
UC Irvine
ICS Technical Reports

Title
The planning approach to interactive problem solving and the travelling salesman
problem

Permalink
https://escholarship.org/uc/item/0pt9b0wq

Author
Howden, William E.

Publication Date
1972

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pt9b0wq
https://escholarship.org
http://www.cdlib.org/

THE PLANNING APPROACH

TO INTERACTIVE PROBLEM SOLVING

AND THE TR.AVELLING SALESMAN PROBLEM

by

William E. Howden

Notice: This Matena
may be protecteOby Copynght Law

(Title 17 U.S.C.)

TECHNICAL REPORT #20 - AUGUST 1972

CONTENTS

1. Introduction

2. Internal Date Structure

3. Display File Structure

4. Subproblem Solvers

5. Karp's Dynamic Programming Subproblem Solver

6. Lin's and Croes' Heuristic Subproblem Solvers

7. System Commands and Algorithms

(a) Display Commands

(b) Solution Process Commands

(c) CSUB Algorithms

(d) CSUB and Extension Intersection

(e) CSYNTH Algorithm

8. Sample Problems and Problem Input

9. The South American Travelling Salesman Problem

10. The France, Spain and Italy Travelling Salesman Problem

11. The Eire Travelling Salesman Problem

12. Conclusions

(a) Communication Medium

(b) Psychological Advantages

(c) Learning Environment

(d) Combinatorial Tool

(e) System Limitations and Possible Extensions

(f) Summary

Appendix I

City Coordinate Pairs for the Three Experiments

Appendix II

Frame Numbers for Display Information

Appendix III

The Karp Solver: CKSOL

Appendix IV

The Lin and Croes Solvers CLSOL and CCSOL

Appendix V

System Commands and Solution and Display Utility Routines

References

3

1. Introduction

The purpose of this report is to describe an interactive problem solving

system based on the ideas of planning developed and explained in (1). In

particular, the system can be used to interactively construct solutions to

Euclidian travelling salesman problems. The goals of the research described

here were: (i) to examine how the notions of planning in (1) could be used to

construct a system in which the user can have and try out general or abstract

ideas for a solution and (ii) to assess the value of the approach as a method

for reducing the combinatorial computation requirements for the travelling

salesman problem by allowing the user to direct or plan the computational

activities of the machine.

The report begins by describing the internal data structure of the

system. This consists of a tree of subproblems which the user constructs

through the use of a display and a RAND Tablet Pen. "Bottom level" sub-

problems in the tree are sub-TSP problems which contain subsets of the

original set of cities. "Intermediate and higher level" subproblems are

abstract travelling salesman problems for which the"cities" are transforma

tions of lower level subproblems into a new space of cities.

The subproblem solvers are then described.. The user operates the

system by creating, deleting and solving subproblems. At any time he can

request that some created subproblem be solved by one of the subproblem

solvers. He can also cause the "synthesis" of all the subproblem solutions

in some tree of subproblems through the use of a synthesis command.

Because the system is used for Euclidian problems, subproblem solutions,

synthesized solutions, subproblem definitions, and subproblem and city names

can all be conveniently displayed and referenced with .a graphics console

provided with a RAND Tablet. The next section of the report describes

some of the commands available to the user. Interesting features of some of

the command algorithms are described in some detail.

The following sections contain protocols or "traces" of actual

problem solving sessions for three different problems. Replicas of the

displays which existed during the solution process are included to help give

a clear description of the interplay between the users solution ideas, his

ability to express them to the machine in the system, and the corresponding

action taken by the machine.

The report concludes with a summary of our experience with the system.

We discuss how the system achieves the goals mentioned above and some of the

systenf limitations which were discovered.

Appendices contain documented listings of the system programs.

2. Internal Data Structure

Recall that in the R-Plan formalism for subproblem or planning problem

solving, solution structure consists of a tree of subproblem "non-terminals".
• 1 .

Each non-terminal has an intentional and an extensional definition as well as

certain computed properties. Intentional definitions are descriptions of

subproblems whose solutions are "pieces" of graph-theoretic or combinatorial

representations of solutions. Extensional definitions are subproblem solutions

and consist of two parts: (i) a list of the "objects" (terminals or non

terminals in the R-Plan] in the solution and (ii) a structural description

- of the relationships, between the objects which bind them into graph-theoretic

or combinatorial solution pieces. For a high level non-terminal, the structure

binding the objects in its extension will be a high level description of cer

tain aspects of the solution to the whole problem.

The structural part of an extension can be extended to include "global"

as well as "local" structure. Global structure relates any of the objects in

the subtree rooted at a non-terminal and not just those in the extension of

that non-terminal. (E.g.it might relate the objects in the extensions

of the objects in the extension of the non-terminal, and so on.)

The (computed) properties of a non-terminal will probably include a

name or label for the non-terminal. In a standard phrase structure grammar,

the name of a non-terminal is also its intentional definition (e.g.verb). For

both picture language and problem solving non-terminal structures, it is

important that each non-terminal have a unique name or label as well as its

intentional definition.

The internal data structure for the interactive TSP system is modelled

very oJosely after the general R-Plan subproblem structure. We shall assume

a familiarity with the R-Plan notions in describing the TSP system.

(a) Intentional Definitions. Subproblem specifications in this system

consist of two parts: polygons and subproblem end points or boundary

points.

In describing (creating) a subproblem in the system the user draws a

polygon on the display screen and suggests two end points. The subproblem is

then to construct a path from one endpoint to the other which passes through

all of the cities in the enclosing polygon. If the polygon contains another

polygon, then that polygon (non-terminal) is treated as a "super-city"

situated at the centroid of the centroids of its enclosed cities or non

terminals. The centroid of a city (terminal) is just its coordinates in the

plane. A city is enclosed in a polygon if its coordinates are geometrically

inside the polygon and if it is not enclosed in some other polygon which is

itself enclosed inside the original polygon.

Note that non-terminal intentions describe linear TSP's and not circular

TSP's. A linear TSP consists of the request to find a shortest path through

a set of cities (perhaps containing some "super cities") which starts at one

given endpoint and ends at another. If ,the two endpoints are the same city

then we have a circular TSP. Except at the top level, all subproblem solutions

will be linear and will hence be defined by both polygons and endpoint pairs.

(The endpoints are called subproblem boundary points because they are the

parts of a subsolution which can be joined to other subsolution endpoints

in order to synthesize an entire solution.)

We note at this point that the solution to subproblems cannot be

accomplished by constructing a circular tour which is then broken in the most

appropriate place to join it with other subtours. Consider the following

example;

/

\

\ •

, S^'l
t

I

J

• /

Figure 1.

Suppose a circular optimal tour is constructed for SPl (subproblem 1)

(Figure 2) .

Figure 2.

There is no single cut in SPl which can be used to merge the SPl

solution with other subproblem solutions in order to form the optimal total

problem solution (Figure 3).

/

f

r

I

V

N

Figure 3.

In forming ideas for subproblems the user is expected to contribute

both the polygon and the endpoints. The polygon results from his having

recognized a certain pattern in the problem. The endpoints choice results

from his understanding of the context of the subproblem: the way in which

this subproblem will be merged or joined with other subproblems and their

solutions. We note that it is possible to imagine a system in which sub-

problems endpoints are chosen automatically by the system according to some

heuristic. Experience has shown, however, that the obvious choice for such

a heuristic does not work and that choosing alternative subproblem endpoints

is as important to the user in suggesting problem ideas as choosing enclosing

polygons.

The two different parts of non-terminal intention (i.e. subproblem

definition) can be defined at different times during the solution process.

In using the system it is customary to define the enclosing polygons at one

point, and to only name the subproblem endpoints when asking for a subproblem

solution to the subproblem associated with some polygon.

(b) Extensional Definitions. Since each terminal and non-terminal

in the subproblem tree has a unique name a set of objects (terminals or

non-terminals) can be denoted by a list of the object names. The names of

terminals are city names and the names of non-terminals are subproblem names.

8

The structural part of a non-terminal can also be represented by a

list of object names. Since a solution to a ISP problem or subproblem is an

ordering of objects, it can be represented by a list of the object names .

written in the order of the solution. For linear tours or solutions, each

object's name appears exactly once in this list. For circular tours each

object's name appears exactly once except for the first object name which

will be the same as the last object name. Local structural descriptions

will be a list of the objects in some non-terminal's extension. In this system

global structural descriptions are synthesized solutions. For a given tree

of non-terminals/terminals rooted at some non-terminal, a global structural

description will be the largest solution synthesis which can be formed at

that point in the solution process. If every subproblem (non-terminal) in

the tree has been solved, the solution synthesis will be a list of cities.

If some non-terminal has not been solved, it will appear in the global struc

tural list at the appropriate point, and will be the "representative" for all

the cities at its terminal nodes, whose local ordering has yet to be

determined.

(c) Object Properties. Every terminal and non-terminal has a name, a

centroid, a terminal property, and a. belongs property. The terminal property

of an object is a flag which signifies whether or not the object is a terminal

or a non-terminal. The belongs property is the name of the object whose

extension includes this object.

Every object "belongs" to exactly one other object except the top level

object whose name is UNIV. This implies that extensions cannot intersect.

Our experience with the system does not indicate that it is necessary to

become involved in the difficult problems that would have to be solved in

the construction of a system which allowed overlapping extensions. The

design of the command structure (see the description of the CSUB command) is

9

such that overlaps cannot be constructed - deliberately or otherwise.

Initially, the subproblem, or solution phrase tree, consists of a

simple tree of one non-terminal node UNIV and as many terminal nodes as

there are cities. Initially then, each terminal belongs to UNIV. As

subproblems are created and destroyed, the altered extension memberships

are automatically altered and updated by the system. When an action has

side effects (e.g. the deletion of a subproblem from an extension Will make

the structural part of that non-terminal - as well as the list of objects -

invalid) these are also processed automatically.

(d) LISP Data Structure. The internal data structure is implemented

using LISP atoms, properties and lists. Each terminal or non-terminal is

a LISP atom. Intentional definitions, extensional definitions, non-terminal

properties and labels are all properties of atoms. The name of an object

is the print name of the associated atom. The LISP system proved to be very

well suited to the implementation of our interactive system.

(e) Solution Status. In addition to the subproblem data structure

and various system tables (e.g. the inter-city distance matrix) a status word

is kept. The idea of a status word is to explicitly record pertinent infor

mation about the state of the solution process which may be awkward or

impossible to retrieve from the subproblem data structure. In the present

system it was necessary to store only one status item called the context. The
context is the name of the present non-terminal which is considered to be

the problem solving universe. Initially the context is UNIV and subproblems

can be created from any of the objects in the extension of UNIV (thus

automatically changing this extension). If the user wishes to create a sub-

problem (non-terminal) which is to be a subproblem of some other non-terminal

than UNIV, then he must change the context to that other non-terminal. At

present this is the only "context operation". No other operations depend on

the present context. The feature is necessary for subproblem creation in order

.10

to determine which subproblern in a nest of subproblems is being referred to

by an enclosing polygon: the subproblern in the extension of the present

context.

Other useful status information would be records of the state of the

present display picture. Since the display files and data structures are

separate, and it is not possible to examine the display file to determine

the present picture, this would be helpful when features of the dis.play are

changed automatically by changes in the data structure . Since this

feature was not necessary for the purposes of our experiments, it and other

status features were not implemented.

3. Display File Structure

We have mentioned above that the display file structure and the problem

solving data structure are separate. The display file structure is stored

and manipulated by the display mini-computer operating system. The problem

data structure is created in the PDP-10 LISP system. A number of display

commands will change the display file structure. These commands can be

issued directly by the user or can be issued automatically by certain problem

solving commands.

The display information is organized on different frames. Different

aspects of the display can therefore be erased or displayed without altering

others. For example, one frame is used to display cities, another sub-

problem polygons, another subproblem solutions, another subproblem names,

and so on. The features of the display structure and its interface with the

internal data structure result from the straightforward ^se of the IMLAC IMSYS

monitor (2) and the LISP graphics package (3).

4. Subproblem Solvers

The interactive system has been characterized in terms of the user

n

manipulation of plans through the creation, solution, alteration, etc. of

subproblems. There are presently three subproblem solving processes in the

system which may be invoked by the user. They can be graded in terms of their

power and their cost. The first is a non-heuristic procedure which produces

guaranteed optimal solutions but which is therefore very expensive to use.

The second is a very powerful heuristic procedure which is considerably

cheaper to use. The third is a relatively weak but very cheap heuristic

procedure.

5. The Karp Dynamic Programming Subproblem Solver.

The non-heuristic subproblem solver is based on a slight modification

of Held and Karp's Dynamic Programming approach described in (4). The

modifications are those which were required to use the method for subproblem

solving (i.e. construct linear solutions for linear problems) as well as for

conventional TSP problem solving (i.e. produce circular tours)^.

The approach is attractive since it compares well with other non-

heuristic procedures (5) and its computation time and storage requirements

are deterministic. The user knows exactly what to expect from it in an

interactive situation. Experience shows that it can be conveniently used for

up to 12-15 cities in an interactive environment. The computation time

(and possibly storage requirements) are prohibitive for larger problems.

For technical reasons (INUM and FIXNUM sizes in the PDP-10 LISP) the maximum

number of cities the solver will handle in our system is 12.

(a) Recursive Formulation. The interpretation of the method

implemented in our system is based on the following recursive formulation

of the linear tour travelling salesman problem.

Assume that we wish to go from city 1 to city n. Then the length of

the minimum path, MINP , is given by (i) and (ii).

12

(i) MINP = min . n-l[,h)+c. 7
h6{2,3,....n-l} J

where c is the cost of the path from city h directly to city n.
hs"

In the Euclidian TSP, c. . is simply the Euclidian distance from city i to
1 j J

city j.

f^l.h f""" S'W
(ii) F(S,h) =< ^ > T

/min {F(s~h,i)+c. .J otherwise
^i^S-vh

F(S,h) is the minimum path from city T-, through the cities in S and

ending at city h.

A simple recursive implementation of this recursive representation would

be grossly inefficient. A basic idea in the dynamic programming approach is

to avoid recomputing previously computed information during the recursive

process. Since it is possible to arrive at the computation of many F(s,h)'s

along different paths in the recursion, process, these values must be saved for

possible future reference. Karp's two phase approach was adopted in which

the values of F(S,h) were first computed for all possible choices of (S,h)

and then used to construct the optimal path. Whenever a value for some

F(S,h) is required during the computation process in the first stage, the

table of presently computed values is first checked before beginning a new

recursion on that F(s,h). A simple recursive process in which values were

not saved or referenced in phase one would require on the order of (n-2)!

computations of F. When values are saved and referenced the number is of the

order (n-1)(n-2)2'̂ ~^.

Once the table of values of F(S,h) has been computed, the following

formulae can be used to construct the optimal path. The construction pro

ceeds in typical Dynamic Programming fashion: by working backwards from

the last node in the path.

13

Let C be the.path length of the optimal path. Then a permutation

(l>i2> •'3' •••> is optimal (i.e, represents the optimal path) if
and only if:

("i) c - F ({ij in-l) •

and for 2< p < n-2,

(iv) F({i2>i3...-ip.ip+i} . ip+i)

=.F (••'̂ pl '̂ p^"''̂ i 'i T *
p p+1

First i^ 1 is determined, then •'p_2» so on.

(b) Storage of Intermediate Values of F. A limiting factor in the

application of the algorithm is the storage required for the saved values

of F(S,h). Since there are (|̂) ways of selecting an s with k elements and
k ways of choosing h from S, there are

n -2 n-3

2 ("f) k = (n-2) S (":h
k=l " k=0 ^

n *5

= (n-2) 2 ~ by the binomial theorem,

different possible choices of (S,h), (We eliminate the choice of either the

first or last eTements (i.e. the endpoint cities) for S since these are in

all solution permutations in the same places).

In the first phase of the solution process it is necessary that the

storage and lookup of values of F(S,h) be reasonably efficient. For this

reason an indexing scheme for the different possible choices of (S,h) was

devised to allow the values of F(S,h) to be stored in a simple linear vector.

The scheme for indexing the (S,h) depends on the canonical representa

tions for the (S,h)'s. The canonical representation of an (s>h) is constructed

by listing the elements of S in order of magnitude (the use of this procedure

requires the city names be mapped 1 to 1 into a list of consecutive integers)

14

and then underlining the element h-

Eg. The canonical representation for (S,h)

= ({5426} ,4) is 2456,

The pairs (S,h) (and hence the values for the F(S,h)'s) are indexed

first on the basis of the cardinality of S, then on the lexicographical

ordering of all sets S of that cardinality, and then on the position of

the underlined element in the canonical representation of (S,h), Before

describing the process in detail we will give an example. Suppose the

number of cities n in the problem is 6. Then if we store all (S,h)'s for S

with cardinality between 2 and 4, the indexing process will order the values

of F(S,h) in the table according to the ordering of the cannonical representa

tions of all choices of (S,h)'s in figure 4.

23 234

23 235

24 235

24 235

25 245

25 245

34 245 '

34 345

35 345

35 345

45 2345

45 2345

^34 2345

234 2345

Figure 4,

15

The size of the table when values of FCSj-h) are not stored for

singleton sets S is

n-2 n-2 .

z:(":2) , . 2 rf) i - (-2)
. 1=2 1=1

= (n-2)2""^ - (n-2) by the binomial theorem.

The indexing function for the table will be described in three parts.

(i) Level Factor. The entries for.all (S,h)'s with LEV elements begins

at position

LEV-1 n ?
A = ^ (~)1 where n is the total number of

i=2 ^
cities.

(ii) Selection Factor. Within a level (the set of all entries for

(S,h)'s for which S has a constant cardinality) the entries are ordered

lexicographically. Suppose d^., i=l ,2,... jLEVjare the city numbers in S listed

in canonical order. If we define ^1^=1, then the entries for the pair (S,h)

where S consists of the LEV city numbers d-j, ..., dj^^^ will begin at

A f B where
LEV d.-l „ . T

B=LEV 21 il (lev-)i=1 j=d._^+l lev 1 .

(iii) Fixed City Factor. If p is the position of the underlined city,

then the exact position of (S) where S has the LEV city numbers

^1'*^2'' *' *^LEV
A + B + p.

In the CKSOL (create a Karp Solution) subproblem solution program,

the indexing process is optimized through the use of a table of binomial

coefficients and by only computing the different parts of the indexing

process as they are needed.

16

(c) Computation Time. Since the algorithm revolves around the storing

and reading of values into and from the table of values for F(S,h) we would

expect the computation time required to be related to the size of this

table. The basic operations required are additions and comparisons. The

number of each in the first phase is given by:

n-1 n-1 n-3

(n-1) + 2 k(k-l) (.)= (n-1) (n-2) 2 +(n-l).
k=2

The number of occurrences of each in the second phase is at most

k=2

Experience has indicated that our program requires less than a second

for a six city problem and 8 or 9 (CPU) seconds for a ten city problem.

Because of the deterministic nature of the algorithm its computation time will

not vary from problem to problem.

Shen Lin has described a technique for speeding up Karp's algorithm

for symmetric TSP's (4). Unfortunately the technique cannot be applied to

the linear TSP algorithm.' For subproblems with n cities, Lin's algorithm

can be used to produce solutions in (for n even)

' n-1^(,) k computational cycles
k=2

whereas Karp's algorithm will operate in

n-2 2
^ ([,") k cycles. It is easy to calculate that for
k=2

n in the range of interest,

n-2 „ n/2 ,

^(T) k < 2 (k '
k=2 k=2 ^

17

Other less elegant improvements (including bit-picking programming)

can be used to speed up our program but for our purposes it is not worth

the bother. The important parts of the algorithm have been carefully coded

and the decrease in computation time would not be important. Since computa

tion time for the program grows exponentially, more clever coding is unlikely

to raise by more than one or two the number of cities which can be dealt

with within the response times required in an interactive environment.
I

Experiments with a system in which the "exact" subproblem solver can deal

with several more cities are unlikely to suggest significantly different

conclusions.

6. The Lin and-Croes heuristic subproblem solvers.

The Lin and Croes procedures are "hill-climbing" algorithms. In the

hi 11-climbing approach a random initial solution is chosen and then

successively modified until a "better" solution is found. The algorithm,

is then restarted at the better solution. When all possible modifications

from a fixed set of modifications have been tried, and no further improvement

in the solution can be accomplished, then a locally optimal solution has been

discovered. The modified solutions which can be produced from a solution

are called its neighbours. If the procedure is applied to several differ

ent randomly chosen initial solutions then the final solution for the problem

is the best locally optimal solution.

Two different hi 11-climbing approaches can be identified. The first,

called steepest ascent (descent) requires that the best neighbour be chosen

at each step of the solution process. In this approach all of the neighbours

of a solution are considered before the procedure is restarted at a better

solution. In the random improvement approach the procedure is restarted as

soon as a better neighbour is found. In (6) Lin recommends the use of the

random improvement approach. In our subproblem solvers either approach

18

can be used but all of the experiments described here were performed using

random improvement.

The Lin and Croes subproblem solvers are modifications of the

algorithms described in (6) and (7). The modifications are those required

to allow the approach to be applied to linear problems. Recall that any

linear solver can be used to solve an ordinary circular TSP by identifying

the first and last cities in the linear tour.

The Lin and Croes procedures are based on hi 11-climbing and reduction.

The reduction aspect of the procedures is described later in this section.

In the Lin subproblem solver, neighbours of linear tours are other

linear tours which can be obtained by removing any three links from a

tour and then rejoining the four "pieces" of tours to form some other

linear tour. There are 8 possible ways of rejoining a tour from which three

links have been removed so that the resulting structure is a linear tour.

One of these produces the original linear tour so that only seven possibilities

need be considered. Suppose three links in a linear tour join cities i to

i+1, j to j+1 and k to k+1. The seven possible ways of constructing a new

linear tour when these links are removed are illustrated in figure 5.

