tumor-targeting properties, 

researchers have created whole bacteria-assisted targeted delivery systems for cancer 

therapy, imaging, and diagnosis.3 For example, the facultative anaerobic bacteria Salmonella 
enterica serovar Typhimurium VNP20009 has hypoxia-mediated targeting capabilities and 

has been extensively studied for cancer treatment.28 As an approach to enhancing antitumor 

efficacy, researchers have explored the combination of VNP20009 with photothermal agents.
29 Interestingly, photothermal treatment not only effectively lyses tumor cells, but such cell 

lysis also generates nutrients that further attract bacteria to the tumor area, resulting in 

enhanced therapeutic efficacy.30, 31 In one instance, polydopamine was coated onto 

VNP20009 via oxidation and self-polymerization, thereby allowing for selective delivery of 

the photothermal agent to the tumor hypoxic region in vivo.29 Despite its significant tumor-

targeting ability, the therapeutic efficacy of Salmonella Typhimurium YB1 in large solid 

tumors is still limited because the bacteria exclusively accumulate in the hypoxic region 

while leaving well-oxygenated regions undestroyed.32, 33 In one study, indocyanine green 

(ICG)-loaded nanoparticles were covalently linked to YB1 (Figure 2).34 After colonization 

of the nanoparticle-modified YB1 in the tumor hypoxic region, the ICG payload was 

irradiated with near infrared (NIR) light, thereby destroying the surrounding oxygenated 

tumor tissue. The photothermal tumor lysis generated bacteria-attracting nutrients, which 

mediated further penetration of bacteria into the tumor tissue. Compared to a control group 

without photothermal therapy, the engineered bacteria paired with laser irradiation showed a 

14-fold enhanced accumulation in the tumor tissue and increased tumor temperatures, thus 

blocking tumor growth.

Oral delivery is among the most commonly used drug administration routes.35 The 

development of oral therapeutic peptide and nucleic acid formulations remains a challenge 

due to acidic destruction and enzymatic degradation in the gastrointestinal tract, as well as 

poor drug penetration across the intestinal membrane.36 It was recently reported that live 

bacteria can protect therapeutic cargoes against degradation in the stomach, thus facilitating 

the oral delivery of proteinic drugs or nanoparticles.26, 37, 38 As an example, Escherichia coli 
MG1655 was genetically engineered to express a therapeutic protein, TNF-α, in response to 
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thermal stimulation, and the bacteria were further decorated with gold nanoparticles by 

enzymatic reduction.39 The gold nanoparticles acted as photothermal agents that could 

generate heat under NIR irradiation, thereby triggering the release of the TNF-α payload. 

Notably, it was shown that the bacteria could accumulate in tumor tissue after oral 

administration.

Successful gene delivery for tumor therapy requires vectors capable of tumor-targeting as 

well as protection of the genetic material during transport.40 Bacteria inherently have 

characteristics required for this purpose, including their ability to colonize tumors, self-

propulsion, and environment-sensing abilities.41 The term ‘bactofection’ refers to the use of 

a bacteria-based system for the transfer of plasmid DNA to mammalian cells after 

internalization.27 Such a strategy allows for gene expression by a mammalian system, 

leading to improved protein translation compared to the direct use of bacterial cells.41 In one 

case, Salmonella choleraesuis was used as a vector to specifically deliver the gene for 

thrombospondin-1, which promotes antiangiogenetic activity, to murine melanoma cells.42 

Following systemic administration, the bacteria accumulated preferentially in tumor tissue 

over the liver or spleen, which drove effective gene transfer and a high level of transgene 

expression. This ultimately led to delayed tumor growth and prolonged survival of the mice. 

Another study reported the use of S. choleraesuis as a vector to deliver a plasmid encoding 

the endostatin gene, also for antiangiogenic activity.43 Following systemic administration, it 

was shown that attenuated S. choleraesuis bearing the endostatin expression plasmid 

colonized in the tumor area, reduced tumor growth, and extended survival by reducing both 

the intratumoral microvessel density and vascular endothelial growth factor expression.

Bactofection has also been utilized for RNA interference (RNAi)-based cancer therapy. 

RNAi is a gene silencing process wherein double-stranded RNA molecules delivered into 

the cytosolic compartment facilitate the degradation of target mRNAs.44 In a study, 

nonpathogenic E. coli was genetically engineered to transcribe short hairpin RNA (shRNA).
45 Additionally, the plasmid encoded for protein factors enabled transfer of the shRNA into 

mammalian cells. Upon systemic administration, it was shown that platform was capable of 

silencing a specific cancer gene in the intestinal epithelium and tumor xenografts. Another 

payload that is often used for RNAi is small interfering RNA (siRNA), which possesses 

exceptional target specificity, but exerts only a transient effect on gene expression in 

proliferating cancer cells.46 As a means to deliver antitumor siRNA in a sustained and 

localized manner, bacteria can be employed. In vivo studies demonstrated that siRNA could 

be effectively delivered to tumors following systemic intravenous administration of 

attenuated Salmonella Typhimurium engineered for this purpose.47

2.1.2 Magnetotaxis—Magnetotactic bacteria are motile gram-negative bacteria that 

have the ability to biomineralize magnetosomes, allowing the bacteria to orient along a 

magnetic field and move along an oxygen gradient.48 One advantage of magnetically guided 

systems is that they can be controlled by long-range magnetic fields remotely and 

noninvasively.27 Inspired by such properties, researchers have shown the potential use of 

magnetotactic bacteria for drug delivery. Magnetospirillum marinus MC-1, a flagellated 

magnetotactic bacterium, produces forces of ~4 pN that allows movement at speeds up to 

100 body lengths per second, roughly 8 times the speed of a wild-type E. coli bacterium.
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49, 50 MC-1 bacteria have been exploited as a means to enhance the deposition of therapeutic 

agents into the tumor hypoxic region.51 It was observed that the number of magnetically 

guided MC-1 in tumor sections following a peritumoral injection was much greater than that 

of bacteria without guidance. Furthermore, MC-1 bacteria bearing nanoliposomes also 

achieved deeper penetration into tumors under magnetic guidance and preferential 

accumulation in the hypoxic and necrotic areas, which showed the potential of this system to 

specifically deliver a variety of therapeutic compounds or imaging agents.

Along with penetrating tumor tissue, enhanced delivery to infectious biofilms can be 

mediated by magnetotactic bacteria. Biofilms are composed of a heterogenous group of 

bacterial colonies within a complex polymeric matrix. They can protect bacteria from a 

hostile environment, antibiotics, and the host’s immune system, and their presence is often a 

cause of increased resistance of bacteria to treatment.52 To enhance antibiotic delivery to 

infectious biofilms, drug-loaded microtubes were integrated into Magnetospirillum 
gryphiswaldense MSR-1 as a proof of concept.53 For this biohybrid system, the release of 

the antibiotics was triggered by the acidic microenvironment of the biofilm, which could be 

penetrated by the propulsion ability of the MSR-1. While the efficacy of the proposed 

approach still requires additional validation in vivo, this study showed the potential of 

bacteria-powered biohybrids for addressing biofilms.

