
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Bilateral population activity in the motor cortex and its role in upper limb control

Permalink
https://escholarship.org/uc/item/0pt9j2jx

Author
Dixon, Tanner Chas

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pt9j2jx
https://escholarship.org
http://www.cdlib.org/


 
 

 

 

Bilateral population activity in the motor cortex and its role in upper limb control 
 

by 
 

Tanner Chas Dixon 
 
 
 

A dissertation submitted in partial satisfaction of the 
 

requirements for the degree of 
 

Joint Doctor of Philosophy 
with the University of California, San Francisco 

 
in  
 

Bioengineering  
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 
 
 

Committee in charge: 
 

Professor Jose M. Carmena, Chair 
Professor Richard B. Ivry 

Professor Frederic E. Theunissen 
Professor Karunesh Ganguly 

 
Spring 2021 

  



 
 

 

 

Bilateral population activity in the motor cortex and its role in upper limb control 
 

 

Copyright 2021 
by 

Tanner Chas Dixon 
 



1 
 

Abstract 
 

Bilateral population activity in the motor cortex and its role in upper limb control 
 

by 
 

Tanner Chas Dixon 
 

Joint Doctor of Philosophy 
with the University of California, San Francisco in Bioengineering 

 
University of California, Berkeley 

 
Professor Jose M. Carmena, Chair 

 

A canonical understanding of how the brain controls arm movements assumes 
that each hemisphere delivers commands exclusively to the contralateral limb. This has 
been supported by a rich history of work in clinical neurology and experimental 
neuroscience. However, a growing body of research suggests that the ipsilateral 
hemisphere has some form of involvement as well. For example, neural activity recorded 
from a single hemisphere of the motor cortex may be used to accurately decode 
movements of the ipsilateral arm. The precise functions of these ipsilateral signals, and 
the bilateral nature of computations in the motor cortex more broadly, are poorly 
understood.  

In this thesis, we investigate the computations underlying isolated control of a 
single arm and coordinated control of both arms. Single-unit activity was recorded from 
both hemispheres of the motor cortex in non-human primates performing a range of 
behavioral tasks designed to test specific hypotheses regarding functional laterality.  

Moving our limbs requires a dynamic process of observing the environment we 
will interact with, selecting an appropriate action, preparing that action with the correct 
effector, and executing it. In Chapter 2, we ask: How does emerging population activity 
organize to form arm-specific signals as motor plans are prepared and executed? We find 
that the population signals are marked by two different components, which we refer to 
as “dedicated” and “distributed”. Dedicated signals were comprised of activity that was 
largely segregated for the two arms at the level of individual units, with activity most 
prominently located in the contralateral hemisphere. This component gradually emerged 
across preparation and movement and drove population activity for the two arms into 
divergent neural subspaces. In contrast, the distributed component represented a 
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fundamentally bilateral function, as it contained behaviorally-specific information for 
both arms but did not segregate the population signals for each arm into separate neural 
subspaces. These two components allow for both independence and interaction of 
bilateral arm signals.  

Although nominally “motor” the motor cortex displays sensory responses as well. 
In Chapter 3, we ask: Is the postural state of both arms integrated into commands for a 
single arm? Using a task that manipulates the static posture of the stationary hand 
during unimanual reaching, we found that the relationship between neural activity and 
behavior was sensitive to the state of the stationary hand. Coding of the reach targets 
changed congruently with the posture of the stationary hand, i.e. the mapping between 
neural activity and reaching behavior shifted in the same direction that the posture of 
the stationary hand was moved. Our results offer mixed support for the intriguing 
hypothesis that ipsilateral activity reflects a parallel plan for how the stationary hand 
would move if it were selected for unimanual action. Alternatively, they may be 
interpreted in the context of bimanual coordination or reflect whole-body control that 
changes when the mechanical properties of the linked system are altered.  

Finally, in Chapter 4, we ask: Do network dynamics spanning the two 
hemispheres change flexibly to meet the coordination requirements of different bimanual 
tasks? Daily usage of our hands typically requires the two limbs to work in concert with 
one another, adopting task-specific coordination patterns. Here, we introduce a novel 
bimanual task that differentiates not only bimanual control from unimanual control, but 
independent bimanual control from bimanual coordination. We find that the mapping 
between neural activity and reaching behavior is altered between isolated unimanual 
movements and coordinated bimanual movements. However, the dynamics governing 
the evolution of neural activity appear to be largely maintained across control 
conditions. One interpretation of these results is that activity in the motor cortex 
coordinates commands for the two limbs not by adopting new interhemispheric 
dynamics, but by occupying different regimes of a context-invariant dynamical 
landscape. 

Our results regarding these questions offer new insights into the basic science of 
bilateral motor control and provide important foundations for future neurotechnologies 
like bimanual neuroprosthetics.
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Chapter 1 

Introduction 
 

 

 The internal brain processes involved in arm movement are incredibly complex, 
and they are made only more complex by the fact that we have two of them often 
working in cooperation. Producing appropriate movements requires dynamic selection, 
planning, and control processes. Interactions within local brain networks, across 
hemispheres, and between cortical and subcortical structures all contribute to the 
necessary computations. In this introductory chapter, we provide a broad review of the 
literature surrounding neural control of unimanual and bimanual arm movements. We 
then close with discussion on the translational relevance of these topics. 

1.1    Descending and commissural motor pathways 
Discussion of lateralized function in the primate motor system must begin with a 

characterization of its anatomy. Here we review the primary descending pathways 
connecting the brain to interneurons and lower motor neurons in the spinal cord, with 
an emphasis on the presence or absence of midline crossing. Additionally, we discuss 
commissural connections that link the two sides of the nervous system. Attention will be 
focused on those pathways likely to be involved in control of the arm and hand. 

1.1.1 Descending motor pathways  
Direct connections between the cortex and spinal cord form the corticospinal 

tract. Corticospinal neurons that project to the cervical spinal cord can be found in both 
the primary motor cortex (M1) and several premotor areas of the brain, although they 
are most dense near the central sulcus [73]. Approximately 85% of corticospinal axons 
cross the midline at the medulla and enter the lateral funiculus, while the remainder 
descend ipsilateral to the hemisphere of origin and enter either the lateral or ventral 
funiculi [139, 183].  
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Neurons of the dorsolateral corticospinal tract, the fiber bundle in the lateral 
funiculus, are classically thought to terminate contralaterally in the dorsolateral 
intermediate zone and on motor neurons in the ventral horn [20]. However, these axons 
may also decussate again within the spinal cord or sprout bilateral branches [183]. This 
pathway influences both proximal and distal musculature in the arms [179]. Of 
particular interest are those cortical neurons that make monosynaptic connections to 
spinal motor neurons, called cortico-motoneuronal (CM) cells. These unique neurons are 
confined to the caudal portion of primary motor cortex, or “new” M1 [179] and seem to 
exclusively innervate the contralateral limb [202]. The direct and specific influence of 
CM cells is thought to provide increased fractionation of movement, like fine control of 
individual fingers [14, 146, 147]. 

The ventromedial corticospinal tract, which descends through the ventral 
funiculus, terminates bilaterally in the ventromedial intermediate zone [20]. This 
pathway primarily affects axial muscles of the trunk and proximal muscles of the 
shoulder girdle [20, 139]. 

The motor cortex may also exert its influence on movement via the reticulospinal 
tract. Several frontal motor areas in the cortex make connections with the reticular 
nuclei of the pons and medulla [139, 126]. These corticoreticular projections originate 
preferentially in areas rostral to M1, travel both ipsi- and contralaterally, and include 
corticospinal collaterals [36, 126, 146].  

The reticulospinal tract descends within two primary bundles: the medial 
reticulospinal tract located in the ventral funiculus, and the lateral reticulospinal tract 
in the lateral funiculus [139]. The medial division originates in both the pons and 
medulla and descends ipsilaterally, while the lateral division originates in the medulla 
and descends bilaterally with a more dominant ipsilateral component. The reticulospinal 
tract is unique in its bilateral organization and is thought to be the main conduit for 
ipsilateral motor evoked potentials from cortical stimulation [6, 226]. The contralateral 
component of this pathway displays an extensor bias, while the ipsilateral component 
displays a flexor bias [11, 59, 60]. Reticulospinal output is thought to primarily affect 
axial and proximal muscles, although some evidence for grip control exists [11, 143]. It is 
also involved in regulating muscle spindle sensitivity via gamma motor neurons [83], 
potentially playing a role in preparation for movement [27, 168]. 

The vestibulospinal tract shares many features with the reticulospinal tract, and 
they are often grouped together as medially descending brainstem pathways. It 
originates in the vestibular complex of the lower pons and medulla, which receives 
afferent inputs through the vestibular nerve that conveys sensory information regarding 
orientation of the head [203]. Inputs from the cerebellum containing proprioceptive 
information may integrate head and body information in the vestibular nuclei [156, 174]. 
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Fibers from the vestibulospinal tract descend within the ventral funiculus of the spinal 
cord with primarily ipsilateral termination points [139]. It likely plays only a peripheral 
role in control of the arm and seems primarily dedicated to orienting behavior and 
balance. 

Connections between the red nucleus and the spinal cord constitute the 
rubrospinal tract and bear similarity to the features of the corticospinal tract. The 
motor cortex provides input to the red nucleus [138, 148], and functional overlap 
between the corticospinal and rubrospinal pathways has been illustrated by behavioral 
recovery [143] and physiological changes [15] following corticospinal tract lesions. The 
fibers of the rubrospinal tract descend contralaterally through the lateral funiculus, 
terminate in the lateral intermediate zone of the spinal cord, and make some direct 
connections to lower motor neurons [139, 147]. These connections provide more distal 
innervation than the other brainstem pathways, and, by virtue of their connections to 
short propriospinal interneurons and direct connections to lower motor neurons, are 
likely more specific in their influence on movement [139]. Work in cats has suggested 
that rubrospinal activation maintains a flexor bias [109, 139], yet the reverse appears to 
be true in bipedal primates (extensor preference) [97, 161]. The flexor-extensor 
relationship of rubrospinal innervation, however, may be flexible [15].  

For thorough classical reviews of the descending motor pathways, see [139] and 
[147], which have been heavily cited throughout this introduction. 

1.1.2 Interhemispheric communication 
The largest white matter pathway connecting the cerebral hemispheres is the 

corpus callosum, comprised of approximately 200 million fibers in humans [78]. The 
anterior-posterior organization of fibers within the bundle map roughly onto the same 
anterior-posterior arrangement of their cortical targets; projections to frontal brain areas 
occupy the anterior two-thirds (rostrum, genu, and body), with supplementary and 
primary motor areas being located primarily in the anterior body [62, 144, 167]. The 
corpus callosum largely connects homologous regions of each hemisphere, which is most 
pronounced for the supplementary motor area (SMA) [157, 184]. Using retrograde 
labelling to compare transcallosal inputs to the hand areas of M1 and the SMA, Rouiller 
et al., 1994 found approximately ten times as many total transcallosal projections to the 
SMA [184]. Additionally, they found that a greater proportion of SMA inputs came from 
its contralateral homolog (57-63%), whereas the primary source of transcallosal M1 
inputs come from the premotor cortex (PM: 46-52%, M1: 24-38%). This significant 
interconnection of homologous SMA regions across the hemispheres suggests a uniquely 
bilateral role in motor processing [172]. It has therefore been widely implicated in 
bimanual coordination, which will be further discussed in a later section.  



4 
 

The anterior commissure represents another major communication pathway 
between the two hemispheres of the cerebral cortex. However, it primarily connects the 
temporal lobes of the cortex [224], and there is no strongly agreed upon role in motor 
control [88]. While the anterior commissure may not be relevant to discussion in the 
motor domain for subjects with typical neurological development, it is worth noting that 
patients with congenital agenesis of the corpus callosum have enlarged anterior 
commissures relative to patients with acquired callosal damage [196]. This may suggest 
a capacity of the anterior commissure to compensate for lost communication along the 
corpus callosum, provided that this lost communication occurs early in development.  

Interhemispheric integration also appears to happen at the level of the basal 
ganglia. Fibers from frontal motor areas make both ipsilateral and contralateral 
(proceeding through the corpus callosum) connections in the striatum [137, 158]. The 
most pronounced crossed projections originate in the SMA and M1 [158], although 
corticostriatal input coming from all cortical regions is primarily ipsilateral [137]. 
Similarly, pathways connecting the motor cortices to the cerebellum via the nucleus 
reticularis tegmenti pontis provide bilateral input [24, 25, 187], suggesting the 
cerebellum as another candidate location of interhemispheric integration. It is also 
important to note that both the basal ganglia [128], and cerebellum [127] form recurrent 
loops of connectivity with the cortex, and the three structures may function as an 
integrated circuit [19]. 

Lastly, spinal commissural interneurons provide communication across the 
midline within the spinal cord. While typically discussed in terms of lumbar circuitry for 
locomotion, commissural interneurons are also found in the cervical cord [155]. The rich 
circuitry within the spinal cord itself should therefore also be considered in discussion of 
laterality for upper limb control. 

 

1.2 Motor planning and preparation 
We turn our discussion now to the cognitive and neurophysiological bases of motor 

planning for movements of the arm and hand. While we will discuss these topics largely 
within an information processing framework that separates perceptual, cognitive, and 
motor steps, we note that these aspects of motor planning are likely to be highly 
integrated and not strictly serial in nature [50]. Additionally, a focus will continue to be 
placed on laterality of action whenever relevant. 

1.2.1 Preparatory processes and their neurophysiological 
implementation 

In order to interact with our environment, we must perceive the relevant sensory 
information, digest and make judgements about that information, and prepare 
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appropriate motor commands to be deployed for action. These operations are, to some 
degree, performed in advance of movement and take time; if pre-cued with information 
(even partial information) about a required action, a subject can respond more quickly 
once instructed to move [40, 182]. We note, however, that movement initiation and 
movement preparation likely represent independent processes that both determine 
response times, depending on the behavioral context [49, 103]. 

A wide range of neurophysiological changes occurring prior to movement have 
been identified and associated with different preparatory processes. A rich literature 
using transcranial magnetic stimulation (TMS) protocols in human subjects has shown 
that corticomotor excitability is bilaterally modulated prior to cued movements of a 
single hand. Excitability in agonist muscles for the responding hand tend to increase 
during the reaction time following a go-cue, while excitability for the non-responding 
hand has been shown to decrease [149]. This selective excitation/suppression has been 
implicated in response selection. However, in behavioral paradigms where hand 
assignments on each trial are unpredictable and potential actions for each hand require 
the use of homologous muscles, increases in excitability have been reported in the non-
responding hand [31, 159], suggesting that movements with both hands may be prepared 
in parallel to some extent. Studies using instructed-delay tasks have also provided 
evidence that bilateral decreases in excitability during delay periods reflect separate 
processes of selecting a response from candidate options (e.g. which hand to use) and 
withholding that response until the appropriate time of action [74, 75]. 

