UC Irvine
ICS Technical Reports

Title

The planning approach to interactive problem solving and the travelling salesman
problem

Permalink
https://escholarship.org/uc/item/0pt9b0Ow(g
Author

Howden, William E.

Publication Date
1972

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0pt9b0wq
https://escholarship.org
http://www.cdlib.org/

1

THE PLANNING APEROACH
TO INTERACTIVE PROBLEM SOLVING
AND THE TRAVELLING SALESMAN PROBLEM
_ by

William E. Howden

Nofice: This Material
may be protected
by Copyright Law

(Title 17 u.S.C.)

TECHNICAL REPORT #20 - AUGUST 1972

CONTENTS

1. Introduction

2. Internal Date Structure
3. Display File Structure
4., Subproblem So]ﬁers
5. Karp's Dynamic ?rogramming Subproblem Solver
6. Lin's and Croes' Heuristic Subproblem Solvers
7. System Commands and Algorithms
(a) Display Comménds
(b) Solution Process Commands
(c) CSUB Algorithms '
(d) CSUB and Exténsion Interséction
(e) CSYNTH Algorithm
8. Sample Problems and Problem Input
9. The South American Travelling Salesman Problem
10. The Fraﬁée, Spafn and Ita]y‘Trave11ing Salesman Problem
11. fhe Eire Travelling Salesman Problem o |
12. Conclusions -
(é) Communication Medium
(b) Psychological Advantages
(&) Le '
(d)
(
(f

Learning Environment

Combinatorial Tool

(¢

)
)
) System Limitations and Possible Extensions _
)

Summary

Appendix I.

Cfty Coordinate Pairs for the Three Experiments

Appendix IT

Frame Numbers for Display Information

Appendix ITI
. hTﬁe Karp Solver: CKSOL
Appendix IV |
| The Lin and Croes Solvers CLSOL and CCSOL

Appendix V

System Commands and Solution and Display Utility Routines

- References

1. Introduction

The purpose of this report 15 to describe an interactive problem so]vtng
system based on the ideas of planning developed and explained in (1). In
particu]ar, thevsystem can be used to interactively construct sb]utions to
- Euclidian travelling salesman prob]ems The goals of the research described
here were: (i) to examine how the notions of p1ann1ng in (1) could be used to _
construct a system in which the user can have and try out genera] or abstract
~ideas for a so]ut1on and (11) to assess the va]ue of the approach as a method
for reducing the combinatorial computation requirements for the trave1]1ng
salesman problem by allowing the user to d1rect or plan the computat1ona1
t_activities of the machine.

| The report begins by describing the internal data structure of the :‘
system. This consists of a tree of subproblems which the user constructs
through the use of a display and a RAND Tablet Pen. "Bottom level" sub-
problems in the tree are sub-TSP problems which contain subsets of the
original set of cities. "Intermediate and higher level" subprob]ems are
abstract trave111ng salesman prob]ems for which the cities are transforma-
tions of Tower 1eve1 subproblems into a new space of cities.

The subproblem solvers are then descr1bed The user operates the
system by creating, deleting and solving subprob]ems At any time he'can
request that some created subprob]em be solved by one of the subproblem
solvers. He can also cause the "synthesis" of all the subproblem solutions

in some tree of subproblems through the use of a synthesis command,

Because the system is used for»Euc]idian.problems, subproblem so]utions;
synthesized solutions, subproblem definitions, and subproblem and city names
can all be conveniently displayed and referenced with a graphics console
provided with a RAND Tablet. The next section of the repcrt describes
some of the commands available to the user. Interesting features of some of

the command algorithms are described in some détai].

The following sections contain protocols or "traces" of actual

' prob]em so]ving sessions for three different problems. Replicas of the

d1sp1ays wh1ch ex1sted during the solution process are included to he]p give

. a clear descr1pt1on of the 1nterp]ay between the users so]ut1on 1deas, his

ab111ty to express them to the machine in the system, and the corresponding

~action taken by the mach1ne

The report conc]udes with a summary of our experience with the system.

We discuss how the system achieves the goals mentioned above and some of the

systent1imitations which were discovered.

. Appendices contain documented listings of the system programs.

" 2. Interna] Data Structure

Reca]] that in the R-Plan formalism for subprob]em or p]ann1ng proolem
so]v.ng, so]ut1on structure consists of a tree of subprob1em 'non- term1na1s .
Each non- term1na1 has an intentional and an extens1ona] def1n1t:on as well as
certain computed propert1es Intent1ona1 def1n1t1ons are descriptions of
subprob]ems whose so]ut1ons are "p1eces" of graph- theoret1c or combinatorial
representations of so]ut1ons. Extensional def1n1t1ons are subprob]em so1ut1ons

and consist of two parts: (i) a list of the "objects" (terminals or non-

term1na1s in the R- Plan) in the solution and (ii) a structural description

- of the re]ationships,between the objects which bind them into graph-theoretic

or combinatorial solution pieces. For a high level non-terminal, the structuhe
binding the objects in its extension will be a high level description of‘cer-
tain aspects of the solution to the whole probtem.

The structural part of an extension can be extended to include "global™
as well as "local" structure. Global structure relates any of the objetts in

the subtree rooted at a non-terminal and not just those in the extension of

5

that non—fermina]. (E.g.it might relate the‘objects in the extensions
of the objects in the extension bf the non-terminal, and so oh.)

The (computed) prbperties of a non—termina],wi]] probably include a
name or label for the non-terminal. In a standard phrése étructuré grammar,
the name of a non-terminal is also its intentional definition (e.g.verb). FOT;'
both picture language and problem solving non-terminal struétures, it 1is
important that each non-terminal have a unique name or label as wef] as its
1ntentioha1 definitioﬁ.

The internal data structure for the interactive TSP system is mocelled
- very alosely after.the general R-Plan subproblem structure. We shall assume
a'familiarity with the R-Plan notions in describing the TSP system. |

(a) Intentional Definitions. Subproblem specifications in this system
consist of two parts: polygons and subﬁrob]em end points or boundary

points.

In describing (creating) a subproblem in the system the user draws a
polygon on the disb]ay screen and‘suggests two end points. The subproblem is
then to construct a path from one endpoint to the other which passes through
all of the cities in the enclosing polygon. If the polygon contains another
polygon, then that polygon (non-terminal) is treatéd as a "super-city"
situated at the centroid of the centroids of its enclosed cities or non-
terminals. The centfoid of a city (terminal) is just its coordinates in the
plane. A city is enclosed in a polygon if its coordinates are geometrically
1nsfde the po]ygon’and if it is not enc]oéedlin some other polygon which is
jtself enclosed inside the original polygon.

Note that non-terminal intentions describe linear TSP's and not circular
TSP's. A linear TSP consists of the request to find a shortest path through
a set of cities (perhaps containing some "“super cities") which starts at one

given endpoint and ends at another. If the two endpoints are the same city

6

then'weihave a circﬁ]ar fSP. Except at the top 1eve1, all subproblem solutions
Wi]] be linear and will hence be defined by both polygons and endpoint pairs.
(The endpoints are called subproblem boundary points because they are the
parts of a subsolution which can be joined to other subsolution endpoints
in order to synthesize an entire solution.)

We note at this point that the solution to subproblems cannot be
accomplished by constructing a circular tour which 1is then broken in the most

appropriate place to join it with other subtours. Consider the following

example:
/."""’-—-" - - - - —~\
/
/] » » PY SP]
i
/ |
' /
v ® []
~ * .’/
~ _ e e e e e - - —
. o
Figure 1.

Suppose a circular optimal tour is constructed for SP1 (subproblem 1)

(Figure 2).

~
(-]
5
7/

Figure 2.
‘There is no single cut in SP1 which can be used to merge the SPI
solution with other subproblem solutions in order to form the optimal tota:i

problem solutjon (Figure 3).

— - - -—
e —— —_—

"Figure 3.

In forming ideas for subproblems the user 1s.expected to contribute
both thé polygon and the endpoints. The polygon results from his having.
recognized a certain pattern 1n.the problem. The endpoints choice results
from his understanding of the:context of the subproblem: the way in which
this subproblem will be merged or joined with other subproblems and their
solutions. We note that it is possible to imagine a system in which sub-
problems endpoints are chosen automatica11y by the system according to some
heuristic. Experience has shown, however, that the obvious choice for such
a heuristic does not work and that choosing alternative subproblem endpoints
is as important to the user in suggesting problem ideas as choosing enclosing
polygons.

The two different parts of non-terminal intention (i.e. subbrob]em
definition) can be defined at different times during the solution process.

In using the system it is customary to define the enclosing polygons at one
boint, and to only name the subproblem endpoints when asking for a subproblem
solution to the subproblem associated with some polygon.

&b) Extensional Definitions. Since each terminal and non-terminal
in the subproblem tree has a unique name a set of objects (terminals or
non-terminals) can be denéted by a 1ist of the object names. The names of

terminals are city names- and the names of non-terminals are subproblem names,

The structural part of a non-terminal can also be represented by a
1ist of object names. Since a solution to a TSP problem or subproblem is an
ordering of objects, it can be represented by a list of the object names

written in the order of the solution. For linear tours or sclutions, each

object's name appears exactly once in this list. For circular tours each

object's name appears exactly once except for the first object name which

will be the same as the Tlast objeét néme. Local structural descriptions

will be a 1ist of the objects in some non;terminéTs extension. In this system
global structural descriptions are synthesized solutions.. For a given tree
of non-terminals/terminals rooted at some non-terminal, é global structural
deséription will be the largest solution synthesis which can be formed at
that point in the solution process. If every subproblem (non-terminal) in

the tfee has been solved, the solution synthesis will be a list of cities.

If some non-terminal has not been solved, it will appear in the global struc-
tural 1isf at the appropriate point.and will be the "representative" for all
the cities at its term{na1 nodes, whose local ordering has yet to‘be
determined.

(c) Object Properties. Every terminal and non-terminal has a name, a
centroid, a terminal property, and a_bé]ongs propérty. The terminal property
of an object is a f]ég which.signifies whether or not the object is a terminal
or a non-terminal. The belongs property is the name of the object whose
extension includes this object. |

Every object "belongs" to exactly one other object except the top level
object whose name is UNIV. This implies that extensions cannot intersect.
Our experience with the system does not indicate that it is necessary to
become involved in the difficult prob]éms that would have to be solved in
the construction of a system which allowed overlapping extensions. The

design of the command structure (see the description of the CSUB command) is

such that overlaps cannot be constructed - deliberately or otherwise. .

Initially, the subprob]em? or solution phrase tree, consists of a
simple tree of one non-terminal node UNIV and as hany terminal nodes as
there are cities. Initially then, each terminal belongs to UNIV. As
subproblems are created and destroyed, the altered extension memberships
are automatically altered and updated by the system. When an action has
side effects (e.g. the deletion of a subproblem from an extension will make
the structural part of that non—terminé] - as well as the list of objects -
invalid) these are also processed automatically.

(d) LISP Data Structure. The internal data structure is implemented
using LISP atoms, properties and lists. Each terminal or non-terminal is
a LISP atom. Intentional definitions, extensiona] definitions, non-terminal
properties and labels are all properties of atoms. The name of an object
is the print name of the associated atom. The LISP system proved to be very
well suited to the implementation of our interactive system.

(e) Solution Status. In addition to the subproblem data structure -
and various system tables (e.g. the inter-city distance matrix) a §§é§g§_ygrg

is kept. The idea of a status word is to explicitly record pertinent infor-

. mation about the state of the solution process which may be awkward or

impossible to retrieVe‘from the subproblem data structure. In the present
system it was necessary to store only one status item called the context. The
context is the name of the present non-terminal which is considered to be

the problem so1v1ngvun1verse. Initially the context is UNIV and.subprob1ems
can be created from any of the objects in the extension of UNIV (thus. -
automatica]iy changing this extension). If the user wishes to create a sub-
problem (non—termina1)'wh1ch is to be a subproblem of some other non-terminal
than UNIV, then he must change the context to that other non—termiha]. At

resent this is the only "context operation". No other operations depend on
p

the present context. The feature is necessary for subproblem creation in order

e S

10
to determine‘thch subprqb]gm in a ngs# of subprqb]émsvfs being referred to
by an enc]osfng polygon: the subproblem in the extension of the present
context. »

Other useful status information would be records of the state of the
present dispiay picture. Since the display files and data structures are
separate, and it is not possible to examine the display file to determine
the present picture, this would be helpful when features of the display are
changed automatically by changes in the data structure . Since this
feature was not necessary for the purposes of our experiments, it and other

status features were not implemented.

3. Display File Structure
We have mentioned above thét the display file structure and the problem

solving data structure are separate. The display file structure is stored
and manipulated by the disp]ay mini-computer operating system. The problem
data structure is created in the PDP-10 LISP system. A number of display
commands will change the display file structure. These commands can be
jssued directly by the user or can be issued automatically by certain problem
solving commands.

._The disp]ayiinformation is organized on different frames. Different
aspects of the display can therefore be erased or displayed without altering
‘others. For example, one frame is used to display cities, another sub-
problem potygons, another subproblem solutions, another subproblem names,
and so on. The features of the display structure and its interface with the
internal data structure result from the straighfforward use of the IMLAC IMSYS

monitor (2) and the LISP graphics package (3).

4, Subproblem Solvers

The interactive system has been characterized in terms of the user

- 1

man1pu1at10n of plans through the creat1on, solution, alteration, etc. of
subproblems. There are presently three subproblem solving processes in the
system which may be invoked by the user. They can be graded in terms of their
power and their cost. The first is a non-heuristic procedure which produces
guaranteed optimal solutions but which is therefore very expensive to use.

The second is a very powerful heuristic procedure which is considerably
cheaper to use.i The third is a relatively weak but very cheap heuristie

procedure.

5. The Karp Dynamic Programming Subproblem Solver.

The non-heuristic subproblem solver is based on a slight modffication

of Held and Karp's Dynamic Programming approach described in (4). The
modifications are those which were required to use the method for subprob]em
solving (i.e. construct Tinear solutions for Tinear problems) as well as for
conventional TSP problem solving (i.e, produce circular tours%.

The approach is attractive since it compares well with other non-
heuristic procedures (5) and its computation time and storage requirements
are deterministic. The user knows exactly what to expect from it in an
interactive s1tuation. Experieﬁce shows that it can be conveniently used for
up to 12-15 cities in an interactive environment. The computation time
(and possibly storage requirements) are prohibitive for larger problems.

For technical reasons (INUM and FIXNUM sizes in the PDP-10 LISP) the maximum
number of cities the solver will handle in our system is 12.

(a) Recursive Formulation. The interpretation of the method
implemented in our systeﬁ is based on the following recursive formulation
of the linear tour travelling sé]esman problem.

Assume that_we wish to go from city 1 to city n. Then the length of

the minimum path, MINP , is given by (') and (ii).

12

(i) -MINP = min ,{F(”'2,3,...,n-1j,h)+c
he{2,3,...on-F nont

where ch 0 is the cost of the path from city n directly to city n.

In the Euclidian TSP, C; i is simply the Euclidian distance from city i to

city J.
ci h for S={§}

min {F(s~h,i)¥c; .} otherwise
. i,h
i€ S~h

(ii) F(S,h) =

F(S,h) is the minimum path from city 1, through the cities in S and
~ending at city h. | |
A simple recursive 1mp1ehentation of this recursive representationlwould
be grossly inefficient. A basic idea in the dynamic programming approach is
to avoid recomputing previously computed information during the recursive
process. Since it is'pQSSible to arrive at the computation of many F(S,h)'s
along different paths in the recursion process, these values must be saved for
possible future reference. Karp's two phase approach was adopted in which
the values of F(S,h) were first computed for all possible choices of (S,h)
and then used to construct the optimal path. Whenever a value for some
F(S,H) is required during the computafion process %n the first stage, the
table of presently computed values is first checked before beginning a new
recursion on that F(s,h). A simple recursive process in which‘values were
not saved or referenced in phase one would require on the order of (n-2)1
computations of F. When values are saved and referenced the number is of the
order (n-])(n-2)2n'3.
Once the table of values of F(S,h) has been computed, the following
formulae can.be used to construct the optimal path. The construction pro-

ceeds in typical Dynamic Programming fashion: by working backwards from

the last node in the path.

13
Let C be the path length of the optimal path. Then a permutation

(1,1 s in_],'n) is optimal (i.e, represents the optimal path) if

2, 135 LRCIE]
and only if: - e

(111) ¢ = F ({ips.een 1,43 i"‘])+cin-1’"

and for 2< p < n-2,
() F ({paigeeenipaipgd s 104)

= F ({i,0inseeasi } i) C s,
{ 23) p} P | 'lp 1p+_l

F1r§t i1 1s determined, then Py and so on.

(b) Storage of Intermediate Values of F. A limiting factor in the
application of the algorithm is the storage required for the saved values:
of F(S,h). Since there are (E) ways of selecting an S with k elements and

k ways of choosing h from S, there are

n -2 - n-3
Z (M) k = (-2) Z (")
k=1 k=0

= (n-2) on-3 by the binomial theorem.
different possible choices of (S,h). (We eliminate the choice of either tﬁe
first or last elements (i.e. the endpoint cities) for § since these are in
all solution permutations in the same p1acés).

In the first phase of the solution process it is necessary that the
storage and lookup of values of F(S,h) be reasdnab1y efficient. For this
reason an indexing scheme for the different possible chofces of (S,h) was
devised to allow the values of F(S,hj to be stored in a simple linear vector.

The scheme for indexing the (S?h) depends on the canonical representa-
tions for the (S,h)'s.. The canonical representation of an (S,h) is constructed

by listing the elements of S in order of magnitude (the use of this procedure

requires the city names be mapped 1 to 1 into a 1ist of consecutive integers)

14

and then under]ining the element h.
, Eg; The canonical representation for (S,h)
= ({5426} ,4) is 2456.

The pairs (S,h) (and hence the values for the F(S,h)'s) are indexed
first on the basis of the cardiﬁa]ity of S, then on the Texicographical |
ordering of all sets S of that cardinality, and then on the position of
the underlined element 1n-the canonical representation of (s,h). Before
describing the process in detail we wi]] give an example. Suppose the
humber of cities n in the problem is 6. Then if we store all (s,h)'s for S
with cardinality between 2 and 4, the indexjng process will order the values
of F(S,h)lin the téb]e according to the ordering of the cannonical representa-

tions of all choices of (S;h)'s in figure 4.

23 | 234
23 235
24 2%
24 235
25 | 245
25 o 245
34 ' 245
34 345
35 345
35 | 345
45 2345
45 ' 2345
23 2345
234 | » 2345

Figure 4.

15

The size of the table when values of F(S;h) are not stored for

singleton sets S is

n#2 n-2

=2 ~ =1

= (n-2)2n'3 - (n-2) by the binomial theorem.
The indexing functién for the table will be described in three parts.
(i) Level Factor. The entries for.all (S,h)'s with LEV elements begins
at poéition

LEV-1

(n;Z)i "~ where n is the total number of

-
1
oM

i
cities.

" (ii) Selection Factor. Within a level (the set o%ﬂa11 entries for
(S,h)'s for which S has a constant cardinality) the entries are ordered
lexicographically. Suppose di’ i=1,2,...,LEV,are the city numbers in S listed
in canonical order. -If we define d0 = 1, then the entries for the pair (S,h)

where S consists of the LEV city numbers d], d2, ceus dLEV will begin at

A ¥+ B where
LEV

- n-j-1
LV 2 %: o7 LEV-1).
di

(iii) Fixed City Factor. If p is the position of the underlined city,
. then the exact position of (Sh) where S has the LEV city numbers
dpy S

A+ B +p. p

d],dz,...,

In the CKSOL (create a Karp Solution) subproblem solution program,
the indexing process is optimized through the use of a table of binomial
coefficiénts and by only computing the different parts of the indexing

process as they are needed,

16

(c) Computat1on Time. Since the algorithm revolves around the storing

- and reading of values into and from the table of values for F(S,h) we would

- expect the computation time required to be related to the size of this

table. The basic operations required are additions and comparisons. The

number of each in the first phase is given by:

1 -l -3
(n-1) + Eg% k(k-1) (Z Y= (n-1) (n-2) 2n +(n-1).

The number of occurrences of each in the second phase is at most

n-1 ’
s7 k- - n{ns1)
k=2 k - 2 -.l .

Experience has indicated that our program requires less than a second
for a six city problem and 8 or 9 (CPU) seconds for a ten city problem.
Because of the deterministic nafure of the algorithm its computation time will
not vary from problem to problem.

Shen Lin has described a.technique for speeding up Karp's algorithm
for symmetric TSP's (4). Unfortunate1y the technique cannot be applied to -
the Tinear TSP é]gorithm.” For subproblems with n cities, Lin's algorithm
can be used to producé solutions in (for n even)

n/é ,
égg(g']) k computational cycles

whereas Karp's algorithm will operate in

e}
N

(2'2) k cyc]es.‘ It is easy to calculate that for

M

n in the range of interest,

n-2 _ n/2
n-2 : n-1
F=A) &) x

17
Other less elegant improvements (including bit-picking programming)

can be used to speed up our progrém but for our purposes it is not worth
the botherﬁ The important parts of the a1gorithm have been carefully coded
and the decrease in computation time would nof be important. Since computa-
tion time for the program grows exponéntia]]y, more clever coding is unlikely
to raise by more than one or two the number of cities which can be dealt
with within the response(times required in an interactive environment.
Experiments with a system in which the "exact" subproblem solver can deal
with several more cities are unlikely to suggest significantly different

conclusions.