2.1.3 Bioreactors—Rather than simply considering bacteria as drug carriers, they can 

also be used as bioreactors that are capable of generating enzymes to trigger the conversion 

of an inactive prodrug into its biologically active form in situ.54 Such a strategy can be taken 

advantage of in order to reduce inherent drug toxicities at off-target sites. In a recent study, 

E. coli was used to selectively produce a photothermal agent in the hypoxic tumor area 

(Figure 3).55 A perylene diimide derivative-based supramolecular complex (CCPDI), which 

was loaded into a nanoliposome and co-delivered with the E. coli, could be converted into 

radical anions by hydrogenase on the surface of the bacteria. As the E. coli could 

preferentially colonize within the tumor hypoxic region and the nanoliposomes were 

engineered to release CCPDI within the tumor, highly selective photothermal therapy was 

enabled. Mice treated with the biohybrid platform showed significantly higher temperature 

and tumor ablation after laser irradiation. As another strategy, bacteria can be genetically 

engineered to provide source material for cytotoxic agent production. In one study, E. coli 
MG1655 was designed to express respiratory chain enzyme II, leading to increased H2O2 

generation at the tumor site.56 Magnetic iron oxide nanoparticles linked with bacteria could 

then serve as catalysts for the conversion of H2O2 into toxic hydroxyl radicals, inducing 

tumor apoptosis.

In another example of a bacteria-based bioreactor system, it was shown that natural dietary 

components can be leveraged as prodrugs.57 Employing host-ingested components may 

eliminate the need for additional administration of precursors, thereby increasing patient 

compliance. In the study, E. coli Nissle was modified to exhibit affinity towards heparan 

sulphate proteoglycan on colorectal cancer cells and secrete the enzyme myrosinase. 

Following intraperitoneal injection, the engineered commensal microbes were localized in 

the colorectal tumor area and capable of converting diet-supplied glucosinolates to 

sulphoraphane, a potent anticancer agent. In vivo efficacy studies revealed that treatment 

Holay et al. Page 6

ACS Appl Bio Mater. Author manuscript; available in PMC 2022 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with these engineered bacteria significantly reduced tumor occurrence in the colorectal 

region of mice.

2.2 Bacterial Derivatives

2.2.1 Membrane Derivatives—In addition to whole bacteria, their individual 

components have shown potential as delivery vehicles.58 These structures retain bacterial 

properties and functions while limiting the risk associated with the administration of live 

engineered bacteria.58 Among these, extracellular vesicles have garnered considerable 

attention. These nanosized membrane structures are naturally shed by most bacteria and can 

play an important role in intercellular signaling. As such, researchers believe that they may 

hold prospects as drug delivery vectors for biomedical applications.59 An intriguing idea has 

been to exploit naturally packed extracellular vesicles for treating bacterial infections.60 This 

is based on findings that certain bacteria are known to load antimicrobial content into their 

extracellular vesicles.60–62 While these observations were first discounted as passive effects 

of membrane budding events, recent data suggest the packaging of cargoes into extracellular 

vesicles and their subsequent release occur through a series of coordinated events, indicating 

that these antimicrobial packages may be strategically released to fight off bacterial 

competitors.60, 63, 64 These “predatory” extracellular vesicles effectively lyse and kill a 

broad range of pathogenic bacteria,62, 65, 66 and they have even been shown to outperform 

gentamycin treatment due to their inherent ability to fuse and release cargo inside infected 

cells.62 Thus, such natural bacterial derivatives may provide new medical tools for fighting 

persistent infections in times of antibiotic resistance.59, 62 Along with the use of natural 

membrane vesicles, other targeting specificities may be applied through genetic engineering 

of the parent bacteria. In one such example, it was shown that fusion of a human epidermal 

growth factor receptor 2 (EGFR2) affibody to E. coli outer membrane allowed for the 

production of tumor-targeting membrane vesicles.67 Anticancer efficacy was demonstrated 

when these extracellular vesicles were loaded with therapeutic siRNA, leading to gene 

silencing and tumor regression.67

In addition to pure membrane vesicles, membrane-coated nanoparticles have proven 

themselves to be particularly useful in the fight against infectious diseases.58, 68–70 These 

biomimetic nanoparticles can adapt various functions of the parent cell when cloaked in 

bacterial membrane.70, 71 One of these functions includes the ability to be perceived as a 

pathogen, allowing them to exploit the unique interplay between bacteria and host immune 

cells to stimulate their own phagocytotic engulfment through natural uptake mechanisms. In 

one such approach, camouflaging nanoparticles with E. coli membrane was used to actively 

drive the loading of therapeutic cargo into live neutrophils.72 Phagocytic cells such as 

neutrophils possess intrinsic abilities to sense and home to infectious sites through 

chemotactic behaviors, which was exploited in this study to generate self-guided cell 

micromotors.73 To facilitate their loading, the nanoparticles were coated with bacterial 

membrane, leading to a significant increase in phagocytic uptake compared to that of 

uncoated nanoparticles.72 In addition, when subjected to chemoattractants secreted by E. 
coli, the micromotors were shown to retain chemotactic behavior and actively move along 

the signaling gradient.72
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Bacterial membrane mimics can be developed for treating difficult intracellular infections.74 

Severe cases of Staphylococcus aureus are often linked to the bacterium’s ability to invade 

and hide inside host phagocytic cells, which generates a need for intracellular delivery to 

effectively target and treat such infections.75 Taking advantage of the fact that infected 

phagocytes interact differently with certain pathogens,76 antibiotic-loaded nanoparticles 

were cloaked in membrane isolated from S. aureus extracellular vehicles to promote their 

targeted uptake (Figure 4).74 Neither coating with liposomes nor with E. coli outer 

membrane vesicles (OMVs) was able to reproduce similar uptake effects, demonstrating the 

specificity of the interaction. Moreover, upon intravenous injection into mice infected with 

S. aureus, the nanoparticles accumulated in major organs of infection, which in turn 

significantly reduced the bacterial burden at these sites. As the membrane coating was 

changed to OMVs isolated from E. coli, the targeting specificity skewed towards 

macrophages infected with the same pathogen, thus indicating that membrane coating 

strategies may be easily adjusted to match the intracellular pathogen in order to increase 

phagocytic delivery and effectively treat different infectious diseases.