^ 1 • I I

i i+1 j j+1 k k+V

—r

7"—^ ' =?—» ?•—• ^—•/ ^M

A jc-

Figure 5: Breaking and Rejoining Subproblem Links.

19

Any linear tour which cannot be improved by removing k links and

then rejoining the pieces to form a new linear tour is called a k-opt tour.

The Lin procedure operates by finding a succession of 3-opt tours. The

Croes procedure, a weaker but faster subproblem solver, operates by finding

2-opt tours. Because a .2-opt approach does not allow for as many combinatorial

possibilities as a 3-opt approach, we would expect 3-opt tours to be better

than 2-opt tours. (3-opt tours will always be at least as good as 2-opt

tours since any k+l-opt tour is also a k-opt tour.) Experience indicates

this to be correct.

The relative importance of 2 and 3-opt tours is illustrated in the

following definitions and theorems.

Definition. A tour is inversion optimal if no connected section of

the tour can be removed and reinserted at the same place in the reverse order

to produce a better tour.

Definition. A tour is insertion optimal if no connected section of

the tour can be removed, the break closed, and the section inserted at some

other point to produce a better tour.

Theorem A 2-opt tour is inversion optimal.

Theorem A 3-opt tour is both inversion and insertion optimal.

In practice, successive 3-opt tours often have the same links. If

the same sequence of 3 cities appears in order in a number of 3-opt tours,

then a good heuristic is to reduce the size of the problem by removing the

middle city of the sequence and then adjusting the distance matrix so that

the other two cities will always be neighbours in any solution to the re

duced problem. This reduction process, recommended by Lin in (6) is

implemented in both our Lin and Croes subproblem solvers.

The Lin and Croes procedures each go through a number of reduction

cycles. In a single reduction cycle a number of 3-opt (or 2-opt) tours

20

are produced. The problem is then reduced by removing cities with the

reduction process. For example, if a sequence of 3 cities abc (or cba)

appears in all of the 3-opt tours discovered in a reduction cycle, then

city b is removed from the best tour, the distance matrix altered so that

the distance from a to b is effectively -«> , and a new reduction cycle is

started on a shuffled permutation of the reduced best tour. After a pre

scribed number of reduction cycles, a complete solution is reconstructed

from the final reduced tour. In order to reconstruct a total solution from

a reduced solution, a record must be kept of the cities which were removed,

and which cities they "followed" in the tour before reduction. Whenever a

city is removed from a tour, its name is stored on the "follows queue" for

the city in front of it. (The procedure for a linear tour is such that the

first and last cities are never removed). The reconstruction process involves

reinserting follows queues at the appropriate places in reduced tours. Since

a city in a follows queue may itself have a follows queue, the final solution

must be reconstructed in several stages.

Both the Lin and Croes solvers can be run with any number of reduction

cycles and with each reduction cycle requiring the construction of any number

of 3-6pt tours. Random initial tours are constructed by shuffling other

tours. The shuffling process is carried out through the use of a linear

congruential random number generator.

In addition to reduction, Lin also describes a process for producing

"almost" 3-opt tours. The process was programmed into our subproblem solvers

but was not used in the experiments described later in the report. Its

significance is related to certain parts of Lin's circular tour algorithm

which rely on the rotation of permutations representing circular tours.

Linear tours or solutions have fixed endpoints so that permutation rotations

do not result in identical tour solutions, as they do for circular tours.

The validity of the "almost" 3-opt process is related to this ability to

21

rotate circular tour representations and is not really useful when solving

linear problems. In general we found it necessary to fully understand and

then re-interpret Lin's approach in order to apply it to linear problems.

The modifications that were required were more fundamental than those for

the modification of Karps algorithm.

The storage requirements for the Lin (or Croes) approach are relatively

modest. The role of the Lin procedure as a subproblem solver in our system,

however, required extra storage beyond that required when it is used as a

"stand-alone" solver. During reduction the intercity distance matrix is

altered by the Lin (Croes) procedures. Since the distance matrix is used

by other parts of the system, or by applications of the Lin procedure to

other subproblems, it is necessary to prevent its permanent destruction by

some routine during the interactive solution process. The easiest and

computationally most efficient solution to this problem is to have a second,

temporary distance matrix in the system. The first thing the Lin and Croes

subproblem solvers do is to load this matrix with the distances for the

cities in the subproblem to be solved.

The computation time required for the Lin subsolver varies with the

problem under consideration. In general, all that can be said is that a 3-

opt "check out" requires on the order of (^l computations. Acheck out
takes place when every possible neighbour of a solution is constructed and no

better solution is discovered.

For our implementation, the 6 city problems mentioned earlier in

connection with the Karp procedure required an average .7 CPU seconds for a

Lin solution and .5 seconds for a Croes solution. The 10 city problems re

quired 1.3 and .9 seconds. All three subproblem solvers produced the same

solutions for these problems. The differences between the algorithms become

really significant for larger problems and can be observed in the figures

given for the examples in the following sections. In all of the sample

22

problems des.cribed in this report the Lin and Croes procedures were run

at their default settings of 2 reduction cycles and 2 k-opts per reduction

cycle.

7. System Commands and Algorithms

In addition to the subproblem solvers, several other interesting

algorithms are used in the interactive system. In this section we will first
I

describe the basic solution commands. The algorithms which are used to carry

out several of these commands will then be described in some detail.

(a) Display Commands. Display commands come in pairs of erase and

display commands. These commands can be given either directly by the user

or indirectly by issuing a command which calls one or more of these commands.

(i) DCITIES, ECITIES will cause the points representing the cities
on the plane to be displayed or erased.

(ii) DSUB(X), DSUBS, ESUBS will cause polygon boundaries defining

subproblems to be erased and displayed. Any display command requiring an

argument can be either given the name of an object or a *. If the argument

is a * the routine assumes the user will identify the object argument by

pointing at the object on the display. When an argument is a *, the routine

for reading the RAND pen and searching through the data structure is activated.

(iii) DSOL(X), DSOLS, ESOLS, will cause subproblem solutions

to be displayed and erased.

(iv) DSYNTH(X), DSYNTHS, ESYNTHS will cause synthesized solutions

to be displayed and erased.

(v) DSUBNAMES, DCITYNAMES, ESUBNAMES, ECITYNAMES, will cause

displayed subproblems and cities to be labelled with their object names.

The erase routines will erase these labels.

23

(vi) EGARBAGE will cause miscellaneous other displayed information

to all be erased.

(b) Solution Process Commands. These commands automatically call certain

display commands. These commands generally come in pairs of create and kill commands

(i) CSUB(X), KSUB(X) will allow the creation of or will

kill a subproblem. For the CSUB command if X is a * the system will auto

matically generate a name for the created subproblem. Otherwise the user

suggested name is used. For the KSUB command the same conventions are used

as for the display commands.

When the CSUB command is initiated the user is expected to draw a

polygon on the display screen using the RAND pen. The computer then deter

mines which terminals and/or non-terminals in the present context have

centroids inside this polygon. These objects are removed from the context non

terminal's extension and become the extension objects of the new subproblem

non-terminal. The new non-terminal is then added to the (diminished) extension

of the context non-terminal.

When a subproblem or non-terminal is killed, it is removed from the

subproblem structure. In particular, it is removed from the extension of

the non-terminal to which it belongs. The objects in the extension of the

killed non-terminal are then added to the extension of the non-terminal to which

the killed non-terminal belonged. During both creation and killing,any

affected solution structures (e.g. subproblem solutions or synthesized

solutions) are automatically deleted since they are no longer valid. Recall

that these solution structures exist as parts of extensions of non-terminals.

(ii) CKSOL(X),CLSOL(X),CLSOL(X),KSOL(X). The first three of these

commands will create subproblem solutions to the named subproblems using the

Karp, Lin or Croes subproblem solvers. KSOL will delete or kill the solution

to a named subproblem. These commands provide real time feedback to.the user

by calling appropriate display commands. All of the subproblem solvers will

24

create circular tours for the top level subproblem UNIV and linear solutions

to all other subproblems. When solving linear problems they will request

endpoints or subproblem boundary points to be specified. The user can

then point to the two subproblem objects he wishes to be the path endpoints

in the subproblem solution.

(iii) CSYNTH(X), KSYNTH(X) will create and kill a solutions

synthesis. CSYNTH(X) will snythesize the solutions to the subproblem X,

the subproblems of X (i.e. the structure of the non-terminal objects in the

extension of X), the subproblems of some subproblem of X, and so on. KSYNTH

will delete a solution synthesis (i.e. delete the global structure) from a

non-terminal.

(c) CSUB Algorithms. The operation of CSUB requires algorithms

to read points from the RAND tablet pen, create a subproblem polygon from these

points, and to then search through the non-terminal tree to determine which

centroids of the objects in the extension of the present context lie inside

the polygon. With the exception of the algorithm for determining when a

centroid lies inside a polygon these algorithms are technical and uninteresting

in nature. The exception is described below.

One technique used in determining if a point p=(x,y) lies inside or

outside a simple closed curve C (eg. a polygon) is to draw a half infinite line

h from p to (x,°°) and count the number of times c that h crosses C. If p is

inside c we might expect that c will always be odd and that if c is even
t

p will be outside C. The intuitive argument for this reasoning is illustrated

in figure 6.

Unfortunately this simple decision rule, discovered independently by

the author and others,fails in several situations. The difficulties arise

when the line h does not cross some portion of the curve but is tangent to it.

For the case where C is a sequence of straight line segments this occurs when

p lies beneath a corner (vertex) or a vertical line segment. In the following

25

discussion we vVill assume that C is a conection of line segments although

all of the arguments can be extended for continuous (in the derivative)

curves C.

c=3 p inside C c=2 p outside C

Figure 6.

The following examples illustrate that no simple variation of the

decision rule will correct its deficiencies.

Example 1.

Suppose we decide to count 1 whenever h crosses a vertical line seg

ment and that the line segments in C (i.e. the sections of C between adjacent

corner points) are ordered in clockwise fashion. Each corner point belongs

to the following line segment. The values of c for the points in figure 7

are 3 and 2 (odd and even) and yet in both cases p is inside C. Clearly

counting zero instead of 1 will not change-the situation.

c=3 c=2

Figure 7,

25

Example 2.

A similar situation arises in the treatment of corner points alone.

Suppose, as in example 1, that a corner point is considered to belong to the

following line. The values for c in the points in figure 8 are both 1 and in

one case p is inside C and in the other case outside C.

c = 1. c = 1

Figure 8.

It is easy to see that no simple counting variation of the ways of

treating corner points and vertical line segments illustrated in the

examples will resolve the problems. Similar examples can be produced when

corners are considered to belong to both segments or of different counts c

are used in the exceptional situations. We introduce an approach here which

can be used to solve these problems and construct a general purpose algorithm.

27

The approach is based on the following observation. Suppose a point p

lies below a corner. Then the correct count for p with respect to that corner

is the same as for a point p' which lies one unit to the right of p. This

observation is easy to prove for the discrete case where the curves are in

fact finite sequences of points on a grid. For the theoretical or continuous

case it requires that C be locally connected. It is possible to convince

oneself of the validity of this observation by considering the examples in

figure 9.

Figure 9.

In practice the algorithm must be able to deal with the case where

one of the line segments forming a corner is vertical. The operation of the

algorithm is such that this can only be the second line segment. When this

occurs the vertical line segment is replaced by a line segment extending from

the corner to the second endpoint of the next non-vertical in line segment.

The reasoning behind this process can be understood on the basis of the

illustrations in figure 10.

Figure 10.

28

The algorithm operates as follows:

(i) Each line segment h of C is considered in turn. If h is a

vertical line segment the next segment is chosen.

(ii) If p = (x,y), the point in question, is on h the decision has

been resolved.

(iii) Suppose the endpoints of h are (x^,y-|) and (x2,y2).

If x^ <x<X2 tf^n the two-point form for a line is used to calculate the y-

coordinate z of the point (x,z) on h. If y > z a count c is incremented

by 1. The algorithm continues with the next segment on C unless all segments

have been considered.

(iv) If (x < x-| and x < X2) or (x > x-j and x > X2) then the next

line segment, unless all segments have been considered, is selected.

(v) If x=X2 (i.e. Xis directly below the second vertex defining

h) then:

(1) The next non-vertical line segment h' in C is chosen. If

there are no remaining non-vertical line segments the

algorithm reinitializes the list of remaining line segments

to C for this one step. After a non-vertical line segment

is found C is considered to have been exhausted for all other

steps in the algorithm.

(2) One unit is added to the x-coordinate of p and the line segment
h" which extends from (x2,y2) to the second endpoint

(^2 s y2) of h' is formed. The count is now modified for the

relationship between the modified point p' = (x',y') = (x+l,y)

and the two line segments h and h". If x-j <x'<X2 or X2<x'<x^

than the point (x',z) on h is calculated. If y' < z then one

is added to the count. If X2 < x'<X2 or x^ < x'<X2 then the

point (x',z')on h" is calculate^. If y ' < z' then one is

added to the count.

29

(vi) If all of the segments in C have been considered after the

completion of any step then the algorithm returns a positive or negative

result depending on whether'the current count is odd or even.

The proof that this algorithm is correct depends on the discrete case

analogy of- '̂the Jordan Curve Theorem and the following theorem. The

following theorem is the basis for the "point adjustment" process.

Theorem Suppose the "line" h is a finite sequence of discrete points on a

grid G and that p is a point on a grid G' at least as fine as G. Suppose

that h does not have slope zero. Then if

(i) p=(x,y) is to the left of h, p'=(x+ljy) is either to the left

or on h.

(ii) P=(x,y) is to the right of h, p'=(x+l,y) is either to the right

or on h.

The theorem guarantees that a point will not "hop over" a line when it

is moved one point to the right. The continuous form of the theorem is:

Theorem Suppose p=(x,y) lies to the left of a curve segment C. Then

there exists 6 > o such that if

(i) p(x,y) is to the left of C, so is p'=(x+S,y)

(ii) p (x,y) is to the right of C, so is p' =(x+6 ,y).

(d) CSUB and extension intersection. We note here an important

side effect of the CSUB algorithm that results when objects are removed

from the context non-terminals extension and added to the extension of the

new non-terminal. Because these objects are removed from the extension at

the time that the new non-terminal is created the intersection problem is

avoided. Two non-terminals intersect if they have extension objects in

common. In our system two non-terminals can never intersect. This avoids

a tangle of difficult problems which would otherwise arise during solution

synthesis. In some problem solving situations it may be necessary to allow

intersection (£f.the discussion of subproblem independence in (5)). In

30

the related algorithms for cluster detection the use of overlapping "non

terminals" appears to help avoid the "migration problem" (6). Our

present experience with the' TSP system indicates that any desirable facility

which might require intersections can be.more easily implemented in some

alternative way.

(e) CSYNTH algorithm. It might appear, at first glance, that all CSYNTH

needed to do was to simply join together the lowest level subproblem

solutions in the order indicated by the subproblem solutions in the higher

levels of the subproblem tree. This is not so; consider the example in

fi gure 11.

/ Figure 11.

The small circles are the centroids of non-terminals A and B and the

dotted lines indicate the non-terminal structure (i.e. subproblem solution

order) relating A and B as extensional objects in the next higher level

subproblem. When A was solved it is likely that there was no information

to determine whether the solution ran from a to b or from b to a. Hence,

depending on whether a is to be joined to c or to d or whether b is to be

joined to c or to d, it may be necessary to reverse the direction of the

linear subtour between a and b. CSYNTH presently uses a simple heuristic

to determine how to choose which endpoints in adjacent subsolutions should

be matched when the subsolutions are joined together. On the basis of this

heuristic it can determine if a subsolution tour must be reversed before it

is joined to other subsolution tours.

31

The CSYNTH algorithm operates by first going through the subproblem

tree to be synthesized and reversing the direction of any subproblem list

of objects that is in the wrong order. For example, if the solution to A

in figure 11 runs from a to b yet the heuristic indicates that the

synthesis should be of the form

b,...,a,c,..t,d

then the subsolution is reversed. When all subsolutions at all levels are

in the correct order they are synthesized.

The synthesis heuristic for determining which pair of endpoints in

adjacent solutions should be matched - and hence for determining whether

a subsolution must be reversed - has consistantly agreed with the users

intuition. It is defined as follows. Suppose B is the non-terminal whose

solution direction must be checked.

(i) Let A be the first non-terminal before B and C the first non

terminal after B in the subsolution to the subproblem to which B belongs.

Let Cft and Cn be the centroids of A and B and c and c the centroids in
Ad j

the first and last objects in the subsolution to B. Let DIS be the intercity

distance function. If

DIS(c^,Cy)+DIS(c^,c^) <DIS(c^,c^)+DIS(c^,c^)
then reverse the direction of the subproblem list for B.

(ii) If there is no non-terminal before (after) B in the subsolution

to which B belongs (recall that subproblem solutions are linear) then let

A (C) be the first non-terminal before (after) the non-terminal to which

B belongs in the subproblem solution which includes B. If A or C is still

not defined the process is tried one step higher up in the subpToblem tree.

(See example below.)

32

(iii) If there is no non-terminal before B at any level in the

subproblem tree being synthesized, then the following rule for re-ordering

is used. If

DIS (Cj^jCq) < DIS (CyjCQ) then the direction is reversed. A

similar rule can be used if there is no non-terminal after B. If we

assume that subproblems always have at least two objects, there will

always be either a non-terminal before or after every non-terminal B.

Example Suppose A B C is the subproblem solution to the subproblem at

the top of the tree for which synthesis has been requested.

Figure 12.

33

The solutions to subproblems AB and C all run in the correct direction.

The solution to subproblem F will be found to be ordered in the correct

direction, c^ is the centroid before F and c^ the centroid after F.

J's solution is pointing in the wrong direction. There is no non-terminal

after J and Cj is the centroid before I. B's solution is pointing in the

correct direction, c^^ is before B and c^, after B.

Once the correct directions have been established the synthesis can be

easily created by joining together adjacent subproblem solutions in the

order indicated by the next higher level subproblem solution. This is

equivalent to writing down the top level subproblem solution and then

rewriting each non-terminal by its solution list and continuing this process

until no non-terminAls remain.

Example

ABC ^ ABCBC -> ABCDEFC

-> ABCDEFGHIJ -> abcBCDEFGHI J^....

8. Sample Problems and Problem Input

In order to test the operation of the system and hence experiment with

our subproblem or planning approach it was necessary to devise a set of

sample problems. We needed problems which had patterns which suggest

subproblem possibilities to a human. In order to avoid rigging the

experiments input was required which exhibited different patterns and

yet was still randomly chosen in some way.

34

The first idea was to construct a random point generator which could

be "guided" by a pattern randomly chosen from a repetoire of patterns.

One method would be to have the plane divided into a hierarchy of sub

sections. The subsections could then be referenced by a tree of the

form in figure 13.

Figure 13.

In this "quarternary" approach, the node Sj refers to a quarter

section of the plane, S-j 2 refers to a quarter section of , and so on.

At the terminal nodes are references to small subsections of the plane.

Suppose a probability is attached to each node in the tree. Then a point

can be generated by traversing the tree according to the probabilities at

the nodes and then generating a point randomly in the arrived at terminal

subsection. Such a Markov tree can be used to guide the random generation

of points with some pattern. The guiding pattern is determined by the

probabilities "loaded" into the tree.

The difficulty with this approach is in deciding which idealized "Markov

patterns" should be used. We did not know when we began these experiments

35

what such patterns would be. In fact one goal of the research effort was •

to determine if, at least for this problem (TSP), such "high-level"

solution subproblem ideas existed. To overcome this difficulty we adopted

a very simple approach. The sample problems are chosen from a political

atlas of the world (8). To input a problem a page of the atlas is placed

on the RAND Tablet and the city coordinates input using the RAND pen. In

this way we were able to. conduct experirrtents with random data exhibiting

interesting patterns.

In the following three sections, detailed accounts are provided of our

experience using the system for three different problems. The only

criteria in choosing the first two problems was that they exhibit some

kind of structure. We did not know when we chose these problems just what

the structure was or how it would be used to solve the problem. The

experiments were to determine if the user: (i) could easily express and

try out any ideas for a solution he might have and (ii) would in fact have

good ideas. The third problem was chosen because it did not appear at

first to have any patterns or structure to it. We wanted to experiment with

such a problem as well to determine, at least for the TSP, the limitations

of this approach.

9. The South American Travelling Salesman Problem

'Two "high level" or abstract strategic ideas occurred to us for the

solution of this problem (figure 14). The first was to construct a simple

circular tour of subproblems. We imagined a tour following the coastline,

so to speak, which made excursions inland whenever necessary to pickup "stray

cities". The effectiveness of the subproblem approach in this case was to

sketch out such a solution, forcing stray cities to be associated with the

most appropriate subset of coastline cities. We will distinguish the

exploration of this idea as Phase I. Other phases will be concerned with

the exploration of other ideas.

€»

e c ©

€
o

© G
©

€

©

e « ^ ®

©

© « C
« ©

o

• o

©
e

©

© © c ©

o

® © •
©

© © ®

® © ©

©

©

e ft

©

9

©

G

e

Figure 14: The South American Travelling Salesman Problem

36

37

Phase I In figure 15 v/e have created three obvious subproblems and

called on subproblem solvers for their solutions. This required three

CSUB commands and three'solution commands.

The first two subproblems created were the "tip" and upper right

"shoulder" groups of cities. These groups were created and solved because

we knew what their solutions should be and how they should fit in with the

rest of the problem. Since we knew what the solutions should be we used

the fast heuristic Lin supbroblem solver (CLSOL). If this solver had not

returned the expected solution we might check both CLSOL and our intuition

by calling on the exact Karp subsolver (CKSOL).

A deficiency in the system recognizable even at this early point is

the inabilityof the user to easily suggest his own subproblem solutions

(e.g. with a "manual" subproblem solver that might be called CUSOL - create

user solution). For all low level subproblems (terminal objects), however,

it is easier and faster for the user to call on a fast heuristic procedure

which can be relied on for small easy problems than for the user to input

all the pieces of a subsolution. The addition of CUSOL to the system would

not be difficult; it is a natural feature of the planning-subproblem

structure approach.

