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Abstract. Robertson and Seymour proved two fundamental theorems about tangles in
graphs: the tree-of-tangles theorem, which says that every graph has a tree-decomposition
such that distinguishable tangles live in different nodes of the tree, and the tangle-tree duality
theorem, which says that graphs without a k-tangle have a tree-decomposition that witnesses
the non-existence of such tangles, in that k-tangles would have to live in a node but no node
is large enough to accommodate one.

Erde combined these two fundamental theorems into one, by constructing a single tree-
decomposition such that every node either accommodates a single k-tangle or is too small to
accommodate one. Such a tree-decomposition thus shows at a glance how many k-tangles
a graph has and where they are.

The two fundamental theorems have since been extended to abstract separation systems,
which support tangles in more general discrete structures. In this paper we extend Erde’s
unified theorem to such general systems.
Keywords. Tree of tangles, tangle-tree duality, abstract separation system, submodularity,
canonical
Mathematics Subject Classifications. 05C83, 05C40, 06A07

1. Introduction

Tangles were introduced by Robertson and Seymour as a way to indirectly capture highly cohe-
sive but fuzzy structures inside a graph [RS91]. Formally, a tangle of a graph G is an orientation
of all its separations up to some order. The idea is that every highly cohesive substructure of G
will lie mostly on one side of any such low-order separation, and thus ‘orients’ it towards that
side. A tangle, very broadly, is an orientation of all the low-order separations that arises in this
way.

https://www.combinatorial-theory.org
mailto:sandra.albrechtsen@uni-hamburg.de
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Since its first introduction, the notion of a tangle and its framework of graph separations
have been generalized to so-called abstract separation systems. Although these are significantly
more general than the separation systems of graphs, the two fundamental theorems about graph
tangles – the tree-of-tangles theorem and the tangle-tree duality theorem from Robertson and
Seymour [RS91] – are still valid in this setting.

In what follows we assume familiarity with graph tangles as described in [Die17, Ch. 12.5].
For a given graph G and an integer k > 0, the tree-of-tangles theorem asserts the existence of

a tree-decomposition (T,V) of G that distinguishes all its k-tangles, in that they live in different
parts. A part Vt ∈ V is called essential if there is a tangle living in it, and otherwise inessential.
Choosing the tree T of the decomposition to be minimal so that it is still able to distinguish all
the tangles ensures that all its parts are essential.

However, in some applications it is important to have a canonical tree-decomposition, one
which can be defined purely in terms of invariants of the underlying graph. For example, an algo-
rithm which constructs the tree-decomposition canonically will always produce the same output
for a given input graph and set of tangles, regardless of how these are given to the algorithm as
input.

A canonical tree-decomposition that distinguishes the k-tangles in a graph may have to have
some inessential parts, since the canonicity requirement does not allow us to merge inessential
parts with essential ones in order to make all the parts essential. These inessential parts can
contain a large portion of the graph, and then the tree-decomposition tells us nothing about the
structure of that portion. In particular, it does not tell us why there are no tangles living in these
parts.

However, if there is no tangle (of some given order) in G at all, then the tangle-tree du-
ality theorem does tell us something about its structure: it guarantees the existence of a tree-
decomposition in which each part is too ‘small’ to be home to a tangle. Since every tangle has
to live in some part, this tree-decomposition then witnesses that there are no tangles in G at all.

As inessential parts of a tangle-distinguishing tree-decomposition are not home to any tan-
gles, it seems natural to ask whether it is possible to locally find tree-decompositions of the
inessential parts which refine the original canonical tree-decomposition and witness that these
parts are inessential, in the same way as a tree-decomposition from the tangle-tree duality theo-
rem witnesses that there is no tangle at all.

For example, think of a tree-like graph to which three large disjoint cliques have been glued
in a vertex. If k is chosen big enough, there will be precisely three k-tangles in the resulting
graph G, those induced by the cliques. A canonical tree-decomposition that distinguishes these
k-tangles could look like a star with three leaves, where each leaf contains one of the three cliques
while the center of the star contains the rest of G (Figure 1.1a).

However, in this example it is easy to see that the middle part can be split into smaller parts
that are each too small to be home to a k-tangle. This gives rise to one overall tree-decomposition
of G in which the three big parts are each home to a k-tangle and all other parts are too small to
accommodate one (Figure 1.1b).

Erde [Erd17] showed that for every graphG there is a canonical tree-decomposition ofG that
efficiently distinguishes a given set of k-tangles in G and which extends to a tree-decomposition
all whose inessential parts are too small to be home to a tangle:
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(a) (b)

Figure 1.1: A tree-decomposition of G that distinguishes all its k-tangles, and a refinement of
the inessential part.

Erde’s Refinement Theorem ([Erd17, Corollary 3.2]). Let G be a graph,k ⩾ 3, and let F ⊆
2Sk (G) be a friendly canonical set of stars. Then there exist nested sets Ñ ⊆ N ⊆ Sk(G) such
that:

• Ñ is fixed under all automorphisms of G and distinguishes all the F-tangles of Sk(G)
efficiently;

• every node of N is either a star in F or home to a tangle.

See Section 2 for definitions.
In fact, Erde [Erd17] showed more than this: it is possible to refine every such tree set Ñ

by some N as above, as long as every separation in Ñ distinguishes some pair of F-tangles
efficiently. He also gave an example [Erd17] which shows that this additional assumption about
Ñ is necessary to get the sharper result even if F consists only of the stars whose exclusion
defines k-tangles as such.

Note also that we cannot strengthen the theorem so that N , too, is canonical (see [Erd17] for
an example).

Since Robertson and Seymour introduced tangles for graphs, an effort was made to generalize
the concept of tangles and separations so as to make them applicable in as many scenarios as
possible. The original definition of a tangle was already made in such a way that it could easily
be generalized to set separations [Die18a]. This led to the notion of a tangle for ‘connectivity
systems’, such as those arising from matroids.

Later, Diestel [Die18a] introduced abstract separation systems, which define ‘separations’
axiomatically, without reference to any underlying graph or set. Instead, an abstract separation
system is defined as a poset with an order-reversing involution. Such a separation system S
is called submodular if every two of its elements, r and s, say, have an infimum r ∧ s and a
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supremum r ∨ s in some fixed larger ‘universe’ U ⊇ S of separations, and at least one of r ∧ s
and r ∨ s always lies in S . This holds for separation systems of the form Sk (G) := {s : |s| <
k} of a graph G, where r ∧ s and r ∨ s are opposite corner separations of the separations r
and s [Die17].

Submodularity makes it possible to generalize the fundamental theorems of the tangle theory
of graphs, such as the tree-of-tangles theorem and the tangle-tree duality theorem, to abstract
separation systems [DEW19, Theorem 6 and 4]. In this more general setting, tangles are distin-
guished by a tree of tangles which generalizes the concept of tree-decompositions.

In this paper we show that Erde’s theorem generalizes too: we can still find a canonical tree
of tangles that distinguishes a given set of tangles, and a refinement such that each node of the
refined tree of tangles is either home to a tangle or too small for that:

Theorem 1.1. Let S be a submodular separation system, and let F be a friendly canonical set
of stars in S . Then there are nested sets Ñ ⊆ N ⊆ S such that:

• Ñ is fixed under all automorphisms of S and distinguishes all the F-tangles of S;

• every node of N is either a star in F or home to a tangle.

Theorem 1.1 is a direct generalization of Erde’s Refinement Theorem to abstract separation
systems. Like Erde’s result, Theorem 1.1 asserts the existence of a canonical tree of tangles that
can be refined so that all inessential nodes become stars in F .

As remarked after the statement of Erde’s theorem, it is in fact possible in separation systems
of the form Sk, to refine every tree of tangles in which every separation distinguishes a pair of
F-tangles efficiently. It is therefore natural to ask whether we can get some analogue of this for
abstract separation systems as well.

But we run into a subtle difficulty here: as pointed out earlier, we cannot hope to refine every
tree set Ñ without imposing further conditions on the separations inside Ñ . But the notion of
efficiency, to which this condition refers in the case of Erde’s theorem, is not defined in general
as it appeals to the ‘order’ of separations. Instead, we will require the separations to be ‘good’: a
property that is a structural generalization of efficiently distinguishing a pair of tangles to abstract
separation systems.

As long as we focus on good separations, we can show the following variant of Theorem 1.1:

Theorem 1.2. Let S be a submodular separation system, and let F be a friendly set of stars
in S . Further, let Ñ ⊆ S be a nested set of good separations that distinguishes all F-tangles
of S. Then there exists a nested set N ⊆ S with Ñ ⊆ N such that every node of N is either a
star in F or home to an F-tangle.

We remark that in the case where the separation system comes from a graph G, every sepa-
ration which efficiently distinguishes a pair of tangles in G is good. We will show in Section 5
that there always exist tangle-distinguishing tree sets Ñ that contain only good separations.
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2. Abstract separation systems and tangles

In this section we give a short overview of the important objects, definitions and theorems that we
are going to use later. For a more detailed introduction to abstract separation systems and their
tangles we refer the reader to [DEW19] and [Die18a]. The definitions are taken from [DO09,
DEW19, Die18a, DHL19, Die18b]. We use the basic graph-theoretic notions from [Die17].

2.1. Separation systems

A separation system S = (S,⩽,∗ ) is a partially ordered set (S,⩽) with an order-reversing
involution ∗, i.e. if s ⩽ r ∈ S , then (s)∗ ⩾ (r)∗. We denote (s)∗ by s and (s)∗ by s. The
elements s, s ∈ S are called oriented separations. An unoriented separation is a set s := {s, s}
for some s ∈ S and s, s are the orientations of s. Note that there are no default orientations:
once we denoted one orientation by s the other one will be s, and vice versa. The set of all
sets {s, s} ⊆ S is denoted by S. We will use terms defined for unoriented separations also
for oriented ones and vice versa if that is possible without causing ambiguities. Moreover, if the
context is clear, we will simply refer to both oriented and unoriented separations as ‘separations’.