2.2.2 Exotoxins and Spores—Gaining access to intracellular compartments is of 

crucial importance for not only the treatment of infectious diseases but also other diseases 

such as cancer, for which many therapeutic targets reside inside the cell.77 Exotoxins are 

proteins that can be secreted by live bacteria or released upon bacterial death and lysis. 

These effector molecules have evolved to specifically bind and enter host cells, allowing 

them to circumvent endosomal degradation and inflict damage on intracellular targets.78 

This is often enabled by a modular composition, for which a binding moiety mediates cell 

receptor targeting and translocation of the enzymatically active subunit into the cell. Taking 

advantage of such highly effective translocation machineries, disarmed toxin conjugates 

have been used as transport vectors for cytosolic delivery of diverse therapeutic cargoes.78 

For instance, engineered anthrax fusion conjugates have been shown to effectively transport 

antibody mimics, oligonucleotides, and effector peptides or proteins into cells.79–81 In 

addition, the enzymatic moieties of these toxins can themselves serve as potent drugs, which 

can be redirected to specific tissues by replacing the native binding domain with nonnative 

receptor targeting ligands.82 In one translational example, the fusion of the human cytokine 

interleukin-2 to a diphtheria toxin fragment showed utility for anticancer therapy, and this 

construct has been granted Food and Drug Administration (FDA) approval for treatment of 

T cell lymphoma malignancies.83 Similarly, a Pseudomonas exotoxin A-based immunotoxin 

fused to an anti-CD22 antibody has demonstrated clinical applications.84

Along with exotoxins, bacterial spores have gained much attention as vehicles in cancer 

therapy. Bacterial spores are seed-like structures carrying components of the parent cell 

embedded in a thick protein coat, which allows them to stay dormant until favorable 

environments present themselves and they can transform into live bacterial cells. 

Intriguingly, such physiological characteristics hold interesting opportunities for targeted 

drug delivery applications. In one instance, obligate anaerobe Clostridium spores were 

systemically administered to attain localized gene therapy within hypoxic tumors. In this 

approach, the Clostridium strain was genetically engineered to express prodrug-processing 

enzymes capable of converting nontoxic precursors into active drugs at the tumor site.85, 86 
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More specifically, spores baring a nitroreductase enzyme isolated from Neisseria 
meningitidis were able to process the prodrug CB1954 into DNA-alkylating N-

hydroxylamine, leading to antitumor effects in a xenograft colon carcinoma model.86

In a slightly different approach, the physiological properties of a bacterial spore were used to 

generate in situ self-assembly nanoparticle manufacturing units for oral treatment of 

colorectal cancer.87 The thick hydrophobic protein coat of probiotic Bacillus coagulans 
spores makes them resistant to harsh conditions and allows them to stay intact as they cross 

the low pH of the stomach. With these attributes in mind, it was suggested that the addition 

of a hydrophilic layer onto the coat would generate an amphiphilic shell that would drive 

nanoparticle self-assembly as the spore germinated and the coat disassembled in the 

intestines. To test this hypothesis, the spore surface was coated with deoxycholic acid to 

mediate endothelial transport, and chemotherapeutic drugs were attached through 

electrostatic interactions. As anticipated, cargo-loaded nanoparticles were shown to form in 

the intestines following oral administration of the modified spores. These nanoparticles 

showed enhanced intestinal adsorption compared to the drugs administered alone and 

significantly improved antitumor effects in vivo.

Another strategy for harnessing anaerobic bacterial spores is their use as guides for the 

delivery of therapeutic agents. Such a strategy contrasts with approaches that directly 

incorporate or attach payloads to bacteria. Clostridium difficile CCUG 37780, an anaerobic 

bacterial strain, is known to exist as spores under aerobic conditions and germinate in an 

anaerobic environment.88 In a study, nanoparticles were decorated with anti-Clostridium 
polyclonal antibodies to target germinating C. difficile spores.89 Following administration of 

the spores, subsequently injected antibody-conjugated nanoparticles were shown to 

accumulate in the hypoxic region of tumors. This approach outperformed a control, in which 

the payloads were attached directly to vegetative bacteria. To validate the in vivo therapeutic 

efficacy, upconversion nanorods and gold nanorods were delivered for bioimaging and 

photothermal therapy, respectively. Nanoparticles delivered by the antibody-directed method 

showed superior bioimaging and an enhanced photothermal therapeutic effect.

2.3 Bacteria-Mimicking Synthetics

The inherent abilities of microbes to target a host and navigate complex environments 

represent intriguing engineering opportunities and have inspired the development of 

synthetic bacteria-mimicking technologies for nanomedicine applications.90 One common 

approach has been to adapt the shape and surface of nanocarriers to mimic that of 

pathogenic bacteria, thus exploiting certain bacteria–host interactions.91–93 As an example, 

many respiratory pathogens use surface coatings rich in mannose to mediate their entry via 
surface receptors on alveolar macrophages.94–96 Inspired by this principle, mannosylated 

iron-based metal–organic frameworks were explored for generating spherical and rod-like 

particles mimicking the overall properties of such airborne bacteria.92 In in vitro tests, these 

showed efficient uptake into porcine alveolar macrophages and were further found to 

colocalize with intracellular mycobacteria at acidic cellular compartments. Synthetic 

bacteria-mimicking nanomaterials such as these, with their high drug loading and biological 
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targeting properties, may supplement natural derivatives in providing strategies for effective 

disease treatment.

Another field that has drawn great inspiration from microbial behavior is microrobots. 

Extensive work has explored the possibility of mimicking bacterial flagella-like propulsion 

to allow microrobots to move and overcome the viscous drag experienced by small-sized 

particles in low Reynolds number liquids.97 One such approach is create magnetic helical 

microrobots with a size and shape similar to that of natural flagella.97 These can be actuated 

to swim through corkscrew like motions under low magnetic fields and have established 

drug delivery98 and in vivo tunability99 potential, making them attractive tools for drug 

delivery applications. Recent efforts in this field have further focused on improving 

maneuverability. For example, the addition of multiple flagella components have allowed 

microrobots to exhibit run-and-tumble motions similar to those of multi-flagella microbes.
100 Other strategies have exploited hydrogel layering for generating soft micropropelling 

structures capable of adapting their morphologies to accommodate the alternating space and 

viscosities of biological systems.101 In addition to their use as drug delivery vehicles alone, a 

recent study suggested that the convective flow generated by the propulsion of these 

micropropellers may be exploited to enhance nanoparticle transport at specific tissues.102 

The low diffusive transport of nanoparticles into tumors may greatly benefit from a 

convective fluid flow actively pulling the nanoparticles through endothelial gaps and into 

adjacent cancerous tissue. Exploring the feasibility of such a system, helical microswimmers 

were placed in a closed microfluidic system and actuated under a weak magnetic field. 