6. The Lin and.Croés heuristic subproblem solvers.

Thé Lin and Croes procedures are "hill-climbing" algorithms. In the
hi]1—c11mbiﬁg approach a random initial solution is chosen and then
successively modified until a "better" solution is found. The algorithm
is then restarted at the better so]Utfon. When all possible modifications
from a fixed set of modifications have been tried, and no further improvement
in the solution can be accomplished, then a locally optimal solution has been
discovered. The modified solutions which can be produced from a solution
are called its neighbours. If the proceduré is applied to several differ-
ent randomly chosen initial solutions then the final solution for the problem
js the best locally optimal solution.

Two different hill-climbing approaches can be identified. The first,

" called steepest ascent (descent) requires that the best neighbour be chosen

at each step of the solution process. In this approach all of fhe neighbours
of a solution are considered before the procedure is restarted at a better

solution. In the random improvement approach the procedure is restarted as

soon as a better neighbour is found. In (6) Lin recommends the use of the

random improvement approach. In our subproblem solvers either approach

18

can be used but all of the experiments described'here wefe performed using
random improvement.

The Lin and Croes subproblem solvers are modifications of the
algorithms described in (6) and (7). The modifications are those required
to allow the approach to be applied to linear problems. Recall that any
linear solver can be used to solve an ordinary circular TSP by identifying
the first and last cities in the linear tour.

The Lin and Croes procedures are based on hi]]-c]imbing and reduction.
The reduction aspect of the procedures is described later in this section.

In the Lin subproblem solver, neighbours of linear tours are other

linear tours which can be obtained by removing any three links from a

‘tour and then rejoining the four "pieces" of tours to form some other

linear tour. There are 8 possible ways of rejoining a tour from which three
1inks have been removed so that the resulting structure is a Tinear tour.

One of these produces the original linear tour so that only seven possibilities

~need be considered. Suppose three links in a linear tour join cities i to

j+1, j to j+1 and k to k+1. The seven possible ways of constructing a new

linear tour when these links are removed are illustrated in figure 5.

b4
-4
!

" Figure 5: Breaking and Rejoining Subproblem Links.

Any 1inear tour which cannot be improved by removing k links and

ﬁhen fejoining the pieces to form a new linear tour is called a k-opt tour.
The Lin procedure operates by finding a succession of 3-opt tours. The
Croes procedufe, a weaker but faster subproblem solver, operates by finding
‘2—opt tours. Because a 2-opt approach does not allow for és many combinatorial
possibilities as a 3-opt approach, we would expect 3-opt tours to be better
than 2-opt tours. (3-opt tours will always be at least as good as 2-opt
tours since any k+1-opt tour is also a k-opt tour.) Experience indicates
this to be correct.

The re]ative importance of 2 and 3-opt tours is ii]ustrated in the
following definitions and theorems.

Definition. A tour is inversion optimal if no connected section of

the tour can be removed and reinserted at the same place in the reverse order
to produce a better tour.

Definition. A tour is insertion optimal if no connected section of

the tour can be removed, the break closed, and the section inserted at some
other point to produce a better tour.

Theorem A 2-opt tour is inversion optimal.

Theorem A 3-opt tour is both inversion and %nsertion optimal.

/In practice, successive 3-opt tours often have the same links. If
the same sequence of 3 cities appears in order in a number of 3-opt tours,
then a good heuristic is to reduce the size of the problem by removing the
middle city bf the sequence and then adjusting the distance matrix so fhat
the other two cities will always be neighbours in any solution to the re-
duced problem. This reduction process, recommended by Lin in (6) is
implemented in both our Lin and Croes subproblem solvers.

The Lin-and Croes procedures each go through a number of reduction

cycles. In a single reduction cycle a number of 3-opt (or 2-opt) tours

20

‘are produced. The problem is then reduced by removing cities with the
reduction process. For example, if a sequence of 3 cities abc (or cba)
appears'jn all of the 3-opt tours discovered in a reduction cycle, then

city b is removed from the best tour, the distance matrix altered so that

fhe distance from a to b is effectively -~ , and a new reduction cycle is
started on a shuffled permutation of the reduced best tour. After a pre-
scribed number of reduction cycles, a complete solution is reconstructed

from the final reduced tour. In order to reconstruct a total solution from

a reduced solution, a record must be kept of the cities which were removed,
and which cities they "followed" in the tour before reduction. Whenever a
cit& is removed from a tour, its name is stored 6n the "follows queue" for
the city in froﬁt of it. (The procedure for a linear tour is such that the
first and last cities are ﬁever removed). The reconstruction process involves
reinserting follows queues at the appropriate places in reduced tours. Since
a city in a follows queue may itself have a follows queue, the final solution
must be reconstructed in several stages.

Both the Lin and Croes solvers can be run with any number of reduction
cycles and with each reduction cycle requiring the'construction of any number
of 3-opt tours. Random initial tours are constructed by shuffling other
tours. The shuffling process is carried out through the use of a linear
congruential random number generator. |

In addition to reduction, Lin also describes a process for producing
“almost" 3-opt tours. The process was programmed into our subproblem solvers
but was not used in the experiments described 1éter in the report. Its
significance is related to certain parts of Lin's circular tour algorithm
which rely on the rotation of permutations representing circular tours.
Linear tours or solutions have fixed endpoints so that permutation rotations
do not result in identical tour solutions, as they do for circular tours.

The validity of the "almost" 3-opt process is related to this ability to

21

rotate cjrcu]ar tour representations and is not really useful when solving
Tinear problems. In general we found it necessary to fui]y understand and
then re-interpret Lin's approach in order to apply it to linear prob1éms..
The modifications that were required were more fundamental than those for
the modification of Karps algorithm.

The storage requirements for the Lin (or Croes) approach are relatively
modest. The role of the Lin procedure as a subproblem solver in our system,
however, required extra storage beyond that required when it is used as a
“stand-alone" solver. During reductioﬁ the intercity distance matrix is
altered by the Lin (Croes) procedures. ' Since the distance matrix is used
by other parts of the system, or by applications of the Lin procedure to
other subproblems, it is necessary to prevent its permanent destruction by
some routine during the interactive solution process. The easiest and
computationally most efficient so]utfon to this problem is to have a second,
temporary distance matrix in the system. The first thing the Lin and Croes
subproblem solvers do is to load this matrix with the distances for the
cities in the subbrob]em to be solved.

The computation time required for the Lin subsolver varies with the
problem under consideration. In general, all that can be said is that a 3-
opt “"check out" requires on the order of (g) computations. A check out
takes place when évery possible neighbour of a solution is constructed and no

better solution is discovered.

For our implementation, the 6 city problems mentioned earlier in
connection with the Karp procedure required an average .7 CPU seconds for a
Lin solution and .5 seconds for a Croes solution. The 10 city problems re-
quired 1.3 and .9 seconds. A1l three subproblem so1vefs produced the same
solutions for these problems. The differences between the algorithms become
really significant for larger problems and can be observed in the figures |

given for the examples in the following sections. In all of the.samp]e

22

problems described in this report the Lin and Croes procedures were run
‘ at their default settings of 2 reduction cycles and 2 k-opts per reduction

cycle.

7. System Commands and Algorithms
In addition to the subproblem solvers, several other interesting
algorithms are used in the interactive system. In this section we will first

describe the basic sclution commands. The algorithms which are used to carry

out several of these commands will then be described in some detail.
(a) Display Commands. Display commands come in pairs of erase and
| . display commands. These commands can be given either directly by the user

or indirectly by issuing a command which calls one or more of these commands.

(1) DCITIES, ECITIES will cause the points representing the cities
on the plane to be displayed or erased. | i

(i1) DSUB(X), DSUBS, ESUBS will cause po]yéon boundaries defining
subproblems to be erased and displayed. Any display command requiring an
argument can be either given the name of an object or a *. If the argument
is-a * the routine assumes the user will identify the object argument by
pointing at the object on the display. When an argument is a *, the routine
for reading thé RAND pen and searching through the data structure is activated.

(ii1) DSOL(X), DSOLS, ESOLS, will cause subproblem solutions
to be displayed and erased.

(iv) DSYNTH(X), DSYNTHS, ESYNTHS will cause synthesized solutions
fo be displayed and eraséd.

(v) DSUBNAMES, DCITYNAMES, ESUBNAMES, ECITYNAMES, will cause
displayed subproblems and cities to be labelled with their object names.

The erase routines will erase these labels.

e R o

23

(vi) EGARBAGE will cause miscellaneous other displayed information
| to all be erased.

(b) Solution Process Commands . Thése commands automatically call certain
display commands. Theée'commands generally come in pairs of create and kill command

(1) CSUB(X), KSUB(X) will allow the creation of or will |

ki1l a subprobliem. For the CSUB command if X is a * the sy;tem'w111 auto-
matically generate a.name for the created subproblem. Otherwise the user
‘sugbested name is used. For the KSUB command the same conventions afe used
as for the dispiay commands;

When the CSUB command is initiated the user is expected to draw a
polygon on the dispiay screen using the RAND pen. The computer then deter-
mines which terminals and/or non-terﬁina]s in the preseﬁt context have
centroids 1nsfde this polygon. These objécts are removed from the context non-
terminals extension and become the extension objects of the new subproblem
non-terminal. The new non-terminal is then added to the (diminished) extension

of the context non-terminal.

- When a subproblem or non-terminal is killed, it is removed from the
subproblem structure. In particular, if is removed from the extension of
the non-terminal to which it be]ongs. The objects- in the extension of the
killed non-terminal are then added to the extension of the non-terminal to which
the killed non-terminal belonged. During both cregtion and killing,any
affecfed solution structures (e.g. subproblem solutions or synthes1ied
solutions) are automatically deleted since they are no Tonger valid. Recall
that these solution structures exist as parts of extensions of non-terminals.

(ii) CKSOL(X),CLSOL(X),CLSOL(X),KSOL(X). The first three of these

commands will create subproﬁ]em solutions to the named subproblems using the
Karp, Lin or Croes subproblem solvers. KSOL will delete or kill the so]utioh
to a named subproblem. These commands provide real time feedback toithe user

by calling appropriate display commands. A1l of the subproblem so]vérs will

SR T
24
create circular tours for the top level subproblem UNIV and Tinear solutions
to all other subproblems. When solving Tinear problems they will request
endpoints or subproblem boundary points to be specified. The user can
. then point to the two subprobiem objects he wishes to be thekpath endpoints
in the subproblem solution. A
(1ii) CSYNTH(X), KSYNTH(X) will create and ki1l a solutions
synthesié. CSYNTH(X) will snythesize the solutions to the subprob]ém X,
the subprob]ems-of.X (i.e. the structure of the non-terminal objects in the
extension of X), the subprob]éms of some subproblem of X, and so on. KSYNTH
will delete a solution synthesis (i.e. delete the global structure) from a
non-terminal. | |

(c) CSUB‘Algorithms. The operation of CSUB requires algorithms
to read'points from the RAND tablet pen, create a subproblem polygon from these
points, and to then search through the non-terminal tree to determine which
centroids of the objects in the extension of the present context lie inside
the polygon. With the exception of the algorithm for determining when a
centroid lies inside a polygon these algorithms are technical and uninteresting
in nature. The exception is described below.

One technique used in determining if a point.p=(x,y)']1es inside or
outside a simple closed curve C.(eg. a polygon) is to draw a half infinite Tine
h from p to (X,®) and count the number of times c that h crosses C. If p is
inside (we might expect that c will always be odd and that if ¢ is even
p will be outside C. The intuitive argument for this réasoning is illustrated
in figure 6. |

Unfo%tunate]y this simple decision rule, discovered independently by
the author and others,fails in several situations. The difficulties arise
when the 1ine h does not cross some portion of the curve but is tangent to it.

For the case where C is a sequence of straight line segments this occurs when

p Ties beneath a corner (vertex) or a vertical line segment. In the following

25

discussion we will assume that C is a collection of line segments although
all of the arguments can be extended for continuous (in the derivative)

curves C.

| c=3 p inside C _ c=2 p outside C

Figure 6.

Thglfq]1qwing gxamp1gs i]]us?rate that no simple variation of the

~ decision rule will corréct its deficiencies;

Example 1.

Suppose we decide to count 1 whenever h crosses a vertical line seg-
ment and that the line segments in C (i.e. the sections of C between adjacent
corner points) are ordered in clockwise faéhion. Each corner point "belongs"
to the following line segment. The values of c for the points in figure 7
are 3 and 2 (odd and even) and yet in both cases piis inside C. Clearly

counting zero instead of 1 will not change.the situation.

c=3 o c=2

Figure 7.

Example 2.~

A similar situation arises in the treatment of corner points alone.
Suppose, as in example 1, that a corner point is considered to be]ong to the
.fo110wing line. The values for c in the pointé in figure 8 are both 1 and in

one case p is inside C and in the othef case outside C.

g ==

Figure 8.

It is easy to see that no simple counting variation of the ways of
treating corner points and vertical line segments illustrated in the
examples will resolve the problems. Similar examples can be produced when
corners are considered to belong to both segments or of different counts c
are used in the exceptional situations. We introduce an approach here which

can be used to solve these problems and construct a general purpose algorithm.

27

The approach is based on the following obserVation. Suppose a point p
1ies below a corner. Then the correct count for p with respect to that corner

is the same as for a point p' which Ties one unit to the right of p. This

observation is easy to prove for the discrete case where the curves are in

fact finite sequences of points on a grid. For the theoretical or continuous

case it requires that C be Tocally connected. It is possible to convince

oneself of the validity of this'observation by considering the examples in

fiéure 9. | ,
_ I {
_ i }
{ i |
|
-) }
|] i }
3 3

Figure 9.
In practice the algorithm must be able to deal with the case where
one of the line segméhts forming a corner is vertical. The operation of the
algorithm is such.that this can only be the second line segment.. When this
occurs the vertical line segment is replaced by a line segment extending from
the corner to the second endpoint of the next non-vertical in line segment.

The reasoning behind this process can be understood on the basis of the

illustrations in figure 10.

\
\

— N e -

[SRR —
Ogg.-—_-—. ————— ———

,_____
©
=

Figure 10.

: 28
The algorithm operates as follows:

(1) Each Tine segmeht h of C is considered in turn. If h is a
vertical line segment the next segment is chosen.

(ii) If p = (x,y), the point in question, is on h the decision has
~ been resolved.

(iii) Suppose the endpoints of h are (x],y]) and'(xz,yz).
If.x] <X<Xy th§n the twoepoint fofm for a Tine is used to calculate the y-
coordinate z of the point (x,z) on h. Ify >:z a count ¢ is incremented
by 1.' The algorithm continues with the next segment on C ﬁn]ess all segments
have been considered.

(iv) If (x < X7 and X < x2) or (x = X and x > x2) then the next
line segment, unless all segments have been considered, is selected.

(v) If X=Xo (i.e. x is directly below the second vertex defining

h) then:

(1) The next non-vertical Tine segment h' in C is chosen. If
| there are no remaining non-vertical line segments the
algorithm reinitializes the Tlist of remaining line segments
to C for this one step. After é non-vertical line segment
is found C is considered to have been exhausted for all other
steps in the algorithm.
| (2) One unit is added to the x-coordinate of p and the line segment
h" which extends from (x2,y2) to the second endpoint
(xé R yé) of h' is formed. The count is now modified for the
relationship between the modified point p' = (x',y') = (x+1,y)

and the two line segments h and h". If Xy sx'sx2 or xzsx'sx]

than the point (x',z) on h is calculated. If y' < Z then one
is added to the count. If X, < x'sxé or xé < x'sx2 then the
point (x',2')on n" is calculated. Ify' < 2 then one is

added to the count.

29
(vi) If all of the segments in C‘have been considered after the
completion of any step then the algorithm returns a positive or negative

resﬁ]t depending on whethef'the current count is odd or even.

The_pfoof fhat this a]gorithm fs correct depends on the discrete case
ana]ogy of {the Jordan Curve Theorem and the fo]]owfng theorem. The
following theorem is the basis for the "point adjustment" process.

Theorem Suppose the "line" h is a finite sequence of discrete points on a

grid G and that p is a point on a grid G' at.1east as fine as G. Suppose -

that h does not have slope zero. Then if

(i) p=(x,y) is to the left of h, p'=(x+1,y) is either to the left
or on h. |

(ii) p=(x,y) is.to the right of h, p'=(x+1,y) is eitﬁer to the right
or on h.

The theorem guarantees that a point will not fhop over" a line when it
is moved one point to the right. The continuous form of the theorem is:
Theorem -Suppose p=(x,y) lies to the left of a curve segment C. Then
there exists € > o such that if

(i) p(x,y) is to the left of C, so is p'=(x+é,y)

(ii) p (x,y) is to the right of C, so is p'=(x+€ ,y).

(d) CSUB and extension intersection. We note here an important
side effect of the CSUB é]gorithm that results when objects are removed
from the context non-terminals extension and added to the extgnsion of the

new non-terminal. Because these objects are removed from the extension at

the time that the new non-terminal is created the intersection problem is

avoided. Two non-terminals intersect if they have extension objects in

common. In our system two non-terminals can never intersect. This avoids
a tangle of difficult problems which would otherwise arise during solution
synthesis. In some problem solving situations it may be necessary to allow

intersection (Ef,fhe discussion of subproblem independence in (5)). In

30
the related algorithms for cluster detection the use of over1apping "non-
terminals" appears to help avoid the "migration problem" (6).A Our
present experienée'With'the' TSP system:indicates that any desirable facility
which might require intersections can be more easiiy implemented in some
alternative way. | |

| (e) CSYNTH algorithm. It might appear, at first glance, that all CSYNTH
needed to do was to simply join together the Towest level subprobliem '

solutions in the order indicated by the subproblem solutions in the higher
levels of the subproblem tree. This ié not so; consider the example in

figure 11,

Figure 11.

The 'small circles are the centroids of non-terminals A and B and the
dotted lines indicate the non-terminal structure (i.e. subproblem solution
order) relating A and B as extensional objects in the next higher level
subproblem. When A was solved it is 1ikely that there was no information
to determine whether the solution ran from a to b or from b to a. Hence,
depénding on whether a is to be joined to ¢ or to d or whether b is to be

joined to ¢ or to d, it may be necessary to reverse the direction of the
linear subtour between a and b. CSYNTH presently uses a simple heuristic
to determine how to choose which endpoints in adjacent subso]ﬁtions shou]d
be matched when the subsolutions are joined together. On the basis of this
heuristic it can determine if a subsolution tour must be reversed before it

is joined to other subsolution tours.

31

The CSYNTH anqrithm operates by first.gqing through the subproblem
tree to be synthesized and reversing the direction of any subproblem list
of objects that is in the wrong order. For example, if the solution to A
in figure 11 runs from a to b yet the heuristic indicates that the
synthesis should be of the form .

| b,...58,Cs...,d
then the subso]uﬁion is reversed. When all subsolutions at all levels are
in the correct order they are synthesized.

The synthesis heuristic for determining which pair of endpoints in
adjacent solutions should be matched - and hence for determining whether
a subsolution must be reversed - has consistantly agreed with the users
intuition. It is defined as follows. Suppose B is the non-terminal whose
selution direction must be checked.

(i) Let A be the first non-termina]»before B and C the first non-
terminal after B in the subsolution to the subproblem to which B belongs.
Let Cp and Cg be the centroids of A and B and Cy and cy the centroids in
the first and last objects in the subsolution tﬂ B. Let DIS be the intercity
distance function. If

DIS(c < DIS(c

A’Cy C) a0ty C)
then reverse the direction of the subproblem list for B. .

)+DIS(cX,c)+DIS(cy,c
(ii) If there is no non-terminal before (after) B in the subsolution

to which B belongs (recall that subproblem solutions are linear) then let

A (C) be the first non-terminal before (after) the non-terminal to which

B belongs in the subproblem solution which includes B. If A or C is still

not defined the process is tried one step higher up in the subproblem tree.

(See example below.)

32

(iii) If there is no non-terminal before B at any level in the
subproblem tree being synthesized, then the following rule fpr re-ordering
is used. If

DIS (Cx’CC) < DIS (cy,cc) then the directiqn is rgvgrsed. A
similar rule can be Qsed if theré is no non-terminal after B. If we
assume that subproblemS‘a1ways have at least two objects, there will
always be either a non-terminal before or after every non-terminal B.
Example Suppose A B C is the subproblem solution to the subproblem at

the top of the tree for which synthesis has been requested.

Figure 12.

‘The solutions to subproblems A8 and ¢ all run in the correct direction.

The solution to subproblem F will be found to be ordered in the correct

“direction. g is the centroid before F and ¢, the centroid after F.

C
J's solution is pointing in the wrong direction. There is no non-terminal

after J and 1 is the centroid before I. B's solution is pointing in the

correct direction. CA is before B and Cc after B.

Once the correct directions have been established the synthesis can be
eaéi]y created by joining together adjacent subproblem solutions in the
order indicated by the next higher level subproblem solution. This\is
equivalent to writing down the top level subproblem solution and then
rewriting each non-terminal by its solution Tist and continuing this process

until no non-termindls remain.

Example
ABC - ABCBC - ABCDEF¢

- ABCDEFGHIJ - abCBCDEFGHIJ+;...

8. Sample Prob]ems and Problem Input

In order to test the operdation of the system and hence experiment with
our subproblem or p]énning approach it was necessary to devise a set of
sample problems. We needed problems which had patterns which suggest
subproblem pqssibi]ities to a human. In order to avoid rigging the
experiments input was required which exhibited different patterns and

yet was still randomly chosen in some way.

34

The first idea was to construct a random point generator which could
be "guided" by a pattern randomly chosen from a repetoire of patterns.
One method would be to have the plane divided into a hierarchy of sub-
sections. The subsections could then be referenced by a tree of the

form in figure 13.

Figure 13.

In this "quarternary" approach, the node % refers to a quarter

section of the plane, S] 5 refers to a quarter section of S], and so on.
]

At the terminal nodes are references to small subsections of the plane.

Suppose a probability is attached to eacﬁ node in the tree. Then a point
can be‘generated by traVersing thé tree according to the probabilities at
the nodes and then generating a point randomly in the arrived at terminal
subsection. Such a Markov tree can be used to guide the random generation
of points with some pattern. The guiding pattern is detérmined by the
probabilities "loaded" into the tree.