These observations of broad changes in corticomotor excitability have been 
complemented by higher resolution probes of preparatory activity using single-unit 
recordings in the cortex of non-human primates. While activity related to decision 
making, action selection, and motor preparation are widely distributed across the brain 
[50], we will focus our discussion here on the dorsal premotor cortex (PMd) and M1, 
which have been the most widely studied cortical regions in regards to motor aspects of 
preparation. Both PMd [40, 41, 45, 54, 110, 120, 181, 199, 219] and M1 [12, 45, 54, 121, 
181, 209] neurons show instructed-delay activity related to upcoming movements. There 
is a general anterior-posterior gradient in the response properties across these adjacent 
areas: PMd shows stronger instructed-delay activity than M1, and its activity in general 
reflects more abstract features of behavior [53, 54]. Additionally, PMd activity during 
instructed-delay periods shows similar tuning for movements of both arms before 
becoming more effector-dependent during movement, while M1 activity is strongly 
effector-dependent throughout trial phases [45]. 

Early conceptions of how motor cortical activity relates to preparation tended to 
focus on a “rise-to-threshold” model. In this framework, each movement is associated 
with a particular threshold activation pattern, and inputs to the system describing 
parameters of the necessary action integrate over time to reach this threshold for 
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selecting an appropriate movement [48, 81, 101]. A simple form of this model would 
posit that preparatory activity is a sub-threshold version of what is observed during 
movement. This idea may find support in the TMS literature, where preparatory 
modulation of corticomotor excitability could bring the neural state closer to (or further 
from) this threshold.  

However, tuning properties of motor cortical units often undergo changes between 
preparatory and movement phases of reaching tasks [43, 54, 120], suggesting a 
fundamental difference in their contributions to movement before and after initiation. 
Reaction times do not strictly correlate with the magnitude of preparatory neural 
responses either; more precisely, they seem to depend on proximity to a specific neural 
state [40, 42], such that higher firing rates may actually coincide with longer reaction 
times [40, 181]. Together, these observations have motivated a new perspective on 
preparatory activity, positing that the neural state prior to movement acts as the “initial 
condition” of a dynamical system instantiated in the cortical network [5, 43]. These 
initial conditions, while only abstractly related to the movement itself, seed the 
evolution of patterned activity that generates movement. This idea has quickly become 
the dominant working model of motor preparation in the field. We will discuss it further 
in the following section, along with the broader landscape of dynamical systems theory 
in motor control. 

1.2.2 Dynamical systems theory and “initial conditions” 
Many early studies of the motor cortex were principally interested in what 

features of movement neurons “represented.” Myriad motor parameters have been found 
to correlate with neural activity in the motor cortex during both preparation and 
movement, including reaction time [12, 40, 123, 181], speed of movement [41, 163], 
position, velocity, or direction of movement [41, 94, 95, 118, 163, 193, 218], and joint 
forces or muscle activity [39, 82, 118, 193]. In the prescient work of Fetz, 1992, it was 
suggested that chasing explicit representations of movement within the activation 
profiles of individual units might in fact be a red herring [86]. Rather, the contribution 
of each neuron may only be truly understood in the context of its interactions with the 
entire population. By virtue of existing within a densely interconnected network, units 
may display classical correlations with movement parameters, reflect complex or 
abstract features of the action, or seem entirely uninvolved when viewed in isolation, yet 
all contribute to the generation of population-level activity patterns that control 
movement.  

In accord with this notion, the representational perspective has largely been 
replaced in recent years with one that views the cortical network as a dynamical system 
that generates time-varying patterns of activity for controlling movement. Convergent 
ideas have considered both the dynamics of behavior itself , e.g. feedback control [192, 
212], as well as the dynamics inherent to the anatomy of the cortical network [44]. 



7 
 
Neocortical circuits feature dense, highly recurrent connectivity [61]. This, in principle, 
results in two primary features that are of particular importance for the topic at hand 
[200]. First, activity will tend to be distributed across the entire network, yet likely be 
constrained to a lower-dimensional manifold governed by the functional connectivity 
and covariance of the population. Second, recurrence in the network will produce 
temporal dynamics that influence the evolution of the neural state. Under this theory, 
one must therefore consider neural activity not only in terms of its instantaneous 
contribution to behavior, but also in terms of its contribution to the evolution of the 
neural state.  

The role of preparatory activity has been central to dynamical system theory of 
motor cortical function. As previously mentioned, preparatory activity is thought to act 
as an initial state for seeding the dynamics that are engaged during movement [5, 43]. 
The low-dimensional subspace in which this preparatory activity lies is distinct from the 
subspace containing movement activity, ostensibly making it null to the transformation 
that yields movement [80, 122]. Importantly, despite reports of the two activity spaces 
being orthogonal, preparatory activity is still strongly associated with subsequent 
movement responses [80], which is necessary for it to play a role in seeding movement 
dynamics. The neural state may evolve within the preparatory space towards an optimal 
initial position while awaiting some trigger for executing the movement. This initiation 
trigger likely represents a process independent of establishing the preparatory state [49, 
103, 207]. Strong timing-related components of population responses in the motor cortex 
may reflect such a trigger [123]. Disruption of activity in premotor regions of the cortex 
late during preparation causes increased reaction times in monkey reaching [42] and 
ipsilateral response biases in rodent licking tasks [151]. Interestingly, unilateral 
inhibition early during planning has been shown to have very little effect on upcoming 
movements, yet if applied bilaterally, results in motor deficits [151]. This suggests that 
the networks involved in setting the preparatory state may be bilaterally distributed. 

We end this section on a technical note. Neural network models are important 
tools that complement traditional neurophysiological recordings for investigating the 
dynamic behavior of neural signals [86]. By training recurrent networks to perform a 
behavioral task, one can identify common motifs in the network solution and compare 
these back with observed responses in their biological analogs [85, 207]. This has led to a 
more integrative and high-level pursuit of understanding activity in the motor cortex. 
For example, strong rotational components in population signals identified during 
movement [44] were recapitulated in a neural network model only when it was given 
incentive to find simple, i.e. highly regularized, solutions for producing similar output 
behavior [207]. This may suggest that rotational dynamics reflect the brain’s pursuit of 
a simple solution. Thus, one may assign a theoretical “why” to otherwise puzzling 
experimental observations using such an approach. Importantly, this may operate in the 
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other direction as well: theory developed in network models may motivate 
experimentation. For more valuable discussion on neural population dynamics as they 
pertain to general computations performed in the brain, see [217]. 

 

1.3 Bilateral interactions in behavior and cortical 
neural activity 

Most of the actions we perform with our arms require the engagement and 
coordination of both sides: an artist holding their sketchpad with one hand and drawing 
with the other, a pianist performing interleaved or simultaneous left and right hand key 
presses, a basketball player raising the ball with both hands in preparation to shoot, 
then removing their support hand just as they begin to flick the wrist on their shooting 
hand. Given the repertoire of normal behavior, it is no surprise that the nervous system 
has evolved to facilitate these kinds of bimanual interactions. Here, we first discuss 
behavioral observations of bimanual coordination and interference, as well as the 
insights obtained from comparing those features in certain patient populations. 
Furthermore, we survey the neurophysiology literature surrounding bilateral signals in 
the motor cortex and their relationship to unimanual and bimanual behavior. Finally, 
we discuss the translational relevance of these observations for informing 
neurorehabilitation approaches and developing assistive neurotechnologies. 

1.3.1 Spatiotemporal constraints on bimanual behavior 
Coordination of motor behavior happens at many levels, including 

agonist/antagonist muscle groups, synergistic movement of the joints along a single 
limb, and cooperative use of the two arms [68]. The unifying principle at each scale is 
that the overarching goal of behavior does not have any particular requirement on the 
individual components, but rather requires some correlational pattern across them. The 
general idea of divorcing action goals from their implementation is often referred to as 
“motor equivalence” [141] and has existed for nearly a century. Goal-directed actions 
may therefore be thought of in terms of variability that affects the intended outcome 
and variability that does not, termed the “controlled” and “uncontrolled” manifolds, 
respectively [188]. As one might expect from the name, variability tends to be greater 
along the uncontrolled manifold in well-coordinated actions. For example, joint angles 
tend to be variable across repeated reaching movements while the endpoint trajectories 
remain relatively stereotyped in comparison [102]. Stochastic optimal feedback control 
policies have been proposed that provide a formal computational and theoretic 
framework for interpreting these observations [212]. 

At present, we are chiefly concerned with coordination across the two arms or 
hands. Early investigations of bimanual behavior revealed a tendency to start and stop 
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movements of the two arms in synchrony, even when they move different distances [129, 
130] or with different applied loads [195]. Tight synchronization of component sub-tasks 
is present in more complex bimanual actions, such as opening a drawer with one hand 
to retrieve an item with the other [124, 173]. Temporal constraints on bimanual 
behavior have also been revealed in repetitive movements, such as tapping the fingers at 
certain beats or tracing circles. Relative frequencies that are related by simple harmonics 
(e.g. 2Hz finger tapping with the left hand and 1Hz tapping with the right) are much 
easier to produce than those with more complicated structure [135]. Phase relationships 
are also pertinent. Subjects may produce stable anti-phase finger tapping or wrist 
flexion-extension movements at low frequencies, but as the frequency of movement 
increases, there reaches a point where a spontaneous transition to in-phase (co-
activation of homologous muscles) movement occurs [131]. This interaction has been 
modeled using coupled dynamical systems, namely the seminal “Haken-Kelso-Bunz”, or 
“HKB”, model [104], which was among the first modelling endeavors to draw on the 
formalism of dynamical systems for understanding coordinated behavior. A “bimanual 
advantage” has also been observed during repetitive bimanual behavior, whereby the 
variability in cycle durations for a single hand is reduced when performing an action 
bimanually as compared to unimanually [107]. Clearly, the mechanisms that control 
timing of movement for the two arms are either shared or highly interactive.  

In addition to these temporal constraints, movements of the two arms exhibit 
strong spatial interactions as well. For example, interaction of feed-forward motor 
commands has been demonstrated by placing an obstacle along the path of only one 
hand in a bimanual reaching task, which alters the trajectories for both arm movements 
[130]. Similarly, attempting to draw a circle with one hand while drawing a line with the 
other results in both drawings looking like something in-between a circle and a line [87]. 
Interactions in feedback control also exist and have revealed additional nuance. 
Perturbations randomly applied to a single arm elicit corrective responses in only the 
perturbed arm when a task entails two independent goals, yet identical perturbations 
cause bilateral corrective responses when the task requires integrated control from the 
two arms [66]. During integrated control, these corrective responses also adapt 
appropriately to changes in the required dynamics relating the two arms [67]. In a 
similar vein, certain spatial interactions have demonstrated sensitivity to the method of 
action cueing, i.e. symbolic or direct [63, 64], suggesting that they may involve higher 
level cognitive processes like response selection [116] or interactions in abstract 
perceptual space [160]. Collectively, these observations have led to an understanding 
that the two arms are controlled as a unified plant with somewhat flexible and context-
dependent coupling.  

Several excellent reviews of the cognitive and behavioral literature on bimanual 
coordination exist; for more reading, please see [68, 116, 208, 221]. 
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1.3.2 Insights on bimanual control from patient populations 

Psychophysics experiments have helped characterize the critical perceptual, 
cognitive, and motor aspects of bimanual behavior, allowing researchers to then look 
inward at the anatomy and physiology that implements them. One highly influential 
domain of research has been with patients that lack a corpus callosum, either from 
congenital agenesis or surgical transection. While spatial interactions in bimanual 
behavior are largely abolished in the absence of the corpus callosum [79, 88, 132], timing 
effects tend to be maintained, such as synchronization tendencies in discrete movements 
[114, 132, 196, 213] and the previously mentioned “bimanual advantage” [114]. Together, 
these results suggest that communication between cortical hemispheres subserves spatial 
interactions of the two arms, insofar as they can be dissociated from temporal aspects. 
Interestingly, certain well-practiced tasks that require spatial interaction of the two 
hands are relatively unaffected by callosotomy [90, 153, 176], yet there is a striking 
inability to learn new coordinative tasks [90, 175, 176]. These observations lend evidence 
that interhemispheric interactions in the cortex may be most critically involved in 
learning. 

The cerebellum is another structure that has been broadly implicated in 
coordination, including the bimanual variety. There is evidence that the cerebellum 
supports temporal event structures for coordination [115, 116]. Patients with cerebellar 
lesions have shown desynchronization in bimanual behavior relative to healthy subjects 
[65, 194] yet maintain a “bimanual advantage” [89]. Cerebellar patients also show a 
deficit in adapting motor responses that require control of one arm to anticipate actions 
of the other [65], suggesting a role in learning/adaptation. Patients with Parkinson’s 
Disease (PD) reveal involvement of the basal ganglia as well. PD patients show 
decreased stability of anti-phase bimanual movement patterns compared to healthy 
subjects [32, 117], thus extending the classical role of the basal ganglia in timing to 
include temporal aspects of bimanual behavior. 

1.3.3 Bilateral signals in the motor cortex 
A classical understanding of the motor cortex assumes that one side of the brain 

controls the opposite side of the body. Indeed, modulation of single-unit firing rates 
tends to be stronger for the contralateral arm within the SMA [125, 133, 210], premotor 
[45, 71, 125], and primary motor cortices [8, 45, 71, 72, 108, 125, 133, 204, 210]. This is 
in broad agreement with the predominantly contralateral effects of cortical stroke [105], 
lesion [20], and stimulation [6, 162, 170, 171].  

The first frontal motor area to be strongly implicated in bilateral control, and 
still the most prominent, was the SMA. The contralateral bias firmly established in M1 
tends to be weaker, or even absent, in the SMA [21, 72, 125, 133, 210]. The notion that 
the SMA serves a uniquely bilateral function has been reinforced by observed deficits in 
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bimanual coordination following SMA lesions [23], extensive interconnection across the 
corpus callosum [184], and the presence of ipsilateral evoked responses following 
stimulation [162, 171]. As compared to M1, greater bilaterality in premotor cortex 
signals has also been noted [45, 210]. Our conversation that follows will focus primarily 
on PMd and M1.  

Despite a largely lateralized organization that should not be overlooked, interest 
in the involvement of M1 during ipsilateral and bimanual movements has grown in 
recent years. The primary motor cortex exhibits responses to both ipsi- and 
contralateral arm movements during preparation [45, 71] and execution [8, 45, 71, 72, 
92, 108, 125, 154, 204, 210]. Frequently, responses to both arms are observed even 
within the same neuron. Importantly, ipsilateral activity is weakly present during 
movements of the hand and fingers as well [69, 154, 210, 215]. The finding that such 
distal movements correlate with ipsilateral activity in the motor cortex is notable given 
that the known anatomical pathways connecting the motor cortex to motor neurons in 
the ipsilateral spinal cord involve primarily proximal musculature [20].  

 

 

 
Figure 1.1 Contralateral and Ipsilateral decoding of arm movements. Kinematics 
during movements of a single arm (black lines) plotted with their decoded predictions using 
spiking activity in M1 of either the contralateral (red) or ipsilateral (green) hemisphere. 
Included with permission from [92]. 
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Considering that the canonical role of the motor cortex is to control the 
contralateral body, what is the function of ipsilateral signals? The simplest hypothesis is 
that ipsilateral activity provides an independent control signal to operate alongside 
contralateral drive. Neurons that modulate exclusively during ipsilateral arm movements 
have been reported but are uncommon in both PMd and M1 [45, 71, 72, 108, 154]. 
Rather, these ipsilateral signals tend to be contained within neurons that are modulated 
for both arms. During preparation ipsilateral responses in PMd neurons show weaker 
magnitude but similar tuning to contralateral responses, while during movement tuning 
profiles become more distinct for the two arms [45]. Correlations between the tuning for 
ipsilateral and contralateral arm movements in M1 units have been reported but tend to 
be weak or absent [45, 108, 204]. However, strong correlations in bilateral activation 
patterns have been observed in more macro-level recordings such as functional magnetic 
resonance imaging (fMRI) [69], and electrocorticography (ECoG) [30]. Given the 
observations that ipsilateral activity tends to occur in units that are modulated for both 
arms, yet its relationship to behavior often differs from contralateral activation, a more 
intricate mechanism of signal independence has been recently proposed. Inspired by 
reports of orthogonal preparatory and movement subspaces [80], Ames and Churchland, 
2019 and Heming et al., 2019 reported, in parallel, that bilateral arm signals could be 
separated at the level of the population using linear methods [8, 108]. Even if signals for 
the two arms are completely mixed within the same neurons, unique covariance 
structure specific to each limb may allow the population-level signals to orthogonalize. 
While this doesn’t suggest any specific functional role for ipsilateral signals, it poses a 
new method of independence in the signal statistics that has functional implications. 

