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Abstract 

 
 

Uncertainty Propagation in Transistor-level Statistical Circuit Analysis 
 

By 
 

Qian Ying Tang 
 

Doctor of Philosophy in  
Electrical Engineering and Computer Sciences 

 
University of California, Berkeley 

 
Professor Costas J. Spanos, Chair 

 

 

In today’s semiconductor technology, the size of a transistor is made smaller and 
smaller. One of the key challenges presently faced by the designers is the increasing 
impact of process variations to circuit performances. As a result, circuits designed using 
the traditional methods can deviate from the desired specifications after being 
manufactured. Therefore, new circuit design and characterization methodologies are 
required to handle these process variations. 

The problem of estimating the circuit performance at a transistor-level due to 
parameter uncertainties is examined. Uncertainty in circuit process and device parameters 
arises as a result of manufacturing variability. Since electrical circuits are, in general, 
complex and nonlinear systems, estimating their performances efficiently and accurately 
is very challenging. Existing methods on propagating uncertainties in circuit parameters 
to circuit performance include worst case corner analysis, Monte-Carlo simulations, 
response surface modeling, sensitivity analysis and unscented transformation.   

In this work, a novel interval based circuit simulation algorithm is proposed. An 
interval is a quantity consists of noise variables following Gaussian. The algorithm is 
developed for both Gaussian and non-Gaussian process variations.  

When the uncertainty in the circuit process and device parameters can be captured 
by correlated Gaussian distributions, the process/device parameters are first represented 
by the appropriate interval representations. An interval-valued SPICE simulator, in which 
all real number operations are replaced by interval operations, is used to simulate the 
circuit. The simulation results are therefore interval-values that can be used to extract 
performance statistics. In this approach, only one circuit simulation is required to obtain 
the best Gaussian distribution approximation for any circuit performance.  

The algorithm is tested on RC circuits and transistor circuits with excellent 
simulation accuracy (<2% error) as compared to Monte Carlo simulation results. It is 
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shown analytically that the runtime of the interval valued circuit simulation is on the 
order of O(n+m)O(c3) where n is the average number of noise variables per interval 
operation, m is the average number of noise variables shared between any two interval 
quantities and c is the number of nodes in the circuit.  

In the case when the process/device parameters cannot be modeled with Gaussian 
distributions, A Mixture of Gaussian (MOG) distribution is used to approximate all non-
Gaussian distributions and a novel extension to the interval representation is proposed. 
The algorithm is tested on circuit paths of 100 stages containing inverters, NAND gates 
and NOR gates. The simulation result of the proposed algorithm agrees very well with 
Monte-Carlo simulation. In addition, the runtime of the proposed algorithm shows a 54X 
speed up compared to Monte-Carlo simulation.  

The proposed interval-value based simulation engine for both Gaussian and non-
Gaussian process variations can be directly applied to fast and accurate standard cell 
library characterization, where the distribution of the cell delay and power are calculated. 
In addition, the distribution information provided by the proposed simulation method can 
be feed into statistical timing analysis engine for full-chip level timing closure. The 
proposed simulation engine can also be incorporated into statistical circuit optimizations.  
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Chapter 1 Introduction 
 

 

 

 

 

 

 

 

 
In today‟s semiconductor technology, the size of a transistor is made smaller and 

smaller. The benefits of transistor scaling have been to reduce manufacturing cost and to 

enhance device performance. However, as the devices are scaled down into the 

nanometer regime, issues such as manufacturability, process variations, voltage scaling, 

power dissipation and device reliability have greatly undermined the benefits of scaling. 

In today‟s semiconductor design and manufacturing, sophisticated methodologies have 

been used to ensure chip performance and manufacturability.  

One of the key challenges presently faced by the designers is the increasing impact 

of process variations on circuit performances. For example, variations in the lithographic 

systems can cause variations in the printed line width, resulting in undesired shorts or 

opens in a chip layout, especially when the printed line width is narrow [1.1][1.2]. Other 

variability issues in nanoscale transistors include random dopant fluctuation [1.3], line 

edge roughness [1.4], well-proximity effects [1.5], layout dependent stress variation in 

strained silicon technologies [1.6], and rapid thermal anneal (RTA) temperature induced 

variation [1.7][1.8]. All of these variations cause circuits designed using the traditional 

design flow to deviate from the desired specifications after being manufactured. 

In section 1.1, a brief overview on the types and modeling techniques of process 

variations observed in today‟s semiconductor manufacturing is given. Section 1.2 reviews 

the traditional worst-case corner based design flow. The dissertation organization is 

presented in section 1.3. 

 

1.1 Process Variations in Semiconductor Manufacturing 

In silicon manufacturing, many processing steps can cause a non-uniformity in the 

manufactured device properties, referred to as the process variations. Process variations 

have become a serious issue in nanoscale transistors. the following sections give an 

overview of the types of process variations, and current approaches to model such 

variations.   
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1.1.1 Types of Variations 

Depending on their spatial scales, process variations can be categorized into inter-

die (global) variations that affect all the devices on a die simultaneously, and intra-die 

(local) variations that affect each devices individually.  

One example of inter-die variations are the loading effects in etching or deposition 

that impact the geometry of all the devices on a wafer [1.24]. Inter-die variations can be 

subdivided into lot-to-lot variations (i.e., variations between two lots of wafers), wafer-

to-wafer variations (i.e., variations between two wafers within the same lot), and die-to-

die variations (i.e., variation between two dies on a same wafer).  

Examples of local variations include various types of layout dependent proximity 

effects [1.25]-[1.28]. The devices that are located closer to a well edge show higher 

threshold voltages than the devices located further away from the well edge, known as 

the well proximity effects [1.29]. In addition, the size and proximity of STI structures 

surrounding a device also impact device performance, due to the STI induced stresses in 

the device channel [1.27]. 

Depending on their nature, variations can also be categorized into systematic and 

random. Systematic refers to the variations that can be captured by a deterministic 

function, whereas random variations are stochastic in nature and can only by 

characterized by distributions. For example, during the manufacturing step known as 

rapid thermal annealing [1.32], the wafer is put into a furnace and the temperature is 

ramped up to the desired level. However, due to the non-uniform temperature distribution 

in the furnace, different locations of the wafer are processed at the different temperature, 

resulting into device property variations in the annealed devices. This variation is 

systematic since it can be captured by the known temperature distribution across the 

wafer. In another critical process step, when dopants are implanted into a material, the 

final concentrations injected into the material the variation is referred to as the random 

dopant fluctuation and it is random in nature. The following table summarizes the 

different types of variations.   

 

Table 1.1: Categorization of different types of process variations.  

 Systematic Variations Random Variations 

Inter-die Variations across-wafer Lot to Lot,  Wafer to wafer 

Die to die 

Intra-die Variations 

across-die variations, 

Layout/context dependent 

Effects 

Device to device 

LER/RDF 

 

 

1.1.2 Characterization and Modeling 

In order to characterize the amount of variations in a process, test structures 

consisting of ring oscillator and SRAM memory cells are often designed, manufactured 

and measured to obtain the statistics. Each device in the test structure are measured for 
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Ion and Ioff under various bias conditions to extract the I-V characteristic. Selected set of 

device parameter values are back extracted from this I-V characteristics. Device 

parameter extraction methods can be found in [1.9]-[1.11].  

 

1.2 Variation-Aware Circuit Design 

Worst case circuit analysis (WCCA) [1.19]-[1.23] has been used extensively in the 

industry for variation-aware circuit designs. In this approach, a set of worst case corners 

is generated by varying the physical and electrical parameters of representative devices 

(i.e., transistors, interconnect elements) [1.18] with the objective of achieving the worst 

case performance. Circuits are then simulated at these parameter corners to estimate the 

worst case performance, such as timing and power, in order to ensure that even under 

those worst case conditions the performance specifications are met.  

The worst case value P
wc

 of a particular device performance P is defined as, 
 

     (     )    
(1.1) 

where ρ is a pre-defined probability value typically close to 1 and approximates the  

required manufacturing yield. In theory, there can be a large number of different 

assignments of the device parameter values that give the same worst case performance. 

The particular set of worst case parameter values     assignment is chosen such that,   

   

       
 
    ( ) 

             ( )      
(1.2) 

or, in other words, the most probable values of device parameters that give rises to such 

worst case device performance. This is illustrated in Figure 1.1 for two device 

parameters, where the contours are from the joint distributions of the device parameters.  

 
Figure 1.1: Illustration on determining the worst case corner for a device in the 

case of two process/device parameters.  

 

Despite the popularity of using worst case corners for variability-ware circuit 

designs, the method becomes increasingly inadequate as the increase in both magnitude 

and complexity of process variations, coupled with the aggressive scaling of MOS 

wcPP 
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devices. Since the true performance for a circuit is design specific, while the worst case 

corner are determined only based on the worst case of device, using worst case corners 

for circuit design often leads to pessimistic designs. In addition, the worst case corners 

design methodology gives no information about the actual circuit yield, nor the actual 

probabilistic distribution of the performance of interest. All these problems with worst 

case design methodology motivate the need for incorporating full statistics in 

performance evaluation for aggressive designs.  

Many authors [1.12]-[1.17] have demonstrated design methods that take into 

account of the entire distribution information of process/device parameters. For example, 

chip-level statistical timing analysis [1.30]-[1.31] (SSTA) has been implemented as a 

way of estimating the chip-level critical path delay by assuming a Gaussian distribution 

of the delay of each individual gate. The method propagates the gate delay distribution 

through the entire circuit path by defining Gaussian approximations to the MAX and 

SUM of any two Gaussian distributions.  Extensions of SSTA to non-Gaussian 

distributions have also been well studied in past literatures.  

Many of the existing methods build upon the availability of an accurate estimation 

of the distribution of gate delay or power. However, obtaining such distributions often 

involves hundreds or thousands runs of costly SPICE circuit simulations. An efficient and 

accurate SPICE-level statistical circuit performance analysis and simulation is still an 

active area of research.  

In this dissertation, we proposed a novel interval-value based algorithm for 

speeding up SPICE-level statistical performance simulation for both Gaussian 

distributions and non-Gaussian distributions.  

 

1.3 Dissertation Organization 

The dissertation is organized as follows: chapter two gives a background overview 

of exiting methods of transistor/spice level statistical circuit simulation. Chapter three 

discusses our proposed interval-value based approach to efficient transistor level 

statistical circuit simulation for Gaussian uncertainties in parameter values. Chapter four 

extends this method to incorporating non-Gaussian parameter uncertainties. Chapter five 

concludes this dissertation.   
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Chapter 2  Uncertainty Propagation in Circuit 

Analysis 
 

 

 

 

 

 

 

 

 
2.1 Introduction 

In this chapter, existing uncertainty characterization and propagation method are 

reviewed and their applications to transistor-level statistical circuit analysis are discussed.  

 

2.2 Sampling Based Method 

The most straightforward method for evaluating statistical circuit performance is by 

means of sampling. In such approach, samples are drawn from the distributions of the 

circuit parameters, and the circuit is simulated in a transistor level simulator, e.g., 

HSPICE, using these sample values. Statistics on performance distributions can then be 

found by looking at these simulation results.  

If samples are drawn randomly in the parameter space, the method is referred to as 

Monte-Carlo sampling method. The cost of the Monte-Carlo sampling method for 

statistical circuit performance evaluation is the product of the number of samples and the 

runtime required for a single circuit simulation, plus any additional cost required to 

estimate the distributions of the performance from samples. In transistor-level circuit 

simulators such as HSPICE, the cost of one simulation is on the order of O(n
3
), where n 

is the size of the circuit [2.1].  Therefore, the cost can be very large when the number of 

samples required is large.  

The benefits of the Monte-Carlo approach is that the number of samples required to 

obtain the distributions for a particular circuit performances is independent of the number 

of parameters. However, the estimation accuracy depends highly (and generally the 

square) on the number of samples used. In the discussion by [2.2], the authors showed 

that 10x reduction in estimation error requires a 100x increase in the number of samples 

when estimating a Gaussian distribution.  This problem becomes very acute when 

estimating low probability events, such as yield loss.. 

The Latin Hypercube sampling method [2.3][2.4] tries to reduce the number of 

samples required in a Monte-Carlo estimation by placing more control on how the 
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samples are drawn from the parameter space. The goal is to make sure that the samples 

are drawn uniformly from all regions of the parameter space, and to avoid repeated 

samples from the regions where the parameter probability density function have a higher 

value (such situation occurs in Monte-Carlo sampling method).  

In Latin hypercube sampling, the cumulative distribution functions of the 

parameters are stratified into equal segments, and one or more samples per segment are 

used for performance evaluation. Figure 2.1 illustrates how four samples are generated 

using Latin Hypercube sampling schemes in a 2-dimensional case. By ensuring that there 

is only one single grid filled with one sample for each row or column, the samples can be 

more uniformly located within the sample space. The sample inside each grid is drawn 

randomly.  

 

 
Figure 2.1: Illustration of the Latin Hyper cube sampling method on two independent 

random parameters with four samples.  

 

Authors in [2.3] show that for the same number of samples, the variance of the 

Latin hypercube estimator is smaller than that of the Monte-Carlo estimator, when 

“certain monotonicity condition holds”.  

Another commonly used sampling method is importance sampling [2.5][2.6]. This 

approach is particularly advantageous in estimating the tail of a distribution.  In 

importance sampling, the probability distribution function of the parameters are first 

distorted such that when the samples are drawn from the distorted, the variance of the 

estimation is reduced. For example, in the case of SRAM failure probability estimation, 

importance sample will shift the original distribution such that the events in the tail of the 

distribution (i.e., the events that an SRAM cell fails) now have a much higher probability 

to occur. In doing so, with the same number of samples, a more accurate estimation can 

be obtained compared to sampling from the original distribution. However, the 

disadvantage in using importance sampling is that there is not always an easy method to 

find the distorted distribution while providing the required estimator variance reduction 

[2.2].   

Despite the possibility of the reducing the number of samples, the runtime of  

sampling based methods are generally substantial compared to other methods that will be 

discussed in the following sections. The cost of sampling based methods for statistical 

circuit simulation is equal to the number of samples multiplied by the cost of simulating a 
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circuit. The cost of circuit simulation itself can be substantial, thus limits the use of 

sampling based methods to only very small sized circuits.  