Two unoriented separations r, s ∈ S are nested if they have orientations that can be com-
pared, otherwise they cross. If r, s ∈ S are nested, then both r and r are nested with both of s, s.
Analogously, if r, s ∈ S cross, then both r, r cross both of s, s. A set of separations is nested
if all its elements are pairwise nested. Two sets R,R′ of separations are nested if every element
of R is nested with every element of R′.

If a separation s ∈ S satisfies s = s, we call s degenerate. A separation s ∈ S is trivial
in S if there exists a separation r ∈ S such that s < r and s < r . A set F ⊆ 2S of subsets of S
is standard (for S) if {r} ∈ F for every trivial separation r ∈ S . A separation s ∈ S is small
and s co-small if s ⩽ s.

A set σ ⊆ S of non-degenerate separations is called a star if for any r, s ∈ σ it holds
that r ⩽ s.

We call a separation system (U,⩽,∗ ) a universe of separations if it is a lattice, i.e. if any
two separations r, s ∈ U have a supremum r ∨ s and an infimum r ∧ s in U . We then
denote (U,⩽,∗ ) by U = (U,⩽,∗ ,∧,∨).

Given r, s ∈ U we call the separations {(r∨s), (r∨s)∗}, {(r∧s), (r∧s)∗}, {(r∨s), (r∨s)∗}
and {(r ∧ s), (r ∧ s)∗} the corner separations of r and s. A simple but quite useful observation
about corner separations is the following:

Lemma 2.1 ([Die18a, Lemma 3.2]). Let r, s ∈ U be two crossing separations. Every separa-
tion t ∈ U that is nested with both r and s is also nested with all four corner separations of r
and s.

A function | · | : U → R⩾0 is called an order function of U if |s| = |s| for all s ∈ U . If U
comes with an order function that is submodular, i.e.

|r ∨ s|+ |r ∧ s| ⩽ |r|+ |s| for all r, s ∈ U,

then we call U a submodular universe. |s| is then the order of s and s. For an integer k > 0, the
induced sets Sk := {s ∈ U : |s| < k} are separation systems on their own. Though they need
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not to be universes, as in general r ∨ s and r ∧ s for two separations r, s ∈ Sk need not both lie
in Sk . Note that we take the infimum and supremum here with respect to U . However, by the
submodularity of |·|, at least one of r ∨ s and r ∧ s has to be contained in Sk .

This property motivates the following structural formulation of submodularity which can be
applied to universes without making use of the external concept of an order function:

A separation system S is inside a universeU if S ⊆ U and the partial order and the involution
on S are the ones induced by U . Then, a separation system S inside some universe U is called
submodular if

for all r, s ∈ S : r ∨ s ∈ S or r ∧ s ∈ S.

2.2. Profiles and tangles in abstract separation systems

An orientation of a set S of unoriented separations is a set O ⊆ S which contains every degen-
erate separation from S and exactly one orientation s or s of every non-degenerate separation
in S. A subset O ⊆ S is consistent if it does not contain both r and s whenever r < s for
distinct r, s ∈ S. If O is a set of consistent orientations of S, then we call a star σ ⊆ S essential
(for O) if σ ⊆ O for some O ∈ O. Otherwise σ is called inessential (for O).

A non-degenerate separation s ∈ S distinguishes two orientations O1 and O2 of S if O1

and O2 orient s differently. A set of separations N ⊆ S distinguishes a set O of orientations
if any two distinct orientations in O are distinguished by some separation in N . In the case of
a submodular universe U , a separation s ∈ U distinguishes a pair of orientations O1 and O2

efficiently if it distinguishes them and O1 and O2 cannot be distinguished by any separation of
lower order.

Let F ⊆ 2S be a set of subsets of S . An orientation P of S is an F-tangle (of S) if P is
consistent and does not contain any element of F as a subset.

If S is a separation system inside some universe U , we call a consistent orientation P of S a
profile of S if it satisfies that

for all r, s ∈ P the separation (r ∨ s)∗ does not lie in P .

A profile of S which contains no co-small separation is regular.
We can equivalently describe the profiles of S as F-tangles of S as follows. Set PS :=

{{r, s, (r ∨ s)∗} : r, s ∈ S} ∩ 2S . Then the set of all PS-tangles of S is exactly the set of all
profiles of S. We say that F is profile-respecting (for S) if every F-tangle of S is a profile of S.

In this paper, the profiles which we consider will typically be F-tangles for a standard and
profile-respecting set of stars which contains {r} for every small r ∈ S , and thus these profiles
will be regular.

2.3. Tree sets and S-trees

A tree set N is a nested set of unoriented separations without degenerate or trivial separations.
A star σ ⊆ N is called a node of N if there is a consistent orientation O of N such that σ is the
set of maximal elements in O (note that in [Die18b] the nodes of N are called ‘splitting stars’).

Let S be again a separation system. An S-tree is a pair (T, α) of a (graph-theoretical) tree T
and a map α : E(T ) → S from the oriented edges E(T ) := {e, e : e ∈ E(T )} of T to S such
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that α(e) = s if α(e) = s. If x ∈ V (T ) is a leaf of T and t ∈ V (T ) its unique neighbour, then
we call α(x, t) ∈ S a leaf separation (of T ).

An S-tree (T, α) is over a set F ⊆ 2S if {α(t′, t) : (t′, t) ∈ E(T )} ∈ F for every
node t ∈ V (T ). If F is a set of stars in S , then we call σt := {α(t′, t) : (t′, t) ∈ E(T )} ⊆ S for
a node t ∈ V (T ) the star associated with t (in T ).

An S-tree (T, α) is called irredundant if there is no node t ∈ V (T ) with two neigh-
bours t′, t′′ ∈ V (T ) such that α(t, t′) = α(t, t′′). If (T, α) is an irredundant S-tree over a set
of stars, then α preserves the natural ordering on E(T ), i.e. e ⩽ f if and only if α(e) ⩽ α(f ),
where e = (v1, v2) ⩽ f = (w1, w2) if and only if the unique path in T from {v1, v2} to {w1, w2}
starts in v2 and ends in w1 [DO09, Lemma 2.1].

In this paper, we will only consider S-trees over sets of stars in S . Furthermore, we will
always assume, without explicitly stating it, that all the considered S-trees are irredundant. This
is no restriction: for every S-tree (T, α) over a set F of stars there is a subtree T ′ of T such
that (T ′, α↾E(T ′)) is an irredundant S-tree over F [DO09, Lemma 2.3].

Every S-tree over a set of stars induces a tree set N := im(α) via α if no α(e) is trivial or
degenerate for some edge e ∈ E(T ). We then say that N corresponds to that S-tree. On the
other hand, if N is a regular tree set in S, i.e. N does not contain any small separations, then
one can obtain an S-tree (T, α) from N as follows. We take the set of all splitting stars of N
as the vertex set of T and N as the edges of T where a separation s ∈ N is incident to the two
unique splitting stars of N that contain s and s, respectively:

Theorem 2.2 ([Die18b, Theorem 6.9]). Let S be a separation system and N ⊆ S a regular tree
set. Then there exists an S-tree (T, α) with im(α) = N such that the stars associated with nodes
of T are precisely the nodes of N .

This motivates the name ‘nodes’ for the splitting stars of N . It is shown in [Die18b] that the
S-tree from Theorem 2.2 is unique up to isomorphisms. Therefore, we say that T is the S-tree
corresponding to N .

We say that a consistent orientation O of S lives at a node σ of a tree set N ⊆ S (or equiv-
alently σ is home to O) if σ ⊆ O. Similarly, we say that O lives at a node t ∈ V (T ) of an
S-tree (T, α) if σt ⊆ O. It is easy to see that every consistent orientation of S lives at a (unique)
node of any regular tree set N .

Given a set of consistent orientations O of S and a tree set N that distinguishes O, we call a
node of N essential (for O) if there is an orientation in O which lives at that node and otherwise
inessential (for O).

An isomorphism between two separation systems S and S ′ is a bijection φ : S → S ′ which is
order-respecting and commutes with their involutions. We call a nested set N := N(S,P) ⊆ S
that distinguishes some set P of profiles of S canonical if it is invariant under isomorphisms of
separation systems, i.e. if the map (S,P) 7→ N commutes with all isomorphisms ϕ : S → S ′ so
that ϕ(N(S,P)) = N(S ′, ϕ(P)) with ϕ(P) := {ϕ(P ) : P ∈ P}. Note that if the set P is fixed
under automorphisms of S , i.e. ϕ(P) = P for all automorphisms ϕ of S , and N is canonical,
then this implies that ϕ(N) = N for all automorphisms ϕ of S .

We will need the following canonical version of the tree-of-tangles theorem:
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Theorem 2.3 ([EK21, Theorem 2]). Let S be a submodular separation system and P a set of
profiles of S. Then there is a nested set N = N(S,P) ⊆ S which distinguishes P .

This N(S,P) can be chosen canonically: if φ : S → S ′ is an isomorphism of separation
systems and P ′ := {φ(P ) : P ∈ P}, then φ(N(S,P)) = N(S ′,P ′).