Since there were two "obvious" routes to choose from for the third

subproblem (the one in the middle in figure 15 between the other two) it

was solved using CKSOL. The choice of boundary points for the third

subproblem (i.e. the endpoint cities that will be joined to cities in

other subproblems) was not entirely obvious. We decided to put off making

up our mind about the boundary points for this subproblem and killed the

subproblem solution we had just created. One of the problems was that we were

not yet decided on how to treat the two stray cities to the left of this

subproblem.

We now created three new subproblems (figure 16), In creating tvro of

& e

« •

«>

•

« G

G

Figure 15: Creating and Solving Some Obvious Subproblems

38

Figure 16: Deleting a Subproblem Solution and
Creating More Subproblems

39

40

the subproblems (SP5 and SPG in figure 19).it was not obvious which

subproblem one of the cities should be in (C40 in figure 17). The city

in question lies'on the'"border" between these two subproblems. It was

decided to include it in the left-most subproblem, SPG. An extended

facility would be a feature which allowed the user to check-point the

partially developed solution when such alternatives had to be decided

upon so that he could easily return and pick up an unexplored alternative.

We now observed that we could almost create a Karp solution to the

top level subproblem. "Almost" because the number of objects at the top

level exceeded by 1 the maximum allowable subproblem size for CKSOL. We

therefore created and solved the obvious subproblem of the three cities

in a row at the top of the set of cities and then called CKSOL for the top

level subproblem (figure 18). The top level subproblem was solved in order

to provide a picture of the way in which the subproblems would be joined

together. On the basis of this information we would be able to choose

boundary points for our solutions to the remaining subproblems.

To assist in the manipulation of the subproblems we chose to display the

internally generated subproblem names (figure 19). In all of the experiments

described in the report the system was allowed to choose all the subproblem

names.

At this point the top level solution did not agree with our intuition.

We suspected that the stray city below SP7 should be visited on the way

from SP7 to SP2 rather than on the way from SP4 to SP7. This was probably

the result of the systems having represented large subproblem.s by centroids

in constructing its solution. Our experience was that the user will often

want to construct his own solutions for high level subproblems. It is,

however, relatively easy to manipulate the subproblem to get what you want.

In order to maintain control of the route through the city in question,

the top level subsolution was killed, SP7 killed and SP8 created and the

e

o

57 ^•J / ® 5?
o • G

'55

^51 s-

^5^ e

7

' L ^ "''''®6-< - « ® /iJ

,,

/t ® ®
^/6

A 7 e

^ZS' ^/S
2.h

'"2.% o29

• 57 O^Q

e-J^/ /<? "3!

92^ e '<> O ^

® 31
43

4^

« ^3"

«

®^<7

©:^2?

®5"/

Figure 17: City Numbers

Sz
© ©

37 J6

41

Figure 18: Creating and Solving a Subproblem and
Solving the Top Level Subproblem

43

Figure 19: Displaying the Subproblem Names

44

top level subsolution recomputed (figure 20).

We now decided that visiting the stray cities to the left of SP3 on

the way from SP5 to SP3 was questionable. We might either want to visit

them on the way from SP3 to SP2 or even during a tour through SP3, We

therefore removed these two points from the top level problem by killing

SP3 and creating SP9 (figure 21).

At this point solving all the subproblems and then forming a solution

synthesis seemed to be a good idea. We first reduced the subproblem size

of SP6 by creating the sub-subproblem SP6 (figure 21).

The first subproblem chosen for solution was SP6. Although it is

clear which object of SP6 should be the endpoint that interfaces with

SPl it is not.clear which city should be the endpoint that interfaces

with SP4. It is easy to try different solution possibilities by

successively creating and killing solutions for different choices of

endpoint pairs and then choosing the best of these (every subproblem solver

returns the cost of the solution it constructs). The difficulty is that

different choices of endpoints for SP6 are not independent of the choices

of endpoints for SP4. We do not want the optimal subsolution of SP6j but

the subsolution which is optimal with respect to- its own cost plus the cost

of "joining" that subsolution to the subsolution of SP4. We call this

the context problem.

Each of two alternative facilities in the system would solve the context

problem. One would allow the user to ask for the subproblem solution which

was optimal with respect to its own length plus the lengths of the links to

two stated endpoints in neighbouring subproblems. A second approach would

not require that the user specify endpoints for the subproblem in question,

but only the associa-ted "linking endpoints" for the two neighbouring sub-

problems. The subproblem solver would then solve a larger subproblem

consisting of the original subproblem plus these two outside endpoints.

SP4

Figure 20: Deleting Top Level Solution. Changing a
Subproblein and Re-solving Top Level Subproblem

45

'SP4

Figure 21; Deleting Top Level Solution. Changing a Subproblem and
Creating a Sub-subproblein. Solving a Subproblem.
Displaying New Subproblem Names.

46

47

The first alternative is probably the cleanest and would only require

the programming of several new subprobleni solution commands into the

system. Each alternative could be implemented in a way that would allow

the user to suggest a list of alternatives. The solver would then choose

and return the solution to the best alternative. At present the user must

try each alternative out on his own.

The first choice of endpoints resulted in the solution to SP6 shown

in figure 21. The exact Karp procedure CKSOL was used here. The second

choice for a top endpoint to SP5 resulted in the subsolution in figure 22.

This solution was more expensive so we returned to the original solution

(figure 23).

Although it would have be.en a convenience to have had the context

facilities for SP6 it turned out that they were not necessary. The best

choice of a top endpoint for an optimal subsolution to SP6 is also clearly

the best endpoint for the link to SP4. All we needed to know was the end-

point for producing the optimal subsolution of SP6.

We now decided to go ahead and solve all the other subproblems, with

the understanding that the top level solution will be the circular tour

SP4 SP8 SP2 SP9 SP5 SPl SP5 SP4. SP4, SP5 and SP6 were solved by choosing

endpoints that were closest to endpoints in neighbouring subproblems. In

each case this was the obvious choice. Since all of these subproblems were

somewhat cluttered and the optimal solution not obvious, CKSOL was used.

For SP8 it seemed that going down to pick up the stray point was

probably best accomplished on the way from SP8 to SP2. Consequently, the

left-®-most of the three points was chosen as one endpoint and the stray

point as the other. CLSOL was used. With a little thought it is easy to

convince oneself that this is the best choice of endpoints. It would have

been convenient if it had been easily possible to compare the sum (solution

length + interproblem link) for the two endpoint choices for the interface

48

Figure 22: Trying a Different Subproblem Solution

49

SP4

Figure 23: Recreating Original Subproblem Solution

50

between SP8 and SP2. It iSj of course possible to do this "manuany" by

computing all the factors individually with presently available commands.

The context problem'arose again for SP9. We could have compared the

different choices manually but decided to just settle on the right-most

of the two stray points to the left. CLSOL was used, (figure 24)

Although we had not experimented with several alternative solution

decisions we decided to go ahead and look at the final solution we had

built. This involved solving the top level subproblem (figure 25) and

creating a top level solution synthesis (figure 26). In figure 27 we

displayed just the synthesis by erasing subproblem polygons and

boundaries. The subproblem solutions were automatically erased (but

not killed) by CSYNTH.

CSYNTH returned a value of 2811 for this solution. The "CPU clock"

revealed that we had control of the CPU for 174 seconds and we had been

sitting and solving for. about 40 minutes. This does not include the time

required to keep this journal of the problem-solving experience.

Phase II . We felt at this point that the solution in figure 27 was

representative of the set of possible "coastal tours". The large number

of significant excursions in figure 27 indicates that there are perhaps

two circular tours in this problem: a coastal tour and an inner tour made

up of the so-called stray cities. With the use of two tours, all of the

excursion links can be replaced by a single pair of links joining the two

tours. If the savings in excursion links outweighs the extra cost of the

links to form an inner tour then the "two tour" approach will be better.

In order to reconstruct the subproblem structure to carry out the new

idea it was first necessary to kill some of the subproblems created during

51

n

Figure 2A: Solving All the Other Subproblems

52

SP4

Figure 25: Solving the Top Level Subproblem

53

Figure 25: Synthesizing all the Subproblem Solutions

54

Figure 27:Erasing the Subproblem Names and Polygons

55

phase one. The contents of the new subproblems' depend on the contents of the

inner tour and the point at which it is to be joined to the outer tour. From

figure 27 we decided there v/ere three places where an inner tour might run

very close to, and hence be cheaply joined to an outer tour: in the vicinities

of cities 65, 66, and 67; cities 36, 37 and 38; and cities 41, 42 and 43

(figure 17). These are the dotted line areas in figure 28. Figure 28 is

not a replica of a display picture.

Phase Ila We first experimented with some of the "joining" possibilities

along the left hand side. This required the construction of a subproblem

containing the "inner loop", one long subproblem on the right, and two

subproblems on the left. The two on the left "break" at the point where the

outer loop joins the inner loop.

We erased the synthesis solution and redisplayed the existing subproblems

and subsolutions (figure 29).From figure 29 it was apparent that the follow

ing subproblems would have to be killed: SP4, SP5, SP6, SP8, SP9, and SPIO.

We decided at the same time to include the three points in a row in SP8

in SP2 so SP2 was killed, as well. This left us with a single remaining

subproblem (figure 30).

We now created the subproblems SPl 1 and SP12 in figure 31. It was not

clear whether city 23 (marked with a * in figure 31) should belong to the

inner loop or the outer loop. Although we still had not decided where to

make the break in the inner loop (i.e. SP14and SP15 had not been constructed)

we decided to resolve this question by comparing DIS(C4, C24) + DIS(C67,C23)

+ DIS(C68, C23) - DIS(C67,C68) with DIS(C4,C23) + DIS(C23,C24) + DIS(C67,C68)

(see figure 17). The result of this comparison was an indication that C24

should be part of the inner loop. SPl3 was then created (figure 31).

There were several ways to consider joining the inner loop with the

left hand part of the outer loop. Our first inclination was to try the

cheapest possible pair of joining links. Anticipating the join shown by

56

r-/

/

\

Figure 28: Joining Points for the Inner and Outer Tours

57

Figure 29: Existing Subproblems and SubsOlutions

& o

e c

€>

O €)

o

O O

c c

o

o

Figure 30: Remairing Subproblems and Subsolutions

€

e

e

58

59

JSP14

Figure 31: New Subproblems

60

the dotted lines in figure 30, we created subproblems SP14 and SP15.

The subproblem names were then displayed and the result was (except for the

dotted lines and *) the display in figure 31,

We now solved all of the subproblems. Because of our experience in

Phase I we now had a good idea what the solutions should look like and which

subproblem boundary points to choose. CLSOL was used to solve each sub-

problem and the resulting solutions were displayed (figure 32).

The top level subproblem was then solved, the subproblem solutions

synthesized and all information but the synthesized solution erased (figure

33). The path length for this solution is 2749, a good improvement over

the single tour solution from Phase I. The additional CPU time required was

117.5 seconds and the "sitting" time about 15 minutes.

Phase lib We examined our Phase la solution to see if we could see any way

to further reduce its cost. The variable aspect of the Phase II idea is the

choice of the pair of links required to join the two circular tours. After

a little thought it was evident that we should try to minimize the inter-

loop links but maximize the "breaks" in the inner and outer loops where

they are joined. The joining links in the IIa solution are-small but

the tour breaks at the joining places are not very large. There are

several places at which a large possible break in the inner loop is opposite

a large possible break in the outer loop. There are two such obvious places

on the left side of the inner tour and one on the right.

The process of trying out these ideas involves killing and creating

subproblems, re-establishing a top level solution and then creating a synthesis.

The process is the same as that for creating the Phase Ila solution and will

not be described here. The three additional synthesized solutions resulting

from three alternative choices of ways of joining the inner and outer loops

are shown in figures 34, 35 and 36. The path length for these three

solutions are 2733, 2735, and 2741. The additional CPU time required to

create these three solutions was 22, 20 and 40 seconds. The sitting and

61

Figure 32: New Subproblem Solutions

62

Figure 33: Synthesized Solution

63

Figure 34: Solution with Path Length 2733

64

Figure 35: Solution with Path Length 2735

65

Figure 36: Solution with Path Length 2741

66

thinking time was less than 10 minutes in each case.

Phase III In this phase, the entire problem v/as treated as a single

subprbblem and solved using first CCSOL and then CLSOL. Recall that

CKSOL can not be used for problems with more than 12 cities. The South

American problem has 68 cities.

The resulting Croes solution (figure 37) (CCSOL) had a path length of

3219. Its computation required 540 seconds CPU time. The procedure was

run with the default setting of two reduction cycles and two 2-opt tours

per reduction cycle.

The Lin solution (figure 38) had a path length of 2741 and required

1296 seconds CPU time. CLSOL was also run with the standard default setting.

10. The France, Spain and Italy Travelling Salesman Problem

The account of the solution of this problem is more condensed than that

provided for the South American Problem. The details of the solution

process are the same as for that problem. We were more confident about the

use of the system for this problem and preceded more rapidly in the construction

of solutions. We had also gained a confidence in the CLSOL subproblem solver

and used it throughout this solution process. Three general solution ideas

occurred to us in the solution process.

Phase I We first decided to try the obvious grouping of the cities into

Spain, France and Italy. These subproblems were constructed and their

subproblem names displayed, (figure 40). Subsolution boundary points v/ere

chosen and CLSOL called (figure 41). In SP2 there were two simple choices

for the endpoint which would interface with SP3. We computed a solution to

67

Figure 37: The Croes Solution

68

Figure 38: The Lin Solution

a
9

a
a

o
0

« a
a

0 a

a ©
a

« a

Q . • a a
® a ®

9 • a ®
0 a 0.

» a
a

a

a

a 9
a a

Figure 39: The France, Spain and Italy Travelling
Salesman Problem

a

* a

cr^

Figure 40: Creation of the Obvious Subproblems

o

Figure 41: Subproblem Solutions

72

SP2 for both choices and added in the lengths of the associated interface

links in deciding on the choice in figure 41.

The top level subprobleni was then solved, the solutions synthesized,

and the subproblem names and polygons erased (figure 42). The path

length was 2094, the elapsed time 15 minutes and the CPU usage 40 seconds.

We now chose to recompute the solution with two changes. The first

was to use a different eridpoint in SP3 for linking with the upper endpoint

in SP2. The second was to include the lower endpoint in SP2 in SP3. The

idea was that it would be cheaper to visit that city on the way to SP2

from SPl rather than SP3. The new subproblems and subproblem solutions

are shown in figure 43. The synthesized solution is shown in figure 44.

The path length for this solution is 2047. The CPU usage required was

40 seconds. The elapsed time was 10 minutes".

Phase II Recalling our experience with the inner tour approach in the

South American problem we decided to try joining the inner group of cities

in Spain and France into a separate tour. There wasn't much we could think of

to do for Italy. The appropriate subproblems and endpoints were chosen and

the subproblems chosen, resulting in the solution structure in figure 45,

The synthesized solution (figure 46) required 15 minutes elapsed time

and 68 CPU seconds. The path length was 2120, invalidating the big inner

loop idea for this problem.

Phase III Even though the bigger inner loop idea was no good, we thought

that perhaps a small inner loop in France (SP5 in figure 43) might work<

In thinking of how we would construct a subproblem to force the inner loop,

we realized that if the inner loop idea was any good, such a loop would

Figure 42: Synthesized Solution with Path Length 2094

CO

Figure 43: New Subproblems and Solutions

Figure 44: Synthesized Solution-with Path Length 2047

on

Figure 45: Suproblems and Solutions for the Big
Inner Loop Solution Idea

. ^
CTt

Figure 46: Synthesized Solution with Path Length 2120

78

occur automaticany during the solution of SP5. We recreated the

three subproblems in figure 43 and the solution to SP4. Imagining how

such an inner loop in SP5 might run, we chose the appropriate endpoints

and solved SP5, The result is shorn in figure 47.

A synthesis was computed. The resulting solution (figure 48) re

quired 60 CPU seconds and an elapsed time of 12 minutes. The path

length is 2034, the best solution to this problem so far.

The only obvious improvement to this solution was to try a different

upper endpoint in SP2 for the link to SP9. We re-solved SP2 with the new

endpoint resulting in the synthesized solution in figure 49, The addi

tional elapsed time was 5 minutes and the CPU cost 11 seconds. The new

path length was 2021.

An examination of the synthesis in figure 49 revealed one more slight

possibility for improvement by another change in the upper endpoint of

SP2. The resulting synthesized solution (figure 50) required 9 additional

CPU seconds and 4 elapsed minutes. The resulting solution had a path length

of 2012.

Phase IV The problem was then solved automatically by treating it as a

single subproblem. CCSOL produced a solution with path length 2140 in 169

seconds (figure 51). CLSOL produced the same solution as the final interactive

solution in 814 CPU seconds.

11. The Eire Travelling Salesman Problem.

In section 8 we mentioned that we chose the third of these three

problems because it apparently had little subproblem structure. The cities

for this problem are uniformly distributed (figure 52).

SP9

Figure 47: Inner Loop Solution to SE9

.

Figure 48: Synthesized Solution with Path Length 2034

CO
o

Figure 49.: Synthesized Solution with Path Length 2021

00

Figure 50: Synthesized Solution with Path Length 2012

00
ro

Figure 51:* Croes Solution

00
CO

• *
® •

#
e

* •

® * •

e • '

Figure 52: The Eire Travelling Salesman Problem

84

85

The process of communicating ideas in the system should be clear

from the previous two examples. Only the subproblem decomposition

solution, and the synthesized solution displays are reproduced for this

problem.

Phase I The only general idea which occurred to us for this problem

was to have an outer loop for the outside cities and an inner loop for the

cities in the middle. To carry out the idea it was necessary to choose the

outer and inner loop cities, and then, by choosing subproblem boundary points

(endpoints) determine how the loops would be joined together.

Figure 53.displays the subproblem structure for what appeared to be the

most obvious choice. The inter-tour joining links are not too long and the

breaks at the joining points are relatively long indicating a good balance.

This solution (figure 54) cost 13 CPU seconds to produce and 5 minutes

sitting time. The path length is 1372.

Figure 55 is a display of the synthesized solution resulting from a

different choice of "lower endpoint" for SP4. This change took 3 CPU

seconds and 20 seconds elapsed time. The new path had a length of 1387.

We then decided to try increasing the contents of the inner loop and

rejoining it to the reduced outer loop in roughly the same way (figure 56).

The synthesized result is shown in figure 57. This is the same solution

as in figure 55. With a little thought we could have predicted this. This

carelessness cost 17 CPU seconds and 5 minutes elasped time.

Almost for want of something better to do we then tried several other

ways of connecting the two loops. Figure 58 resulted from trying to join

the two loops at the top (path length 1444, CPU usage 24 seconds, elapsed

time 7 minutes). Joining the loops at the top turned oyt rather badly so

Figure 53: First Choice of Subproblems and
Their Solutions

86

Figure 54: Synthesized Solution with
Path Length 1372

87

88

Figure 55: Synthesized Solution with Path Length 1387

89

SP5

Figure 56: New Choice of Inner Loop Subproblem

90

Figure 57: Synthesized Solution with Path Length 1387

91

Figure 58: Synthesized Solution with Path Length 1444

92

we tried joining them at the bottom. The first choice (figure 59)

resulted in a path length of 1403 and required 22 additional CPU seconds

and an elapsed time of 7 minutes. The second choice (figure 60) had a

path length of 1399 (15 CPU seconds and 4 minutes elapsed or sitting time).

Phase III The automatic, or single subproblem, solutions are displayed

in figures 61 and 62. The first, produced by CCSOL has a path length

of 1677 and required 54 CPU seconds to produce. The CLSOL solution was

the same as our first interactive solution. It required 150 CPU seconds

for its computation.

12. Conclusions

In this section we describe some of the conclusions we were able to

come to on the basis of our experiments with the TSP system.

(a) Communication Medium. All of our experiments confirmed that the

subproblem or planning approach is a natural, efficient way to structure

the interactive process. The user is able to conveniently express and

investigate general solution ideas. In the South American Problem he was

able to first structure the solution as a "costal tour plus excursions";

in the France, Spain and Italy problem he could easily choose to build a

solution around a natural grouping of the cities; and in the Eire problem

he was able to investigate a general solution structure for a problem which

was initially thought to be structureless. These examples were our first

three experiments with the system and were not chosen from a set of larger,

less fruitful or successful experiments.

The success of the planning approach for the TSP is based on the

.93

P12

3P13

Figure 59: Synthesized Solution with Path Length 1403

94

P13

Figure 60: Synthesized Solution with Path Length 1399

95

Figure 61: Cross Solution

96

Figure 62: Lin Solution

97

ability of the user in the system to define "detail resistant" aspects

of a solution with "large general" commands rather than "petty detailed"

commands. The imposition of general solution ideas on the solution process

occurs in two obvious ways. The first is through the definition of a sub-

problem. If the user recognizes a subproblem for which the solution is

obvious (e.g. SPl in figure 19) he can immediately isolate that part of

the problem in a subproblem and apply the best suited solution process.

In the TSP examples this took the form of applying a fast heuristic pro

cedure to an obvious grouping of cities. In other cases the user will

recognize subproblems without knowing exactly what their solutions should

be (e.g. SPl iji figure 40). This confirms the claim that people have the

type of general solution ideas which we have defined as R-Plan nonv-^terminals.

If the user were forced to express his ideas without the ability to define

subproblems rather than solution pieces he would become hopelessly lost in

the details of the alternative solutions to subproblems.

The second way in which the user expresses his general solution ideas

is in terms of the subproblem or plan structure itself. In the South

American problems for example, the two abstract ideas for a solution,

coastal-tour-and-excursions and two-circular-tours, were both communicated

to the computer in terms of a subproblem structure.