Under these conditions, the microswimmers generated a localized fluid flow that in turn was 

shown to significantly drive the penetration and accumulation of surrounding nanoparticles 

into collagen-rich pores (Figure 5).102 Hence, the use of such wirelessly controlled 

micropropelling systems presents some attractive properties that may help address the 

clinical challenges of low nanoparticle accumulation in tumors.

3. IMMUNE MODULATION

The body’s immune response to a bacterial infection is vast and complex. During the initial 

stages of infection, a host of immune cells are recruited to the site of infection, initiating a 

cascade of local inflammation.103 Toll-like receptors (TLRs) and nucleotide-binding and 

oligomerization domain-like receptors on phagocytes identify microbial PAMPs present in 

and on bacteria, including biomolecules such as LPS, CpG DNA, and flagellin.17, 104 Once 

these signaling pathways are triggered, innate immune cells initiate proinflammatory 

cytokine secretion and bacteria phagocytosis. Bacterial components are then processed and 

presented via major histocompatibility complexes (MHCs) to adaptive immune cells for 

generation of both cellular and humoral immunity against the identified antigens. It has 

become apparent to researchers that bacteria and their derivatives can effectively stimulate 

the immune system, and their utility for vaccine design has been heavily investigated. 

Similar to the principles of successful payload delivery, effective immunotherapy stems from 

successful trafficking to the immune cells of interest, controllable immune manipulation, 

and formulation safety without loss of function.105–108
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3.1 Cancer Immunotherapy

Cancer immunotherapy has gained much interest in recent years as encouraging clinical data 

have emerged proving efficacy against a variety of malignancies.109 Most prominently, 

successful strategies have focused on potentiating T cell antitumor responses through 

checkpoint inhibitors and adoptive chimeric antigen receptor T cell therapy.110 Checkpoint 

inhibitors that have proven effective include those targeting programmed death-1/

programmed death ligand-1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 

(CTLA-4) molecules.111 Tumors are known to take advantage of these immunosuppressive 

proteins for maintaining immune tolerance and their blocking by anti-PD1/PD-L1 and anti-

CTLA-4 antibodies has led the FDA to approve such therapies for various tumor types.111 

Despite the undeniable clinical success of these immunotherapeutic strategies, many patients 

fail to benefit from them.111 Poor efficacy is oftentimes correlated with low tumor 

antigenicity and a lack of immune cell infiltration, leaving such tumors insensitive to most 

cancer immunotherapies.112

Whereas tumors very closely resemble normal tissue and are lowly immunogenic, the 

immune system is highly trained to recognize and fight foreign microbes.103 Accordingly, 

several studies have demonstrated the ability of bacteria and their derivatives to break 

immune tolerance and facilitate the recognition of tumor antigens.2, 113–115 For example, 

intratumoral injections of attenuated bacteria have shown potential for turning 

immunologically “cold” tumors “hot” in a number of ways. These include 

immunomodulatory effects exerted on the tumor microenvironment, causing a depletion of 

immunosuppressive cells, including tumor-associated macrophages, myeloid-derived 

suppressors, and regulatory T cells, while increasing pro-immunostimulatory lymphocyte 

and CD8+ T cell infiltrates within the tumor.2 The inflammatory response further primes 

responses against tumor antigens by enhancing the display of costimulatory molecules 

essential for boosting T cell activation.116, 117 Overall, bacteria and their derivatives are 

capable of stimulating multiple proinflammatory pathways,118, 119 and they hold significant 

promise for potentiating antitumor responses against a wide range of cancer types.

3.1.1 Immune Stimulation—Most simply, live attenuated bacteria may act as a 

powerful immune stimulant to awaken both the innate and adaptive immune systems to an 

otherwise unseen tumor. A phase I clinical trial using attenuated Salmonella Typhimurium 

demonstrated its safety; however, the treatment unfortunately failed to elicit significant 

antitumor efficacy.120 Other live bacteria are being investigated, including Clostridium 
novyi, and direct intratumoral injection of its spores was shown to elicit strong inflammatory 

responses and promote tumor regression.121 Due to their obligate anerobic growth 

conditions, C. novyi spores did not dissipate out of the tumor and therefore reduced the risk 

of systemic bacterial infection. Successful preclinical studies in canines demonstrated a 

37.5% objective response rate, which supported further study in a phase I clinical trial that 

established an acceptable safety profile for the C. novyi spores. This early success has led to 

another ongoing trial combining the treatment with an anti-PD1 checkpoint blockade in 

hopes of activating the immune system from multiple angles.3 A variety of clinical trials 

with other immunostimulatory attenuated bacteria strains, including Bifidobacterium 
longum,122 are currently ongoing.
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Although bacteria themselves often elicit a strong immunostimulatory reaction, they can be 

further engineered as a gene delivery vehicle for cancer immunotherapy. Bactofection is a 

powerful strategy to introduce immunostimulatory genes into cancer cells where bacterial 

vectors are used to deliver a mammalian expression-controlled plasmid of interest into target 

cells.123 This strategy allows for immune upregulation through cancer cell cytokine 

production, presentation of stimulatory markers, or immunoreactive antigen display.40 

Although many bacteria and target antigens have been explored,124 efficiency remains a 

challenge in bactofection, as plasmid trafficking to the nucleus after bacterial engulfment is 

difficult to achieve. Bacteria-mediated delivery of mRNA may mitigate this concern, as 

mRNA is functional in the cell cytoplasm.27

While current clinical translation efforts have focused on whole attenuated bacteria, many 

research efforts are aimed at using extracellular vesicles as immune stimulants. OMVs 

produced from Gram-negative bacteria are strong candidates for in situ vaccine adjuvants, as 

their nanoscale size augments their transport and enhances their adjuvanticity. At the same 

time, they do not possess the same growth and infectious nature as their parent bacteria.125 

In one instance, Salmonella OMVs were used as an innate immunostimulatory agent and 

coated onto a prodrug-containing nanomicelle for combined antitumor immunotherapy and 

cytotoxic therapy.126 When conjugated with a tumor-targeting peptide, the formulation 

accumulated heavily in tumor tissue, eliciting a robust antitumor immune response.

3.1.2 Antigen Delivery and Display—Often, adaptive immune cells are present but 

inactive at the tumor site. Vector-based antigen display and delivery is a promising strategy 

to enhance the immune response against an immunoevasive tumor.127 Bacterial vectors are 

particularly attractive for this application because they are inherently adjuvanting and can 

also be employed to enhance antigen uptake and processing.124 Along these lines, bacteria-

inspired bottom-up strategies for antigen display have shown some potential. In one 

instance, bacterial components monophosphoryl lipid A, mifamurtide, flagellin, and CpG, 

all of which can stimulate various inflammatory pathways in innate immune cells, were 

synthesized and integrated into a liposomal nanoparticle.128 When loaded with a model 

antigen ovalbumin (OVA), this bacteria-mimicking vector enhanced innate and adaptive 

immune responses in a B16-OVA tumor model and demonstrated a better safety profile than 

Freund’s adjuvant, a gold standard in the field.

