UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Uncertainty Propagation in Transistor-level Statistical Circuit Analysis

Permalink
https://escholarship.org/uc/item/Opr8x534

Author
Tang, Qian Ying

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0pr8x534
https://escholarship.org
http://www.cdlib.org/

Uncertainty Propagation in Transistor-level Statistical Circuit Analysis

By

Qian Ying Tang

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering-Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Costas J. Spanos, Chair

Professor Kameshwar Poola

Professor David Aldous

Fall 2011



Abstract

Uncertainty Propagation in Transistor-level Statistical Circuit Analysis
By
Qian Ying Tang

Doctor of Philosophy in
Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

In today’s semiconductor technology, the size of a transistor is made smaller and
smaller. One of the key challenges presently faced by the designers is the increasing
impact of process variations to circuit performances. As a result, circuits designed using
the traditional methods can deviate from the desired specifications after being
manufactured. Therefore, new circuit design and characterization methodologies are
required to handle these process variations.

The problem of estimating the circuit performance at a transistor-level due to
parameter uncertainties is examined. Uncertainty in circuit process and device parameters
arises as a result of manufacturing variability. Since electrical circuits are, in general,
complex and nonlinear systems, estimating their performances efficiently and accurately
is very challenging. Existing methods on propagating uncertainties in circuit parameters
to circuit performance include worst case corner analysis, Monte-Carlo simulations,
response surface modeling, sensitivity analysis and unscented transformation.

In this work, a novel interval based circuit simulation algorithm is proposed. An
interval is a quantity consists of noise variables following Gaussian. The algorithm is
developed for both Gaussian and non-Gaussian process variations.

When the uncertainty in the circuit process and device parameters can be captured
by correlated Gaussian distributions, the process/device parameters are first represented
by the appropriate interval representations. An interval-valued SPICE simulator, in which
all real number operations are replaced by interval operations, is used to simulate the
circuit. The simulation results are therefore interval-values that can be used to extract
performance statistics. In this approach, only one circuit simulation is required to obtain
the best Gaussian distribution approximation for any circuit performance.

The algorithm is tested on RC circuits and transistor circuits with excellent
simulation accuracy (<2% error) as compared to Monte Carlo simulation results. It is
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shown analytically that the runtime of the interval valued circuit simulation is on the
order of O(n+m)O(c®) where n is the average number of noise variables per interval
operation, m is the average number of noise variables shared between any two interval
quantities and c is the number of nodes in the circuit.

In the case when the process/device parameters cannot be modeled with Gaussian
distributions, A Mixture of Gaussian (MOG) distribution is used to approximate all non-
Gaussian distributions and a novel extension to the interval representation is proposed.
The algorithm is tested on circuit paths of 100 stages containing inverters, NAND gates
and NOR gates. The simulation result of the proposed algorithm agrees very well with
Monte-Carlo simulation. In addition, the runtime of the proposed algorithm shows a 54X
speed up compared to Monte-Carlo simulation.

The proposed interval-value based simulation engine for both Gaussian and non-
Gaussian process variations can be directly applied to fast and accurate standard cell
library characterization, where the distribution of the cell delay and power are calculated.
In addition, the distribution information provided by the proposed simulation method can
be feed into statistical timing analysis engine for full-chip level timing closure. The
proposed simulation engine can also be incorporated into statistical circuit optimizations.
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Chapter 1 Introduction

In today’s semiconductor technology, the size of a transistor is made smaller and
smaller. The benefits of transistor scaling have been to reduce manufacturing cost and to
enhance device performance. However, as the devices are scaled down into the
nanometer regime, issues such as manufacturability, process variations, voltage scaling,
power dissipation and device reliability have greatly undermined the benefits of scaling.
In today’s semiconductor design and manufacturing, sophisticated methodologies have
been used to ensure chip performance and manufacturability.

One of the key challenges presently faced by the designers is the increasing impact
of process variations on circuit performances. For example, variations in the lithographic
systems can cause variations in the printed line width, resulting in undesired shorts or
opens in a chip layout, especially when the printed line width is narrow [1.1][1.2]. Other
variability issues in nanoscale transistors include random dopant fluctuation [1.3], line
edge roughness [1.4], well-proximity effects [1.5], layout dependent stress variation in
strained silicon technologies [1.6], and rapid thermal anneal (RTA) temperature induced
variation [1.7][1.8]. All of these variations cause circuits designed using the traditional
design flow to deviate from the desired specifications after being manufactured.

In section 1.1, a brief overview on the types and modeling techniques of process
variations observed in today’s semiconductor manufacturing is given. Section 1.2 reviews
the traditional worst-case corner based design flow. The dissertation organization is
presented in section 1.3.

1.1  Process Variations in Semiconductor Manufacturing

In silicon manufacturing, many processing steps can cause a non-uniformity in the
manufactured device properties, referred to as the process variations. Process variations
have become a serious issue in nanoscale transistors. the following sections give an
overview of the types of process variations, and current approaches to model such
variations.



1.1.1 Types of Variations

Depending on their spatial scales, process variations can be categorized into inter-
die (global) variations that affect all the devices on a die simultaneously, and intra-die
(local) variations that affect each devices individually.

One example of inter-die variations are the loading effects in etching or deposition
that impact the geometry of all the devices on a wafer [1.24]. Inter-die variations can be
subdivided into lot-to-lot variations (i.e., variations between two lots of wafers), wafer-
to-wafer variations (i.e., variations between two wafers within the same lot), and die-to-
die variations (i.e., variation between two dies on a same wafer).

Examples of local variations include various types of layout dependent proximity
effects [1.25]-[1.28]. The devices that are located closer to a well edge show higher
threshold voltages than the devices located further away from the well edge, known as
the well proximity effects [1.29]. In addition, the size and proximity of STI structures
surrounding a device also impact device performance, due to the STI induced stresses in
the device channel [1.27].

Depending on their nature, variations can also be categorized into systematic and
random. Systematic refers to the variations that can be captured by a deterministic
function, whereas random variations are stochastic in nature and can only by
characterized by distributions. For example, during the manufacturing step known as
rapid thermal annealing [1.32], the wafer is put into a furnace and the temperature is
ramped up to the desired level. However, due to the non-uniform temperature distribution
in the furnace, different locations of the wafer are processed at the different temperature,
resulting into device property variations in the annealed devices. This variation is
systematic since it can be captured by the known temperature distribution across the
wafer. In another critical process step, when dopants are implanted into a material, the
final concentrations injected into the material the variation is referred to as the random
dopant fluctuation and it is random in nature. The following table summarizes the
different types of variations.

Table 1.1: Categorization of different types of process variations.