We note that the user should not only be able to express general or

high level solution ideas but that he be able to and encouraged to define

properties of solutions which are robust against disturbance by detail. The

two types of general solution properties described above have this property.

Choices of subproblems and problem structures are based on patterns which

admit many changes in detail. If the users role in a system is not one in

which he can make, without penalty, small slips in detail, he would soon

be lost either in an accumulation of errors or a sea of alternatives con-

structed in order to avoid error.

To better understand the importance of the detail resistant quality

of a users ideass consider the problem defined in figure 63 in which

the cities are points which are "almost" on a grid.

^ ^ ^ 65

6 # e ^ e

£ e » • e fi>

e e c 6 *

^ e » e e

Figure 63: Cities almost on grid points.

The obvious idea for a solution is that illustrated in figure 64.

Z1
-» q

—I
-s 0 6

Figure 64: Obvious solution idea.

The optimal solution is shown in figure 65.

n

u

c:

Figure 65: Optimal Solution,

98

99

The solution idea in this case is not resistant to disturbance by

detail. It is based on a pattern consisting of a single problem. We

do not mean to imply that the planning structure of the system will pro

tect users from problems such as this. It is easy to define the idea

for this solution in terms of subproblems even though it does not

intuitively have true subproblem structure. We only mean to emphasize the

importance of allowing the, user to suggest solution ideas free from such

detail and that subproblem and subproblem structure ideas often have this

property.

(b) Psychological Advantages. One advantage of an interactive system

with a sound communication structure is the psychological advantages it

has over an automatic solver. By using such an interactive system the

user can be assured that no obvious (to him) solution ideas have been

overlooked. Heuristic programs are such that they may fail in an

unpredictable and even undetectable way. The Lin TSP procedure, for

example, will only check the optimality of a solution up to its "3-

optness". It will not discover "obvious" 4-opt changes that could

improve the solution. In the South American problem the user was able

to construct a solution which was better than Lin's 3-opt solution for

precisely this reason. In our interactive system the user is responsible

for and hence can have an intimate knowledge of the solution structure.

If the system is used to "check out" automatically produced solutions

it not only provides a psychological advantage but becomes part of a

more powerful combinatorial tool. An additional facility in the system

would be to allow the user to request that the computer "check out" an

interactively produced solution. In constructing a solution interactively

the user may make small errors in detail. The ability to "run" a user

solution through a "hill climbing" procedure to check for the possibility

of detailed improvements would provide an additional psychological

100

advantage for the system.

(c) Learning Environment. We found the interactive TSP system to

provide a good problem solving learning environment. When^we first began

the construction of the system we had only one real idea of how to

structure travelling salesman solutions. If a problem consisted of several

concentrated groups of cities which were widely separated then subproblems

could be created for each of the groups; we know that at least in this

case the problem could be efficiently solved in a subproblem interactive

system. Our experience with the South American Problem quickly revealed

the importance of smooth circular tours. In all of the experiments the

strategy of grouping cities in such tours proved effective. In addition,

we gained confidence in the following rule of thumb for choosing inter-

subproblem endpoint pairs: "the closest pair of endpoints is usually the

optimal choice for inter-subproblem linking. We predict that further

experience with the system will further increase a users knowledge of the

TSP and hence enhance the power of the system as a problem solving tool.

There is no indication that this process of solver growth through learning

will ever be possible in a completely automatic solution process.

(d) Combinatorial Tool. We feel that we have proved the validity of

planning method as an approach to several important problems in man-machine

communication. The power of the system as a problem solving tool must now

be considered. Is it worth the bother to allow man machine communication?

Certainly the interactive system allows the user to spend his combinatorial

power where he chooses, and to construct solutions which, although sub-

optimal, are still meaningful to him. But does it produce better solutions?

This question can be answered with reference both to the quality of the

solutions produced and to the cost of producing solutions.

101

Our experience indicates that the system provides good quality

solutions. In each of the three experiments described in the report

the interactive solution was at least as optimal as that produced by

an automatic problem solver. In the South American problem the inter

active solution was marginally better (2733 y£ 2741). In general, the

indications are that for problems in the range of 30-70 cities the

interactive solutions will be good but no better than a solution pro

duced by the Lin procedure.

With respect to solution quality, the interactive system is probably

best considered as a method for extending the range of presently available

solvers to larger problems. The relatively poor solutions produced by the

Croes procedure indicate the interactive approach to be a better strategy

to adopt than to use less discriminating automatic procedures for problems

too large to be attacked with powerful, but expensive, automatic procedures.

By default the interactive solver is always capable of producing at

least as good a solution as any automatic problem solver. It is only

necessary to incorporate the automatic procedure as a subproblem solver

and then apply it to the subproblem consisting of the whole problem.

The real advantage of the interactive system as a combinatorial tool

can be measured in terms of the cost of solution production. Experience

indicates that for large problems with subproblem structure interactive

solutions are significantly cheaper to produce. For very large problems

the planning interactive approach may be the only method of constructing

reliably optimal solutions.

Solutions are produced less expensively in the system by trading off

the cost of constructing subproblems against the displaced cost of solving

whole or undivided problems. Consider the figures for the South American

102

problem in figure 66, We arrived at the solution cost for the interactive

solutions by adding the accumulated CPU usage and a factor for elapsed or

"sitting time". For no particularly good reason we equated the cost of

one hour elapsed time with ICQ CPU seconds. The relative differences

between the figures are large enough to allow a quite different equation

without invalidating the conclusions. We note that wide variances in the

CPU usage reported by the accounting system can result from varying loads

on the machine. We therefore took care to perform the experiments under

the same system loading conditions.

Path Length Solution Cost

First Interactive 2811 244

Final Interactive 2733 521

Croes' Solution 3219 540

Lin's Solution 2741 1296

Figure 66: Performance figures for the South American ISP

From the figures in 66 we see that Lin's solution is 2.5% better than the

first interactive solution but at a 431% increase in the cost of solution

production. In this example the final interactive solution was better

than Lin's solution and 200% cheaper to produce.

The dramatic relative cost efficiency of the interactive system for

the South American TSP results from the replacement of a very large problem

(68 cities) with several smaller subproblems. Recall that the Lin solution

of a TSP increases in computation time wth the cube of the increase in the

number of cities.

103

The figures for the France, Spain and Italy problem are displayed

in figure 67.

Path Length Solution Cost

First Interactive 2094 65.

Final Interactive 2012 328

Croes' Solution 2140 169

Lin's Solution 2012 814

Figure 67: Performance figures for the France, Spain and

Italy ISP

The Lin solution is 4X better than the first interactive solution at

a 1200% increase in solution cost. The final interactive solution was the

same as Lin's solution and 188% cheaper to construct.

The figures for the Eire problem are shown in figure 68. The figures

do not at first appear quite as encouraging. Although the first interactive

solution was as good as the Lin solution, and at an 85% decrease in solu

tion cost, the final interactive solution, again the same as the Lin

solution, was 7% more expensive to produce. We note that we could have

reduced the interaction cost by creating smaller subproblems than were

really required to express the interactive solution ideas. This is an

important added advantage of the interactive approach: the user can control

not only the structure of the solution produced but also the cost of

solution production. By constructing subproblems of different sizes he can

trade off elapsed time plus cost of subproblem construction against cost of

subproblem solution computation.

104

Path Length Solution Cost

First Interactive • 1372 22

Final Interactive 137.2 160

Croe's Solution 1576 55

Lin's Solution 1372 150

In comparing the Lin solution computation cost to the interactive

solution cost there are grounds for an argument that the comparison should

be made with the first interactive solution. In addition, since the Lin

procedure is heuristic, and produces different solutions for different

runs, the final interactive solution should be compared with a final Lin

solution. A final Lin solution would be chosen from a number of executions

of the Lin procedure. This can be accomplished either by increasing the

number of 3-opt cycles .per reduction cycle or by just calling the

procedure several times with the default setting of two 3-opts per re

duction cycle. We decided on the second alternative and computed three

additional Lin solutions. The path lengths were 1390 (figure 69),1390

and 1372. When the Lin procedure constructed the original solution (path

length 1372) we had the same degree of confidence in the solution as we

had for our final interactive solution. The costs of producing these

additional solutions were 114, 146, and 184 CPU seconds. The cost of the

final Lin solution is therefore 594. If we compare the final Lin solution

with the final interactive solution then the same reduced costs for this

problem as for the other two can be claimed. It is unlikely that we could

have even afforded to compute a final Lin solution for the South American

problem.

(e) System Limitations and Possible Extensions. In this section

some of the limitations mentioned, in the three experiments are reviewed.

105

Figure 69: Alternative Lin Solution to Eire Problem

106

The first obvious deficiency was the lack of any convenient method

for "manually" constructing subproblem solutions. In several instances

subproblem solvers failed to produce the desired results for high level

subproblems. The required addition to the present system would be a

new subproblem solver, say CUSOL, which allowed the user to define the

exact ordering of a subproblem solution.

A more general limitation of the system is the result of what we

have called the context problem. In the present system the subproblem

solvers find solutions which are optimal for a given choice of endpoints.

It is necessary, however, to find subsolutions which are optimal with

respect to their path lengths plus the cost of linking the solution to

neighbouring solutions. In other words, subsolutions must be optimal with

respect to the context in which they occur. The automatic parts of the

present system (i.e. the subproblem solvers) and not sensitive to sub-

problem context in any way: the user is entirely responsible for deter

mining the choice of endpoints that optimizes the subproblem solution while

still allowing inexpensive interproblem linking. Very often this decision

results from the attempted comparison of combinations of single links. The

user can either attempt to perform these comparisons visually, or calcu

late individual distances and then perform the necessary arithmetic

combinations using pencil and paper. Neither alternative is satisfactory.

Several possibilities can be proposed to eliminate the context problem.

Two suggestions were described in Phase I of the solution of the South

American Travelling Salesman Problem. Another suggestion is to change the

system so that subproblems are not disjoint. If each subproblem in a

tour of subproblems had one city in common with the next subproblem, there

would be no such thing as an inl:er-subproblem link. There are a number of

disadvantages to this idea. It implies that the user must decide at the

time of subproblem creation how the subproblems are to be joined together.

107

He cannot delay the decision and choose interproblem links at some later

point. Subproblems v/ould all be one order, of magnitude larger than in

the present system (they vrould all have one more city). It is not clear

that a system based on overlapping subproblems would not introduce a

whole set of new limitations or even introduce a more severe context

problem. It would certainly provide a much less flexible system. The

ability to manipulate subproblem endpoints independently of context

would be lost since each subproblem solution endpoint would belong to

two subproblems. The importance of being able to manipulate individual -

subsolution properties through the subproblem endpoints is illustrated in

the solution process of the Phase III part of the solution to the France,

Spain and Italy problem.

Perhaps the best solution to the context problem would be to construct

subproblem solvers which accepted as an argument a list of alternative

subproblem endpoints and alternative neighbouring subproblem endpoints.

The solvers would return the solution which was optimal with respect

to the subsolution path length between solution endpoints plus the

lengths of two links to endpoints in neighbouring subproblems. The

solver would also return the. names of the optimal endpoints in the

neighbouring subproblems. If the neighbouring subproblems were already

solved, so that the choice of neighbour endpoints had already been,

fixed, then the users alternatives would be limited to different choices

of solution endpoints for the subproblem to be solved. In this approach

the user maintains control over solution structure through his responsibility

for naming alternative endpoint choices. The approach could be implemented

in the present system with the definition of several new commands, all of

which could be defined in terms of presently available commands. Other,

108

higher level, commands could be defined in tenns of these commands and

the system would still retain its flexible approach to endpoint manipula

tion.

A second general limitation in the system is the lack of any facility

for dealing with alternative solution decisions. At present the user must

keep track of alternatives. The second suggested solution to the context

problem described above would also solve part of the alternatives problem.

It would permit the user to request a solver to return the best of a

number of alternative subproblem solutions defined by a num,ber of alterna

tive endpoint choices.

Occasionally a user will want to return to an earlier point in the

solution process and take up some other unexplored alternative. Suppose,

for example, there had been two possible choices for a subproblem group of

cities at that point (cf.Phase I of the South American problem). At

present the user must remember what the alternative was, "undo" the pre

sent solution, and reconstruct the previous partial solution situation.

What is required in this case is a facility for checkpointing partial

solutions and a partial solution classification and retrieval scheme.

(f) Summary. In conclusion, we found the planning approach to provide

a sound basis for an interactive system. In a planning system the user

can communicate general or abstract ideas to the computer. He can control

the cost of solution production in a semantically meaningful way through

subproblem definition. In the case of the ISP he is able to produce good

quality solutions and therens every indication that the approach allows

the design of a good problem solving learning environment.

The limitations we discovered during our experience with the system

could all be eliminated while maintaining the same planning or subproblem

109

basis for the system. Even in its present form, however, the system

was sufficient for the purposes of our investigation-. These limitations

are described to assist either in the construction of a production form

of this system or in the construction of systems for other problems.

We note the importance of reliable equipment for interactive .systems.

The accounts in sections 9, 10 and 11 are those of experiments where hardly

anything went wrong. The action required when a malfunction occurred has

not been included in the account. For the most part this consisted of

repeating a command which went astray.

Acknowledgements The author wishes to express his gratitude to

Professor Julian Feldman for his continuing encouragement and

enlightening criticism.

no

Appendix I City coordinate pairs for the three experiments.

in

rnrrpRnP r t T t F

(CITIES (584. 62 4.)
816.)

(643.
(4.87 .

504 .)
659.)

(567.
(510.

732.)

664 .)

(684 .
(7 P R .

743.)
728 .)

(783-
(815.

711.)

680.)

(816.
(815.

671.)

6 6 0.)

(807.
(776 .

647.)

616.)

(599.
(679.

604.)

599 .)

(716.
(716.

566 .).

551.)

(747.
(720 .

543.)

523.)

(695,

(679.

511.)

512.)

(464 .

(495 .

592.)
571.)

(492.
(4 4 H .

560.) .

555.)

(451.
(495.

515.)

515.)

(568.
(648.

507.)

479.)

(624.
(612 .

457.)
4 35.)

(451.
(559.

4 7 9 .)

484 ,)

(568 .
(576.

452 .)

415.)

(560.
(543.

412.)
431.)

(475.
(50 8 .

428.)

4 4 3 .)

(4 4 B .

(451 .

455 ,)

427 .)

(456.

(443 .

419.)

364 ,)

(527 .

(520.

371,)

351 .)

(4 4 8 .
(4 4 y-.

3 5 3.)

3 36.)

(4 9 6 .

(4 8 8 .

6 0)3 .)

240 .)

(4 6 -!.

C4 8:1 .

224 ,)

855.)

(4 4 .

(4 1 ,

bob .)

6 39 .)

(4 ; .i 7 .

90 5
("3 91.^7

f^ 0 2 .)

5 i,.j
t> 0 6 .)

- - — - -

VALUE)

C^S-i

(364
(414

(352
(364

(391.
(396.

(436
(4 4;^

(4 48
(44R

_2±2^-l.
747

716..

6/9

6 6 3

623.

_627^

620.)
604 .)

592.

583.

)

112

(
n

r
F

P
R

n
P

c
t
t
t
e
s

(C
IT

IE
S

3
7

5
'

3
8

3
'

4
3

.5

3
6

4
3

6
.5

3
3

2
.

3
2

>
1.

3
0

4
'

2
9

6
'

2
6

4
3

0
7

3
3

6
.

3
7

5
.

4
0

7
4

1
5

4
3

2
4

6
3

4
7

6

4
9

5

4
4

4

4
6

0

4
3

5
4

6
7

4
9

9
.

3
2

7
t

4
6

8
.

4
8

.

5
1

1
5

3
2

5
1

9
.

5
3

9
.

5
5

2
.

5
6

8
.

6
2

3
.

5
7

5
.

5
3

6

4
9

5

5
4

3
.

5
6

4
.

5
7

5
.

5
9

6
.

5
6

4

2
v

y
,

6.
3.

1.
!

7
2

5
'

6
9

•)
'

6
7

2

6
.4

3
.

6
5

6

.6
.9

6

7
0

7
6

JL

7
9

1

6
9

1
7

2
7

3
0

4

2
6

8
'

JL
3

2
_

^5
4

7
3

5
4

3
7

6
,

3
6

7
.

3
2

3
,

5
0

0
,

2
6

4

1
9

1

1
8

4
,

1
8

3

1
8

6

1
9

9

2
2

4

2
5

6

2
6

4

2
7

1

3
2

8

3
6

3

4
2

8

3
9

5

4
1

5

4
2

8
,

4
4

8

4
8

0
',

4
7

6
,

4
4

8

4
6

7
,

5
0

0
,

4
9

2

4
5

6

4
2

4

4
0

4

3
6

8

3
2

0

3
1

6

3
0

4

2
9

6

3
0

7

3
6

0

3
/
5

3
0

8
,

3
2

5
.

3
4

4
,

3
4

0
,

3
2

3
,

..
.3

1
6

.
2

9
5

2
9

9

2
9

1

2
3

1

2
1

6

2
4

8

2
2

4

1
1

3

(OrFPRPP

(CITIES

TIES

495
47?

524
575

58?

544-
536,

591 .

600,

595 «

587

41 ^

415

454-

424.
484 .

415,

467

484

556,

567,

531
4 67 -

440,

363,

367 .

332.

371,

428,

452

4 8;

45 ? •

440

42A.

472
54 4

500-
499,

468 ,

428 .

4 00 ,

_272^
387.

4 08 .

4 28,

535.

.467 ,

439.

4 36,

443,

4 0 0.

391.

376.

352,

327.

324.

351,

371.
379 .

340,

335.

319,

319,

316 .

3.15.„

300.

295.

296.

279,

367, 268,))

444-

Appendix II Fraire numbers for display information.

Frame

1

2

3

4

5

6

7

Displayed Information

City, points

Subproblem Polygons

Miscellaneous

Context Marker (C)

Subproblem Solution Links

Synthesized Solution Links

Pen pointer marker (P)

115

116

Appendix III The Karp Solver CKSOL

(nrFPROP LKARP

(LKAHP ILISTI
nOSTK

VAI UF)

nKSQl

I£XP
RQi vrHi

SORT

.MlNZ.
MINI

nELETt;
element

TLTST

index

I.KARP
TAG
EACSFG

;etp.inoh

lLI

MlN3)

(riFFPRnP II IST1 :
(LAMBDA(A B)

(CnND ((H;-LrSS B A) NIL) (T (Gn>;S B (TLT5T1 A (SURl B))))))

EXPR)

(OEFPBOP COSTK
(LAMBDA(L)

(PROG (COUr-iT)
(Com ((NULL L) (RFT!!RN "ID))

_LAiL

•QPR)

(SETO COUNT 0)
(CONn ((NUIL (GDR in (RFTURN rUDNT)))

fSETQ COUNT («tPLUS COUNT (CDISa (CAR L) (CADR L))))
(SFTn L (COR L))
(Go LAB)))

(PFFPROP ,DTS1

(LAMBOAfCCi CC2)
(SORT

(>"<-PLUS (SO
,(^^DIF (CAR ((;rT cri C^IJOTF rtS'TRO TDP)))

(CAR (GET CC2 (OUOTF rBOTOOI UP)))))

EXPR)

(SO

"(i^DlF (CADR (GET CCl (OUOTE LENTROIdP)))
(T:AliR_.,.lE.Ei__r:c.2. (Quote OFNTRninP))))))))

(DFFPROP CKSOL

(lAMBDAJ.NAMEi _
(PPOr. (CITILS l in

(SFTO J-JrtML (0
(of:t0 cII1 Ls
(unon ((NU1..L

0 U T COST)

AR (POIMTER NAMF_)J),___
(F.LT Na"E (pUOTE mHJECTSP)))

C 1 T11LTUPllJ-LLL)„I)^:
I V) >(c f) n ((KQ iN AME (QIJ U T E I..

JSLIO. IN ^ (CAB nilILSJO
(SFIO UUl IN)

117

-(-GQ_LAB_11,
(CbPTSl NAME)))
(CAAR (HET NAME

(T
(SFTQ TN (QUOTr STRUnTllRFP)) W

(SETO OUT (CADAR (GET NAME (QUoTE STRUqTUREP))))
(SETq cities (CONS TN (REHOVEX lU C ITlFS)))

LAB (COND (CEO IN OUT)

: (SETQ CITIES (APPEND CITIES (l iRT OUT))))
(T

(SETQ CITTER
(APPEND (REHOVEX OUJ CITlpS)

(I IRT PUTT))))
(SETQNUM (LENGTH CITIES))
(COND ((^LESS NUM 4) (GO LABI))

((»GREAT NUM MAXKAPP)
(RETURN

(QUOTE (MAXIMUM NUM OF CITIES EXCEEOFD)))))
(SETQ nl TIES (SOI VFR1 CTTlFSn

Labi. (Pu'tprop name
(LIST (I 1ST IN OUT) CT TIE Si

EXPR)

(QUOTE STRUCTUREP))
(OSOl NAME)

(RETURN COST)))

(DEFPROP IFXF

(LAMBDA(I J)
(COND ((I^EROP J) 1) (T (^TIMFS I (TEyP I (RUrI J))))))

EXPR)

(DEFPROP SOLVERl
(LAMBOA(CITIES)

(PROG (0 I X C L LEV CITYNAMES J)
(SETO X (TIMES (^DIF NUM ?) (ipXp ? («nIF MUM R))))
(SETQ I 0)

LABS (STORE (TABLE I) 0)

(CONO ((»LESS I
(SETQ C I TYna ME S

X) (SETQ

ClTirS)
I (ADDl I)) (GO LAB3)))

(SETQ
(MAP

I 0)

(FUNCTI ON
(LAMODA(X)

(PROG NIL

(SETQ I (AUOi n)
(STORE (CLIST I)
(CONO

((MULL (COP X))
(T (SETQ J I)

(H A P

(FMNCT TD.N..
(LAMHnA(Y)

(PROG (0)

(CAR X))

(RFTijKN NIL))

(C-TID

NULL ...Yl.„,...(.RETUR(i._.N I L1.1 _
(T (SETj J (AODi J))

(.CONo

({Null
(aNQ

(GST
(.car , X)
('•UOTF TERMINALP)")'

118

119

f bp T

(CAR Y)
(nUOTE TERMINaLP)n)

(Sr; 1n
D

(OlSl (CAR X)
(car y))))

(T (SETO CCl
(E V A1 (CAR X)))

(SETO CC2
(EVAI (Car Y)))

{COND
((i^LESS CCl cn2)

(SETO

D

(DST CCl CCR)))
(T

(SETO
D

(DST CC2 CCl))))))
(STORE (CDISa I J) D)

(STOPt

(CHR X))))

(RETURN NIL))))

(CDISa
D

J !)