 

2.3 Response Surface Modeling 

Response surface modeling [2.7][2.10][2.11] tries to reduce the cost of statistical 

circuit simulation by replacing the costly, SPICE circuit simulations by an simple 

empirical model that can be evaluated at a much lower cost.  

In this approach, a design of experiment (DOE) is first performed on the parameters 

to generate representative data points from the parameter space. General background on 

DOE can be found in [2.9]. One commonly used DOE scheme is the central composite 

design as illustrated in Figure 2.2 for a 2-dimensional case. A center point and four 

factorial points located ±1 unit away from the center (as shown by the blue dots in Figure 

2.2). In addition, four points located at ±α with |α| > 1 away from 0 and on the parameter 

axis are chosen, as shown by the diamond shaped points in Figure 2.2. The precise value 

of α depends on the desired properties for the DOE and on the number of factors involved 

[2.12]. 

 

 
 

Figure 2.2: Illustration of the central composite design for two variables. The diamond 

and circle shape marks the samples points resulted from this DOE.   

After data points are selected using a DOE, the circuit is simulated under these data 

points to obtain the performance values. A response surface model is fitted to relate the 

circuit performance to parameters. Commonly used response surface models are either 

first order or second order. The first order model, or the linear response surface model is 

given by, 

 ( ̃)   ̃  ̃    
(2.1) 

and the second order model is given by,  

 

 ( ̃)   ̃   ̃     ̃    

x1 

x2 
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(2.2) 

where  ( ̃)  denotes the value of the performance, or the response of the model,  ̃ is the 

set of all device/process parameters,   ̃ is a n-dimensional vector of coefficients,  A is a n 

by n matrix, and c is a constant bias value.  The linear model is suitable when the 

variation in  ̃ is small, while the second order model is used for the case when the 

variations is large. The value of the model parameters  ̃,  A and c is obtained by solving 

the set of over-determined equations, 

    ̃
  ̃                                

(2.3) 

for the linear model, and  

 

    ̃ 
   ̃   

  ̃                
(2.4) 

for the second order model. The terms  ̃  and    are the DOE samples from the parameter 

space and the corresponding circuit responses, for a total of s number of samples.  

One of the commonly used methods for solving systems of over determined 

equations is the least-square approximation [2.8]. For example, in the case of linear 

response surface models, to estimate the value of parameters, a matrix that collects all the 

DOE samples is first formed as 

 

  

[
 
 
 
  ̃ 

 

  ̃ 
 

  
  ̃ 

 ]
 
 
 
 

(2.5) 

where a 1.0 is appended to all DOE samples   ̃     ̃  in oprder to accommodate the 

costant “c” shown in equations 2.3 and 2.4. Let the vector  ̃  ,       -
  collect all the 

circuit responses, then the least square approximation of the model parameters for the 

linear model is given by 

[
 

 ̃
]  (   )     ̃  

(2.6) 

for c and  ̃ in equation (2.3).  

Once a response surface model has been built, the distribution of the circuit 

performance can be obtained by repeatedly evaluate the model using a Monte-Carlo 

method. Since the cost of model evaluation is very small, a much larger number of 
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Monte-Carlo samples can now be used for obtaining an estimate of the performance 

distribution.  

The total cost for using response surface modeling for statistical circuit performance 

evaluation consists of three parts, a) the cost for generating DOE samples and simulations 

of the circuit at those DOE points; b) the cost for building a response surface model, and 

c) the cost for generating performance distributions by evaluating the response surface 

models. In general the cost of part (a) and part (b) dominates over the cost for part (c). 

The major benefit of response surface modeling over direct sampling approaches is 

the reduction in runtime when the dimension of the parameter space is small. The number 

of DOE experiments required to arrive at response surface model is generally smaller 

than the number of samples required in a sampling approach, as long as the dimension is 

confined within a value. However, the number DOE experiments grows exponentially 

with the number of dimensions, and thus can be much more costly than a sampling based 

method if the parameter dimension is large.  

 

2.4 Unscented Transformation 

The unscented transformation (UT) [2.14]-[2.18] is an alternative method for 

estimating a probability distribution function. Given a vector-valued random variable 

 ̃,  and an differentiable function f, such that 

 

   ( ̃) 
(2.7) 

The unscented transformation tries to estimate the statistics, i.e., mean and variance, 

of y, from the function f and the distribution of   ̃. In the context of statistical circuit 

simulation,  ̃ is the vector of device/process parameters subject to variations, y is the 

circuit performance of interest, and the function f is implicitly available through SPICE 

circuit simulations.  

The basic idea behind UT is to obtain a set of s “sigma” points, i.e., points that are a 

certain number of standard deviations away from the mean, from the distribution of  ̃. 

These “sigma” points are denoted as   ‟s. The function f is then evaluated at those sigma 

points to obtain a corresponding set of values     (  )        . The mean and 

variance of y is then estimated from those points through weighted sums, i.e. 

 

 ̅  ∑    

 

   

 

(2.8) 

and 

   ∑  (    ̅
 )(    ̅

 ) 
 

   

 

(2.9) 



12 
 

where  ̅  and   is the estimation of the mean and variance of y using the unscented 

transformation; s is the number of sigma points;  ̅ is the mean vector of  ̃; and    are the 

weights, whose calculation is discussed next.  

 The concept of unscented transformation is illustrated in Figure 2.3 and in 

comparison with the Monte-Carlo method,  

 

 
    (a)      (b) 

Figure 2.3: Example of the unscented transformation for mean and covariance 

propagation. a) Monte-Carlo b) Unscented Transformation (UT). (Reproduced from 

[2.12]). 

 

 

A Taylor series expansion of the function f around the mean vector  ̅,  is performed 

in order to derive the values for the weights and the sigma points [2.14] 

 

   ( ̃)   ( ̅)    
 ( ̅)( ̃   ̅)  

 

 
( ̃   ̅)   ( ̅)( ̃   ̅)   (| ̃   ̅|

 ) 

(2.10) 

where   
 ( ̅)  and   ( ̅)  are the gradient and the Hessian matrix of the function f 

evaluated at  ̅. Taking the mean of equation (2.10),  

yi = f (xi) 
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 ̅   ( ̅)  
 

 
 .( ̃   ̅)   ( ̅)( ̃   ̅)/ 

(2.11) 

Equation (2.8) can be expanded by substituting the second order Taylor series 

approximation for each    to become 

 

 ̅  ∑    

 

   

 ∑  { ( ̅)    
 ( ̅)(    ̅)  

 

 
(    ̅)

   ( ̅)(    ̅)

 

   

  (|    ̅|
 )} 

(2.12) 

where s is the total number of sigma points. Comparing equation (2.12) with equation 

(2.11), the values of    and the weights    and    have to satisfy the following 

conditions, 

 

∑  
 

   

(2.13) 

∑  (    ̅)

 

   

(2.14) 

 (( ̃   ̅) ( ̃   ̅))  ∑  (    ̅)
 (    ̅)

 

 

(2.15) 

 

In addition, equation (2.13) - (2.15) are the only conditions required for the 

unscented transformation estimation for the mean estimation to be unbiased up to the 

second order. These equations are referred to as the unscented conditions for mean. 

Assuming the covariance matrix of  ̃ can be decomposed into     with       , n is 

the dimension of  ̃, and with the introduction of any scaling parameter,    , the value 

of  the weights    and the sigma points    are  

 

    
 

   
           

     
 

  

     ̅             

    ̅

 

(2.16) 

where    is the i
th

 column of the matrix. 
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A similar derivation is possible for the unscented transformation estimation of the 

variance. It can be shown [2.14] that the value in equation (2.16) also gives a second 

order estimation for the variance. 

In the context of the statistical circuit simulation, the sigma points    are extracted 

from the distribution of the process parameter by using equation (2.16).     is obtained by 

simulating the circuit at each of the sigma points. The mean and variance of the circuit 

performance y are then obtained using equations (2.8) and (2.9). The cost of using 

unscented transformation for statistical circuit performance evaluation equals to the 

number of the sigma points multiplied by the cost of one circuit simulation, plus the cost 

of obtaining the matrix   from the covariance matrix of   ̃. The number of sigma points, 

if using the scheme in equation (2.16), is 2n+1, where n is the number of random process 

parameters. The cost of obtaining matrix   is given by the runtime required for an eigen-

decomposition on the covariance matrix of   ̃. The runtime of such decomposition is on 

the order of n
3
, where n is the number of process parameters  

 

2.5 Sensitivity Analysis 

In circuit sensitivity analysis, one tries to find out the changes in performance value 

∆p due to a small perturbation in the device/process parameters ∆θ. One example of 

sensitivity analysis is the study of the changes in the delay of logic gate due to a small 

change in the device threshold voltage. Sensitivities of a performance p with respect to a 

single parameter can be obtained by simulating the circuit at parameter values that are  

±∆θ away from the nominal condition θ0, and by using the finite differences formula to 

calculate the sensitivity sθ as  











2

)()( pp
s  

(2.17) 

If the sensitivities of the performance with respect to all parameters are given, then 

the variances of circuit performance   ( ) due to random process/device parameters can 

be estimated from the sensitivities, i.e., 

)(...)()( 2

1

22

1 nn
ssp     

(2.18) 

where the performance p is a function of the parameters,        . The terms 

          are the sensitivities of the performance p with respect to the parameters, and 

  (  )    
 (  ) is the variance in each individual parameters.  

The variance estimation as represented in equation (2.18) is only accurate when the 

performance is a linear function of the parameters, or when the performance function can 

be approximated as a linear function of the parameters in the range of parameter 
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variations. In the context of circuit simulation, the sensitivity analysis is used only when 

the process variations are small.  

Direct sensitivity analysis by means of perturbing the parameters requires a large 

number of circuit simulations, especially when the parameter space is large.  The 

Generalized Adjoint Network approach [2.19]-[2.21]  has been investigated as a method 

of efficiently calculating the sensitivities, and the runtime is relatively independent of the 

dimension of the parameter space.  

In the generalized adjoint network approach, each circuit element is replaced with 

its corresponding adjoint counterpart to produce a new circuit with the same circuit 

topology. The new adjoint circuit is then simulated, but with a reversal in time as 

compared to the original circuit, in order to obtain a set of branch currents and nodal 

voltages. The voltages and currents from the original circuit simulation, and those 

obtained from the adjoint circuit simulations are used together to calculate the 

sensitivities of a particular circuit response to the parameters of the circuit elements 

which has been replaced by their adjoints. Therefore, in the adjoint network approach, 

only two SPICE circuit simulations are required per circuit response of interest, 

regardless of the number of parameters.  

The adjoint network for sensitivity calculations make use of the Tellegen‟s 

Theorem [2.23], which states that for any network with arbitrary multi-terminal or two-

terminal elements, as long as each element possesses a parametric representation, then 

there exists an adjoint network with the identical topology, that satisfies the following 

relationships, 

 

 

∑  ( )  ( )

 

    

∑  ( )  ( )   

 

 

(2.19) 

where   ( ) and   ( )  are the branch voltages and currents of the original network; 

  ( ) and   ( ) are the branch currents and voltages of the adjoint network; and the 

summation is taken over all branches in the network.  

In the presence of perturbations of the device parameters, the branch currents and 

voltages deviate from the nominal values, and the deviation is denoted as    ( ) and 

   ( ). Applying Tellegen‟s theorem to the perturbed network gives, 

 

∑(  ( )     ( ))  ( )   

 

 

∑(  ( )     ( ))  ( )   

 

 

(2.20) 
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By comparing equation (2.19) to equation (2.20), the following is obtained,  

 

∑   ( )  ( )   

 

 

∑   ( )  ( )   

 

 

(2.21) 

and therefore,  

 

∑,   ( )  ( )     ( )  ( )-   

 

 

(2.22) 

Equation (2.22) is the key governing equation that is used to decide on the adjoint 

counterpart of each circuit element. For a resistive branch described by the set of branch 

voltage and current equations 

 

  ( )    (  ( )     ) 

  ( )    (  ( )     ) 

(2.23) 

where   ( ) is a representative performance value, and    is the set of device/process 

parameters subjected to variations. For example, in the case of a time-invariant linear 

resistive branch,   ( )    ( ),     (  )  ( ). Applying a first order perturbation on 

this branch gives,  

 

   ( )  
  

   
   ( )  

  

   
    

   ( )  
  

   
   ( )  

  

   
    

(2.24) 

Substitute equation (2.24) into equation (2.22), the following expression is obtained 

for the term associated with the resistive branch, 

 

[
  

   
  ( )  

  

   
  ( )]    ( )  [

  

   
  ( )  

  

   
  ( )]     

(2.25) 

Since one is only interested in the sensitivities, or variations of the circuit 

performance with respect to the process/device parameters (i.e.,    ), but not to the 



17 
 

branch currents/voltages (i.e.,    ), the following “adjoint network requirement” is 

imposed on equation (2.25), 

 

[
  

   
  ( )  

  

   
  ( )]    

(2.26) 

Equation (2.26) describes how the branch current and the voltages should be related 

in the adjoint network that corresponds to a resistive branch in the original network.  In 

the case of a simple, time-invariant linear resistance, equation (2.26) simplifies to 

  ( )   (  )  ( ). In other words, the adjoint counterpart of a linear, time invariant 

resistor is still a resistor with the same resistance value.   