For a more top-down approach, tumor-associated antigen sequences can be readily 

integrated into the bacterial genetic code, allowing for expression and/or secretion of these 

heterologous proteins by the bacteria at the site of interest.129, 130 Once injected into the 

body, the live bacteria can facilitate antigen presentation by mechanisms such as delivery via 
a type III secretion pathway or promoting MHC presentation after uptake by host cells.124 

Listeria has been particularly successful as a genetically engineered cancer vaccine vector 

and is currently being investigated in clinical trials for numerous cancers.131

Bacteria may also act as a vector for ex vivo vaccination strategies, such as those based on 

dendritic cells (DCs). Rod-shaped bacteria demonstrate the highest internalization rate by 

DCs when compared to spherical, chain, or ‘Y’ shaped bacteria.132 Lactobacillus, a rod-

shaped bacterium, can be curated into a vaccine vector by hollowing it out through 

Holay et al. Page 12

ACS Appl Bio Mater. Author manuscript; available in PMC 2022 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hydrothermal treatment, allowing for insertion of tumor-associated antigens. This 

biomimetic platform maintains the original bacterium’s native binding and uptake 

characteristics while also eliciting strong antitumor immunity against the inserted antigen.
132 Similarly, bacterial ghosts have been produced by insertion of lysis protein E in bacteria, 

allowing for controllable production and collection of bacterial shells which do not contain 

cytoplasmic content but preserve all the surface properties of the host. As a result, bacterial 

ghosts provide a safer bacterial vector while maintaining their immunostimulatory 

properties, making them suitable for vaccine applications.133 These bacterial ghosts can be 

passively loaded with entire oncolysates, removing the need to identify specific tumor 

antigens and increasing antigenic diversity.134, 135

Bacterial OMV vectors offer flexible delivery, safety due to their inability to replicate, and 

enhanced uptake and processing in APCs due to their nanoscale size.136 OMV-based 

anticancer vaccines using materials from different bacterial origins have been validated in a 

wide range of cancer models.125, 136, 137 As an example, Salmonella OMVs have been fused 

with cancer cell membrane vesicles, thereby integrating tumor antigens and 

immunostimulatory compounds into a single nanoplatform that could be used to successfully 

vaccinate mice.138 Combining additional modalities such as radiation therapy with these 

extracellular vesicle-based platforms may further enhance antitumor efficacy. In one 

example, maleimide-functionalized bacterial OMVs were coated onto nanoparticle cores 

containing PC7A and CpG, and the resulting formulation was administered to solid tumors 

post-radiation therapy (Figure 6).139 The radiation therapy generated a host of neoantigens 

that could be directly adsorbed onto the nanoparticle via the maleimide surface groups. Once 

adsorbed, these neoantigens were more likely to be taken up by DCs, aided by the 

immunogenic nature of the OMVs. After uptake, the PC7A in the core of the nanoparticle 

facilitated endosomal disruption and CpG, a TLR9 agonist, acted as an additional adjuvant 

to promote immune processing and presentation of the tumor neoantigens. Ultimately, this 

bacteria-mimetic vector was able to successfully enhance immune activation and produced 

an antitumor memory response.

3.1.3 Nanobody Delivery—Nanobodies have become a promising tool for 

immunotherapy, as the single domain structures are easier to produce than traditional 

antibodies and also exhibit relatively low immunogenicity.140 While their small size allows 

for increased tumor penetration and enhanced activity, nanobodies also suffer from short 

serum half-lives.140 Bacteria-based delivery vehicles have been employed to overcome some 

of the challenges facing the use of nanobodies alone. In one example, quorum-sensing 

bacteria, equipped with a lysing mechanism to control growth, were used to deliver 

checkpoint blockade nanobodies for anticancer treatment (Figure 7).141 The bacteria were 

able to address the short half-life of nanobodies by continuously producing them exclusively 

at the site of the tumor, thereby enhancing the local concentration of the therapy without 

generating systemic toxicity. The ability of the treatment to generate systemic antitumor 

responses was evaluated in a bilateral tumor model, and it was demonstrated that adaptive 

immunity generated against tumor antigens in the treated flank resulted in control of cancer 

growth elsewhere in the body.
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In addition to checkpoint blockades, nanobodies have also been directed against markers 

such as CD47, which is a ‘don’t eat me’ self-marker that reduces phagocytosis.142 Although 

useful to protect against autoimmunity, CD47 is commonly overexpressed on cancer cell 

surfaces.143 Treatment with anti-CD47 may therefore increase phagocytosis of cancer cells, 

enhancing immune reactivity and promoting cross-presentation of tumor antigens. However, 

anti-CD47 antibodies suffer from toxicity limitations, leading to the phagocytosis of 

erythrocytes and platelets, and they also require high saturation levels in tumor tissue for 

efficacy.144 Recently, it was shown that delivery of anti-CD47 nanobodies using bacteria 

could alleviate these issues by localizing therapy to the tumor site.145 Tumor regression was 

achieved with the use of lysis circuit-controlled bacteria producing a CD47 nanobody when 

administered both intratumorally and intravenously, with the latter demonstrating limited 

systemic toxicity due to tumor targeting and controlled nanobody production.

3.2 Antibacterial Immune Modulation

3.2.1 Clinical Status—Bacterial vaccines account for more than one third of vaccines 

approved by the United States FDA, second only to viral vaccines.146 They can be divided 

roughly into three types: live attenuated vaccines, killed or inactivated vaccines, and subunit 

vaccines. Historically, live bacteria have been used as vaccines since 1884, when attenuated 

Vibrio cholera was injected subcutaneously in order to obtain immunity against the bacteria.
147 It is possible for live attenuated vaccines to generate lifelong protection with only one or 

two doses, but they may also cause sickness in people with weakened immune systems and 

require refrigeration.148 Examples of live attenuated vaccines are the BCG vaccine and the 

typhoid fever vaccine, Vivotif.149 Inactivated vaccines are safer and can be easily stored in 

lyophilized form, but they often require multiple doses to achieve the desired level of 

protection.150 One example of an inactivated vaccine is the whole cell pertussis vaccine 

using killed Bordetella pertussis.151 Subunit vaccines generally have an improved safety 

profile compared to inactivated bacteria and account for most clinically available bacterial 

vaccines. They can be further divided into toxoid vaccines, including those for diphtheria 

and tetanus, and conjugate vaccines such as PedvaxHIB against the Haemophilus influenzae 
type B bacteria.152 Subunit vaccines oftentimes require booster doses and are difficult to 

produce for many pathogens. While vaccines play an important role in the clinical 

management of infectious diseases, there is no effective vaccine for many of the most 

dangerous bacterial infections. As such, many researchers have begun to utilize various 

biomaterials to enhance vaccine design,153 and those that are bacteria-derived or bacteria-

inspired have played a prominent role.