Systematic Variations Random Variations

Lot to Lot, Wafer to wafer

Inter-die Variations across-wafer i :
Die to die

across-die variations,

Intra-die Variations Layout/context dependent
Effects

Device to device
LER/RDF

1.1.2 Characterization and Modeling

In order to characterize the amount of variations in a process, test structures
consisting of ring oscillator and SRAM memory cells are often designed, manufactured
and measured to obtain the statistics. Each device in the test structure are measured for



lon and loff under various bias conditions to extract the 1-V characteristic. Selected set of
device parameter values are back extracted from this I-V characteristics. Device
parameter extraction methods can be found in [1.9]-[1.11].

1.2 Variation-Aware Circuit Design

Worst case circuit analysis (WCCA) [1.19]-[1.23] has been used extensively in the
industry for variation-aware circuit designs. In this approach, a set of worst case corners
is generated by varying the physical and electrical parameters of representative devices
(i.e., transistors, interconnect elements) [1.18] with the objective of achieving the worst
case performance. Circuits are then simulated at these parameter corners to estimate the
worst case performance, such as timing and power, in order to ensure that even under
those worst case conditions the performance specifications are met.

The worst case value P" of a particular device performance P is defined as,

prob (P < PV¥¢) =p
(11)

where p is a pre-defined probability value typically close to 1 and approximates the
required manufacturing yield. In theory, there can be a large number of different
assignments of the device parameter values that give the same worst case performance.
The particular set of worst case parameter values 8¢ assignment is chosen such that,

ove = max prob(0)

s.t. P(0) = p*¢
(1.2)

or, in other words, the most probable values of device parameters that give rises to such
worst case device performance. This is illustrated in Figure 1.1 for two device
parameters, where the contours are from the joint distributions of the device parameters.

Figure 1.1: Illustration on determining the worst case corner for a device in the
case of two process/device parameters.

Despite the popularity of using worst case corners for variability-ware circuit
designs, the method becomes increasingly inadequate as the increase in both magnitude
and complexity of process variations, coupled with the aggressive scaling of MOS



devices. Since the true performance for a circuit is design specific, while the worst case
corner are determined only based on the worst case of device, using worst case corners
for circuit design often leads to pessimistic designs. In addition, the worst case corners
design methodology gives no information about the actual circuit yield, nor the actual
probabilistic distribution of the performance of interest. All these problems with worst
case design methodology motivate the need for incorporating full statistics in
performance evaluation for aggressive designs.

Many authors [1.12]-[1.17] have demonstrated design methods that take into
account of the entire distribution information of process/device parameters. For example,
chip-level statistical timing analysis [1.30]-[1.31] (SSTA) has been implemented as a
way of estimating the chip-level critical path delay by assuming a Gaussian distribution
of the delay of each individual gate. The method propagates the gate delay distribution
through the entire circuit path by defining Gaussian approximations to the MAX and
SUM of any two Gaussian distributions. Extensions of SSTA to non-Gaussian
distributions have also been well studied in past literatures.

Many of the existing methods build upon the availability of an accurate estimation
of the distribution of gate delay or power. However, obtaining such distributions often
involves hundreds or thousands runs of costly SPICE circuit simulations. An efficient and
accurate SPICE-level statistical circuit performance analysis and simulation is still an
active area of research.

In this dissertation, we proposed a novel interval-value based algorithm for
speeding up SPICE-level statistical performance simulation for both Gaussian
distributions and non-Gaussian distributions.

1.3  Dissertation Organization

The dissertation is organized as follows: chapter two gives a background overview
of exiting methods of transistor/spice level statistical circuit simulation. Chapter three
discusses our proposed interval-value based approach to efficient transistor level
statistical circuit simulation for Gaussian uncertainties in parameter values. Chapter four
extends this method to incorporating non-Gaussian parameter uncertainties. Chapter five
concludes this dissertation.
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Chapter 2 Uncertainty Propagation in Circuit
Analysis

2.1 Introduction

In this chapter, existing uncertainty characterization and propagation method are
reviewed and their applications to transistor-level statistical circuit analysis are discussed.

2.2  Sampling Based Method

The most straightforward method for evaluating statistical circuit performance is by
means of sampling. In such approach, samples are drawn from the distributions of the
circuit parameters, and the circuit is simulated in a transistor level simulator, e.g.,
HSPICE, using these sample values. Statistics on performance distributions can then be
found by looking at these simulation results.

If samples are drawn randomly in the parameter space, the method is referred to as
Monte-Carlo sampling method. The cost of the Monte-Carlo sampling method for
statistical circuit performance evaluation is the product of the number of samples and the
runtime required for a single circuit simulation, plus any additional cost required to
estimate the distributions of the performance from samples. In transistor-level circuit
simulators such as HSPICE, the cost of one simulation is on the order of O(n®), where n
is the size of the circuit [2.1]. Therefore, the cost can be very large when the number of
samples required is large.

The benefits of the Monte-Carlo approach is that the number of samples required to
obtain the distributions for a particular circuit performances is independent of the number
of parameters. However, the estimation accuracy depends highly (and generally the
square) on the number of samples used. In the discussion by [2.2], the authors showed
that 10x reduction in estimation error requires a 100x increase in the number of samples
when estimating a Gaussian distribution. This problem becomes very acute when
estimating low probability events, such as yield loss..

The Latin Hypercube sampling method [2.3][2.4] tries to reduce the number of
samples required in a Monte-Carlo estimation by placing more control on how the
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samples are drawn from the parameter space. The goal is to make sure that the samples
are drawn uniformly from all regions of the parameter space, and to avoid repeated
samples from the regions where the parameter probability density function have a higher
value (such situation occurs in Monte-Carlo sampling method).

In Latin hypercube sampling, the cumulative distribution functions of the
parameters are stratified into equal segments, and one or more samples per segment are
used for performance evaluation. Figure 2.1 illustrates how four samples are generated
using Latin Hypercube sampling schemes in a 2-dimensional case. By ensuring that there
is only one single grid filled with one sample for each row or column, the samples can be
more uniformly located within the sample space. The sample inside each grid is drawn
randomly.

1
0.75

0.5

O
0.25

26 jo Ajungeqoud

O
0 025 05 075 1
Probability of 81

Figure 2.1: Illustration of the Latin Hyper cube sampling method on two independent
random parameters with four samples.

Authors in [2.3] show that for the same number of samples, the variance of the
Latin hypercube estimator is smaller than that of the Monte-Carlo estimator, when
“certain monotonicity condition holds™.

Another commonly used sampling method is importance sampling [2.5][2.6]. This
approach is particularly advantageous in estimating the tail of a distribution. In
importance sampling, the probability distribution function of the parameters are first
distorted such that when the samples are drawn from the distorted, the variance of the
estimation is reduced. For example, in the case of SRAM failure probability estimation,
importance sample will shift the original distribution such that the events in the tail of the
distribution (i.e., the events that an SRAM cell fails) now have a much higher probability
to occur. In doing so, with the same number of samples, a more accurate estimation can
be obtained compared to sampling from the original distribution. However, the
disadvantage in using importance sampling is that there is not always an easy method to
find the distorted distribution while providing the required estimator variance reduction
[2.2].