For a capacitive element, where the branch equations describing this element is 

given by 

 

  ( )    (  ( )     ) 
  ( )    (  ( )     ) 

  ( )  
 

  
  ( ) 

(2.27) 

where   ( ) is the charges stored in the capacitor. Again a perturbation introduced on the 

capacitive branch can be represented by, 

 

   ( )  
   
   

   ( )  
   
   

    

   ( )  
   
   

   ( )  
   
   

    

   ( )  
 

  
   ( ) 

(2.28) 

Similarly, substituting equation (2.28) into equation (2.22) gives the following 

expressions for the terms associated with the capacitive branches,  

 

[
  

   
  ( )   ( )  

 

  
(
  

   
   ( ))  ( )]  [

  

   
  ( )  

 

  
(
  

   
)  ( )]     

(2.29) 

Imposing the “adjoint network requirement” as in the case of a resistive branch 

gives the following adjoint branch relationship 

 

  

   
  ( )   ( )  

 

  
(
  

   
   ( ))  ( )    
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(2.30) 

However, equation (2.30) as given in this form cannot be explicitly converted to a 

circuit element. If the circuit is simulated for the time interval   (     ), and by letting 

          , an integration equation (2.30) with respect to the time variable t from    

to    yields, 

 

∫ [
  

   
  (       )  

  

   

 

  
  (       )]    ( )  

  

  

 
  

   
   ( )  (       )|

  

  

   

(2.31) 

where the expression  
  

   
   ( )  (       )|

  

  
  can be set to zero if   (   ) and 

   (  ) are both zero. The condition    (  )    can be satisfied if the initial branch 

current/voltages of the original capacitive branch are not subjected to any perturbations 

due to the perturbations in the process/device parameters. The condition   (   )    

can be satisfied by setting the initial branch voltage in the adjoint network to zero. 

Equation (2.31) now reduces to 

 

∫ [
  

   
  (       )  

  

   

 

  
  (       )]    ( )  

  

  

   

 

Or, for each time step,  

 
  

   
  ( )  

  

   

 

  
  ( )    

(2.32) 

Equation (2.32) gives the branch relationship in the adjoint network corresponding 

to a capacitive branch in the original network. In the case of a linear, time invariant 

capacitor in the original network, the corresponding element in the adjoint network is 

again a linear time invariant capacitor with the same capacitance value, but with a 

properly set initial condition.  

The observation that τ, the time variable for the adjoint network is set to         

  when obtaining equation (2.32) suggests that the time step in the adjoint network is in 

reversal with the time step of the original network. Table 2.1 summarizes the adjoint 

representation of some commonly used circuit element types.  
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Table 2.1:  Summary of the adjoint equivalent of commonly used circuit elements. 

(Reproduced from [2.21]).  

Element Type 
Circuit Equation in 

Original Network 

Circuit Equation in 

Adjoint Network 
Sensitivity (sB) 

Open Circuit 
  ( )    

  ( )    

  ( )    

  ( )    
 

Short Circuit 
  ( )    

  ( )    
  ( )    
  ( )    

 

Resistive 
  ( )    (  ( )     ) 
  ( )    (  ( )     ) 

   
   

  ( )  
   
   

  ( ) 
   
   

  ( )  
   
   

  ( ) 

Capacitive 

  ( )    (  ( )     ) 
  ( )    (  ( )     ) 

  ( )  
 

  
  ( ) 

   
   

  ( )

 
   
   

 

  
  ( ) 

   
   

  ( )

 
 

  
(
   
   

)  ( ) 

Inductive 

  ( )    (  ( )     ) 
  ( )    (  ( )     ) 

  ( )  
 

  
  ( ) 

   
   

 

  
  ( )

 
   
   

  ( ) 

 

  

   
   

  ( )

 
   
   

  ( ) 

 

 

Once the adjoint network is constructed from the original circuit network, the 

sensitivities can be obtained by substituting the adjoint branch relationships into equation 

(2.22) to obtain 

 

∑ ,   ( )  ( )     ( )  ( )-

            

  ∑[
   
   

  ( )  
   
   

  ( )]    
 

 

 ∑[
   
   

  ( )  
 

  

   
   

  ( )]    
 

  

  ∑     
 

 

(2.33) 

where the left hand side of the equation is the summation over all excitations applied to 

the original and adjoint networks. The right hand side of the summation sums over all the 

branches in the original and adjoint networks. The term sB refers to the sensitivity of each 

branch and is tabulated in the third column of Table 2.1.  

To illustrate how the adjoint network approach can be used to find the sensitivities 

of arbitrary circuit response functions to circuit parameters, consider the simplest case 

where the performance of interest is the same as the circuit reaction (i.e., voltage across a 

current source or current through a voltage source) at the k
th

 port of the network. The 
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sensitivity of the response can be found by setting the excitation to all ports of the adjoint 

network to zero, except for the k
th

 port on which a unit excitation is applied. For example, 

as illustrated in Figure 2.4, the performance of interest is the voltage across the current 

source of k
th

 port in the original network, i.e., vk.  Then in the adjoint network, the k
th

 port 

is connected to a unit current source such that the adjoint current ϕk =1, whereas all other 

ports are either short-circuited (if the original port is connected to a voltage source) or 

open-circuited (if the original port is connected to a current source).  

 

 

Figure 2.4: Illustration of using adjoint network for calculating sensitivities of a circuit 

performance.  

 

By applying equation (2.33), the perturbation in the performance function is found 

to be,  

 

     ∑     
 

 

(2.34) 

The sensitivity of the performance function vk to each parameter can therefore be 

read off from the sensitivity coefficients   .  

Original 

Network 

+ 

v1 

- 

 

i1 

Adjoint  

Network 

 

+ 

vk 

- 

ik 

+ 

vn 

- 

 

in 

+ 

ψ1=0 
- 

 

ϕ1 

+ 

ψk 

- 

ϕk=1 

+ 

ψn=0 
- 

 

ϕn 
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In a more general case, the performance function of interest maybe a function of the 

port voltage-current responses, and may involve more than one ports. The first order 

sensitivity of the performance z can be expressed as, 

 

   ∑
  

            
       

    ∑
  

            
       

    

(2.35) 

where the first summation is over all ports that are connected to a voltage source in the 

original network, while the second summation is over all ports that are connected to a 

current source. Comparing equation (2.35) to the left hand side of equation (2.33), and by 

setting the port excitation of the adjoint network as 

   
  

   
 

for all the ports that have an current source in the original network, and   

    
  

   
 

for all the ports that have an voltage source connected to in the original network. 

With this excitation assigned to the adjoint network, equation (2.35) becomes 

   ∑
  

            
       

    ∑
  

            
       

    ∑            
             

 

  ∑     
 

 

 

 Thus, the sensitivity of the performances with respect to each parameter can be 

found by reading out the coefficients.  

The sensitivity analysis is an efficient and easy to implement method for estimating 

the statistical variations in circuit performances given the parameters. The adjoint 

network approach gives a nearly constant runtime which does not increase as the number 

of parameter dimension increases. However, the linearly assumption in sensitivity 

analyses restricts its use to only small process/device variations.  
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Chapter 3  Interval Analysis for Gaussian 

Uncertainty Propagation 
 

 

 

 

 

 

 

 

 
3.1 Introduction 

An interval-value based circuit simulation engine is proposed to efficiently estimate 

the distributions of circuit performances. As opposed to Monte-Carlo simulation, in the 

proposed engine a single “interval-valued” circuit simulation is required to obtain the 

circuit performance distribution.  

Variations in process and device parameters are first converted into these “interval” 

quantities. Secondly, an interval-valued SPICE simulator, in which all real number 

operations are replaced by interval operations, is developed to simulate a circuit. The 

simulation results are presented in interval forms, which can then be translated back to 

statistical distributions.  

The algorithm is first developed for Gaussian process/device parameter variations, 

as described in this chapter The non-Gaussian case will be discussed in the next chapter.  

The rest of the chapter is organized as follows: sections 3.2 and 3.3 give an 

overview of the interval quantities and their operations; section 3.4 provides the details 

on the proposed interval-value based circuit simulation algorithm; section 3.5 illustrates 

the algorithm on selected circuit examples and demonstrates the simulation accuracy; 

section 3.6 presents evaluations of the algorithm‟s scalability and runtime; section 3.7 

concludes the chapter.  

 

3.2 The Interval Quantities  

The term “interval” refers to a quantity of the form [3.1] [3.2], 

 

     ∑    

 

   

 

 (3.1) 
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where εi‟s are zero-mean, independently distributed standard normal (i.e., unit variance) 

random variables, referred to as the noise variables, while x0 and xi‟s are scalar 

coefficients.  

By definition, the noise variables have the property,  
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(3.2) 

Equation (3.1) can be interpreted as capturing a Gaussian distribution with mean 

and variance given by,  
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In general, any interval quantity can be converted into a Gaussian distribution with 

the appropriate mean and variance using equations (3.3) and (3.4). In addition, this 

conversion is unique, i.e., an interval quantity can represent only one Gaussian 

distribution.  

However, for a given Gaussian distribution, its equivalent interval representation is 

not unique. For example, the two interval quantities         and      
√ 

 
   

√ 

 
   represent the same Gaussian distribution with mean 1 and variance 1. In this work, 

we choose to use the representation that requires the minimum number of noise variables 

when converting a Gaussian random variable to interval. The details and implications of 

such a conversion procedure are given in section 3.4.1.  

By considering interval quantities as capturing a certain Gaussian distribution, the 

covariance between two interval quantities can be calculated. For two interval quantities, 

x and y, with, 
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(3.5) 

where n and m are the number of noise variables present in each interval representation, 

with n not necessarily equal to m. The covariance between x and y is given by 
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(3.6) 

In general, for k interval quantities, 
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(3.7) 

The k×k covariance matrix can be obtained by first letting n=max(n1, …, nk), and by 

re-writing the k interval quantities in matrix form, i.e.,  
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(3.8) 

with some of the coefficients in the matrix [

          
          
    
          

] set to zero as required for 

representing interval quantities with fewer than n noise variables.  

 

Next, setting   [

  
  
 
  

] ,      [
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] , and   [

  
  
 

  

] , 

equation (3.8) can be further simplified to 

 

        

(3.9) 

The covariance matrix is obtained from equation (3.9), 
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 (    )(    )
      

(3.10) 

3.3 Interval Operations  

In this section, algebraic operations between interval quantities are defined. Without 

loss of generality, it is assumed that the interval quantities involved in the calculation 

have the same number of noise variables. Suppose that interval quantity x is represented 

by noise variables *     + , and interval quantity y is represented by noise variables 

*     +, then both x and y can be represented by the union of the two sets, i.e., noise 

variables *        +, with zero assigned to the coefficients of the noise variables that 

were not present in x or y. 

 

3.3.1 Scalar Multiplication 

Multiplication of an interval quantity by a scalar constant is carried out by 

multiplying each coefficient of the noise variable by the scalar constant, as shown below, 
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(3.11) 

where α is a scalar constant and x is an interval quantity. To verify the correctness of this 

definition, the interval quantity x is viewed as the equivalent of a Gaussian distribution of 

certain mean and variance. Equation (3.11) suggests that if a scalar α is multiplied by the 

random samples generated from this Gaussian distribution represented by x, the results 

follow another Gaussian distribution represented by αx, which is consistent with the rules 

of linear transformation of Gaussian random variables [3.7] [3.8]. 

3.3.2 Addition and Subtraction 

The sum or difference of two interval quantities x and y can be obtained by adding 

or subtracting the corresponding coefficients of the noise variables, as follows, 
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(3.12) 

The correctness of definition (3.12) can be verified by viewing x and y as the 

interval equivalent of two Gaussian distributions N1(m1, σ1) and N2(m2, σ2).  The left hand 

side of equation (3.12) represents the distribution resulting from the sum(or difference) of 

two Gaussian random variables. According to probability theory [3.7][3.8], this is a 

Gaussian distribution with mean  m1+ m2  (or m1-m2) and variance   
    

  plus (or 

minus) twice the covariance between the two random variables. Such a distribution has 

an interval representation shown on the right hand side of equation (3.12). 
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3.3.3 Multiplication 

When two interval quantities, x and y are multiplied together, the following 

expression is obtained, 
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(3.13) 

 

The term ∑ ∑         
 
   

 
    in equation (3.13) is not a linear combination of noise 

variables. Therefore, the exact result of xy cannot be represented by an interval quantity. 

This is consistent with the observation that when two Gaussian random variables are 

multiplied together, the resulting distribution does not follow a Gaussian distribution 

[3.10].  

With the aim to define all interval operations within the domain of intervals, a novel 

moment-preserving algorithm is developed to approximate the exact result of xy by an 

interval quantity.  

As a first step, the result of xy is approximated by an interval quantity shown in 

equation (3.14). In this approximation, a new noise variable, εn+1, that has not been used 

in the definition of either x and y is introduced. Two additional scalar coefficients k0 and 

k1 are also introduced.   

 

              ∑(         )  

 

   

           

(3.14) 

 

The values of the scalar coefficients k0 and k1 are determined by imposing moment 

preservation constraints shown in equation (3.15). By solving for the values of k0 and k1 

that satisfy these constraints, the interval approximation is forced to be the Gaussian 

approximation that preserves the first and second moments of the distribution represented 

by the exact result. 
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(3.15) 

Substituting equations (3.13) and (3.14) into equation (3.15), and carrying out the 

expectation computations,  
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The 1
st
 and 2

nd
 moment-preserving interval multiplication is therefore defined as,  
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(3.17) 

 

3.3.4 General Interval Operations 

In this section, general nonlinear operations between interval quantities are 

defined.  

Any algebraic operation can be expanded into a series of additions/subtractions 

and multiplications by using Taylor Series Expansion. Using the definition for interval 

additions/subtractions and multiplication from previous sections, any interval algebraic 

operation can be performed. 

For example, exponentiation of a zero-mean interval quantity x can be expanded 

as 

 

       
  

 
 
  

  
   

(3.18) 

which contains only additions and multiplications. In general, any operations involving 

interval quantities, x1,…,xn  can be expanded around their mean values x10,…,xn0  as 
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(3.19) 

which contains only multiplications and additions/subtractions. In practice, however, 

since our 1
st
 and 2

nd
 moment preserving requirement yields a system of two equations, it 

can only be used to estimate two additional constants. For this reason, and as we will 

show next, Taylor expansions are truncated so that all the non-linear terms are 

represented by an additional interval value that in defined by the two constants that will 

be “fixed” by the moment preserving requirement. 
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 Next, some frequently used operations are defined directly using moment 

preservation algorithms, as detailed in sections 3.4.1.1 through 3.4.1.4. 