(RETURN NIL))))")))

CITIES)

(SETQ L (ILIST 2 NUM))
(SETO 1. EV (SUBl NUM))

(MIN2 LEV L LEV)
(SeTO L (MIN3))
(Setq cost (cOSTK l))
(SETO CITILS NIL)

LAB2 (SETQ X (CAR L))
(SETO I. (CUR L))

(Setq cities (CO'-iS (CLIST X) ClT lES))
(COND ((NULL L) (RETURN (REVERSE CITIES))))

(Go lAB2)))
rXPR I

(nrFPRsP Sort
(LAMHTja (X)

(PI?OC (V1 V2)

(SETO X (^'PLUS X 0.0))
(GOOD ((0EKOR X) (RFTURM 0)))

LAB

E X P R)

(SETO VI

(SETS V^

(<!-gun

(U 0

2))

•F^l US (J: Qij 0 _,_X __V 1) 1 _21J„
(CONn

(((A b S_(„«'nE„_V2 ^
(FIX V'))))(Rr: IUKN

(SrTfi VI V2)

(SpTQ V2 (^^Q'JO

_lUCl__LAQ,)ii

(«PLUS VI (^>QUO X VT)) ?))

(I.FFPKnR HIN2

__iLAl''KiAfLrV I.
(R"0(;

I')

t M X t O R1 I)

(SF Is LF V (LEVA)
(SFTS M h6\)

(SrTo y (nn ttf p i n

(SETQ ENO (CAR X))

(SFTQ I (CAPR xn
(SETQ pi 0)

(^sFTn T (INDEX LEV I))

LAB (COND ((EQ Pi LEV) (RETURN M)))
(Seto pi (Aorii P1))
(BETQ X

(»PLUS (MIM1 I EV I P1 T)

(CUISA (ELEMENT Pi L) END)))
(CONn ((<^LESS X M) (RETQ M X))^
(GO LAB)))

EXPR)

(nEEPRnP MTN1

(LAMBDA (LEV L P I)
(PROn (X Y)

(Seto i (^^plus i P))
(SETO Y (lABl.E I))

(CONn
((7ERnP Y)

(COND
((EO LEV ?)

(CQNO'

((EQ P 1)

(SLTQ

X

(<^PLUS (CniSA 1 (CAOR L))
(CDISA (CAHR L) (CaR L))n)

(T
(SETQ

X

(<>PLUS (CPIBA 1 (EAR |) ^

(CDISA (CAP L) (CAPR L)))))))
(T (SETQ X (HINP I EV I P))) >

(STORE (TABLE J)
(RETURN X)))

X)

(RETURN Y)))

EXPR)

(OEEPROP UELETf
(LAMBDA(P

(PROG (I
L)

Lil
(SETQ
(Seto

I 1)
Ll NIL)

lab (COijD

((EQ I P)
(R F T U R N

(I 1ST (CAR
(SETQ Ll (CONS

(Seto L (CUR D)

Li

(^ETO I (AUDI I))
li

EXPR)

(DEPPRTP element"
(LAMUQAfP L)

(PRUG

(NCnNC_. (REVtRsEX
(C AR D L1.))

Lt) (CDR L))))))

L AU

(I)

J oRTQ
(COwQ

I 1.)

{ (EU I P) (RETURN (CAR L))))

120

EXPR)

(grro (CHR I))

(SETQ I (ADUl
(Gn I AR);)

I))

(DEFPROP ILIST
(LAMBDA (A P) (REVERSE (ILT^TI A R)))

EXPR)

(DEFPROP INDEX
(I AMBDAdEV L)

(PROG (TOTaLI T0TAL2 I X K Y HIGH)
(SETQ X (<^DIF NUM ?))
(SETQ TOIALl 0)
(SriD T ?)

LABI (CONO
((^>1 ESS I LEV)

(SETQ TOTALI
(<^PLUS TOTAI 1 (<tTlHES T (BINOH X I))))

(SElO I (ADDl
(GO I ABl)))

(SETQ T0TAL2 D)
(SETQ K 1)

I))

(SETQ I 2)
(SETQ HIGH (CAR I))

(SETQ Y (SUBi WU'!))
LAB (SETQ X (^^niF LEV K))

LAB2 (COND
((tt| ESS I HIGH)

XXPRL

(SeTQ totals (<^PLUS TOTALS (rINOM (i^dIE Y D X)))
(SrTQ I (AOPl I))

(GO LABS)))
(CONn

((EQ K LEV)
(RETURN (h^PLUS («TTMrS TOTAL p....LEV OlAUJjJj,

(i^ETO L
(SeTQ K

(CDR L))
(ADUl K))

(BETO I (ADUl HIGH))
(SETQ HIGH (QaR I))

(GO LAB)))

(1)EE-PRQP LKAPP
(LKaRP ILISTl

121

n I s 1

rKGOl

lEXP

GUI. VeR1

SORT

l-UN?

'-11 N1
eEI.FTL

rLEDEOT

J.U.LG,T„_
I Nf(E X

iJ<AiO[_
LAC

X.AO SrG._
EETL I iJOI

BQ

122

VAI IJD

MIM5)

(nFFPRQP FAG

(LAMBDA(N)
(nnwp ((?frop n) i) (T («ttmfr n (fap (Suni Mn)))T

EXPR)

(DEFPROP FaCSEG
(1 AMBDA (I J)

(GGND ((«LESS I J) (QUOTE FACSFG-UNDrt- INED))
((EQ I J) 1)

FXPRT

(E (^fElMES I (FACSEG (SURl I) J)))))

(nrFPRnP SFTPIInIGM

(LAMBDA

(PROG

NIL
f I J)

(ARRAY BINOM T (AODl MAXKARP) (ADDl MAXKARP))
(BfTO T 0)

LABI (COND ((^^GREAT I MAXKARP) (RFTljBN NIL)))
(SFTQ JO)

lab? (Store (binom i j)
(»QUO (FACSEG I J) (FAC («DIF I J))))

(COMO ((EQ J I) (SETQ I (ADDl iM (GO LABI)))
(SFTQ J (ADDl J))

EXPR)

(GO lab?)))

(OFFPROP SQ-

(LAMBDA
... FXPR)

(X) (^TIMES XX))

(OFFPROP liIN3

(LAMBDA

(PROG

NIL

(MI ml MINP LEV L X MIN P)
(SETQ MINL WIL)

(SETQ HINP (SUPl NUM))
(SETQ lev MI-MP)

(SETO L (ILIST 2 NUM))
LABI (SeT.Q X (DELETE MiNP D)

(SETQ L (CAUR X))

(SETQ END (CAR X))
(SETiT Ml ML (C0Q5 EMO MINI.))
(SFTQ lev (50B1 LEV))
(COMQ

((EQ LEV 1) (RETURN (COMS 1 (cUMS (CAR L.) MJiNL)))))
(SfTn MINP 1)

(SFTQ HIN 65/300)
(SFTQ PI)

lab? (SLTO.X (TABLE (i^LLU^ (I"OEX LrV L) F)))

EXPP)

(BFT0^_X, .(^^PLUS__X_,1CL)1Sa .(ELEME
{COITO ((<^LESS X i.IB) (SETO BIN

LLLB _P..LF,VJ (G.F . LA Fl).)_)
(SFHj P rAllDl P))
(Go |.,Afn.:)))

f L) CNH)))
X) (scro MI KIP P)))

123

Appendix IV The Lin and Croes Solvers CLSOL and CCSOL

124

(r.rrPRnF^ Lli-vi

(LIN NMF.MX
WTNKFFnPT

clsol
nosTi

LINI
1 IM2

ECnPY
ATMRFFOPT

reversfxx
"

THSEFOPT

RAFiUOH I
RFVERSrX

RPtRP
RNn

L I '•••!)
VALUE)

{nrFPRHP NMFMX

(LAHenA(X Y L)
(PROR Wll

LAB (COND ((NULL L) (RETURN D)
(T

(COND ((OR (AND (FQ X (CAAR L))
(rn Y (rAHAR 1) n

(AMD (EQ Y (caar L))
(FQ X (rAOAR 1)0)

(RETURN NIL))
(T (SFTO 1 (CDR L)) (GO LaB)))))))

EXPR)

(DEFPROP NTHREEOPI
(1 AMRnA(L)

(PROG (Ll L2
1 3

cci
rC?

CC3
r.C4

CC5
nCA

013
nl?

nl4
01D

02 4

ri2D

026

034 _ _

035
0 3 6 „ .

04 6
_ . ij. ^.Sl -

0 u
FLl

C L 2
CL3

CL4

LAB3

Labi

L-AB2-

LAB3

CLJS
CL6)

(COMMENT THIS

IS

A

NEW

THREE.QPT

ALGORITHM,

COMPUTES

THREEGPTS)

comment by random TMPRnV NOT STEEPEST ASCENT)

SETO LI L)
CONO ((NULL (CDR Li.)) (RETURN L)))

SETQ CCl (CAR LD)
SETO 01 1 I 1 I

SETO CL2 (CDR CLl))
SETO r.c.? (CAR 01 ?) r

SETq D12 (CDISA CCl CC2))
CONO ((MIMUSP D12) (SETO LI (rUR Lll) (00 LaBD))

SETQ L2 (COR LD)
CONO

((NULL (CUR L2)) (SETQ
SETQ CC:3 (CAR L?))

SETO
SETQ

CLS .L2)

CL4 (COR •£1.3))

.1 (CDR ld) (GO Labi)))

SeTO CC4 (CAR CL4))
SETO 034 (CnlSA CCS CC4))

CONO ((MINUSP D3
SETQ D13 (CUISA

4) (SETO L2 (cOR L2)) (GO LAB2)))

CC1 CC3))
SETO
SETQ

U14
D24

(CDISA

(CnlSA

CCl CC4))
CO? CC4))

SETO L3 (CDR L2)
CO-Nfl

)

((NULL (CDR L3))
SETO CC5 (Car L3

(SETQ l2 (CDR L2)) (GO LAB?)))

D :
SETQ CLo L3)

SETQ CL6 (CDR CL 5))

SETO CC6 (CAR CL
SETQ D?6 (on ISA

6))

CCD CC6))

CONO ((MINUSP 006) (SETO L3 (cUR L3)) (GO LaB3)))
SETO Du (<^PLUS ri2 («-PLNS 034 U56)))
COND

(l»r;KFAr dd (<^PIUS 013 (<'PLUS D?4 D56)))

(RPLaCD CLl CL3)
(RrVERSEXx CL2 CL3)

(rplacd

(G 0 L A B 0

CL?

)))

CL4)

(S E T (v

(SETO

02 6

D3S

(CDISA

(CDISA

CC2 CC6))

CC3 CCD))

(C 01 j 0

((<^GKE.A T DU («-Pl.U5 014 (<>PLi!S U?6 [)3S)))

(RPLADD
(REVEKSL

CLl

CL?

ClS

)))

(CDISA CCl CCD)J

CL4)

(RPLaCO
(.,R P La
((H'l L AH 0

(S E T fj 016

CL-

CLD

(S F'T C D0 6 (C 0 I S A
JCnui;.

((ttCREA I !)D (

CLv5)
)

)

CC3 CC6))

US 02 4 (<fPLUS""u?6 oVs)'))"

125

126
(rplacd ci. 1 ni p)

(RF-VERb'EXX CL4 CL5)
(RPLACD CL4 CLP)

(RPLaCD CL3 CL6)
(lGO LA80)))

(SETO D2S (CD ISA CC2 CC5))
(COMD

((^'^GREaT OD (--vPlUS 014 (ttPLUS 025 D36)))
(RPLACD CL1 CL^D

(RPLaCO CL5 CL?)

(RPLACD (:L3 nL4)

(GO LAB0)))

(COND
((i^QREAT DO (ftPLUS 015 («PLLIS 026 D34)))

(RPLACD Cl 1 CI

(REVERSEXX CL2 CL5)
(RPLACD CLP CL6)

(GO LA80)))
(SFTO D46 (CDISA CC4 CCA))

(COND
((^GRPaT do (ifPlUS n4A (<JPLnS 0-1 2 0:^51))

(RPLACD GL3 CL5)

(RfVfRSEXX CL4 CL5)

(RPLACD-OLA CL6)
(GD 1 AH0)))

(COND
(({JGRFAT DD (<'PI US HIS fi^PLllS U?5 046 1))

(RPLACD CLl CL:<)
(RFVFRSEXX CL2 Cl ,X)

(RPLACi) CL2 CL5)
(RFVFRSEXX CL4 Cl S)

(RPLACD CL4 CL6)

(GD 1 ADD)))

(SETO L3 (CDR L5))
(GO 1 AR3)))

EXPR)

{DEFPROP CLSOL
(1 AMtr.A (damf)

(PROG (CITIES IN OUT RDM L I COST J cCl CC?)
(COMMENT CRETLS A SDlUTION TO pRORi fh aT NONT NAMF)

(COMMEiNI USING LINS THRE^OPT PpUCEDURE)
(SFTD name (CAR (POINTFR NaHF)))

(SFTO CIIIES (GET name (PUOTF POJECTSP)))'
(Cnon ((DULL CTTTFS) (RFTURM NtL)))

(C 01'J D

((ED NAME (DUOTr IIMJV))

(SElQ IN (CAR CITIES))
(SrIlJ OUT IN)

(GO LAB))
(T (ChPrsi NAME)))

(SFTD IN (CaaR (get NAME (OUoTr STRUcTUREP))))

1 S£IL1._. 0.1 JJ„. (.C.A DAit _(GEJ .. fi.A LiE .A (3 U0 T£ S T P U.cIU.R E P))±)
(SETD cl I ILS (CD' S ID (RINICVEX i-l CITlpS)))

LAP . ((1 rO 11

((EO IN OUT)
(S'-IO CIIIFS (/PPE.'l) CUIES (LIST OUT))))

(T

(.S FJ u_c, LI.1 Ls
(Al'Pf, NO (nr MCVEX OUT c I 1 1 ES) (IJ S T DOT)))))

—- — - - — • - —. -• . — .

127

DFTO MUM (1 FMGTH CTTTFS))

(CQND
((»l ESS NUM 4) f GO 1 AR1 n

((^GREAT NUM MAXLIN)
(RFTURN

(OUOTE
(MAXIMUM NUM RFR

OF

CITTFS

EXCEEO
FOR

LINSQLVD))))
(COMMENT SET

UP

COPY

OF

DST

ARRAY

I N .

lower
HALF

OF

DST)

(SETQ I 07
(H A P

(FUNCTION
(1 amrga(X)

(pROG NIL
(SLTQ I (Aoni. in

(STORE (CLIST I) (CAP X))
(SLTQ' J I)

(MAPC

(FUNCTION

(LAMBDA(Y)
(PROG (0)

(SFTQ j (ADDl J))
(CGNn

((NULL
(Aivm

(GCT (CAP X)
lau Q.I.LI EE Ml NAL p .D

(GET Y (nUOTE TERHINALP))))

_J.SET'._0 (01^1 (CAR_X)_Y_)J)
(T ("srlO CC1 (EVal (CaH X)))

(SrlQ rcp (EVAI Y))
(CnN[i

(.(^-f^LESS Cri CC2)
(SETO ii (DST Ccl CC2)))

AT.„.(sr.Tc jL (dst cn2 cri))))))
(STORE (CO ISA I J) U)
LSTnPE:_iiDl..SA„JL_L)_..D

ID)))(RrlUK"'
(,Cf:r;.,X).l„.^ .

(RETUPiv MID)))

^...ClTIES,)
(irjo L (illST 1 NMI-.))

i MMLD.MLJi Ll,^E TU__ML I M
D'n:j[i ((MULL HLl') (CETQ fUI':

,f up T.C L-_iLJjXl .L.))
(UrT:") CiDI (UIJDL ID)

)_))
)))

(SFTn nlTlE.S T L ^

L^B2 (SETQ
rsnn

CITIES

•1 (CpR

(CONS

n

(CLIST (CAR D) CITIES))

LABI (COND

LLiNijLL_ L)

EXPR)

(PIJTPROP name

(I TST TM OUT) (REVERSrX CITTES))

(QUOTE
(SFTO ml in NIL)

(SETQ rein NIL)
(nsOl NAME)

(return cost)))
(Go l.ARg)))

STRUCTUREP))

(DEFPROP COSTL
(I AMBnA(L)

(PROG (COUNT X Y)
(COMMENT USES

DST

array

TO

F INQ

COST

OF

A

SDL

REPRESEi-,TED)
(COHMENT BY A LIST OF PFPMUTm INTEGFHS)

(CON!) ((NULL L)
(SETQ COUNT 0)

(RETURN NIL)))

LAB (COND ((NULL (CDS D) (RETURN CCIJNT)))
(SFTO X (CAR D)

EXPR)

(SETQ Y (CADR L))
(SETQ D (COISA X Y))

(CONU
((MJNUSP D) (SETQ 0 laiill _LCU ^51 X) (CLIST Y)))))

(SETQ COUNT (^^PLUS COUNT D))
(SETQ I (CPR L))
(Go lab)))

(OrEPROP LTN1

((.AMbOACL)
(PPQC (INT I LI Pi P? P CC1 CCp X Y 7)

(COMMENT GOES

JlHRU

RLI'-l

.REy e T.I ON
cycles

I ;N

F NO IMG

BEST.
PLKM)

JC..OMMLNT . OF L....I

(SFTP I 1)
(SFTTj M (LLNGTii

E _CALLS

_.L.L)

LIN2 RLJN TImfS)

(COND

(_SEJ.Q__L„
(COi>j'-|

ii A) (GO LABS)))

(I. 1 NO

128

J_LNFQ 1 RLIn)
(cond ((null

(T (FO

INT) (SETO

J-JLBiJJ))) -

I (AOUl U) (GO LAP3))

LAB5 (SETQ pi L)
(SfTQ P? (COR I))

LAB2 (GETQ LI
(RFVERSEX

(GET (CLIST- (CAR PD) (QUOTE FOlLOWERSP))))
(PllTPKOP (CLTST (CAR P1)) Nil M^UOTF FoLI QNFRSP))

(CONO ((NULL LI)
(CQMO ((NOLI P2) (RFTURfj I.))

(T (SETO PI P2)
(SFTO P2 (CDR Pi))

(GO LAB2))))
(T (RPLftCn PI 11)

(CONO ((NULL P2) (RETURN L))
(T (NOONr 11 P?^

(SETQ pi (cDR PD)
(SFTO P2 (OOP PD)

i. AR1 (SfTO pi Ll-
(GQ LAR2)))))

(SETQ P (CDR PI))
(SFTQ P2 (CDR P))

LAB6 (CONO

((NULL P2) (BETH INT N±U-

LAB4

E X !•' R)

(SETQ I (ADDI I))
(GO I ARS)))

(COND
((NMEMX (CAR PD (CAR P) INT)

(SeTq pi P)
(SfTQ P P2)

(SEfQ P2 (CDR P2))
(GO 1 AH6)))

(CONn
((NHEMX (CAR P) (CAR P2) INT)

(SfTQ PI P2)

(SeTQ P (CDR PD)
(CONO

((NULL P) (SETQ TNT NTL)

(SETQ I (AOni I))

(GO LARS)))
(SeTQ P2 (CDR P2))
(GO LAB6)))

(RPLACo pi P2)
(STORE (CO ISA (CAR P1.) (CAR P2)> -12221)

(STORE (CO ISA (Car P?) (CAR PI)) -1222D
IRUTPROP

(CLIGT (CAR FD)
(CONS (.CAR__PJ_

(GET (CLIST (CAR PD) (oUQTE FOlLOWERSP)))
(QUqTe f- OLLORf:ROP))

(SETQ P P2)

J SEIO. .P2..J..CUR___P2,).)
(Coon

((NULL P2) (SFTO INT rJIL)
(SITS I (AOUl I))
(GO I, AOS)))

(GO LABA)))

-129-

130

(nrc-PRnP I t mc

(LAHBDAd,)
^ppnn fi 1 TFMP 1 ? rnFTi nn'^TC' i y v i 3)

(COMHENT creates
ML IN!

3

OPTS

OF

L

SETS

UP

REDUCTION
LIST)

(COMMENT HAS THE ALMOST NTHREEoRT FEATURE)
f SFTO T 1)

(SeTQ LI (ECOPY L))
<Sfto I (FroPY 1))

(SETQ COSTl (COSTL LI))
ISFTO 1? (NTPRFFOPT IRPFRM 1?)0

(SETQ C0ST2 (COSTL L2))
fSFTO 1 1 ?)

LABI' (COND
(INOT (NUI 1 (nop 1 :^)))

(SETQ S.(C0NS (LIST (CAR L3) ?CADR L3)) S))
(SfTQ INT fCONS (1 TST (CAR l,,y) (CAnK 13)) TNT))
(SeTQ L3 (CDR 13))
(CO 1 fiRl)))

(CQND
((«•! ESS COST? C0ST1)

(SETQ X LI)
(SfTq L.l LP)

(SeTQ L2 X)
(SfTQ r.OSTi POST?)))