The difficu]ty'with this approach is in deciding which idealized "Markov

patterns" should be used. We did not know when we began these experiments

35
what such patterns would be.” In fact ong_goai of the research effort was -
to determine if, at least for this probiem (TSP),-such "high-level"
solution subproblem ideas exiétedL To overcome this difficulty we adopted
a very simple approach. The sample prob]emé.are chosen from a political
atlas of the world (8). To input a problem a page of the atlas is p]aced
on the RAND Tablet and the city coordinates input using the RAND pen. 1In
this way we were able to conduct experiments with random data exhibiting
interesting patterns. |

In the following three sections, detailed accounts are prdvided of our

experience using the system for three different problems. The only
criteria in choosing the first two problems was that they exhibit some
kind of structure. We did not know when we chose these problems just what
the structure was or how it would be used to solve the problem. The
experiments were to determine if the user: (i) could easily express and
try out any jdeas for a solution he might have and (i1) would in fact have
good ideas. The third problem was chosen because it did not appear at
first to have any patterns or structure to it. We wanted to-expériment with
such a problem as well to determine,'at least for the TSP, the limitations
of this approach. |
9. The South American Travelling Salesman Problem

“Two "high 1eve1" or abstract strategic jideas occurred to us for the
solution of this problem (figure 14). The first was to construct a simple
circular tour of subproblems., We imagined a tour following the coastline,
so to speak, which made excursions inland whenever neceésary to pickup "stray

cities". The effectiveness of the subproblem approach in this case was to

- sketch out such a solution, forcing stray cities to be associated with the

most appropriate subset of coastline cities. We will distinguish the
exploration of this idea as Phase I, Other phases will be concerned with

the exploration of other ideas.

Figure 14: The South American Travelling Salesman Problem

37

Phase I In figure 15 we have created three obvious subprob]ems.and
ca]?ed on subproblem so]vgrs fo% their solutions. This required three
CSUB-commands and three solution commands.

The first two subproblems created were the "tip" and upper right
"shoulder" groubs of cities. These groups were created and solved because
we knew what their solutions should be and how they should fit in with the
rest of the problem. Since we knew what the solutions should be we used
the fast heuristic Lin supbroblem solver (CLSOL). If this solver had not
returned the expected solution we might check both CLSOL and our intuition
by calling on the exact Karp subsolver (CKSOL).

A deficiency in the system recognizable even at this early point is
the inability-of the user to easily suggest his own subproblem solutions
(e.g. with a "manual" subproblem solver that might be called CUSOL - create
user solution). For all low level subproblems (terminal objects), however,
itlis easier and faster for the user to call on a fast heuristic procedure
which can be relied on for small easy problems than for the user to input
all the pieces of a subsolution. The addition of CUSOL to the system would
not be difficult; it is a natural feature of the planning-subproblem
structure approach.

Since there were two "obvious" routes to choose from for the third
subbrob]em (the one in the middle in figure 15 between the other two) it
was solved using CKSOL. The choice of boundary points for the third
subproblem (i.e. the endpoint cities that will be joined to cities in
other subproblems) was not entirely obvious. We decided to put off making
up our mind about the boundary points for this subproblem and'k111ed the
subproblem solution we had just created. One of the prob]ems was that we were
not yet decided on how to treat the two stray cities to the Tleft of this
subproblenm.

We now created three new subproblems (figure 16). In creating two of

38

“Figure 15: Creating and Solving Some Obvious Subpiroblems

39

Figure 16: Leleting a Subprcblem Solution and
Creating More Subproblems

40

the subproblems (SP5 and SP6 in figure 19) it was not obvious which
subprob]em one of the cities should be in (C40 in figure 17). The city
in questioﬁ lies on the "border" between these two subproblems. It was
decided to include it in the left-most subproblem, SP6. An extendedv
facility would be a feature which allowed the user to check—poinf the
partially deVe]oped solution when such alternatives had to be decided

upon so that he could easily return and pick up an unexplored alternative.

We now observed that we could almost create a Karp solution to the
top level subproblem. "Almost" because the number of objects at the top
Tevel exceeded by 1 the maximum allowable subproblem size for CKSOL. We
‘therefore created and solved the obvious subproblem of the three cities
in a row at the top of the set of cities and then called CKSOL for the top
level subproblem (figure 18). The top level subproblem was solved in order
to provide a picture of the way in which the subproblems would be joined
together. On the basis of this information we would be able to choose
boundary points for our solutions to the remaining subproblems.

To assist in the manipu]ationbof the subproblems we chose to display the
internally generated subproblem names (figure 19). In all of the experiments
described in the report the system was allowed to choose all the subproblem
names.

At this point the top level solution did not agree with our intuition.
We suspected that the stray city below SP7 should be visited on the way
from SP7 to SPZ rather than on the way from SP4 to SP7. This was probably
the result of the-systems having represented large subproblems by centroids
in constructing its solution. Our experience was that the user will often
want to construct his own solutions for high level subproblems. It is,
however, relatively easy to manipulate the subproblem to get what you want.
in order to maintain control of the route throughlthe city in question,

the top level subsolution was killed, SP7 killed and SP8 created and the

e33 ©.3f
o £/ 4:0 035'
¢Z°< o . 38
.° 37
A3 37 36
o 44
o A5
«*7 . z6
©£5
04(?
e 50D

e 5/

Figure 17: City Ndmbers

41

o
7
©]
° 7
)
0/0
c //
o .
° /2
'3
° .
o /6 /4
7
/7
‘2'29 o X0
ng

Figure 18: Creating and Solving a Subproblem and
Solving the Top Level Subproblem

Figure 19: Displaying the Subproblem Names

43

: 44
top level subsolution recomputed (figure 20).

We now decided that visiting the stray cities to the left of SP3 on
the way from SP5 to SP3 was questionable. We might either want to visit
them on the way from SP3 to SP2 or even during a tour through SP3. We
therefore removed these two points from the top level problém by killing
SP3 and creating SP9 (figure 21).

At this point solving all the subproblems and then forming a solution
synthesis seemed to be a good idea. We first reduced the subproblem size
of SP6 by creating the sub-subproblem SP6 (figure 21).

The first subproblem chosen for solution was SP6. Although it is
clear whichlobject of SP6 shou]a be the endpoint that interfaces with
SP1 it ié not_é]ear which city should be the endpoint that interfaces
with SP4., It is easy to try different solution possibilities by
successively creating and killing solutions for different choices of
endpoint pairs and then choosing the best of these (every subprob]em.so1vér
returns}the cost of the solution it constructs). The difficd]ty is that
different choices of endpoints for SP6 are not independent of the choices
of endpoints for SP4. We do not want the optimal subsolution of'SP6, but
the subsolution which is optimal with respect to-its own cost plus the cost
of "joining" that subsolution to the subsolution of SP4. We call this

the context problem.

Each of two alternative facilities in the system would solve the context
problem. One would allow fhe'user to ask for the subproblem solution which
was optimal with respect to its own length plus the 1engths of the Tinks to
two stated endpoints in neighbouring subprobiems. A second approach would
not require that the user specify endpoints for the subproblem in question,
but only the associated "linking endpoints" for the two neighbouring sub-
problems. The subproblem solver would then solve a larger subproblem

consisting of the original subproblem plus these two outside endpoints.

45

Figure 20. Deleting Top Level So_lution.‘ Changing a
Subproblem and Re-solving Top Level Subproblem

Figure 21: Deleting Top level Solution. Changing a Subproblem and
Creating a Sub-subproblem. Solving a Subproblem.
Displaying New Subproblem Names.

46

47

The first é]ternative is probably the cleanest and would only require

the programming of several new subproblem solution commands into the
system. Each alternative could be implemented in a way that would allow
the user to suggest a list of alternatives. The solver would then choose
and return tHe solution to the best alternative. At present the user must
try each alternative out on his own.

The first choice of endpoints resulted in the solution to SP6 shown
in figure 21. The exact Karp procedure CKSOL was used here. The second
choice for a top endpoint to SP6 resulted in the subsolution in figure 22.
This solution was more expensive so we returned to the original solution
(figure 23).

Although it would have been a convenience to have had the context
facilities for SP6 it turned out that they were not necessary. The best
choice of a top endpoint for an optimal subsolution to SP6 is also clearly
the best endpoint for the link to SP4. A11 we needed to know was the end-
point for producing the optimal subsolution of SP6.

We now decided to go ahead and solve all the other subproblems, with
the understanding that the top level solution will be the circular tour
SP4 SP8 SP2 SP9 SP5 SP1 SP6 SP4. SP4, SP5 and S§6 were solved by choosing
endpoints that were closest to endpoints in neighbouring subproblems. In
eacﬂ case this was the obvious chofce. Since all of these subproblems were
somewhat cluttered and the optimal solution not obvious, CKSOL was used.

For SP8 it seemed that going down to pick up the stray point was
probably best accomplished on the way from SP8 to SP2. Consequently, the
leftemost of the three points was chosen as one endpoint and the stray
point as the other. CLSOL was used. With a 1ittle thought it is easy to
convince oneself that this is the best choice of endpoints. It would have
been convenient if it had been easily possible to compare the sum (solution

length + interproblem 1ink) for the two endpoint choices for the interface

Figure 22: Trying a Different Subproblem Solution

Figure 23: Recreating Original Subproblem Solution -

49

‘ 50
between SP8 and SP2. It is, of course possible to do this "manually" by
computing all the factors individually witﬁ presently available commands,

The context problem arose again for SP9. We could have compared the
different choices manually but decided to just settle on the right-most
of the two stray points to the left. CLSOL was used. (figure 24)

Although we had not experimented with several alternative solution
decisions we decided to go ahead and look at the final solution we had
built. This involved solving the top level subproblem (figure 25) and
creating a top level solution synthesis (figure 26). In figure 27 we
displayed just the synthesis by erasing subproblem polygons and
boundaries. The subproblem solutions were automatically erased (but
not killed) by CSYNTH.

CSYNTH returned a value of 2811 for this solution. The "CPU clock"
revealed that we had control of the CPU for 174 seconds and we had been
sitting and solving for. about 40 minutes. This does not include the time

required to keep this journal of the problem-solving experience.

Phase Il . We felt at this point that the solution in figure 27 was
representatiﬁe of the set of possible "coastal tbursf. The large number
of significant excursions in figure 27 indicates that there are perhaps
two circular tours in this problem: a coastal tour and an inner tour made
up of the so-called stray cities. With the use of two tours, all of the
excursion links can be replaced by a single pair of links joining the two
tours. If the savings in excursion links outweighs the extra cost of the
links to form an inner tour then the "two tour" approach will be bettek.
In order to reconstruct the subproblem structure to carry out the new

jdea it was first necessary to ki1l some of the subproblems created during

Figure 24: Solving All the Other Subproblems

52

"Figure 26: Synthesizing all the Subproblem Solutions

53

Figure 27:Erasing the Subproblem Names and Polygons

54

| 55
phase one. The contents of the new subproblems depend on the contents of the
inner tour and the point at which it is to be joined to the outer tour. From
figure 27 we decided there weré three places where ar inner tour might run
very close to, and hence be cheap]y.joined to an outer tour: in the vicinities
of cities 65, 66, and 67; cities 36, 37 and 38; and cities 41, 42 and 43
(figure 17). These are the dotted line areas in figure 28. Figure 28 is
not a replica of a display picture.

Phase Ila We first experimented with some of the "joihing“ possibilities
along the left hand side. This required the constructionvof a subproblem
containing the "inner loop", one Tong subproblem on the right, and two
subproblems on the left. The two on the left "break" at the point where the
outer loop joins the inner loop.

We erased the synthesis solution and redisplayed the existing subproblems

-and subsolutions (figure 29).From figure 29 it was apparent that the follow-

‘ ing subproblems would have to be killed: SP4, SP5, SP6, SP8, SP9, and SP10.

} We decided at the same time to include the three points in a row in SP8

in SP2 so SPZ2 was killed, as well. This left us with a single remaining
subprob]em‘(figure 30).

‘ We now created the subproblems SP11 and SP12 4in figure 31. It was not

clear whether city 23 (marked with a * in figure 31) should belong to the
inner loop or the outer Toop. Although we still had not decided where to

make the break in the inner loop (i.e. SP14 and SP15 had not been constructed)

‘ we decided to resolve this question by comparing DIS{C4, C24) + DIS(C67,C23)

+ DIS(C68, C23) - DIS(C67,C68) with DIS(C4,C23) + DIS(C23,C24) + DIS(C67,C68)

(see figure 17). The result of this comparison was an indication that C24

’ should be part of the inner loop. SP13 was then created (figure 31).

There were several ways to consider joining the inner loop with the

lTeft hand part of the outer loop. Our first inclination was to try the

cheapest possible pair of joining Tinks. Anticipating the join shown by

b

Figure 28: Joining

Points for the Inner and Quter Tours

56

Figure 30: Remaining Subproblems and Subsolutions

L N

58

59

| Figure 31: New Subproblems

| | | 60
the dotted Tines in figure 30, we created subproblems SP14 and SP15.

|
| -The subproblem names were then displayed and the result was (except for the

dotted lines and *) the display in figure 31.

We now solved all of the subproblems. Bécause of our experience in
Phase I we now had a good idea what the solutions should look like and which
subproblem boundary points to choose. CLSOL was used to solve each sub-
problem and the resulting solutions were displayed (figure 32).

The top level subproblem was then solved, the subproblem solutions
synthesized and all information but the synthesizéd solution erased (figure
33). The path'1ength for this solution is 2749, a good improvement over
the single tour solution from Phase I.‘ The additional CPU time required waé
117.5 seconds and the "sitting" time about 15 minutes.

Phase IIb We examined our Phase Ia solution to see if we could see any way
to further reduce its cost. The variable aspect of the Phase II idea is the
choice of the pair of Tinks required to join the two circular tours. After

a little thought it was evident thaf we should try to miﬁiﬁiie the inter-
loop links but maximize the "breaks" in the inner and outer loops where

they are.joined. The joining links in the IIa solution are-small but

the tour breaks at the joining places are not very 1argé. There - are

several places at which a large possible break in the inner loop is opposite -
a large possible break in the outer Toop. There are two such obvidus pTaqéé
on the left side of the inner tour and one on the right. |

The process of trying out these ideas involves killing and creating
subproblems, re-estabTishing a top Tevel solution and then creating a synthesis.
The process is the same as that for creating the Phase Ila solution and will
not be described here. The three additional synthesized solutions resulting
from three alternative choices of ways of joining the inner and outer loops
are shown in figures 34, 35 and 36. The path length for these three

» solutions are 2733, 2735, and 2741, The additional CPU time required to

create these three solutions was 22, 20 and 40 seconds. The sitting and

- Figure 32: New Subproblem Solutions .

Figure 33: Synthesized Solution

Figure 34: Solution with Path Length 2733

I

l

Figure 35: Solution with Path Length 2735

64

Figure 36: Solution with Path Length 2741

65

thinking time was less than 10 minutes in each case.

Phase TII In this phase, the entire problem was treated as a single
subproblem and solved using first CCSOL and then CLSOL. Recall that
CKSOL can not be used for problems with more than 12_cities. The South
American problem has 68 cities.

The resulting Croes solution (figure 37) (CCSOL) had a path length of
3219. 1Its computation required 540 seconds CPU time. The procedure Was
run with the default setting of two reduction cycles and two 2-opt tours
per reduction cycle.

The Lin solution (figure 38) had a path Tength of 2741 and required

1296 seconds CPU time. CLSOL was also run with the standard default setting.

10. The France, Spain and Italy Travelling Salesman Problem

The account of the solution of this probliem is mofe condensed than that
provided for the South American Problem. The details of the solution
process are the same as for that problem. We were more confident about the
use of the system for this problem and proceded more rapidly in the construction
of solutions. MWe had also gained a confidence in the CLSOL subproblem solver
and used it throughout this solution process. Three general solution ideas

occurred to us in the solution process.

Phase I We first decided to try"thé}ébvious grouping of the cities into
Spain, France and Italy. Thése subproblems were constructed and their
subproblem names displayed, (figure 40). Subsolution boundary points wefé
“chosen and CLSOL called (figure 41). In SP2 there were two simple choices

for the endpoint which would interface with SP3. We computed a solution to

Figure 37: The Croes Solution

67

Figure 38: The Lin Solution

Figure 39: The France, Spain and Italy Travelling
Salesman Problem

69

Figure 40: Creation of the Obvious Subproblems

A

Figure 41: Subproblem Solutions

VR

72

SP2 for both choices énd added in the Jengths-of the associated interface
links in deciding on the choice in figure 41.
The top Tevel subproblem was then solved, the solutions synthesized,
and the subproblem names and poiygons erased (figure 42). The path
length was 2094, the elapsed time 15 minutes and the CPU usage 40 seconds.
We now chose to recompute the solution with two changes. The first
was to use a different efidpoint in SP3 for linking with the upper endpoint
in SP2. The second was to include the lower endpoint in SP2 in SP3. The
idea was that it would be cheaper to visit that city on the way to SP2
from SP1 rather than SP3. The new subproblems and subproblem solutions
afe shown in figure 43. The synthesized solution is shown in figure 44.
The path Tength for this solution is 2047. The CPU usage required was

40 seconds. The elapsed time was 10 minutes’

Phase II Recaj1ing.our experience with the inner tbuf approach in the
South American problem we decided to try Joining the inner group of cities
in Spain and-France into a separate tour. There wasn't much we could think of
to do for Italy. The appropriate subproblems and endpoints were chosen and
the subproblems chosen, resulting in the so]utioﬁ structure in figure 45,

The synthesized solution (figure 46) required 15 minutes elapsed time
and 68 CPU seconds. The path length was 2120, invalidating the big inner

loop idea for this problem,

Phase TII Even though the bigger inner_]oop idea was no good, we thought
that perhaps a small inner loop in France (SP5 in figure 43) might work(
In thinking of how we would construct a subproblem to force the inner loop,

we realized that if the inner loop idea was any good, such a loop would

Figure 42: Synthesized Solution with Path Length 2094

e/

Figure 44: Synthesized Solution- with Path Length 2047

G/

Figure 45: Suproblems and Solutions for the Big
Inner Loop Solution Idea

Figure 46: Synthesized Solution with Path Length 2120

1

/8

occur automatically during the solution of SP5. We recreated the

three subproblems 1n~figure 43 and the solution to SP4. Imagining how
such an inner Toop in SP5 might run, we chose the appropriate endpoints
and solved SP5. The result is shown in figure 47,

A synthesis was‘computed. The resulting solution (figure 48) re-
quired 60 CPU seconds and an elapsed time of 12 minutes. The path
length is 2034, the best solution to this problem so far.

The only obvious improvement to this solution was to try a different
upper endpoint in SP2 for the link to SP9. We re-solved SP2 with the new
endpoint resulting in the synthesized solution in figure 49. The addi-
tional elapsed time was 5 minutes and the CPU cost 11 seconds. The new
path length was 2021,

An examination of the synthesis in figure 49 revealed one more slight
possibility for improvement by another change in the upper endpoint of
SP2. The resulting synthesized solution (figure 50) required 9 additional
CPU seconds and 4 elapsed minutes. The resulting solution had a path Tength

of 2012.

Phase IV The problem was then solved automatically by treating it as a
single subproblem. CCSOL produced a solution with path length 2140 in 169
seconds (figure51). CLSOL produced the same solution as the final interactive

solution in 814 CPU seconds.

11. The Eire Travelling Salesman Problem.
In section 8 we mentioned that we chose the third of these three
problems because it apparently had little subproblem structure. The cities

for this problem are uniformly distributed (figure 52).

Figure 48: Synthesized Solution with Path Length 2034

08

N

F.igure 49: Syntheslzed Solution with Path Length 2021

L8

Figure 50: Synthesized Solution with Path Length 2012

¢8

Figure 51: Croes Solution

€8

©
[
€ ®
. ® ®
© o’ A
e .
e
e e
g °
o
® ® ®
] ®
@
.)
o ¢ . ©
ey ©

Figure 52: The Eire Travelling Salésman Problem

84

85

The process of communicating ideas in the system should be clear
from the previous two examples. Only the subproblem decomposition
solution, and the synthesized solution displays are reproduced for this

problem.

Phase I The only general idea which occurred to us for this problem

was to.have an outer loop for the outside cities and an inner loop for the
cities in the middle. To carry out the idea it was necessary to choose the
outer and inner Toop cities, and then, by choosing subprob]em‘boundary points
(endpoints) determine how the loops would be joined together.

Figure 53.displays the subproblem structure for what appeared to be the
most obvious choice. The inter-tour joining links are not too long and the
breaks at the joining points are relatively long indicating a good balance.
This solution (figure 54)'cost 13 CPU seconds_to produée and 5 minutes
sitting time. The path length is 1372.

Figure 55 is a display of the synthesized solution resulting from a
different choice of "lower endpoint" for SP4. This'change took 3 CPU
seconds and 20 seconds elapsed time. The new path had.a length of 1387.

We then decided to try increasing the contents of the inner Toop and
rejoining it to the reduced outer loop in roughly the same way (figure 56).
The synthesized result is shown in figure 57. This is the same solution
as in figure 55. With a 1ittle thought we could have predicted this. This
carelessness cost 17 CPU seconds and 5 minutes elasped time.