 

3.4.1.1 Inversion/Division 

The inverse of an interval quantity is given as, 
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(3.20) 

By performing a second order Taylor series expansion on (3.20), the following is 

obtained,   
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(3.21) 

The interval approximation to equation (3.21) is given by 
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(3.22) 

where k0 and k1 are constants to be determined. Calculating the first and second moments 

of equation (3.21) gives 
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(3.24) 

Imposing the moment preservation constraints on equation (3.22) gives  
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(3.25) 

where the right hand side is given by equations (3.23) and (3.24).  Solving the system of 

equations in (3.25) for the unknown coefficients k0 and k1 yields  
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(3.26) 

Division between two interval quantities x and y can be calculated as a 

multiplication between x and the inversion of y. 

3.4.1.2 Power 

The second order Taylor series expansion of an interval quantity x raised 

to a constant scalar power α is given by,  
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(3.27) 

The interval approximation to the right hand side of equation (3.27) is 
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 The first moment of the right hand side of equation (3.27) is given by 
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and the second moment is given by 
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Imposing the moment preservation constrains by equating the first and second 

moments of equation (3.28) to equation  (3.29) and (3.30), respectively, yields,  
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3.4.1.3 Exponentiation 

The second order Taylor expansion of exponentiation of an interval quantity x is, 
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The interval approximation of the right hand side of equation (3.32) is given by: 
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Applying moment preservation constraints between equations (3.32) and (3.33) 

gives 
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(3.34) 

3.4.1.4 Logarithm 

The second order Taylor expansion of natural logarithm of an interval quantity x 

is, 
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The interval approximation of the right hand side of equation (3.35) is given by: 
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(3.36) 

Applying moment preservation constraints between equations (3.35) and (3.36) 

yields 
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(3.37) 

3.3.5 Accuracy of Interval Operations 

Linear interval operations, i.e., addition and subtraction, are by construction exact 

operations.  

Interval multiplications are by construction exact up to the second statistical 

moments. Table 3.1 shows the numerical simulation results of various interval 

multiplications. In this table, the first four moments of the exact multiplication result, 
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simulated using 50,000 runs of Monte-Carlo simulations, is compared to that obtained 

from the interval multiplication approximation. Figure 3.1 compares the probability 

density function (pdf) obtained from the direct multiplication result, (simulated via MC) 

with that from the interval approximation for each of the column shown in Table 3.1. The 

small discrepancies observed in mean and variance between the Monte-Carlo simulations 

and interval multiplications are due to the random sample generation and the finite 

samples sizes used for the Monte-Carlo simulations.   

 

Table 3.1: Comparison of the first four moments of the distribution obtained from 

interval multiplications to that from the exact multiplication result. The aim of the used 

approximation is to preserve only the first two moments (i.e. Mean and Variance).              

Case # 1 2 3 4 5 6 

Mean(MC) 0 -5.1253 -5.6939 27.9259 2.5187 -16.8955 

Mean(interval) 0 -5.1200 -5.6940 28.000 2.6000 -16.9000 

Relative error (%) 0 -0.1535 -0.0839 0.3441 0.5202 -0.0608 

Variance(MC) 9.041 12.1285 8.4161 513.533 414.606 449.680 

Variance(interval) 9.000 12.1342 8.4572 516.000 413.680 446.970 

Relative error (%) 0.45 0.8715 0.0321 0.2796 0.7297 0.0636 

Skewness(MC) 0 -0.89525 0.586979 1.02278 0.701181 -1.55943 

Skewness(interval) 0 0 0 0 0 0 

Relative error (%) 0 100 100 100 100 100 

Kurtosis(MC) 9.084 4.06569 3.486760 4.3577 9.0631 6.525937 

Kurtosis(interval) 3 3 3 3 3 3 

Relative error (%) 66.97 26.21 13.69 31.16 66.90 54.03 

* Skewness is calculated as 
 (   ) 

  
 and kurtosis is calculated as 

 (   ) 

  
 

  



35 
 

 
Figure 3.1: Comparison of the true distribution and the interval approximation after a 

multiplication operation. The 1
st
 & 2

nd
 moment-preserving algorithm is always forcing a 

Gaussian approximation to the multiplication result. 

 

For other nonlinear interval operations discussed in section 3.3.4, a second order 

Taylor series expansion is first performed before moment preservation constraints are 

imposed. Therefore, the interval approximation is exact in terms of capturing the first and 

second order moments of the Taylor series expansion.  However, truncation error exists 

between the Taylor series expansion and the original nonlinear operation. As an example, 

(1) (2) 

(3) (4) 

(5) (6) 
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the error introduced in interval square root operation is summarized in Table 3.2. The 

distribution of the exact result is simulated by Monte-Carlo simulation using 50,000 

samples.  

 

Table 3.2: Comparison of interval square root operation accuracy to Monte-Carlo(MC) 

simulations.  

Quantity subject to 

square root operation 

Mean 

(MC) 

Mean 

(interval) 

Relative 

Error 

Std. Dev. 

(MC) 

Std. Dev. 

(interval) 

Relative 

Error 

23+4ε1 4.7775 4.7867     0.192% 0.4229 0.4187     0.978% 

30+10ε1+2ε2 5.3845 5.4365     0.965% 1.0076     0.9460     6.114% 

20+0.5ε1+2ε2+3ε3 4.4532 4.4628     0.216 % 0.4133 0.4088     1.094% 

3+0.3ε1 1.7299 1.7310     0.064% 0.0871     0.0867     0.385% 

8+2ε1+1ε2+2ε3+1ε4 2.7598 2.7996    1.455% 0.6266     0.5715     8.784% 

170+12ε1+13ε2 13.0199 13.0296     0.074% 0.6814     0.6794     0.294% 

20.34+1.32ε1+6.34ε2 4.4437     4.4807     0.832% 0.7673     0.7281     5.111% 

78.3+13ε1+2ε2 8.8162 8.8330 0.190% 0.7535   0.7460 0.988% 

19.12+0.53ε1+2ε2+0.3ε

3 

4.3664 4.3694 0.068% 0.2401 0.2394     0.259% 

5.23+3.3ε1 2.1467 2.2229 4.566% 0.8844 0.7687     13.082% 

90+22ε1+13ε2+3.32ε3+

4.54ε4 

9.3762     9.4356 0.634% 1.4493     1.3951     3.735% 

5+2ε1+1.3ε2 2.1537 2.2022 2.3650% 0.6278 0.5514                 12.170% 

     

It should be noted that even though the error introduced in a single interval 

operation may be large, the error after a number of interval operations involving many 

interval quantities may be smaller due to the central limit theorem. In the context of 

circuit simulation, the resulting circuit performance distribution can resemble a Gaussian 

distribution as the variations in process/device parameters are propagated through circuit 

simulation steps. In this case, the proposed interval operations are sufficiently accurate to 

capture the final performance distribution.   

 

3.4 Interval-valued Circuit Simulation 

The general flow of the interval-valued circuit simulation algorithm is summarized 

in Figure 3.2. The inputs to the algorithm are process/device parameter variations 

specified in terms of a multivariate Gaussian distribution, i.e., mean vector and 

covariance matrix. The algorithm then converts these distributions into interval 

representations, and passes the intervals into a SPICE-like circuit simulator.  The 

simulator is developed for handling interval calculations and producing the circuit 

performances in interval forms. The interval valued circuit performance can then be 

converted to distributions for statistical timing, yield analysis and design centering 

optimizations.  
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Figure 3.2: Overall flow of the interval-valued circuit simulation program. 

 

3.4.1 Conversion of Process Variations into Intervals 

3.4.1.1 Process Variation Specified using Hierarchical Variation Model 

Process variations are often captured using a hierarchical model. Examples of such 

model can be found in [3.3].  

To simplify the discussion, a two-level hierarchical model with global and local 

variation is used. The method outlined here can be extended to a model with an arbitrary 

level of hierarchies by assigning appropriate noise variables to each level of hierarchy.  

In the case of a two-level hierarchal model, a noise variable common to all devices 

on a die is used to represent the global variation, while noise variables particular to each 

device on a die are used to represent the local variation. In mathematical form, let the 

parameter of interest be p, and assuming the devices on a die are numbered from 1,…, n, 

then the parameter value for each device in interval representation is given by, 

 
                          

 
                          

 

(3.38) 

where σg and σl are the standard deviations of the global and local variations, respectively.  

 

3.4.1.2 Process Variation Specified using Correlation 

 

Process Variations 

Interval representation for 

device parameters 
Circuit Netlist 

Circuit Simulator 

Circuit Performance: V(t), I(t), etc.  
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In addition to global and local variations, variation in process parameters can also 

be captured by using variance-covariance information. Assuming the availability of a 

variance-covariance matrix Σ, which can be derived, for example, from test chip 

measurements, the parameters p1,…,pn  that give rise to such correlation structure can be 

written in interval forms as shown in equation (3.39), where ε1, …., εn are the noise 

variables; p1i, …,pii for i=1,..,n are scalar coefficients whose values are to be determined 

from the variance-covariance matrix Σ.  
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(3.39) 

The interval representation for p1,…,pn is not unique for a given covariance matrix. 

For example, the following is also a feasible interval representation: 

 

       ∑     

 

   

       ∑     

 

   

 

       ∑     

 

   

 

(3.40) 

where the coefficients to be determined are p1i, …, pni for i=1,..,n. 

In general, since there are at most 
    

 
  distinct entries in a covariance matrix, the 

minimum number of coefficients required in a feasible interval representation for p1,…,pn 

is 
    

 
. The representation shown in equation (3.39) has exactly 

    

 
 unknown 

coefficients, whereas the representation in equation (3.40) has n
2
 unknown coefficients. 

Therefore, for minimum cost, the representation shown in equation (3.39) is adopted.  

In order to determine the value of the coefficients in (3.39) from the covariance 

matrix Σ, the coefficients are first collected into an lower triangular matrix L such that 

 

  [

      
        
    
          

] 
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(3.41) 

Equation (3.39) is then re-written in a matrix form using L,  
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]  [

   
 
   
]   [

  
 
  
] 

(3.42) 

The covariance matrix for (3.42) is calculated as 

 

            
  

(3.43) 

Equating (3.43) to the desired covariance matrix Σ to obtain,  

 

      

(3.44) 

Equation (3.44) can be solved to find the matrix L. A Cholesky decomposition on 

the covariance matrix Σ gives the matrix L directly. The cost of computing a Cholesky 

decomposition is n
3
/3 flops, where n is the number of parameters.  

3.4.2 Interval-valued Circuit Simulator 

After casting all process variations into their respective interval representations, the 

circuit of interest is simulated using a SPICE-like simulation engine to obtain the circuit 

performances. However, unlike the conventional SPICE simulator for deterministic 

circuit analysis, the simulator used in this work handles calculations and simulations 

involving interval quantities. 

 Figure 3.3 shows the simulation steps of a transient circuit analysis implemented in 

conventional deterministic SPICE simulator, where t denotes time in a transient analysis, 

and h denotes the simulation step size.  
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Figure 3.3: Flowchart of the conventional SPICE transient circuit simulation program. 

(Reproduced from [3.5]). 

The interval-valued simulator follows a similar flow as that shown in Figure 3.3, 

except that selected steps in this flow are modified to handle interval quantities. To 

illustrate these modifications, consider for example of a simple RC circuit shown in 

Figure 3.4, where the nodes are labeled 0, 1 and 2. The resistance and capacitance values 

are R and C, respectively.  

 
Figure 3.4: Example Circuit to illustrate transient SPICE simulation 

The device equation that governs the resistor is 
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(3.45) 

and the equations governing the capacitor are: 

 
     
       

 

(3.46) 

where V and I denotes the voltage and current, respectively; Q denotes the total stored 

charges.  

Starting with t=0 and initializing all voltages and currents to zero, the first step in a 

transient simulation is to perform a time-domain integration of device equations from t to 

t+h. The goal of such integration is to obtain a single expression that relates the device 

voltage and current at time t+h. In the RC example, the capacitor equations are integrated 

using a finite difference formula to obtain,  
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(3.47) 

where Vt+h , It+h and Qt+h are the voltage, current and charges at time t+h, respectively. 

No time-domain integration is performed on the resistor equation since it is independent 

of time.  

In the time-domain integration step, device equations are manipulated analytically 

without any numerical calculations involved. Therefore, this step is the same for both 

deterministic simulation and interval-valued simulation.  

The next step in a transient simulation is a linearization step where the voltage-

current equations obtained from time-domain integrations are linearized. In this RC 

example, equation (3.47) is already a linear function of Vt+h and It+h, so no additional 

linearization is required. In general, for a nonlinear voltage-current equation given by, 

      (          ) 
 (3.48) 

where f is any nonlinear function. The linearized voltage-current equation is given by, 

 

                 

(3.49) 

with 

    
  (          )

     
 

     (          )          

(3.50) 
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Geq and Ieq can be a function of both Vt,  It and Vt+h. The values for Vt,  It are 

obtained from the simulation results of the previous time step. The values for Vt+h are 

assigned by using initial guesses obtained from the previous time step.   

In the interval-valued circuit simulator, Vt and It are obtained from the previous time 

step and are interval quantities. The evaluations of Geq and Ieq therefore involve 

applying interval operations as outlined in section 3.3. However, it should be noted that 

the analytical expressions for Geq and Ieq are not different from those used in the 

deterministic circuit simulator.  

Once a linearized circuit is obtained, a system of linear equations is established to 

describe the circuit topology based on Kirchhoff‟s current law and voltage law. In the RC 

example, the system is as follows 

 

[
        
            
   

] [

      

      

       

]  [

 

       

   

] 

(3.51) 

where V1,t+h, V2, t+h are the voltages at node 1 and 2 at time t+h;  I10, t+h is the current from 

node 1 to 0 at time t+h; V2, t is the voltage at node 2 at time t. The known parameters in 

(3.51) are R, C, h and V2, t. The values for V1,t+h, V2, t+h , I10, t+h are to be solved using 

standard procedure for a linear system of equations; one example of such procedure is LU 

decomposition coupled with backward substitution. Large, sparse systems can 

additionally benefit from more specialized procedures. 