2.4. Tangle-tree duality

Let S be a separation system inside some universe, and let r be a separation in S which is neither
degenerate nor trivial, and set S⩾r := {x ∈ S : x ⩾ r or x ⩾ r}. We say that s emulates r in S
if s ⩾ r and for every x ∈ S⩾r \ {r} with r ⩽ x it holds that s ∨ x ∈ S . We can then define a
function f↓rs : S⩾r \ {r} → S⩾r \ {r} by

f↓rs (x) := x ∨ s and f↓rs (x) := (x ∨ s)∗ for x ⩾ r.

If (T, α) is an S-tree and s emulates r , we can define α′ := f ↓rs ◦α. It is then easy to see
that (T, α′) is again an S-tree, and we call (T, α′) the shift of (T, α) onto s.

Given a set F ⊆ 2S of stars, we say that s emulates r in S for F if s emulates r in S and for
every star σ ∈ F with σ ⊆ S⩾r \ {r} that contains an element t ⩾ r it holds that f↓rs (σ) ∈ F .

This property is crucial to the following lemma, which is a key tool in the proof of the tangle-
tree duality theorem and which will also play an important role in the proofs of Theorems 1.1
and 1.2.

Lemma 2.4 ([DO09, Lemma 4.2]). Let S be a separation system, F ⊆ 2S a set of stars,
and let (T, α) be a tight and irredundant S-tree over F . Further, let r be a leaf separation
of (T, α) which is neither trivial nor degenerate, let s ∈ S emulate r in S for F , and consider
α′ := f↓rs ◦α. Then (T, α′) is an S-tree over F ∪ {{s}}, in which {s} is a star associated with
a unique leaf.

Tight here means that for every node t ∈ V (T ) the star associated with t does not contain
the inverse of any of its non-degenerate elements.

It is shown in [DO09, Lemma 2.4] that if there is an S-tree over F with some set of leaf
separations ri which are neither trivial nor degenerate, then there also exists an S-tree over F
which is tight and irredundant such that each ri is a leaf separation and not the image of any
other edge.

A set F of stars in S is closed under shifting if whenever s ∈ S emulates some r ∈ S , then
it also emulates r in S for F . With this definition, we can now to state the tangle-tree duality
theorem in the version which we need later:

Theorem 2.5 ([DEW19, Theorem 4]). Let U be a universe of separations and S ⊆ U a sub-
modular separation system. Let F ⊆ 2S be a set of stars which is standard for S and closed
under shifting. Then exactly one of the following holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F .
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The conditions of Theorem 2.5 may seem to be rather strong at first, but in practice they can
typically be satisfied. Diestel, Eberenz and Erde [DEE17] showed that any set F ⊆ 2S can be
transformed into a standard set F̂ of stars which is closed under shifting so that an orientation
of S is a regular F̂-tangle if and only if it is a regular F-tangle:

Lemma 2.6 ([DEE17, Lemma 11 & 14]). Let S be a submodular separation system inside some
universe and let F ⊆ 2S be a standard set. Then there exists a standard set F̂ ⊆ 2S of stars that
is closed under shifting such that an orientation of S is a regular F-tangle if and only if it is a
regular F̂-tangle.

Especially, Lemma 2.6 implies that the setPS can be transformed into a set P̂S of stars which
is closed under shifting such that the set of all P̂S-tangles of S is precisely the set of all profiles
of S.

3. Refining inessential stars

In this section we prove Theorem 1.2, which is a generalization of Erde’s work [Erd17] to abstract
separation systems. Let S be a submodular separation system and F some suitable set of stars
in S . Then Theorem 1.2 asserts that every tangle-distinguishing tree set of ‘good’ separations
can be refined so that each of its nodes is either a star in F or home to an F-tangle of S.

The main tool in the proof of Erde’s Refinement Theorem [Erd17] is the so-called refining
lemma [Erd17, Lemma 3.1]. It asserts that given a submodular universe of separations U , an
integer k > 0, and a suitable set F of stars in Sk , there is, for every inessential star σ ⊆ Sk ,
an Sk-tree over F ∪ {{s} : s ∈ σ} – as long as every separation in σ distinguishes a pair of
F-tangles of Sk efficiently.

Such an Sk-tree corresponds to a nested set of separations with the property that every node
is either a star in F or home to an F-tangle, where the latter case only occurs for singleton
stars {s} with s ∈ σ. Applying this to the inessential nodes of any canonical tree set Ñ that
distinguishes the set of F-tangles efficiently, and joining those sets with the tree set Ñ , then
yields Erde’s Refinement Theorem.

In this section, we will first generalize Erde’s refining lemma to arbitrary submodular sepa-
ration systems which will then already directly imply Theorem 1.2.

The tangles which we consider in this section will always be F-tangles for a set F of stars
in S which is standard, closed under shifting and contains {r} for every small separation r ∈ S .
If F is additionally profile-respecting, then we call F friendly. Note that requiring F to be a
friendly set of stars is not really a restriction. Indeed, if F ⊆ 2S is just any set of sets, which not
necessarily consists of stars, then by Lemma 2.6, we can turn F into a standard set of stars F̂
that is closed under shifting so that the set of all F-tangles is precisely the set of all F̂-tangles.
If it is not already the case that every F-tangle is a profile of S, then we can add P̂S to F̂ to
obtain a friendly set of stars F̃ := F̂ ∪ P̂S such that an orientation of S is an F̃-tangle if and
only if it is a profile and an F-tangle of S.

Finally, note that if G is a graph and Tk the set of sets whose exclusion defines k-tangles as
such (see [Die17, Ch. 12.5] for a detailed introduction into tangles in graphs), then it is easy to
see that the set T ∗

k ⊆ Tk of all stars in Tk is a friendly set of stars. Further, Diestel and Oum have
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shown that the T ∗
k -tangles in G of order k are precisely the k-tangles in G if |G| ⩾ k [DO19,

Lemma 4.2].
We first recall the exact statement of Erde’s refining lemma:

Lemma 3.1 ([Erd17, Lemma 3.1]). Let U be a submodular universe of separations, let k ∈ N,
and let F be a friendly set of stars in Sk . Further, let σ = {s1 , . . . , sn} ⊆ Sk be a non-
empty star of separations which is inessential for the set of all F-tangles of Sk, and suppose
that each si distinguishes some pair of F-tangles of Sk efficiently. Then there is an Sk-tree
over F ′ := F ∪ {{s1}, . . . , {sn}} in which each si appears as a leaf separation.

Besides the fact that the separation system at hand is of the form Sk, it is essential in the proof
of Lemma 3.1 that every separation in the inessential star σ which we want to refine distinguishes
a pair of F-tangles of Sk efficiently. Indeed, Erde [Erd17] gave an example of a graph G, an
integer k > 0, and a star σ which is inessential for the set of all k-tangles in G, and whose
separations each distinguish some pair of k-tangles in G – but do not do so efficiently – such that
it is not possible to refine σ in the sense of Lemma 3.1. Moreover, the star σ in this example is
invariant under all automorphisms of G.

Thus, when generalizing Lemma 3.1 to arbitrary submodular separations systems S , we can-
not hope to refine every inessential star without imposing further conditions on the separations
inside that star. But as the notion of efficiency relies on the existence of an order function,
we have to find a different condition on the separations in σ which is defined even for abstract
separation systems without an order function.

By taking a closer look at the proof of Lemma 3.1 [Erd17], one can see that the efficiency
condition on the separations in σ is only used to show that for every separation si ∈ σ, there
is an F-tangle Pi of Sk such that si emulates every separation x ⩽ si with x ∈ Pi. This is
equivalent to having si ∧ r ∈ S for every separation r ∈ S that is smaller than some x ∈ Pi,
which motivates the following definition.

Let S be a separation system inside some universe, and let O be a consistent orientation of S.
We say that a separation s ∈ S is closely related to O if s ∈ O and

for every separation r ∈ P, it holds that s ∧ r ∈ S.

We remark that the inverse s of every separation s ∈ O which is closely related to O indeed
emulates every separation x with s ⩽ x ∈ O.

A separation r ∈ O is maximal in O if it is a maximal element in O with respect to the partial
order on O induced by S . An example of separations which are closely related to a profile P are
those which are maximal in P , as the following proposition shows:

Proposition 3.2. Let S be a submodular separation system, and let P a profile of S. Then every
maximal separation s ∈ P is closely related to P .

Proof. Suppose that there is a separation r ∈ P with s ∧ r /∈ S . By the submodularity of S , we
then have s ∨ r ∈ S , and hence s ∨ r ∈ P as P is a profile. But s ∨ r is strictly larger than s, a
contradiction.
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Our next basic observation describes when a separation r is closely related to some profile P
provided that there is a separation which is greater than r and closely related to P :

Proposition 3.3. Let S be a submodular separation system. If s ∈ S is closely related to a
profile P of S and r ⩽ s is a separation in S such that r ∧ u ∈ S for every u ⩽ s, then r is
closely related to P .

Proof. Let t ∈ P be an arbitrary separation. Since s is closely related to P , we have s ∧ t ∈ S .
As r ∧ s = r , it follows that r ∧ t = (r ∧ s) ∧ t = r ∧ (s ∧ t) ∈ S because s ∧ t ⩽ s.

In general, there are more separations that are closely related to some profile than just the
maximal ones. Moreover, being closely related to some profile is indeed just a generalization of
efficiently distinguishing a pair of profiles in that if k is a positive integer and U is a submodular
universe, then the orientations of every separation in Sk ⊆ U which efficiently distinguishes a
pair of profiles of Sk are closely related to the profiles in that pair:

Proposition 3.4. Let U be a submodular universe of separations, k ∈ N, and let P and P ′ be
two profiles of Sk. If a separation s ∈ P distinguishes P and P ′ efficiently, then s and s are
closely related to P and P ′, respectively.