3.2.2 Engineered Live Bacteria—Various strategies have been studied to enable the 

development of more effective live attenuated bacterial vaccines. One example is the use of 

multiple Pseudomonas aeruginosa strains to design a vaccine that prevented against acute 

lung infections caused by the pathogen.154 A total of 19 attenuated strains were tested, and a 

combination of 3 to 4 of strains that had different LPS serogroups resulted in the best 

protection. Due to the multivalency of this approach, protection against a broad spectrum of 

P. aeruginosa strains could be achieved with a single formulation. Another strategy involved 

the use of engineered Mycobacterium tuberculosis as a vaccine against tuberculosis.155 

Deletion of the SigH gene, which is responsible for inducing antioxidant production to 
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protect against oxidative stress, abrogated pathogenicity. This led to a safer bacterial strain 

that was still able to promote formation of inducible bronchus-associated lymphoid tissue, as 

well as recruitment of CD4+ and CD8+ T cells to the lungs. A more generally applicable 

approach for attenuating pathogenic bacteria is by engineering D-glutamate auxotrophs.156 

Since D-glutamate is crucial for forming the bacterial cell wall, the auxotrophs exhibit 

attenuated virulence and limited growth. The effectiveness and versatility of this type of 

approach has been demonstrated in different pathogens, including Acinetobacter baumannii, 
P. aeruginosa, and S. aureus. Overall, using live bacteria for developing vaccines leads to 

potent and inherently multiantigenic formulations where identification of individual antigens 

is not required.

3.2.3 Bacterial Ghosts—Compared with live bacteria, a safer alternative for vaccine 

development is the use of bacterial ghosts, which consist of empty cell envelopes of Gram-

negative bacteria.157, 158 One approach for generating bacteria ghosts is through the 

controlled expression of lysis gene E of the bacteriophage ΦX174, which has been used to 

create a transmembrane tunnel structure on the surface of E. coli to drain away the 

intracellular contents. Although initial developments were focused mostly on E. coli, it has 

been demonstrated that gene E was able to induce lysis and generate ghosts using other 

Gram-negative bacteria as well. Just like live bacteria vaccines, bacterial ghosts can not only 

directly activate immune cells such as DCs, macrophages, and B or T cells, but they can also 

activate epithelial cells, fibroblasts, and keratinocytes, all of which can then attract immune 

cells.159 The biggest advantage of using ghosts over live bacteria vaccines is their improved 

safety profile, as there is no danger of them reverting back to a pathogenic form. Also, since 

ghosts can preserve the epitopes characteristic of virulent bacteria strains, they may be able 

to induce higher quality immune responses compared to weakened or fragmented bacteria.

Bacterial ghosts have been used in various animal models to prove their potential as vaccines 

against bacterial infections. For example, a vaccine using the ghosts of Bordetella 
bronchiseptica, a Gram-negative bacterium that can infect canines as well as 

immunocompromised humans, was proven to be effective against respiratory infections in 

dogs.160 In the study, a stable and ready-to-use liquid formulation of the bacterial ghost 

vaccine was developed. The liquid formulation had its advantages in that it aligned well with 

veterinary practices of storing vaccines in liquid form rather than freeze-dried. Even at a 

lower dosage compared to the licensed vaccine Bronchicine CAe, subcutaneous injection of 

the ghosts resulted in similar efficacy and safety. In another study, ghosts from E. coli were 

used to stimulate the immune systems of mice against M. tuberculosis.161 The 

immunostimulatory effect of the ghosts was shown to be far greater than that of LPS. It is 

believed that this was due to the fact that, by replicating more features of bacteria, the ghosts 

were able to engage the immune system in a variety of ways. In addition, the ability of the 

ghosts to synergize with other treatments was explored by co-administering with 

commercially available anti-tuberculosis drugs such as bedaquiline and delamanid. It was 

demonstrated that bactericidal efficacy was increased compared to administration of the 

drugs alone.
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3.2.4 Outer Membrane Vesicles—Bacteria can produce and spontaneously release 

OMVs, which contain cargoes including toxins and enzymes, to interact with the 

surrounding environment.162 Their nanosized structure, as well as the presence of bacterial 

antigens and various PAMPs, make OMVs intriguing vaccine candidates.8, 163 Serogroup B 

meningococcal disease has been targeted by OMV vaccines, and the clinically used 

BEXSERO formulation contains recombinant bacterial antigens combined with OMVs to 

elicit strong immune responses.164 In the production of BEXSERO, the detergent 

deoxycholate is used to kill bacteria and mediate vesicle formation.165 This approach can 

weaken immunogenicity while causing aggregation and contamination,166 and thus it may 

be beneficial for next generation OMV vaccines to employ native spontaneously released 

OMVs to avoid the use of detergent.167

Due to their high immunogenicity, OMVs can be engineered as vaccine platforms that, when 

fused with weakly immunogenic heterologous antigens, can elicit potent and specific 

immune responses. Several genetic fusion systems have been explored to express foreign 

antigens on the surface of OMVs. In one example, E. coli bacteria were engineered such that 

the cytolysin A protein found on their OMVs was fused with a poorly immunogenic green 

fluorescent protein (GFP).168 It was then demonstrated that vaccination with OMVs derived 

from the modified bacteria could strongly elicit GFP-specific antibodies. Using the same 

approach, the outer membrane protein Omp22 of A. baumannii has been fused to ClyA on 

E. coli OMVs, and the resulting formulation was able to protect mice against A. baumannii 
infection.169 A fusion system based on factor H binding protein, a meningococcal surface 

lipoprotein, was developed specifically to express heterologous lipoproteins on the surface 

of OMVs.170 To validate this system, borrelial outer surface protein A was successfully 

engineered onto the surface of meningococcal OMVs, and vaccination with the formulation 

elicited antibody titers against the displayed protein. In addition to surface expression, 

heterologous antigens can be carried within the lumen of OMVs. In one case, recombinant 

E. coli OMVs were designed with streptolysin O fused to the luminal side of outer 

membrane protein A and were shown to protect mice against challenge with Group A 

Streptococcus.171

Various nanoplatforms have been developed to modulate the delivery of OMV-based 

vaccines. For mucosal vaccination, when encapsulated into nanoparticles, OMVs can be 

protected from extreme environmental conditions and more easily be captured by mucosal 