 In the interval-valued circuit simulator, the linear system of equations is setup in 

the same way as in the deterministic case; however, the entries in the matrix are interval 

quantities. To obtain a solution, an interval-valued LU decomposition and backward 

substitution is required. LU decompositions and backward substitutions can be 

implemented using addition/subtraction and multiplication/division. Since each of those 

operations has an interval version defined, the interval-valued LU decomposition and 

backward substitution can be easily implemented.  

After solving for the voltages and currents for time t+h, the solution is compared 

with the initial guess that was used in the linearization step when evaluating Geq and Ieq. 

In a deterministic simulator, if the differences between the solution and the initial guess 

are within a specific tolerance value TOL, the simulation is said to be converged, and the 

solution is stored for that time step. The simulation then moves to the next time step. 

Otherwise, Geq and Ieq are re-calculated using the voltage and current values obtained 

from the solution, and a new linear system of equations is formed and solved. The 

solution of the new system is again compared to the values used in calculating Geq and 

Ieq for convergence check.  

In the interval version of the circuit simulation, the criteria for convergence is 

modified to handle interval quantities. For interval quantities x and y to agree with each 

other within a tolerance of TOL, their difference z=x-y must satisfy the condition 

|      |     , where μz  and σz is the mean and standard deviation, respectively, of 

the distribution represented by the interval quantity z.  
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3.4.3 Analyzing Simulation Output  

Once a circuit is simulated using the interval-valued circuit simulator, the nodal 

voltages and branch currents at each time step of the circuit are obtained and stored in 

interval forms. Circuit performances can be calculated by applying any performance 

function on these nodal voltages and branch currents using interval operations.   

In addition, performances represented in intervals can be converted to Gaussian 

distributions by applying equations     = (   ∑     
 
   )     ∑   

 
    (  )     

(3.3) and        =E (∑     
 
   )   (∑   

   
   ∑ ∑         

 
       

 
   

 
   )  

∑   
  

    

 

  (3.4).  

 

3.4.4 Pruning of Noise Variables 

When a circuit is simulated using the flow in Figure 3.3, at each time step of the 

simulation, the required interval quantities are the voltage/current values obtained from 

the current and previous time step, and the process/device parameters.  If the circuit has 

m circuit elements and p interval device parameters, then the total number of required 

interval quantities is k=2m+p. The required interval quantities are differentiated from the 

intermediate interval quantities, which are the result of the intermediate interval 

calculations during the simulation.  The intermediate interval quantities can be discarded 

once the correct values of the required interval quantities are obtained.  

 By viewing interval quantities as the equivalent of Gaussian random variables, 

the procedure in section 3.4.1.2 suggests that the maximum number of noise variables 

required for representing n interval quantities is n. Interval quantities that use more than n 

noise variables can be reduced to a representation that involves only n noise variables 

while still representing the same Gaussian distributions. In the context of interval-valued 

circuit simulation, the maximum number of noise variable required at each iteration is the 

same as the number of required interval quantities, i.e., 2m+p.  

In practice, however, the number of noise variables can be significantly larger 

than 2m+p due to the introduction of intermediate interval values during the circuit 

simulation.  The intermediate values are only important in obtaining the required values 

and can be thrown away once the required values are calculated. Thus, one can reduce 

the number of variables by restructuring the interval representations for the required 

values at the end of each iteration in the simulation. Such restructuring can significantly 

reduce the number of noise variables involved in an interval operation. Section 3.6 will 

show that the interval-valued circuit simulation runtime is directly proportionate to the 

number of noise variables involved in an interval operation.    

The restructuring of the interval representation of the required quantities is 

carried out by first obtaining the mean and variance-covariance matrix using equation 

(3.3), (3.4) and (3.10);  and then constructing the interval representations from the mean 

and variance-covariance matrix using the procedure outlined in section 3.4.1.2.  
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3.5 Illustrative Examples and Simulation Accuracy 

In the following sections, example circuits are simulated using the proposed 

interval-based statistical circuit simulation algorithm, and the simulation results are 

compared to Monte-Carlo simulations for accuracy verification. A large number of 

samples (i.e., 10,000 and 50,000) are used in the Monte-Carlo simulations to make sure 

that the Monte-Carlo simulations match the true distributions as close as possible. For 

circuits with relatively large number of parameters, a Monte-Carlo simulation with 

50,000 samples is used to minimize the errors caused by random sampling.  

3.5.1 RC Ladder Circuit 

To illustrate the algorithm outlined in section 3.4, a simple RC ladder circuitry is 

simulated using the interval-value based circuit simulator. The result is compared against 

Monte-Carlo simulations to verify its accuracy.  

The schematic of the circuit which consists of 100 stage RCs is shown in  

Figure 3.5. The resistors and capacitors are labeled from 1 to 100. In addition, it is 

assumed that this RC ladder circuit is situated across the die such that R1 and R100 are at 

the edge of the die while R50 is in the center of the die. Analysis of this type of circuit is 

very common in understanding the behavior of IC interconnects. In this example, the 

performance of interest is the transient behavior of the output voltage across the last 

capacitor in the ladder when a step input is applied.  

For illustration purposes , a two-level hierarchical process variability model, i.e. 

global and local, is assumed for the resistance value in the circuit. In addition, a 

systematic die-level deterministic variation is assumed to impact the resistance values of 

the ladder. The systematic variation has a smooth, second order parabolic-shape, with 

zero variation at the edges of the die and reaches a maximum of 2% variations at the 

center of the die. The complete formulations of the resistance values in terms of interval 

quantities are shown below, 

 
                           

 
                            

 
                              

 

(3.52) 

This circuit with interval-valued resistances is then simulated using the simulator 

described in Section 3.4.2.  At the end of each time step the output voltage across C100 is 

stored as an interval quantity.  

Figure 3.6 plots the statistics (i.e., the mean, ±1σ and ±3σ of the distribution) of 

the distribution represented by the interval quantity Vout obtained from interval circuit 

simulations, and compared them against that obtained from a 50,000-sample Monte Carlo 

simulation. A good match (with error less than 1.5%) in the statistics of the output 

waveform is observed between the interval simulation and Monte Carlo simulation.  
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Figure 3.5:  RC ladder test circuit considered for illustrating the interval valued circuit 

simulation. 

 

Figure 3.6:  Distribution of output voltage transient response obtained from interval-

value based simulation and from 50,000 runs of Monte-Carlo analysis. 

3.5.2 Transistor Circuit 

As a second example, the transistor circuit shown in Figure 3.7 is simulated using 

interval circuit simulations. The performance of interested is the transient response of the 

output voltage Vout due to a step input. In addition, the transistor threshold voltage Vth 

and the transistor drive strength k are assumed to be subjected to process variations, and 

have the following interval representation, 

 
                            

                     
 

(3.53) 

The circuit is then simulated using interval simulations and the transient response 

of the output voltage is plotted in Figure 3.8. The response obtained from 10,000-sample 

Monte Carlo simulation is also plotted on the same graph. The error is within 1% during 

the entire transition time period. 
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Figure 3.7:  Simple transistor circuit analysis with device/process parameter variations. 

 

Figure 3.8: Distribution of the output voltage transient response obtained from interval-

valued based simulation on the transistor circuit in Figure 3.7. Comparison is made 

against a 10,000-sample Monte-Carlo analysis.  

 

3.5.3 Comparison of Simulation Accuracy  

The accuracy of the interval-valued circuit simulator is compared to the response 

surface modeling technique [3.4][3.6]. Figure 3.9 plots the output waveform distributions 

for the transistor circuit in Figure 3.7 obtained from (a) 10,000 Monte-Carlo analysis; (b) 

first order response surface modeling with central-composite design, and (c) the interval-

value based analysis. For the response surface modeling, six points are selected on the 

output transient waveform and a response surface model is obtained for each of the six 

points.  

With respect to the Monte Carlo simulations, the first order response surface 

modeling technique has a maximum estimation error of 30-40%. On the other hand, the 

maximum estimation error for  the interval-value based analysis is below 1%. 
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Figure 3.9: Accuracy comparison of the output waveform distributions for transistor 

circuit in Figure 3.7 obtained from (a) 10000 Monte-Carlo analysis; (b) first order 

response surface modeling with central-composite design, and (c) the interval-value 

based analysis.  

 

3.6 Runtime and Scalability  

3.6.1 Runtime estimation 

In this section, an analytical estimation of the runtime of the interval-value based 

engine is carried out. Given any circuit and process variability models, the interval-value 

based circuit analysis requires only one circuit simulation. Therefore, the runtime penalty 

for an interval-value based simulation, as compared to a deterministic, real valued 

simulation, only comes from the runtime penalty involved in each interval operation. In 

this analysis we assume that the average number of noise variables per interval operation 

in the circuit simulation is n, and that the average number of shared noise variables 

between any two interval quantities involved in an interval operation is m. Table 3.3 lists 

the runtime penalty for the five interval operations: addition, subtraction, multiplication, 

inversion and division. The runtime penalty is calculated as the number of FLOPS 

required for interval operations divided by that required in real number operations. 

Table 3.3: Runtime penalty for interval valued summation, subtraction, multiplication, 

inversion and division. 
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in deterministic calculation) 

Summation/Subtraction 1+m 

Multiplication 2n+2m+3 

Inversion 3n+5 

Division 2.5n+m+4 

 

The overall runtime penalty of the simulation engine is determined by the 

occurrence probability of summations, subtractions, multiplications and divisions. This 

probability depends on many factors including the circuit topology, the input signals, and 

the type of circuit analysis (e.g., transient analysis, DC analysis, etc). For the purpose of 

estimation, we will consider an equal probability of occurrence among the four 

operations: addition, subtraction, multiplication and division (inversion is not considered 

separately, but counted as part of the division operation). By adding up the corresponding 

runtime penalties in Table 3.3 and dividing the sum by four, the overall runtime penalty 

for the interval-value based circuit simulation is found to be 1.125n+1.25m+2.25.  

Thus the runtime of the interval-based circuit simulation of a circuit with c circuit 

elements, is given by O(n+m)O(c
3
), where the second term is the runtime for a single 

real-valued circuit simulation.  

 

3.6.2 Scalability  

In the interval-valued circuit simulation, the size of the problem depends on (a) 

the number of process parameters that needs to be captured statistically; (b) the average 

number of noise variables for each statistical process parameter
1
 . We will look at how 

the runtime scales with respect to each of the three factors listed above.  

Figure 3.10 plots the runtime and the normalized runtime of the interval-valued 

simulation as a function of the number of statistical process variables modeled. The test 

circuit used is the transistor circuit in section 3.5. For each run, an increasing number of 

transistor parameters are modeled by interval-values. For each parameter, only the global 

and local variations are captured. For comparison purposes, the runtime of 1,000 and 

5,000-sample of Monte-Carlo analysis, and 1st order response surface modeling are also 

plotted. The Monte-Carlo sample sizes used in this comparison are the typical sample 

size used when simulating circuits of this scale. For larger sample sizes, the Monte-Carlo 

estimates do not differ much from the estimated obtained using these smaller sample 

sizes, i.e., the simulation has converged. The normalized runtime is defined as the 

runtime of the interval analysis divided by one single run of a deterministic, real-valued 

circuit simulation on the same test circuit. As expected, the runtime increases linearly as 

the number of interval-valued process variables.  

Figure 3.11 shows the runtime as a function of the variability model complexity, 

particularly, the structure of the spatial correlation matrix. Here, a 17 stage RC ladder is 

                                                 
1
 This corresponds to the complexity of the variability model. Multiple noise variables are 

typically used to capture correlations or various hierarchical levels of variability such as 

within die, within wafer, etc.) and (c) the size of the circuit (i.e., the number of nodes and 

circuit elements 
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used and three types of variability model are considered. In the first model, the 

parameters, i.e., the resistances value, are considered to be totally uncorrelated. Thus, 

only one noise variable per parameter is required. In the second model, the parameters are 

considered to be fully correlated with a correlation length larger than the chip size, i.e., 

every entry in the spatial correlation matrix is non-zero. In this case, an average of n/2 

noise variables per parameter is required. Here n is the total number of parameters. In the 

last model, the parameters are considered correlated but with a spatial correlation length 

equal to half of the chip size. The average number of noise variables per parameter is n/4, 

with n the total number of parameters. In Figure 3.11, the runtime is normalized to a 

single deterministic circuit simulation.    

  Figure 3.12 shows the runtime dependence of the interval-valued simulation on 

circuit size. The test circuit used is an RC ladder with an increasing number of circuit 

elements. The resistances are subjected to global and local variations only. For reference, 

the runtime of 500 and 1,000 runs of Monte-Carlo simulations are also plotted as a 

function of the circuit size in Figure 3.12. In the case of RC ladder example, the runtime 

of the interval-valued analysis becomes worse than 500 runs of Monte-Carlo simulations 

when the circuit element sizes becomes larger than 23; and by extrapolating the curves, 

the runtime of the interval-valued simulation becomes worse than 1,000 runs of Monte-

Carlo simulation when the number of elements in the circuit reaches 150.  

Figure 3.13 shows the dependence of the runtime for interval analysis on circuit 

size for transistor circuits. The circuits being analyzed are: a) inverter with one pull-up 

and one pull-down transistor; b) inverter with 2 pull-up and pull-down transistors; c) 

inverter with 3 pull-up and pull-down transistors; d) 2-input NAND gate; e) 3-input 

NAND gate and f) 4-input NAND gate. The runtime is plotted in Figure 3.13 as a 

function of number of transistors in the circuit for each of the inverter and NAND 

topology.  For comparison, the runtime of the 500 and 1,000 runs of Monte-Carlo 

analysis for the corresponding topology is also plotted. By normalizing the runtime of 

interval analysis to a single run of deterministic circuit simulation for that circuit, a linear 

relationship is found between the normalized runtime and the number of transistors in the 

circuit for both inverter and NAND topology. Note that the results presented here come 

from a rather straightforward, un-optimized implementation of the interval operations. 

We expect that further runtime improvements are possible. For example, one can develop 

a scheme where only the  number of quantities represented as intervals is minimized, or 

where aggressive error variable pruning would result in sparse matrices that could be 

further exploited for computational efficiency. 
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Figure 3.10: Runtime and the normalized runtime of the interval-valued simulation as a 

function of the number of statistical process variables modeled. For comparison, the 

runtimes of 1,000 and 5,000-sample of Monte-Carlo analysis, and 1
st
 order response 

surface modeling is also plotted.  