Another hypothesis is that the brain prepares in parallel both left and right arm 
movements for accomplishing an action goal, despite a single side ultimately being 
selected for execution. Activity related to each potential action would still originate in 
the contralateral hemisphere. In this way, contralateral control would remain an apt 
descriptor of the system despite bilateral activity. Prior to action selection, activity 
patterns related to multiple potential actions have been simultaneously observed in 
cortical motor areas [47, 50, 111]. Similarly, signals may reflect effector-independent 
aspects of the computations necessary for producing movement. A related concept of 
“compositional coding” has recently been put forward by Willet et al., 2020 [223]. In this 
study, population-level signals in nominal hand areas of human premotor cortex were 
found to contain whole-body motor information. Furthermore, these signals could be 
separated into components representing effector-independent information about the 
movement and components representing which effector carried out the movement (e.g. 
left arm, right arm, left leg). However, the inconsistent correlations in tuning profiles 
between ipsi- and contralateral arm movements mentioned in the previous paragraph 
would argue against these hypotheses, at least in M1. 
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The presence of bilateral activity in the motor cortices may also be related to 
coordination of the two limbs. In an influential study by Donchin et al., 1998, it was 
shown that M1 and SMA neurons both displayed tuning to unique combinations of 
bimanual reaches [72]. Similar patterns in caudal premotor cortex have been reported in 
imaging studies with bimanual finger presses [69]. Activity supporting bimanual 
coordination may therefore be less constrained to SMA than once thought, and in fact 
be distributed across the frontal motor regions [72, 125, 204]. In the context of bimanual 
coordination, ipsilateral activity could provide state information or state-dependent 
modulation necessary for grooming contralateral drive and promoting cooperation 
between the limbs. Due to the largely proximal innervation patterns of ipsilateral and 
bilateral descending motor pathways [20], ipsilateral activity may also reflect postural 
stabilization relevant to reaches of both arms. This postural account would also predict 
unique interactions for simultaneous bimanual arm movements, as the stabilizing forces 
themselves would be unique. 

As a final alternative, ipsilateral signals may reflect computations that span the 
hemispheres without being directly involved in movement production [8, 151]. Rodent 
work has shown that motor cortical neurons with intracortical projections exhibit 
reduced contralateral bias as compared to those with descending output [150, 201]. 
Furthermore, photoinhibition of not one, but both hemispheres during preparation was 
required to perturb subsequent responses (note that this was a directional licking task, 
yet it shares many aspects of laterality in arm movements) [151]. Together, these results 
implicate specific sub-populations of bilaterally distributed neurons in supporting 
preparatory network activity and dynamics. Such interpretations interface well with the 
dynamical systems theory presented earlier in this introduction. 

1.3.4 Implications for neurorehabilitation and assistive 
neurotechnologies 

Interest in characterizing bilateral motor cortical signals is largely rooted in its 
importance for the development of neurorehabilitation practices and assistive 
neurotechnologies for patients with motor impairments. The case of hemispheric stroke 
may be most relevant, where damage on one side of the brain affects output along 
corticofugal motor pathways and produces lateralized deficits in movement [105]. 
Interactions between the perilesional and contralesional cortex appear critical in 
determining functional recovery after stroke [35, 58, 100, 112, 164, 214]; however, a 
thorough mechanistic understanding of these interactions remains elusive. The 
compensatory capabilities of unaffected pathways originating in the contralesional 
hemisphere have also been studied [20, 51, 52, 58, 186]. Although their role in 
spontaneous recovery appears limited, more study is necessary to understand when these 
pathways might be beneficially involved in recovery and why. The ability of clinicians to 
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implement appropriate therapeutic approaches will therefore depend upon further 
investigation of the natural and pathological interactions of the two hemispheres.  

Together with informing existing therapies, understanding the natural roles (and 
plastic capabilities) of bilateral signals will benefit the development of assistive 
technologies like brain-machine interfaces (BMI’s). For example, if function is lost from 
one hemisphere following stroke, might the intact hemisphere be capable of producing 
two independent signals: one for continued control of the non-paretic limb, and the 
other to restore function of the paretic limb via a BMI? Biomimetic decoders seeded on 
ipsilateral movement activity have provided proof-of-principle that a single hemisphere 
contains signals for both arms that are rich enough for neuroprosthetic control [92]. 
Indeed, non-invasive recordings from the contralesional cortex in stroke patients 
(sometimes in tandem with the perilesional cortex) have been successfully implemented 
in BMI control [18, 26, 28, 29, 166]. These setups are often rehabilitative in nature and 
intended for temporary use, controlling some aspect of existing therapeutic approaches 
such as a robotic orthosis [91, 166] or functional electrical stimulation of paretic muscles 
(FES) [18]. One could also imagine a more traditional application of BMI, whereby 
chronic augmentation or replacement of function could be pursued in cases of extreme 
motor deficits [28]. The same concerns about independence and interaction of bilateral 
signals for these types of BMI would also be relevant for bimanual BMI’s in tetraplegic 
patients. Currently, only one known study has demonstrated the use of a BMI with 
bimanual control in the published literature [113].  

There is great promise in these neurorehabilitative approaches for restoring 
mobility and independence to large patient populations, yet it is clear that a stronger 
understanding of the basic neuroscience involved will be crucial for maximizing their 
potential. It is this human-centered concern that motivates the investigation of bilateral 
motor cortical signals described in this thesis. 

  



15 
 
 

 

 

 

Chapter 2 

Hybrid dedicated and distributed 
coding of bilateral arm signals 
 

 

2.1    Introduction 
In the primate cortex, direct control of arm movement is primarily mediated by 

contralateral descending projections [20, 142, 202]. However, numerous studies have 
observed activity changes in the motor cortex during movements of the ipsilateral arm 
[8, 45, 72, 92, 108, 110, 154, 204] and hand [69, 210, 215]. The functional role of this 
ipsilateral activity has been the subject of considerable debate, with hypotheses ranging 
from a role in postural support, bimanual coordination, or an extrapyramidal control 
signal for unimanual movements.  

Neurons in the primate dorsal premotor cortex (PMd) play a critical role in 
motor preparation [45, 110, 199, 210, 219]. Interestingly, their response properties and 
degree of laterality appear to change across the course of preparation. For example, 
within PMd, individual units exhibit a transition from effector-independent to effector-
dependent encoding between preparatory and execution phases of reaching. In contrast, 
units in primary motor cortex (M1) mainly become active during movement itself and 
show a pronounced contralateral bias [45]. This suggests a transition from abstract 
planning to explicit specification of motor output parameters in the signals of individual 
neurons. A similar transition has been shown in the activation of different cell-types 
within rodent motor areas [150, 201]. These studies have found that neurons with 
intracortical projections show little lateral bias, particularly during pre-movement 
phases. In contrast, neurons with descending output display much stronger laterality, 
especially just before and during movement. This adds yet another level of granularity 
in the discussion of lateralized motor function. Collectively, these single-unit studies 
support a notion that there exist two distinct components within the motor cortex: one 
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that is bilateral and likely involved in abstract processing, and another that is dedicated 
to a single side of the body for execution.  

The classical perspectives outlined above have been revisited in studies that focus 
on population-level analysis, considering instead how computations might be reflected in 
the way the network coordinates activity. Low-dimensional representations of large-scale 
neural recordings can be used to characterize these network patterns, revealing changes 
in covariance structure across behavioral settings that are not evident when looking at 
single neurons in isolation [55]. Ostensibly, these changes reflect reorganization of the 
population as it engages in different computational processes. Using these methods, pre-
movement activity has been shown to evolve within an “output-null” subspace towards 
an optimal initial population state [43, 80, 122]. This initial state is advantageously 
positioned for engaging the internal dynamics of the network to produce patterned 
activity in an “output-potent” subspace for driving movement [44, 200, 207]. There is 
some evidence that bilateral activity may support these preparatory and dynamic 
properties [151]. Similar to the output-null and output-potent subspaces, arm-specific 
subspaces have also been observed in M1 during rhythmic movements [8] and in 
response to joint perturbations [108]. It remains unclear precisely what organizational 
principles produce these arm-specific subspaces, whether signals are fully separated at 
the level of the population, and how such properties develop across preparation and 
movement.  

There are two fundamental and mutually non-exclusive ways that population 
signals may specify the selected arm across preparation and movement. (1) Signals may 
consolidate within dedicated sub-populations for each arm (i.e., within hemispheres, 
brain areas, or cell-types). (2) Signals for each arm may be distributed across the same 
units yet maintain unique covariance structure that separates them along arm-specific 
neural dimensions. Importantly, either of these architectures provides a way for 
downstream targets to discriminate signals and also yields the mathematical result of 
divergent subspaces. The first method is necessarily true: contralateral biases have been 
consistently observed during movement and, to a lesser extent, during preparation as 
well. Such lateral biases will trivially orthogonalize arm signals. The question is whether 
the second method is also true. Either signals that are mixed within units become 
separated (arm-specific) in the population readout, or they exist within a space where 
the same patterns of activity are involved in computations relevant to both arms. This 
is a vital distinction to make, as it constrains the possible roles that bilateral activity 
can play at each stage of processing and may point to an important heterogeneity in the 
population statistics.  

In the present study, we recorded large populations of single-units in PMd and 
M1 bilaterally while monkeys performed an instructed-delay unimanual reaching task. 
As activity emerged during preparation, there was a tendency for units with stronger 
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arm preference to be more highly modulated, therefore representing a larger proportion 
of the population variance. As a result, the signals for each arm were largely segregated, 
primarily within contralateral PMd. During the transition to movement, M1 became 
more prominently involved and the signals for each arm became increasingly segregated. 
This unit-level segregation caused the subspaces corresponding to each arm to diverge 
across the trial. However, we did observe target-specific information that was mixed 
within single-units, indicating incomplete separation of arm signals. Importantly, the 
subspace containing this information did not segregate signals for the two arms at any 
stage. Taken together, the results point to two primary components in the population 
response: (1) A dedicated component that develops across preparation, reaches a 
maximum during movement, and mirrors the lateralized anatomy of corticospinal 
output with its contralateral bias. (2) A distributed component that represents far less 
variance, particularly during movement, and provides a space in which bilateral arm 
signals may easily interact. 

 

2.2    Results 
2.2.1    Behavior 

Two macaque monkeys were trained to perform an instructed-delay reaching task 
in 3-D space (Figure 2.1A). Reaching movements were freely performed in an open area 
while kinematics were recorded using optical motion tracking. Visual feedback of 
endpoint position and task cues were provided through a virtual 3-D display. Each trial 
had three phases (Figure 2.1B). For the Rest phase, the monkey placed both hands in 
start targets positioned near the torso and remained still for 500 ms. For the Instruct 
phase, an instructional cue appeared at one of six target locations. The color of the cue 
specified the required hand for the forthcoming trial. The monkey was required to keep 
both hands in the rest positions while the cue remained visible for a variable interval 
(500 – 1500 ms). The Move phase was initiated when the start position marker for the 
reaching hand disappeared and the cue at the target location increased in size, which 
signaled the animal to reach. The monkey received a juice reward if it accurately 
reached the target and maintained the final position for 250 ms, while keeping the non-
cued hand at its start position for the duration of the trial. 300ms representative 
windows from each phase were used in data analysis. Trials were blocked for each arm, 
with each block consisting of 2 trials per target in a randomized order (i.e. alternating 2 
trials per target for the left arm, then 2 trials per target for the right; Figure 2.1C). 

Average success rates were above 95% for both hands in both monkeys. Overall, 
reaction times averaged 308 ms for monkey O and 333 ms for monkey W. Distributions 
of reaction times for each hand/target combination are displayed in Figure 2.1D, which 
were fairly consistent across targets. Reach biomechanics varied across the workspace,  
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Figure 2.1. Behavior. (A) Monkeys reached to one of six virtual targets, indicated by grey 
spheres in the cartoon. During the task these would be invisible until one appeared to instruct 
the reach. (B) Trials consisted of 3 phases. Each trial was initiated by placing both hands in 
start targets and remaining still for 500ms (Rest phase). A small target then appeared at the 
location of the future reach in a color that indicated which hand to use. The monkey remained 
still during cue presentation for 0.5-1.5s (Instruct phase). The start target for the reaching hand 
then disappeared while the reach target enlarged to cue movement (Move phase). (C) Hand 
assignments followed a blocked schedule. (D) Distributions of reaction times (top row) and reach 
durations (bottom row) for each monkey, hand, and target. Left hand reaches in yellow, right in 
purple. Horizontal black bars show means, red bars show medians. (E) Speed profiles during 
left- or right-hand trials. Both reaching and stationary hands are plotted in each, although 
stationary speeds are near 0 and hardly visible. Vertical red lines indicate threshold crossing to 
mark movement onset. Monkey O main, monkey W inset. Mean +/- standard deviation. 
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resulting in slightly different reach durations across targets (Figure 2.1D). In terms of 
kinematics, the initial feed-forward portions of reaches were smooth and stereotyped 
(Figure 2.1E). There was a very slight but significant increase in the speed of the non-
reaching hand between Rest (mean – monkey O: 1.1 mm/s; monkey W: 2.9 mm/s) and 
Move (mean – monkey O: 3.6 mm/s; monkey W: 7.6 mm/s) phases of the task 
(permutation test – monkey O: p=1.0e-4; monkey W: p=1.0e-4). We note that the task 
was designed to mimic natural reaching without the use of physical restraints. As such, 
we assume the small movements in the non-reaching arm are part of the normal 
behavioral repertoire occurring during natural unimanual reaching. Nonetheless, we will 
address any reasonable impacts these small movements may have in our neural analyses. 

2.2.2    Arm-dedicated units emerge across task phases while the      
overall distribution remains relatively arm-neutral 

We recorded 433 and 113 single-units in the caudal aspect of dorsal premotor 
cortex (PMd) in monkeys O and W, respectively, and 331 and 289 single-units in 
primary motor cortex (M1) (Figure 2.2). Since both arms were used in the behavior, we 
can evaluate the ipsi- and contralateral responses in each unit. Units were pooled across 
hemispheres in the analysis, with contralateral summaries reflecting the collection of 
responses during trials performed with the contralateral arm, and vice-versa for trials 
performed with the ipsilateral arm. PMd and M1 units were analyzed separately. Firing 
rates were soft-normalized using the Rest phase mean and standard deviation, and 
modulation strength is expressed as  

the mean squared value of these standard scores within the window of interest. This 
modulation metric is essentially variance, and may be thought of as variance for most 
purposes. 