Almost for want of something better to do we then tried several other
ways of connecting the two Toops. Figure 58 resulted from trying to join
the two loops at the top (path length 1444, CPU usage 24 seconds, elapsed

time 7 minutes). Joining the loops at the top turned oyt rather badly so

Figure 53: First Choice of Subproblems and
Their Solutions

86

Figure 54: Synthesized Solution with
Path Length 1372

87

Figure 55: Synthesized Solution with Path Length 1387

88

P2

Figure 56: New Choice of Inner Loap Subproblem

89

Figure 57: Synthesized Solution with Path Length 1387

90

Figure 58: Synthesized Solution with Path Length 1444

91

we tried joinihg them at the bottom. The first choice (figure 59)

resulted in a path Tength of 1403 and required 22 additional CPU seconds
and an elapsed time of 7 minutes. The second choice (figure 60) had a

path length of 1399 (15 CPU seconds and 4 minutes elapsed or sitting time).

Phase II1 The automatic, or single subproblem, solutions are displayed
in figures 61 and 62. The first, produced by CCSOL has a path length

of 1677 and reqUired 54 CPU seconds to produce. The CLSOL so]ution‘was
the same as our first interactive solution. It required 150 CPU seconds

for its computation.

12. Conclusions

In this section we describe some of the conclusions we were able to
come to on the basis of our experiments with the TSP system.

(a) Communication Medium. ATl of our experiments confirmed that the
subproblem or planning approach is a natural, efficient way to structﬁre
the interactive process. The user is able to conveniently express and

investigate general solution ideas. In the South American Problem he was

- able to first structure the solution as a "costal tour plus excursions”;

in the France, Spain and Italy problem he could easily choose to build a
solution around a natural grouping of the cities; and in the Eire problem
he was able to investigate a general solution structure for a problem which
was initially thought to be structureless. These examples were our first |
three experiments with the system and were not chosen from a set of larger,
less fruitful or successful experiments.

The success of the planning approach for the TSP is based on the

Figure 59: Synthesized Solution with Path Length 1403

93

94

Figure 60: Synthesized Solution with Path Length '13,9,9-

S

Figure 61: Croes Solution

95

96

Figure 62: Lin Solution

97

ability of the user in the system to define "detail resistant" aspects
of a solution with "large genera]f commands rather than "petty detailed"
commands. The imposftion of general solution ideas on the solution process
occurs in two obvious ways. The first is through the definition of a sub-
problem. If the user recognizes a subproblem for which the so]utioﬁ is
" obvious (e.g. SP1 in figure 19) he can immediately isolate that'part of
the problem in a subproblem and apply the best suited so]ution'process.
In the TSP examples this took the form of applying a fast heuristic pro-
cedure to an obvious grouping of cities. In other cases the user will
recognize subproblems without knowing exactly what their solutions should
be (e}g. SP1 in figure 40). This confirms the claim that people have the
type of general solution ideas which we have defined as R-Plan nonwtérminals,
If the user were forced to express his ideas without the ability to define
subproblems rather than solution pieces he would become hopelessly Tost in
the details of the alternative solutions to subproblems.

The second way in which the user expresses his general solution ideas
is in terms of the subproblem or plan structure itself. In the South
American problem, for example, the two abstract ideas for a solution,
coastal-tour-and-excursions and two-circular-tours, were both communicated
to the computer in terms of a subproblem structure.

We note that the user should not only be able to exﬁress‘genera1 or
high level solution ideas but that he be able to and encouraged to define
properties of solutions which are robust against disturbance by detail. The
two types of general so]ution properties described above have this prdperty.
Choices of subproblems and problem structures are based on patterns which
admit'many changes in detail. If the users role in a system is not one in
which he can make, without penalty, small slips in detail, he would soon |

be lost either in an accumulation of errors or a sea of alternatives con-

.

structed in order to avoid error.
To better understand the importance of the detail resistant quality
of a users ideas, consider the problem defined in figure 63 in which

the cities are points which are "almost" on a grid.

P ©] ¢ & &
'y e ° I3 14 @
P @ ® [[14
[© © o [b4
© [[3 LJ) L]
[L] &] L] <

Figure 63: Cities almost on grid points.

The obvious idea for a solution is that illustrated in figure 64.

& a 2

-] 2 oy L

X & £
L7 bd © s

/— O £} La

éN)

& v o i

Figure 64: Obvious solution idea.

The optimal solution is shown in figure 65.

R
g1

Figure 65: Optimal Solution.

99

The solution idea in this case is not resistant to disturbance by
detail. It is based on a pattern consisting of a single problem. We
do not mean to imply that the planning structure of the system will pro-
tect users from ﬁrob]ems such as this. It is easy to define the idea
for this solution in terms of subproblems even though it does not
intuitively have true subproblem structure. We only mean to emphasize the
importance of allowing the user to suggest solution ideas free from such
detail and that subproblem and subproblem structure ideas often have this
property.

(b) Psycho]ogiéa] Advantages. One advantage of an interactive system
with a sound communication structure is the psychological advantages it
has over an aﬁtomatic solver. By using such an interactive system the
user can be assured that no obvious (to him) solution ideas have been
overlooked. Heuristic programs are.such that they may fail in an
unpredictable and even undetectable way. The Lin TSP procedure, for
example, wf11 only check the optimality of a so}ution up to its "3-
optness". It will not discover "obvious" 4-opt changes that could
improve the solution. In the South American problem the user was able
to construct a solution which'Was better than Lin's 3-opt solution for
precisely this reason. In our interactive system the user is responsible
for and henée can have an intimate knowledge of the solution structure.

If the system is used to- "check out" automatically produced solutions
it not only provides a péycho]ogica] advantage but becomes part of a
more powerful combinatorial tool. An additional facility in fhe system
would be to allow the user to request that the computer "check out“ an
interactively produced solution. In_constructing a solution interactively
the user may make small errors in detail. The ability to "run" a user
solution through a "hill climbing" procedure to check for the possibility

of detailed improvements would provide an additional psychological

100

advantage for the system.

(c) Learning Environment. We found the intefactive TSP system to
provide a good problem solving learning environment. When we first began
tﬁe construction of the system we had only one real idea of how to
structure travelling salesman solutions. If a problem consisted of several
concentrated groups of cities which were widely separated then subproblems
could be created for each of the groups; we know that at least in this
case the problem could be efficiently solved in a subproblem interactive
‘system. Qur experience with the South American Problem quickly revealed
the importance of smooth circular tours. In all of the experiments the
strategy of grouping cities in such tours proved effective. In addition,
we gained confidence .in the following rule of thumb for choosing inter-
subproblem endpoint pairs: '"the closest pair of endpoints is usually the
optimal choice for inter-subproblem 1inking. We predict that further
experience with the system will further increase a users knowledge of the
TSP and hence enhance the power of the system as a problem solving tool.
There is no indication that this process of solver growth through learning .
will ever be possible in a completely automatic solution process.

(d) Combinatorial Tool. HWe feej that we have proved the validity of
planning method as an approach to several important problems in man-machine
communication. The power of the system as a problem solving tool must now
be considered. Is it worth the bother to allow man machine communication?
Certainly the interactive system allows the user to spend his combinatorial
power where he chobses, and to construct solutions which, although sub-
optimal, are still meaningful to him. But does it produce better solutionrs?
This question can be answered with reference both to the quality of the

solutijons produced and to the cost of producing solutions.

Our experience indicates that the system provides good quality

sotutions. In each of the three experiments described in the report
the interactive solution was at least as optimal as that produced by
an automatic problem soiver. In the South American problem the inter-
active solution was marginally better (2733 vs 2741). 1In general, the
indications are that for problems in the rénge of 30-70 cities the
interactive solutions will be good but no better than a solution pro-
duced by the Lin procedure.

With respect to solution quality, the interactive system is probably
best considered as a method for extending the rangé of presently available
solvers to larger problems. The rejatively poor solutions produced by the
Croes propedure indicate the interactive épproach to be a better strategy
to adopt than to use less discriminating automatic procedures for problems
toolarge to be attacked with powerful, but expensive, automatic procedures.

By default the interactive solver is always capable of producing at
least as good a solution as any automatic problem solver., It is only
necessary to incorporaté the automatic procedure as a subproblem solver
and then apply it to the subproblem consisting of the whole problem.

The real advantage of the interactive system as a combinatorial tool
can be measured in terms of the cost of solution production. Experience
indicates that for large problems with subproblem structure interactive
solutions are sighificant1y cheaper to produce. For very large problems
the planning interactive approach may be the only method of constructing
reliably optimal solutions.

Solutions are produced less expensively in the system by trading off
the cost of constructing subproblems against the displaced cost of solving

whole or undivided problems. Consider the figures for the South American

102

problem in figure 66. We arrived at the solution cost for the interactive
solutions by adding the accumulated CPU usage and a factor for elapsed or

"sitting time". For no particularly good reason we equated the cost of |

one hour elapsed time with 100 CPU seconds. The relative differences

between the figures are large enough to allow a quite different equation
without invalidating the conclusions. We note that wide variances in the
CPU usage reported by the accounting system can result from varying loads
on the machine. We therefore took care to perform the experiments under

the same system loading conditions.

Path Length Solution Cost

First Interactive 2811 244
Final Interactive 2733 521
Croes' Solution 3219 ' 540
Lin's Solution : 2741 1296

Figure 66: Performance figures for the South American TSP

From the figures in 66 we see that Lin's solution is 2.5% better than the
firsf interactive solution but at a 431% fncrease in the cost of solution
production. In this example the final interactive solution was better
than Lin's solution and 200% cheaper to produce.

The dramatic relative cost efficiency of the interactive system for
the South American TSP results from the replacement of a very large problem
(68 cities) with several smaller subproblems. Recall that the Lin solution
of a TSP increases in computation time wth the cube of the increase in the

number of cities.

The figures for the France, Spain and Italy problem are displayed

~in figure 67.

Path Length Solution Cost

First Interactive 2094 ' ' 65.
Final Interactive 2012 ‘ : 328
Croes' Solution | 2140 169
Lin's Solution 2012 - 814

Figure 67: Performance figures for the France, Spain and

Ttaly TSP

The Lin solution is 4% better than the first interactive solution at
a 1200% increase in solution cost. The final interactive solution was the
same as Lin's solution and 188% cheaper to construct.

The figures for the Eire problem are shown in figure 68. The figures
do not at first appear quite as encouraging. Although the first interactive

solution was as good as the Lin solution, and at an 85% decrease in solu-

tion cost, the final interactive solution, again the same as the Lin
solution, was 7% more expensive to produce. We note that we could have

reduced the interaction cost by creating smaller subproblems than were

really required to express the interactive solution ideas. This is an |
jmportant added advantage of the interactive approach: the user can control

not only the structure of the solution produced but also the cost of

solution production. By constructing subproblems of different sizes he can

trade off elapsed time plus cost of subproblem construction against cost of

subproblem solution computation.

104

Path Length Solution Cost
First Interactive : - 1372 22
Final Interactive | 1372 | 160
Croe's Solution ' 1576 , 55
Lin's Solution 1372 150

In comparing the Lin solution computation cost to the interactive
solution cost there are grounds for an argument that the comparison should
be made with the first interactive solution. In addition, since the Lin
procedure is heuristic, and produces different so]utions for different
runs, the final interactive solution should be compared with a final Lin
solution. A final Lin solution would be chosen from a number of executions
of the Lin procedure. This can be accomplished either by increasing the
number. of 3-opt cycles per reduction cycle or by just calling the
procedure several times with the default setting of two 3-opts per re-

 duct1on cycle. We decided on the second alternative and computed three
additional Lin solutions. The path lengths were 1390 (figure 69), 1390
and 1372. When the Lin procedyre constructed the original solution (path
length 1372) we had the same degree of confidencé in the solution as we
had for our final interactive solution. The costs of producing these
add%tiona] solutions were 114, 146, and 184 CPU seconds. The cost of the
final Lin solution is therefore 594. If we compare the final Lin solution
with the final interactive solution then the same reduced costs for this
problem as for the other two can be claimed. It is unlikely that we could
have even afforded to compute a final Lin solution for the South American
problem,
(e) System Limitations and Possible Extensions. In this sectidn

some of the 1imitations mentioned in the three experiments are reviewed.

Figure 69:

Alternative Lin Solution to Eire Problem

105

- 106
The first obvious deficiency was the lack of any convenient method

for fmanua1]y" constructing subproblem solutions. In several instances
subproblem solvers failed to produce the desired results for high Tevel
subproblems. The reqdired addition to the hfesent system would be a
- new subproblem solver, say CUSOL, which a]loweﬁ the user to define the
exact ordering of a subprobliem solution.

A more general limitation of the system is the result of what we

have called the context probiem. In the present system the subproblem

solvers find solutions which are optimal for a given choice of endpoints.
It is neceséar_y5 however, to find subsolutions which are optimal with
respect to their path lengths plus the cost of 11nkiﬁg the solution to
neighbouring solutions. In other words, subsolutions must be optimal with
respect to the context in which they occur. The automatic parts of the
present system (i.e. the_subprob]em'so1vers) and not sensitive to sub-
problem context in any way: the user is entirely responsible for deter-
‘mining the choice of endpoints that optimizes the subproblem solution while
sti1l allowing inexpensive interproblem linking. Very often this decision
results from the attempted comparisohAof combinations of single Tinks. The
user can either attempt to perform these comparisons visually, or calcu-
late individual distances and then perform the necessary arithmetic
combinations using pencil and paper. Neither alternative is satisfactory.
Several possibilities can be proposed to eliminate the context prob]em.
Two éuggestions were described in Phase I of the solution of the South
American Travelling Salesman Problem. Another suggestion is to change the
system so that subproblems are not disjoint. If each subproblem in a
tour of subproblems had one city in common with the next subproblem, there
would be no such thing as an inter-subproblem 1ink. There are a number of
disadvantages to this idea. It implies that the user must decide at the

time of subproblem creation how the subproblems are to be joined together.

107
He cannot delay the decisicn and choose interproblem 1inks at some later
point. Subproblems would all be one order of magnitude larger than in
the present system (they would all have one more city). It is not clear
that a system based on overlapping subproblems would not introduce a
whole set of new limitations or even introduce a more severe context
problem. .;t would certainly provide a much less flexible systemt The
ability to manipulate subproblem endpoints independently of context
would be Tost since each subproblem solution endpoint would belong to
two subproblems. The importance of being able to manipulate individual
subsolution properties through the subproblem endpoints is illustrated in
the so]utionnproceés of the Phase III part of the solution to the France,
Spain and Itaiy prob1éﬁ.

Perhaps the best solution to the context problem would be to construct
subproblem solvers which accepted as an argument a 1ist of alternative
'subproblem endpoints and alternative neighbouring subproblem endpoints.
The solvers would.return the solution which was optimal with respect
tb the subsolution path length between solution endpoints plus the
“lengths of two links to endpoints in neighbouring subproblems. The
solver would also return the names of the optimal endpoints in the
neighbouring subproblems. If the neighbouring subproblems were already
solved, so that the choice of neighbour endpoints had already been
fixed, then the users alternatives wdu]d be limited to different choices
of solution endpoints for the subproblem to be solved. In this approach
the user maintains control over solution structure through his responsibility
for naming alternative endpoint choices. The approach could be implemented
in the present system with the definition of several new commands, all of

which could be defined in terms of presently available commands. Other,

108

highgr 1¢y¢1, commands could be defined in terms of these commands and
the system would still retain its f1e§ib1e,approach to endpoint manipula-
tion. | |

A second general limitation in the system is the lack of any facility
for dealing with alternative solution decisions. At present the user must
keep track of alternatives. The second suggested solution to the context
problem described above would also solve part of the alternatives problem.
It would permit the user to request a solver to return the best of a
number of alternative subproblem solutions defined by a number of alterna-
tive endpoint choices.

Occasionally a user will want to return to an earlier point in the
solution procéss and take up some other unexplored alternative. Suppose,
for example, there had been two possible choices for a subprobiem group of
cities at that point (cf.Phase I of the South American problem). At
present the user must remember what the alternative was, "undo" the pre-
sent solution, and reconstruct the previous partial solution situation.
what is required in this case is a facility for checkpointing partial
solutions and a partial solution classification and retrieval scheme.

(f) Summary. In conclusion, we found the p]ann1ng approach to provide
a sound basis for an interactive system. In a planning system the user
can communicate general or abstract ideas to the computer. He can control
the cost of solution production in a semantically meaningful way through
subproblem definition. 1In the case of the TSP he is able to produce good
quality so]ufions and there.is every indication that the approach allows
the design of a good problem solving learning environment. |

The limitations we discovered during our experience with the system

could all be eliminated while maintaining the same planning or subproblem

109

basis for the system. Even in its present form, however, the system
was sufficient for the purposes of our investigation. These limitations
are described to assist either in the construction of a production form
of this systém or in the construction of systems for other problems.

We note the importance of reliable equipment for interactive systems.
The accounts in sections 9, 10 and 11 are those of experiments where hardly
anything went wrong. The action required when a malfunction occurred has
not been included in the account. For the most part this consisted of

repeating a command which went astray.

Acknowledgements The author wishes to express his gratitude to

Professor Julian Feldman for his continuing encouragement and

enlightening criticism.

110

Appendix I ~ City coordinate pairs for the three experiments.

111

(NEFPROP

CITIES

(CITIES

(584,
(s16.

624.)
816}

(643,

659,

(567,
(R19.,

732.)
H64.,)

(6)84-
(728,

728.)

(783
(815.

711.)
681,

(816
(815,

671.)
Qo)

(897,
(776

6£47.)
616.)

(599.
(679,

634.)
599.)

(716

(716

568.)

551.)

(747«
(722,

543,)
523.)

(695,
(672

511.)
212.)

(464.
(495,

592.)
571.)

(492,
(448.

56%,)
555;)

(451,
(495,

515.)
515.)

(568,
(648,

5937.)
479.)

(624,
(612,

457.)
435,

(451,
(559,

479,)
484,)

(568,
(576

497 .)
415.)

(560,
(543,

412.)
4451.)

(476,
(BdR.

428.)
443.)

(444,
(451 .

455,
427.)

(456 L]
(443,

(527

(524

419.)
o84.)

371.)

3510

(448,

393,)
5\‘5()9)

(496
{4735

$u3,)
248)

(‘; 1] :)
(460

224,)
£95.)

(N
(a4,

Bo6.)
E89,)

(407,

(7391

(296,

Ak,)

1)

TR

{3514 «

719.2

(364,
(4168,

7471
716.)

- 112

(352,
(264

679,
6b63.)

(391
(395,

62%.)

627) .

(436
(442,

620.)

(448,
(448,

592.)
583.))

VALUE)

-

o

-

DRt SR

* Q4G

*HEL)

* G589

PG9)

(*9T% *%v4)

(828 *96V)

| (°89¢ *98G)
("0 *SLD)

(*$2h *229)

7 (*9GYy *Kr9G})
w (*26% *C459G)
7 ‘ (P0G *689)
) (*L9% *£TG)
(8% "C5a)

("9, *TTq)

(*98% *vgh)

(*Bfb *G9P)

(*Gcbh *L2G)

(*GTh *66b)

(°G6S *L9Y)

(*g2b *G&y)

(*C9¢ *E9Y)

(*e2s *bhy)

, ("T42 *GEW)

(*PGZ2 °9Lb)

(*9G¢d *X9%)

(*$22 *C8¥)

(‘66T *atb)

(*QRT *L0Y)

(¢80 *S/%)

(*4QT ¢9¢%)

("T6T L)Y

: (*$92 *val)

. 1°0re *962)

(*ges vEg)

(TL9¢ THdL)

(°9/L% *22%)

("pGT *59%)

(" LpS *P9g)

(°2¢% *Sth)

(°Q292 *£9%)

(*562 *CGQY)

(* byt

"GLEy S3TLTD)

S3ITLTD dU¥d4dM)

gLt

(DFFPROP

CITIES

(CITIES

{495,
(472,

4724)
5440)

(524
(575,

“06.)
499,

(582,
(K12,

4680)
428.)

(536,
(591,

ABE)
372,

(653 .
(595,

387.)
498,)

(587,
(416,

428,)
220 .)

(415,
(351,

235,)
467.)

(415,
(471

439.,)
436.)

(484,
(415,

443.)
468 ,)

(467,
(484,

391.)
376,)

(554,
(567,

352,)
327)

(531,
(467,

324,)

351.) -

(443,
(383,

371.)
379.)

(367,
(332,

348 ,)
335.)

(371,
(428,

3194)
$19.)

(452,
(49%,

316.)
315.)

(430,
(455,

348.4)
295.)

(440,
(274

296.)
279,)

VALUE)

(367

2684.))