Figure 3.11: Normalized runtime of the interval-valued simulation as a function of the 

process variability model complexity. The test circuit used is the 17 stage RC ladder. 
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Figure 3.12:  Runtime of the interval-valued simulation as a function of the circuit sizes. 

The test circuit used is the RC ladder. 

 

Figure 3.13:  Absolute and normalized runtime of interval-valued simulation as a 

function of the number of transistors in circuit for inverter and NAND topologies.  

 

 

3.7 Summary 
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Number of Elements in the Circuit 

R
u

n
tim

e(s) 

# of transistors 

R
u

n
tim

e(s) 

N
o

rm
alized

 R
u

n
tim

e 

# of transistors 

INV 

NAND 



52 
 

can facilitate circuit design optimizations under spatial, random and systematic 

variations. In the proposed algorithm, a moment preserving interval-based arithmetic is 

used to handle operations between correlated (either spatially or not) device, process and 

design parameters. Excellent accuracy and reasonable runtimes are observed in simple 

RC and transistor circuits. It is shown analytically that the runtime of the interval valued 

circuit simulator is on the order of O(n+m)O(c
3
) where n is the average number of noise 

variables per interval operation, m is the average number of overlapping noise variables 

in the simulator and c is the size of the circuit. The runtime scales linearly in the number 

of process variables to be modeled statistically and in the complexity of the variability 

model used.  
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Chapter 4   Interval Analysis for Non-Gaussian 

Uncertainty Propagation 

 

 

 

 

 

 

 

 

 
4.1 Introduction 

The previous chapter discussed an interval based statistical circuit simulation 

algorithm for Gaussian distribution. In this chapter, a similar algorithm is developed for 

the case when the process/device parameters follow non-Gaussian distributions.  

The combination of random and systematic variability in state of the art IC 

technologies [4.9][4.10] often results in non-Gaussian distributions of key performance 

parameters. For example, wafer-level systematic variations cause the chip means to shift 

depending on the chip location on the wafer. If the overall distribution for all the chips on 

a wafer is examined, the probability density function (pdf) is the aggregate of all the 

individual chip distributions. Assuming that each chip distribution has a Gaussian pdf 

with means determined by the wafer-level systematic variations, then the overall 

distribution is a sum of these Gaussian pdfs and it can be described as a mixture of 

Gaussian distributions.  

Non-Gaussian distributions of the process/device parameters can also be found in 

the case when process information is not completely known. This usually occurs in the 

early stage of a process development where only the process window,  i.e., the lower and 

upper process limits on the parameter values, is known. In this case, the parameter 

distribution density function can fall anywhere inside the process window, as 

demonstrated in Figure 4.1, resulting an overall non-Gaussian distribution. 
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Figure 4.1: Demonstration of the parameter distribution as a result of knowing only the 

upper and lower process limit of the parameter. 

 

In this chapter, Mixture of Gaussian (MOG) distributions are used to approximate 

all non-Gaussian distributions. Similar to interval propagation for Gaussian distributions 

as discussed in Chapter 3, an interval propagation scheme for mixture of Gaussians is 

developed to estimate the transistor-level circuit performance distribution without costly 

Monte-Carlo simulations. The rest of the chapter is organized as follows: section 4.2 

reviews the mathematical tools used to capture a mixture of Gaussian distribution using 

interval representations; section 4.3 details the algorithms used to estimate non-Gaussian 

performance of interest  using interval representations and propagation; section 4.4 

presents some circuit examples to demonstrate the proposed algorithm; section 4.5 

concludes the chapter.  

 

4.2 Interval Representation for Mixture Of Gaussian(MOG) Distributions 

In this section, an overview of the mixture of Gaussian distribution and its 

equivalent interval representation is provided.  

 

4.2.1 Mixture of Gaussian(MOG) Distribution 

The probability density function (pdf) of a mixture of Gaussian distribution is given 

by [4.13],  

 

   ( )  ∑   (     )

 

   

 

(4.1) 

Process parameter Values 

F
req

u
en

cy
 o

f O
ccu

rren
ce 

Lower 

Process 

Limit 

Upper 

Process 

Limit 

Overall 

Distribution 

Distribution per 

Process Run 



55 
 

where  (     ) for i=1,…,C are Gaussian probability density functions with mean    
and covariance matrix   ; wi are real numbers between 0 and 1 and satisfying the 

condition ∑   
 
     .  

In equation (4.1), the distribution  (     )  are referred to as the Gaussian 

component of the mixture pdf, while wi  is referred to as the mixing probability of the i
th

  

Gaussian component. The value of wi corresponds to the probability that a random 

sample is drawn from the i
th

 Gaussian component. c is the total number of Gaussian 

components in a mixture pdf. The probability density function (pdf) for a 2-component 

mixture of Gaussian distribution with equal mixing probability is depicted in Figure 4.2. 

 

 

Figure 4.2:  Probability density function of a mixture of Gaussian distribution with two 

components and equal mixing probability.  

 

4.2.2 Interval MOG Representation 

The interval representation [4.1] for MOG distributions is shown in equation (4.2).  
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(4.2) 

where  ̃  is a c-dimensional random vector that takes on the value [1,0,…,0]
T
 with 

probability w1, [0,1,0,…,0]
T
 with probability w2, and up to [0,…,0,1]

T
 with probability wC. 

The terms, ∑            for k=1,…,C, in equation (4.2) are the interval 

representations for Gaussian distributions, as those discussed in Chapter 3. There is a 

total of c such Gaussian interval representations the captures the c Gaussian components 

in a mixture. The random vector  ̃  acts as the mixing variable such that with a 

probability w1, the samples will be drawn from the first Gaussian components, probability 

w2 of drawing from the second, and so on.  

Equation (4.2) can be converted into matrix-vector forms as, 
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(4.3) 

 

where   [

       
   
       

],  ̃  [

  
 
  
] and  ̃  [

   
 
   
]. Note that the random vectors  ̃ 

and  ̃ are independent of each other.  

For the rest of the chapter, variables with a bold face are used to denote random 

variables, and variables with a tilde on the top are used to denote vectors.  

The interval representation for Gaussian distribution, can be viewed as a special 

case of equation (4.2) when the number of Gaussian components c=1.  

Thus, the l
th

 statistical moment of the MOG as described by equation (4.3) can be 

calculated as 
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where a1,… aC are rows from the matrix A in equation (4.3).  In other words, the l
th

 

moment of a mixture of Gaussian interval is the sum of the l
th

 moments of all the interval 

Gaussian components weighted by the mixing probability. 

If x and y are two distinct mixture of Gaussian intervals in the form of equation 

(4.3), i.e., 
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Then the covariance between the two can be calculated as 
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(4.6) 

where  ( ̃ 
 )  and  ( ̃ 

 )  are the expectations and equals to the vector of mixing 

probabilities, i.e., [w1x,…,wcx]
T 

for x and [w1y,…,wcy]
T 

for y. 

4.2.3 From MOG distributions to Interval Representation 

Assume that an n-dimensional multivariate MOG distribution with c Gaussian 

components is given in the form of equation (4.1) where the mean    is a n-dimensional 

vector and covariance    is n×n matrix for each Gaussian component i. In Chapter 3, a 

procedure has been developed to convert n correlated Gaussian random variables (that 

have the joint probability density function given by a n-dimensional multivariate 

Gaussian pdf ) into n interval quantities. The same procedure is used here to convert each 

Gaussian component in equation (4.1) into a set of n interval quantities, resulting into a 

total of c×n interval quantities for c Gaussian components. These interval quantities are 

denoted by apq, for p=1,…,c and q=1,…,n. 

To construct the interval MOG representation, one interval MOG quantity is 

assigned to represent one dimension in the original distribution. The set of n interval 

MOG quantities for an n-dimensional MOG distribution is given by,  
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 (   ̃   ̃  )            

(4.7) 

where  ̃  and  ̃   have the dimension c×1. In addition, the vector (   ̃   ̃  ) is assigned 

to the interval quantities obtained from each individual Gaussian component,   

 

(   ̃   ̃  )  [

   
   
 
   

]             

(4.8) 

The random vector  ̃  is the same for j=1,…, n, and has expectation equals to 

,       -
 , the set of mixing probabilities from the original MOG distributions.  

 

4.3 Interval MOG propagation in Statistical Circuit Simulation 

In this section, a transistor-level circuit simulation algorithm is developed for 

process/device variations that follow non-Gaussian distributions. In this work, it is 

assumed that non-Gaussian distributions of the process/device parameters can be 

approximated by a mixture of Gaussian distributions. The most commonly used 

algorithm to find an MOG approximation to an arbitrary distribution is the Expectation-

Maximization algorithm [4.4].  In this algorithm, the most likely mixture of Gaussian 

distribution is fitted to match the true distribution. The approximation accuracy is 

determined by the number of Gaussian components used. For a mixture of Gaussian 
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distribution containing an arbitrarily large number of components, any distribution can be 

approximated [4.13].  

The variations in process/device parameters are first approximated by an MOG and 

then converted into interval MOG representations, using the procedure outlined in section 

4.2.3. This information is passed into a circuit simulation engine that handles interval 

MOG quantities. The simulation engine outputs circuit performances represented in 

interval MOG forms which can be used to extract any distribution statistics of interest.  

In the following discussions, the circuit performances of interest are divided into 

non-transient and transient performances. Non-transient performances are those specified 

by a single value, such as the circuit propagation delay or total power dissipation; 

whereas transient performances are a set of values obtained for each time interval during 

a circuit transient transition. Example of transient performance is the switching behavior 

of an inverter.  

 

4.3.1 Problem Formulation 

The circuit performance of interest is denoted as z, and the set of all random 

process/device parameters is denoted using a random vector  ̃.  

For non-transient performances, the performance z is related to the process/device 

parameters by a nonlinear function f, i.e., 

 

0( , )f vz p
     (4.9) 

where the vector  ̃  collects all the deterministic parameters in the circuit. Examples of 

deterministic parameters include the initial states of the circuit nodal voltages, and the 

process/device parameters that are not subjected to process variations. The functional 

form of f is related to the performance of interest and the circuit topology. A method to 

approximate f will be discussed later in the section. 

The random process/device parameters are given in interval MOG form,  

 

 ̃  [

  
 
  
]  *

 ̃  
 (    ̃   ̃  )

 
 ̃  
 (    ̃   ̃  )

+ 

(4.10) 

Equation (4.10) is extracted from the parameter distribution obtained from silicon 

measurement data such as test structure characterization, but also from device level 

simulations and other process and lithography simulations.  

In addition, the non-transient performance z is assumed to also follow a MOG 

distribution represented by an interval MOG, with the same set of the noise variables as 

those present in the interval MOG representations for parameters  ̃.  

 

   ̃ 
 (   ̃   ̃ ) 

(4.11) 
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The goal is to find the values of  ̃ , Az and  ̃  that define the interval MOG 

representation of z in equation (4.11). 

For transient performances, i.e., performances that are a function of time, the 

problem then is to find, at each time step t, 

 

1 0( , , , )t t tg v
t

z p x x
 

(4.12) 

where zt is the transient performance of interest;  ̃  and  ̃    are random vectors 

capturing all the circuit nodal voltages/branch currents at time t and t-1, respectively. 

Vector  ̃  captures all the non-statistical parameters just as in the non-transient analysis. 

The function gt is specific to the performance measure of interest and assumed to be 

given. For example, if one is interested in the output voltages at circuit nodes i, then gt = 

 ̃ ( ).  
The quantities  ̃  and  ̃    are related in a transient circuit simulation. Recall from 

Chapter 3, that  ̃  is calculated by solving a linear system of equations constructed by 

applying Kirchhoff‟s current and voltage laws on a linearized circuit at operating 

conditions given by  ̃  and an initial guess of  ̃   .  At the end of each time step, the 

following equation holds 

 

 ̃   ( ̃  ̃   ̃   )
   ( ̃  ̃   ̃   )    ( ̃  ̃   ̃   ) 

(4.13) 

where M is the matrix containing all the linearized circuit element values, and I is a 

vector containing the input voltage and current source values. Since both M and I are a 

function of  ̃ ,   ̃    and the set of process parameters  ̃, they can be combined to a 

single function Bt.   

In the same fashion as in the non-transient problem, the random process/device 

parameters are given in interval MOG forms,  

 

 ̃  [

  
 
  
]  *

 ̃  
 (    ̃   ̃  )

 
 ̃  
 (    ̃   ̃  )

+ 

(4.14) 

In addition, at time step t, the distribution of  ̃    is also known since it is obtained 

from the analysis at the previous time step. The goal is to find the distribution for  ̃  and 

consequently the distribution for zt. As in the non-transient case, the distribution of  ̃  
and zt is assumed to be captured by an interval MOG, i.e.,  

 

 ̃  [

    
 
    

]  *

 ̃    (      ̃   ̃     )

 
 ̃    (      ̃   ̃     )

+ 

(4.15) 
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and 

    ̃  
 (    ̃   ̃  ) 

(4.16) 

where the values for   ̃  ,     and  ̃   are to be determined.  