Despite the possibility of the reducing the number of samples, the runtime of
sampling based methods are generally substantial compared to other methods that will be
discussed in the following sections. The cost of sampling based methods for statistical
circuit simulation is equal to the number of samples multiplied by the cost of simulating a
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circuit. The cost of circuit simulation itself can be substantial, thus limits the use of
sampling based methods to only very small sized circuits.

2.3 Response Surface Modeling

Response surface modeling [2.7][2.10][2.11] tries to reduce the cost of statistical
circuit simulation by replacing the costly, SPICE circuit simulations by an simple
empirical model that can be evaluated at a much lower cost.

In this approach, a design of experiment (DOE) is first performed on the parameters
to generate representative data points from the parameter space. General background on
DOE can be found in [2.9]. One commonly used DOE scheme is the central composite
design as illustrated in Figure 2.2 for a 2-dimensional case. A center point and four
factorial points located =1 unit away from the center (as shown by the blue dots in Figure
2.2). In addition, four points located at +a with |a| > 1 away from 0 and on the parameter
axis are chosen, as shown by the diamond shaped points in Figure 2.2. The precise value
of a depends on the desired properties for the DOE and on the number of factors involved
[2.12].

X2

Figure 2.2: lllustration of the central composite design for two variables. The diamond
and circle shape marks the samples points resulted from this DOE.

After data points are selected using a DOE, the circuit is simulated under these data
points to obtain the performance values. A response surface model is fitted to relate the
circuit performance to parameters. Commonly used response surface models are either
first order or second order. The first order model, or the linear response surface model is
given by,

f(®) =b"%+c
(2.1)

and the second order model is given by,

FG) =X¥TAX+ bT% + ¢



(2.2)

where f(¥) denotes the value of the performance, or the response of the model, ¥ is the
set of all device/process parameters, b is a n-dimensional vector of coefficients, Aisan
by n matrix, and c is a constant bias value. The linear model is suitable when the
variation in X is small, while the second order model is used for the case when the
variations is large. The value of the model parameters b, A and c is obtained by solving
the set of over-determined equations,

fi=bT%+c i=1,..,s
(2.3)

for the linear model, and

fi=%TA% +bT% +c i=1,..,s
(2.4)

for the second order model. The terms X; and f; are the DOE samples from the parameter
space and the corresponding circuit responses, for a total of s number of samples.

One of the commonly used methods for solving systems of over determined
equations is the least-square approximation [2.8]. For example, in the case of linear
response surface models, to estimate the value of parameters, a matrix that collects all the
DOE samples is first formed as

[1 f{]
le} JZ.2T|
i

(2.5)

where a 1.0 is appended to all DOE samples Xy, ..., %, in oprder to accommodate the
costant “c” shown in equations 2.3 and 2.4. Let the vector § = [f}, ..., f]” collect all the
circuit responses, then the least square approximation of the model parameters for the

linear model is given by
c
|| = amo-1xry
b
(2.6)
for c and b in equation (2.3).
Once a response surface model has been built, the distribution of the circuit

performance can be obtained by repeatedly evaluate the model using a Monte-Carlo
method. Since the cost of model evaluation is very small, a much larger number of
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Monte-Carlo samples can now be used for obtaining an estimate of the performance
distribution.

The total cost for using response surface modeling for statistical circuit performance
evaluation consists of three parts, a) the cost for generating DOE samples and simulations
of the circuit at those DOE points; b) the cost for building a response surface model, and
c) the cost for generating performance distributions by evaluating the response surface
models. In general the cost of part (a) and part (b) dominates over the cost for part (c).

The major benefit of response surface modeling over direct sampling approaches is
the reduction in runtime when the dimension of the parameter space is small. The number
of DOE experiments required to arrive at response surface model is generally smaller
than the number of samples required in a sampling approach, as long as the dimension is
confined within a value. However, the number DOE experiments grows exponentially
with the number of dimensions, and thus can be much more costly than a sampling based
method if the parameter dimension is large.

2.4  Unscented Transformation

The unscented transformation (UT) [2.14]-[2.18] is an alternative method for
estimating a probability distribution function. Given a vector-valued random variable
X, and an differentiable function f, such that

y=fX)
.7)

The unscented transformation tries to estimate the statistics, i.e., mean and variance,
of y, from the function f and the distribution of ¥. In the context of statistical circuit
simulation, X is the vector of device/process parameters subject to variations, y is the
circuit performance of interest, and the function f is implicitly available through SPICE
circuit simulations.

The basic idea behind UT is to obtain a set of s “sigma” points, i.e., points that are a
certain number of standard deviations away from the mean, from the distribution of x.
These “sigma” points are denoted as x;’s. The function f is then evaluated at those sigma
points to obtain a corresponding set of values y; = f(x;),i = 1,...,n. The mean and
variance of y is then estimated from those points through weighted sums, i.e.

N
y' = Z w;iyi
im1

(2.8)
and

p* = Z wi (v =) =797
= 2.9)
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where y* and p*is the estimation of the mean and variance of y using the unscented
transformation; s is the number of sigma points; x is the mean vector of X; and w; are the
weights, whose calculation is discussed next.

The concept of unscented transformation is illustrated in Figure 2.3 and in
comparison with the Monte-Carlo method,

sigma pomts
covariance

mean

Yi= f (xi)

y = f(x) weighted sample mean
and covariance

v Y
transformed
true mean su;ma points

. \ i, true covariance
R UT mean

T covarlance

(@) (b)
Figure 2.3: Example of the unscented transformation for mean and covariance
propagation. a) Monte-Carlo b) Unscented Transformation (UT). (Reproduced from
[2.12]).

A Taylor series expansion of the function f around the mean vector X, is performed
in order to derive the values for the weights and the sigma points [2.14]

y=f® =f&@ +Vi(®@&-x) + % (X —X)"Hr () (X — %) + o(|X — %|*)
(2.10)
where V}(f) and Hy(x) are the gradient and the Hessian matrix of the function f
evaluated at x. Taking the mean of equation (2.10),
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1
y =) +5E(@- D H@®E-)
(2.11)

Equation (2.8) can be expanded by substituting the second order Taylor series
approximation for each y; to become

N N 1
7 = D wive = ) wi (D) + V@0 = ) + 5 G = DT H D (i~ D)
+ o(x; - 712}
(2.12)

where s is the total number of sigma points. Comparing equation (2.12) with equation
(2.11), the values of x; and the weights w; and w, have to satisfy the following

conditions,
Z w; = 1
i

(2.13)
Z Wi(xl' - f) =0
i (2.14)
B(E - 0@ - D) = ) wilx — D (x — D)
l (2.15)

In addition, equation (2.13) - (2.15) are the only conditions required for the
unscented transformation estimation for the mean estimation to be unbiased up to the
second order. These equations are referred to as the unscented conditions for mean.
Assuming the covariance matrix of ¥ can be decomposed into oo’ with o € R™ ", n is
the dimension of X, and with the introduction of any scaling parameter, a € R, the value
of the weights w; and the sigma points x; are

1
W4 =ﬁ, L= 1,...,71
n
Wo = 1 _?
Xy =X*tao,i=1,..,n
x0=f
(2.16)

where g; is the i"™ column of the matrix.
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A similar derivation is possible for the unscented transformation estimation of the
variance. It can be shown [2.14] that the value in equation (2.16) also gives a second
order estimation for the variance.