Proof. Let s ∈ P be a separation that distinguishes P and P ′ efficiently, and let r ∈ P be
arbitrary. We need to show that r ∧ s ∈ Sk . Suppose for a contradiction that |r ∧ s| ⩾ k > |r|.
By submodularity of the order function, it follows that |r ∨ s| < |s| < k, and hence r ∨ s ∈ Sk .
Since P is a profile, we then have r ∨ s ∈ P . Moreover, by the consistency of P ′, it holds
that (r ∨ s)∗ = r ∧ s ⩽ s ∈ P ′, and hence r ∨ s distinguishes P and P ′. Since |r ∨ s| < |s|,
this contradicts that s distinguishes P and P ′ efficiently. Analogously, one can show that s is
closely related to P ′.

We are now ready to state our generalized version of Erde’s refining lemma (Lemma 3.1):

Lemma 3.5. Let S be a submodular separation system, and let F be a standard set of stars in S
which is closed under shifting and contains {r} for every small r ∈ S . Further,
let σ = {s1 , . . . , sn} ⊆ S be a non-empty star which is inessential for the set of all F-tangles
of S, and suppose that each si is closely related to some F-tangle of S. Then there is an S-tree
over F ∪ {{s1}, . . . , {sn}} in which each si appears as a leaf separation.

The proof of this lemma will be quite similar to Erde’s proof of Lemma 3.1 [Erd17]. Indeed,
we will only need to make some small changes to adjust the proof to our slightly different setting.
For the sake of completeness, we give a full proof here instead of just explaining the differences.
Any interested reader may also consult [Erd17] for the original proof.

Proof of Lemma 3.5. Set F̄ := F ∪ {{x} : si ⩽ x for some i ∈ [n]}. We first show that F̄ is
closed under shifting. For this, let {x} ∈ F̄ \F be arbitrary. Then any map f↓rs with {x} ⊆ S⩾r

sends x to some y ⩾ x and so {y} ∈ F̄ . Therefore, F̄ is closed under shifting since F was.
Further, F̄ is standard since F was. Hence, we can apply Theorem 2.5 to F̄ . Since σ was an
inessential star for F and F ⊆ F̄ , there cannot be an F̄-tangle of S, and hence, by Theorem 2.5,
there is an S-tree over F̄ . Let (T, α) be such a tree which contains as many of the separations si
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σ

Pi

si

xi
(T, α)

Figure 3.1: The Sk (G)-tree over F̄ ; the labeled leaves correspond to separations that are forced
by F̄ but not by F .

among its leaf separations as possible. Note that, in general, an S-tree over F̄ need not contain
any si as a leaf separation.

Suppose there is an si ∈ σ which is not a leaf separation of (T, α), and let Pi be some F-
tangle of S to which si is closely related. Since Pi is a consistent orientation of S, it has to live
at some node t ∈ V (T ). But since Pi is an F-tangle, the star which is associated with t can only
be in F̄ \ F , and hence t has to be a leaf. Therefore, there is some leaf separation xi of (T, α)
such that xi ∈ Pi. Since {xi} ∈ F̄ \ F , it follows that xi ⩾ sj for some j ∈ [n].

But as F contains {r} for every small r ∈ S , we have that Pi is regular, and so si is the
unique separation in σ with si ∈ Pi. Indeed, if sj ∈ Pi for some j ∈ [n] \ {i}, then since Pi

is consistent, we cannot have si ⩽ sj . So either si ⩽ sj or sj ⩽ si or sj ⩽ si . As σ is
a star, the first two cases imply that either sj or si is small, which, in both cases, contradicts
that Pi is regular. Moreover, again because σ is a star, the latter case implies that si = sj , which
contradicts that Pi is an orientation of S as then si , si ∈ Pi. Hence, j = i and si ⩽ xi .

Since si is closely related to Pi, we have that si emulates xi . Further, since xi is neither
trivial nor degenerate, we can assume, by the comment after Lemma 2.4, that T is tight and
irredundant and that xi is not the image of any other edge in T . Therefore, by Lemma 2.4, the
shift of (T, α) onto si yields an S-tree (T, α′) over F̄ , which contains si as a leaf separation and
not as the image of any other edge. Moreover, since si < sj for all j ̸= i, the shift (T, α′) also
contains all separations sj as leaf separations that T did and hence contains one more than T ,
contradicting the choice of T . Therefore, (T, α) contains all si as leaf separations.

We are left to show that (T, α) is an S-tree over F ′ := F ∪ {{s1}, . . . , {sn}}. For this,
recall that by definition, (T, α) is already an S-tree over F̄ . So suppose there is a node t ∈ V (T )
whose associated star under α′ is not in F ′. Since (T, α) is over F̄ and F ′ \ F̄ contains only
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singleton stars, it follows that t is a leaf of T . Let r be the leaf separation associated with the
unique edge which is incident to t. Since {r} ∈ F̄ \ F ′, there is some i ∈ [n] such that r > si .
But it also holds that si > r (since si and r are both leaf separations). Hence, r is trivial and
so {r} ∈ F ⊆ F ′, which completes the proof.

Even though Lemma 3.1 and Lemma 3.5 are interesting results on their own, the importance
of Lemma 3.1 comes from the fact that it can be applied to tree sets Ñ , inside some Sk, which
efficiently distinguish the set of F-tangles of Sk for some friendly set F of stars. It then asserts
the existence of a nested set N ⊆ Sk with Ñ ⊆ N in which each inessential node is too ‘small’
to be home to a profile, i.e. every inessential node is a star in F .

For separation systems of the form Sk it is already known that there are tree sets which sat-
isfy the conditions of Lemma 3.1 and Lemma 3.5. For instance, Carmesin, Diestel, Hamann
and Hundertmark [CDHH16] constructed a canonical tree set for graphs which efficiently dis-
tinguishes a given set of k-tangles. More generally, Diestel, Hundertmark and Lemanczyk
[DHL19] constructed a canonical tree set distinguishing all ‘robust’ k-profiles efficiently, for
some k ∈ N, inside a submodular universe of separations. Applying Lemma 3.1 to these tree
sets then yields Erde’s Refinement Theorem.

But if we want to apply Lemma 3.5 to some canonical tree set in an arbitrary submodular
separation system to obtain a similar result as in Erde’s Refinement Theorem, we first have to find
such a set that satisfies the assumptions of Lemma 3.5. For this, we will show in Section 4 that
the canonical tree set which Elbracht and Kneip [EK21] constructed satisfies those assumptions.
This will then allow us to prove Theorem 1.1, by refining this set.

However, Lemma 3.1 is actually strong enough to show that we can in fact refine every tree
set inside some Sk, canonical or not, in which every separation distinguishes some pair of F-
tangles efficiently. By Lemma 3.5 we can now also refine every tangle-distinguishing tree set N
inside an abstract submodular separation system, as long as the inverse of every separation which
is contained in an inessential node of N is closely related to some F-tangle:

Theorem 3.6. Let S be a submodular separation system, and let F be a standard set of stars
in S which is closed under shifting and contains {r} for every small r ∈ S . Further, let Ñ be a
nested set of separations that distinguishes all F-tangles of S. If the inverse of every separation
that is contained in an inessential node of Ñ is closely related to some F-tangle of S, then there
exists a nested set N ⊆ S with Ñ ⊆ N such that every node of N is either a star in F or home
to an F-tangle of S.

Proof. LetΣ be the set of all inessential nodes of Ñ , and let σ ∈ Σ be arbitrary. Since the inverse
of every separation in σ is closely related to some F-tangle of S, we can apply Lemma 3.5 to σ
to obtain a nested set Nσ that corresponds to an S-tree over F ∪ {{s} : s ∈ σ} in which all
separations in σ appear as leaf separations. Clearly, Nσ is nested with Nσ′ for every star σ′ ∈ Σ.
Since Nσ is also nested with N , setting N := Ñ ∪

⋃
σ∈Σ Nσ yields the desired nested set.

Note that the nested set from [EK21] satisfies the assumptions of Theorem 3.6, as we will
show in Section 4.
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While the assumption of Theorem 3.6 on the set Ñ is the weakest one we need in order to be
able to prove such a refinement theorem for abstract separations systems by applying Lemma 3.5,
we will propose in the following a stronger assumption which we believe is more natural. For
this, recall that Erde’s Refinement Theorem imposes the condition on Ñ that every separation
inside Ñ should distinguish some pair of F-tangles efficiently. Here, it does not depend on the
set Ñ whether a separation efficiently distinguishes some pair of F-tangles. In particular, when
seeking to construct a tangle-distinguishing tree set which satisfies the assumptions of Erde’s
Refinement Theorem, it can be determined prior to the construction which separations could
potentially be included in Ñ .

However, Theorem 3.6 does not have this advantage. As its assumptions require that the
inverse of every separation which is contained in an inessential node of Ñ should be closely
related to some F-tangle, one needs to know about the whole set Ñ and first determine its
inessential nodes, before one can check the condition of Theorem 3.6. To obtain a result which
is more in line with Erde’s Refinement Theorem, we are therefore interested in finding a condition
on the separations in Ñ that has the following two properties. On the one hand it should ensure
that one can refine the inessential nodes of Ñ , and on the other hand it should be formulated
purely in terms of S and F so that this property can be checked without reference to the tree
set Ñ and its inessential nodes.