In addition, note that  ̃    should have the same form of   ̃ , i.e., an interval MOG 

representation,  

 

 ̃    [

      
 

      
]  *

 ̃      (        ̃   ̃       )

 
 ̃      (        ̃   ̃       )

+ 

(4.17) 

 

4.3.2 Solution for Non-Transient Performances 

Recall from the previous section that the problem is to find the interval MOG 

representation of z, with  

 

   ( ̃  ̃ ) 
     (4.18) 

   ̃ 
 (   ̃   ̃ ) 

(4.19) 

and the distribution of the device/process parameters given in interval MOG form  

  

 ̃  [

  
 
  
]  *

 ̃  
 (    ̃   ̃  )

 
 ̃  
 (    ̃   ̃  )

+ 

(4.20) 

To obtain a solution for z, a 2
nd

 order Taylor series expansion is first performed on 

the function f, i.e., 

 

 ( ̃  ̃ )   ( ( ̃)  ̃ )    
 ( ̃   ( ̃))  ( ̃   ( ̃))

 
  ( ̃   ( ̃)) 

(4.21) 

where E(∙) stands for the expectation.    
  and Hf are the gradient and Hessian, 

respectively, of the function f evaluated at the nominal parameter values  ( ̃). 
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(4.22) 

   

[
 
 
 
 
 
   

   
 |
 ( ̃)

 
   

     
|
 ( ̃)

   
   

     
|
 ( ̃)

 
   

   
 |
 ( ̃) ]

 
 
 
 
 

 

(4.23) 

There are many different methods to obtain the gradient and the hessian in equation 

(4.22) and (4.23). One method is the direct perturbation analysis or sensitivity analysis. In 

this approach, the performance of interest,    ( ̃  ̃ ), is simulated using the nominal 

parameter values  (  ) and using perturbed parameter values, e.g.,  (  )   , where h is 

a very small quantity. The gradient and Hessian matrix are then calculated numerically 

from these performance values, i.e.,  ( ( ̃)  ̃ ) and  ( ( ̃)     ̃ ),     by numerical 

differentiation. Examples of numerical differentiation formulas are given in equation 

(4.24), (4.25) and (4.26) for the first and second order derivations of the function f with 

respect to the parameters.  

 

  

   
 
 ( (  )   )   ( (  )   )

  
 

(4.24) 

   

      
 
   

   
[ ( (  )     (  )   )   ( (  )     (  )   )

  ( (  )     (  )   )   ( (  )     (  )   )]     

 (4.25) 

   

   
  

   

  
[ ( (  )   )    ( (  ))   ( (  )   )] 

(4.26) 

The error associated with these approximations is O(h
2
) for both first and second 

derivatives. For a total of k parameters, 2k circuit simulations are required for gradient 

evaluations, i.e., 2 circuit simulations per parameter. To obtain the diagonal entries of the 

hessian matrix, only one additional circuit simulation at the nominal value is required. 

Each off-diagonal entry requires 4 additional circuit simulations. Since there are k(k-1)/2 



62 
 

distinct off-diagonal entries, the number of circuit simulations is 2k(k-1). The total 

number of circuit simulations required to obtain both the gradient and the hessian matrix 

is therefore 2k
2
+1. 

Another method to calculate the gradient and Hessian matrix in equation (4.22) and 

(4.23) is to use an adjoint network. The details of how an adjoint network works can be 

used for gradient calculation are provided in Chapter 2. In gradient evaluations, the two 

circuit simulations are required, one for the original circuit, and one for the adjoint 

network circuit, regardless of the number of parameters involved. For Hessian 

evaluations, an adjoint of the adjoint network used for gradient evaluation is constructed, 

which results in a total of 2k circuit evaluations for k parameters. The adjoint network 

approach for first order and second order derivatives can be also found in [4.5], [4.6] and 

[4.7].  

Further reduction of the runtime for gradient and Hessian evaluation is possible by 

reducing the value of k. In the previous analysis, all the derivatives are calculated with 

respect to the parameters in  ̃. However, the parameters are represented by interval MOG 

representations using the noise variables  ̃. Therefore, the gradient and Hessian with 

respect to the parameters can be obtained by calculating the derivates with respect to the 

noise variables instead, as shown in equation (4.27) for the gradient estimation. The 

Hessian can be similarly obtained. For parameter pi, 

 

  

   
 ∑

  

   

   

   
  ∑

  

   

 

 [ ̃  
     (   )]

 

 

   

 

   

 

(4.27) 

where n is the total number of noise variables, and Colj(·) stands for the j
th

 column of a 

matrix.  

This allows for a significant runtime reduction when the number of noise variables 

are fewer than the actual number of parameters, which is the case when the parameters 

are highly correlated. Strong correlations are often observed when the circuit is tightly 

packed with elements situated close to each other. Otherwise, such as in the case when all 

parameters are independent, the calculation is performed with respect to parameters as 

usual. 

Once the gradient and the Hessian matrix of function f is obtained, the next step is 

to determine the distribution of z from the second order Taylor series expansion of f. To 

completely specify the distribution of z, the distribution for  ̃  and the values for Az and 

 ̃  in the interval MOG representation must be determined.  

The number of Gaussian mixtures required in capturing the statistical behavior of z 

depends on the accuracy required for the interval MOG approximation with respect to the 

actual distribution.  

If only one Gaussian component is used, the interval MOG approximation for z 

represents a Gaussian distribution and therefore can accurately capture only the first and 

second moments of the true distribution. If two Gaussian components are used, then the 

interval MOG approximation for z can accurately capture up to the fifth moment of the 

true distribution [4.11][4.12].  
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In general, for an interval MOG approximation to accurately capture the first L 

moments of a distribution, the minimum number of Gaussian components required is 

⌈
   

 
⌉, where ⌈ ⌉ denotes the ceiling operation. In an interval MOG representation, each 

Gaussian component is completely specified by a mean and a variance, resulting in a total 

of 2c degree of freedom, where c is the number of Gaussian components. In addition, the 

mixing probabilities  ̃ add another c-1 degree of freedom.  Therefore, the total degrees of 

freedom in an interval MOG representation is given by 3c-1. This number has to be 

greater or equal to L in order for the interval MOG representation to capture the first L 

moment of the true distribution. Thus, the minimum number of Gaussian components 

required is found by setting 3c-1 equal to L.   

The user may choose the value of L to control the accuracy of the circuit 

performance estimation.  

Once the number of Gaussian components in the interval MOG representation for z 

has been determined, the next step is to find the values of  ̃ ,  ̃  and Az. The total number 

of unknowns is  (   )    calculated by summing up the following three numbers: 

    unknowns for specifying the distributions of  ̃ ;   unknowns for specifying the 

mean vector  ̃  ; and      unknowns for specifying the matrix Az,  where n is the number 

of noise variables used in the interval MOG representation for the parameters  ̃.  

A total of number of L moment-matching equations are set up to reinforce the 

moment-matching requirement in the estimation of the distribution of z, i.e.,  

 

 (        
 )   (  )         

(4.28) 

where fapprox is the second-order Taylor series approximation of f as shown in equation  

(4.21). The left and right hand side of equation (4.28) can be obtained analytically by 

following the calculations shown in equation (4.4) and (4.6).  

In addition, the following equations ensure that the correlation between the 

performance z and the parameter  ̃ is preserved,  

 

E E , 1,...,

q q

approx

i i

f
q Q

 

    
      

      

z

    
(4.29) 

for i=1,…,n, where n is the total number of noise variables used in characterizing the 

parameters  ̃ . Q is set to the floor of 
 (   )

 
 where c is the number of Gaussian 

components in z. Equations (4.28) and (4.29) together counts to a total of  (   )    

equations involving the unknowns  ̃ , Az and  ̃ , with   ⌈
   

 
⌉. These equations can be 

solved for the values of the unknowns. Note that all these equations contain only 

polynomials of the unknowns, therefore any nonlinear solvers using algorithms such as 

Gauss-Newton or Levenberg-Marquardt will behave well in finding the solutions. 
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Authors in [4.2] and [4.3] also have discussed specific algorithms for solving systems of 

polynomial equations.  

 

4.3.3 Solution for Transient Performances 

In the case of transient performances in which the performance values are required 

for every time step within a period of time, the problem formulation is, as discussed 

previously,  

 

1 0( , , , )t t tg v
t

z p x x
 

(4.30) 

where  ̃  and  ̃    are the circuit nodal and branch current at time step t and t-1, 

respectively .  ̃  and  ̃    are related by the transient circuit simulation equations at time 

step t as  

 ̃   ( ̃  ̃   ̃   )
   ( ̃  ̃   ̃   )    ( ̃  ̃   ̃   ) 

(4.31) 

We also require that all the quantities are represented in interval MOG form, such that, 

0( )
t t

T

t z z tA z z w 
 

(4.32) 

and 
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]  *

 ̃    (      ̃   ̃     )

 
 ̃    (      ̃   ̃     )

+ 

(4.35) 

At each time step during the circuit transient response period, the circuit nodal 

voltage/branch currents  ̃  are solved to obtain their interval MOG representations; this 

information is used to calculate the performance of interest zt at that time step. The 
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algorithm then proceeds to the next time step with  ̃  used as the inputs for the circuit 

nodal voltage/current from the previous time step.  

In a single time step, there are two interval MOG estimations required: (1) 

estimating the interval MOG representation for the distribution of  ̃  from that of  ̃    

and  ̃; and (2) estimating the interval MOG representation for the performance at that 

time step zt from  ̃ ,  ̃    and  ̃. The discussion begins with the first estimation. 

 ̃  is related to  ̃    and  ̃ by equation (4.31). However, equation (4.31) is not in a 

closed form since   ̃  appears on both sides. To obtain the best closed form 

approximation to equation (4.31), a deterministic circuit simulation is first performed at 

the nominal conditions, i.e.,  ( ̃   ) and  ( ̃), in order to find the nominal value for  ̃ , 
denoted by  ̃         . Then the right hand side of equation (4.31) is evaluated at  

 ̃          in order to remove its dependence on  ̃ , i.e.,  

 

 ̃    ( ̃  ̃   ̃   )           ( ̃  ̃           ̃   ) 

(4.36) 

where Bt,closed is the closed form approximation to Bt. 

The same algorithm used for non-transient performance estimation from section 

4.3.2 is applied here to estimate the interval MOG representations for  ̃ . Here the 

function Bt,closed is viewed as the nonlinear function f used in section 4.3.2. One subtlety 

to note here is that  ̃  is a vector instead of a single value, therefore the algorithm from 

section 4.3.2 is applied once for each dimension of  ̃  by pre-multiplying a vector 

constant to Bt,closed to pick the correct dimension. For example, to pick the first dimension, 

the vector ,       - is multiplied to Bt,closed.  

The calculation of the gradient and Hessian of Bt,closed does not involve any 

additional sensitivity analyses or circuit simulations. Recall from equation (4.13) and the 

discussion of SPICE simulation in Chapter 3 section , that Bt,closed can be expressed as, 

 

         ( ̃  ̃           ̃   )   ( ̃  ̃           ̃   )
  
 ( ̃  ̃           ̃   ) 

(4.37) 

where the entries in the matrix M are obtained from evaluating the numerically integrated 

and linearized device equations, and the vector I contains the values of the input voltage 

and current sources. Both of them consist of known, analytical and closed form equations 

of  ̃  and  ̃   , with the functional form independent of the particular time step. 

Therefore, the analytical expression for the gradient and the Hessian of Bt,closed can be 

calculated beforehand. During the simulation, the calculation only involves evaluating 

these expressions at the desired nominal values for  ̃ and  ̃   .  
In order to obtain the interval MOG representation for zt, again a second order 

Taylor series expansion is performed on the function gt and the same propagation 

procedure as outlined in section 4.3.2 is used, i.e., 
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(4.38) 

4.3.4 Runtime Analysis 

In the non-transient problem as discussed in section 4.3.2, the runtime of the 

propagation algorithm is determined by the following portions: 

 

1. Calculation of the gradient    and Hessian matrix Hf of function f , around 

the nominal parameter values,   ( ̃); 

2. Calculation of the moments  (  ),   (        
 ),   .

  

   
/
 

  and .
        

   
/
 

;  

3. Formulating the equations in (4.28) and (4.29); and 

4. Solving the system of equations by using a non-linear solver. 

  

If the number of process/device parameters is k, and the number of noise variables 

is n, then the runtime for portion (1) is O(min(k,n)) multiplied by the runtime of one 

circuit simulation if adjoint network approach is used, and O(min(k,n)
2
) multiplied by the 

runtime of one circuit simulation if direct sensitivity method is used . In the case where a 

SPICE simulation is required, the runtime for a single circuit simulation is generally in 

the order of the size of the circuit to the power 3. The runtime of portion (2) and portion 

(3) is O(Cnk max(Q, L)) where C is the maximum number of Gaussian components 

involved, n is the total number of noise variables, and L is the number of moments 

required to preserve, Q is defined in equation (4.29). The runtime for portion (4) is 

largely dependent on the type of solver used, the readers are referred to [4.14]-[4.17] for 

details. We argue that when the circuit is simulated using SPICE, as in the case of 

standard cell simulations, critical path simulations and analog circuit simulations, the 

runtime of portion (1) dominates over the other portions. 

In the non-transient problem as discussed in section 4.3.3, the cost is divided into 

the calculation of  ̃    and the calculation of    for each time step. However, in this case, 

the cost for Gradient and Hessian is very small. The analytical expressions for the 

Gradient and Hessian matrix used to obtain  ̃    is pre-computed, and the cost only 

consists of numerical evaluations of these expressions. In addition, since the function gt 

that relates the performance zt is a given function, thus the Gradient and the Hessian can 

be obtained analytically. The main cost incurred in each time step is the moment 

calculation (portion (2) in the above list), moment matching equation formulation 

(portion (3) in the above list) and nonlinear equation solving (portion (4) in the above 

list). The cost follows the same analysis as in the case of the non-transient problem, but 

multiplied by the number of nodes in the circuit, i.e., the size of the vector  ̃   . Thus, 
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the runtime is dominated by O(mCnk max(Q, L)) where m is the dimension of the vector 

 ̃   ,  C is the maximum number of Gaussian components involved, n is the total number 

of noise variables, L is the number of moments required to preserve, Q is defined in 

equation (4.29). 

 

4.3.5 Scalability 

In the previous section, the algorithm runtime is analyzed as a function of the 

number of process/device parameters. In this section, the algorithm scalability as a 

function of the circuit size is analyzed.  

For the non-transient problem as discussed in section 4.3.2, the scalability is 

determined by the scalability of obtaining the gradient and the Hessian of the 

performance function. If the adjoint network approach is used, and assuming that the 

number of device/parameters increases as a linear function of the circuit size, then the 

runtime is given by O(s
4
) where s is the circuit size.  