In the context of the statistical circuit simulation, the sigma points x; are extracted
from the distribution of the process parameter by using equation (2.16). y; is obtained by
simulating the circuit at each of the sigma points. The mean and variance of the circuit
performance y are then obtained using equations (2.8) and (2.9). The cost of using
unscented transformation for statistical circuit performance evaluation equals to the
number of the sigma points multiplied by the cost of one circuit simulation, plus the cost
of obtaining the matrix S from the covariance matrix of x. The number of sigma points,
if using the scheme in equation (2.16), is 2n+1, where n is the number of random process
parameters. The cost of obtaining matrix S is given by the runtime required for an eigen-
decomposition on the covariance matrix of X. The runtime of such decomposition is on
the order of n®, where n is the number of process parameters

2.5  Sensitivity Analysis

In circuit sensitivity analysis, one tries to find out the changes in performance value
Ap due to a small perturbation in the device/process parameters Af. One example of
sensitivity analysis is the study of the changes in the delay of logic gate due to a small
change in the device threshold voltage. Sensitivities of a performance p with respect to a
single parameter can be obtained by simulating the circuit at parameter values that are
+A# away from the nominal condition &y, and by using the finite differences formula to
calculate the sensitivity sy as

s = p(@+AB)—p(@—Ab)
¢ 2A0

(2.17)

If the sensitivities of the performance with respect to all parameters are given, then
the variances of circuit performance o2 (p) due to random process/device parameters can
be estimated from the sensitivities, i.e.,

a*(p) = 5910'2 @)+..+ SHHO'Z @,
(2.18)

where the performance p is a function of the parameters, 6,,...,6, . The terms
Sg,, -+, Sg,, are the sensitivities of the performance p with respect to the parameters, and
(8., ...,a%(8,) is the variance in each individual parameters.

The variance estimation as represented in equation (2.18) is only accurate when the
performance is a linear function of the parameters, or when the performance function can
be approximated as a linear function of the parameters in the range of parameter
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variations. In the context of circuit simulation, the sensitivity analysis is used only when
the process variations are small.

Direct sensitivity analysis by means of perturbing the parameters requires a large
number of circuit simulations, especially when the parameter space is large. The
Generalized Adjoint Network approach [2.19]-[2.21] has been investigated as a method
of efficiently calculating the sensitivities, and the runtime is relatively independent of the
dimension of the parameter space.

In the generalized adjoint network approach, each circuit element is replaced with
its corresponding adjoint counterpart to produce a new circuit with the same circuit
topology. The new adjoint circuit is then simulated, but with a reversal in time as
compared to the original circuit, in order to obtain a set of branch currents and nodal
voltages. The voltages and currents from the original circuit simulation, and those
obtained from the adjoint circuit simulations are used together to calculate the
sensitivities of a particular circuit response to the parameters of the circuit elements
which has been replaced by their adjoints. Therefore, in the adjoint network approach,
only two SPICE circuit simulations are required per circuit response of interest,
regardless of the number of parameters.

The adjoint network for sensitivity calculations make use of the Tellegen’s
Theorem [2.23], which states that for any network with arbitrary multi-terminal or two-
terminal elements, as long as each element possesses a parametric representation, then
there exists an adjoint network with the identical topology, that satisfies the following
relationships,

> vs(Obs (@ = 0

B

> ip(Op(®) =0

B

(2.19)

where vg(t) and iz (t) are the branch voltages and currents of the original network;
Ygp(7) and ¢g(7) are the branch currents and voltages of the adjoint network; and the
summation is taken over all branches in the network.

In the presence of perturbations of the device parameters, the branch currents and
voltages deviate from the nominal values, and the deviation is denoted as Aig(t) and
Avg(t). Applying Tellegen’s theorem to the perturbed network gives,

> (50 + 805(0)) 5 (®) = 0
B

D (i5(0) + 8ip(®)p(D) = 0
’ (2.20)
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By comparing equation (2.19) to equation (2.20), the following is obtained,

D 40O = 0

D Big@5(®) = 0
’ (2.21)

and therefore,

D 1405 (O)p5(2) — Aip (D5 (D)] = 0
’ (2.22)

Equation (2.22) is the key governing equation that is used to decide on the adjoint
counterpart of each circuit element. For a resistive branch described by the set of branch
voltage and current equations

vg(t) = fr(xr(t), Dr, t)
ir(t) = gr(xr(t), D&, t)
(2.23)

where x(t) is a representative performance value, and pg is the set of device/process
parameters subjected to variations. For example, in the case of a time-invariant linear
resistive branch, xz(t) = ix(t), fr = R(pr)xg(t). Applying a first order perturbation on
this branch gives,

Avg(t) = af AxR(t) + %ApR

ag

d
Din(t) = 5~ e(6) + 5~ Ay

(2.24)

Substitute equation (2.24) into equation (2.22), the following expression is obtained
for the term associated with the resistive branch,

of

dxp

0
L p00) = 2L ()] 2o 0) + [ () — 2 L)
XR Pr

[6
Opr
(2.25)
Since one is only interested in the sensitivities, or variations of the circuit
performance with respect to the process/device parameters (i.e., Apg), but not to the
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branch currents/voltages (i.e., Axg), the following “adjoint network requirement” is
imposed on equation (2.25),

d
f‘{bR()— le/)R(T) =0

(2.26)

Equation (2.26) describes how the branch current and the voltages should be related
in the adjoint network that corresponds to a resistive branch in the original network. In
the case of a simple, time-invariant linear resistance, equation (2.26) simplifies to
Yr(1) = R(pr)Pr (7). In other words, the adjoint counterpart of a linear, time invariant
resistor is still a resistor with the same resistance value.