APCs to improve immune responses. For instance, after loading into nanoparticles made 

from a copolymer of methyl vinyl ether and maleic anhydride, Shigella flexneri OMVs 

administered by the nasal or oral route could provide long-term protection and improve the 

survival rate of mice challenged with the bacteria.172 The bioadhesion of the copolymer and 

the prolonged release of the antigens after encapsulation may explain the benefits of this 

system. After encapsulation into zein nanoparticles with a hydrophilic mannosamine-

poly(anhydride) corona, OMVs derived from enterotoxigenic E. coli could be administered 

orally and elicited stronger innate and humoral immune responses in mice and pregnant 

sows compared to free OMVs.173

In contrast to platforms for nanoencapsulation, OMV-coated nanoparticles are an emerging 

technology that leverages the tunable physicochemical properties of nanomaterials while 
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preserving the surface display of native bacterial antigens.174 As a proof of concept, E. coli 
OMVs were coated onto the surface of gold nanoparticles and used to modulate antibacterial 

immunity (Figure 8).71 The resulting nanoformulation efficiently drained to the lymph 

nodes, activating the resident immune cells. Compared with OMVs only, the OMV-coated 

gold nanoparticles could elicit stronger antibody responses with higher avidity. In another 

membrane coating example, OMVs were coated onto crosslinked bovine serum albumin 

nanoparticles, and the formulation was shown to enhance protection against fatal infection 

by carbapenem-resistant Klebsiella pneumoniae.175 Overall, OMVs have demonstrated 

significant potential as antibacterial vaccine candidates, although scalable production and the 

balancing of immunogenicity with toxicity remain challenging.176

3.2.5 Nanotoxoids—For many bacterial infections such as diphtheria and tetanus, 

symptoms are driven by the production of secreted toxins. Inactivated versions of these 

toxins, also referred to as toxoids, have been used to vaccinate against some bacterial 

infections in the clinic.177 Traditional methods for toxoid production include heat and 

chemical inactivation,178 both of which may disrupt the structure of the original toxins and 

reduce vaccine efficacy.179 In order to make toxoid vaccines less toxic while maintaining 

epitopic integrity, recombinantly modified toxoids as well as nanoparticle-based platforms 

have been developed.180–182 For instance, chitosan–dextran sulfate nanoparticles were 

constructed to co-load the pertussis toxoid and the adjuvant immunoglobulin A for sustained 

release, and it was shown that the formulation could induce enhanced IgG responses in mice 

compared to the conventional toxoid formulation with alum as the adjuvant.183

Recently, a nanotoxoid platform has been developed where toxins are detained on cell 

membrane-coated nanoparticles, and the resulting complex is used as a vaccine.184 The basis 

of nanotoxoids is the strong interactions between cell membranes and bacterial virulence 

factors such as pore-forming toxins and neurotoxins.185 The detained toxins are inactivated 

while their native structure remains undenatured, enabling their use as safe and effective 

toxoid vaccines.186 Nanotoxoids can be divided simply into single and multiple toxin 

systems. The first reported nanotoxoid formulation consisted of staphylococcal α-hemolysin 

loaded onto erythrocyte membrane-coated polymeric nanoparticles, and the formulation 

showed less toxicity and induced more toxin-specific antibody titers than a heat-inactivated 

control.184 Further study revealed vaccination with the nanotoxoids could inhibit lesion 

formation and reduce bacterial burden in the major organs of mice challenged 

subcutaneously with methicillin‐resistant S. aureus (MRSA).187 Multiple toxin systems 

provide a more complete response against the plethora of toxins secreted by bacterial 

pathogens. A facile method to produce these multi-antigenic formulations is to incubate cell 

membrane-coated nanoparticles with secreted proteins collected from bacterial culture 

supernatant. In one study, hemolytic secreted proteins of MRSA, including α-hemolysin, γ-

hemolysin, and Panton–Valentine leucocidin, were collected and incubated with red blood 

cell membrane-coated nanoparticles, yielding a nanotoxoid that was safer and elicited 

enhanced immune responses as compared to heat-inactivated proteins.188 Another study 

explored the possibility of utilizing macrophage membrane coating to capture secreted 

proteins from multidrug-resistant Gram-negative P. aeruginosa (Figure 9).189 Due to their 

role in the body’s defense against bacteria, macrophages bind a number of antigens secreted 
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by P. aeruginosa, and this was leveraged by the macrophage membrane-coated nanoparticles 

to capture antigens such as flagellin and various outer membrane proteins. After intranasal 

administration, the nanotoxoid was able to elicit potent immune responses against P. 
aeruginosa and protected mice against live bacterial infection.

To enhance vaccine efficacy upon oral administration, micromotor technology has been 

leveraged together with cell membrane coating to fabricate toxoids with active propulsion 

characteristics. In an example, a biomimetic micromotor was made by coating red blood cell 

membrane, with α-hemolysin preinserted into it, onto a magnesium-based Janus core.190 

The formulation was further protected with an enteric coating, which allowed it to safely 

travel through the harsh acidic environment of the stomach, after which the propulsion 

would activate and drive the vaccine payload toward the mucosal lining of the intestines. The 

motorized toxoids elicited improved mucosal immune responses as compared to static 

microparticles when administered orally. Overall, nanotoxoid technology has shown great 

potential for antibacterial vaccine applications, and it can be easily generalized to any type 

of pathogen that secretes cell-attacking virulence factors.191 It should be noted that the cell 

membrane coatings can be sourced from a variety of cell types,192–199 providing additional 

design flexibility.

4. CONCLUSION

Bacteria and bacteria-inspired nanomaterials have shown great potential for biomedical 

applications based on their unique properties. Live bacteria provide propulsion and bacterial 

taxis, both of which can be used to help direct a therapy to a site of interest and enhance 

penetration into solid tissues. In addition, bacteria are responsive to their environment, and 

they can be engineered for tunable growth and triggered payload release. The native 

immunogenicity of bacteria and their derivatives offers another valuable asset, enabling them 

to be leveraged as powerful adjuvants and smart vaccine vectors. This review has 

summarized the current field of bacteria-inspired nanomedicine, with a focus on payload 

delivery and immune modulation. The more traditional applications of bacteria, including in 
situ immune stimulation and tumor-tropic delivery, have given way to more elegant 

biohybrids with added functionalities and synthetic constructs that successfully mimic some 

of the unique properties of bacteria. Various bacteria-derived platforms, including those 

based on bacterial ghosts, OMVs, toxins, spores, and cell membrane-coated nanoparticles, 

can effectively interface with the body and utilize bacteria-specific properties for smart 

delivery and vaccination.