Let S be a submodular separation system and P a set of profiles of S. We say that a separa-
tion s ∈ S is good (for P) if there are profiles P, P ′ ∈ P such that s and s are closely related
to P and P ′, respectively. Note that, by Proposition 3.4, every separation in an Sk that distin-
guishes some pair of profiles efficiently is good. Thus, being good is a structural generalization
of efficiency to abstract separation systems which come without the framework needed to define
efficiency itself. Since requiring every separation to be good is clearly a stronger assumption
than the one from Theorem 3.6, the following theorem follows directly:

Theorem 1.2. Let S be a submodular separation system, and let F be a standard set of stars
in S which is closed under shifting and contains {r} for every small r ∈ S . Further, let Ñ be a
nested set of separations that distinguishes all F-tangles of S. If every separation in Ñ is good
for the set of all F-tangles of S, then there exists a nested set N ⊆ S with Ñ ⊆ N such that
every node of N is either a star in F or home to an F-tangle of S.

Note that this theorem is a generalization of Erde’s work in [Erd17]. Indeed, Erde’s refining
lemma (Lemma 3.1) implies that one can refine every tree set inside some separation system of
the form Sk which contains only essential separations. Since by Proposition 3.4 every separation
which efficiently distinguishes some pair of profiles in P is also good for P , Theorem 1.2 also
implies that these tree sets can be refined. However, Theorem 1.2 can also be applied to arbitrary
submodular separation systems which are not of the form Sk .

In Section 5 we will construct a nested set which distinguishes a given set of profiles and
contains only separations that are good for those profiles. Moreover, this set will be canonical,
but in a slightly weaker sense than usual.
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4. Refining a canonical tree of tangles

In this section we prove that the inessential nodes of the canonical nested set N(S,P) from
Theorem 2.3 satisfy the conditions of Lemma 3.5. This will allow us to refine its inessential
nodes which then implies Theorem 1.1. For this, throughout this section, let S be a submodular
separation system, and let P be a set of profiles of S. We first recall the construction of N(S,P)
from [EK21]:

Construction 4.1. A separation s ∈ S is exclusive (for P) if it is contained in exactly one profile
in P . If P ∈ P is that profile, we say that s is P -exclusive (for P). Further, we denote, for every
profile P ∈ P , the set of all maximal P -exclusive separations in S with MP . Note that, in
general, there will be profiles for which MP is empty. If MP is non-empty for some P ∈ P ,
then the infimum of MP exists and is again P -exclusive for P [EK21, Lemma 4.4]. Moreover,
for every pair of profiles P, P ′ ∈ P , the infima of MP and MP ′ are nested ([EK21, Lemma 4.3]
and Lemma 2.1).

Let us now describe the construction of N := N(S,P). First, we add, for every pro-
file P ∈ P1 := {P ∈ P : MP ̸= ∅}, the infimum of MP to N , which will then be a nested set.
As the infima of all non-empty MP are still exclusive for P and hence distinguish every profile
in P1 from all other profiles in P , we can discard the profiles in P1 from P . We then remove
from S all separations that are not nested with those infima. Iterating this procedure yields the
desired tree set.

To make the construction more precise, and to establish some notation we need later,
set MP,1 := MP for every P ∈ P1, and note that P1 is non-empty [EK21, Lemma 4.2].
Set sP := inf(MP,1) :=

∧
r∈MP,1

r for all P ∈ P1, set N1 := {sP : P ∈ P1}, and let S2

be the set of all separations in S which are nested with N1. For consistency set also S1 := S .
Then S2 is still submodular and distinguishes all remaining profiles in P \ P1 [EK21, Lemma
4.5]. Hence, we can proceed in the same manner as follows.

At the beginning of the i-th step of the construction we have already constructed a set Ni−1

that distinguishes every profile in P<i :=
⋃

j<iPj from all other profiles in P . We then consider
the set P⩾i := P \ P<i and the separation system Si that consists of all separations in S which
are nested with Ni−1. For every P ∈ P⩾i we let MP,i be the set of all separations in Si which
are P -exclusive for P⩾i and maximal in P ∩ Si . We then set Pi := {P ∈ P⩾i : MP,i ̸= ∅} and
sP := inf(MP,i) for every P ∈ Pi. For this note again that sP ∈ S for every P ∈ Pi [EK21,
Lemma 4.4]. Lastly, we set Ni := {sP : P ∈ P⩽i}, and we let Si+1 be the set of all separations
in S which are nested with Ni. Again we have that Ni is nested, and it follows directly from
Lemma 2.1 that Si is submodular.

We then obtain the desired nested set by setting N(S,P) := NK where K is the smallest
number for which P>K contains at most one profile. By construction, N(S,P) distinguishes all
profiles in P , and it is shown in [EK21] that N(S,P) is indeed canonical. This completes the
construction.

Before we turn to the proof that every inessential node of N(S,P) satisfies the assumptions
of Lemma 3.5, let us first verify a property of N(S,P) which Figure 4.1 already indicates. In
Figure 4.1 all the separations sP in N point ‘outwards’. In particular, in Figure 4.1 there is no
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N2 \ N1
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Figure 4.1: A visualization of Construction 4.1.

pair of separations sP , sP ′ such that sP and sP ′ point ‘towards’ each other. The next lemma now
claims that Figure 4.1 is actually accurate with respect thereto:

Lemma 4.2. There is no pair of separations sP , sP ′ ∈ N(S,P) such that sP < sP ′ .

Proof. Suppose for a contradiction that there are separations sP , sP ′ ∈ N(S,P) with sP < sP ′ .
Let i, j ∈ [K] be the indices with P ∈ Pi and P ′ ∈ Pj , and assume without loss of generality
that j ⩽ i. Then it follows from the P ′-exclusivity of sP ′ for P⩾j that sP ′ ∈ P . Moreover, we
have sP ′ ∈ Nj , which implies that sP ′ ∈ Si , and in particular sP ′ ∈ Si . As MP,i is the set of
all maximal elements in P ∩ Si and sP ′ ∈ P ∩ Si , either there is a separation r ∈ MP,i which
crosses sP ′ , or sP ′ ⩽ r for all r ∈ MP,i. Since the latter case implies that sP ′ ⩽ sP , which
contradicts that sP < sP ′ , we may assume that there is a separation r ∈ MP,i that crosses sP ′ .
In particular, it follows that i ⩽ j and thus i = j since r ∈ Si is nested with Nℓ for every ℓ < i.

As r is maximal in P ∩ Si , we have r ∨ sP ′ /∈ P ∩ Si , which implies that r ∨ sP ′ /∈ Si

because P ∩ Si is a profile of Si. Thus, by the submodularity of Si , we have r ∧ sP ′ ∈ Si .
As r is P -exclusive for P⩾i and P ′ ∈ Pj ⊆ P⩾i, it follows that r ∈ P ′, and thus, since P ′ is a
profile, r ∨ sP ′ ∈ P ′. By the same argument as above, there has to be a separation r′ ∈ MP ′,i

that crosses r ∨ sP ′ , which by Lemma 2.1 implies that r′ crosses r. But this contradicts the
maximality of either r ∈ MP,i or r′ ∈ MP ′,i as by the submodularity of Si at least one of r ∨ r′

or r ∨ r′ is an element of Si and thus contained in P ∩ Si or P ′ ∩ Si , respectively.

We now prove that every inessential node of the tree setN := N(S,P) from Construction 4.1
satisfies the conditions of Lemma 3.5. Our proof will consist of two steps. First, we show that
every sP ∈ N is closely related to P . Then, we show that every separation r ∈ N which is
contained in an inessential node of N is of the form r = sP where P is some profile in P . This
then clearly implies the assertion.

In order to prove that every sP is closely related to P ∈ Pi, we first show that the infimum
of a set of separations which are all closely related to some profile is again closely related to
that profile. It then follows that sP is closely related to P as soon as we can show that MP,i is
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closely related to it. For this, we prove a more general proposition whose stronger assertion we
will need in a following chapter.

Proposition 4.3. Let s ∈ S , and let M ⊆ S be some set of separations such that
every m ∈ M is closely related to some profile Qm of S which satisfies that s ∈ Qm.
Then s ∧ inf(M) := s ∧

∧
m∈M m is an element of S . Moreover, if s is closely related to

some profile P of S, then s ∧ inf(M) is closely related to P .

Proof. We proceed by induction on |M |. If |M | = 0 there is nothing to show, so we may assume
that |M | ⩾ 1 and that the assertion holds for all sets M ′ ⊊ M . Let r ∈ M be arbitrary. By the
induction hypothesis, t := s ∧ inf(M \ {r}) is an element of S , and it is closely related to P
if s is closely related to P . It follows that also s ∧ inf(M) = t ∧ r is an element of S because r
is closely related to Qr and t ⩽ s ∈ Qr by the consistency of Qr.

Now suppose that s is closely related to P . Recall that, by induction, t is also closely related
to P . So to prove that s ∧ inf(M) = t ∧ r is closely related to P it is, by Proposition 3.3,
enough to show that x ∧ (t ∧ r) ∈ S for all x ⩽ t. For this, let some x ⩽ t be given.
Then x ∧ (t ∧ r) = x ∧ r ∈ S because r is closely related to Qr and x ∈ Qr by the consistency
of Qr.

The next lemma shows that every separation in MP,i is closely related to P ∈ Pi under the
assumption that for every profile P ′ ∈ P<i the separation sP ′ is closely related to P ′. It then
follows by induction and Proposition 4.3 that sP is closely related to P .

Lemma 4.4. Let P be a profile of S, and let Y ⊆ P be a nested set of separations such that
the inverse y of every separation y ∈ Y is closely related to some profile Qy of S. Further,
let PY ⊆ P be the set of all separations in P that are nested with Y . Then every maximal
separation in PY is closely related to P .