For a capacitive element, where the branch equations describing this element is
given by

ve(t) = fe(xc(t), e, t)
qc(t) = gc(ﬁc(t),pc' t)
ic(t) = CIc(t)
(2.27)

where q.(t) is the charges stored in the capacitor. Again a perturbation introduced on the
capacitive branch can be represented by,

dfc dfc
A = —A —A
ve(t) %, xc(t) + ape Pc
d d
Aqc(t) = ﬂAxc(t) + Je APC

d
Aig(t) = AqC(t)
(2.28)

Similarly, substituting equation (2.28) into equation (2.22) gives the following
expressions for the terms associated with the capacitive branches,

f

[ = 55 (52) we)] ave
(2.29)

ag
¢C(T)Axc(t) <6 e Axc(t)> Y|+

Imposing the “adjoint network requirement” as in the case of a resistive branch
gives the following adjoint branch relationship

K] a9
%‘PC(T)AXC(Q T <ﬂAxc(t)> Pe(r) =0
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(2.30)

However, equation (2.30) as given in this form cannot be explicitly converted to a
circuit element. If the circuit is simulated for the time interval ¢ € (o, tf), and by letting
T = to + ty — t, an integration equation (2.30) with respect to the time variable t from ¢,
to ¢ yields,

trrof dg d
fto [E¢c(t0 +tp—t) + Ealpc(to Tty = t)] Axc(t)dt
tr

=0

to

ag
- a—AxC(t)lpC(to +t—t)
Xc

(2.31)

t
where the expression :TQAxc(t)ll}C(to +tr — t)| " can be set to zero if Ye(r =0) and
C to

Ax.(t,) are both zero. The condition Ax.(t,) = 0 can be satisfied if the initial branch
current/voltages of the original capacitive branch are not subjected to any perturbations
due to the perturbations in the process/device parameters. The condition Y (t = 0) =0
can be satisfied by setting the initial branch voltage in the adjoint network to zero.
Equation (2.31) now reduces to

t
ff[ﬂ(pc(toﬂf t)+ 1/)C(t0+tf—t)]AxC(t)dt—0
to dxc

Or, for each time step,

7 Lo + 2 pe@=0

(2.32)

Equation (2.32) gives the branch relationship in the adjoint network corresponding
to a capacitive branch in the original network. In the case of a linear, time invariant
capacitor in the original network, the corresponding element in the adjoint network is
again a linear time invariant capacitor with the same capacitance value, but with a
properly set initial condition.

The observation that z, the time variable for the adjoint network is setto t, + tf —
t when obtaining equation (2.32) suggests that the time step in the adjoint network is in
reversal with the time step of the original network. Table 2.1 summarizes the adjoint
representation of some commonly used circuit element types.
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Table 2.1: Summary of the adjoint equivalent of commonly used circuit elements.
(Reproduced from [2.21]).
Circuit Equation in Circuit Equation in o
Element Type Original Network Adjoint Network Sensitivity (se)
ircui v, (t) = Y, () =0
Open Circuit i (t) = 0 b)) =V
I v;(t) =0 Yi(t) =1
Short Circuit (0 = I s (t) —0
it vR(t) = fr(xr(8), PR, t) % _Y99r f
Resistive iR(t) — gR(xR(t): pR,t) ¢R( ) lpr( ) ¢R( ) lpR( )
ve(t) = fe(xc (), pe, t) % %
Capacitive. | 460 = 9cGie D) P  Pe®
ie(0) = 2ac(®) Ry e d(agc)w ®
et =g e T Oxpdr € FTACTVAL
0,(t) = fL(xLa),pL. £) Of d 49h
Inductive i) = gL(de ), p, 0) ax dT (D) dtgp ¢.(2)
_¢ _%9 _%9c
v, () = di 6.(t) = axL ¢L ) pc PYe(T)

Once the adjoint network is constructed from the original circuit network, the
sensitivities can be obtained by substituting the adjoint branch relationships into equation
(2.22) to obtain

[Avg () r (T) — ALy ()i (7)]
k€lnput Port
—Z [ puce) -
3 R

Z[afc pe() 22 ch(r)]Apc

- Z splpg

B

¢’R (T)] Apr

(2.33)

where the left hand side of the equation is the summation over all excitations applied to
the original and adjoint networks. The right hand side of the summation sums over all the
branches in the original and adjoint networks. The term sg refers to the sensitivity of each
branch and is tabulated in the third column of Table 2.1.

To illustrate how the adjoint network approach can be used to find the sensitivities
of arbitrary circuit response functions to circuit parameters, consider the simplest case
where the performance of interest is the same as the circuit reaction (i.e., voltage across a
current source or current through a voltage source) at the k™ port of the network. The
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sensitivity of the response can be found by setting the excitation to all ports of the adjoint
network to zero, except for the k™ port on which a unit excitation is applied. For example,
as illustrated in Figure 2.4, the performance of interest is the voltage across the current
source of kK™ port in the original network, i.e., vi. Then in the adjoint network, the k™ port
IS connected to a unit current source such that the adjoint current ¢y =1, whereas all other
ports are either short-circuited (if the original port is connected to a voltage source) or
open-circuited (if the original port is connected to a current source).

e 2

Vi ://1:0
i i Original d=1 Adjoint
b Network s Network

Vk Wk

Figure 2.4: Illustration of using adjoint network for calculating sensitivities of a circuit
performance.

By applying equation (2.33), the perturbation in the performance function is found

to be,
Avk = _ZSBAPB

B

(2.34)

The sensitivity of the performance function v to each parameter can therefore be
read off from the sensitivity coefficients sp.
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In a more general case, the performance function of interest maybe a function of the
port voltage-current responses, and may involve more than one ports. The first order
sensitivity of the performance z can be expressed as,

0z 0z
Az = Z —Ai, + Z —Avy,
alk 6vk
keVoltage kecurrent
Source Source

(2.35)

where the first summation is over all ports that are connected to a voltage source in the
original network, while the second summation is over all ports that are connected to a
current source. Comparing equation (2.35) to the left hand side of equation (2.33), and by
setting the port excitation of the adjoint network as

0z

b

- avk
for all the ports that have an current source in the original network, and

0z
diy,

Yr =

for all the ports that have an voltage source connected to in the original network.

With this excitation assigned to the adjoint network, equation (2.35) becomes

0z . 0z )
Az = ETR Aij + Fon Avy, = Avpdr — Aigyy =
l 1%
k€Voltage k k€e€current k ke€input ports
Source Source
= Z SpApp
B

Thus, the sensitivity of the performances with respect to each parameter can be
found by reading out the coefficients.

The sensitivity analysis is an efficient and easy to implement method for estimating
the statistical variations in circuit performances given the parameters. The adjoint
network approach gives a nearly constant runtime which does not increase as the number
of parameter dimension increases. However, the linearly assumption in sensitivity
analyses restricts its use to only small process/device variations.
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Chapter 3 Interval Analysis for Gaussian
Uncertainty Propagation

3.1 Introduction

An interval-value based circuit simulation engine is proposed to efficiently estimate
the distributions of circuit performances. As opposed to Monte-Carlo simulation, in the
proposed engine a single “interval-valued” circuit simulation is required to obtain the
circuit performance distribution.