Appendix I1

Frame

Frame numbers for-display information,

Disp]ayéd Information
City.boints

Subproblem Polygons
Miscellaneous

Context Marker (C)
Subproblem Solution Links
Synthesized Solution Links

Pen pointer marker (P)

115

116

Appendix III The Karp Solver CKSOL

117

(NEFPRAOP _LKARP
(Lkarf TLISTL
COSTIK
nisi
CRSOL
TEXP
501 VERY
SAORT
MINP
MINT
NELETE
FLEMENT
ILIST
INDEX
[KARP
FAC
FACSEG
SETRINOM
50
MINZ)
VALUF)
(HEFPROP 1115714
(LAMBDA(A B)
(COND (€(#LESS B AY NILY (7T (CcoMS B (JLISTY1 A (SURY B))))))
EXPR)
(DEFPROP COSTK
(LAMBDACL)
(PROG (COUNT)
(CONM CENULL L) (RETURN MTL)))
(SETH COUNT a)
LAE (COND _((NULL (CDR 1)) (RFETURN cOURNT))
(SETA COUNT (#PLUS COUNT (CDISa (CAR L) (CADR L))
(SET0 L CCDR 1))
(GO LAB)))
EXPR)
(DEFPROP DTS
(LAMBDA(CCY CC2)
(SORT
(#PLUS (50
A#DJF (CAR (GET ¢l (AUOTE ceXNTROTOP)))
(CAR (GFT ¢r2 (QUOTE cenTROIUPI I
(50

(=DIF

(CADR (FET CC1 (QUOTE CENTROIAP)))

ExXPR)

(CADR (rET CC2 (QUOTE CENTRAINFIINIIID -

(SFEFPRNP
o LLARBDA

AMANE)

CK39L

(PROC (C1TIES L 18 OUT COST)

(U0RN

(RETURK_M1L)D)

(onMn

((kG

NA

(SE 14

M

ouT 1R

T (QUUTE
JASETY T (CAR CTITIRESY)

eIV

L SCTn maMbE (CAK (FNTNTER NAMEDdYY
(58T CIVIES (GET NAE (PUOTE nHJECTSPY))
((MULL CIYIES)

118
(GO | AR))

« (T (CbPTS1 NAME)))
(SETQ TN (CAAR (GET NAME (QUOTE STRUCTUREP)Y)))

(SETQ 0UT (CADAR (GET NAME (QUNTE STRUCTUREPR))))
(SETq CITIES (CONS 1M (REMOVEX I CITIES)Y))

LAB - (COND ((EQ IN OUT)

(SETQ CITIES (APPEND CITIES (LIST OUT3)))
(7 ‘
(SETQ CITYI1ES

(AFPEND (REMOVEX oUT CITIES)
(LIST 0UTy))))

(SETGQ -NUM (LENGTH CITIES))
(COND ((®LESS NUM 4) (GO LAB1))

((#=GREAT NUM MAXKARP)
(RETUEN

(QUOTE (HAXIMUM UM OF CITIES EXCEEOFD)))))
(SET0 CITIES (SOLVFER1 CITIES))

LAB1 (PUTPROP NAME
(LIST (LIST IN 0UT) CIVIES)

(QUOTE STRUCTUREP))
(DS0L NAME) :

T(RETULRN COST)Y))
EXPR)

(DEFPRAOP _TEXP

(LAMBDACT U
(COND ((ZEROP J) 1) (T (#TIMES I (JExP I (sUB1 J))))))

EXPR)

(DEFPROP SOLVERL
(LAMBNALCITIES)

(PROG (D I X C L LEV CITYNAMES J)
(SETO X (TIMES («DIF NUM 2) (IFXP 2 (#pI1F NUM 2))))

(SETA 1 @A) :
LAB3 (STORE (TABLE 1) @)

(COND ((#LESS 1 ¥) (SETG I (ADDT 1)) (GO LABZ)))
(SETO CITYNAMES rITIFS)

(SETQ 1 9) :
(MAP

(FUNCTION
(LAMBDOA(X)

(PROG NIL
(SETW 1 CApT1 1)

(STORE (CLIST 1) (CAR X))
(COxD

COMULL (CDR X)) (RFTURK . NIL))
(T_(5ETQ J_ 1) '

(MAD
(FUNCTION

(LAMBDACY)
(PROG._ (V)

{CNPND
e LCNUL L YD (RETURN ONTLDD.

(T (SETy J ADDL UN)
AGONY

C{NsILL
(ARl

o APARINY
(UOTE TERMINALP))

119

{(LET

{CAR Y)
(OUOTE TERMINALP))))

(Srlo
D

(pIs1 (CAR X)
(CAR Y))))

(T (SETO cC1
(EVAL_(CAR X)))

(SETD ¢cC2
(EVAL_(CaR Y)))

(COND
((#LESS CC1 CC?2)

(SETn
3

(DST ¢C1 CC2)))
(T

(SETH
D)

(DST ¢cC2 CC1)r»I))))
(S5T02E (CNDISA 1 J) D)

(STORPE (CDISA J 1)
D

(RETURN NIL)Y)J)I))

(COR X))
(RETURN NIL)I)))
CITIES)

(SETQ L C(ILIST 2 NUM))
(SETQ LEV (SUB1_MUM))

(MIN2 LEV L LEY)
(SETG L (MIN3))

(SETQ QGST (COSTH L))
(SETH CITIES NIL)

LABZ2 (SETR X (CAR L))
(SETO | (COR L))

(SETQ CITIES (COUS (CLIST X) CII11ES))
(COND ((NULL L) (RETURN (REVERSE CITIES))))

(GN LAB2)))
FYPRY

(DEFPROP SNRT

(LANBDACX)
(PROG (V1 v2)

(SETO X (#PLUS X 2,8))
(CO-N ((LEROP ¥) (FETURK 2)))

(SETN V1 (#3J0 X 2))

(SET Ve (#9uUO (=Pl US V1 (#QUQ X V1)) 2))
LAB (COND : '
(1 ESS (ABS (&0 TF V2 V1)) 1,~b=2)

(s TURN (FIX VEY)))
(5T VL vV2)

(SFTR Ve (#3U0 (=PLUS VI (#QU0 X V1)) 20
(6D _LAB))) R

TXPR)
LEFEwae WIS - PTSISI s e S S s mme s
(LATHBOACLEY L P)

(PPOC (X END PL D)
o ETH LRV (UL LRV)
(2ET2 M 6duu)

(SETQ X _(DELETE £ 1)

120

(SETQ END (CAR X))
(SFTQ | (CADR X))

(SETG PL @) :
(SETO T _CINDEX LEV 1))

LAB (COND ((EQ P1 LEV) (RETURN M)))
(SETQ P1 (ADDY P1))

(SETH X
(#PLUS (MI™M1 | FV | P11 1)

(COISA (ELEMENT P4 L) END)Y))

(COND ((#LFSS X M) (SETG M X)))
: (GO LLAB))) :
EXPR)

(NDEFPROF MIN1

(LAMBOACLEY L P 1)
(PROG (X Y)

(SETn 1 (#PLUS T P))
L (SCTn Y (TARLE [))

(COND
((ZFROP_Y)

(COND
((EQ LEV 2)

(COND"
((EQ P 1)

(SETQ
X

(#PLUS (CNISA 1 (CADR L))
(COISA (CARR L) _(GAR 1)))))

(7
(SETQ

X
(#PLUS (COISA 1 (CAR 1))

(COISA (CAR L) (gARR LYy
(T_(SETQ X (MIN2 1EV | P))))

(STORE (TABLE 1) X)
(RETURN_X)))

(RETURN Y)))
EXPR)

(REFPRAP DELETE

(LAMBDA(P L)
(PROG (I L1)

(SETG 1 1)
(SETO Ld NIL)

LaB (COun
(¢ 1. P)

(RETURN

(L1SY CCAR L) (NCONC (REVERSEX L1) (CDR L)3)))) .

(SETn L1 (CUNS (SAR L) L1
(5T L (chR L))

(ST 1T CADUL 1))
(o0 _LABII)

CAPR)

C(GEFPRIP ELEALNT
(LANBIACR L)

(PRO6 (1)
celSRETOL Y
LA (Coan ((EQ 1 P) (RFETUR'Y (CAR L))))

121
(SETn_ | (COR 1)) '

(SETH I (ADDL I113)
(GO | AR)))

EXPR)

(DEFPROP 1LIST

(LAMBRDA (A P) (REVERSE (ILISTY A B)))
EXPR) :

(REFPROP INDEX
(LAMBDACLEY L)

(PROG (TOTALL TOTAL2 1T X K Y HIGH)
(SETQ X _(#DIF NUM 2))

(SETQ TOTALL B)
(SFTIN_1 2)

LABY (COND
((#1 ESS 1 LEV)

(SETG TOTALL
(#PLUS TOTAL1 (#TIMES 1 (BINOM X 1))))

(SETG 1 (ARDY 1))
(GN | ABL)))

(SETQ TOTALZ2 ©)
(SETQ K 1)

(SETQ 1 22
(SETG HIGH (CAR 1))

(SETR Y (SUB4 NuM))
LAB (SFTn X (#DIF LEY K))

LAB?2 (ConND
((#1 £SS I HIGH)

(SETQ TOTAL2 («PLUS TOTAL2 (nINOM (#nIF Y 1) X)))
(ST 1 (ADDL 1))

(GO LaBZ)))
(CONn

((EQ K LEV)
(RETURN _(#PLUS (#TIMES TOTAL? LEV) ToTAL1))))

(SETo L (COR L))
(SETQR K _(ADUL K))

(SETa 1 (CADDL HIGH))
(SETO _HIGH (CcaR 1))

(GO LAB))) :
EXPR) R

(DEFPRNP._LKARP

(LKARP TLIST1
cuUsSTH

nlst

CREOL

[EXF
UL VERY

Sk T

pIng

4 I .'J 1

LELETE

FLEMENT

TNOEX
LKART

IL15T L

FAG
FACSCL
SETH[HOL

122

VAL UF)

(DEFPROP FAC

(LAMBDA(N)
(CAND ((ZEROP N) 1) (T (=TIMES N (FAC (SUB1 N)JDID)

EXPR)

(DEFPROP FACSEG
(LAMBDACT J)

(COND ((&LCSS 1 J) (QUOTE FACSEG-UNDCHINED))
(e 1 4) 1)

(T («TIMES | (FASSEG (SURL 1) g)))))
EXPRY

(DEFPRNOP SETRINOM

(LAMBDA NTL
(PROG 1 J)

(ARRAY BINOM T (ADD1 MAXXARP) (ADD1 MAXKARP))
(SFTQ 1 9)

LABL (COND ((#GREAT [MAXKARP) (RETUyRN NILD))
(SE1T0 J 2 -

LAB2 (STORE (BINOM 1 1)
(#QUO (FACSEG 1 J) (FAC («DIF I J))))

(COMD ((EQ J 1) (SETQ 1 (ADD1 1)) (GO LABLY))
(SETn J (ADDL J)Y . : .

(GO LABZ2)))
EXPR)

(DEFPROP SQ

(LAMBDA (X) (#TIMES X X))
. EXPR)

(QEFPROP MINZ

(LAMBDA NIL |
(PROG _(MINL_MINP LEV L X MIN P).

(SETQ MINL NIL)
(SETG MINP (SUE1 NUM)Y)

(SETQ LEV MINP)
(SCTO L CILIST 2 NUM))

LABL (SET X (UELETE MINP L))
: (SET2 L (CADR X))

(SETD END (CAR X))
(SETQ MINL (CONS ENG MINL))

(SETa LEV (SUB1 LEV))
(eanNny o

((EN LEV 1) (RETURN (CO4S 1 (CUIS (CAR L) MINL)))))
_(SETH MINP 1)

T(SETA HIN 63424)
(SFTa P 1)

LAB? (SETO X (TAGLE (=FLUS (17DEX LEV L)Y F)))
(SETA X (#PLUS X (COISA (ELEXME T B L)y CNODYD) .
(COND ((#LESS X IN) (SETR MIN X) (SCTQ MINP P)))
LALOHD (e P OLEVY (G LAY

(SET0 ¢ CADLDYT P A

(GO LA

123

Appendix IV The Lin and Croes Solvers CLSOL and CCSOL

(LEEPROP L TN

(LIN NMEMX
NIHREEQPT

CLSOL
COSTH

[LIN1
182

ECNPY
ATHREEOPT

REVERSEXX
THREFOPT

RAMDOM]
REVERSEX

RPERM
RHN

LI
VAL UF)

(DEFPRNP_NMEMX

(LAMBDA(X Y L)
(PROS il

LAB (COND ((NULL L) (RETURN T))
(1~

(COND ((OR (AarD (EQ X (CAAR L))
(FQ Y (CcADAR ()))

(AMD (EQ Y (CAAR L))
(FQ X (rADAR 1))

(RETURY NIL)) ‘
(T_(SETA_{_(CDR 1)) (GO LABIIIII))

EXPR)

(DEFPROP NTHREEOQOPT
(LAMBDACL)

(PROG (L1 L2
{3

cC1
ce2

cC3
cC4

cC5
clé

n13
nig

nl4
nls

N4
nesy

Nneeé
N34

185
BINYe)

nads
oA
10
rL1

cL?
cLa
cLd

cL5

125

cké)
(COMMERNT THIS

15
A

NE
THREEQPT

ALGORITiM
COMPUTES

THREEOPTS) :
(COMMENT BY RANDGM THMPRQOV _HNOT STEEPEST ASCENT)

LAB2
LAB1

(SETQ L1 L) .
(COND C(NULL (COR 14)) (RETURN L)))

(SETQ cCL (CAR Li))

(SETQ cld 1)

(SETQ cL2 (CDR CL1))
(SFT0 2 (CAR CL2)).

(SETQ pil2 (CDISA CC1 Cc2))
(CONP ((MINUSP [12) (SETA L4 (cUR L1)) (GO 1L.AB1)))

LAB2

(SETH L2 (CODR L1))
(COND

CONULL (CLUR L2)) (SETQ L1 (cDR L1)) (GO LAB1)))
(SETQ CC3 (CAR L2)) .

(SETN CL3.1L2)
(SETs cl.4 (CNR Ci 3))

(SETQ CcC4 (CAR C¢L4))
(SETn D34 (COISA CC3 Cc4))

(COND ((MINUSP D34) (SETR L2 (cUR L2)) (GO LAB2)))
(SETO D13 (CulSA CCY CC3)Y)

(SETQ D14 (CDISA CC1 CC4))
(SETN D24 (CHISA CC2 CC4))

L.AB3

(SETH L3 (CDR L2))
(CCND

CONULEL (CDK L3)) (SETQ L2 (CDR L2)) (GO Lag?2)))

“(SETN CC5 (CAR LZ))

(SETq CLD L3)
(SETN cL.é6 (CDR CL5))

(SETQ CC6 (CAK CL6))
(SETN D56 (CNIGA CC5 CChY)

(COND ((MINUSP 0%6) (SETe L3 (¢BR L3)) (GO LABIIY)
(SETH Do (#PLUS 012 (#P11S D34 UB6)))

(COND - '
((#GREAT Db (#PIUS D13 (#PLUS U224 056)))

(RELAGCD CL1 CLZ)
(RCVERSEXX CLZ CL3)

(RPLACD CL?2 CL4)
(GN LABE)))

(SETS Ded (CD]sSA CC2 CCe))
(OETo D35 (CRISA CC3_CCH5))

(COpm
((#GREAT DU (#PLUS N4 (#PLUS W26 [3%)))

(RPLALD CL1 CL4)
(REVERWEXA CL2 CL3) ..

(RPLAGY CL2 ¢L+<)
ArcbAC Cun CLE)
(GO LAR)))

(SETH D15 (CH1SA CO1 Ce5))

(Coar.
_((“CREﬂ

(SFT0 L36 (LOISA COZ CCH))
-

DU CxPLUS 124 (#PLUS UZ6 D15)))

(ReLACD €LY CLEB)

126

(REVERSEXX CL4 CLB)
(RPLACD Cl4 CL2)

(RPLACD CL3 CL&)
(GO 1L.ABD)))

(SETW D25 (CDISA CCz CC5))
(COMD

((«GREAT DD (#PLUS N14 (#PLUS U25 D36)))
(RPLACO _CLY Cla)

(RPLACD CLS CL?2)
(RPLACD CL3 CL6&)

(GO LABBY))
(COND

((#GREAT DD (#PLUS 015 (#PLUS U26 034)))
(RPLACH CLA CLK) '

(REVERSEXX ClL2 CLs)

(RELACD CL2 CL6)
(GO LABE)))
(SETG D46 (CDISA CC4 CCH))

(COND

((#GREAT DO (#PLUS N4 (#PLUS D42 DI5)))
(RPLACD CL3 CL%)
(REVERSEXX CL4 CL5)

(RPLACD "CL4 CL#)
(GO LABE)))

(Conn
((#GREAT DO (=Pl US N13 (#PL 1S D25 D46)))

(RPLACD CL1 CLZ)
(REVERSEXX ClL2 CL3)

(RPLACD CL2 CL%)
(REVERSEXX CL4 Cl.5)

{RPLACD CL4 CL4)
(GO L ABKII)

(SETO L3 (COR L3)Y)

(GO 1L ARZ)))) o

EXPR)

{(DEFPROP CLSOL
(LAMBPA (NAME)

(PROG

(CITIES IN OUT NuM L I CnST J C1 CCp)

(COMMENT _CRETES A _SQLUTION TO pPROBLER AT NONT NAME)
(COMMENT USING LINS THRECOPT PoUGEDURE)
(SETO _NaME (CAR (POINTFER NAMHEY)Y) . .

(5T CLITES (GET NAME (mUDTF absJECTSEPR)Y)Y
(Comn _((mUb L CITIES) (RETURN N1L)Y))

(CONND
((ED WAME _(RUNTE UNIV))

(510 IN (CAR ©1T1ES))
(ST OUT 1M

(GO LAB))
(T_(CHPTST SNAMED))

(STTN 11t (GARR (CET DANE (QUQTE STRUATUREP))))
(SETO_00T. (CADAR _(GET. HAtE _(0UoTE_STRUCTURERP))))

R _:..A,L..f N

ASETH CLETLS (CO0S 170 (wIMOGVEX [CITIFES)Y))

oonNS

((Ea I~ OUTY .
(5510 CLTIES (LPPCHD CYTIES (LIST nUTION)

(7
s Ta Cllies

CAPPEND (REROVEX OUT CUTTES) (LIST 6uT)))))

—
o
~J

(SETQ. NUM (L ENGTH CITIES))

(COND
((#)] ESS NUM 4) (GO | AR1))

((#GREAT NUM MAYLIN)

(RETURN
(NUQTE
(MAXIMUM NUMSDER
OF
CITIES
EXCLCED
FOR

LINSOLVE)))))
(COMMENT SET

upP
Capy

OF
£ST

ARRAY
IN

LOWER
HALF

3
LsTH

(SETQ 1 4)
{(MAF

(FURCTION
(LAMBLA(X)

(PROG NIL
(SETQ I CADDT 1))

(STORE (CLIST 1) (CAR X))
(SETQ J 1)

(MAPC
(FUNCT]ION

(LAMBDACY)
(PROG (D)

(SFTQ J (ADD1L J))
(COND

CONULL
(AN

(GITT (CAR X))
(aUnlE TERMINALPR))

(GET Y (nUNTE TERMINALFR))))
(5£12 0 (0151 (CAR X)_Y¥)))

(T (S7TQ CCqe (EVAL (Cak X))
(5174 cC2 (EVAL Y))

(CNND
(exLESS OO0l Cce2)y .

(SET 1 (0ST Cci CC2)))
AT (SE T N (psT g2 ced020)))

(STORE (CDISA 1 J) L)
(5T02F _(CDISA_J 1)

(ROTUR™ NILIY D)
(CER X)) :

(RETUEN NTLO))
_CITIES)

(50T cusl (COSTL L))

(5070 L CILIST 1 NURY)
(CN5Gg ((AULL MLI®) (TETG MLTIL 2)))
CCOmn COMULL RLT) (5CTa RUIN 2)))
e IBETe L CLINT L)) S S

(SFETn

CITIIES mIt)

LAB2 (SETa CITIES (COMS (CLIST (CAR L)) CITIES))

(SETQ

| _(COR 1.3)

LaB1 (COND

Cenubt L)

(PUTPROP NAME

(LIST €LIST TN 0QUT) C(REVERSEX CITIES))

(NUOTE STRUCTURER))
(SETQ MLIN NILD

(SETQ RLIN NIL)
(DSO)._NAME)

- (RETURN COSTY))
(GO _1LAB2Y))

EXPR)

(DEFPROP COSTL

(LAMBDA (L)

(PROG (COUNT X Y)
(COMMENT USES

DST
ARRAY

T0
FIND

COST
QF

A
S0L

REPRESELTED) _
(COMMENT BY 4 L I1ST of PERMUTED INTEGFRS)

(COND
(SETN

((NULL L) (RETURN M1L)))

CUOUNT 23)

LAB (COND
(SETH

((NULL (CDR L))

X_(CAR 1))

(RETURN cOUNT)))

{(SETG
(SETH

Y (Calir L))

D (COISA X Y))

(CONU

(eMINyspe n)

(SETQR D (D151 (CLIST - X) (cLIST ¥)))))

(SETD
(SgIN

COUNT (=PLDS
[(CoRr L))

COuUNT D))

EXPR)

(GO LAB)IY)))

CEFPROP L 1N

(LAMBDACL)

(PRPOG ¢INT 1 L1 PL P2 P CC1 CC» X ¥ 7)

(COMDENT GORS

(COWN

FHRU e
KL T® .
. REUCTTO
CYCLES
1N
FNDING
CBEST. e e e e — I
PERM)
e {COMMENT OF LJE CALLS LIN2 RLIN_ TIHELS)Y . — I -
ES5FT 1 1) :
LAbZ (SETa N CLENGTH VY)Y) e
(COND ({#LL9S 11 4) (0 LABD)))
CASETS L CLIN2 L)) - _

-
nNo
O

((NFQ_ T RLIn

(COND CONULL IMT)Y (SETN I (ARUL 1)) (GO LAR3))
(1_(c0 LaB1)))y)

LABS

(SETD-P1 LD
(SETQ P2 (CDR 1))

LaB2

(SETR L1
(REVERSEX

(GET (CLIST (CAR P1)) (pUOTE FUOLLOWERSP))))
(PUTPROP (CLIST (CAR P3)) WL (WUOTF Fol{ OWFRSP))

(COND ((NULL 1)
(COND C(NULE P2) (RETURN 1))

(T (SETC PL P2)
(SET0 P2 (CDR p1))

(GO LAB2))))
(I_(RPLACD P1 1)

(COND ((NULL P2) (RETURN L))
(T_(NCONC 11 P2)

(SETQ FP1 (CDR P1))
(SFTQ P2 (CDR P1))

LAaBY

(GO LARZ))))
(SFTQ P11 L)

(SETQ P (CDR P1))

LABS

(SETQ P2 (CDR P))
(COND :
Cenpbl P2) (SETR INT NIL)

(SETQ T ¢ADD1 1))
(GO | AR3)))

(COND
((NMEMX (CAR P1) (CAR P) INT)

(sefa P1L P)
(SETQ P P2)

(SETQ P2 (CUR F2))
(GO | AB6)))

LAB4

(COND
((NMEMX (CAR P) (CAR P2) INT)

(SETQ P1 P2)
(SETQ P (CDR P1))

(COND :
C(NULL P) (SETQ IMT NILD

(SETQ I €ADDL 1))
(GO LAB3)))

(SETQ P2 (CUR P2))

(RPLACD P1 P2)
(3TORE (CDISA (CAR FP1) (CAR P23y) =-12221)

(STORE (CDISA (CAR P2) (CAR Pl)) -12221)
(PUTPROP -

(CLIST (CAR FP1))
(CONS_(CAR P) -

(GET (CLIST (CAR P1)) (2U0TE FOLLOWERSP)))

L GSETH P2 (CDR_P2))

CERDLL PRY (SETH INT NIL)

(SETR P P2)
(ol e
(SET T (anpL 1IN S

(60 A3

_Exemy

(GO LAB4)))

(DEEPROP 1 IN2

(LAMBDA (L) ,
(PROC (L1 S TEMP L2 Cc0ST4 ¢c0ST2 1 X ¥ 13)
(COMMENT CREATES
MLIN
3
0PTS
oF
L
SETS
up
- REDUCTION
LIST) -
(COMMENT HAS THE ALMOST NTHREEQPT FEATURE)
(SFIn_ 1 1)
(SETQ L1 (ECOPY L))
(SETQ 12 (ECOPY () -
(SETQ COST1 (COSTL L1)) . '
(SETQ L2 (NTHREEGPT (RPERM 1L2)))
(SETQ cGST2 (COSTL L2M)
, (SETQ 1.3 1.2)
LAB1 (COND
((NOT (NULL (CDR [.3)))
(SETG S. (CONS (LIST (CAR L3) (CADR L3)) $))
(SETQ INT (CONS (LIST (CAR 12) (CADR 13)) INT))
(SETQ L3 (CDR L3)) _
(GN | AR1)))
(COND ‘ .
((=#| ESS COST2 COST1)
(SETQ X L1) _ _
(SETQ L1 L2) AJ
(SETQ L2 X)
(SETQ COST1 €OST2)))
LAB3 (COND ((EQ I MLIN) (SETQ INT (REVERSEX INT))
(RETUHRN_L1))
(T (SETG 1 (ADNL 1))))
(SETA L2 (NTHREEOPT (RPERM L2)))
(SETQ COST2 (COSTL L2))
(ST 13 1,29
LAB2 (COND

((noT (NULL (CDPR1L3)))

(SETQ X (CAR L3))
(SETQ_ Y _(CADR 13))

(COMD
C(NMEMX X Y $) (SFTQ 5 (CGNS (LIST X Y) S32))

(COND
CANOT _(NMEMX XY INTI) ..