We first analyzed single units to determine the degree of modulation during the 
Instruct and Move phases of the task (Figure 2.3). Following instruction, many units in 
both PMd and M1 became significantly modulated for movements of one or both arms 
(Table S2.1). Units in PMd were, on average, more strongly modulated during the 
Instruct period than those in M1 (Figure 2.4A; permutation test – monkey O: p=0.012; 
monkey W: p=3.2e-3). This relationship reversed following movement, with average 
modulation in M1 becoming stronger than PMd (Figure 2.4A; permutation test – 
monkey O: p=2.6e-3; monkey W: p=0.012). These results are in line with the view that 
PMd plays a privileged role in motor preparation. The distributions of modulation 
values were heavy-tailed and contained some notably extreme values; however, we chose 
not to apply any outlier criteria. Controls are performed later in our population-level 
analyses to ensure that results are representative of trends across the entire population 
rather than a few extreme units. 



20 
 

 
Figure 2.2. Neural recordings. (A) MRI-based renderings of the skull and target brain 
regions. Top panel shows the arrangement of the two chambers. Two bottom rows show 
segmented brain regions within the cranial window of each chamber, for each monkey. Region 
boundaries were assigned using Paxinos et al., 2000 [169]. Red - somatosensory cortex; blue - 
primary motor cortex (M1); pink - dorsal premotor cortex (PMd); green - ventral premotor 
cortex; white - frontal eye field. CS - central sulcus; SPCD - superior pre-central dimple; ArS - 
arcuate sulcus. Grey ellipses indicate regions sampled by recordings. (B) Interlaminar recordings 
were obtained using V- and S- probes (Plexon, Inc., Dallas, TX) with 24-32 electrodes aligned 
perpendicular to the cortical surface. Example waveforms were all simultaneously recorded from 
a single probe. (C) MRI coronal slice, monkey O. 3mm black bar is approximately equal to the 
distance spanned by electrodes on 32-channel probes. Same landmark labels as in (A).  
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We next considered the laterality of each unit by quantifying the relative 
modulation observed during ipsi- and contralateral trials. We expressed each unit’s arm 
preference on a scale from -1 to 1, with 1 indicating exclusive contralateral modulation 
and -1 indicating exclusive ipsilateral modulation (Figure 2.4B). Although the cue for 
the forthcoming trial had yet to be presented during the Rest phase, arm selection could 
be implied from the blocked task structure (Figure 2.1C). However, except for a very 
small effect in PMd of monkey O (one-sample t-test – µRest=0.06, p=9.7e-5), there was 
no significant contralateral bias observed during the Rest phase in either brain area for 
both monkeys. Despite the lack of contralateral bias, both monkeys entered arm-specific 
population states during the Rest phase, which was more pronounced in PMd 
populations (mean difference between left and right arm firing rates – monkey O PMd: 
1.85Hz, M1: 1.64Hz; monkey W PMd: 1.33Hz, M1: 0.98Hz; Figure 2.4C). For trials in 
which the same hand was repeated from the previous trial only, it was possible to 
classify the hand for the forthcoming movement from the population activity (Figure 
S2.1).  

 

Figure 2.3. Firing rate traces of example single-units. Trial-averaged firing rates for 3 
example single-units, all from the left hemisphere. Each color represents a different target 
according to the color-coding in the top right. Mean +/- SEM. (A) An M1 unit exclusively 
modulated during ipsilateral movements. (B) A PMd unit with both Instruct and Move phase 
modulation for both arms. (C) A PMd unit with modest contralateral modulation during the 
Instruct phase and strong contralateral modulation during movement, but no modulation on 
ipsilateral trials. 
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The emergence of laterality after the onset of the instruction cue mirrored the 
emergence of general unit modulation: A contralateral bias was present in PMd during 
the Instruct phase and then became present in both PMd and M1 during movement. 
Mean arm preference in PMd showed a modest but significant bias in the contralateral 
direction during the Instruct phase (one-sample t-test – monkey O: µInstruct=0.11, 
p=7.0e-8; monkey W: µInstruct=0.16, p=1.8e-4) and showed no significant change 
between Instruct and Move (paired-sample t-test – monkey O: µMove=0.15, p=0.11; 
monkey W: µMove=0.13, p=0.65). Mean arm preference in M1 did not show a significant 
contralateral bias until the Move phase (one-sample t-test – monkey O: µInstruct=0.03, 
p=0.13; µMove=0.07, p=0.013; monkey W: µInstruct=0.02, p=0.31; µMove=0.20, p=5.1e-
11). 

While shifts in the means were modest, changes in arm preference across phases 
were most evident in the tails of the distribution, corresponding to units that strongly 
preferred one arm or the other (Figure 2.4C). These arm-dedicated units typically 
preferred the contralateral arm, demonstrated by increased occupancy in the 
contralateral tails of the arm preference distributions; however, a small proportion of the 
population was exclusively modulated during ipsilateral trials as well (Figure 2.4B). 
Despite much of the population remaining arm-neutral (arm preference near 0) or 
preferring the ipsilateral arm, the emergence of strongly contra-dedicated units was 
sufficient to drive contralateral shifts in the population mean. In summary, despite 
much of the population remaining arm-neutral, an increasing number of highly arm-
dedicated units emerged with each task phase, primarily favoring the contralateral arm. 

2.2.3    Modulation preferentially occurs within arm-dedicated 
units 

There are two primary means by which population signals can specify the 
selected arm at each phase. (1) The population may maintain unique covariance 
structure for each arm that separates signals along different neural dimensions, even if 
the constituent units are equally modulated for both arms. (2) Arm-dedicated units may 
dominate the population response, thereby representing the majority of population 
variance in dedicated sub-populations. The latter possibility is investigated over the 
following two sections. First, we consider whether modulation preferentially occurs in 
units that are strongly dedicated to one arm or the other.  

We performed a regression analysis to quantify the relationship between strength 
of arm preference and modulation for the preferred arm. Importantly, arm preference 
and modulation were calculated from independent datasets to prevent artificial linkage 
between the two measures due to sampling noise. A slope of 1 corresponds to an order of 
magnitude increase in modulation, on average, when comparing fully arm-neutral units 
with fully arm-dedicated units. As seen in Figure 2.5A, the slopes are initially near zero  
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Figure 2.4. An increasing number of arm-dedicated units emerge with each task 
phase. (A) Cumulative distribution of single-unit modulation during each phase, arm. Left 
panel PMd, right panel M1. Large values cut off by plot: monkey O Contra Move [134(PMd), 
133(PMd), 104(PMd)], Ipsi Move [234(M1), 181(M1), 130(M1)]; monkey W Contra Move 
[125(M1)]. (B) Cumulative distribution of arm preferences during each phase. Top panel PMd, 
bottom panel M1. Negative values are ipsi-preferring, positive values are contra-preferring. 
Circles and vertical dashed lines mark the upper quartile of each distribution (C) Same as (B), 
but using the absolute value of arm preference to indicate arm dedication, independent of 
hemisphere. For all plots: monkey O main, monkey W inset. 
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and then become positive over time. To quantify these changes, we used a multi-
factorial permutation approach to test for effects of Area (PMd, M1), Phase (Rest, 
Instruct, Move), and Preferred Arm (Ipsi, Contra) on the population slopes. 

We found a main effect of Phase in both animals (monkey O: p=1.0e-4, monkey 
W: p=1.0e-4): a positive correlation between arm preference and modulation strength 
emerged and strengthened across task phases (Figure 2.5A-B). By the Move phase, there 
was approximately a ten-fold increase in the modulation strength of units with an 
absolute arm preference of 1 (completed dedicated) relative to units with an arm 
preference near 0 (balanced modulation). Since PMd displayed greater modulation than 
M1 during preparation but not movement, we tested whether the two areas had 
differing slopes in each phase independently. We found a significant simple effect of 
Area during the Instruct phase (monkey O: p=3.0e-4; monkey W: p=6.3e-3) but not the 
Move phase (monkey O: p=0.13; monkey W: p=0.91). Thus, the relationship was more 
prominent within PMd prior to movement, while the two areas became roughly 
equivalent following movement initiation. This was confirmed with a test for 2x2 
interaction (monkey O: p=0.025; monkey W: p=9.9e-3). Additionally, we analyzed the 
relationship between arm preference and modulation for the non-preferred arm to 
confirm that increased arm preference is associated selectively with increased modulation 
for the preferred arm (Figure S2.2). No significant positive relationships were observed 
in either monkey, either brain area, or any task phase; therefore, greater arm preference 
is associated with selective increases in modulation for a single arm.  

Given the overall contralateral bias, we further tested whether this relationship 
held for both contra- and ipsi-preferring units. For the contra-preferring units, there was 
a significant simple effect of Phase (monkey O: p=1.0e-4; monkey W: p=1.0e-4). For the 
ipsi-preferring units, the Phase effect was significant for monkey O (p=1.0e-4), but only 
trended in this direction for monkey W (p=0.087), perhaps due to the lesser amount of 
ipsilateral modulation in monkey W. Slopes were generally steeper for contra-preferring 
units. The simple effect of Preferred Arm was significant during the Instruct phase for 
both monkeys (monkey O: p=0.033; monkey W: p=1.0e-4), and significant for Monkey 
W during the Move phase (monkey O: p=0.53, monkey W: p=1.0e-4). Given that there 
are also more contra-dedicated units than ipsi-dedicated units, these results suggest that 
a larger proportion of the contralateral signal exists within dedicated sub-populations 
compared to the ipsilateral signal. We directly test this conjecture in the following 
section where we consider population-level implications of these results. 

2.2.4    The population signal is largely confined to arm-specific 
sub-populations 

The preceding analyses establish that there is an increase across task phases in 
the proportion of units that are strongly dedicated to a single arm, and that those units 
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Figure 2.5. Neural activity is progressively consolidated within arm-specific 
subpopulations. (A) Modulation for the preferred arm plotted against arm preference, for all 
units in each brain area and task phase. Log-linear best fit lines are displayed in red. Inset 
figures belong to Monkey W. (B) Slopes of regression lines fit to data from (A), independently 
for ipsi- and contra-preferring sub-populations. Mean +/- bootstrapped 95% confidence interval. 
(C-E) For the Move phase in monkey O, cumulative modulation plotted against arm preference, 
i.e. each point indicates the proportion of modulation accounted for by all units with arm 
preference values to the left of the indexed position. Positive values on the x-axis indicate 
contra-preferring, and negative values indicate ipsi-preferring. Shaded error bars indicate 
bootstrapped standard error. (C) The full spectrum of arm preferences is shown. Shaded 
backgrounds indicate three partitions: Contra-dedicated [0.4, 1] and Ipsi-dedicated [-1, -0.4] in 
white, and Neutral [-0.3, 0.3] in grey. (D) Cumulative modulation within contra-dedicated 
regime. (E) Same as (D), but ipsi-dedicated. Note inverted axis. (F) The proportion of 
modulation within each partition from (C) during ipsi- or contralateral movements. Note that 
the total modulation is significantly lower for ipsilateral movements, particularly for Monkey W, 
and these data are only displayed as proportions. Mean +/- bootstrapped 95% confidence 
interval. 
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exhibit greater modulation in activity relative to those that are more neutral. This 
suggests that the population signal is progressively segregating at the level of individual 
units. To visualize this segregation, we ordered units based on arm preference and 
calculated the cumulative modulation at each value, i.e. the proportion of modulation 
across the entire population that is accounted for by units with arm preferences at or 
below a certain value (Figure 2.5C-E). Since PMd and M1 showed similar relationships 
in the previous analyses, we combined units from the two areas, analyzing them as a 
collective population. In the extreme case that population signals are entirely 
segregated, 100% of ipsilateral modulation would occur at an arm preference of -1, and 
100% of contralateral modulation would occur at +1.  

We focused on two core questions. (1) Does the proportion of dedicated 
modulation increase across task phases, indicating a progression towards independent 
signals? (2) Does the amount of independent (or dedicated) modulation differ for ipsi- 
and contralateral activation?  As expected, dedicated regimes of the arm preference 
distribution captured a large proportion of the modulation associated with movements 
of one arm and only a small proportion of the modulation associated with the other arm, 
primarily during execution (Figure 2.5C-F). For statistical testing, we split the arm 
preference domain into 3 equal width regimes, corresponding to contra-dedicated (arm 
preference > 0.4), ipsi-dedicated (arm preference < -0.4), and arm-neutral (-0.3 < arm 
preference < 0.3) units, and summarized the data by expressing the proportion of 
modulation contained within each regime (Figure 2.5F). We again used a multi-factorial 
permutation approach to test for effects of Phase (Rest, Instruct, Move), and Arm (Ipsi, 
Contra). We will refer to ipsilateral modulation in the ipsi-dedicated units simply as 
“ipsi-dedicated modulation” and vice-versa for contra-. We emphasize that these 
partitions were chosen to broadly isolate the extremes of the distribution; it is not 
intended that the precise boundaries map onto discrete cell-types or any similar 
interpretations.  

For both animals, the effect of Phase was significant in the contralateral 
responses (monkey O: p=1.0e-4; monkey W: p=1.0e-4), with the proportion of contra-
dedicated modulation increasing across phases (Figure 2.5F, red lines). Ipsi-dedicated 
modulation increased across task phases for both monkeys as well (Figure 2.5F, blue 
lines), although this effect was only significant for monkey O (p=9.0e-4; monkey W: 
p=0.31). There was a significant interaction between Arm and Phase for both monkeys 
(monkey O: p=1.0e-4; monkey W: p=1.0e-4), indicating the stronger emergence of 
contra-dedicated modulation as compared to ipsi-dedicated modulation. Both animals 
showed a simple effect of Hand during the Instruct phase (monkey O: p=1.0e-4; monkey 
W: p=1.0e-4), with more contra-dedicated modulation being observed than ipsi-. This 
effect was also significant during the Move phase for monkey W (p=1.0e-4) and 
approached significance for monkey O (p=0.056).  
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These results suggest that arm signals separate at the level of individual units 
throughout preparation. Moreover, contralateral signals are more independent than 
ipsilateral signals, in the sense that a larger proportion of the contralateral modulation 
was represented in dedicated regimes of the population. Since this characterization of 
the population response captures most of the modulation for each arm in mutually 
exclusive sub-populations, we will refer to it as the “dedicated” component.  

It is possible, however, that the limited range of movement directions used in the 
task may influence the degree of dedicated modulation (the maximum angle between 
target vectors is 107°). For example, a unit that appears dedicated to one arm may only 
be unmodulated for the other arm over the range of movement directions being tested. 
That unit may in fact be modulated during different movements, which would cause it 
to appear neutral if sampled. As a post-hoc control for this possibility, we included data 
during the return movements following target acquisition, effectively doubling the range 
of sampled movement directions, and repeated the analyses of Figure 2.5. The 
relationship between arm preference and modulation strength remained for this Reach & 
Return data (Figure S2.3B-C). This relationship was significant for both monkeys, in 
both PMd and M1, and for both ipsi- and contra-preferring units, with one exception 
(permutation test of regression slopes – p<0.05; monkey W, PMd, Ipsi-preferring units 
p=0.58). The proportion of dedicated modulation was largely unchanged as well (Figure 
S2.3D), and replacing Move phase data with Reach & Return did not impact 
significance of the Phase effect (Contra-dedicated modulation – monkey O: p=1e-4; 
monkey W: p=1e-4; Ipsi-dedicated modulation – monkey O: p=1.8e-3; monkey W: 
p=0.22). Therefore, the dedicated signals that we observe persist even with a broad 
range of movement directions. Returning to the possibilities outlined at the beginning of 
the previous section, we therefore conclude that this dedicated component progressively 
becomes the dominant characterization of the population response – dominant in the 
sense that it represents the majority of modulation across the population. 