Variations in process and device parameters are first converted into these “interval”
quantities. Secondly, an interval-valued SPICE simulator, in which all real number
operations are replaced by interval operations, is developed to simulate a circuit. The
simulation results are presented in interval forms, which can then be translated back to
statistical distributions.

The algorithm is first developed for Gaussian process/device parameter variations,
as described in this chapter The non-Gaussian case will be discussed in the next chapter.

The rest of the chapter is organized as follows: sections 3.2 and 3.3 give an
overview of the interval quantities and their operations; section 3.4 provides the details
on the proposed interval-value based circuit simulation algorithm; section 3.5 illustrates
the algorithm on selected circuit examples and demonstrates the simulation accuracy;
section 3.6 presents evaluations of the algorithm’s scalability and runtime; section 3.7
concludes the chapter.

3.2  The Interval Quantities
The term “interval” refers to a quantity of the form [3.1] [3.2],

n
X = Xg + Z X;&;
i=1

(3.1)
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where ¢&;’s are zero-mean, independently distributed standard normal (i.e., unit variance)
random variables, referred to as the noise variables, while X, and X;’s are scalar
coefficients.

By definition, the noise variables have the property,

0 ifici
E(eig) = {1 ll];ll i]]
(3.2)

Equation (3.1) can be interpreted as capturing a Gaussian distribution with mean
and variance given by,

n n
mean = E (xo + inel) =Xy + in E(g) = xg
i=1 i=1

(3.3)

n 2 n n n
xiel-> =E Z xZe? + 2 z Z x€xj€ | = Z x?

n
variance = E(
i=1 i=1 j=1,j#i i=1

l

(3.4)

In general, any interval quantity can be converted into a Gaussian distribution with
the appropriate mean and variance using equations (3.3) and (3.4). In addition, this
conversion is unique, i.e., an interval quantity can represent only one Gaussian
distribution.

However, for a given Gaussian distribution, its equivalent interval representation is

not unique. For example, the two interval quantitiesx; =14+ ¢& and x, =1 +g€1 +

\/2—532 represent the same Gaussian distribution with mean 1 and variance 1. In this work,

we choose to use the representation that requires the minimum number of noise variables
when converting a Gaussian random variable to interval. The details and implications of
such a conversion procedure are given in section 3.4.1.

By considering interval quantities as capturing a certain Gaussian distribution, the
covariance between two interval quantities can be calculated. For two interval quantities,
x andy, with,

n
X = Xg + Z X;&;
i=1

m
Y=Y+t Z}’ifi
i=1
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(3.5)

where n and m are the number of noise variables present in each interval representation,
with n not necessarily equal to m. The covariance between x and y is given by

min(n,m)

n m
cov(x,y) = E(x —x,)(y —¥o) =E ingiZngj = Z XiYi
i=1 j=1 i=1
(3.6)
In general, for k interval quantities,
nq
X1 = X0t leigi
i=1
. -
Xk = Xko t Z Xki&i
i=1
(3.7)

The kxk covariance matrix can be obtained by first letting n=max(ny, ..., nx), and by
re-writing the k interval quantities in matrix form, i.e.,

X1 X10 X11 X120 Xin][&1
X2 X20 X21 X2 0 Xon||é2
=1+ : . : :
Xk Xko Xk1 Xk2 0 Xgnllén

X11 X120 Xin
X21 X2 0 Xop

(3.8)
with some of the coefficients in the matrix

set to zero as required for

o L Y1 Xez 7 Xen
representing interval quantities with fewer than n noise variables.

X1 X10 X11 X2 X1n &
. X2 X20 S I &

Next, setting x=1|"."|, =xo=|: ]|, A=]": .. .|, and e=|]|,
Xk Xko X1 X2 Xjn &n

equation (3.8) can be further simplified to

X = xy + Ae
(3.9

The covariance matrix is obtained from equation (3.9),

26



E(x —xo)(x — xy)T = AAT
(3.10)

3.3 Interval Operations

In this section, algebraic operations between interval quantities are defined. Without
loss of generality, it is assumed that the interval quantities involved in the calculation
have the same number of noise variables. Suppose that interval quantity x is represented
by noise variables {&;,&,}, and interval quantity y is represented by noise variables
{5, &3}, then both x and y can be represented by the union of the two sets, i.e., noise
variables {&;, €,, €5}, with zero assigned to the coefficients of the noise variables that
were not present in x or y.

3.3.1 Scalar Multiplication

Multiplication of an interval quantity by a scalar constant is carried out by
multiplying each coefficient of the noise variable by the scalar constant, as shown below,

n n
ax=a <x0 + inel) = ax, + Z ax;g;
i=1 i=1

where « is a scalar constant and x is an interval quantity. To verify the correctness of this
definition, the interval quantity x is viewed as the equivalent of a Gaussian distribution of
certain mean and variance. Equation (3.11) suggests that if a scalar o is multiplied by the
random samples generated from this Gaussian distribution represented by X, the results
follow another Gaussian distribution represented by ax, which is consistent with the rules
of linear transformation of Gaussian random variables [3.7] [3.8].

(3.11)

3.3.2 Addition and Subtraction

The sum or difference of two interval quantities x and y can be obtained by adding
or subtracting the corresponding coefficients of the noise variables, as follows,

n n n
xty= (xo + Z xi€i> T{vo+ Z)’jgi =(xo£y0) + Z(xi T yi)e
i=1 = i=1

(3.12)

The correctness of definition (3.12) can be verified by viewing x and y as the
interval equivalent of two Gaussian distributions Ni(mjy, 1) and Na(my, a2). The left hand
side of equation (3.12) represents the distribution resulting from the sum(or difference) of
two Gaussian random variables. According to probability theory [3.7][3.8], this is a
Gaussian distribution with mean m;+ m, (or m;-m,) and variance o + o2 plus (or
minus) twice the covariance between the two random variables. Such a distribution has
an interval representation shown on the right hand side of equation (3.12).
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3.3.3 Multiplication

When two interval quantities, x and y are multiplied together, the following
expression is obtained,

n n n n n
Xy = <xo + Z xi€i> ()’o + z yi£i> = XoYo t E(xo)’i + yox;)e; + 2 z XiYj€i&j
i=1 i=1 i=1

i=1 j=1
(3.13)

The term ¥iL; Y%, x;y;€;€; in equation (3.13) is not a linear combination of noise
variables. Therefore, the exact result of xy cannot be represented by an interval quantity.
This is consistent with the observation that when two Gaussian random variables are
multiplied together, the resulting distribution does not follow a Gaussian distribution
[3.10].

With the aim to define all interval operations within the domain of intervals, a novel
moment-preserving algorithm is developed to approximate the exact result of xy by an
interval quantity.