Proof. Let r ∈ P be any maximal separation in PY , and let some x ∈ P be given. We need
to show that r ∧ x ∈ S . For this, set Y ′ := {y ∈ Y : r < y} and first assume that there is
a separation x′ ∈ P which is nested with Y ′ and satisfies r ∧ x′ = r ∧ x. Then the assertion
follows. If r ∧ x′ /∈ S , then it follows from the submodularity of S that r ∨ x′ ∈ S . Since P
is a profile, we then have r ∨ x′ ∈ P , which contradicts the maximality of r in PY as r ∨ x′ is
nested with Y by Lemma 2.1.

To conclude the proof it thus suffices to find a separation x′ as above. To this end, we pick a
separation x′ ∈ P which is minimal (with respect to the partial order on S) so that r∧x′ = r∧x.
For this note that x itself is a candidate for x′ (see Figure 4.2a).

We claim that x′ is nested with Y ′ and thus the desired separation for the above argument.
To this end, suppose for a contradiction that x′ is not nested with Y ′. Set

Q := {Qy : y ∈ Y ′ and x′ crosses y},

and first assume that there is a profileQy ∈ Qwith x′ ∈ Qy. Then it follows from y being closely
related to Qy that y ∧ x′ ∈ S . But this contradicts the choice of x′ : as y and x′ cross, y ∧ x′ is
strictly smaller than x′ . Moreover, since r < y by assumption, we find that

r ∧ (y ∧ x′) = (r ∧ y) ∧ x′ = r ∧ x′ = r ∧ x.
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Figure 4.2: Sketch for the proof of Lemma 4.4.

Therefore, we may assume that x′ ∈ Qy for all profiles Qy ∈ Q.
If r∧x′ ∈ S , then we are done, so we may assume that r∧x′ /∈ S , which by the submodularity

of S implies that r ∨ x′ ∈ S . We then have (r ∨ x′)∗ = r ∧ x′ ⩽ x′ ∈ Qy for every Qy ∈ Q
by the consistency of Qy. Since each y is closely related to Qy by assumption, Proposition 4.3
implies that

z := (r ∨ x′) ∨
∨

Qy∈Q

y =
(
(r ∨ x′)∗ ∧

∧
Qy∈Q

y
)∗

∈ S

(see Figure 4.2b). By construction, z is nested with Y ′ and thus z is nested with every separation
in Y that has an orientation which is greater than r . But since r ⩽ z , we have that z is also nested
with every separation in Y that has an orientation which is smaller than r , and hence z is nested
with Y . Moreover, z ∈ P . Indeed, every y ∈ Y is contained in P by assumption, which implies
that z ∈ P as P is a profile. Since r ⩽ z by the definition of z, and x′ ⩽ z but x′ ̸⩽ r , it follows
that r < z , which contradicts the maximality of r in PY .

We are now ready to prove that every sP is closely related to P .

Lemma 4.5. Every sP ∈ N (S,P) is closely related to P .

Proof. We show by induction on i that sP is closely related to P for every P ∈ Pi.
Since sP = inf(MP ) for every P ∈ P1, the base case follows directly from Proposition 3.2
and Proposition 4.3. So let i > 1, and suppose that every sP ′ ∈ Ni−1 is closely related to P ′.
Since every sP ′ ∈ Ni−1 is P ′-exclusive for P⩾i−1, and thus sP ′ ∈ P for every such sP ′ , we
can apply Lemma 4.4 to P and Ni−1. This yields that MP,i is closely related to P , which by
Proposition 4.3 implies that sP is closely related to P as well.

We are now left to show that for every inessential node σ of N(S,P), and every separa-
tion s ∈ σ, there is a profile P ∈ P such that s = sP . Note that, by the construction of N(S,P),
it is clear that s ∈ {sP , sP } for some profile P ∈ P . What we need to show is that the orien-
tation is the correct one, i.e. s = sP . To this end, we first show that every profile P lives at the
unique node which contains sP if sP ∈ N :
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Lemma 4.6. Given a profile P such that sP exists, then P lives at the unique node of N(S,P)
that contains sP .

Proof. Suppose for a contradiction that P lives at a node σ′ of N := N(S,P) which does not
contain sP . By the definition of ‘node’ and because P lives at σ′, this implies that σ′ is the set
of maximal elements in P ∩N . As sP is an element of P ∩N but not of σ′, it follows that there
is a separation r ∈ σ′ such that sP < r .

By the definition of N , the separation r has to be of the form sP ′ or sP ′ for some P ′ ∈ P;
however, by Lemma 4.2 and because sP < r , only r = sP ′ is possible. Therefore, sP , sP ′ ∈ P .
Further, by the definition of sP ′ , we have sP ′ ∈ P ′, which, by the consistency of P ′, implies that
also sP ∈ P ′. But then sP , sP ′ ∈ P ∩ P ′, a contradiction to the exclusivity of either sP or sP ′ ,
depending on which separation was added to N first.

It is now a simple corollary that the inessential nodes of N(S,P) satisfy the conditions of
Lemma 3.5:

Corollary 4.7. For every inessential node σ of N(S,P) and every separation s ∈ σ it holds
that the inverse s of s is closely related to some profile in P .

Proof. By the construction of N(S,P), there is some profile P ∈ P such that s ∈ {sP , sP }.
Since σ is inessential, Lemma 4.6 implies that s = sP . It follows from Lemma 4.5 that s is
closely related to P .

We are now ready to prove our second main result by applying Lemma 3.5 to N(S,P):

Theorem 4.8. Let S be a submodular separation system, and let F be a friendly set of stars
in S . Then there are nested sets Ñ ⊆ N ⊆ S such that:

• Ñ is canonical and distinguishes all the F-tangles of S;

• every node of N is either a star in F or home to an F-tangle.

Proof. Let P be the set of all F-tangles of S, and let Ñ := N(S,P) be the nested set from
Construction 4.1. Further, let σ =: {s1 , . . . , sn} be an inessential node of Ñ . By Corollary 4.7
every separation si is closely related to some profile Pi ∈ P . Thus, we can apply Lemma 3.5
to σ to obtain a nested set Nσ ⊆ S corresponding to an S-tree over F ∪ {{s1}, . . . , {sn}} in
which each si appears as a leaf separation. Clearly, Nσ is nested with N and any other such
set Nσ′ , and thus setting1 N := Ñ ∪

⋃
{Nσ : σ is an inessential node of Ñ} yields the desired

nested set.

In particular, if the setF of stars is invariant under all automorphisms of S , then Theorem 4.8
immediately implies Theorem 1.1, which we restate here:

1In fact, one can show that Ñ has at most one inessential node, and thus N = Ñ ∪Nσ .
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Theorem 1.1. Let S be a submodular separation system, and let F be a friendly set of stars in S .
If F is fixed under all automorphisms of S , then there are nested sets Ñ ⊆ N ⊆ S such that:

• Ñ is fixed under all automorphisms of S and distinguishes all the F-tangles of S;

• every node of N is either a star in F or home to an F-tangle.

Proof. If F is fixed under all automorphisms of S , then this is also true for the set P of all F-
tangles ofS, i.e.ϕ(P) = P for all automorphismsϕ ofS . Applying Theorem 4.8 toS andF then
yields nested sets Ñ := N(S,P) ⊆ N with the property that ϕ(N(S,P)) = N(S, ϕ(P)) =
N(S,P) for all such automorphisms ϕ, and hence Ñ is fixed under them.

We conclude this section by remarking that it is not possible to strengthen Theorem 4.8 and
Theorem 1.1 so that the refinement N , too, is canonical (see [Erd17] for an example).

5. A tree of tangles with good separations

Recall that a separation s in a separation system S is good (for a set P of profiles of S) if there
are two profiles P ̸= P ′ in P such that s is closely related to P and s is closely related to P ′.
Additionally, we say that a separation s ∈ S distinguishes two profiles P and P ′ of S well if one
of s and s is closely related to P and the other one to P ′. Note that this implies that s is good
for P if P, P ′ ∈ P .

A set of separations is good for some set P of profiles, if every separation in that set is good
for P . If we refer to a good set without reference to any set of profiles, then it can be assumed
that this set is good for the set of all profiles of S.

In Section 3 we proposed the property of a separation to be ‘good’ as a structural general-
ization of efficiency to separation systems without an order function. Our main goal there was
to find a property of separations which makes it possible to refine nested sets in the sense of
Lemma 3.5, and which can be formulated purely in terms of S and F . While it is clear by
Proposition 3.4 that every separation which distinguishes some pair of profiles efficiently also
distinguishes that pair well, it turned out that the converse is also true, at least for separation
systems which come from a graph. More precisely, if G is a graph and Sk the system of all
separations of G of order < k, then it holds for every pair of regular profiles P, P ′ of Sk that a
separation in Sk distinguishes P and P ′ well if and only if it distinguishes them efficiently. A
proof can be found in the extended version of this paper [Alb23b].

Hence, the property of a separation to be good is not just some arbitrary generalization of
efficiently distinguishing two profiles to separation systems without an order function, it in fact
coincides in graphs with the notion of efficiency. Therefore, it seems to be a particularly nat-
ural generalization. Since every separation system of the form Sk contains a nested set which
distinguishes all its profiles efficiently [DHL19, Theorem 3.6], it seems natural to ask whether
abstract separation systems always contain a nested set which distinguishes all its profiles well.

While this is not true in general [Alb23b], we will show a slightly weaker statement: that ev-
ery submodular separation system contains a nested set of good separations which distinguishes
all its profiles. This nested set will be canonical but in a slightly weaker sense than usual. We
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show that this is best possible in the following sense: in Example 5.9 we give an example of a
submodular separation system and a set of profiles which does not admit a nested set of good
separations that is canonical in the usual (stronger) sense.