(SETQ TEMP (CONS (LIST X Yy TEMP))))
(SETQ LS (COK L3)) .

(GO LAB2))) - B
(SETH_INT_TEMP)

(2FTQ TEMP NIL)

OO e

((#LE£SS COST2 CNST1)

_SEYG X L1y
(5t L1 L2)
(3610 L2 X)

L OERPRY

(SETQ CcOSTyL Cc05T2)))
(GO_LABSIID

13

(DEFPRGP ECOPY
(LAMBDA (L)

(COND C((NULL L) NIL) (T (CONS (CAR L) (ECOPY (CDR L)5))))

EXPR)

(DFFPRNP ATHREFOPT

(LAMBDA(L)

(PROG (CC1 CC2

Cc3
Cc4

cco
cce

MIN
X

OPTION
L1

L2
L3

012
D13

014

D15
024 -
D25

D26
D34

D35
D36

D46
D56)

(COMMENT COMPS
A

3
)

0PI
PERM

OF
L

FREE
VAR

FLAG
TELLS

OF)
(COMMENT CHANGES DESTROYS L MITH RPLACGN'S)

(COMMENT USES S TO IGNORE CERTAIN POSSIBILITIES)
LABZ (SETQ L1 L) S R

LABL (COND ((NULL (CDP L1)) (PETURN L)))
(SETQ_CCL L1)

(SETQ cC2 (CDR L41))
{COND

((MEMBER (LIST (CAR CC1) (CAR CC2)) $)
_(SEMO L1 (DR LAY

(GO LAs1))) : .
L ASETQ 012 _(COISA (CAR CCL) (CAR CC2)))
(COND ((AINUSP D12) (SETH L1 (gUR L1)) (GO Lag1)))
(SETA L2 (CoR L1)) : :

LAaB2 (COND : .
L CORULL CCDR L2)) (SETN L1 (eDR L1Y) (GO _LABIDYY .
(SET CC3 L2) ' ‘

132

(SETQ_CL4 (COR L2))
(SETQ D34 (CDISA (CAR CC3) (CAR CC4)))
(COND ((MINUSP Dz4) (SETN 12 (cBR 123) (G0 L AB2)Y))
(SETQ D13 (CNISA (CAR CC1) (CAr CC3)))
(SETQ D14 (CDISA (CAR CC1) (CAR CC4)))
(SETQ D24 (CDISA (CAR (¢C2) (CAR CC4)))
(SETQ 13 (COR 1.2))
LAB3 (COND
CeNULL (CDR L3)) (SETQ 12 (CDR 1.2)) (GO LAB2))Y)
(SETQ CC5 1.3)
(SETQ CC6_(CDR L3))
(SETQ D56 (CDISA (CAR CCS) (CAR [£C6)))
(COND ((MINUSP D56) (SETN L3 (cUR L3)) (GO LAR3Z)))
(SETQ DO (#PLUS (=PLUS D12 D34) D56))
(SETO D25 (CNISA (CAR €£C2) (CAR £CS5)Y))
(SETQ N46 (CNISA (CAR cCc4) (CAR ¢C6)))
(SETO MIN (PLUS Ni3 N25 N46))
(SETQ GPTION 1)
(SETQ D26 (CDISA (CAR CCZ) (CAR CC6)))
(SETQ D35 (CDISA (CAR CC2) (CAn CCS)))
(SETOo X (PLUS D14 Do2s N3IB))
(COND ((#LESS X MIN) (SETQ MIN X) (SETQ OPTION 2)))
(SETQ DA5 (CDISA (CAR CC1) (CAR €C5))) '
(SETQ D36 (CDISA (CAR CC3) (CAR CC6)))
(SETH X (PLUS D1S D24 D3IA))
(COND ((®=LESS X MIN) (SETQ MIN X) (SETQ OPTION 3)))
(SETGE X (PLUS D14 D25 DIA)) : -
(COND ((#LESS X MIN) (SETQ MIN X) (SETQ OPTION 4)))
(SETH X (PLUS D12 D35 ND44))
(COND ((®#LESS X MIN) (SETQ MIN X) (SETQ OPTIAN 5)))
(SFTN X (PLUS Di% 026 D3I4)) .
(COND ((=#LESS X MIN) (SETQ MIN X) (Sglg OPTION 6)))
(SETQ X (PLUS D13 D24 DSA))
(COND ((=LESS X MIN) (SETQ MIN X) (SETg OPTION 7)))
(COND '
((NOT (#LESS MIN DD))
(SETQR L3 (COR 113))

(GO LAB3)))
(SETQ FLAG T)-

(COND ((EQ OPTION 1)

(RPLACD Crl CC3)
(REVERSEXX €C2 cC3)

(RPLACZD Ccd CC5)

(REVERSEXX CC4_cC5)

((EQ ORTIQH 2)

(RPLACD C(4 CC6))
(RPILACD Crl CC4)

(REVERSEXX €C2 €C3)
(RPLLACD_Cce CC6)

((EQ OPTIOM 3)

(RPLACD Cr> CC3))
(KPLACD Crl CC5)

(REVERSEXY €C4 CCr)
(RPLACD Cr4 CC2)

((Lu OPTION 5)

((EG ORTION 4) (RPLACD Ccl.

(RPLACD Cs CCe))
Cc4) .

(RPILACD Cr» CC2)

. ARPLACD_Ccs CCO6) Y

(RPACD Cr$ CCH)
(REVERSEXY €C4 £C5)

((EQ_0PT10% 6)

(RPI_ACD Crda CCH))

ARPLACD €l CCsy
£Cs)

(REVERSEXY CC2

—

(RPLACD Cr2d CCeY)

((EQ OPTION 7)

(RPLACD Cc¢l CC3)
(REMEPRSEXY CG2 _CC3)

(GD | AB#J))

(RPLACD Cc2 CC4)))

EXPR)

(CEFPROP REVERSEXX

(LAMBDA(PY P2)
(PROG (X1 X X2)
(COMMENT GOES
IN
AND
REVERSES
PART
oF
A
LIST
FROM
P1
10
P2
INCLUSIVE) :
(COMMENT DESTROYS LINKS WITH REST OF LIST)
(SETA XI NIL)
(SETQ X P1)
LAt (SFTo X2 (CDOR X))
(RPLACD X X1)
(COND ((EQ X P2) (RETURN P23))
(SETQ X1 X)
(SETH X X2)
(GO LAB)))
EXPR)

(DEFPROP THREEQPT

(LAMBDA (L)

(PROG (CC31 Ccz

Cc3
CCs4

ccs
Cce

Mk
X

OPTION
L1

L2
L3

D12
0313

Ui

.1;5

De4
u2s.

U;_)f,)
34

025

Lse

Lido
BS50)

T(CAMNMENT CUMPS

134

A
3
)
oPT
PERM
OF
L
FREE
VAR
FLAG
TELLS
0F)
4 (COMMENT CHANGES DESTROYS L WITH RPLACD'S)
LABZ (SETH L1 L) .
ILAB1 (COND C(NULL (CDR 11)) (RETURN LY))
(SETQ cC1 L1)
(SETn CcL2 (CHR-L1))
(SETQ D12 (CDISA (CAR €C1) (CAR €C2)))
(COND ((MINUSP D12) (SETQ L1 (bR L1)) (GO LaB1)))
(SETS L2 (CDR L1))
LAB2 (COND
CENULL (CDR L2)) (SETQ L1 (¢DR 1.1)) (GO LaB1)))
(SETQ ¢C3 L2) .
(SETO CC4-(CNR L2)) :
(SETO D34 (COISA (CAR CC3) (CAH £C4)))
(COND ((MINUSP DZ4) (SET2 L2 (cLR L2)) (G0 LAB2)))
(SETN D13 (COISA (CAR CC1) (CAR CC3)))
(SETG D14 (CDISA (CAR CC1) (CAR CC4)))
(SETQ D24 (COISA (CAR CC2) (CAR _GC4)))
(SETH L3 (CDR L2))
LAB3Z (COND
CCNULL (CDR L3)) (SETQ L2 (€DR 1L2)) (60 LAB2)))
(SETN €S L3) .
(SETQ €Ce (CDR L3)) _
(SETO D6 (CDISA (CAR CC=) (CAT €Ch)Y)
(COND ((MINUSP 056) (SETN L3 (LR L3)Y) (GO LAB3)))
(SETN DG (#PLUS (#PLUS 12 534) 154))
(SETQ D25 (CDISA (CAR CC2) (CAR CC5))) -
(SFET0 D46 (CRISA (CAP cgA) (CcAR cC6)))
(SETh MIN (PLUS 113 N25 nid6))
(SETQ OPTlON 1)
(SETQ D26 (CDISA (CAR CC2) (CAR CC6)))
(SETH D35 (CDISA (CAR CCZ) (CAR €C5%)))
(SETO X (FLUS N14 Dos N35))
(CONN ((#LESS X 1#IN) (SETQ MIN X) (ST OPTINN 2)))
(SETO D15 (CUISA (CAR CC1) (CAR 1CS)))

(SETn D36 (CNISA (Caw _CC2) (CAR CC61))

(SETH X (PLUS N1 D24 N3a))

(COND_ ((*LESS X 'IM) (SETG MIN X)) (SETo QPTION 3)))
(SETH X (FLUS M14 DNz&% N34))

(COND ((#LESS X IN) (SETQ MIN X) (SFTQ OPTINN 4)))
(56T X (FLUS N1 N35 N4n))

(COND_ ((LESS. X IN). (SETI MIN. X)) (SEln OPTINN %))).
(SFTo X (PLUS 1% D2e Nn3a))

e LCOME ((RLESS X IR (SETQ MIN Xy (ST OPTIAN 63))

(5FTH X (PLJS D13 D24 N55))

(COn_((#LESS X (HIN) (SETH. MIN X) ¢36Tn rPTInN 7))

(COmND .

Al (elESS MIE 00D
(5P T L

(rHe

L3))

(SFT0 P1 L)

—
w

(]

(SETQ P (COR L))
(SFTQ P2 (COR P))

l.ABD

(SETQ 1 29

(COND_((EQ 1 RY
~ (RPLACD P1 P2)
(RPLACD P4 P)

(SETQ P4 P)
(SETY N (SURYT N))

(CORD
((EQ N 2)

(RELACD P4 (UR 1))

(RPLACD L

(ChrR FP3))

(RETURM L))

(GO LAB1))
(T _(SETH 1

(ADBT 1))

(SETQ P1 P)
(5FTW P P2)

(5£7Q P2
(GO LAB2)))))

(COR P2))

EXPR)

(GEFPROP RND
(LAMBDA NIL

(PROG NIL :
(SETQ SEED

(KEMAINUER

(=PLUS
4342A))

(#TIMES 2811 SEER) 1)

(RETURN (®QUD

EXPR)

(#PLUS SEED 2,d)

42820)1))

(DFFPROP LIN

(LI NMEMX
NIHRETQPT

CLSOL
COSTY

LIfd
Line

ECOPY
ATHREENOPT

REVERSEXX
THREEOR]T

RasDOMI
DEVERSIX

FPERM
Ran

LI

L VALUE)

(GO | AB3)))

136

(SETQ FLAG T)

(COND (CEQ QOPTIONM

1

(RPIACD Ccld (C3)

(REVERSEXY €C2 €C3)
(RPLACD Cre CCS)

(REVERSEXY CC4 CCs)
(RPLACD _Cc4 CChY)

((EQ

oPT10W

(RPLLACD Crl CC4)
(REVERSFXY £C2 £Cz3)

(RPLACD Cr2 CC6)
(RPIACD Cc2 CC3))

((EQ

OPTION

3)

(RPLLACD Crl CC5)
(REVERSEXX CC4 _€C5)

(RPLACD Crc4 CC2)
(RPIACD_Crs CCAY)

((E

G OPTION

4)

(RPILACDC Ccl CC4)
(RPLACD _Cr2 CC2)

((E

Q _0PTIOM

(RPILACC Cge CC6)D
(RPLACL Cco CCHS)

(REVERSFXY £G4 cC5)
(RPLACD Cr4 CCh))

((ED

oPTION

(RFLACD Ccl CC5)
(REVERSEXY CC2?2 €C»)

((EQ

0pPT10w

(RPLACD Cr2 CC6))
(RELACD Cpl CC3)

(REVERSEXX CC2 CC3)
(RPIACD Cre CC4)))

(GO LABZ)

))

EXPR)

(DEFPROP_RANDOMI

(LaMBNA(X Y)
(FI1X (#PLUS X

(#TIMES

(#D1F

(ANDY Y) X)

(RMD)YDI YD)

EXPR)

- (DEFPRDP REVFRSEX
(LAMBDALCL)

(PROG (P1 P PR2)

(COMMENT REVERSES A L'IST)

(COND
(SET3 _R1

((NULL L)

NILD

(RETURN L))

(SETOH P L
(SETQ P2

)

(COR L))

LAB (RFLACD P P1)
(CORND _((NULL P2) (RETURN P)))
(ST PL P)
(SFTO P P2)
(5T Pz (CDR PZ))
(GO L AR)))
EXPR)

(LEFPROP RPERN
— o SLANEDACL)

(Lo MNT
(97 T79 H

_(CUMMENT RA
RETLL0S FIRGT

(LEMCGTH 1))

(PROG (R RL PL P P2 P& P4 0 1)
NOOHFERMUTES LOGESTRAYS
LLST FLFMENTS)

A

LoMOM EMPTY)

(50T0 P3

(Sr 717 P4

(LIST

(nunie
P3) .

N

LABL (SFT.0 R O(RARDCGHT 2 (SURL NI

137

(NFEPKNDP CRAOES

(CRNES CROES CROES1 CROCS2 JTNVERSION cUSTC DIS2 CCSOL)
VALUF)

(DEFPROP CROES

(CROES CROES CROES1 CROFS2 INVERSION CUSTC DIS2 CCSNL)
VAL UF)

(DEFPROP CROFSH

(LAMBDA (L) '
(PROG _(InT T L1 P1 Pp 2 CCY CC2 X Y 7

(COMMENT GUES
THiRU

RCROLES
RELUCTIOH

CYCLES
IN -

FNOING
BEST

PERM)
(COMMENT OF | 1E CALLlS CFROES2 RUROES TIMES)

(SETn I 1) :

LAB3 (SETG N (LENGTH 1))
‘ (COND ((#LESS N 4) (50 LAGBS)))
(SET0 | (CROES? (1))

(COND
((NFQ 1 RCROES)

(COND CCNULL I9T) (SETR 1 (ADU1 1)) (GO LAR3))

(1 (60 LaB1))Y)))

LaBS (SETO PL L)
(SFETn P2 (CHR 1))

LAB?2 (SETQ L1
(REVERSEX

(GET (CLIST (CAR FP1)) (nUNTE FOLLOWERSP))))
(PUTRROP (CLIST (CAR P1)) NIl (UUOTE FALLOWERSP))

(COND CCNULL L1
(COMy CeNtiLL P2y ¢(RETURN L))

(T (SCT7TR PL P2)
(SETG P2 (CDOR p1))

(GO LABZ)Y)))
(T _(RPLACD P1 1)

(COrRD CONULL P2)Y (RETuRN L))
(T _(um0ng L1 P2

(sETO PLo(Cnn P1))
(srfa re (CD8 PRI .

(G LAT2)))))

LABL (5010 Pl L) _
) (SETND P (CDR FL))
(5010 P2 (Cu F))

LAGG (COHn R
COENURL PR2Y (SETS IHT MIL)

(oo
CQlnkMy (CAR 1Y) (CAR P INT)

SET T (ADGY 1)) S
e e GO LAESYYY

(SET0 P R
BN 10 [V A2 B
(3FTa P2 (Db P2))

(GO | AB6)))

LAB4 (COND _
((NMEMX (CAR P)Y (CAR P2y INT)

(SETQ P1 P2)
(SETQ P (CDR P1))

(COND
CCNULL P) (SETQ THT MNIL)

(SETQ I (ADRL 1))
(GO LABZ)))

(SETQ P2 (CDR F2))
(GO | AB6)))

(RPLACD PL P2)
(STORE (CDISA (CAR P1) (CAR P23) =12221)

(STORE (CDISA (CAR P2) (CAR P1)) -12221)
tPUTPROP

(CLIST (CAR P1))
(COnsS (CAR P)

(GET (CLIST (CAR PL)) (QUOTE FOLLNWERSP)))
(ouoTE FOLLOHFHQP))

(SETH P P2)
(SETG P2 (CDOR P2))

(COND
Cenubl P2) (SETD INT NI

(SETC T (ADDL 1))
(GO _LAR3)Y))

(GO LAR4)))
EXPR) :

(CEFPRNP CROES?

(LAMBDA(L) o
(PROG (L1 S TEMP L2 COST1 €OST2z 1 X v L3)

{COMMENT CREATES
MCRNES

INVERS]ONS
OF

L
SETS

P
REDUCTION

LIST)
(COMMEWT HAS THE ALMNST INVERSTUNS FEATURE)

(SETa 1 1)
(SETG 1A C(ECOPY | 1))

(5£TA L2 (ECOPY 1))
(SFT¢ COSTY (COSTE 11))

(SETH L2z (INVERSION (RPEFM LZ2)))
(5CTe _CcesTzg (COSTC 1L2))

(5072 L3 L2)
LAEBL (COND

((nT (HULL (CO7 1.3)))

(LET0 S (CONS (LIST (CaR L3I) (CADR 12)) 8S))
(SETG LNT (CONS (LIST (CAR Lz) (CADK L3)) INT))

(et Lanvid)d)
L G R A
((# Sy GOsTe COsST)
(S0 ly x L) ;

o SE T LS TR L8)

| (5016 L1 L»)
‘ S €10 FO R~
(SETa CusT1 CosT2))y)

LAKZ

(COND ((EQ 1 MCROES) (SETD INT (REVERSEX _INTY)

C(RETURN Li M)
(T _(SETQ [(ADDT T))))

(SETN L2 (INVERSION (RPERM L2))?
(SET ¢0S12 (GOSTC [2))

LAaB2

(SETQ L3 L2)
(COND

CENNDT (NULL (CLF L3)))
(SETQ X (CAR 1.3))

(SETG Y (CAUR L3))
{(COND

((NMEMX X Y S) (SETQ S (CANS (LIST X Y) S$))))
(COND :

((NOT (NHEMX ¥ Y INT))
(RETH TEHP (CONS (LIST X Yy TEMPY)))

(SETQ L3 (CDR 1.3))
(G0 | AB2)))

(SFTn INT TEMP)
(SETH TEMP NIL) -

(COND
((# ESS C0OST2 €CNST1)

(SETQ X L1)
(SE1Q L1 L2)

(SETQ L2 X)
(5£TG COST1 €Q0S5T2)))

EXPR)

(GO [LAB3)))

(DEFPRNP INVERSION

(LAMEBDA(L)

(PROG (L1 12 CC1 CCZ CC3 Cr4 D12 D34

(COMMENT COMPUTES AN IMVERSION PERM OF L DESTROYS L)
LAB{ (SETn 111 L) .
LABL (TCONDG ((NULL (CDF L1)) (RETURN L)))

(SE19 cCci L) :

(SETQ Ce2 (COR L1))

(SETC D12 (D152 (CAR CC1) (CAR C€Cc2)))

(Conf ((MINUSP D42) (SETH L1 (cUR L1)) (GO LAB1)))

(5ET0 Lz (CoR L1))
LAB? (COND

Lyl (COR L2)) (Sr7a 11 (DR L1)) (GO LAB1)))
(SET CCS L2) :
(5077 Ccd (COR L2))

(3679 D34 (UIS2 (CAR CC3) (CAR Lr4)))
(CONY ((MINUSP D34) (SET2 L2 (ebR L2) (G LAR2))))

(CONTG ((#LESS (#°LUS (N]T2 (AR CC1) (CAR CLR))
LADLS2 CGAR CC2) (CAR CC4)))

(#LUS D192 D34))
(RPLACE Cri Ccondy .