As a first step, the result of xy is approximated by an interval quantity shown in
equation (3.14). In this approximation, a new noise variable, &,+1, that has not been used
in the definition of either x and y is introduced. Two additional scalar coefficients ko and
k; are also introduced.

n
XYapprox = XoYo T Z(xoyi + Voxi)& + ko + kigniq
i=1

(3.14)

The values of the scalar coefficients ko and k; are determined by imposing moment
preservation constraints shown in equation (3.15). By solving for the values of ko and k;
that satisfy these constraints, the interval approximation is forced to be the Gaussian
approximation that preserves the first and second moments of the distribution represented
by the exact result.

E(xy) = E(xyapprox)

E(xy)z = E(xyapprox)z
(3.15)

Substituting equations (3.13) and (3.14) into equation (3.15), and carrying out the
expectation computations,

28



n

kO _z lyl

i=1
n n
i=1 i=1
The 1% and 2™ moment-preserving interval multiplication is therefore defined as,

e () (S

i=1 i=1
(3.17)

k1:k0

(3.16)

n
Xy = XoYo t+ z Xy + Z(xoyl' + yoxi)ei + ko

i=1

3.3.4 General Interval Operations

In this section, general nonlinear operations between interval quantities are
defined.

Any algebraic operation can be expanded into a series of additions/subtractions
and multiplications by using Taylor Series Expansion. Using the definition for interval
additions/subtractions and multiplication from previous sections, any interval algebraic
operation can be performed.

For example, exponentiation of a zero-mean interval quantity x can be expanded
as

x% x3

—1+X+7+§+
(3.18)

which contains only additions and multiplications. In general, any operations involving
interval quantities, xy,...,x, can be expanded around their mean values X, ...,xno aS

f(x1, e xn) = f(;fw» ey Xno)

a n n
+Za—£(xi—xio) Zza—f— = x;0) (%) — x50) + -
(3.19)

which contains on dy multiplications and additions/subtractions. In practice, however,
since our 1* and 2" moment preserving requirement yields a system of two equations, it
can only be used to estimate two additional constants. For this reason, and as we will
show next, Taylor expansions are truncated so that all the non-linear terms are
represented by an additional interval value that in defined by the two constants that will
be “fixed” by the moment preserving requirement.
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Next, some frequently used operations are defined directly using moment
preservation algorithms, as detailed in sections 3.4.1.1 through 3.4.1.4.

3.4.1.1 Inversion/Division
The inverse of an interval quantity is given as,

1 1
X Xo+ XhixE

(3.20)

By performing a second order Taylor series expansion on (3.20), the following is

obtained,
n n
1 _ 1 1 4 1
X xo x24 Xiti x3 zxigi

i=1 i=1

2

(3.21)
The interval approximation to equation (3.21) is given by
1 1 1 (<&
(;)approx - x_o B g <; xigi) +ko+ kignia
(3.22)

where kg and k; are constants to be determined. Calculating the first and second moments

of equation (3.21) gives
n
()=t
—+—= ) X
x5

i=1
(3.23)
And
) n 2 n n n
1 1 1 2 1 4 2
1) (L2 S 63 S
X Xo Xp — Xo i=1 i=1j=1
(3.24)

Imposing the moment preservation constraints on equation (3.22) gives
1 1
2(5) e = £ 3)
X approx X
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2 2
£, =EG)
(3.25)

where the right hand side is given by equations (3.23) and (3.24). Solving the system of
equations in (3.25) for the unknown coefficients ko and k; yields

(3.26)

Division between two interval quantities x and y can be calculated as a
multiplication between x and the inversion of y.

3.4.1.2 Power
The second order Taylor series expansion of an interval quantity x raised

to a constant scalar power a is given by,

n 2

SR (@ = x5 (X
a\a — 2)X
x%* = <x0 + Z xi€i> = Xg + axg_l Z.Xi&'i + %(Z xiel-)
e

i i=1 i=1

(3.27)
The interval approximation to the right hand side of equation (3.27) is

n

a — 4 a—-1
xapprox = X0 + axo Z xXi€ + kO + k1€n+1
i=1

(3.28)

The first moment of the right hand side of equation (3.27) is given by

n
ala —2)x&3
i=1

(3.29)

and the second moment is given by
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n 3

n
ala — 2)x&~
@4 q2x2% 22x3+2x8‘—( 2) 9 zyclz

n
32x{‘+622x x}

i=1 i=1 j=1

(lz((l 2 Za 6

(3.30)

Imposing the moment preservation constrains by equating the first and second
moments of equation (3.28) to equation (3.29) and (3.30), respectively, yields,

n

ala —2)x¢3
ko = %Z o

i=1

(3.31)

3.4.1.3 Exponentiation
The second order Taylor expansion of exponentiation of an interval quantity x is,

n n
e*=e¥ |1+ le-ei + (Z xl-sl->

i=1 i=1

2

(3.32)

The interval approximation of the right hand side of equation (3.32) is given by:

n

X J— X X
Capprox = €°° +e° Z xi& +ko+kigniq
i=1

(3.33)

Applying moment preservation constraints between equations (3.32) and (3.33)
gives
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(3.34)

3.4.1.4 Logarithm
The second order Taylor expansion of natural logarithm of an interval quantity x

IS,
n n 2
1 1
Inx =Inx, + x_oZ X & — Z_xg <Z xisi>
1= =
(3.35)
The interval approximation of the right hand side of equation (3.35) is given by:
1
(Inx) gpprox = Inxg + x_z xi& + ko + kigngq
O j —
(3.36)
Applying moment preservation constraints between equations (3.35) and (3.36)
yields

n

2x0 -3 Z xf+5 Z xPx}

n
i=1 =1 ]=1

(3.37)

3.3.5 Accuracy of Interval Operations

Linear interval operations, i.e., addition and subtraction, are by construction exact
operations.

Interval multiplications are by construction exact up to the second statistical
moments. Table 3.1 shows the numerical simulation results of various interval
multiplications. In this table, the first four moments of the exact multiplication result,
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simulated using 50,000 runs of Monte-Carlo simulations, is compared to that obtained
from the interval multiplication approximation. Figure 3.1 compares the probability
density function (pdf) obtained from the direct multiplication result, (simulated via MC)
with that from the interval approximation for each of the column shown in Table 3.1. The
small discrepancies observed in mean and variance between the Monte-Carlo simulations
and interval multiplications are due to the random sample generation and the finite
samples sizes used for the Monte-Carlo simulations.

Table 3.1: Comparison of the first four moments of the distribution obtained from
interval multiplications to that from the exact multiplication result. The aim of the used

approximation is to preserve only the first two moments (i.e. Mean and Variance).