2.2.5    Neural subspaces for the two arms diverge across task 
phases 

We next sought to characterize the time course of changes in neural subspaces as 
movements were prepared and executed. We hypothesized that dedicated activation 
would drive population signals into diverging subspaces for the two arms. For these 
analyses, we pooled units from the left and right hemispheres. Using PCA on single-trial 
data, we first estimated the dimensionality of the neural subspace during each task 
phase using a cross-validated data reconstruction method (see Methods; Yu et al., 2009). 
This is an essential step to avoid drawing conclusions based on noise-dominated 
dimensions. Dimensionality was calculated separately for each session and arm. During 
Rest, the dimensionality was approximately 5-6, and decreased to approximately 4 
during the Instruct and Move phases (Figure 2.6A). The high dimensionality during  
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Figure 2.6. Population activity reorganizes and diverges for the two limbs 
throughout planning. (A) Dimensionality of the PCA subspace estimated as the number of 
components that minimizes the cross-validated reconstruction error of the full-dimensional 
neural data. Mean +/- standard error across datasets. (B,C) Heat maps indicate alignment of 4-
dimensional PCA subspaces between all pairs of timepoints across the Instruct and Move phases 
of the task, averaged across sessions. (B) Compares subspaces across time for movements of the 
same arm. Three blocks forming along the diagonal indicate three distinct subspaces: a pre-
instruction Rest space, a post-instruction Instruct space, and a peri-movement Move space. (C) 
Compares subspaces across time for movements of opposite arms. Prior to instruction there is a 
moderate alignment of the subspaces for each limb, however, the two subspaces diverge around 
100ms post instruction. (D) Summary of the data in (B,C). Mean +/- standard deviation across 
datasets. 
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Rest aligns with recent reports [57], and values during Instruct and Move were 
comparable to those found in previous studies using similar methods [225]. We therefore 
chose to focus on only four components to represent the neural subspaces of each 
dataset. 

We calculated the alignment between PCA subspaces associated with left or right 
arm movements using a metric that describes the proportion of low-dimensional 
variance for one dataset that is captured in the low-dimensional space of another (see 
Methods; [10]). If the network is organizing activity in the same way across datasets, 
then the covariance alignment is 1, regardless of signal magnitude. If activity is 
reorganized into orthogonal subspaces across datasets, then the covariance alignment is 
0. Two types of alignment measurements were made: (1) Subspaces were fit to random 
partitions of trials for the same arm – what we will refer to as “native” alignment – 
giving us an estimate of natural variability in our subspace estimates when compared 
over the same time window, and describing the evolution of the motor plan when 
comparing across time windows. (2) Subspaces were fit separately using trials for either 
arm and compared with each other – what we will refer to as “cross” alignment – 
describing the divergence of the subspaces for the two arms at each task phase. 

Using single-trial activity event-locked to the onset of instruction and movement, 
we were able to capture the fine-timescale evolution of any emerging or diverging 
subspaces (Figure 2.6B-C). When comparing the native alignment across task phases, 
we observed the emergence of distinct Instruct and Move period subspaces. Figure 2.6B 
shows these data displayed as a continuous heat map with block diagonal structure that 
coincides with the phase transitions. Within each phase native alignment was high, 
indicating consistent low-dimensional structure in the population activity that was 
specific to each stage (Figure 2.6B; Figure 2.6D filled circles).  

As expected, subspaces for the two arms gradually diverged across task phases 
(Figure 2.6C; Figure 2.6D open circles). On the whole, subspaces for the two arms were 
significantly less aligned than the (cross-validated) comparisons within the same arm 
(Figure 2.6D open  vs filled circles; two-way ANOVA, ME comparison type – monkey 
O: p=3.3e-61; monkey W: p=5.2e-29). Interestingly, subspace divergence was already 
apparent during the Rest phase (paired sample t-test, native-Rest vs cross-Rest – 
monkey O: p=1.4e-11; monkey W: p=4.7e-7). As mentioned in our analysis of single-
unit arm preferences, this is likely due to predictable arm assignments from the blocked 
task structure (Figure 2.1C, Figure S2.1). Cross alignment decreased significantly as the 
trial unfolded, reaching a minimum during movement (one-way repeated measures 
ANOVA – monkey O: p=8.0e-7; monkey W: p=2.4e-6). These results map closely onto 
the progressive segregation of dedicated signals described in the previous section. 
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2.2.6    Subspace separation relies upon dedicated signals 

Activity within mutually exclusive sub-populations naturally separates into 
distinct linear subspaces; as such, we can expect some level of subspace separation as a 
simple result of dedicated variance. However, it is possible that subspace separation 
could occur within a distributed representation as well [8, 108]. This question is 
especially important in considering units that show relatively balanced modulation for 
the two arms. Even though these units show similar levels of activity during contra- and 
ipsilateral movement, it is possible that their population-level contributions are different 
for each, and thus also contribute to subspace separation.   

To investigate the extent to which subspace separation relied upon dedicated 
activation, we analyzed the structure of PCA subspaces via their coefficient weights. 
Since components of PCA models form an orthogonal basis set, each can be 
independently analyzed to determine its contribution to subspace divergence. We fit 
separate PCA models for each arm and task phase and calculated two statistics for each 
component: (1) To capture the contribution of a given component to subspace 
separation, we calculated the ratio of variance it captured for the two arms (right/left). 
(2) To capture the dependence of a given component on arm-dedicated units, we 
calculated a coefficient-weighted average of the arm preferences for all units (e.g., if non-
zero weights were only given to right arm dedicated units, this value would be 1; if 
weights were evenly distributed across the spectrum of arm-preferences, this value would 
be 0). A strong relationship between these two metrics would suggest that subspace 
separation relies upon dedicated activation. 

Indeed, this was the case during both the Instruct and Move phases. Figure 2.7A-
C shows a single session example from the Move phase. The top principle components 
captured a large amount of the variance for the left arm while capturing little variance 
for the right arm. Components with a variance ratio strongly favoring the left arm 
almost exclusively weighted units that were themselves highly dedicated to the left arm. 
The lower components with more balanced variance ratios distributed weights more 
evenly across the arm preference spectrum. This pattern was evident in each phase 
throughout recordings from both monkeys. Figure 2.7D shows the relationship between 
right/left variance ratio and coefficient-weighted arm preference for the top five 
principal components of each dataset. Following the instruction cue, components that 
strongly discriminated between the two limbs (variance ratio far from 1) primarily 
weighted units that were themselves highly discriminating. This relationship remained 
strong as the range expanded during the Move phase. The analysis was also repeated 
using an alternative normalization method to mitigate the effect of highly modulated 
units. As expected, mitigating the effect of highly modulated units decreased the 
magnitude of subspace separation while maintaining the relationship between coefficient-
weighted arm preference and variance ratio over the reduced range (Figure S2.4A). This  
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Figure 2.7. Separation of arm-specific subspaces relies upon unit-level segregation. 
(A-C) Single session example of a PCA model trained to capture bi-hemispheric activity during 
left arm movements. Held-out testing data for 86 simultaneously recorded units were used. (A) 
Cumulative proportion of variance accounted for across the top 10 principal components. (B) 
For each component, the ratio of the explained variance between the two limbs. (C) Absolute 
values of the coefficient weights for each component plotted against the corresponding unit’s 
arm preference. Top row represents components 1-3; bottom row represents components 4-6. 
Positive arm preference values indicate right arm preferring units. (D) The component variance 
ratio for the two arms plotted against a coefficient-weighted average of the arm preferences for 
each unit in that component. Datapoints represent the top 5 principal components of left or 
right arm trained models across all sessions. Separate models for each phase are plotted in each 
column. Pearson correlation coefficient for each dataset is displayed in the red box. Top row 
monkey O, bottom row monkey W. 
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further illustrates the dependence upon highly arm-dedicated, highly modulated units. 
In summary, these results suggest that the subspace separation described in the previous 
section relies upon signals that segregate at the level of individual units. 

2.2.7    An additional distributed signal contains target-specific 
information about both arms 

The preceding sections make clear that the population signal is dominated by a 
segregated organization. Nonetheless, it is likely that variance associated with the non-
preferred arm of each unit also reflects a meaningful population component, albeit one 
that is much weaker in magnitude. Indeed, many of the units that we recorded in both 
PMd and M1 were significantly modulated for both arms throughout preparation and 
movement (Table S2.1). To assess the information content and strength of these 
secondary responses, we divided the entire population of units from both hemispheres 
and brain areas into two subgroups based on the preferred arm of each unit from a held-
out dataset (Figure 2.8A). If the signals were entirely dedicated to one arm or the other, 
each subgroup would only contain information about its preferred arm (e.g., a left arm-
preferring subgroup would be predictive of left but not right arm movements). If instead 
there is meaningful activation that is distributed across the same units, then each 
subgroup would contain both dedicated and distributed information about its preferred 
arm, but only distributed information about its non-preferred arm.  

We first analyzed the time course of modulation for each subgroup during 
movements of the preferred and non-preferred arms. While modulation during preferred-
arm trials was much stronger in the Instruct and Move phases, there was a small 
amount of modulation during trials of the non-preferred arm as well (Figure 2.8B). To 
determine whether this modulation carried target-specific information about the 
behavior, rather than non-specific changes related to task engagement or small 
movements of the non-selected arm, we trained linear discriminant analysis (LDA) 
classifiers to predict the target on each trial. Even though the units showed very little 
modulation when the non-preferred limb was used, prediction accuracy was well above 
chance (Figure 2.8C-E, paired sample t-test with Rest – monkey O: Instruct p=1.5e-12, 
Move p=4.1e-21; monkey W: Instruct p=1.8e-3, Move p=1.1e-7). This suggests that the 
population code is not entirely dedicated but contains a meaningful distributed 
component as well. We refer to this as “distributed” in the sense that the contributing 
units carry information about both arms. 

2.2.8    The distributed signal is contained in a shared subspace 
for the two arms 

We next asked whether subspace separation exists specifically within the 
distributed portion of population activity. To isolate distributed signals, we again 
partitioned the population based on preferred arm and fit 4-D PCA models to neural 



33 
 
activity during only trials of the non-preferred arm. This is a conservative approach for 
fitting only the distributed activity, since dedicated activity will be absent during 
reaches of the non-preferred arm. This approach can also be interpreted as directly 
isolating the effect of covariance differences by removing the effect of magnitude 
differences. We will refer to the subspace spanned by these models as the “distributed” 
subspace.  

If population activity for each arm separates along orthogonal neural dimensions, 
even in the absence of dedicated variance, then the distributed subspace would 
preferentially capture variance for the non-preferred arm, since that is what it was fit 
with. Despite having greater magnitude in the ambient space, preferred arm activity 
would exist largely in the null space of this projection and none of its variance would 
exist in the distributed subspace. Alternatively, if signals for the non-preferred arm exist 
within a shared subspace for the two arms, then the patterns of activity for either arm 
would be preserved through the projection, and we would expect as much or more 
variance captured for the preferred arm. 

Across all task phases and for both animals, more variance was observed in the 
distributed subspace during preferred arm trials than during non-preferred arm trials 
(Wilcoxon signed rank – p<0.05 for all six comparisons). The ratios of variance 
captured for each arm were expressed as non-preferred over preferred and were 
computed using the raw variance, not the proportion of total variance. Variance ratios 
were below 1 for nearly every individual dataset and became even lower with each 
subsequent phase (Figure 2.8F). Additionally, mean coefficient weights were not 
significantly different across PMd and M1 for either the Instruct or Move phase, except 
for the Move phase data in monkey O where M1 weights were slightly larger 
(permutation test – p>0.05 for monkeys O and W Instruct phase, monkey W Move 
phase; monkey O Move phase p=1.4e-3, |𝑤𝑤𝑀𝑀1|������� = 0.12, |𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃|��������� = 0.092). This indicates 
that the two areas were similarly contributing to the effect. Together these results 
suggest that across the entire process of preparation and execution of movements, arm 
signals that are mixed at the level of individual units occupy a shared subspace and are 
not differentiated through linear population readouts. We again used an alternative 
firing rate normalization method to confirm that this result was not dependent on 
overrepresentation of units with the strongest modulation, and the same results were 
observed (Figure S2.4B). In summary, the subspace capturing distributed activity is not 
unique to the arm it was fit to, but rather represents a shared subspace for population 
activity associated with either arm. 
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Figure 2.8. Behaviorally specific information exists within a subspace that captures 
bilateral activity. (A) Illustration of the population partitioning approach. Each unit is 
represented as a pie-chart displaying the relative modulation during left and right arm trials. 
Most units in the left hemisphere are more strongly modulated during right arm movements 
(mostly purple pie-charts), yet some prefer left arm movements (mostly yellow pie-charts). 
Regardless as to which hemisphere each unit is in, the population may be subdivided into left 
and right arm preferring sub-populations. On the extreme that all information about each arm is 
contained within dedicated sub-populations, this simple division will fully segregate the signals 
such that movements of the non-preferred arm cannot be classified. (B) Modulation as a 
function of time, taken as the mean over all units during trials of their preferred or non-
preferred arm, +/- standard error. (C) Target classification accuracy using LDA for movements 
of the preferred arm. Models are trained on each time point and tested on each time point to 
provide high temporal resolution and inform cross-phase generalization of the classifier. Plots are 
averaged over all sessions (13 Monkey O, large plots; 7 Monkey W, small plots) and both sub-
populations (left-preferring, right-preferring). (D) Same as (C), but for non-preferred arm 
movements. (E) Summary data of (C,D) for monkey O, top panel, and monkey W, bottom 
panel. Mean +/- standard deviation across datasets. (F) Ratio of the variance captured in the 
distributed subspace for the two limbs. 
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2.3    Discussion 
We have shown that the combined population response spanning PMd and M1 

across hemispheres contains two primary components with regards to laterality.  

The first is characterized by signals that are segregated at the level of individual 
units, which we call the “dedicated” component. Activity that emerged following the 
instructional cue was most prominent in PMd and showed a tendency for stronger 
modulation in units with greater arm preference. This caused the signals for each arm to 
begin segregating into mutually exclusive sub-populations and occupy divergent low-
dimensional subspaces. During the transition to movement, M1 became strongly engaged 
and segregation of arm signals became even more pronounced.  

The second component leveraged signals that were mixed within units, which we 
call the “distributed” component. We showed that arm signals were not completely 
segregated by splitting the population in two based on each unit’s preferred arm and 
analyzing the responses during non-preferred arm trials. Despite being very small in 
magnitude, these signals contained target-specific information. In contrast to the natural 
separability of the dedicated component, however, subspaces fit to this activity captured 
at least as much variance for the other arm during each phase of the task, suggesting a 
shared subspace for the two arms that persists across preparation and movement. 