(REVERSEXY £C? ©C?)
(RELACEH Crg ¢r4d)

(GD LAg?))Y -
(T _(LETQ L2 (CPR L2)) (6o LLABZ)))))

ERRR)

REI

CnSTC

(Cousl X oY)

INAI

: 140
ARRAY
T0
FIND
COST
OF
A
SOl
REPRESENTED)
(COMMENT _BY A L1ST oF PERMUTED INTEGERS)
(COND ((NULL L) (RETURN #I1L)))
(SETG CUUNT g)
LAB (COND ((NULL (CDR L)) (RETURH (OUNT)))
(SETO X (CAR L))
(SETQ Y (CALR L))
(COND ((#LESS X Y) (SETG D (NST Y X)))
(T (SETR D (DST X Vv))))

(COND .
CCMINUSP D) (SETQ D (NI8E (CL15T X) (CLIST Y)))))
(SETH COURNT (#PLYUS CoUNT DY)

(SETH L (COR L)

(GO0 AR)).

EXPR)

(LEFPROP DIS?
~ (1L AMBPACCCY CC¥) :

(COND ((#LESS CCL1 CC2) (DST CC» CC1)) (T (DST CC1 CC2))))
FXPi)

(DEFPROP._CCSOAL
(LAMBDA(NAME)
(PROG_(CITIES IN OUT NUM {1 CAST J L1 _CCo)
(COMMENT CRETES A SOLUTINN TN PROBLEM AT NONT NAME)
(COMMENT USIMG CrROFS INVORSION FCOCFDURE)
(SETH NAME (CAR (POINTER NAME))Y)
(SETH CITIES (GET HNaME (QUOTE abJECTSP)Y)
(COND ((NULL CITIES) (RETURN NIL)))
(COiD '
((EQ NAME (QUOTE UNTV))
(5rTG IN (CAR CITIES))

(SETE OUT TN
(GC LAaB))

(T (CBPTS1 MAME)))
(SETO IN (CAAR (OET NAME (QUATE STRUCTUREP)ID)Y) |
(SETH QUT (CADAR (GET WAME (QUNTE STRUCTHREFID))
(SETD CITIES (CO5S 10 (REMOVEX 19 CITIES)))
Lag (COND
((Eo Im 0UT) e
(P10 CITIES (aPPEND CITIES (LIST nUTI)Y)
(7
(56Tw CITIES
(APPEND (REMOVEX _OUT C1'IES)Y (L IS8T QuTYI)))
(SCTO NUN (LENGTs CITIES)Y)
L ¢ o1 £ 1
CC#LESS WNUM 4) (GO L AR1))
A CHOREAT MU BANCROES)
(KFTUh
(AUnTE
(lax [MUM WoHM"ER
s

T CITIES

EXCFED
FOR
CROFSSQLVEYYD))
(COMMENT SET
Up
CorPY
OF
OsT
ARKAY
IN
LORER
HALF
OF
pDSTy
(SETN 1 7)
(MAP
(FUMCTION
(LAMBDA(X)
(FROG NIL
(SETQ T ADpDL 1Y)
(STORE (CLIST Iy (CAR X))
(SETQ 4 1)
(MAPC
C(FUNCTION
(LAMBIMA(Y)
(PROG (D)
(SETQ J (ARG J))
(COND
CECNDLL
(AND
(GFT (CAR X)
' (oUATE TEPMINALP))
(GIFT Y (UNTE TERMINALR)IDI)
(SETr D (D191 (CAR X) Y)»N))
(T ¢(SrTQ CCa (EVAL (CAR X)))
(SETO CC2 (EVAL Y))
(COANDG _
((*LESS Lri ¢cr2)
(SETR n (PST Col €ceey))

(T (SETH 7 (DST CC2 CC1)2)I))
(STORE_(DST_J 1) D)

(RETURS NIL)Y D))
(LOR X3

(RETURN NILY)))
CITIES)

(SETO L CTLIST 'L NUmMY) :

(COoNn CONLLL MORTES) _(SETQ MCROLS 2)
(CORND ((NULL RCRCES) (SETO RoRaks 2

(SETO [(CROEST 1))
SETH CUST (2051 L))
(SETH GITIES NIL)

S LABD (SETA CLITES (CO0S (FLIST (CAR L)) CITIES))
e ASEY L DR
Latst (L0NG

. (PTREQP WAME

: (LIST (LIsY Ji0 OUT) (mEVERSEX CITIES))

(DUCTE STHUCTIRCH))
__oSEY MCRULS_NYLY

o (57 T0 RUKOLS NIL)) .

S

™N

(NS0 __NAME)

——

(RETURN COST)))
(GO 1 ARZ2)))

EXPR)

143

Appendix V. System Commands and Solution and Display Utility Routines

144

Flow Chart for the Interior A1gor5thm (checks if a point is inside a polygon)

Get next 1line
segment
A

Get 1st Tine
segment

.

)£
segment Y [segment 1list ¥ Return
vertical? empty? = Answer
N

#

)
v A
b
VA
=
~nNo
N
==
St

_

Compute z

Get next line segment
‘'wrap.around' if

,
C::f—- Y
y = 2:5)______-———%»Return Yes _ necessary

il

K
A _ N : 3 :
Ify<z ’ Y is y on segmenfj%él—(segment vertica1é)
add 1 to A N
count . ‘ '
| i is y above this
_ egment ? A k.

N

7

Form new segment
if necessary

145

Subroutine A:

ADD 1 to xJ

r

X

x1 and x2 y £ z add 1 to

-

is x between \\\\; , - compute z. If

of this segment? count.
5 y
is x between xI1 and\\\ : compute z. If
x2 of next line y — ¥y < z add 1 to
segment? /// count.
N

<

subtract . 1 from x

(GEFPROP FHNGE

(LAMBOA(NAME)
(COND CONULL (CADR (GET NAME (QUOTE STRUCTUREP))D) NAMF)

(7
(FUNGE

(CAR

(LAST (CADR (GET MAME (QUOTE STRUGCTUREP)))))II)I))
EXPR) - '

(DEFPROP ECITIES

(LAMBDA NIL (PROG NIL (SELFCT 1% (ClEAR)))
EXPR)

(OEFPKOP DSYNTHS
_(LAMBDA_NTJ

(PRUG (L)
(ESYTHS)

(SET: L (LIST (QUOTE UxIv)))
LaB (GSUR (CAR 1))

(SETC L CAPPEND L (GET (CAR L) (QUOTE 0BJECTSP)Y)))
(SFTe 1 (COR 1))

(COND ((NULL L) (RETURN T)) (T (GO LAB)Y))))
EXPR) :

(OFFPROP ECITYNAMES

(LAMBDA NIL (PROG NIL (SELECT 3) (CLEAR)Y (RETURN NILD))
FXPR) :

(NEFPROP DBCITYNAMES

(LAMGDA NIL
(PrROG (C P C3)

(COMMENT DISPLAYS THE CITY PRINT NAMES)
(SEFECT 30 '

(COND ((NULL CITIES) (RETURN NTL)))
{(SETn £S5 CNAMES) ‘

LAB (SETa C (CAR CS))
_ (SETO P (GET € (2UQTFE CETROIDP)))

(TEXT € (CAK P) (CAUGR P))
(SET0 £S5 (COR CS))

(Colp ((NULL CS) (RETURN NIL))Y (T (GO LAR))DIDI))
EXPR)

(DEFPRNP _ESURNAMES

(LAMBDA NIL (PROG NTL (SELECT 3) (CLEAK) (RETURN NMIL)))
EXPR)

_LLEFPKIP EGARBAGE

(LAMBDA WIL
o tPROC CHTL

(SELFCT $)
(CLFAR)

(SELFCT 4)
_(CLEAK)
(STLECT 7)
L AL E AR)

FXPH)

(LOFPRoE CPPToYL
L AR A CNDDT)
(Pros (F1 e ox)

(COMMENT CREATES TWO BOYPTS FOR GIVED NONT)

(PRINT (QUOTE (POINTER 70 FIR3T BOUNNDARY POINT?2)))
(SETn X (GET (QUATE STATUS) (QUUTE CONTEXT)))

(PUTPROP (QUOTE STATUS) HONT (qUOTE CONTEXT))
(SETR P (CAR (PNINTER (NUQTE w#2))))

(PRINT (QUOTE (PGINTER To SEcOnD BOUNDARY FOINT?)))
(SETN P2 (CAR _(POIMTFR (AUOTE s¥s))))

(PUTPROP (QUOTE STATUS) X (QUOTE CONTEXT))
(PUTPRQP ' :

NONT
(1LIST (| IST Py F2)

(CADR (GET NOUT (QUOTE sIRUCTUREP)I)))
(QUOTE STRUCTURCP)) .

(RETUKRN NONT)))
FYXPR)

(LEFPRAP DS SEX

(LAMBDA(NAME)
(PROG (L)

(COMMENT DISPLAYS

ALL
SOLUTIONS
EXCEPT
THOSE
ROOTED
AT
: NAME)
(SETR NAME (CAR (POINTER NAME))Y) -
(SELFCT 5)
(CLEAR)
(SETa L (LIST (QUOTE UMIV)))
LAB (COND ((NULL L) (RFTURN M1L)))
(COND ((EQ (CAR 1) NAMF) (SETQ L (60P 1)) (GN LAR))
(1 : -
(SETQ L
(APFEND
L

(GFT (CAR L) (QUATE OBJECTSP)))D))
(DSOL_(CAR 1))

(SET . (CDR L))
(G2 1.AB)))

EXPR)

(GEFPROP NDSURNAMES
(LAMBNA NIL

(PROG (L)
(SCTn L CLIST (QUOTE UHMIYID)

Lats (asUnhiade (CaR L))
(3070 L CAPEEND L (GET (CAR L) _(SUOTC 0BJECTSP))))

(SETh L (CDR L)) o

L CLAMDACNAME)

(COMD (CHULL 1) (RICTURN Ty (T (60 LABII)Y
EXPR) : :

(GEFPRAP USUSNANE
(t} '? U r' ()\) T e e o CoTTT oo T e e e
(LOrMsbE T DISPLAYS

THE.
e PRLNT
PANE

148
0F

A
SUBPROB] EM~-NONTFRMINAL)

(SETR NAME (CAR (POINTER NAME))?
(Coin

((NULL (GET NAME (QUOTE O0BJECTSP))) (RETURN NILD))
(SFTO X (GET NAME (QUOTE INTENTICONP)))

(COND ((NULL X) (RETURN ™1L)))
(SFLFCT 3)

(TEXT NAME (CAAR X) (CADAR X))
(RETURN T)))

EXPR)

(DEFPRNP DCITIES
(1 AMBDA NTL

(PROG (CS P)
. (SFTg Co CITIES)

(SELECT 1)
(CLEAR)

LAt (COND C(NULL C€S) (RETURN NIL)))
(SFTH P (CAR €S))

(POINT {CAK P) (CADR P))
(SETH €S (COR €S8))

(GO LAR)))
EXPR)

(GEFPRNP DCNAMES

(LAMBDA NIL
(PROG (C p C8)

(COMMENT DISPLAYS THFE CITY PRI} NAMES)
(SELFCT 3)

(COND ((NULL CITIES) (RETURN NiL)))
(SETA CS CITYNAMES)

LaB (5ETQ C (CAR CS8)) .
(SETg P (GET € (CUOTE CENTRQO1D2Y)

(TEXT C (CAR P) (CADF P))
(SETG CS8 (CoR C8))

(COND ((NULL CS) (RETURRM NIL)) (T (G0 LAR))I)))

(DEFPROP QUT

(LAMEDA (%)
(PROG (8 1)

{COMMERT DETERNITES
THE

LOWEST
LEVEL

CEMTROIMN
11

A

NJVIS

WHICH)

o LCOMMENT COUMES AFTER X)) o, e
(SETD o (GET X (UOTE RELONGSPY)

e (SETO L CCADL (GET R (QUDTE STRUCTUREPY))
LA (COoMD

((En _(CAR L) XD

(CGND CCHULL (2DR 1)) |
o AC0HD CCEG NANE BY (RETURE NLILYY
(T (RFTURS (OUT BY))))

[

(RETURN
(GET (
(SETO L (COR L))

’ (GO LABY))
EFPROP SLAST '

~A
(COND ((NULL (CDR L)) MIL)
(CDD

(T (SLAST (CDR L)))))

(LAMBDA(X)
PRO
(COMMENT UETERMINES

THE

LOWEST ‘ :
: LEYFL '
____________________________._,_—______—_é_______,___,_______f____.

8]

CENTROID
INA

SLB) :
GMES REFORE X .”_.___~_#____———————~————
P

GET X (nUOTE PELOIBQP)))
(CADR (GET (QUATE =) QUhTUR

(bOmﬂ
An))

]
(CoNp ((EQ B (JUDTF uva)
(kETURM (GET (SLA (QUOTE GENTROLDPI)))
((Eo NAME) (RETURN NpLY)
R TJ“)))
((Eu X (CAGR L))
(QUOTE CENTROIDP)II))

(RETURN (RET)
ARY YD)

(T (SETQ L (con L)) (uo L
EXPR)
' —

(nEFPROP SYHTH

(LA“HUA(JAMt) :
(PROG (X S pq P2 K1 Kz ENTE CXX)
(COMMENT GOLS
"

LAB (COND

.

THikU .

e
SUBPROR

THEE
JR— _ﬂ,f,f,ﬂﬁﬂﬁiwﬁwwwwM@WMNM”H”,,wa”MM##,#,,deﬂw
0
[— BASIS) .. — e
((OAatuT OF 'EEST rIT' HFU?lkab) :
()FT\ waMb (CAR (POJtIE NA‘F)}_~
(.;E‘Tf\ L (CALH (GFT H:H[(OUOTF bTHU(,TURFP))))
ﬂ_wmeAﬁ”_(LOH) cenubh L) (RETURN IR e T T I
(SrTa X (CAR Ly
ww«%wmmwﬂmﬁﬁilﬁﬂﬁmQQAlhwﬁQﬂlmXWSQUUTE“ST%Q?TUREP))))_mwwwﬁ.“m-“w_mwwﬂw_,_‘”_
(TN
_M,,,N,_ﬂm__#_ﬂ,((i il =0 DE— gﬂ,___”w“,.”M.,_ﬂHW”__Mwﬂ_mmmﬁm__mm,,Wﬂﬂw_,ﬁw~,,w,ﬂﬂ_~ﬁﬂ,,~~_
_ (qi‘Q L oL (APPLN L <))

e (s ta P (IR XY) Lo L
(af\n P (NUT KD

(COND

150

((AND
(SETQ L. (CNR 1))

(NULL P1) (nuLeL P2))

(GO LAB)Y))

(SETQ ENTR (CAAR (GET

X (QUOTE STRUCTURER)))

(SETQ EXX
(COND

(CADAR

(GET

X (QGUOTE STRUCTUREP)))

((NULL P1)

(SETQ
K1, B
(DISTANCEY P2 (GET EXX (QUUTE CFENTRNINDPYIY)
(SETQ
K2 _
(DISTANCEL F2 (GET ENTR (QUQOTE CENTROIDRI)Y)D))
(T ' :
- (COND
((NULL P2)
(SETQ
K1 .
(DISTANCEZ P1 (GET ENTR (QUOTE CcENTROIDR))))
(SETQ ,
K2 '
(DISTANCE1 P41 (GET EXX (NUQTE CENTROINP)YJI)I))
(T (SETA
K1
(#PLUS
(DISTALCEq P4
(GET ENTR (QUOTE CEMTROTIDP)))
(DISTANCEL P2
(GET EXX (UUQTE CENTROINP)Y)
(SETD
K2
P Us
(DISTANCEL P11 (GET ExX (QUNTE CENTROIDP)))
(DISTAMNCE] ' -
P2 :
(GET FNTRK (QUATE cENTROIDRPINININIIIYD
(COND

((LESSP K2 K1)

(PUTPRUP X .
(LIt

(LIST EXX _EIR)

(FEVERSE S))

(GUGTE STRUCTUREP)Y))D))

(SETH 1 (COR L))
(G0 LABY)Y)
EXPR)

. (DEFPROF _DSUBS

(LANMBDA NIL
(PROG (L) —
(LSUnS) .
(5FTo 4 CLIST (QUQTE_UMIYID)
LAl (DSUr (CAK L))
— (SCAN [CAPPONG 1L (GET (CAR L) (2UOTC _0oBJECTISP)I)) - —

CoENeR)

(57T L (COHR L))

(CoLn_ CONDLL LY (RETURI T (T (00 Lab)Ida) . .

(LETPROP DSuR
L LLAUEDACIALE)
(PRUG CIBT P

(SETRD _INT (GET NAMFE (QUOTE INTENTIONP))

151

(COND ((NULL INT)
(SELECT

(RECTURY NIL)))

(SETQ
(SETPOS

(CAR INT))

(SETQ INT
(COND

(CDOR 14T
(ONULL TNTY

(LINETO
(GO _1AR)))

(DEFPROP ESURS
(PROG NIL

NIL,

(SELECT 23 (CLEAR)))

(DEFPROP
(LAMBDA(NAMEY NAMEZ)

CEBPTS

(81 B2 8)
(COMMENT READS

BELONGS

(S5ETQ

(POINTER WAME41)))

{SETH
(SETQ

(POINTER NAME2)))
(GET NAMEQ

(SETD
(CONT

(QUOTE BELANGSP)))
(GUOTE BELONGSP)))

((NEQ
(RETUKHN

(QU0TE
(ERKOR BNDY

WIFFETENT

(3FETH

SUBPRGBLEHS)))))
(QUGTE _STRUCTUREP)))

(PUTPROF B1

.4

(RETURN

STRUCTUREP))
NALEL GIAMEDDD)))

(EF:FPR(”‘:' DISTANCED
(LAMHDA(PL F2)

o SRPLUS

(BCFPRHRAE

1
(50

i (eI (CAR P1) (CAT P2))).

(CaDR P2y

wusp0]nlfR

NTL

Lo APROG (P L snuyY M o ME R oMINTGT X))
(unwnﬁul DETERATITELS WHIC! HINT [

POINTER)

(CommERNT AT 152

AND
PRINTS

A
(QUOTE P

AT
THE

CLOSEST
VERTEX)

(SETQ P (READ))
(SFETQ |

(GET (GET (QUOTE STATUS) (QUOTE CONTEXT))
(QUOTE OBJECTSPY))

(SFT MIN 4z22221)
(SETD MINE NILD)

(SETQ HMINNT MIL)
LaB1 (SETo BNDY (GET (CAR L) (QUOTE INTENTIONP)))

LAB2 (COND ((NULL BNDY)
(SETQ L (COR 1))

(COND CONULL L)
(SELECT 7))

(CLEAR)
(TEXT (QUOTE P)

(CAR MINP)
(CALDE _MIWPY)

(RETUR! (LIST HMINNT MIMNP)Y))
(T (GO 1 AR1)1Y)))

(T (SETQ X (DISTANCE P (cAR BNDY)))
(CoMD

(CLESSP X nINY (SETQ MIN X)

(SETQ MINNT (CAR 1))

(SETQ MINP (CAR BNDY))))
(SETQ B+DY (COR BHNOY))

(GO LAB2)))))
EXPR) ' —

(DEFPROP_*¥xPNINTER

(LAMBDA NIL
(PROG (P [BNDY MIy MI©VP MINNT X)

(COMMENT DETERMIMES 9HICH NINT 15 BeING POINTED)
(COMMENT AT -

AND
PRINTS

A
(QUATE #)

AT
THE

CLOSEST
VERTEX)

(SETH P (READ)) A
(50T L (LIST (BET (UDTr STATUD) (GUOTE _CONTEXT))))

(50T MIN 1222224)

(5FTa MINNT MIL)

(9T _MINP HNILY R -~ e

o LADL (SETO BEOY (GET (CAR L) (GUOTE JUTENTIONDI) L

Laie (TOND (LHULL BNBY)
(okiy L -

(APEEMNY

(GiT (CAR L) (DUNTE DRJECTHP)I)))

(SETQ | (COR 1))

153

(COND CONDLL 1)
(STLECT 73

(CLLEAR)
(TEXT (QUQATE P)

(CAR MINPR)
(CADR HMINP)Y)

(RETURN (LIST MINNT MINPY))
(T (GO 1 AB1Y))) '

(T (SETQ X (DISTANCE P (CAR BNNOY)Y))
(conD

(CLESSP X MIN) (SETQ MIN X)
(SETQ MINNT (CAR L))

(SETQ MINP (CAR BNDYJ))))
(SETQ (MDY (CDR BHDY) Y

(GO LABZ))))
EXPR)

(LEFPROP #POINTER

(LAMBDA NIL
(PROG (P L BNOY MIN MIMP MINNT X)

(COMMENT DETERMINES WHICH NINT IS BEING POINTED)
(COMMENT AT

AND
PRINTS

A
(QUOTE &)

AT
THE

CLUSEST
VERTEX)

(SETQ P (READ))
(SFTH | (LIST (QUOTE UMIV)Y)

(SETQ MIN 1222221)
(SETN MINK NIL)

(SETG MINNT ML)
LABY _(SETO BNOY (GET (CAR L) (QUOTE LUTENTIQNP)))

LAB2 (COND ((NULL BHDY) w
(SETQ L

(APFEND
L

(GFT (CAR L) (0OUQIE DEBJECTSP)Y D))
(SETQ L (ZDR 1))

S (COND CONBLL L)
(SELECT 7))

(CLEAR)
(TEXT _(QUOTE P)

(CAR MINP) ‘
_(CALK MINPY) -

(RETURY (LIST MImNT MIHP)))
(T (GO _LAR1Y)))

(T (SETQ X (DISTAKCE P (AR DNEYY)
(Co~p

CCLESSE X HIN) (SETO MIN X)
L ASETO MINNT (CAP L))

(SETQ BIDY (CHR_HLDY))

LkePRy

(SETQ MINP (CAR BMUy))))wmmmwmwwm

(GO LAaBz)I YY)

154
(NEFPROP ESYNTHS

(LAMBDA NIL (PROG NIL (SELECT 6) (CLE&K)))
FXPR)

(NEFPRNOP DSYNTH

(LAMBDA (NAME)
(PROG (L P)

(COMMENT DISPLAYSCSYNTHESIZED SULUTION)
(SELECT 6)

(SETQ NAME (CAR (POINTER NAME)))
(SETA L (GET NAME (QUOTE SOLUTIONP)Y))

(COND ((NULL L)Y (RETURN MILD)))

(SETQ P (GET (CAR L) (QUOTE CENIROIDRI))
(SETPOS (CAR P) (CADR P))
LAB (SETO | (COR 1))

(COND C((NULL L) (RETURK T)))

(SETN P (GET (CA® 1) (QUATE CE:IROIDP))Y)
(LINETO (CAR P) (CADR P))
(GO 1 AB)))

EXPR)

(DEFPRODP DINPUT

(LAMBDA (MAME) (SETQ CITIES (DSKIN NAMED))
EXPR)) '

(DEFPROP RINPUT
(LAMBDA NTL

(PROG (P)
(CLEARALL)

(SELECT 1)
(CLEAR)

(SETQ CITIES NIL)
LAB _(SFTq P (READ))

(POINT (CAR P) (CADR P))
(COND

((AMD (ZEROP (CAR P)) (ZERCP (LADR P)))
(RETURN CITIFS)))

(SETA CITIES (CUHS P CITIES))
(GN_LAB)))

EXPR)

(GEFPROF KSUR

(L AMBOA(NAKE)

(PROG (B)
(COMMENT DELETES

A .
L SURPKROBLEM .