For the remainder of this section, let S be a submodular separation system, and let P be a
set of profiles of S. Our strategy for constructing a nested set that distinguishes P and contains
only separations that are good for P will be as follows. We will first show that every pair of
profiles is well distinguished by some separation in S. This then implies that there are enough
good separations so that we can consider, similar as to Construction 4.1, the exclusive good
separations in S and use them to build a nested set that distinguishes already a subset ofP , which
we can then discard from P . In the next step, we then only consider the remaining profiles and
those separations in S which are nested with the separations we have chosen so far. Iterating this
process will then yield the desired nested set.

Here, the main difference to Construction 4.1 is that we only consider those exclusive separa-
tions that are maximal among all separations which are good for P . As these separations behave
quite differently than the exclusive separations which are maximal among all separations in S ,
the proof of Theorem 5.8 will need different and additional arguments than the one showing that
Construction 4.1 works even though the constructions themselves are quite similar.

During the construction, we need to make sure that every separation which we choose to
include in our nested set N of good separations is nested with all previously chosen separa-
tions. For this, throughout this section, let M ⊆ S be a nested set of good separations such
that P ∩M = P ′ ∩M for all P, P ′ ∈ P . We set SM := {s ∈ S : s is nested with M}, and for
every profile P of S we let PM := P ∩ SM .

We first show that every pair of profiles in P can be well distinguished by a separation which
is nested with M . For this, we need the following fact about submodular separation systems.
A separation system S inside some universe is called separable if, for every pair of separa-
tions s ⩽ r ∈ S , there exists a separation t ∈ S with s ⩽ t ⩽ r such that t emulates s and t
emulates r .

Lemma 5.1 ([DEW19, Lemma 13]). Every submodular separation system is separable.

We can now use this fact to find good separations ‘between’ two nested separations which
distinguish some pair of profiles and are each closely related to one profile in that pair.

Proposition 5.2. Let two profiles P ̸= P ′ ∈ P be given, and let s ⩽ s′ ∈ S be two separations
that distinguish P and P ′. If s is closely related to P and s′ is closely related to P ′, then there
exists a separation r ∈ S with s ⩽ r ⩽ s′ that distinguishes P and P ′ well.

Moreover, if s, s′ are nested with M , then r can be chosen to be nested with M as well.

Proof. By Lemma 5.1 there exists a separation r ∈ S with s ⩽ r ⩽ s′ such that r emulates s
and r emulates s′ . Since r emulates s′ , we have r ∨ t ∈ S and hence (r ∨ t)∗ = r ∧ t ∈ S for
all t ⩽ s′ . By Proposition 3.3 it follows that r is closely related to P ′ since s′ is closely related
to P ′. Analogously, we find that r is closely related to P .

For the ‘moreover’-part we pick two separations t ⩽ t′ ∈ SM so that t and t′ mini-
mize |{x ∈ S : t ⩽ x ⩽ t′}| under all separations in SM which distinguish P and P ′ and
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which have the property that t is closely related to P and t′ is closely related to P ′. For this note
that s, s′ are candidates for t, t′ .

By the first part, there exists a separation r ∈ S with t ⩽ r ⩽ t′ which distinguishes P
and P ′ well. If t = r , then r is as desired since t is nested with M , so we may assume
that t < r . Let r′ ∈ S be any maximal separation whose inverse r′ is closely related to P
and which satisfies t ⩽ r′ ⩽ t′ . By the argument before, we have t < r′ . Then r′ cannot be
nested with M ; otherwise r′ , t′ would have been a better choice for t, t′ . Moreover, r′ distin-
guishes P and P ′ well. Indeed, by the first part, there is a separation r′′ ∈ S with r′ ⩽ r′′ ⩽ t′

that distinguishes P and P ′ well, which by the maximal choice of r′ implies that r′ = r′′ .
Let M ′ ⊆ M be the set of all separations in M that cross r′, and denote the (unique) ori-

entation of every m ∈ M ′ which is contained in P with m. Since every separation in M dis-
tinguishes two profiles of S well, there exists for every m ∈ M ′ some profile Qm of S such
that m is closely related to Qm. Now first suppose that there is a separation m ∈ M ′ such
that r′ ∈ Qm. Then r′ ∧ m is an element of S and closely related to P by Proposition 4.3.
But r′ < (r′ ∧ m)∗ ⩽ t′ , which contradicts the choice of r′ . Therefore, r′ ∈ Qm for ev-
ery m ∈ M . Then r′′ := r′ ∧

∧
m∈M m is closely related to P ′ by Proposition 4.3 as r′ is closely

related to P ′. But since r′′ < r′ ⩽ t′ , this contradicts the choice of t, t′ as t, r′′ would have been
a better choice and thus concludes the proof.

In particular, Proposition 5.2 implies that every pair of distinct profiles can be well distin-
guished:

Corollary 5.3. For every pair of distinct profiles in P , there is a separation in SM that distin-
guishes them well.

Proof. Let P, P ′ ∈ P be two distinct profiles. We first show that there is a separation in SM

which distinguishes them (but not necessarily well). Since P and P ′ are distinct, there exists a
separation s ∈ P that distinguishes them; we take one which is nested with as many separations
in M as possible. Now suppose for a contradiction that s crosses some separation m ∈ M , and
let m ∈ P . By the assumption on M , there is a profile Q of S to which m is closely related; by
symmetry we may assume that s ∈ Q. Since m is closely related to Q, it follows that m∧s ∈ S .
But since P ∩M = P ′∩M and therefore m ∈ P ′, it follows that m∧s = m∨s ∈ P ′ as P ′ is a
profile. Hence, m∧s distinguishes P and P ′, too, which contradicts the choice of s since m∧s
is nested with one separation in M more than s by Lemma 2.1.

So let s ∈ PM be a maximal separation that distinguishes P and P ′, and let s′ ⩾ s be
maximal in P ′

M . Then s and s′ are closely related to P and P ′, respectively, by Lemma 4.4.
Hence, by Proposition 5.2, there exists a separation r ∈ SM with s ⩽ r ⩽ s′ that distinguishes P
and P ′ well.

Before we start with the construction of our desired nested set, we first show the following
technical lemma which we will need throughout this section to find good separations:

Lemma 5.4. Let P,Q,Q′ ∈ P be three distinct profiles, and let r, s ∈ PM be two distinct
separations such that r, s ∈ Q′. If r is closely related to Q and s is closely related to Q′, then
there is a separation u ∈ PM with r ∨ s ⩽ u that distinguishes P and Q well.
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Proof. Since s is closely related to Q′ and r ∈ Q′, it holds that r∧s ∈ S . Moreover, r∧s ∈ SM

by Lemma 2.1. Now suppose that r ∧ s is closely related to Q. Then the assertion follows.
Since P is a profile, (r ∧ s)∗ = r ∨ s ∈ P . Now let w ∈ PM be maximal with r ∨ s ⩽ w .
Then w is closely related to P by Lemma 4.4. It follows, by Proposition 5.2, that there exists a
separation u ∈ SM with r ∨ s ⩽ u ⩽ w that distinguishes P and Q well.

Therefore, it suffices to show that r∧s is closely related toQ. For this, it is by Proposition 3.3
enough to check that (r ∧ s) ∧ t ∈ S for every separation t ⩽ r ∈ Q since r is closely related
to Q by assumption. So let t ⩽ r be given. It follows that t ∈ Q′ by the consistency of Q′

as r ∈ Q′. Then, (r ∧ s) ∧ t = s ∧ (r ∧ t) = s ∧ t ∈ S because s is closely related to Q′. This
completes the proof.

We can now start with the construction of the desired nested set. For this, let EP be the set
of all separations in PM that are exclusive for P and distinguish P well from some other profile
in P . We will pick, for every profile P ∈ P for which EP is non-empty, a maximal separation
in EP . The set N ′ of all these separations will then have two properties: on the one hand, it is
nested, and on the other hand, the system of all those separations which are nested with N ′ is
still rich enough to distinguish all remaining profiles in P . This then allows us to continue the
construction inductively.

To this end, we first show that EP is not empty for all profiles in P .

Lemma 5.5. If S and P are non-empty, then EP is non-empty for some profile P ∈ P .

Proof. Let s ∈ SM be a good separation such that the number of profiles P ∈ P with s ∈ P
is as small as possible. We claim that s is exclusive for some profile P ∈ P . It then follows
that s ∈ EP since s was good for P and thus s distinguishes P well from some other profile.

To show this claim, suppose for a contradiction that there are distinct profiles P,Q ∈ P
with s ∈ P ∩Q. By Corollary 5.3, there exists a separation r ∈ PM that distinguishes P and Q
well. Moreover, as s is good for P , there is a profile Q′ ∈ P such that s is closely related to Q′;
by symmetry we may assume that r ∈ Q′. Then Lemma 5.4 applied to P,Q,Q′, r and s yields
a good separation u ∈ PM with s ∨ r ⩽ u. Since s ⩽ u, every profile which contains u also
contains s, but s ∈ Q and u /∈ Q as u ⩽ r ∈ Q. So u is contained in at least on profile less
than s, which contradicts the choice of s.

Next we show that every non-empty EP contains a unique maximal element. This will later
allow us to prove that the nested set which we construct here is canonical in a certain sense.

Lemma 5.6. Every non-empty set EP contains a unique maximal element.

Proof. Suppose for a contradiction that EP contains at least two distinct elements r, s which
are both maximal in EP . Let Q and Q′ be the profiles that are well distinguished from P by r
and s, respectively. Since r, s are exclusive for P , we have r, s ∈ Q∩Q′. Applying Lemma 5.4
to P,Q,Q′, r, s yields a separation u ∈ PM with r ∨ s ⩽ u that distinguishes P and Q well. It
follows that u ∈ EP . Since both r, s are maximal in PM , they cross, and thus u ⩾ r ∨ s > r, s,
which contradicts the assumption that r, s are maximal elements in EP .
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If EP is non-empty, we denote the unique maximal element of EP with rP . The next step
will be to show that picking the maximal separation of every non-empty EP actually yields a
nested set of separations:

Lemma 5.7. Let P and P ′ be two distinct profiles with EP ̸= ∅ ̸= EP ′ . Then rP and rP ′ are
nested.