2.3.1    Comparison to previous studies of bilateral arm signals in 
the motor cortex 

               Our study adds to a growing body of existing work reporting activity related 
to both arms in the same motor cortical units during either preparation [45, 110, 210] or 
movement [8, 45, 72, 108, 125, 204, 210]. Two recent studies have addressed the 
puzzling presence of bilateral activity in M1 during unimanual behavior [8, 108]. Despite 
many units being active for either arm (similar to our own observations in Figure 2.4B, 
Table S2.1), both studies reported separation of population-level arm signals into 
distinct neural subspaces. Furthermore, they attributed this separation to covariance 
changes between the two modes that would cause even signals that are mixed within 
units to contribute to the effect. In the present study, we build upon these observations 
and reveal an underlying organizational structure that suggests arm signals are not as 
mixed within units as they would appear based on distributions of single-unit arm 
preferences. We show that dedicated signals contribute more to the overall population 
variance and solely account for the presence of arm-specific subspaces. Signals that are 
mixed within units reflect a different feature of the population. Our example in Figure 
2.5C-E demonstrates that segregation of arm signals into distinct neural subspaces likely 
arises from activation of exclusive sub-populations – similar to the top principal 
components from Ames and Churchland, 2019 and Heming et al., 2019 (as well as those 
in our Figure 2.7A-B example), dedicated regimes of the population in our study 
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captured large amounts of variance for one arm while capturing very little for the other. 
Analysis of model structure confirmed that dedicated variance drove PCA results 
(Figure 2.7, 2.8). Furthermore, we mapped the development of this signal feature across 
preparation and movement, showing that it begins to emerge even during preparation 
(Figure 2.5, 2.6) and involves both PMd and M1 (Figure 2.5).  

Not only does this clarify the mechanism of signal separation in motor cortical 
activity, but it acknowledges a critical heterogeneity in the population response. 
Dedicated signals represent most, but not all, of the population variance. Signals that 
are mixed within units (distributed signals) reveal a portion of the population activity 
that is not independent for the two arms. Effector-independent coding has long been 
appreciated in PMd [45, 210]. Recently, Willet et al., 2020 identified separate “limb-
coding” and “movement-coding” dimensions in neural activity from the hand knob area 
of human premotor cortex [223]. The “movement-coding” component represented 
movements for different effectors in the same fashion. This bears similarity to our 
“distributed” component, although we only show that activity for each arm resides in the 
same space, not that its relationship to behavior is invariant. Notably, PMd units were 
not more heavily weighted in our distributed models. This suggests that even in M1, 
signals for the two arms are not fully independent. 

2.3.2    Progressive segregation of arm-dedicated signals and its 
functional significance 

To our knowledge, this study is the first to compare low-dimensional population 
structure during preparation of left vs right arm reaching in neurologically-intact 
subjects (see [223] for preparation of attempted movements in a human participant with 
C4 spinal cord injury). It has been proposed that neural subspaces reorganize between 
preparation and execution of reaching movements [80], which we observe in our own 
data (Figure 2.6B). A principle interest of this study was to determine how the 
emergence of arm-specific signals maps onto this reorganization process. Since previous 
work has shown that the transition from preparation to movement coincides with an 
increased proportion of lateralized units [45, 150, 201], we expected activity to 
progressively segregate at the level of individual units, represented primarily in the 
contralateral hemispheres, as the population reorganizes between task phases. This was 
indeed the case, and began even during the instruction phase (Figure 2.5). Careful 
inspection of model structure revealed that segregation of arm signals at the individual 
unit level drove separation of arm-specific neural subspaces gradually throughout the 
trial (Figure 2.6C-D; Figure 2.7). This segregation reached its maximum during 
movement, thus reducing any concern that small movements of the non-selected arm 
had an impact on our results or conclusions.  
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Importantly, contralateral signals were more independent than ipsilateral ones; a 
larger proportion of contralateral modulation occurred in contra-dedicated units than 
the reverse case for ipsi- (Figure 2.5). This was not a surprising result, as contralateral 
bias in the functional organization of motor cortex has been clearly revealed by effects 
stroke [105], lesion studies [20], and cortical stimulation [6, 162, 170]. One candidate 
hypothesis for the presence of ipsilateral activity is that it supplies an independent 
control signal. There is some evidence that ipsilateral cortex plays an increased role in 
movement following hemispheric damage [20, 58, 112, 222], though not necessarily a 
beneficial or compensatory one. The magnitude of ipsilateral encoding increases with the 
degree of movement complexity [215] and may involve spatially distinct neural 
populations [38, 226]. However, the corticospinal tract (CST) is almost entirely 
contralateral, and the effectiveness of the ipsilateral component has been debated [12, 
140, 183, 202]. Ipsilateral cortex may also exert its influence via connections made in the 
reticular formation [6, 12, 222], which projects bilaterally to the spinal cord. Our results 
showed a small amount of independent ipsilateral activity (monkey O more so than 
monkey W), with more of the ipsilateral signal coming from non-dedicated units (Figure 
2.5). Thus, if the ipsilateral hemisphere provides any independent control signal, it is 
much weaker than the contralateral signal. Rather, our results suggest that ipsilateral 
signals are involved in some form of bilateral control, which we now discuss. 

 

2.3.3    Bilateral signals and their role in motor control 
Correlated activity for movements of the two arms has been widely reported in 

the literature, primarily using macro-scale neurophysiological approaches. Increases in 
excitability of homologous effectors during transcranial magnetic stimulation (TMS) 
[159] and symmetric activation patterns in functional magnetic resonance imaging 
(fMRI) [69, 216] suggest that bilateral motor cortical circuits are organized with 
mirrored properties. Similar correlated structure has also been reported in human ECoG 
[30] and premotor spiking activity [223]. Mirror activation and other forms of 
interhemispheric communication have been proposed to support intermanual skill 
transfer [69] or shaping of contralateral activity patterns during complex behavior [215]. 
However, correlations between the tuning for ipsilateral and contralateral arm 
movements in M1 units tend to be weak or absent [45, 108, 204]. In the present study 
we have not directly compared directional tuning, yet we did observe that the 
distributed component of bilateral signals existed within a shared subspace for the two 
arms (Figure 2.8). Mirror activity would necessarily reside in the same neural subspace 
for each arm, provided that subspace is linear, as all linear subspaces are invariant with 
respect to reflection. Our results are therefore consistent with functional hypotheses of 
ipsilateral cortex involving mirror symmetric activation, and more generally for 
hypotheses that predict linear correlations between activation patterns for the two arms. 
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We note, however, that while consistent linear correlations in the tuning properties of 
individual neurons would deterministically result in shared neural subspaces, a lack of 
linear correlation does not mean that neural subspaces will be orthogonal. 

The distributed component that we have characterized may also play a role in 
bimanual coordination. Distinct bimanual activity patterns have been observed in 
caudal premotor regions using human fMRI [69] and in M1 using single-unit recordings 
in monkeys [72, 204]. Surgical transection of the corpus callosum, the primary direct 
connection between hemispheres [93], disrupts typical spatial coupling and continuous 
synchronization of arm movements as well [88, 132], suggesting a cortical locus for these 
forms of bilateral control. These studies suggest that bilaterally distributed networks 
involving PMd/M1 may facilitate bimanual coordination, a function historically 
attributed to the supplementary motor area [22]. Our task involved unimanual 
movements, containing no component of coordination. However, the result that target-
specific information existed within a shared subspace (Figure 2.8) is consistent with a 
role in coordination. We make limited claims on this hypothesis due to our simplified 
behavior, and stress that implicating a role in bimanual coordination does not simply 
mean revealing a shared substrate for signals of both limbs. Nonetheless, a bi-
hemispheric network structure may underly computations for controlling the two arms 
as a unified plant [220]. M1 has been implicated in multi-joint integration for voluntary 
movement and feedback control [177, 191]. Bimanual behaviors have a similar task of 
overcoming redundant degrees of freedom [17]; many patterns of behavior for each arm 
independently may help one achieve an action goal so long as cooperation of the two 
remains intact (“motor equivalence” [141]). This lower-dimensional behavioral 
coordination space, sometimes called “the uncontrolled manifold” [188], would likely have 
a similar neural manifold in which bilateral arm signals interact (for related discussion 
and review, see [68, 208, 221]. The distributed space that we report may reflect such a 
manifold. 

 

2.3.4    Interpretations from a dynamical systems perspective 
One unified explanation for the two components identified in this study is that 

they represent the computational (or “hidden”) layers and the output layer of cortical 
processing. In this framework, the distributed signal would reflect a bilateral network 
that plays a supportive role in motor processing rather than direct output. The idea 
that bilaterally distributed networks contribute to computations that do not directly 
represent the output has been previously proposed by Ames and Churchland, 2019 [8]. 
Preparatory activity in motor areas reflects abstract features of action and may lack a 
strong contralateral bias [45, 110]. The distinctive lack of laterality in the distributed 
signal we observed is consistent with other reports of abstract preparatory responses. It 
played a relatively stronger role during preparation as well, since the dedicated 
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component did not fully develop until movement. This aligns with reports that 
behaviorally specific features become more apparent in motor cortical signals during 
active behavior, including laterality [45, 199].  

From a dynamical systems perspective, distributed signals could serve to enforce 
internal dynamics of the overall population. Preparatory signals in pre- and primary 
motor cortex are thought to converge on an ideal population state, or initial condition, 
such that internal circuit dynamics will guide appropriate patterns of activity for the 
upcoming movement [40, 151, 200]. Rodent studies have shown that preparatory 
activity in motor cortical neurons projecting to other cortical areas lacks strong 
laterality, while neurons with descending output exhibit pronounced contralateral bias 
and became active closer to movement onset (left vs right directional licking task [150]; 
left vs right arm pedal pressing task [201]). Furthermore, these bilaterally distributed 
networks provide robustness to unilateral perturbation during preparation, and it has 
been hypothesized that the two hemispheres operate together to maintain the network 
state (left vs right directional licking task [151]). The two components that we have 
identified generally align with this form of network structure. In addition to setting the 
initial state, persistence of the distributed component during movement may reflect the 
ongoing dynamics of pattern generation [200, 207]. 

Within this interpretation, progressive segregation of arm signals may reflect 
emergence of descending output from the network that mirrors the well-established 
laterality of anatomical pathways [20, 202]. Alternatively, it may reflect a timing signal 
for triggering action or transitioning the network from preparation to movement [123, 
207] while simultaneously specifying the selected effector. Like the dedicated signals we 
observed, signals that reflect the timing of movements, but not their direction, have 
been shown to capture the most variance in PMd/M1 population responses [123]. 
Premotor activity has also been shown to contain “limb-coding” dimensions that specify 
a movement effector independently of the movement type [223]. The large dedicated 
signals that we observe bear similarity to both of these previously identified response 
features, and all three could reflect the same underlying computational process.  

In summary, we present a statistical description of arm signals spanning M1 and 
PMd throughout reach preparation, characterizing in detail both lateralized and non-
lateralized features of the population response. The two components that we have 
identified will be crucial for contextualizing current theory on bilateral motor cortical 
processing as well as designing future experiments that investigate the independence and 
interaction of signals across the hemispheres. 
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2.4    Methods 
2.4.1    Behavioral recordings and task 

Kinematic data were collected using LED-based motion tracking of several points 
along each arm (Phasespace Inc, San Leandro, CA). 3D positions of each LED were 
sampled at 240Hz. Prior to offline analysis, these positions were smoothed using a cubic 
spline and smoothing parameter 0.005 (cspaps function – MATLAB). The most distal 
LED, located on the back side of each hand just below the wrist, was used for online 
endpoint feedback and all offline analysis. 

Monkeys were trained to perform a variant of an instructed-delay reaching task 
(Figure 2.1B). Endpoint feedback of each arm and all visual stimuli were presented to 
the animal using a custom-built virtual reality 3D display. This display consisted of two 
mirrors that projected shifted images independently to each eye to produce stereopsis. 
Cursors, indicating effector endpoint position, were color coded for the left (yellow) and 
right (purple) hands, as were all associated stimuli.  

Each trial began with the appearance of the start positions for each hand 
(spherical targets, radius 4cm, with centroids separated by 8cm), located near the body 
on top of a physical bar that the monkey rested its hands on (Figure 2.1A). In a self-
initiated manner, the monkey would assume the start position by placing both cursors 
in their appropriate starting positions and maintaining that position for 500 ms (“Rest” 
phase). Our threshold for detecting movement online was 9cm/s; breaking this threshold 
would abort the trial.  

Marking the beginning of the “Instruct” phase, a cue (spherical target, radius 
3cm) would appear at one of six locations within a fronto-parallel plane 8cm in front of 
the start positions (Figure 2.1A). The color of the cue indicated the required arm, and 
position of the cue was the target location for the forthcoming reach. The instruction 
cue remained visible through the delay period, a duration that was sampled uniformly 
on the interval 500-1500ms. Movement beyond the speed threshold with either hand 
would abort the trial. 

At the end of this period, two simultaneous changes signaled the monkey to move 
and marked the start of the “Move” phase. First, the sphere defining the start position 
for the cued arm disappeared. Second, the cue at the target location enlarged (3cm to 
4cm radius). The monkey then reached toward the target and once at the terminal 
location, had to maintain that position for 250ms. To earn a juice reward, the animal 
had to initiate the reach within 500ms of the onset of the imperative, terminate the 
movement within the target’s circumference, and keep the non-reaching hand stationary 
for the duration of the trial. To further emphasize that the trial was successful, the 
target turned green. 
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300ms windows were used to represent each phase in data analysis. For the Rest phase, 
we used the final 300ms before the onset of the instruction cue. For the Instruct phase, 
we used data in the interval between 200ms to 500ms post-cue. For the Move phase, we 
used the first 300ms following the onset of movement, defined as when speed of the 
reaching hand exceeded 10cm/s. We used a late window for the Rest phase to avoid any 
residual activity associated with moving to the start positions. The steady state neural 
response was used to position the Instruct phase window; this was reached 
approximately 200ms after the onset of the instruction cue (see Figure 2.7B). The Move 
window was selected to capture peak neural activity associated with movement while 
including only the feed-forward portion, which typically lasted 250-300ms (Figure 2.1C, 
bottom row). Reach durations were calculated as the time between movement onset and 
the first point where (1) movement speed dropped below 20cm/s, and (2) velocity in the 
depth direction reached 0. 

 

2.4.2    Surgical implantation 
All procedures were conducted in compliance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by the 
University of California at Berkeley Institutional Animal Care and Use Committee 
under protocol ID AUP-2014-09-6720-1. This protocol approval and all surgical methods 
apply to each chapter of this thesis. Two adult male rhesus monkeys (Macaca mulatta) 
were implanted bilaterally with custom acute recording chambers (Grey Matter 
Research LLC, Bozeman, MT). Partial craniotomies within the chambers allowed access 
to the arm regions of dorsal premotor (PMd) and primary motor (M1) cortices in both 
hemispheres. Localization of target areas was performed using stereotactically aligned 
structural MRI collected just prior to implantation, alongside a neuroanatomical atlas of 
the rhesus brain [169].  