WILL
NOT
DELETE
UNTY

PELETES)
(COMMENT STRUCTUZE I™ SELONGS. SESTORES TTS)
(COMMENT ORJECTS
N At
PELORGS
SHE2K K

ALLORS -
o LY
DELETTC 1)

_ : : 155
(COND_((EQ NAME (QUOTE ULIV)) (RETURSN NI

(SETO NAME (CAR (POIMTER NAME)})

(SETO B (GET NAMF (QUOTE BELONGSP)))
(PUTPROF B NIL (QUOTE SOLUTIONP))
(PUTPROP B

(LIST (LIST NIL NIL) #IL)
(QUOTE STRUCTURFEP))

(PUTPROP
B

(APPEND (GET NAHE (OUQTE OBJEGISF))
(REMOVEY NAWE (GET R (OUOTE ORJECTSP))))

(QUGTE OBJECTSF))
(ESYNTHS)

(ESULS)
(£.5UHS)

(DSURS)

(RETURE NAME)))
EXPR)

(DEFPRDP COST

(L AMBNA{NAME MODE)
(PROG (L COUNT)

(COMMENT COMPUTES
THE
COST

OF
A

SUBSGL
OR

ACSYNTHSOL)
(COMMENT DEPENDIMG D MONE)

(SETR NAME (CAR (POINTER NAME)))
(CONN_((EQ MODE (QUOTE SYNTH))

(SETQ L (GET MAME (QUOTE SOLUTIONP))))
(T

(SETQ L
(CADR (CET MAME (nUOTE STRUCTURFEF))))))

(COND ((NULL L)Y (RETURN #11L) M)
(SETO CUUNT ()

LaB (COND ((NULL (COR L)) (RETURY CULNT)))
(SETO _CUUNT

(#PLUS COouUunT
(DIsTANCEA

(GET (CAR 1) (DUATE CEHTROIDP))
(G T _(CADK_ 1) (QNUTE CENTRNIDFIIID)

(SET2 L (Cur L))
(GO AR

| (GEFPROF RSYHTH
(LAHBNACNAYE)

(PROG 1L
o ACONBERT DELETES ACSYNTHESTZID, SALUTION)
(S50T9 taME (CAR (POTSTER NAMD)Y
COLRLTEROS NANE NIL . (QUOTE SOLUTIUNRY)
(ESYs TG))

LA

L COEFDRARE RGO
(LAYSTACdAmT)

(PROMR (1)

156

(COMMENT DELETES A SUBPRNBLEM SULUTION)
(SFTQO_NAME (CAR (POINTFR NAME)Y)

(PUTPROP
NAME

(LIST (CAR (GET NAME (QUOTE STRUCTUREPI)) NIL)
(cUnTE STRUCTUREP)) -

(ESGOLS)
(0S015)))

EXPR)

(CEFPROP SYNTH1
(LAMBDAC(E)

(PROG RIL _
‘ (SFTO S (CADR (GFT F (AUNTE SToUCcTUREPY)Y

(COND ((NULL S) (SETQ G (CONS £ G)))
(T _(MAPCAR (QUPLTE SYKNTH1) $)))

(RETURN NIL)))
EXPR)

(DFEPRNP CSYuTH

(LAMBDA (NAME)
(PROG_(G)

(COMMENT SYNTHESITZES
SOLUTIO!

IN
1REF .

ROOTED
AT

NAME)] '
_(SETN NAME (CAR (POINMTER NAME)))

(SYNTH2 NAME)
(COND ((FEG NAME (QUQTE UMIV))

(MAPCAR
(FUMCTIO ™ SY!NMTHY)

(CONS (FUDGE NAME)
(CLADR

(GET NAME (QUOTE STRUGTUREP))))))
(T (SYNTH1 NAMED))

(PUTPROP NAME G (QUQTE SOLUTIONF))
(ESDLS)

(ESYRTHS)
(JSYiTH NAME)

(RETURN (COST ARE (AUNTE _SYnT:i))2))
EXPR) :

o CLAMEDA X)) (FIX (#PLUS X 2,5)))

(LEFPEROF Rounl

EXPR)

(CEFPRNP RFTHEENER
HLAMBODACX X1 XZ2). . L
(U (AD (LESSP X1 X) \LFS'EQP X Xo))

o CATED CLESSEUP X2 X)) (LTSS X XAdN L
£xPr)

(CTFTROF 1SECT
CSLAMGACX Xq YL X2 Y2) . ..
(KOUMY

157
(2P| US Y1

(#TIMES (#DIF X X1)
(#QUO (#DIF Y2 . ¥1) (#UTF X2 X1))))))

EXPR)

(CEFPRNP DISTANCE

(LAMBDA(PY P2)
(#PLUS (S@ («DIF (CAR P1) (CAR P2)))
(SQ («0IF (CADR P1) (cAnR P2)3)))

EXPR)

(DEFPKOP ESOLS

(LAMBDA NIL (PROG NIL (SELECT %) (CLEAR) (RETURM NI|)))
EXPR) ' .

(DEFPROP REMOVEX

(LAMBDACE L)
CO(COND (ONULL L)Y NI
((NED B (CAR L)) (COolS (CAR L) (REMOVEX € (CNDR LL)2)))

(T (CDR L))
EXPR)

(DFFPROP _DSOL 9

(LAMBDA NTL

(PROG_ (L) '
(COMMENT DISPLAYS ALL SURPROBLEM SOLUTIONS)
(SELECT 5)

(CLEAR)
(SETH L (LIST (QUOTE UNTWVI)

LAB (SETN L (APPEND L (GET (CAR) (QUQTC 0BJECTSP)Y)))
(USOL (CAR L))

(SETa L (COR 1))
(COND CONULL L) (RETURN NILY) ¢T €60 LAaBY))))

EXPR)

(DEFPROP CSOL
(LAMBDA(NAME)

(PRUG (SOL F))
(COMMENT DISPLAYS SQLUTIAN Te SURPROGLEM NAME)

(SETN NAME (CAR (POINTER NAME))Y)
(SELFCT)

(SETn SOL (CAUR (GET NANE (QUOTE STRIUCTUREP))Y))
(Comn ((NULL SOLY (RETURD NIL))Y)

(SETH P (GET (CA" SOL) (CUOTE EuTROIOP)))
(SETPOS (CAR P) (CADR P))

LAB (SFETa SGL (COR S0L)Y)

(C0ND CONULL SOLY (RETURE T . e e
(SETy P (GET (CA% SO (BUOTE cbyTRGIDPR)))
(LINCIO _(CAK_P) _(CADD P

(GG LABY))
EXPR)

ADEERROE EXIT.

(LAMBRACNANE)

L (PRUG (Y o I
(CONMENT SETS UP ORJUCT 2SS EXIT FRIM SUBPROBLEM 1T)

COrnENT gbLONGS TO)

(SET0 NAME (CAR (POTUTICE NAME)))
LHETa S] e

C(LET (GRT CANE (GURTE GELUNGSPY)

s
1
[eo]

(QUNTE STRUCTHIIRERY)Y

(COND
((NNT _(MULL. _(CANAR S)))

(PRINT (QUOTE (CHANGE FXIT PolNT2)))
(COND ((EQUAL_(READ) (NUOTF ®U)Y) (RETURN NTL)IY))

(PUTPROP (GET NAME (QUOTE BELONGSEPRP))
(LIST G IST (CaaAR S) wAME)Y (CaADR S))

(QUOTE STRUCTUREP))
(RETURY NAMED)})

EXPR)

(GEFPROP ENTRY
(LAMBDA(CNAME)

(PROG (3) : =
(COMMENT SFTS

AN
08JFECT

AS
ENTRY

T0
SUBPROEBI FM

IT
BELONGS

T0)
(SETG NAME (CAR (POINTER NAME)))

(SETG S
(GET (GET & AME (QUNTE REY UNGSP))

(QUOTE STRUCTUREP))
(COAND

((npT (MULL (CAAR S$)3))
(PRINT (QUOTE (CHANGE FNTRY PUINTR2)))

(COWHD ((LUUAL (READ) (ZUOTE wU))Y (RETURN NIL3DI)I)D
(PUIPROP (GET MAME (2UQTE BEL ONGEP))

(LIST (LIST NAME (CADAR S)) (CADR 3))
(NUOTE STRUCTURER)Y)

(RETURN NAME))
EXPR)

(LFFPRAOP POIMTER

(LAMBOACNAME) A
(COND ((EG NAME (QuUDTE #)

(#PQIMTERY)Y

(#6POTINTERY)

)
({0 NAME (QUOTE #=))
#)) (sesPCINTER))

({9 NAME (UUQTE s

t7 :
(CAuD ((NOT (hULL (GET “AME (aUNTE INTEMTIOMP))))

(L15T MAME
(CAR_(GET NAME (nUOTE INTENTIONP)IID)

(T (LIST L AME NILIIIY)
L FXPR)

SEFPRQDP COJTEXT

(LANMEBDA (NATE)
P UG U e e
CUSETA X (POTRTER WAME))
CUSETONAME CCAR Y)Y
(PUTPROP (QUNTE STATHS)Y DAME (nUNTE CcORTEXTI)
(SEFLECT 7))

(C[._E/\:'\‘)
CASFLUCT A
((/LLI‘H)

159
(COND

((NOT (NULL (CANR X)) '
(TEXT (QUOTE C) (CAADR X)_ (CAVADR X))))

EXPR)

(RETURN NAME)))

(DEFPROP CSUR

(LAMBDA (NAME)

(PRQG

(CON_FP BP 08J NNBJ RPNDY %DUM)

(COMMENT READS BOUNDARY CONSTRUCLTS LIST OF ENClOQED)

(COMMENT OBJECTS

FROM
PRESEMT

CONTEXT
REMOVE XS

OBJECTS
FROMM)

(COMMENT CONTEXT MAKES THEMN OBJECTS OF NEW NAONT)
(COMMENT _ANDS NEY ~OUT T0 CONTEXT OBJECTS)

(SETH 5aDY (READSNDY))

(COND _((NULL BNDY) (BETURN NI1LY))
(COND ' :
((ED NAME (GUDTE %))

(SETG NAME
(READLIST

CAPPEND (QUATE (S F)) (FXPLODE MTHUM))))
(SETQ NTMUM (ADDY ITHUTE) D))

(SETQ 0BJ (GET CON_(2UNTE OBJECTSP)))

(SETQ NOBJ NIL)
(SETQ BP OBJ)

(SETN Obd (CONS (QUOTE %0UM) 0nd))
(SETN _FP_UBJ)

LAB1

(COMMENT CHECK ‘THE CONTEYT OHJFLT LIST)
(CCND

((NOT (NULL BP))

(COND_ CCINTERICR (GET (CAR Bp) (QUOTE CENTEOIDP))
BHOY) '
(SETG NCBJ (CONS (CAR BP) NOBJ))

(PUTPROF (CAR BF) NAME (QUOTE BELONASP))
(RPLACL FP (CDE _BP))

(SETR BP (CR FP)))

(GO LAB1)))
(COHMENT SETUP PROPERTIES OF NpW NONTS)

(PUTPROP NANME
(LIST CLIST ONTL ONILY. it

(PUTRROF NANME 100 J (2ULTE OBJECTI”P)Y),

(NunTE STRUCTURTP))

(PUTPROP NAME 8NNY (SUOTE INTESIONP))
(PUTPROP NAMD CO' (QUOTE BELONGSP))

e APUTER G GO (CDE 0500 _(UDTE nb JECTSP))

(PUTPROP NAME (CENTRAINF NOB.J) (QUOTE CEATRO1DP))

—CCOMPENT FIXUR CONTEYT HONT)

(NCORC OBJ (LIST NAME))

(PUTPROF CUN

CLIST CLIST WIL NILY_sill)

SORUTRROE CON ML CAUOTE S0LUTIAND))

(QUDTE STRUNTHKER))

(PUTEFROF Cuw

160

(CENTROIDFE (COR_08.4))
| (QUOTE CENTROIDRP))
(RETURKN_NAME))) -

EXPR)

(CEFPROP CENTROIDF
(L AMBDACL)

(PROG (P N X Y)

(COMMENT COMPUTES CEMTROIND OF cbNTROIDS OF NTS JH L)
(COND C(NULL L) (RETURN 1I{))) '
(SETQ N (LENGTH 1))

(SETQ X @)
(SETQ Y 9)

L.AB (COND
CengdL L)

(COND C((ZERQP X) (RETURN NIL)Y) '
(T _(RETURN ([IST (#Qu0 X N) (#QUQ Y MN))))II))

(SETH P (GET (CAR L) (QUATE CENTROIDPI)Y)
(COND

((NOT (NULL P)) (SETG X (#PLUS X (CAR P)))
(SETO_Y (#PLUS Y (CAOR P)))Y)

(SETQ L (CDR L))

(GO LAB)))
EXPR) '

(DEFPROP EVENF
(LAMBDA (N) (ZEROP (REMAINDER N 2)))

EXPR)

(CEFPROP LESSEQP
(LAMBDA (X Y) (OR (EQUAL X Y) (LESSP X Y)))
EXPR)

(GEFPROF BETKEEN
(LAMBDA(X X4 X2)
(OR (AND (LESSEQP X1 X) (LESSENP X X3))
(AND (LESSEQP X2 X) (| FSSEOP X X413)))

EXPR)

(LEFPROP INTERIOR
(LAMBDA(P L) :
(PROG (X Y X1 Y1 X2 Y2 NX1 NXp NY1 Nye L1 SEG COUNT 2)
' (COMMENT DETERMINLES
1F
FLIEYS
ON
UK
ITNSILE
IHE
POLYGOUN)
(COMMENT DESCRIBED &Y | NETURNS T OR_NTL WILL YWORK)
(COMMENT FOR NOT CONVEX FGLYFODD)
OG0 A 1 U e N O U
(SFT X (CAR P
CARETaY . (CADR Py
(SFETa COUNT)
Labg (5FTh X3 (=PLUS T.0 (CAAT L))

(LrT3 YL (CADAR L1))
LT Xe CUAALI LD
(57T Y (CADALK L1))

(SETQ

L4 (COR_1.14))

(COND
(COND

((NOT (EQUAL X1
((NULL (COR 1L1))

X2)) (GO

LAB2

LAB3)))

(COND ((EVENP COUNT)
(T (RETURKN T3)))

(RETURN NIL))

(T (GO LAB1)))

LABZ (COND ((NOT (BETHEENFQ X X1 ¥2)

) (G0 1LaB2)))

(COND
(COND

(ENOT (EQUAL X X2))
((EQUAL Y Y2)

(GO LARD)))
(RETURN T))2

LAB4 (COND C((NULL (COFP L1))

(SETG NX1 (=Pl US #.0

(CAAR

L))

{SETQ NY1 (CADAR 1))
(SETQ NX2 C(CAADR 1))

(SETQ NYZ2 (CANDADE L))
(SETQ L (COR 1)))

(7T (SETQ NX1 (#PLUS @.0 (
(SETQ _NY1 (CADAR 11))

CAAR L1)))

(SETU NX2 (CAADR L1))
(SETO NYZ2 (CADARR 1 1))

(SETQ L1 (ChR L1))

(COND ((FUUAL NX1 MNX2)

o |

(T _(GO_| AB4))))

(COND ((BFTWEEN Y NY1 NYZ2) (RETURY T))

(T (COMD ((GREATERP Y NY1) (GO LAB2)))

(SETQ X _(ADDL X))

(COND

((PETWEEN X X1 X2)

(SETQ Z
(Ccanp

(ISECT X Xi

Y1 X2 Y2))

(CLESSEQP Y Z)

CNUNTIINY)

(SETQ COUMT (AQDY
(COND :
((RETWFEMN X X2 NX2)

(SETW 2 (ISECT X X2
(COND

Y2 NX2 NY2))

(CLESSEQP Y 2)
(SETQ COUNT (ADDY

COUNT)Y D)D)

(SETQ X (SuB1 X))
(GO LAB2)))

LaBS (SETR Z2 (LSECT X X1 Y1 X2 Y2))

(COND (CEGUAL Y #) (SETUSN T)H))
(COND ((LESSP Y 7) (SETQ COUMT
(GO | ABZ2)))

CADDL CoUNT) D))

EXPR)

(GEFPRDP UJTIL

ECITIES
WHYMTES

ECITYNAMES
JOITYMAMES

CSURENAMES
EGARBAGE
CUPTSe
LHTHLSEX
DTURIIANMES
Ll A b

pelTIeS
_UONAMES
i T

162
SILAST

1hi
SYNTHD

PDSURS
DsuUR

ESURS
CrPIS

DISTAMCEL
4 #POINTER

##POINTER
“«POINTER

ESYRTHS
DSYHTH

DINPUT
RINPUT

KRUR
COST

KEYNTH
KSOL

SYNTH1
C3YHTY

HNJND
BETUEFNEQ

ISECT
D15TANCE

ES0LS
REMOVEX

pauLs
DS

EXIT
LHTRY

FATNTER
ConNTrxT

csun
CENTROINDE

EVENP
LESSEAQP

8 THEEN
14TFRT10OR

UTIL
RErADBRMDY)

VALUD)

(DEFPROP READBNLY
(LAMBDA T

(PROUG (L X0 Y& P X Y)
(COMMENT READS

LIST
ur

BNDY
VERTICES

RO
Pl

DISPLAYR) '
e A COMRENT BNLY LIST £S5 HITH G 2) 1E pNOYLIST LESS) o
(COHAMENMT TrHA
I B B
POIHTS
; e JRRATES L . .)

FARTLAL

RETURNS

163

NIL)
(SFIECT 2)

(SETQ P (READ))
(SETO X¢ (CAR P))

(SETQ . Yg (CADK P)Y)
(CoMp_(CAND (ZEROP Xv¢i) (FERQP YyW)) (RETURN NIL)))

(POINT X3 Y#) :
(SETo | (LIST (LIST X2 Y?)))

LAB

(SETQ P (READ))
(SETQ X (CAR P))

(SETQ Y (CADR P))
(COND

(CAND (£ZEROP X) (ZERQOP Y))
(COND (C(LESSP (LFNGTH |) 3)

(CLEAR)
(DISPRNCY)

(RETURN NIL))
(1 (LINETO X2 YD)

(RETURN (CONS (LIST X8 Y&) L))¥)))

(LINETD X Y)

C(SETO L (CONS (LIST X Y) L))

EXPR)

(GO 1. AB)))

164

References

1. Howden, -William E., Plans and Problem Selving Structure, U.C.I. Tech
Report, (in preparation).

2. Newman, William, Input and Qutput Functions of IMSYS, U.C.I. Graphics
Memo #3, June, 1971.

3. Bobrow, Robert, et al, U.C.I. New=Lisp Manual, University of
- California at Irvine. A .

4, Held, Michael and Karp, Richard M., A Dynamic Programminq'Approach to
Sequencing Problems, Journal for the Society of Industrial and Applied
Mathematics, Vol. 10, No. 1, March, 1962.

5. Bellmore, M. and Nemhauser, G. L., The Travelling Salesman Problem:
A Survey, Operations Research, Vol. 16, 1968.

6.- Lin, Shen, Computer Solutions of the Travelling Salesman Problem, The
Bell System Technical Journal, December, 1965.

7. Croes, G. A., A Method for Solving Trave]]ing Salesman Problems, .
Operations Research, Vol. 5.

8. LIFE World Library, Atlas of the World, TIME Incorporated, New York, 1966.