LaB3 (COND ((EO I MLIN) (SETQ INT (rLVERSeX INT))
(RFTUrvN L1))

(T (SETO I (ADOl I))))
(SFTO IP (NTHRFFOPT (RPFRM L?)))

(SETQ C0Sr2 (COSTL L2))
(Srln 1 3 L?)

LAB2 (COND
((Noi (NUi.t (nno 13)))

(SeTQ X (CAR L3))
(SFln Y (CADR 13))

(COND
((NMFMX X Y S) (SFTO S (CONS (LIST Y Y) S))))

(COND
((NOT (NMFMX X Y TNT))

(SETQ TEMP (CONS (LIST X Y) TEMP))))
(SfTQ L3 (CDR 13))

(GO LAB2)))
(SFTQ INT TEMP)

(SFTQ temp NIL)
(COND

({i^LESS C0ST2 CoSTl)
(SF 10 X 11)

(SElO LI L?)
—

(SfTq l2 X.)

(SE1Q COSTl C0ST2)))
__.lGn__LAB 3)J,..)..„

EXPR)

1

131

(OEFPROP ECOPY

(1 AMBnA(L)

(COND ((NULL L) NIL) (T (CONS (CAR L) (ECOPY (COR L))))))
EXPR)

(DFFPRnP ATHREFOPT

(LAMBDA(L)
(PROG (CCi CC?

CC3
Cr.A

CC5
CC6

min
X

OPTION
L1

L2
L3

D12
D13

014
Dl5
024

D?5

026
034

035
036

046
056)

(COMMENT COMPS
A

3

0

OPT

PERM

OF

L

FREE
VAR

FLAG
TELLS

OF)

(COMMENT changes destroys l with RPLACn'S)

(COMMENT USES S TO ignore CERTaIN possibilities)
LABO (SETQ LI L)

LABI (COL'D ((NULL (CDR LI)) (f^EITURN L)))

(.SEXQ__C.C_i_.LlJ
(SETQ CC2 (COR LI))
(CONn

((HEhBEK (LIST (CAR CCD (CAR LC2)) S)
.._._(.seJ Q_..LI...(CDR._L.l.).)

(GO LAril)))
(SEIO .012 (ClJl.SA ,.(C/X CC.l) (CAR C:C2)))
(CONO ((MINUSP 012) (SETO LI (qDR LI)) (GO LaBD))
(SfTO L2 (CJR

.,.((NULL. (CnR..L2).)...(Srn l1..(.CDR LD) ..(GO.XaUI.))i
(SEIQ CC3 L2) • '

(SFTQ r.C4 (COR L7))

(SETQ D34 (COISA (CAR CC:^) (CAR CC4)>)
(CQNn ((MJNUSP U34) (SFT0,.L2_^C^R L21) (GO LaB2?))-
(SETQ D13
(SFTQ ni4

(CDISA

(cniSA
(CAR CCD

XCAG-UCDL
(SFTO D24 (CDISA (CAR CC2)
J^JD I 3 (CJ1B_1.2JJ

(CAR CC3)))
_1CAE_CJ1.4J_)Jl

(car CC4)))

LAB3 (COND
(dNlJD. (CDR L3)) (SFTD ? (CDR \ ?)) (no I.AR?)))

(SETQ CC5 L3)
(SETD CC6 (CDR L3))

(SETQ D56 (COISA (CAR CC5) (CAR CC6)))
(CONO ((MINUSP D56) (SFTH L.3 (cUR L3)) (CD LaB."^)))

(SETQ do (<tPLUS («PLUS D12 D34) 056))
(SfTQ 025 (COISA (CAP CO?) (CAR CCS)))
(SeTQ D46 (COISA (CAR CG4) (cAR CC6)))
(SFTfJ MIN (PI.US 013 DPS D46))

(SETQ OPTION 1)
(SETQ 026 (COISA (CAR CC?) (CAR CC6)))

(SETQ 035 (CDISA (CAR CC3) (CAR CC5)))
(SFTQ X (PLUS ni4 n.iF))
(CONQ ((i^LESS X MIN) (SETQ MJN X) (SfTq
(SFTQ 015 (COISA (CAR CCD (CAR CC5))")
(SETQ 036-(CDlSA (CAP CC3) (CAR CC6)))
(SETQ X (PLUS 015 n?4 036))
(CONO ((»LESS X MIN) (SETQ MJN X) (SFTq
(SETQ X (PLUS 014 n?5 036))
(CONO ((«^LESS X MIN) (SETQ MIN X) (SETq
(SETQ X (PLUS 015 030 04X1)

(CONd ((<>LeSS X MIN) (SETQ MJN X) (SfTq
(SETQ X (PLUS 015 056 034))

OPTION 2)))

OPTION 3)))

OPTION 4)))

OPTION 5)))

(CONo ((»LESS X MIN) (SETQ MIN X) (SeIQ OPTION 6)))
(SFT.Q X (PLUS 013 054 056))
(COND ((*LESS X MIN)
(CriNO

(SETQ MIN X) (SETq OPTION 7)))

((NqT (i^LESS MIN DO))
(SETQ L3 (CDR I 3))

(GO LAd3)))
(Sftq flag T)
(COND ((EQ option

((EQ OPTIO;

CC3)

CC2._CC3)-
CC5)

rC4 rco)

1) (RPLACD CCl

(.RtLV'iRSXXX ..
(RPl ACn Cci(

LB.U.l.RS£XX^_
(RPLACO Cc4

?) (RPl ACQ CMl

(REMERSEXx (

LACn_„CC.^„

CC6))
CC4)

:C2 CC3)
CC6)

(RPLACO OCR

((EQ OPT I DM 3) (RPl AGO CrI

(REVERSEXX

(JiPLACi]L_Q.a4

CC3))

CC3)
CC4 CCs)

XCXSJ

,.L(E_Q OPTION 4)

((LU OP T I Of i 5)

_._JJdQ„DRJ.IQD_..6.)

(RPl.ACO CC3

A RPLAC0.._.CC1
(RPLACO Cf5

,.(RPLACD__Xc3
(RPLACD CiD

(RE,yI.RSEXX..
(RPl.ACU CCT

.(RPLACD.Crl
(RF-VEX'SF Xx

CC6))
„CC4)

CC2)
CC6))„

CC5)
CC4 , CCS).

CC6))

CC5)
CC2 CC5)

132

{(EQ OPTION 7)

(on I kM))))

EXPR)

(DEFPRQP REVE^SEXX
(I AMRHAfPl P2)

(PROG (XI X X2>
(COMMENT GOES

IN

AND

REVERSES
PART

OF

A

LIST
FROM

PI

JLQ_
P2

INCLUSIVE)

^(LRELti-CILJla2_QC6J-_L
(RPLACO Ccl CC3)

JJit3Z£RS£X>LJ10? CC3X
(RPLACD CC^ CC4)))

(COMMENT DESTROYS LINKS
(SETQ XI NIL)

WITH Re^T OF LIST)

L Ab

EXPR)

(SeTQ X PI)
(SFTQ X2 (CDR X))

(RPLaCO X XI)
(CONn ((py X PP) (RFTURN P?)))

(SETQ XI X)

(SFTQ X X2)
(GO LAB)))

(DEFPRQP rHRPEOPT
(LAMBDA(L)

(PROG (CCl CC2

(COi

CC3
CCA

CC3

CC6

MI N
X

OPTION

_Ll
L2

L3

012
D13

Ol'i
015

02 4

02o
IJ5 4_

030
U3fa

0 A b

ml NT COMPS

i33-

134

A

3
0

OPT

Pf.RM

OF

L

r F^EE
VAH

FLAG
TELLS

OF)
(COMMENT CHANGES DESTROYS L WITH RPLACO'S)

LAb0
I AR1

(SETQ
(COMO

Ll L)
((NULL (GOR 11)) (RETURN L)))

(SETQ
(SFTO

CCl Ll)
GC? (COR L1))

(SETO
.(coi^n

012 (CDISA (CAR CCD (CAR CC2)))
((MiMUSP D12) (SETQ Ll (gUR Ll)) (GO LaBD))

Lamp

(SETQ

(CONO

L2 (CDR Ll))

((MULL (CUR L2)) (SFTO Ll (CDR 1.1)) (GO LABI)))
(SFTQ nC3 L2)

(SETO
(SFTO

CC4 • (COR L2))

f)34 (CnlSA (GAR GGT) (GAP GC4)))

(COMO
(SFTO

((MINUSP D34) (SETQ L2 (cOR L2)) (GO LAB?)))
013 (COISA (CAR CCD (GAR GC3)))

(SETQ
(SETO

014 (CDISA (CAR CCD (CAR CC4)))
D?4 (COISA (CAR GCP) (GAr: GC4)))

LAB3__

(SETQ
(COMO

L3 (COR L2))

((MULL (CDR L3)) (SETO L2 (CDR L2)) (GO LAB?)))
(SFTO GO'S 1.3)

(SETQ
(SFTO

CC6 (CDR L3))
006 (COISA (GAR GG=^.) (GAR GC6)))

(COMO

(SFTQ

((MINUSP 056) (SETQ L3 (CUR L3)) (GO LAB3)))
no (*PLUS (<»PIUS 01? 034) 056))

(SFTQ
(SrTO

025 (COISA (car CC2) (CAR CC5)))'
046 (GO ISA (GAP GGA) (GAR GG6)))

< SFTQ

(SETQ

MIN (PLUS P13 025 D46))

OPTIOM 1)

('SETQ
(SETO

026 (COISA (CAP CC2) (CAR CC6)))
035 (COISA (GAP GGO) (GAR GC5)))

(SETQ

{ COMO

X (PLUS ni-1 026 035))
((<^LESS X ipM) (SFTQ MTN X) (Sprfj QPTinN 2)))

(S F T [)

(SETO

015 (COISA (CAP CCD (CAP CC5)))
036 (COISA (CAP GCQ) (CA.? r.C6)))

(SETO
(COMO

X (PLUS 01'- D24 036))
((^^LESS X "IN) (SETQ MIN X) (SETq OPTION 3)))

(SETQ
(coMn

X (PLUS 014 025 036))
((<U..ESS X MIM) (SETQ 1N X) (SETQ OPTION 4)))

(SFTQ

f COMD

X (PLUS 01? 035 046))
((<»LESS X ' IM) (SETQ MTN X) (SeIq OPT I ON b)))

(S f T (j

-.(.Cn,MD_

X (PLUS Olo 026 03''))

.((.'^LESS A lU). (.5E5Q MIN X.) ,(SrTc OPTION 61))
(SFTi)

(C 0 r j

X (PLUS 013 024 056))
((-LF.SS X MIN) (Sr^Q MIN X) (Srtn nPTl.QN 7)))

(c 0 i'j n

((hiol (f^LtSS r. p !][1))

(Srio L3 (rUR 13))

- — - - - -

1-35

(sno PI L)

(SETQ P (CUR L))
f SFTro P? (GDR P)5

(SETQ I 2)
LAB? (CONn ((ECJ I R)

(RPLACD Pi P?)
(RPLAnn PA P)

(SETQ P4 P)
(SETQ N (SUri Nn

(COWD

{(EQ N 2) (RPLAnn P4 (pUR L))

(RPLACn L (CdR P3))
(RrTURW 1.)))

(GO LABI))
(T I UFLQ i _ JAnni TO) :

(SETQ PI P)
(SPTQ P PP^

(SETQ P2 (COR P2))
(GO LAR?)))n

EXPR)

(DEFPROP HMO
(LAMBDA NIL

(PROG NIL
(BETQ SEED

(HEHAINuEK (-sPLUS (<^TIME3 2011 SeED) 1)
47i!A2:A))

(RETURN («-QUO (ifPLUS SEEn 0,0) 40000))))
EXPR)

(orFPRnP LIN

(LIN MMENX
NIHRFEOPT
CLSOl.
CO^Tl

L I! ii

.LIM
ECOPY
A 11-' R FT 0 P T

REV'ERSEXX

TdTEEOfU
RAMDOMI
QEVERSrX

RPFRH

ir.o
VALUE).

136

(r,n 1 AR."^)))

(SETO flag T)
(CONG ((FQ OPTinP 1) (Rpi-Acn nri ccs)

(REVERSEXX CC2 CC3)
(RPI ACD C.r/d COS)

(REVERSEXX CC4 CC5)
(RPI ACD Cn^ CCYS))

((EG OPTION 2) (RPLACU CCl CC4)
(RFVFRSFXX rC2 CC:^)

(RPLACD Cci^ 006)
(RPI ACn Cri? CC3))

((EQ UPTIOL 3) (RPLACD Cd CC5)
(REVERSFXX CCA CCS)

(RPLACD CcA CC2)
(RPI Acn ni-4 CCA))

((EG OPTIO.L 4) (RPLACD Ccl CC4)
(RPI Acn r.rb COP)

(RPLACD Cf>' CC6))
((EG OPT I OP) (RPI ACD Cr-3 COG)

(REVERSEXX CC4 CC5)
(RPI ACn Cr4 006))

((EG OPTIOr- 6) (RPLACD CCl CC5)
(REVERSEXX CC? 00^5)

(RPLACD CC''^ CC6))
((EG OPTIOr 7) (RPI ACD Crl CC3)

(RE:vERSEXX CC2 CC3)
(RPI ACD Cr2 CC4)))

(GO LABO)))
FXPP) •

(DEFPRnP RAGhOMI

(LAMBnA(X Y)
(FIX (wPi IJR X (<>TIMES (i^mr (AUDI Y) X) (RMU)))))

EXPR)

(DEFPROP REVERSEX
(LAMBDA(L)

(PR(jG (Pi P P2)
(COMMENT KEVFPSES A 1 I ST)

(COND ((NULL L) (RETPRN L^))
(SFTQ R1 NIL)

(bETQ P L)
(SFTQ P2 (CUR L))

LAb (RPLaCD P PI)
(CONn ((null P2) (RETURN P)))

PXPK)

(iirTn Pi P)

(SPTO P P2)

(iCTO P2 (c;i)R P2
(Gf) I AfU))

(l.-rrppHP Pprph

L AflPElA,(LI
(ppur, fP PL PI ~p PP Pp P'l I)

(COMMLrJT Pa^DUiJ PLPlfJlrS
("cniUiENl Kn.Al(.iS FIRST a-'
(LR T'T f.| (LF LCI H !))

(LUG IT OU'

L A L

(LCTCi (LIST

fSf T.) R (KANIHPli 2 (GURl

UrSTPoYG P L JvOG , E.GPT

'D L/-ST FLFMFNTb)

^")T

h)))

137

(nrFPHOP GROfS

(CROES CROES CROESl CR0FS2 INVERSION COSTC DlS2 CCSOL)
VAI UF)

(nFFPHnp CROFS

(CROES CROES CROESl CR0FS2 INVERSION C'OSTC UlS2 CCSOL)
VAI UF)

(OFFPROP CROFSi

(LAMBDA(L)
(PROG (INT I LI PI P? P CC1 CCo X Y 7-}

(COMMENT GOES
THRU

RCROES

RFUCTIOM

CYCLES
IN •

FNQING
BEST

PERM)

(COMMENT OF L IE CAi 1 S CFOESP RCROES TTHFS)

(SETO 11)

Lab:^ (SfTQ N (LENGTH 1))

(COND ((^^LLSS N A) (GO LAB5)))
(SFTQ 1 (CROFS? 1))

(COND
((NFQ I RCROES)

(COND ((NULL I''T) (SETO I (AQUI D) (GO LAP3))
(T (GO LABI)))))

LAB5 (SETO PI L)
(SETO P2 (Ci)R L))

LAB2 (SETQ LI
(REVERSLX

(GET (CLIST (CAR CD) (qUQTE FOLLOWERSP))))

(PUTF-'ROP (CLIST (CAR Pi)) Nil. (UiJOTE FOLLOWERSP))

(COND ((NULL LI)
(COMiJ ((NOI 1 P?) (RETURm I))

(T (SETQ Pi P2)

(SETO P2 (COR PD)

(GO LAFI2))))
(T (KPLACO Pi 11)

((.ONIj ((NULL P2) (RFTiiRri D)
(T (N^OMC LI P2)

(SETO PI (COR PD)
(SrTO r-.? (rOR PD)

(G^ L A'• 2)))))
L A B1 (SrTO PI L)

(SETO P (COK PD)

(oETQ P2 (CuR P))

LaB() (COfiO

...ilNilEL R2),..(S£LL._LfiT H.I L.)
(SET p. I (AOul I))

(.G.Q..L.Ab3).).)
(C 0 1 [}

((N'^EMX (CAR PD (CAR P) INT)

(S f" 1 Q F'1 E')

(SL I 0 P P.2)... , . !
(SrTU P2 (CDF !''2))

138
(GO 1 A86)))

LAB4 (COND

((MMEMX (CAR P) (CAR P?1 TNT)

(SPTQ PI P?)
(SPTQ P (CnR P1))

(cnNo
((NULL P) (SETQ TNT NTL)

(SETQ I (AOni D)
(GO LAFTIX)))

(SeTQ P2 (CQR P2))
(GO 1 At!6)))

(HPLACd Pi P2)
(STORE (CD ISA (CAR P1) (CAR P2)) -12?21)

(STORE (CDISA (CAR P?) (CAR PI)) -12221)
fPUTPROP

(CLIST (CAR Pi))
(COmS (CAR P)

(GET (CLIST (CAR PD) (qUOTE FOlLoBeRSP)))
(OUoTr FOLLOWFRGP))

(SETQ P P2)
(SPTQ P2 (COR P2))
(GONO

((iNULL P2) (SETO TNT Nil)

. (SETQ I (ADDl I))
(GO 1 AFTS)))

(GO LAFjA)))
FXPR)

(DCFPRnp CROPS?

(LASBOAd)
(PROG (Ll S TEMP L? -COSTl COSTr I X Y LS)

(COMMENT creates

MCRnpS

INVERSIONS
or

L

SETS

UP

R F: 0IIC T N

LIST)

(COMMENT HAS THE Al MOST TNVERStUNS FEATURE)

(SFTO I 1)
(SETO 11 (ECOPY 1))

(Se.TO L2 (ECOPY L-))
(SFTQ LOSTI (COSTC 11))

(SETQ L2 (INVERSION (RPE^H L?)))
(SFTO COST 2 (COSTC 1?))

(SETO L3 L?)

.. LAlil (CONF;

((not (NULL (CUP 1.3)))
(SrTO S (CONS (LIST (CaR L3) (CAOR UX)) S))

(Sr. TO IN I (CONr (LIST
J S l JIL. 1.3 .(.LIjK..... L3.))
(ON L'lTl)))

(C L' ND

((«i..t;ss (,;n^T2
(Srijj X LI)

CrSTl)

(Sri 0 L 1 1,2)

-.(S.L.ii)..12...X) .,._
(Sr TiT cubl 1, LOST?)))

(CAK L;<T (CAOK L3)) INT))

Jul£,3-aJ:Jlim_U-LQUL_aCiinE54..-3-SLEm_JllJ__LllEVZR S.E.K_JiiI_)X
. (RETURN Li))

(T (SETQ I (Anni T))))
(SeTQ L2 (inversion (RPlRM LP))J
(SFin 00312 (nnsTc i ?))
(SeTQ L(5 L2)

J-JlR? (Cjmp ^ : ^
((NOT (NULL (CUP L3)))

(SElQ X (CAR 13))
(seiq y
(CQNn

(CAUR 13))

((NI1EMX

(COND
X Y S) (SETQ S (CONS (LIST X Y) S))))

FXPR)

((NOT (NHEMX X Y INT))
(SFTO TEMP (rONR (I TOT X TFMPnn

(SeTQ L3 (CDR 1.3))
(GO I ARP))) ^

(SFTQ INT TEMP)
(SFTO TEMP NIL)

(COND
((ft| ESS C0ST2 COSTl)

(SeTQ X Li)
(SFlQ LI LP)

(SrJQ L2- X)
(SfTQ cosn. COST?)))

(GO LAB3)))

(OFFPROP INVERSION

(LAMBDA(L)
(PROG (Li 12 CCl CC2 CC3 004 D1? D34)

(COMMENT

LaBO (SFTO II

COMPUTEI

L)
AN INVERSION PERM OF L DESTROYS L)

LABI (COND
(sno

((NULL

CCi Li)

COP LI)) (RETURN L)))

(SETQ CC2 (COR LD)
(SETQ 012 (01S2 (CAR CCl) (CAR CC2)))

(COND ((MINUSP 012)
(SeTG L2 (CUR LI))

(Seto LI (CUR LI))"(GO Labi)))

LAB2 (COND
((NULL (CDR L?)) (SFTO ll (rOP LI)) (GO LAB1)))

(SET

J_S£ I 0

CC3

CC4

L2)

(C 0 R L?))

(SETQ 034 (UIS:
(CON;) ((MHJUSP

' (CAR CC3)
034) (SFTQ

(CAR cn4)))

L2 (rUP L2) (GO LA'^2))))
(COND ((»LESS (o'-^LUS (01^2 (CAR

(0.1 G2 ...(QAw.
(«-p'Lllb D12 034))

IR P L A.C D...CC1_.£33.)
(REVERSEXV cqp CCT)

(RPLACf.) CF2 CO 4)

CCl)

CC2.)_
(CAP
(CAR

(GO LAtiA))

(T. (LE T 0. LC 1C0.R ..L 2,).) _(G0 ..L AR2).)..)AL
EXP!()

(DCFPR OF COSTC

Ji.AOuOA (Ll
(PRO (COiJNl X Y)

(cnoiENj... uses.
u P T

CCC))

CC4l)J

-139-

(COHMFNT

TD

F I NO

COST

OF

A

bOL

KEPRF.Stt

JLL_A_LU
TEO)
T OF PFRHUTrn li-lTFCFR.q)

(COND ((MULL L)
(SLTM nCiUMl S)

(RFTUHN MIL)))

LAB (COMD ((MULL (COR L)) (RFTURU COUNT)))
(SETO X (CAR L))

EXf=R)

(SETQ Y (CAuR L))
(COMn ((^LFS5^ X V) (RFTQ D (OST Y X)))

(T (SETQ D (DST X Y))))

(CO^iO-
((HINUSP 0) (SETO 0 (01 SI (CLI^T X) (CLIST Y)))))

(SFTD COUNT (»PLUS COIJUT D))
(SETQ L (CDH l))
(Op I Ap))) .