* Skewness is calculated as

g

-— and Kurtosis is calculated as
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Case # 1 2 3 4 5 6
Mean(MC) 0 -5.1253 -5.6939 27.9259 2.5187 -16.8955
Mean(interval) 0 -5.1200 -5.6940 28.000 2.6000 -16.9000
Relative error (%) 0 -0.1535 -0.0839 0.3441 0.5202 -0.0608
Variance(MC) 9.041 12.1285 8.4161 513.533 414.606 449.680
Variance(interval) 9.000 12.1342 8.4572 516.000 413.680 446.970
Relative error (%) 0.45 0.8715 0.0321 0.2796 0.7297 0.0636
Skewness(MC) 0 -0.89525 | 0.586979 1.02278 0.701181 | -1.55943
Skewness(interval) 0 0 0 0 0 0
Relative error (%) 0 100 100 100 100 100
Kurtosis(MC) 9.084 4.06569 3.486760 4.3577 9.0631 6.525937
Kurtosis(interval) 3 3 3 3 3 3
Relative error (%) 66.97 26.21 13.69 31.16 66.90 54.03

E(x—p)3 E(x—p)*
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Figure 3.1: Comparison of the true distribution and the interval approximation after a
multiplication operation. The 1% & 2" moment-preserving algorithm is always forcing a
Gaussian approximation to the multiplication result.

For other nonlinear interval operations discussed in section 3.3.4, a second order
Taylor series expansion is first performed before moment preservation constraints are
imposed. Therefore, the interval approximation is exact in terms of capturing the first and
second order moments of the Taylor series expansion. However, truncation error exists
between the Taylor series expansion and the original nonlinear operation. As an example,
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the error introduced in interval square root operation is summarized in Table 3.2. The
distribution of the exact result is simulated by Monte-Carlo simulation using 50,000
samples.

Table 3.2: Comparison of interval square root operation accuracy to Monte-Carlo(MC)
simulations.

Quantity subject to Mean Mean Relative | Std. Dev. | Std. Dev. Relative
square root operation (MC) (interval) | Error (MC) (interval) Error
23+4¢, 4.7775 4.7867 0.192% 0.4229 0.4187 0.978%
30+10g,+2¢, 5.3845 5.4365 0.965% 1.0076 0.9460 6.114%
20+0.5e1+2e,+ 3¢5 4.4532 4.4628 0.216 % 0.4133 0.4088 1.094%
3+0.3¢; 1.7299 1.7310 0.064% 0.0871 0.0867 0.385%
8+2e1+1ex+2e3+ ey 2.7598 2.7996 1.455% 0.6266 0.5715 8.784%
170+12¢,+13¢, 13.0199 13.0296 0.074% 0.6814 0.679%4 0.294%
20.34+1.32¢,+6.34¢, 4.4437 4.4807 0.832% 0.7673 0.7281 5.111%
78.3+13¢1+2¢, 8.8162 8.8330 0.190% 0.7535 0.7460 0.988%
19.12+0.53e1+26,+0.3¢ 4.3664 4.3694 0.068% 0.2401 0.239%4 0.259%

3

5.23+3.3¢; 2.1467 2.2229 4.566% 0.8844 0.7687 13.082%
90+22¢1+13¢,+3.32¢3+ 9.3762 9.4356 0.634% 1.4493 1.3951 3.735%
4.54¢4

5+2e1+1.3e, 2.1537 2.2022 2.3650% | 0.6278 0.5514 12.170%

It should be noted that even though the error introduced in a single interval
operation may be large, the error after a number of interval operations involving many
interval quantities may be smaller due to the central limit theorem. In the context of
circuit simulation, the resulting circuit performance distribution can resemble a Gaussian
distribution as the variations in process/device parameters are propagated through circuit
simulation steps. In this case, the proposed interval operations are sufficiently accurate to
capture the final performance distribution.

3.4 Interval-valued Circuit Simulation

The general flow of the interval-valued circuit simulation algorithm is summarized
in Figure 3.2. The inputs to the algorithm are process/device parameter variations
specified in terms of a multivariate Gaussian distribution, i.e., mean vector and
covariance matrix. The algorithm then converts these distributions into interval
representations, and passes the intervals into a SPICE-like circuit simulator. The
simulator is developed for handling interval calculations and producing the circuit
performances in interval forms. The interval valued circuit performance can then be
converted to distributions for statistical timing, yield analysis and design centering
optimizations.
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Figure 3.2: Overall flow of the interval-valued circuit simulation program.

3.4.1 Conversion of Process Variations into Intervals

3.4.1.1 Process Variation Specified using Hierarchical Variation Model

Process variations are often captured using a hierarchical model. Examples of such
model can be found in [3.3].

To simplify the discussion, a two-level hierarchical model with global and local
variation is used. The method outlined here can be extended to a model with an arbitrary
level of hierarchies by assigning appropriate noise variables to each level of hierarchy.

In the case of a two-level hierarchal model, a noise variable common to all devices
on a die is used to represent the global variation, while noise variables particular to each
device on a die are used to represent the local variation. In mathematical form, let the
parameter of interest be p, and assuming the devices on a die are numbered from 1,..., n,
then the parameter value for each device in interval representation is given by,

P1 = Po1 + 0g€giobal T Ti€iocair

Pn = Pon T Og€giopal + O1€10cain
(3.38)

where gy and oy are the standard deviations of the global and local variations, respectively.

3.4.1.2 Process Variation Specified using Correlation
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In addition to global and local variations, variation in process parameters can also
be captured by using variance-covariance information. Assuming the availability of a
variance-covariance matrix X, which can be derived, for example, from test chip
measurements, the parameters py,...,p, that give rise to such correlation structure can be
written in interval forms as shown in equation (3.39), where ¢, ...., &, are the noise
variables; pij, ...,pii for i=1,..,n are scalar coefficients whose values are to be determined
from the variance-covariance matrix X.

P1 = Po1 T P11&1
P2 = Poz2 + P21€1 T D22&2

' n
Pn = Pon T z Pni€i
i=1
(3.39)

The interval representation for pa,...,p, IS not unique for a given covariance matrix.
For example, the following is also a feasible interval representation:

n
P1 = DPo1 T Z P1i€i
i=1

n
P2 = Poz2 T Z P2i€;
i=1

: n
Pn = Pon + Z Pni&i
i=1

(3.40)

where the coefficients to be determined are pyj, ..., pni for i=1,..,n.

. 24 .. . . . .
In general, since there are at most BT distinct entries in a covariance matrix, the
2

minimum number of coefficients required in a feasible interval representation for ps,...,pn
n%+n

2
IS - The representation shown in equation (3.39) has exactly "zi unknown

coefficients, whereas the representation in equation (3.40) has n® unknown coefficients.
Therefore, for minimum cost, the representation shown in equation (3.39) is adopted.

In order to determine the value of the coefficients in (3.39) from the covariance
matrix X, the coefficients are first collected into an lower triangular matrix L such that

p11 0 O
R K
Pni Pn2 " Pan
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(3.41)

Equation (3.39) is then re-written in a matrix form using L,

b1 Po1 €1
[ =] |+ ]
Pn Pon &n
(3.