For the transient problem as discussed in section 4.3.3, since analytical expressions 

can be pre-computed for the gradient and Hessian of the performance function, then the 

scalability of the runtime is determined by the formulation of moment-matching 

equations and by the nonlinear system of equation solver. Algorithms that can efficiently 

solve large-scaled nonlinear systems of equations have been investigated and developed 

in various works [4.18]-[4.20].  The readers can refer to these works for details on the 

scalability of solving the nonlinear systems in question. An analysis on the scalability of 

the formulation of the moment-matching equations is given below.   

In general as the circuit sizes increase, the number of device/process parameters 

also increases linearly as a function of the circuit size. In addition, the number of noise 

variables required to characterize these process/device parameters increases as a linear 

function of the number of device/process parameters and increases as a linear function of 

the number of Gaussian components. Therefore, if the circuit size is s, the number of 

Gaussian component is C, then the runtime of the formulation of the moment-matching 

equation is give by O(C
2
s

3
)   

    
 

4.4 Circuit Example 

To test our algorithm we used a circuit path of 100 gates containing inverters, 

NAND gates, and NOR gates. Our selection of the type of gates is limited by the process 

variability data in our disposal. 

 

4.4.1 Cell parameter distribution extraction 

We obtained context-induced delay variation data for various type of inverters, 

NAND gates and NOR gates. For our algorithm, we need to know the distributions of the 

device parameters rather than of the delay, thus we back-calculated plausible distributions 

by simulations and approximations.  

The BSIM device model parameters gate length (L), the correction factor on 

threshold voltage (delvt0), and the multiplier on mobility (mulu0) are selected for 



68 
 

capturing the context-induced variability, consistent with the context-induced variability 

models used in industry [4.8]. 

Since gate lengths are largely affected by photolithographical context, we 

performed lithography simulations in Calibre by randomly placing the cell of interest in 

50 different contexts and by simulating the resulting printed gate length. We use this 

simulation result in order to estimate the distribution of the gate length. Figure 4.3 
shows the pair-wise scatter plot of the gate length distributions for the four transistors in a 

NOR2X1 gate. We found that in all the cells we simulated, the gate length distributions 

can be modeled as a single Gaussian distribution and that they are independent among the 

transistors in a gate.  

We simulated the logic gates using SPICE given the distributions of the gate length, 

and obtained changes in delay due to gate length alone. We then subtracted the delay data 

given by our simulated results. The residual is then assumed to be purely due to changes 

in delvt0 and mulu0. 

SPICE simulation was used to obtain the sensitivity of delay due to delvt0 and 

mulu0. In addition, we assume that delvt0 and mulu0 each is responsible for 50% of the 

changes in cell delay. From here, we back-calculated the values for delvt0 and mulu0 

given the context-induced delay data. We found that the distributions are non-Gaussian.  

To cast the distribution of delvt0 and mulu0 into MOG representation, we 

performed a multivariate mixture of Gaussian fitting on the data using the Expectation-

Maximization algorithm [4.4]. The number of Gaussian components was chosen such 

that the Akaike‟s information criterion(AIC) is minimized. In the cells we examined, the 

number of components ranges from 4 to 7. Figure 4.4 and Figure 4.5 show sample 

histograms of delvt0 and mulu0 for a transistor in a NOR2X1 gate obtained using this 

approach and the marginal distribution was fitted using MOG. 

 

 
 

 Figure 4.3: pair-wise scatter plot of the gate length distributions for the four transistors in 

a NOR2X1 gate. 

PMOS1 PMOS2 NMOS1 NMOS2 

Gate Length (nm) 
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4.4.2 Simulation Setup 

Figure 4.4: histograms and fitted MOG of mulu0 for NMOS transistor in NOR2X1. 

Figure 4.5: histograms and fitted MOG of delvt0 for PMOS transistor in NOR2X1.  
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Spatial correlations are imposed along the logic chain such that closely situated 

cells are perfectly correlated and the correlation coefficients fall off to zero after 10 gates. 

The total number of parameters (L, mulu0, delvt0) in the test circuit is 1140; the number 

of noise variables is 147.  

Monte-Carlo simulations are then performed on the circuit and the circuit delay is 

measured. We found that the statistics of the delay obtained converge after 10,000 

Monte-Carlo simulations and thus we use that sample size as our baseline for comparison 

purposes. The delay distribution is plotted in Figures 4 and 5, and it fails the normality 

test at a confidence level >99%. 

 

4.4.3 Simulation Result 

We next performed an MOG propagation using the algorithm outlined in section 3. 

We compared the E(delay
l
) for l=1,2,…,7 using Monte-Carlo simulation against our 

algorithm.  The result is summarized in Table 4.1. The comparison of the distribution 

obtained by MOG propagation and Monte-Carlo analysis is shown in Figure 4.6 and 

Figure 4.7. The runtime of the two methods is compared and summarized in Table 4.2.  

 

 

Table 4.1: Comparison of the E(delay
l
) between Monte-Carlo baseline simulation and the 

MOG propagation method. 

Moment 

Order(l) 

Monte Carlo 

baseline 

(sec
l
) 

MOG 

propagation 

(sec
l
) 

Relative 

error (%) 

1 2.9187E-09 2.9416E-09 0.78 

2 8.5392E-18 8.6551E-18 1.35 

3 2.5043E-26 2.5444E-26 1.60 

4 7.3623E-35 7.4663E-35 1.41 

5 2.1696E-43 2.1844E-43 0.68 

6 6.4088E-52 6.3651E-52 0.68 

7 1.8977E-60 1.8450E-60 2.78 

8 5.6327E-69 5.3123E-69 5.69 

 

Table 4.2: Runtime comparison between Monte-Carlo baseline simulation and the MOG 

propagation method. 

Monte Carlo 

(sec) 

MOG Propagation 

Speed 

up Gradient and Hessian Calculation (sec) 
Other calculations 

(sec) 

Total 

(sec) 

26669 391 105 496 54X 
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4.5 Conclusions 

In this chapter, a mixture of Gaussian (MOG) propagation algorithm for statistical 

circuit simulation has been formulated. The interval representation is used as the tool to 

capture the distribution which allows for significant runtime reduction when the circuit 

parameters are correlated. The algorithm has been tested with circuit paths involving 

thousands of parameters and found that using our MOG propagation results in a 54X 

speed up as compared to Monte-Carlo simulation, while maintaining very good accuracy.  

 

 

+  Monte-Carlo 

o  MOG Propagation 

Figure 4.6: Histogram showing the delay distribution from Monte-Carlo simulations and 

MOG propagation algorithm. 

Figure 4.7: Normal plot showing comparing the delay distribution from Monte-Carlo 

simulations and the MOG propagation algorithm. 
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Chapter 5   Conclusions 
 

 

 

 

 

 

 

In this dissertation, the problem of uncertainty propagation in statistical circuit 

simulation is addressed. Uncertainty in circuit process and device parameters arises due 

to manufacturing variability. Since electrical circuits are, in general, complex and 

nonlinear systems, the problem of estimating the circuit performance efficiently and 

accurately due to the variations in process/device parameters is very challenging.  

Conventional methods to estimate variations in circuit performance include worst 

case corner analysis and Monte-Carlo simulation. The worst case corner analysis method 

has become increasingly inadequate to produce realistic estimations due to the increase in 

both magnitude and complexity of process variations [5.3]. Monte-Carlo simulations can 

produce very accurate estimates of the circuit performance distributions. However, the 

simulation time needed to perform Monte-Carlo type analysis can be very long, making it 

practically intractable in complex circuit design.  

A novel interval based circuit simulation algorithm is developed in order to solve 

this problem. Intervals are originally used to represent the upper and lower bounds of a 

quantity with uncertainty. [5.1] introduces the idea of representing intervals with a linear 

combination of noise variables distributed with uniform distributions to obtain tighter 

bounds for uncertainty quantification. In this work, a similar formulation as in [5.1] is 

used to define intervals, but the noise variables are modified to follow Gaussian 

distributions. With this extension, the intervals can be viewed equivalently to any 

Gaussian distribution. Algebraic operations, such as addition, subtraction and 

multiplication, between these intervals are defined using a novel moment-preserving 

approximation, such that the result of an interval operation is also represented in an 

interval form that best approximates the distribution of the true result.   

When the uncertainty in the circuit process and device parameters can be captured 

by correlated Gaussian distributions, the process/device parameters are first represented 

by appropriate interval representations. An interval-valued SPICE simulator, in which all 

real number operations are replaced by interval operations, is used to simulate the circuit. 

The simulation results are therefore interval-values that can be used to extract 



74 
 

performance statistics. In this approach, only one circuit simulation is required to obtain 

the best Gaussian distribution approximation for any circuit performance.  

The algorithm is tested on RC circuits and transistor circuits with excellent 

simulation accuracy as compared to Monte Carlo simulation results. It is shown 

analytically that the runtime of the interval valued circuit simulation is on the order of 

O(n+m)O(c
3
) where n is the average number of noise variables per interval operation, m 

is the average number of noise variables shared between any two interval quantities and c 

is the number of nodes in the circuit. Experimental data shows that the runtime scales 

linearly with the number of process/device parameters subjected to process variations and 

also scales linearly with the complexity of the variability model used for the 

process/device parameters.  

In the case when the process/device parameters cannot be modeled with Gaussian 

distributions, a novel extension to the interval representation is proposed. Non-Gaussian 

distribution of process/device parameters can result from the combining effects of 

random and systematic variations [5.2] in state of the art IC technologies. In the proposed 

algorithm, a Mixture of Gaussian (MOG) distribution is used to approximate all non-

Gaussian distributions.  

Each Gaussian component in a mixture of Gaussian distribution is reduced to an 

interval representation. The sets of all interval representations for all the Gaussian 

components are organized in a vector, and pre-multiplied by the transpose of a random 

vector with a discrete probability density function properly assigned to ensure that the 

expression correctly represents the original MOG distribution.  

A statistical circuit simulation procedure is developed using these interval MOG 

representations.  Similar to the interval circuit simulation for Gaussian distributions, at 

each step during the simulation algorithm, all quantities are represented by interval MOG 

representations. The algorithm has been tested on circuit paths of 100 stages containing 

inverters, NAND gates and NOR gates. The simulation result of the proposed algorithm 

agrees very well with Monte-Carlo simulation. In addition, the runtime of the proposed 

algorithm shows a 54X speed up compared to Monte-Carlo simulation.  

The proposed interval-value based simulation engine for both Gaussian and non-

Gaussian process variations can be directly applied to fast and accurate standard cell 

library characterization, where the distribution of the cell delay and power are calculated. 

In addition, the distribution information provided by the proposed simulation method can 

be feed into statistical timing analysis engine for full-chip level timing closure. The 

proposed simulation engine can also be incorporated into statistical circuit optimizations.  

Some limitations apply to the current implementation of the algorithm. First and 

foremost, the device equations used in the implementation are simple square-law 

MOSFET device equations that do not taken into account deep-submicron device effects. 

However, it should be noted that the interval-based algorithms developed in this 

dissertation do not impose any fundamental constraints on the type of device equations 

used. Incorporation of more sophisticated device models is merely a matter of 

implementation, but such implementation could tedious and error prone. One could 

envision an automated “translator” that could take a scalar model and translate it to 

interval representation. This type of automating “translation” is conceivable, but its study 

and implementation are well beyond the scope of the present work. 
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Secondly, the interval-valued SPICE simulation engine implemented in this work is 

a simplified version of commercial SPICE simulators and does not include advanced 

features such as simulation convergence tuning and variable step time size. Due to this 

limitation, circuits that involving feedback loops cannot be simulated correctly. Also, the 

interval SPICE simulator implemented in this work is only capable of transient and DC 

circuit analysis. The interval algorithms developed in this thesis focus only on transient 

circuit analyses; other types of analyses (such as harmonic, etc) can be part of the future 

investigation.  

Other possibilities for future work include further improvements in the runtime of the 

interval developed algorithms. For the interval propagation algorithm for Gaussian 

distributions, the major runtime bottleneck comes from the introduction of extra noise 

variables after every non-linear operation. Even though a noise variable pruning 

algorithm (see section 3.4.4 for details) is used at the end of each time step, extra noise 

variables are still introduced by the intermediate calculations during a time step. 

However, many noise variables introduced does not carry additional information. For 

example, in a chain of m interval multiplications, m additional noise variables are 

introduced and included in the final result. However, since only the first two moments are 

preserved through this chain of multiplications, the final result can be represented with 

only one extra noise variable. A final result with only one extra noise variable can be 

found by directly defining a moment-preserving interval operation for the chain of 

multiplication. Runtime reduction can be achieved in this way by defining a moment-

preserving interval operation directly on the device model equation by viewing the entire 

equation as one operation.  

In the interval MOG propagation algorithm, it has been noted that the final circuit 

performance distribution resembles a Gaussian distribution except at the tails. It is often 

the case that the tail of a distribution is more important in statistical circuit analysis, 

especially in the context of state of the art IC design, where the acceptable rate of failure 

is very small. In the mixture of Gaussian representation for this kind of performance 

distribution, one component is used to capture the center part of the distribution density 

function that follows a Gaussian  pdf.  A few additional Gaussian components are placed 

at the tails to capture the deviations from a Gaussian pdf.  Therefore, it may be possible to 

focus only on those additional Gaussian components used to capture the distribution tail, 

and to propagate only those components instead. Compared to propagating the entire 

mixture of Gaussian distributions, runtime can be reduced using this method. 

Other future works include evaluating the algorithms on circuits that are more 

functionally complex (e.g., circuit involving feedback loops)  and that are of larger sizes. 

Such evaluations are not included in this dissertation due to the limitations of the current 

implementation of the algorithm as noted above, and due to the limitations on the runtime 

of the current implementation.   

As the device dimensions shrink, statistical variations in circuit performances are 

becoming a more severe issue. Circuit simulation results obtained using corner-based 

worst case analysis can deviate significantly from silicon data, resulting possible 

functional failures in sensitive analog and digital designs after chip fabrication. Statistical 

circuit simulations, on the other hand, can provide results that are more close to the real 

silicon data.  Therefore, there is an increasing need for statistical circuit simulations in 
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nano-scale designs. Considering the large runtime of Monte-Carlo simulations, a fast and 

efficient statistical circuit simulation at a SPICE level will be the enabling technology for 

the transition from transitional corner-based design methods to true statistical design 

methods.  
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