Nevertheless, there are challenges that remain, and these will necessitate further engineering 

and innovation to overcome. A unique challenge of bacteria-based therapeutics is dosage 

considerations; in the case of live bacteria, even when under quorum-sensing lysis control, 

the dosage administered and the scale of bacterial growth inside the body may not be 

consistent among patients. This variation may necessitate the use of fail-safes such as kill 

switches200 and genetic firewalls201, 202 that are capable of curbing bacterial proliferation, as 

well as a deeper understanding of growth kinetics. Due to their biological nature, the 

translation of bacteria-inspired therapeutics to the clinic will also require a robust framework 

to ensure functional stability throughout the production process. As many of the systems 
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discussed in this review are highly novel with no analogous products on the market, careful 

collaboration with regulatory agencies will be necessary to ensure proper manufacturing 

practices and to guarantee patient safety. Current clinical trials have only scratched the 

surface of bacteria-inspired medicine. There is still much to learn about bacteria and how 

they interact with the human body, and our ever-growing knowledge on these topics will 

help to inform the design of future nanomedicine platforms that could significantly change 

how infectious diseases or cancers are managed in the clinic.
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Figure 1. Engineering design principles inspired by bacteria and their derivatives.
The inherent properties of bacteria, including their quorum sensing, environmental 

sensitivity, taxis, motility, hypoxic growth conditions, and capacity for immune modulation 

have been leveraged in the design of novel nanomedicine platforms.
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Figure 2. Nanoparticle-modified bacteria for targeted cancer therapy.
(A) Salmonella Typhimurium YB1 exhibited enhanced accumulation in tumors due to local 

hypoxic conditions and the release of bacteria-attracting nutrients post-photothermal therapy. 

(B) Mice treated with YB1 attached with indocyanine green-loaded nanoparticles (YB1-

INPs) showed an elevated temperature in the tumor area upon laser irradiation. (C) 

Treatment using YB1-INPs combined with laser irradiation led to complete control of MB49 

tumor growth in mice. Adapted with permission.34 Copyright 2019 Elsevier.
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Figure 3. Bacterial bioreactors for localized photothermal therapy.
(A) Under hypoxic conditions, E. coli can mediate the reduction of a perylene diimide 

derivative-based supramolecular complex (CCPDI) into radical anions (CRAs). (B) Electron 

paramagnetic resonance spectroscopy was used to confirm the selective reduction of CCPDI 

into CRA in the presence of E. coli under hypoxic conditions. (C) The local tumor 

temperature notably increased in mice administered with E. coli and CPPDI-loaded matrix 

metalloproteinase-2-responsive liposomes (C@MRL). Adapted with permission.55 

Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Holay et al. Page 32

ACS Appl Bio Mater. Author manuscript; available in PMC 2022 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Bacterial membrane-coated nanoparticles (NPs) for drug delivery.
(A) Membrane-cloaked NPs were fabricated by coating S. aureus-derived extracellular 

vesicles (EVs) around antibiotic-loaded nanoparticles. Phagocytic engulfment of S. aureus 
activated macrophages and primed them for targeting by S. aureus EV-coated nanocarriers. 

(B) NPs coated with S. aureus EVs and loaded with the antibiotic rifampicin (Rif) 

significantly reduced the bacterial burden in the major organs of mice infected with S. 
aureus compared with formulations coated with a PEGylated lipid bilayer (Lipo) or E. coli 
OMVs. Adapted with permission.74 Copyright 2018 American Chemical Society.
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Figure 5. Bacteria-inspired synthetic microswimmers.
(A) Schematic depicting the proposed mechanism by which magnetically actuated artificial 

bacteria flagella (ABF) created a convective fluid flow to facilitate nanoparticle transport 

across endothelial barriers and into tumor tissue. (B,C) Magnetically rotating ABF enhanced 

the accumulation (B) and penetration (C) of nanoparticles in a microfluidic system designed 

to mimic the blood vessel–tumor tissue interface. Adapted with permission.102 Copyright 

2019 The Authors, some rights reserved; exclusive licensee American Association for the 

Advancement of Science.
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Figure 6. Bacterial membrane-coated nanoparticles (BNPs) for cancer immunotherapy.
(A) BNPs were loaded with CpG and PC7A to provide immune stimulation and endosomal 

escape properties, respectively, and surface-modified to efficiently capture tumor antigens 

after radiation therapy (RT). (B) Mice bearing NXS2 melanoma showed tumor growth 

reduction when treated with BNPs combined with RT. (C) When re-challenged with tumors, 

mice initially treated with the combination therapy exhibited more immune memory. 

Adapted with permission.139 Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, 

Weinheim.
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Figure 7. Bacteria-mediated nanobody delivery.
(A) Engineered bacteria allowed for controllable release of checkpoint blockade nanobodies 

at the tumor site, thus disrupting immunosuppressive mechanisms within the local tumor 

microenvironment. C: cancer cell; T: T cell; yellow rods: bacteria. (B) After intratumoral 

injection, bacteria with a synchronized lysis circuit (SLIC) producing nanobodies against 

both PD-L1 and CTLA-4 (SLIC-2) were effective in controlling tumor growth compared 

with control bacteria producing no nanobodies (EcN-lux), as well as bacteria producing one 

of the nanobodies (SLIC:PD-L1nb and SLIC:CTLA-4nb). Adapted with permission.141 

Copyright 2020 The Authors, some rights reserved; exclusive licensee American 

Association for the Advancement of Science.

Holay et al. Page 36

ACS Appl Bio Mater. Author manuscript; available in PMC 2022 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Bacterial membrane-coated gold nanoparticles (BM-AuNPs) for antibacterial 
vaccination.
(A) BM-AuNPs were fabricated by coating gold nanoparticles with E. coli OMVs, and the 

resulting formulation was used to vaccinate against the source bacteria. (B) Compared with 

OMVs alone, vaccination with BM-AuNPs elicited higher anti-E. coli immune responses. 

Adapted with permission.71 Copyright 2015 American Chemical Society.
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Figure 9. Bacterial protein-loaded macrophage membrane-coated nanoparticles (MΦ-NPs) as a 
multivalent toxoid vaccine.
(A) A MΦ-NP-based toxoid (MΦ-toxoid) was fabricated by incubating MΦ-NPs with 

proteins secreted from Gram-negative bacteria, and the resulting formulation was used to 

elicit multi-antigenic immunity. (B) Proteomic analysis demonstrated the selective 

enrichment of various P. aeruginosa secretions (PaS) on the MΦ-toxoids. (C,D) Vaccination 

of mice with the MΦ-toxoids resulted in higher anti-PaS titers (C) and lessened bacteria 

burden (D) upon intranasal challenge with live P. aeruginosa. Adapted with permission.189 

Copyright 2019 American Chemical Society.
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