Proof. Suppose for a contradiction that rP and rP ′ cross. Since rP ′ is P ′-exclusive and rP is
P -exclusive, we have that rP ′ ∈ P and rP ∈ P ′. Let P ′′ be a profile from which rP ′ distin-
guishesP ′ well. Then rP ′ is closely related toP ′′. Applying Lemma 5.4 toP ′, P, P ′′, rP and rP ′

yields a separation u ∈ P ′
M with rP ∨ rP ′ ⩽ u that distinguishes P ′ and P ′′ well. But since rP

and rP ′ cross, rP ′ < rP ′ ∨ rP ⩽ u, a contradiction to the maximality of rP ′ in EP ′ .

We are now ready to construct a nested set that distinguishes P and uses only separations
which are good for P , by applying the above lemmas.

Theorem 5.8. Let S be a submodular separation system, and let P be a set of profiles of S.
Then there exists a nested set N := N(S,P) that distinguishes all profiles in P and contains
only separations which are good for P .

Moreover, this set N can be chosen so that if S ′ is a submodular separation system
and ϕ : S → S ′ is an isomorphism of separation systems such that for all r, s ∈ S we have
that r ∨ s ∈ S if and only if ϕ(r) ∨ ϕ(s) ∈ S ′, then ϕ(N(S,P)) = N(S ′, ϕ(P)).

We remark that this nested set will also be needed in a subsequent paper [Alb23a].
Before we prove Theorem 5.8, let us make a few more remarks about its canonicity state-

ment. The definition of canonicity in Theorem 5.8 is weaker than the usual one, which re-
quires ϕ(N(S,P)) = N(S ′, ϕ(P)) for all isomorphisms of separation systems ϕ : S → S ′

and not just for those which preserve infima and suprema, as we do here. We need this stronger
assumption on the isomorphisms to make sure that the set of all good separations is invariant
under every such ϕ, i.e. if s ∈ S is a good separation for P and ϕ : S → S ′ is as above, then ϕ(s)
is a good separation for ϕ(P) and vice versa. Indeed, as the existence of infima and suprema is
preserved under every ϕ which satisfies the stronger assumptions, this in particular implies that
a separation s ∈ P is closely related to P if and only if ϕ(s) is closely related to ϕ(P ).

Proof of Theorem 5.8. We show by induction on |P| that for every nested set M of good
separations which satisfies that P ∩ M = P ′ ∩ M for all P, P ′ ∈ P there exists a nested
set N(S,P) ⊆ SM which distinguishes P and is good for P . Moreover, this set will be canon-
ical in the above sense if M is canonical in that sense. With M := ∅ this clearly implies the
assertion.

So let some such set M be given. If |P| ⩽ 1, then N := ∅ is a valid choice. So we may
assume that |P| > 1 and that the assertion holds for all sets P ′ with |P ′| < |P|.

Set N ′ := {rP : P ∈ P and EP ̸= ∅}. By Lemma 5.7 the set N ′ is nested. Moreover, N ′

consists only of separations that are good for P and is clearly an invariant of S , P and M under
all isomorphisms that preserve infima and suprema. Let P ′ ⊆ P be the set of all profiles P ∈ P
with empty EP , and let M ′ := M ∪N ′. Note that, by construction, N ′ distinguishes all profiles
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in P \P ′ from all other profiles in P . Moreover, rP ∈ P ′ for all P ∈ P \P ′ and P ′ ∈ P ′, which
implies that P ∩M ′ = P ′ ∩M ′ for all P ′ ∈ P ′.

Since |P ′| < |P| by Lemma 5.5, we can apply the induction hypothesis to P ′ and M ′ to
obtain a nested set N ′′ that distinguishes P ′ well and is an invariant of S , P ′ and M ′ in the
above sense. Since M ′ and P ′ themselves are invariants of M and P in the above sense, we have
that N ′ ∪N ′′ is the desired set.

We conclude this section with showing that one cannot strengthen Theorem 5.8 with regards
to the canonicity statement. More precisely, the following example describes a submodular
separation system and a set of profiles such that there is no nested set that distinguishes P ,
contains only good separations and is canonical in the usual (stronger) sense.
Example 5.9. Let V consists of the 20 grey points in Figure 5.1, and U be the universe of all
bipartitions of V , i.e. U contains (A,B) and (B,A) for each bipartition of V (compare [DO19]).
Further, let S be the separation system given by the 20 bipartitions of V outlined in Figure 5.1 to-
gether with {V,∅} and all their corner separations which do not distinguish P1 and P2. Here, P1

and P2 are the profiles one obtains by orienting every separation in S to the side that contains v1
or v2, respectively. It is straight forward to check that S is submodular and
that s1 ∨ r1 and s2 ∧ r2 are not in S .

s⃗1

r⃗1

u⃗1

w⃗1

s⃗2

r⃗2

w⃗2

u⃗2

y⃗1

x⃗1 x⃗2

y⃗2

P1 P2

v1 v2
a

b

Figure 5.1: A separation system and two profiles without a canonical good tree of tangles.

Consider the map ϕ : S → S that maps x1 and y1 to x2 and y2 , respectively, and every other
separation to its reflection that one obtains by mirroring on the vertical axis through a and b.
Then ϕ is an automorphism of separation systems since an automorphism only has to preserve
the partial order on S , and here x1 is the unique supremum of s1 and r1 in S even though it is
not their supremum s1 ∨ r1 in U (and analogously for y2 ).

It is straight forward to check that s1 ∧ w1 , y1 ∨ u1 , r2 ∨ u2 and x2 ∧ w2 are the only
separations in S that are good for P := {P1, P2}. But ϕ maps none of these separations to
another good separation. Hence, there is no nested set N that distinguishes P1 and P2, contains
only separations that are good for P , and satisfies ϕ′(N) = N for all automorphisms ϕ′ of S .

6. Outlook

The nested sets from Theorem 1.1 and Theorem 1.2 have the property that the inessential nodes
are too ‘small’ to be home to a tangle in that they are stars in F . However, we did not require
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the essential nodes to be ‘small’ in any sense. Indeed, if the separation system at hand comes
from a graph G, then it is not too difficult to see that the nested set N from Theorem 1.1 and 1.2
directly translates to a tree-decomposition of G, and the essential parts of that decomposition
might contain a great portion of G with lots of vertices that do not really ‘belong’ to the tangle
living in that part. It would therefore be nice to know if it is possible to further refine the essential
nodes of N as well.

One natural approach would be to ask the essential nodes of N to be ‘maximal’ in the tangle
they are home to, while preserving the property that every inessential node ofN is a star inF . For
this note that the partial order onS induces a partial order on the set of all ‘proper’ stars [Die18b].
A star σ ⊆ S is proper if for every distinct s, r ∈ σ the relation s ⩽ r is the only one, i.e. s ̸⩽ r ,
s ̸⩾ r and s ̸⩾ r . For two proper stars σ, τ ⊆ S we have σ ⩽ τ if and only if for every s ∈ σ
there exists some r ∈ τ such that s ⩽ r . A proper star in S is maximal in a profile P of S if it
is a maximal element in the set of all proper stars in P .

While it is not true that the essential nodes of the nested set N(S,P) from Construction 4.1
can be refined in that way [Alb23b], we will show in [Alb23a] that good tree sets indeed always
admit such refinements. More precisely, if S is a submodular separation system inside some
distributive universe, then it is possible to refine every tangle-distinguishing tree set which is
good for the set of all F-tangles so that all its inessential nodes are stars in F , and all its essential
nodes are maximal in the tangle living at them [Alb23a].

Moreover, we will show a stronger statement for separations systems coming from graphs
which will circumvent the following problem. Let G be some graph and k ∈ N, and let σ
be an essential node of a tree set Ñ inside Sk. Then one can always refine σ with the rather
naive star which contains all small separations of the form (A, V (G)), where the small sides A
cover

⋂
(C,D)∈σ D. The arising star σ′ will then be maximal in the tangle living at it, and all newly

arising inessential nodes will be of the form {(V (G), A)} and hence be co-small. However,
in doing so, we have not gained any information about the graph G. Indeed, if we compare
the two tree-decompositions corresponding to Ñ and its refinement described above, then the
essential parts corresponding to σ and σ′ will be the same. Ideally, though, we would like to
make the essential parts as small as possible, so we are more interested in essential stars whose
interior

⋂
(A,B)∈σ′ B is as small as possible. In [Alb23a] we show that such refinements always

exist2:
Theorem 6.1. Let G be a graph, k ∈ N, and let F be a friendly set of stars in Sk (G). Further,
let Ñ ⊆ Sk(G) be a nested set of separations that distinguishes the all the F-tangles of Sk(G)
so that every separation in Ñ efficiently distinguishes a pair of F-tangles of Sk(G). Then there
exists a nested set N ⊆ Sk(G) with Ñ ⊆ N such that

(i) every inessential node of N is a star in F;

(ii) the interior of every essential node of N is of smallest size among all the exclusive stars
contained in the F-tangle living at that node.

Note that applying Theorem 6.1 to the tree set from [CDHH16] yields that there exists a
canonical tree set which can be refined so that both its essential and inessential nodes are small.

2The problem of refining essential stars in graphs was already addressed by Erde [Erd17]. Theorem 6.1 strength-
ens his result.
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