(UEFPROP DIS2
••(I AMbnA(CC1 "CC?)

(CQNU ((»LESS CCl CCP) (DST CCO CCD) (T (DST CCl CC2))))
FXPR)

(nrFPROP CCSnL

(LAMBDA(Name)
(PROP (CTTTES IN OUT Nl!H I I COST U rCi CC?)

(COMMLNT

(CnuuENT

CRETES

_US_U1IL-

A solution to problem aT NONT NAME)
CnOES INVrRSIPN PrOCFnURF)

(SETQ name (CAR (POIMTER NAME)))
(SETQ CITIES (GET NaME (MljnTE nb.lECTS

(CONO ((NULL
(CO NO

CITIES) (RETURN NjL)))

((EO NAME
(slTw in

(QUOTE UNTV))

(CAR riTirs))
(Setq out

(ru) I AB))

IN)

PJJLL

(T (CBFISl NAME)))

(SFTO T M (CA AR (r,ET MAHE (QUOTr STRUCTUREPQ_1.>_)
(GET NA^'E (OUoU: S FRUcTUREP))))

(RrMOVEX' I^i ClTlrS)))
(SETO OUT (CADAR

_LSEJ.O.....CJTILS (COLS

LAB (CONO
^ ((Ei) li'i OUT)

(SElf) CniES (APPENT] cities. (LIST OUT))))
(T

(SETq cities
(AI-'Pi.:NU (REMnVEX OUT ClIJES) (I 1ST OUT)))))

(SETO NUM (LENUT'r* CITIES))
_(.CnKin ;

((«-LL5S NUM 4) (GO LARD)

.JJJ' GFi E AT ^ NUM HA>, CR(.) P S.) ^
(RE T u Ii N

(QUO IE

(I i AA I F;LI Fi [•) J M' E R

OF

• CITIES

140

EXCFCn
FOK

CROFSsni vr) n))

(COHMENT set

UP
COPY

OF

DST

ARRAY

IN

LOWER

half
OF

DST)

(SFTQ T 0)

(MA P

(FUMCTION

(LAHBDA(X)

(FROG NIL

(SETQ I (ADOl I))

(STORE (CI.IST n (CAR X))

(SETCj J I)

(MARC

(FUNCTION
(LAMRPA(Y)

(PROG (D)

(SFTQ (ADDl J))

(COND

((NULL

(ANO

(GFT (CAR X)

(QUOTE TEPHINALP))
(OFT Y (nUnTE TERMTNALF))))

(SETP 0 (DiSi (CAR X) Y)))
(T (SFTQ nCl (EVAI (CaR X)))

(SETO CCQ (EVAL Y))
(c 0 ND

((»LESS GCl CC2)
(SETQ r, (QST cnl CC2)))

CITIES)

(T (SETo Q (DST

_(.S10 R1 (DST .) I) U)
(RETUR- NIL))n

(COR -X))

(RETURN nil.))))

(SFTQ t (ILIST 1 N!JM))

(COUn ((NULL JIC R QE.S)..J. S E T Q MC R QL S

((NULL RCR(-ES) (SETQ RcRoLS 2)))
i (.aiiD.LSl..J..l)._

(SlTq rcbi (cosTr: l))

(SFTQ r:l TIES NIL I

(CO i\| '1

(Set n

CC2 CCD)))))

LAB2 fSETo ClIIES (CO,'S (FLIST (CAR D) CITIES))
..(. S£XCl..„i 1 c n.R_.. LJ J ^

LAbl (CONG

........L(.N!.,lkL_ .L.)
(Pill PROP I'JAKE

XL..LSL..J.L1.EI...,.IJ.:....QU,T_) (:iE.V.E..F.SE.X
(ouorr SI pijci uREP))

..(SF TU^^NCH,UL.S..„jJ IE.)
(SE To K'CR'OES NIL)

-14-1-

EXPR)

(HROl NAhE)
(RETURN COS'

(Gn I AR?)))

-1-4-2-

)))

143

Appendix V System Commands and Solution and Display Utility Routines

144

Flow Chart for the Interior Algorithm (checks if a point is inside a polygon)

Compute z

1-

add 1 to

count

Get 1st line

segment

segment
vertical?

Return Yes

Get next line

segment
4

i ' • ••

N

) Y -r Return

Answer

segment list
empty?

y = y2 ?

Get next line segment
wrap.around' if

necessary

is y on segment^<-^^-—(segment vertical?3

S
is y above this

sseqment ?

Form new segment
if necessary

L

Subroutine A:

145

ADD 1 to X

'

is X between
compute z. If

xl and x2
'

y < z add 1 to

of this segment?y count.

N

-<r

is X between xl and

x2 of next line

segment?

N

K—

subtract . 1 from x

compute z. If

y
—?>•

y < z add 1 to

count.

-LniTPPFUiE' i-'unnE,
(LAMbOA(Name)

(CnNin ((MUIL (CAHR (GET MaMP (TUOTF q T PUHTURfP)))) NaMF)

(T

(PUnGF

(CAP
(I AST (CADR (GET MAMP (M^jUOTF STRUnTllRFP)) H)))))

EXPR)

(DEPPROP ECITIES
(I AMGCA Nil (PWOG NIL (SPJFrT 1^ (ClEAHn)

EXPR)

(PEPPHOP DSYmThS
. M AMRHA Nil

(PR(JG (L)

(ESYPTH5) L ^
(SETQ L (LIST ((jlJOTE UMIV)))

LAa (FjSUF: (CAR D) ;
(SETC L (APPEND U (GET (PAR L) (QUOTE QBJECTSP))))
(SFTn I (CDR I))

(CONO ((NULL L) (RETURN T)) (T (GO LAB)))))
XXPRJ ^

(fjEPPHnP ECTTYNAMES ^

(LAMBDA nil (PROG NIL (SELECT 3) (CLEaR) (RETURN NIL.)))
PXPRJ ^^

(OFFPRnP OnTYNAHES ^^^
(LAMBDA nil

(PROG (C P CS) -
(COMMENT DISPLAYS THE CITY PRImT NAMES)

(Sri fCT 3) ^^
(CONO ((NULL CITIES) (RETURN N/L)))
(SFTO CS CNAHES) ^^

LAB (SETQ C (CAR CS))

(SETQ P (GET C (CUOTF CFmTROTDP))) ^
(TEXT C (CAR P) (CADP P))
(SETQ CS (COR OS))
(COi-jU ((MULL CS) (RETURN NIL)) (T (GO LAR)))))

EXPR)

(DEE PR OP ESUQNaMES ,
(LAMBDA NIL (PRo'g NIL (SELECT 3) (GLEaH) (RETuRU NIL)))

EXPR)

-(uEPPRpP EGARBaGL
(LAMBDA NIL

...... .(PiMp.c_ ai l; ,
(SELP.GT 3)
(CI.EaR)

(SELECT 4)

(c.li_aR)
(SFleAT 7)

(CLLaP).),.L.
L XPR)

(ur.PPRop cppTSi
(1, Ai un A(NUi !T.)

(PPOG (P,1 0 2 X)

-t46-

EXPR)

(CnMHENJT CRFATFS TWO RHYPTS TOP f, IV
(PRIK'T (QUOTE (POINTER TO FIRST ROUnoArY POINT?)))
(SFTQ X (GET (OUOTF RlATiiS) (QiiUTE OnNTEXT)))
(PIJTPK'OP (QUOTE STATUS) MONT (qUqTE CONTEXT))
(SFTQ PI (CAR (PO INTER- (OUOTF r.^"^))))
(PRINT (QUOTE.

(SFT.O P? (CAR

(Pointer in seconu boundary point?)))
(PniMTFR (nUOTF

(PUTPRQP (QUOTE STATUS) X (QUOfE CONTEXT))
(PIITPROP ^

NONT
(I TST (LIST P1 P2)

(CADR (GET N0!!T (QUOTE S ' RUCTUREP))))

(quote STKUCTURFP))
(RETURN NONT)))

(PFFPRQP dsoi.sfx
(LAMBDA(NANE)

(PROG (L)

(comment displays

ALL
SOLUTIOr^
EXCEPT

those
ROOTED

AT

NAHF)

(Setq name

(SFLFCT d)

(CAR (POINTER NAME)))

(CLEAR)
(SETQ L (LIST (QUOTE UNIV)))

LAB (COND ((NULL L)
(CONO ((£Q (CAP

(T

(SETQ L

(RETURN I

I) NAME)

(APPEND
L

ID))
(SETQ L (COP D) (Gn I AR))

(GET (CAR l.) (OUnlE GBJEcTSP))))))
(DSOl (CAR L))

EXPR)

(SETQ L (CUR
(GO 1 AD)))

(DEFPROP DSUHNaNES

(I.. AMb n A N I L

(P R 0 G

L))

(L)

(SEI0.L. i L HQ T.£__ UN,l.y)J1
LAB

EXPR)

(OSUDNAML (CAR D)
.D£irj__| (A PRE N EI
(SETQ L (CUR L))
(CONn ((NULL L) (RETLiRN

(DEFPROP USUQNAiL
.,..(LA?'liO A (NAME.)

(POUG (X)

(COMMENT DISPLAYS

T H L

FR lux.
NAMF

L) __DuniL_..QB JEnisp))))

)) (T (GO „lab)))))

-147-

EXPR)

OF

A

SURPRnBl FH-MO\iTrRMINAl.)..

(3FTQ NAME (CAR (POINTER NAME))?
(CONO ^

((NULL (GET NAME (QUOTE OBJECT^P))) (RETURN NIL)))
(SFTQ X (GET NAME (QUOTE I NTFNtIONP)))
(CONn ((MULL X)
(Sn ECT y.)

(RETURN NIL)))

(TEXT NAME (CAAR X) CCADAR X))
(Return T)))

(DEPPROP DCITIES
(I AMRn A Mil

(PROG (CS P)
(SETra C3 CITIES)
(SELECT 1)

(CI.EaR)

LAB (COND {(MULL CS) (RETURN NIL)))
(SETO P (CAR CS))

F>:?R)

(POIMT (CAR P) (CADR P))
(SFTQ CS (CUR CS))
(GO lab)))

(OFF PROP DC-MaMFS

(LAMbOA NIL
(PROG (C P CS)

THE CITY PRInI NAMES)(COMMENT UISPLAYS

(SFIPCT .A)

(COND ((NULL CITIES) (RETURN NlD))
(SETO CS CITYNAMES)

LAB (SETO C (CAR CS))
(SETfJ P (GET C (QUOTE CE^^TROI Qd)))

EXPR)

(TEXT C (GAR P) (CADE P))
(5ETQ CS (CDR CS))

(COND ((NULL CS) (RETURN NIL)) (T (GO LAR)))))

(OEEPRnP OUT

(lambda(X)
(PROG (b L)

L Ab

{CCHMENT DETERM li ES

Jilt

(C 0 M

LOWEST

LEVrL_

CLNTROin

IN

WfflCH)

j.ENl.JT01ir S , AEJER X)
fSETQ 0 (GET X (OtjnTF RElONGSP)))

^(SET'i^i (.CAOjv^.(.Gri jj. _(qu:te...structurep)).)).
(C 0 F; U

((E) (CAR L) X)

(CO NO (dJULL

(CGNO

(OUR I))

((EO , name B1 jfRr
(T (RFTUkM- (OUT

FiRiJ NIL)).,

b)))))

148

[-ppROP '>LAS"t
LAtlBBAiiJ 1—fljL)

;sLlSW)--siA£-u^

lElPiLOB—
lambda ()

L£ROIi^J-U

GO lABJJLi

l]i£

(GOND

LOWEST
LXV£L
CLOTHOK
INA

rr^

1st U-OQum^-JitilMlLnEUll

pjlUJJJ--)

(CQND

(RETURN NIU))NAME)

TlJOj

(CAOR L)) ryiROiJlPJ-UJ((£Q (oiuni(COMD
(GU(return (GO 1>R^ ^^^^

(SETQ

F.XPRJ——

SYNT'-nrFPRgP
(NAMEi

(pROJl (X—S_£i
(COMMENT GOES

T MRU

ENTF

SUoPROB
TREE
Kt VPRS 1
SOBSOLS

Ol'.i

r-^c^ ;|f ST'7Yv"l(r UR 1ST^ ^)(COMMENT , ..':^,-',pnTMTEH
f SFT N ME (_LiALi—i——rr_ , rM iri t r b(^k-L. ((^PT

L AB -

IE))) -- -- -

IF sTROrJURER)

' I! r f 0U0 TF STKUCTURrsrrn 1 (CAOH (On N'''NI: (QUoit .
JcoL ;c«ULLi>..-(REWR"-:
(SET') X (CAR LT) •
(Sao S^.(C.AiJR_,J^i:f X,J.M.U.
(CONO

__(J-iiL-''——"'-TT P r))(Sr. To L (APi l iv, L -
(Si TO PI (T'T ^.TT ..

'""Psrio"R^ (OUT S))

EP)) T T

)) T -

(r.nNn ^
((AND (NULL PI) (NULL PP))

(St-TQ 1. (COR D) ^
(DO LAB)))

(SFlQ ENTR (GAAR (GFT V (QimrL STRUCTUREP))))
(SlTq EXX (GADAR (GET X (QUOTt STRlJCTUREP))))
(COND J

((NULL PI)
(SFTU

Kl
(niSTANCEl P? (GFT FXX (QhUJE CFNTROI OP))))

(SeTQ

_J<2-
(DISTANCE! F2 (GET ENTR (oUQTE CEnTRO I DP)))))

JLI ^^
(COND

((NULL PR)

(SETU

K1

(DISTANCE! Pi (GET ENTR (QUOTE cENTRO I OP))))
(SETU ^

K2

(DISTANCE1 PI (GET EXX (UUOTF CfNTROInP)))))

(T (SLTQ
K1
(«PLUS

(DISTANCE;] P1
(GET ENTR (QUOTE CEMTRQIDP)))

(DTSTAMCFi P? ^

(GET EXX (UUQTE CpNTROInP)))))
(SETO

K2

(»pl US

(UISTAfiCEl P! (GET ExX (QUOTE CENTROIDP)))
(DISTANGEI ^ ^

P2
((;et ENTR (ounTF rPNjTpoinp) n))))))

(COND
((LFSSP K? K1)

(PUTPROP X
(LIFT (I 1ST EXX EN' IR) (REVERSE S))
(QUOTE STRUCTUREP))))))

(SFTQ I. (COR D)

(GO LAB)))
FXPR)

i.DEFPROP DSURS
(LAhbOA nil

(PROG (L)
(LSUPS)

(SFTf I (LIST (U'TjTI UMP.')))

LAS (DSUR (CAR L))
(Sno I (APPEND I l.GEJ.„(,CAR^.,Ll, TQUOjr QbJECISPJJ.)J
(SETO L (CUR D)
(CPNO ((MULL L) (RETURN T))„,. i T (GO. LAP).).)..).)

EXi'R)

(OLnninP DSUU

.(L A:i.fcin A.(NAiU'.)
(ppH)r, fii-ii P)

150

(STTn INT (GET t^AMF fOilO TE I mTr NT 10 NP)))
(COND ((MULL I Ml) (RETUR'I NIL))^

J SELECT 2) . •
(SEIO P (CAR INT))
(SeTpQS (CAR P) (PAnR ^

Lab (Seto jnt (chr imt))
(CONn ((NULL INT) (RETIIRM T)n

EXPR)

(LINETO (CAaR INT) (CADAR INT))
(cn I ar)))

(DEFPROH ESUBS
(LAMBDA MIL (PROG NIL (REI.FCT (CIEaK)))

EXPR)

(DEFPROP CBPTS
(I AMBDAfNAMEl NAMEP)

(PROG (Bl 82 S)
(COMMENT KFADS

TWO
POIPJTS

MAKES

THEM

.1 HE

BNDY

OF

BELONOS

SUB)

(SETO NAHEl (CAR (POTNTFP NAMPlin
(SETQ NAME? (CAR (POINTER NAME?)))
(SETQ Bl (GET NAME.1 (QUOTE BFLnNQSP)))
(SETQ B2 (GET f;'AME2 (QUOTE BELONGSP)))
(CONn

((NEU 81 R2)
(RE 1 URN

(QUOTE
(ERROR BNDY

POINT?
BELONr.

TO

DIFFErEMT

SUBPROBLEMS)))))
(SETQ S (GET Bl (QUOTE STRUj:iUf;{LPJ_)J
(PUTPROP Bl

(LIST (I, 1ST NAHEl N/.Mr?) (CaDR S))
(QUOTE STRUrTUKfP))

(RETURN (LIST NAME1 MAML?)))) _ _
EXPR) •

(CEFPROP UISTANCEI
(I AMKiriA(Pl E'2)
(Sort

.--1<^P1.US i 5_Q (_«:0j T (CAR,.. Pi). ...(.C.A'̂ L .82) ?.),
• (S T) (» U IT" (CAUL Pi) (c .A n I? P 2)))))

.EXPR)..

(LAFPRQP t NT T R
(LAMuDA NIL

(..PROf;_(P L... liN.L YM-J 1'I' P. MIN'JT .X)
(COHpEljl Ut ILRM I'ES WHICH NJi-JT I'' BE IN? POINTED)

151

fCOMMEMT AT

AND

PNINTS

A

(QUOTF P)

AT

THF

CLOSEST

VERTEX)
(SETQ P (READ))
(SETQ L

(GET (GET (QUOTE STATUS) (QUOTE CONTEXT))
(QUOTE nnJEOTSP)))

(SFTQ MIN 1222221)
(SeTQ MINP NIL)
(SETQ HINNT NIL)

-LAiil_i-S£la RNDY (GJEJ (CAR) (QUOTE llLiXim-aNEDD_L
LAB2 (CONO ((NULL BMDV)

(SETQ L (ODR I))

FXPRI

(COND ((NULL D

(STI FCT 7)
(clear)
(TrXT (QUOTE PJ_

(CAR MINP)
(CADF MI UP))

(Rf'TURU (LIST MUiNT MINP)))
(T (GO I API))))

(T (SETQ X
(COMD

(DISTANCE P (CAR BNDY)))

((LESSP X TilN) (SETO MIN X)

J.5EIQ_ MiNi\JI_._(.Ci(J
(SETQ MINP (Car BNDY))))

(SFTQ RNDY (CHR RNDY)^

(GO LAB?)))))

(IIFFPRfiP ^^»PnlNTER

(LAMBDA nil
fPRDG fP I t3M!)Y MIN MI':P MTNNT X)

X-i-i-

(COMMENT OFTEHMr-iES WHICH NINT IS BEING POINTED)
(C 0 r IM E N T AT

AND

PRINTS

A

(QUOTF P)

AT

J.HE
CLOSEST

_VLKILX1,

(SETQ P (KLAD))

(SfTm I (LIST (G'T (rUOTr STATUS) (QHQtE CONTEXT))))
(SETO MIN 1222221)

(S£.Ih_M.InP.,J;JIL) -
(SFTO MINNT NIL)

..LA.U1_.(SF TQJLDY.. (GET...(£AF; D.XQUDJE JuTENTIONP)))

LAB? (COND ((NULL HNOV)

(SETQ L
(APfXMlJ

(GET (CAR L) (OUqIE OBJEcTSP))))

152

FXPR)

(SETQ I (rrjR I))
(COND ((N'JLL I.)