 

2.4.3    Electrophysiology 
Unit activity was collected using 24-32 channel multi-site probes (V-probe - 

Plexon Inc, Dallas, TX), with contacts separated by 100um and positioned axially along 
a single shank. Probes were lowered deep enough to cover roughly the full laminar 
structure of cortex (Figure 2.2B-C). The depth of insertion was determined by (1) 
measurements of the dural surface prior to recording, and (2) presence of spiking 
activity across all channels. 2 probes were typically inserted in each hemisphere daily 
and removed at the end of the session, one in PMd and one in M1. A total of 12 
insertion points across PMd and M1 of each hemisphere were used across 13 recording 
sessions in Monkey O, and 6 insertion points across 7 sessions for Monkey W (Figure 
2.2A).  
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Neural data were recorded using the OmniPlex Neural Recording Data 
Acquisition System (Plexon Inc, Dallas, TX). Spike sorting was performed offline 
(Offline Sorter – Plexon Inc, Dallas, TX). Single-unit waveforms were isolated in multi-
dimensional feature space (including principal components, non-linear energy, waveform 
amplitudes) and rejected if either (1) the waveform clusters were not stable over the 
course of the session, or (2) >0.4% of inter-spike-intervals were below 1ms. For 
population level analyses (PCA, LDA), a small number of multi-units were included. A 
multi-unit was defined by waveform clusters that separated from the noise cluster and 
were stable over time, but did not quite meet the inter-spike-interval criteria or 
contained what might be multiple unit clusters that could not be easily separated. For 
monkey O, the average proportion of multi-units in each single session population 
sample was 17%, ranging 12-25%. For monkey W, average 20%, ranging 12-32%. 

Spiking data were binned in 20ms non-overlapping bins, square-root transformed to 
stabilize variance, and smoothed with a 50ms gaussian kernel for all analyses [225]. 

 

2.4.4    Modulation and Arm Preference metrics 
As a time-varying value, modulation was calculated as: 
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where 
𝑥𝑥𝑡𝑡 ∶  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 
𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∶ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∶ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

This unitless metric reflects the deviation from baseline activity, normalized by 
baseline fluctuations. The constant 1 was added to the denominator for soft-
normalization to ensure that units which were silent during rest did not have exploding 
values and were not overly emphasized in the dataset. Because some units had slightly 
different activity on left and right arm trials even before instruction, the standard 
deviation during Rest was calculated separately for each arm and 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 was calculated as 
the mean of the two. 

Single values of modulation representing each phase were obtained using the 
same 300ms phase windows that were used in behavioral analysis (see Methods – 
Behavioral recordings and task). Phase-specific modulation data were concatenated 
across trials into a (16𝑚𝑚 𝑥𝑥 1) vector, where 𝑚𝑚 is the number of trials and 16 is the 
number of samples within a 300ms phase window. The mean over this vector provided 
our scalar estimate of modulation. Note that this is simply a normalized form of 
variance, which makes the comparison of single-unit and population-level results more 
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straightforward. To make the relationship with variance explicit, modulation can be 
rewritten as: 

𝑀𝑀𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =  
1

(𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1)2 𝐸𝐸[�𝑋𝑋𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜇𝜇𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒�
2

] 

Where the expectation on the right is essentially variance using the Rest mean. 

Arm Preference was calculated independently for each phase of the task using the 
formula: 

 

𝐴𝐴𝑃𝑃𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
 

An arm preference of 1 corresponds to a unit that is exclusively modulated during 
contralateral trials, while an arm preference of -1 is the same for ipsilateral trials. In 
Figure 2.7, Figure S2.4, and the accompanying analyses, the convention of left arm and 
right arm was used in place of ipsi and contra. In analyses that used arm preference 
along with other features, independent datasets were used to calculate each to avoid any 
artificial coupling due to sampling noise, e.g. modulation and arm preference. Note also 
that the scaling factor used in the modulation calculation cancels out of the arm 
preference calculation, making it invariant to the choice of normalization. 

 

2.4.5    Principal components analysis 
Principal components analysis (PCA) was used to identify low-dimensional 

representations of population activity with the pca function in MATLAB. PCA 
computes an orthogonal basis set that reflects the principal axes of variation in the data. 
Individual components do not strictly correspond to observed activity patterns, and one 
should be wary of interpreting them as such, yet the low-dimensional space spanned by 
the top few components has been frequently used in systems neuroscience as a helpful 
descriptor of coordinated ensemble activity [55]. PCA was selected over other 
dimensionality reduction techniques for its widespread use and relative lack of 
assumptions. Additionally, PCA was used in two recent papers covering similar topics 
to this one [8, 108]. Therefore, using PCA over other alternatives was also intended to 
improve generalization of our results to the existing literature. 

Prior to fitting the models, firing rate data were soft-normalized using the same 
method as in the modulation strength calculation: 

𝑧𝑧𝑡𝑡 =  
𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1
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An alternative normalization factor was used to create Figure S2.4, replacing the 
denominator by the full firing rate range + 5Hz [8, 80, 108].  

Since Rest phase mean activity was already subtracted from individual units, we 
did not de-mean again prior to computing PCA models. Measures of variance accounted 
for were not inflated by capturing means because they were computed using the 
variance of the component scores (Figure 2.7, Figure 2.8F): 

𝑉𝑉 = 𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑋𝑋)� 

Where 𝑋𝑋 is a (16𝑚𝑚 𝑥𝑥 𝑛𝑛) data matrix of concatenated trials and 𝑃𝑃 is an (𝑛𝑛 𝑥𝑥 𝑝𝑝) 
projection matrix, with 𝑚𝑚 trials, 16 samples in the phase window of each trial, 𝑛𝑛 units, 
and 𝑝𝑝 principal component dimensions. 

Cross-validation approaches were used for all analyses and figures to address 
overfitting. This provided accurate and generalizable estimates of variance capturing 
metrics that could also be appropriately compared across datasets (i.e. across time or 
arms). 

 

2.4.6    Dimensionality estimation  
Dimensionality of the PCA subspace was estimated by optimizing the cross-

validated reconstruction of full-dimensional neural data from component scores. Given 𝑛𝑛 
units, 𝑚𝑚 trials, and 16 samples within the phase window for each trial, the following 
procedure was used: 
1. Leave out the ith trial (16 samples) from the data matrix, yielding training data, 
𝑋𝑋(−𝑖𝑖) ∈ ℝ16(𝑚𝑚−1) 𝑥𝑥 𝑛𝑛, and testing data, 𝑋𝑋(𝑖𝑖) ∈ ℝ16 𝑥𝑥 𝑛𝑛. 

2. Train PCA model of dimension 𝑝𝑝 < 𝑛𝑛 on 𝑋𝑋(−𝑖𝑖), using singular value decomposition 
(SVD) to compute the projection matrix, 𝑃𝑃(−𝑖𝑖) ∈ ℝ𝑛𝑛 𝑥𝑥 𝑝𝑝 

3. Leave out the jth unit from the testing data and projection matrix by removing the jth 
column and row from each, respectively, yielding 𝑋𝑋−𝑗𝑗

(𝑖𝑖) ∈ ℝ16𝑚𝑚 𝑥𝑥 (𝑛𝑛−1)  and 𝑃𝑃−𝑗𝑗
(−𝑖𝑖) ∈

ℝ(𝑛𝑛−1) 𝑥𝑥 𝑝𝑝. This is the current unit that will be reconstructed. 

4. Using the Moore-Penrose pseudoinverse, find a new projection matrix with the jth 

unit removed, whose transpose is �𝑃𝑃−𝑗𝑗
(−𝑖𝑖)�

+
∈ ℝ𝑝𝑝 𝑥𝑥 (𝑛𝑛−1). This matrix projects the (𝑛𝑛 − 1) 

dimensional neural activity into the original 𝑝𝑝 dimensional PC space, therefore 
computing component scores in the absence of unit 𝑗𝑗. 

5. Calculate the component score for the ith trial using the remaining units and the new 
projection matrix, then estimate the jth unit from that component score by projecting 
back into the ambient space. As a single step, this calculation is: 
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 𝑋𝑋�𝑗𝑗
(𝑖𝑖) = �𝑃𝑃(−𝑖𝑖)�𝑃𝑃−𝑗𝑗

(−𝑖𝑖)�
+
�𝑋𝑋−𝑗𝑗

(𝑖𝑖)�
𝑇𝑇
�
𝑗𝑗
 

7. Repeat for trials i=1,…,m  

8. Repeat for units j=1,…,n 

9. Repeat for component numbers p=1,…,10  

10. Take the number of components that minimizes the predicted residual error sum of 
squares (PRESS) statistic: 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ ∑ �𝑋𝑋𝑗𝑗
(𝑖𝑖) − 𝑋𝑋�𝑗𝑗

(𝑖𝑖)�
2

𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1  

This method reconstructs the full-dimensional neural data, independent of the 
training set, by identifying consistent population structure. There are no mathematical 
constraints favoring increased dimensionality, i.e. it is robust to overfitting. As such, the 
number of components that minimizes the reconstruction error provides a conservative 
estimate of the dimensions that meaningfully reflect population structure. Similar 
methods have been used previously for assessing dimensionality reduction techniques for 
neural data [225]. Using heuristics, such as the number of components to explain 90% 
variance, would be inappropriate for our analyses. They are prone to overfitting, which 
would include meaningless components and impair analysis of model structure via 
coefficient weights. 

 

2.4.7    Covariance alignment 
We computed a measure of similarity between pairs of subspaces that we call 

Covariance Alignment. Our method is essentially the same as that previously used for 
comparing low-dimensional spaces via factor analysis [10]. In short, this measure 
computes the proportion of low-dimensional variance from one dataset that is also 
captured in the low-dimensional space of another dataset.  

Given data matrices 𝑋𝑋𝐴𝐴, 𝑋𝑋𝐵𝐵 ∈ ℝ16𝑚𝑚 𝑥𝑥 𝑛𝑛, the following procedure was used: 

1. Train PCA models of dimension 𝑝𝑝 < 𝑛𝑛 on 𝑋𝑋𝐴𝐴 and 𝑋𝑋𝐵𝐵, using SVD to compute the 
projection matrices 𝑃𝑃𝐴𝐴, 𝑃𝑃𝐵𝐵 ∈ ℝ𝑛𝑛 𝑥𝑥 𝑝𝑝 

2. Project 𝑋𝑋𝐴𝐴 into its own p-dimensional space and compute the variance as: 
 𝑉𝑉𝐴𝐴 = 𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴)� =  𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝐴𝐴)� 

3. Project the p-dimensional representation of 𝑋𝑋𝐴𝐴, which is 𝑇𝑇𝐴𝐴, into the p-dimensional 
space identified using 𝑋𝑋𝐵𝐵 and compute the variance as: 

 𝑉𝑉𝐴𝐴_𝑖𝑖𝑖𝑖_𝐵𝐵 = 𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑇𝑇𝑃𝑃𝐵𝐵)� = 𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑇𝑇𝑃𝑃𝐵𝐵)� 
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4. Return the proportion of p-dimensional variance from dataset A that is also captured 
in dataset B’s subspace using the ratio: 

 𝐶𝐶𝐶𝐶 =  𝑉𝑉𝐴𝐴_𝑖𝑖𝑖𝑖_𝐵𝐵
𝑉𝑉𝐴𝐴 

=  
𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴

𝑇𝑇𝑃𝑃𝐵𝐵��

𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴)�
=

𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴
𝑇𝑇𝑃𝑃𝐵𝐵��

𝑇𝑇𝑇𝑇�𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝐴𝐴)�
 

This metric is subtly different from the alignment indices used in [80] and [108]. 
The key difference here is the double projection in the numerator, which means that we 
are specifically capturing the proportion of low-dimensional variance from one dataset 
that is captured in the low-dimensional space of another, rather than the ratio of overall 
variance captured in two different subspaces.  

 

2.4.8    PCA coefficient analysis 
Since components of PCA models form an orthogonal basis set, each was 

independently analyzed to determine its contribution to subspace divergence. Two 
statistics were calculated for each component using held-out datasets.  

First, we projected activity during trials of each arm onto a single component, 
calculated the variance of the projections for each arm, and expressed them as a ratio. 
This captured each component’s contribution to discrimination between the arms. For 
component 𝐶𝐶, this calculation is: 

𝑉𝑉𝐶𝐶,𝑅𝑅/𝐿𝐿 =
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑅𝑅𝑃𝑃𝐶𝐶)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝐿𝐿𝑃𝑃𝐶𝐶)

 

Where 𝑋𝑋𝑅𝑅 ,𝑋𝑋𝐿𝐿 ∈ ℝ16𝑚𝑚 𝑥𝑥 𝑛𝑛 are data matrices for the right and left arms, 
respectively, and 𝑃𝑃𝐶𝐶 ∈ ℝ𝑛𝑛 𝑥𝑥 1 is the projection matrix for component 𝐶𝐶. The log of this 
ratio will be far from 0 if there is much more variance for one arm than the other along 
the axis defined by 𝑃𝑃𝐶𝐶. 

Second, we calculated a coefficient-weighted average of the arm preferences for all 
units. If non-zero weights were only given to right arm dedicated units, this value would 
be 1; if weights were evenly distributed across the spectrum of arm-preferences, this 
value would be 0. Therefore, this measure captured the dependence of a given 
component on arm-dedicated units. The coefficient-weighted arm preference, 𝐶𝐶𝐶𝐶𝐶𝐶, for 
component C was calculated as 

𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶 =
𝐴𝐴|𝑃𝑃𝐶𝐶|

∑ |𝑃𝑃𝐶𝐶,𝑖𝑖|𝑛𝑛
𝑖𝑖=1

 

Where 𝐴𝐴 ∈ ℝ1 𝑥𝑥 𝑛𝑛 is the vector of arm preferences for each unit. 
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2.4.9    Linear discriminant analysis 

Population coding of movement was analyzed using Linear Discriminant Analysis 
(LDA) with the fitdiscr function in MATLAB. LDA assumes that each class (target x 
limb combination) is associated with a multivariate normal distribution over the 
predictor variables (spiking activity of multiple units) having identical covariance but 
different means.  

The feature matrix 𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿 ∈ ℝ𝑚𝑚 𝑥𝑥 𝑛𝑛 consisted of a single sample per trial for each of 
the 𝑛𝑛 units. For fine timescale analysis, this was the instantaneous firing rate. For 
models representing an entire phase, this was the mean firing rate during the 300ms 
phase window. Uniform priors were enforced for all models. As it was expected that the 
covariance may change across use of the two arms during reaching, LDA models were 
trained separately for each limb to allow fitting of arm-specific covariance matrices. 
LDA was chosen for its robustness to violations of the given assumptions and its history 
of success with neural data [69, 180]. 

 

2.4.10    Fine timescale analysis of population coding and 
subspace development (heatmaps) 

The same basic method was used for displaying fine timescale changes in 
population coding of movements (via LDA) and covariance structure (via PCA, 
Covariance Alignment). The method is depicted schematically in Figure S2.5. Neural 
data were organized as 3D tensors (units, time windows, trials). Comparisons were made 
between all possible pairs of time windows, using fully independent trial sets to prevent 
overfitting. For LDA models, this consisted of leave-one-out cross-validation; for 
Covariance Alignment, random partitioning into two datasets of equal trial numbers. 
Averages of the cross-validated results provided the 2D matrices visualized using 
heatmaps in Figure 2.6B-C and Figure 2.8C-D. A single row or column therefore reflects 
the similarity of population coding or covariance between a single timepoint and all 
other timepoints across the trial. Block diagonal structure in the heatmaps reveals 
locally consistent structure within task phases. 