(bTEECT 7)

(CLEAR)
(TEXT (QUOTE P)

(CAR HINP)
(CADR MIiMp))

(RETURN (LIST MIMNT MIMP)))
(T (GO I AR1))))

(T (bETQ X (DISTa.'^^CE P (cAR BUHY)))
(CONO

((LESSP X HIN) (SETQ MJN X)

(SETQ MINNT (CAR D)

(SETQ MINP (Car BNDY))))
(SETQ aMUY (COR QMIYI-)
(GO LAB2)))))

(DEEPRnP »P0TNTER

(LAMBDA nil
(PROG (P I BNDY MIN HH--P HTNNT X)

LABI

(COMMENT

(comment
DETERMINES
AT

WHICH NIMT IS being POINTED)

AND

PRINTS

A

(QUOTE
AT

the

P)

CLOSEST

VERTEX)

(SETQ P (READ))
(SETQ L (LIST (QUOTE UUIV)))
(SETQ MIN 1222221)
(SETQ HINP NIL)
(SETQ MINNT NIL)
(SET0_ BNDY (GET (CAR L) (QUOTE lUTENTlnNP)))

LAB2 (CnNO ((NULL
(SETQ

6NDY)

i-

E XP R)

(APPEND

__L
(GET (CAR L) (QUO IE OBJEcTSP))))

(SETQ L (GDR D)
(CQNO ((N!.:LL L)

(Sf LECT 7)
(G I. E AR)

(Tt-XT (QUOTE P)

(CAR HINP)

(.CADE MI HP))
(RETURN (LIST MINP)))

CL ni.nil
(T (SETQ X (DISTANCE P (qAP ONDY)))

(.CONU _
((LtSSr X MIIO (SETQ MIN X)

(SETO^ MINNT (OA'' L))
(SETQ MJNP (Car BMDY))))

(SLTU Bi^DY (CnRJJUrjY__ __ _
(GO LABp)))))

153

(nrFPRnP F^^YmThS

(LAMBDA NIL (PROG NIL (SELECT 6) (CLEa.R)))
XXiLHJ

(flFFPRnP OCY^siTH

(LAMBDA(Name)
(PROr; (L P)

(COMMENT UISPLAYSCSYMTHESI2ED SOLUTION)
(Sri,rCT 6)
(SETQ name (CAR (POINTER NAME)))
(SFln I (GET MAHF (QIIOTF SGl.ilT TUMP)))

(CONO ((NULL L) (RETURN L'IL)))
(SETO P (GET (CAR I) (QUOTE CEmIROIDP)))
(SETPOS (CAR P) (CADP P))

I AR (SFTO I (CDR I))

EXPR)

(CONR ((NULL L) (RETURN T)))
(SFTO P (GET (CAP M (OUnTF CFmIROTOP) W

(LINEIO (CAR P) (CADR P))
(Go I A8)))

(DEFPROP DINPUT
(LAMBDA (MAME) (SETQ CITIES (OSKIN NAME)))

EXPR)

(DEFPROP RINPUT
(I AMBDA NIL

(PROG (P)

(C1 eaRall)
(SELECT 1)
(CLEAR)

(SETQ CITIES NIL)
[.AB (SFTO P (READ))

EXPR)

(POINT (CAR P) (CADR P))

(COND
((ANU (£ER0P (CAR P)) (?EROP (CaDR P)))

(RETURN CITIES)))

(SETQ CITIES (COiJS P CITIES))
(GO I AR)))

(DEFPROP KSUR
__il_AMBDMNAH£l

(PROG (b)

(COMMENT DELETES

A

SUBPROBl.ERI

WILL
_NOT
DELETE

UNI V

DELETES)

(COh] 1L NT., S Tt£j CTUFE„.I N RELQNCS.. RE.S TORES
(CgmmLni objects

:
DLLnNGS

S 1.1R R'' IH

AL.LfrS

_C I.T.Y.
DELLTlU O

154

EXPR)

(Cflfxin ((EQ NJAMT fODOTF llf:IVn rKrTDRKi Mil,)) _)_
(SETO name (CAR (POINTER NAME)))
(SETO R (GET NAME (QIIOTF BEL ONr^b'P)))
(PUTPROP B NIL (QUOTE
(PlITPROP R

SOLUTIONp))

(LIST (LIST NIL NIL) NiL)
(QUOTE STRUCTliRrP))

(PUTPROP
-B

(APPEND (GET NAME (QUOTE OBJEniSP))
(REMOVEX NAME (GET R (QUOTE ORjrCTSP)n^

(QUOTE OBJECTSP))
(ESYNThS)
(ESOlS)

jLLEJJHS)

(OSUpS)
(RETURN NAME)))

(DEEPROP COST
(I AMRnAdMAMF MO OF)

(PRO(^ (L COUNT)
(COMMENT COMPUTER

the

COST

OP

A

SUBSOL
OR

ACSYNTHSOL)
(COMMENT DEPENOP^G QM HOOE)
(SETQ name (CAR
(CONO ((ECJ HODF

(POINTER NAME)))
(QUOTE SVNTHn

155

(SETQ L (GET NAME (QUOTE SOLUTIONP))))
JJ

(SETQ L
(CAGR (GET MAME (OUOTE STRUCTUREP))))))

(CONO ((NULL L) (RETURN filL)))
(SETO COUNT 0)

LAB (CQiJO ((NULL (COR L)) (RETURN rUUNT)))
(SETQ COUNT

EXPR)

(^tPLUS COUNT

(ilLSLANCEl„
(GET (CAR 1.) (OUolE CENTROIDP))
(GET (CAOR L) (Qi)UTE nrNTRninP))^)

(SETO L (CUR LX)
(GO i AR)))

(DEEPROP KSYmTh
(I.AMbOA (NA -jt^)

(PROG NIL
iCONEiENT _DELLJF S ACSYNTHPS I v^ED SOLUT IOn)
(SfTQ fN\Mt (CAR (POriTER NAH!)))

.(P.UTPKUP .NAMEEilU . (QUOTE SOLHTlUNp))
(ESYnIiiS)))

(DEF f^RnP ASnL.,_,
(L A';« n A (N A!-i E)

(PRnr; (i)

(COHHEMT deletes A SUBPRHBLEM SOLUTION)
(SFTQ NAME (PAR (PniMlFR NAMDW

EXPR)

(PUTPKOP
N A P. P

(LIST (CAR (GET NAME (QUOTE StRUCTUREP))) NIL)
(OUnTF STRUnTUREP))

(ESOL^)
(Dsni S)))

(DEFPROP SYNTHl
(LAHBDA(E)

(PROG NIL
(SFTn S (CAnR (GET F (OlinTF STpUrTDRFP W))

(CONO ((NULL S) (SETQ G (CONS F G)))
(T (MAPCAR (QUnTF "YNTMl^ S)))

(RETURN NIL)))
FXPR)

(RFFPRnP CSYmTh

(LAMbOA(NAME)
(PROG (G)

EXHR)

(COMMENT SYNTHESIZES
SOI.lJTTOi';
IN

1 RFF

ROOTED
AT

NAME)

(SETQ NAME (CAR (PO INTER NAME)))

(SYNTH2 NAME)
(CONn ((FQ NAME (QIJOTF UMlV))

(MAPCAR

(FUNCTION SYL'THI)

(CONS (FUDGE NAME)
(COAOR

(GET NAME (QUOTE STRUC lUREP))))))
(T (SYMTHl NAME)))

(PutpRop Name g (quote solutio-jP))
(ESDI S)
(ESYnIHS)
(DSYUTH NAME)

(0 b 0 L S E A N AhiF_)

(RETURN (COST NAPE (OUOTF SYMT'hM)))

(UEFPRnP ROUMU
(I AMMUA (X) (FIX (<^PLUS X 0. 0.).)_)__

EXPK)

(DEFPROP BFTwEENEQ
(LAM.bilA (X Xi„_.X2) -

(UR (AiMj (LESSP XI X) (LESSEQP X Xp))
(AND _.1LES,SE:jP.,.X2 XO (LESGP X XD.)),)_

E X P r<)

(i j E E r KfIP I S L C I
.JLAMunA(X_.^Xi._.Yl_X2 Y2)

(h 0 U'' U

156

157

(^^P| UR Y1 ^

EXPR)

(ii-TlHES (woir X XI)

(AQuo (^^nir YP.Y1) (,>uTr x? xd)))))

(DEFPROP distance
(I AMBlUfPl P2)

(^^PLUS (SQ («DIF (CAR Pi) (CAR P?)))
(SQ (<^niF (CADR P1) (CACR PP)))))

EXPR)

(DEFPRnP ESOlS
(LAMBDA nil (PRUG NIL. (SELECT 5) (CLEaH) (RETURN Nil)))

EXPR)

(DEFPROP RF.MOVEX
(IAMBrjA(E L)

(COND ((NULL L) NIL)
((NEO E (CAR D) (CnuS (CAR I) (REHOVEX E (CnR L))))
(T (COR L))))

FXPR)

(DFFPRnP PSOl S

(LAMBDA NIL

(PRDC (L)

(COMMENT DISPLAYS ALL SUPPROBLEN SOLUTIONS)
(SELECT 5)
(CLEAR)
(SETQ L (LIST (QUOTE UNI V)))

LAB (SETQ L (APPEND L (GET (CAR L) (QUOTE OBJECTSP))))
(DSOl (CAR L))

EXPR)

(SETQ L (CDR L))
(COND ((NULL L) (RETURN .'.'IL)) (T (GO LaB)))))

(DEFPROP CSOL
(LAMBDA(NAME)

(PROG (SOL P)
(COMMENT DISPLAYS SOIUTIDN TO sU»PRORLrM NAMD
(SETO name (CAR (POi:jTER NAME)))
(SELECT i3)
(SETQ SDL (CADR (GET NAiiE (QUOTE SThM.lCTUREP))))
(CONG ((NULL SOL) (RCTUR:! NI L.) .)_!
(SETQ P (GET (CA^-- SOL) (rUOTf cEmTRO I Up)))
(SETPOS (CAR P) (CADR P))

LAB (SETQ SOL (CDR SOD)
, i N(1 _11.N y L L.„S 0 LJ_._._(. RFT 1J R: Ll)J, ?

(SETq P (GET (CAE SOL) (OUOTE rLNTRO I DP)))
LL LKElD..J.CAR._,Pl„.j C.AUR_. PI.)
(GO LAHn)

EXPR)

(Qlf PROP EX I T_...
(LAMbDA(NAME)

(PRUG..(S)_
(COMMLNT SETS UP OBJECT AS EXIT FROM SijBPROhLEM IT)
(CO'liiLNT dELONbS TO)
f S h; T 0 NAMt (C AR (P 0 I: n r NAiM [')))

LPT JCJ. S ;
(GEJ (GET ' AME (':'URTE (^Li>P'GSP))

EXPR)

• ^5«-

jLU.UjDJX-SXE-UC-'LIJ-RE-EX)-)
(COIMO

(fivinT (MIJI I (r.AriAR R) n

(PRINT (QUOTE (CQAfiGF. rXIT PnlQT?)))
(OnNn ((EQIIAI (REAP') fnlJOTF KiUn (RETURN N TLiXLU-

(PUTPKOP (GET NAME (OUOTF BELOnGPP))
(I IRT (I 1ST (OAAR S) NAK£1__j:_C:a.DP_-SJ_E
(QUOTE STRUCTUREP))

(RPTIIRM NAME)))

(DEFpRop entry
(I AMBDA(NAHF)

(PROG (3)
fOHMMENT SFTE

AM

OBJECT

AS
ENTRY

TO

SUBPRPBI FH

IT

BELONGS

TO)

(SPTO name (OAR (POTNTER NAME)))

(SETQ S
(GET (GET r-'AMF (Ql.mTF Pr|UNJGSP))

(QUOTE STRUCTUREP)))
(CONO —-

((NOT (NULL (CAAR S)))
(PRINT (QUOTE (CHANGE ENTRY pUINT?)))
(COND ((LQUAL (REA^) (QUOTE nU)) (RETURN NJL)))))

(PilTPRfiP (GET NAi'F (OUOir RElOvGPP))

(LIST (LIST NAME (CADaH S)) (CADR S))
(OUOTE STRiiCTURRP))

(RETURN NAME)))
EXPR)

(npFPRnP Pou'TfR

(LAHbOA(NAME)
(CONO ((FQ Name (QUOTE »)) (<^P0 inter)J

((fq Name (quote <h>)) («»pointfR))
((r' Q NAME (QUOTE «)) (PCT£R .X.)
(T

(rO..!D ((NOT (NUI L (OFT 'iAHE (pUnTE 1NtEMT I O^^P).))..)__
(LIST NA'^E

(Ca.R„..LGET.iAME. _(qOnTF,._ I NjE NPJlJ) l
(T (LIST LAME NIL))))>)

.£X.P.RJl

([",rErKQP C0:-ITEXT

((..AMBDA (NAME I
(PFTOG. .(XJ

. (SET'-) X (PQ I NTER NAME))

f SfTO IlAME. J.CAfT >•)) - -
(PUT PR OP (OUnlL STATUS) 'FAME (pUCTE CONTEXT))
f S F Lf GT 7)
fCl. LaR)
(SEL[GT A.I. . -
(CLLaK)

EXPR)

(cnNn
((NOT (NULL (CAOR X)))

(TRXT (QUOim_JCAADB X) fCAUADR X)n^
(Return namd))

(nrFPRop COUP

(LAMBDA(NAME)
(PROG (CON FP BP ORJ NORJ RNnY %nUM)

(COMMENT reads boundary CONSTRUCTS LlSj OF ENClOSED)
(COMMENT OHJEGTS

FROM

PRESENT

CONTEXT
RFMDVFXS

OBJECTS
F ROMH)

(COMMENT CONTEXT MAKES THEM OBJECTS OF NEW NONT)
(COMMENT ADDS NEU NOQiT TO COMTfXT OBJECTS)
(SETQ SMUY (READSNDY))
(CONI^ ((NULL BNDY) (RETURN NTi.n^
(COiND

((EO NAME (QUOTF ^

(SElQ NAME
(REaDLIST

(APPEND (QUOTE (S F)) (EXPLODE NTNUm))))
(SFTd NTMUM (AnOl •ITNIIM))) ^

(SETQ con (get (QUOTE STijUS) (ULIQTE CONTEXT)))
(SFTO ObJ (GFT CON (OUOTC OR.IFnTSP)))
(^ETQ NOBJ NIL)
(SETQ BP OBJ)
(SFTO ObJ (CONS (QUOTE %OUH) QqJ))
(SFTO FP OBJ)
(COMMENT CHECK Th'E CONTEXT OrJfCT LIST)

LABI (CONO
((NO I (NULL BP))

(CONP ((INTERICR (GFT (CAR Rp) (QUOTF CENTROTDP))
BODY)

(SETQ NORJ (CONS (CAR BP) f^OBD)
(PUTPROF (CAR BP) NAMf (QUOTE BELONGSP))
(RPLACU FP (GDR RP))
(SETU BP (COR FP)))

(I (S E TQ F P PR) J. SEJi) o P {CDR PR))))
(GO LABl)))

(COi-IMLNT SETUP PFOPEPTIFS OF NrW NONTb^
(PUTPRDP NAME

1L1,ST_J_LI_ST ._ NI L NJ L)„ :J ELJ..
(QUOTE STRUCTURFP))

(PUTPR0P NA^lL N0•'J ('•'UfpTr OBJEC I^EP)).
(PUTPR0P NAi'i F: BNp Y (0 U0 T!•' I NTE0 I I UNP))
(PUTPROP NAMF GO-: (fJUQTF RFI n.Nr.SPJ)
(PUTPRUP NAME (CTNTRMinF NORJ) (QUOTE CEflTRO'DP))
CCOilMLNT .E i.Xur C/'NTlVT NfnT)
(NCOPC QRJ (LIST NAME))

R'TTpPuF . CON .(COP OR,I) (0U0.Tr .nb.jECTSP))
(P U 11-' K ri h C fJ M

LL.LSJ.J1.I.ST.._N I.L...N I L)_iJ.l.L)
(QUOTL GT RUCTURf'P))

J K',HT PROF CiIN Jv J L....j,DUO Tr OOL.UT ioN'''))
(POlTl-0<OP CUrl

159

160

(GFMTRninF fOnR ORjI)
(QUOTE CENTROIDP))

f R r T 1! R M N A M1

EXPR)

(D E F P R 0 CENTROIDF
(• 1 A M u n A rl ^

(PROG (P 0 X Y)
(COHMEnT COMPUTFG nFr-iTRnrn OF rLQlRmOR OF NTS IN L)

(COND ((NULL L) (RETURN rilL)))
(SETO N (LENGTH 1))

(SETQ X 0)
(SETQ Y 0)

LAB (COND
((NIILI L)

(CONO (()?EROP X) (RETURN NIL))
(T (PETlPMvi (1 1ST (i^QUIL_XN) l-snUO Y M)))))))

(SETO P (GET (CAR L) (QUOTE CEU 1ROI DP)))
(C n N R

((NOr (NULL p)) (SETQ X (^^PLUS X (CAR P)))
(RFTQ Y (^Pl 0=; Y (GaOR P)))))

(SETO L (COR D)
fGO 1 AR)))

EXPR)

(DEFPROP EVEmP
(1 A M B n A (W) (?FRnP (RFMAlNnFR N ?)))

EXPR)

(CEFPROP LESSEQP
(1 A MB n A (y y) (OR (FOllAl X V) (lESSP V Y)))

EXPR)

(DEFPROP BETfEEN
(IAMBnA(X Xi XP)

(OR (A'JU (lFSSEQP XI X) (LESSEOP X X?))
(A on (ifrsfqp X? X) (1 rssrnp x Xi))))

EXPR)

(DEFPROP interior
(1 AMROA(PL)

(PROG (X Y XI Y1 X2 Y2 NXl NX2 NYl Nvii LI SEG COUNT H)

(COMMENT OFTFRMIfiES

IE

PL 1 FS

ON

OK

1NSI RE

IHF

POLYGON)

(COMMENT ULSCRlBrO RY l RETURNc; T OR NIL WILI IIORK)

(C0hK£NT 1- 0H N0T C0NVEX P0L YF0• •S)
.(UF10.„LLL) ... , -. .

(SFT:j X (CAR P))

.(SrTQ_Y_ (CADR.JT.))
(S L] 0 c 0 UN 1)

L A01 (srn XI (^.••pluf; m.o (Caar ld))

(brTO Yi ICAMAK ID)

(Sr. T., X2._ (CAAL.R...I..1.))
(SrTM Y2 (CADAUK LI))

161
f SFTCi 1 1 (COR I in

(COND ((NOT (EQUAL XI X2)) (GO LAB3)))
LAB? (Cni\in ((NULL (CUR Ml)

(COND ((EVENP COUNT) (Rei'URN MIl))
(T (RETURN T))))

(T (GO LABI)))
lab:^ (CONn ((NOT (BETHEENFQ X Xl XP)) (GO LaBP)))

(COND ((NOT (EQUaL X X2)) (GO lA.R5)))
(cohn ((EOUAI Y Y?) (RETURN T)))

la84 (CONn ((NULL (CDP:- 1,1))
(SETQ NXl (<tPIOR P.O (CaAR M))
(SETQ NYl (CAOAR D)
(SETQ NXP (CAADR I))
(SETQ NY2 (CAOADR L))
(SETQ 1 (CDR 1)))

(T (SETQ NXl (ifPLUS O.O (CAAR Ll)'))
(SETQ NY1 (rADAP M))

(SETQ WX2 (CAADR Ll))
(SETQ NY2 (PAOA'^R L1))

(bETQ Ll (CDR Ll))))
(cnMn ((EQUAI NX1 NX?)

• f (COND ((BETWEEN Y NYl Ny2) (RpTuRN D)
(T (GO 1 AR4))))

(T (COMD ((GREATERf^ Y NYi) (GO LaB2)))
(SETQ X (Anni X))

(COND

((PETWEEM X X1 X?)

(SETQ Z (ISEGT X XI Yi X2 Y?))
(CQMD

((LEGSEQP Y Z)
(SETQ COUNT (AOm CnUNT))i)))

(COND

((RETWEEN X X? NX?)

(SETQ i (I SECT X X2 Yp NX? MY?))
(CO MO

((LESSEQP Y Z)
(SETQ CnUMT (AOni COUNT))))))

(SETQ X (SU91 X))
(GO LAB?)))

LaB5 (BeTQ Z (ISECT X Xl Yl X? Y2))
{ CONfl ((equal Y Z) (?rTU?N T)))
(CONn ((LESSP Y /,) (SETQ COUNT (ADDl COUNT))))
(Go LAB2)))

EXPH)

(DEPPROB UTIL
(iniL PliOCt

£ C I T I E G
ooyntps

PClTYMAMtS
or. I T YMA i E S

c P> UB rj AHE b
i; fi AP; B AG E
cr.PTCi

'JLS£A
o: U'-E'aheo

u " U i-; t'i AHr

11 f; 1 T 1 r 0

U P 01\ >1E B

unr

_ _ .

YaLUF)

SI AST
1 i-i

SYNTH?

dsubs

dsur

ESUBS

CPPTS

UTSTAMCEI
I NTER

<h^POINTeR
«PQ INTER

esynths

DSYNTH

Dinput

_H INPUT

KSUG
COST

KSYNTH
KSQL

SYNTHl
CSYHTH

HOUND
BrTPFFUFQ

ISECT
PISTamCF

E30LS

_aj 'MOVFX

DFULS

JiiLQJ
EXIT
entry

POImtfk
noNTFX' T

CSUR

•iIEjNTROln£-
evenp

LFSSFOP

B F T WE F N

r n F PI u R

UTU.
HFAPRNDY)

(UEFPHOP HFAOBnuY
(I ameioa nil

(PRO G (L XO YD

(C 0 rl ME N T

P X Y)

JREA[1S_

LIST

UE

biNPY

vkrtige-

FROM

.p[:n_

U 1 SPLAYS)

Xj;0h!LitN.I__BNU Y.. L IIlL-E'!B3
(CO!iMEMT iHAii

1 H I<r. L

PO I ;!T?

EPAGES

P A R T I L

162

.IT.H.„rL F). IF , ONUYLIST^IESS)

; •

RFTliRMS

163

NIL)
(5FI rCT ?)

(SETQ P (READ))

(SFTn yc-i (CAR P)^

(SETQ r0 (CADR P))
(CDMn ((AND (ZFROP Xi;^) (7ERQP Yl3)) (RETURN NTD))
(POINT X0 Y0)
(SFTO I (LIST (LIST XO Y0)))

LAB (SETQ P (READ))
(SFTO X (CAR P))

EXPR)

(SETQ Y (CAOR P))

(COND
((and (?5ER0P X) (2EP0P Y))

(CONn ((I ESSP (I FNOTH I) X)

(CLEAR)

(DISPRNr.Y)

(RETURN NIL))
(T (LINE TO XO Y0)

(RETURN (CONS (LIST Xr Y0) L))))>)
(LINFTO X Y)
(SETQ L (CONS (LIST X,Y) L))
(GO EAR)))

164

References

1. Howdens•William Plans and Problem Solving Structure, U.C.I. Tech
Reports (in preparationT"]

2. Newman5 William, Input and Output Functions of IMSYS, U.C.I. Graphics
Memo #3, June, 1971.

3. Bobrow, Robert, et al, U.C.I. New-Lisp Manual, University of
California at Irvine.

4. Held, Michael and Karp, Richard M., A Dynamic Programming Approach to
Sequencing Problems, Journal for the Society of Industrial ancTApplied
Mathematics, Vol. 10, No. 1, March, 1962.

5. Bell more, M. and Nemhauser, G. L., The Travelling Salesman Problem:
A Survey, Operations Research, Vol. 16, 1968.

6.• Lin5 Shen, Computer Solutions of the Travelling Salesman Problem, The
Bell System Technical Journal, December, 1965.

7. Croes, G. A., A Method for Solving Travelling Salesman Problems,
Operations Research, Vol. 5.

8. LIFE World Library, Atlas of the World, TIME Incorporated, New York, 1966,