 

2.4.11    Permutation testing procedures 
Permutation tests were used for both single and multi-factorial hypothesis testing 

when parametric tests were inappropriate. Null distributions were constructed by 
constraining permutations to only data that were exchangeable under the null 
hypothesis whenever possible [9]. For example, we maintained the crossed structure of 
Phase (Rest, Instruct, Move), by only permuting Phase labels within units. 10,000 
permutations were used for all analyses, and p-values were estimated as the proportion 
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of permutations resulting in test statistics that were at least as extreme as what was 
observed. In cases where the observed test statistic was more extreme than any 
permutations, we assigned a p-value of 1/number of permutations = 1.0e-4.  
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2.5    Supplementary Figures 
 

 
Table S2.1.  Proportions of significantly modulated single-units across task phases. 
For well isolated single-units in each brain area, the proportions of the total population that 
were significantly modulated when compared with the Rest phase (two-sample t-test, p<0.05) 
are displayed in each cell of the table. For each phase, single-units were classified as uniquely 
ipsi, contra, or bilaterally modulated. Top row in each pair of rows represents Monkey O, 
bottom row Monkey W.  

 

  
Figure S2.1. Arm-specific neural patterns exist during Rest on predictable trials. 
Cross-validated classification accuracy for hand (left column) and target (right column) 
assignments. LDA models were trained on only trials that required use of the same arm as the 
previous trial, then tested on either held-out repeating arm trials (blue lines) or switching arm 
trials (red lines). Separate models were used for each timepoint. Horizontal grey lines indicate 
chance level. 13 Sessions for monkey O (top row); 7 sessions for monkey W (bottom row). Mean 
+/- standard error across sessions. 
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Figure S2.2. Modulation for the non-preferred arm does not increase with greater 
arm preference. Companion figure for Figure 5A-B. (A) Modulation for the non-preferred arm 
plotted against arm preference, for all units in each brain area and task phase. Log-linear best 
fit lines are displayed in red. Inset figures belong to Monkey W. (B) Slopes of regression lines fit 
to data from (A), independently for ipsi- and contra-preferring sub-populations. Mean +/- 
bootstrapped 95% confidence interval. Note the different y-axis from Figure 4B. The slope was 
not significantly greater than 0 in any condition, meaning that increased arm preference is 
associated uniquely with greater modulation in the preferred arm, as opposed to an increase for 
both arms that is just larger for the preferred arm. 
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Figure S2.3 Dedicated signals persist with increased kinematic range. To determine 
whether having a limited range of reach directions was responsible for the observation of arm-
dedicated signals, select analyses were performed again on data that included return movements. 
By including these movements, which were opposite the direction of the outward reaches used in 
the primary analyses, the range of sampled behavior was greatly increased. (A) Speed profiles 
for return movements following target acquisition during left- or right-hand trials. Individual 
trials were aligned to peak return speed, indicated by the vertical red line. Both reaching and 
stationary hands are plotted in each. Despite being unconstrained by the task, the non-selected 
hand remained still during the return. Monkey O main, monkey W inset. Mean +/- standard 
deviation. (B-D) Analyses from Figure 5 repeated using Move phase data concatenated with 
300ms of data beginning 200ms before the point of peak return speed, i.e. reach and return. (B) 
Compare to Figure 5A. Modulation for the preferred arm plotted against arm preference, for all 
units in each brain area. Log-linear best fit lines are displayed in red. Inset figures belong to 
Monkey W. (C) Compare to Figure 5B. Slopes of regression lines fit to data from (B), 
independently for ipsi- and contra-preferring sub-populations. Mean +/- bootstrapped 95% 
confidence interval. (D) Compare to Figure 5F. The proportion of modulation within each 
partition from (C) during ipsi- or contralateral movements. Note that the total modulation is 
significantly lower for ipsilateral movements, particularly for Monkey W, and these data are 
only displayed as proportions. Mean +/- bootstrapped 95% confidence interval. 
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Figure S2.4 Subspace analysis using alternative firing rate normalization. Prior to 
performing PCA, an alternative method of normalizing firing rates was used for these plots. 
Rather than dividing by the standard deviation at Rest, each unit’s firing rate trace was divided 
by the full firing rate range + 5Hz [8, 80, 108]. This will mitigate the effect of highly modulated 
units, which PCA will preferentially represent otherwise. (A) Repetition of Figure 7D. (B) 
Repetition of Figure 8F. 
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Figure S2.5 Method for fine timescale analysis of population coding and subspace 
separation. This schematic outlines the process for fine timescale analysis of population coding 
using LDA and leave-one-out cross-validation. Neural data were organized as 3D tensors (units, 
time windows, trials). Models were trained to predict targets using a single time window and all 
but one trial. Those models were then used to predict the target on the held-out trial, making 
separate predictions based on neural data from each time window. The process was then 
repeated using the next time window as training data until all possible pairs of time windows 
had been used as training and testing data. This constituted a 2D matrix of “hit” booleans 
(number time windows x number time windows) for the predictions of a single trial. After 
iterating over all trials to be used as held-out test data, the mean was taken across trials to 
construct a single 2D matrix of classification accuracy. The same basic process was used for 
visualizing the development of subspace separation, but instead of leave-one-out cross-validation 
trial sets were repeatedly divided into two random halves of equal size. Covariance alignment 
was then computed between all possible pairs of timepoints for the two disjoint trial sets. 
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Chapter 3 

Interactions between bilateral limb 
posture and unilateral reaching 
signals 
 

 

3.1    Introduction 
 The previous chapter established fundamental properties of the signals relating to 
movements of the two hands. In particular, it characterized the level of independence 
between the two arm signals during isolated movements and identified a meaningful 
overlap between them as well. The present chapter now seeks to understand bilateral 
signal interactions from a functional perspective, focusing largely on how posture of the 
stationary hand impacts unimanual reaching signals. 

 Despite being nominally “motor”, passive movement of the arms influences 
activity in both the pre- and primary motor cortices, suggesting that sensory 
information also exists in these areas [7, 84, 145]. The presence of this information may 
allow contextually appropriate feedback responses [177] or reflect the forecasting of 
sensory consequences of movement [106, 205]. The concept of forecasting or mentally 
rehearsing a non-executed movement is particularly interesting when considering the 
presence of ipsilateral activity in the motor cortex. Evidence for mental rehearsal of 
actions has been shown in the activity of PMd [46, 211] and M1 neurons [77, 211]. An 
intriguing idea is that activity in these areas during unimanual movements of the 
ipsilateral arm reflects a covert motor command simulating what the non-selected 
(contralateral) arm would do if it were performing the action. 

 During delay periods prior to movement when requirements for the upcoming 
action are left ambiguous, activity associated with multiple potential actions has been 
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observed in motor cortical activity [47, 50, 111]. Even after action selection, activity 
related to this parallel action may continue covertly throughout movement and yield 
spurious “ipsilateral” modulation that is truly related to the contralateral limb. Notably, 
however, preparatory activity appears to be largely effector-independent, reflecting the 
action and its visual consequences rather than actual implementation [45, 165]. 
Nonetheless, effector-independent preparatory signals could seed the evolution of 
multiple parallel movements, with effector selection happening independently. If this 
were the case, one would expect to see correlated activity profiles for movements of the 
two arms. This has been observed to some extent within PMd neurons [45], and is more 
commonly reported using macroscopic methods like functional magnetic resonance 
imagine (fMRI) [69] and electrocorticography (ECoG) [30]. However, correlations 
between ipsilateral and contralateral tuning in M1 neurons have typically been reported 
as weak or absent [45, 108, 204]. 

 Sensory modulation of motor cortical activity may also be important for 
bimanual coordination. Neurons in M1 have been shown to integrate multi-joint sensory 
information to produce appropriate feedback responses following joint-torque 
perturbations [177]. In much the same way, activity in a single hemisphere that 
ultimately drives movement of the contralateral limb may integrate state information 
regarding both limbs in order to coordinate bilateral interaction. Indeed, signals in 
primary motor and caudal premotor cortex during bimanual behavior have been shown 
to reflect non-linear interactions of unimanual signals [69, 72, 133]. The state of one limb 
therefore alters the relationship between neural activity and behavior for the other limb, 
a feature critical for coordination.  

In the current study, we devised an experiment to test the sensitivity of 
unimanual reaching signals to posture of the stationary hand. Two macaque monkeys 
were trained in a variant of an instructed-delay reaching task where the two hands 
began each trial in one of three starting configurations: left hand eccentric with right 
hand centered, both hands centered, or left hand centered with right hand eccentric. We 
found that neural activity associated with reaching movements was sensitive to the 
current posture of the stationary hand, despite the fact that it was not involved in the 
movement itself. Classifiers trained to predict reach targets incurred a generalization 
cost when tested on trials where the stationary hand was held in a different posture 
than the trials used for model training. Errors showed a tendency to happen in the same 
direction as the change in stationary hand posture, suggesting that target coding shifted 
congruently with the postural state. Furthermore, we isolated components of the 
population response that captured the interaction between posture and target coding. 
Separation of target traces along these components largely reflected the horizontal 
geometry of physical target locations and revealed a preferential impact on reaches to 
the contralateral space. These results are in keeping with a covert motor command that 
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quietly simulates actions of the non-selected hand, yet some other results were 
inconsistent with this hypothesis as well. However, the findings may also be interpreted 
within the context of bimanual coordination, where bilateral postural state is integrated 
into the motor commands for a single limb, or whole-body control, where mechanical 
properties of the body that are altered by postural changes must be accounted for in the 
reach command.  

   

3.2    Results 
3.2.1    Task design 

The data reported in this chapter were collected during the same recording 
sessions as those of the previous chapter (see Methods 3.4.1 and Chapter 2 for dataset 
details). We introduced a manipulation to the basic instructed-delay reaching task for 
the purpose of investigating the interaction between passive posture of the stationary 
arm and population coding of reaching signals. At the start of each trial, monkeys 
placed their hands in one of 3 different starting configurations: left hand eccentric with 
right hand centered, both hands centered, or left hand centered with right hand 
eccentric (Figure 3.1B, corresponding panels ordered left to right).  

This modified posture creates at least 3 changes that are potentially relevant to 
the computations being performed in the motor cortex during unimanual reaching. First, 
this postural change may simply modulate activity to represent the current state of each 
limb. Another possibility that expands upon the previous one is that the relative state of 
both limbs is pertinent to the population reaching signals, potentially serving a role in 
bimanual coordination or whole-body control. Lastly, the lateral shift from centered to 
eccentric starting position greatly alters each of the target vectors for the hand that 
occupies the new starting position (Figure 3.1B, boxed schematic). Consider, for 
example, target vectors for the top-right target (Figure 3.1B, red lines). Shifting to the 
eccentric posture induces a 79° change in target vectors, and the vector connecting the 
eccentric position to the top-right target becomes identical to the vector connecting the 
centered position to the top-middle target. If some degree of activity arises in 
association with the necessary movements for both arms to reach towards a single 
target, then the postural shift would therefore alter that activity as well. 

3.2.2    Single-unit responses 
We first broadly characterized the tuning properties of single units. Units were 

categorized as being tuned to movements of the ipsilateral arm, contralateral arm, or 
both arms in each phase. Note that tuning is not the same as modulation as described in 
the previous chapter; tuning requires that the firing rates for at least one target be 
significantly different from the rest. The proportions of units in each tuning category are  
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Figure 3.1. Task design. (A) Monkeys reached to one of six targets arranged in a 2x3 fronto-
parallel grid. (B) At the start of each trial, monkeys placed their hands in one of three starting 
configurations: left hand eccentric with right hand centered (left panel), both hands centered 
(middle panel), or left hand centered with right hand eccentric (right panel). Note that when 
the stationary hand was in the centered position only 5 targets were included in the possible 
target set; the bottom target in the contralateral space was removed to prevent the two hands 
from coming in close proximity with one another. The boxed image indicates the angular 
difference between target vectors originating from the centered or eccentric starting positions for 
each of the targets in the top row. (C) Each trial consisted of 3 phases (repeated from Figure 
2.1B). Trials were initiated by placing both hands in their color-coded starting positions for 
500ms (Rest). A small target then appeared at the location of the future reach in a color that 
indicated which hand to use. The monkey remained still during cue presentation for 0.5-1.5s 
(Instruct). The start target for the reaching hand then disappeared while the reach target 
enlarged to cue movement (Move). (D) Starting configurations and hand assignments were 
organized in a nested block structure. Using a single starting configuration, monkeys would 
perform 2 trials per target for the left hand then 2 trials per target for the right hand. The 
starting configuration would then change, and the blocks of left- and right-hand reaches would 
repeat. The order of reach target locations was randomized within each block. 
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summarized in Table S3.1. As expected, Instruct phase tuning was most prominent in 
PMd units. 65%/61% of PMd units were tuned to movements of at least one arm during 
the Instruct phase compared to 56%/25% of units in M1 for monkeys O and W, 
respectively. These proportions became approximately equal during the Move phase. 
Importantly, many units were tuned to movements of both arms. The proportion of 
bilaterally tuned units tended to be slightly higher in PMd, particularly during the 
Instruct phase. 26%/19% of units in PMd were bilaterally tuned during the Instruct 
phase, compared to 22%/2% in M1. Both animals exhibited an increase in the number 
of bilaterally tuned units within each region during the Move phase (PMd: 63%/40%, 
M1: 63%/33%). These results are in broad agreement with the existing literature [8, 45, 
108]. 

For all tuning profiles that were significant, we also tested whether they were 
significantly different across the two postures of the stationary arm (Figure S3.1). 
Despite the stationary hand being uninvolved in the movement, many tuning profiles 
differed across postures. We refrain from comparing the proportion of significantly 
altered tuning profiles across phases or brain regions, as there are various reasons why 
differences in proportions could exist, each with very different interpretations. For 
example, a larger proportion may indicate larger magnitude shifts in tuning, or simply 
reflect more precise tuning profiles in each posture that are better statistically powered 
for determining a significant difference. The core observation is simply that these tuning 
profiles do shift, a phenomenon that we will investigate more thoroughly at the 
population level. 

Finally, we performed an analysis of the similarity between tuning profiles for the 
ipsi- and contralateral arms in all units that were bilaterally tuned. Target activations 
were modestly correlated across the two arms (Figure S3.2). We assessed correlated 
tuning in both extrinsic and intrinsic reference frames by reflecting target labels across 
the midline, but no clear and consistent preference for either reference frame was 
observed (Figure S3.2.E). In general, the correlation did not differ strongly across task 
phases or brain regions either, with Spearman’s correlation coefficients typically falling 
in the range of 0.3-0.5.  

3.2.3    Target classification using population activity is sensitive 
to posture of the stationary hand 

We next analyzed the influence of stationary arm posture on population-level 
reaching signals. It is expected that the population state may be impacted by the 
passive posture of the limbs, yet it is unclear whether that impact will be relevant to 
readouts of the active behavior. To test this, we trained linear discriminant analysis 
(LDA) classifiers to predict which targets monkeys reached to on individual trials 
(Figure 3.2). These models identify axes in neural state space that separate the different  
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Figure 3.2. Neural population activity reflects the geometry of reaching targets 
during instructed-delay and movement. (A) PCA projections of trial-averaged neural 
activity from M1 for each target during the Instruct (left panel) and Move phase (right panel). 
The Instruct phase plot shows data from 100ms before onset of the instructional cue to 500ms 
after. The Move phase plot shows data from 200ms before movement onset to 300ms after. The 
traces in both plots fade from grey to the corresponding target color to indicate the 
advancement of time. The 3D perspectives were manually rotated to optimize the view of target 
separation for comparison with the physical geometry of the reach targets (displayed in the 
cartoon on the right with corresponding target colors). PC’s 2-4 were displayed for the Instruct 
example, as PC1 appeared largely target invariant. These examples are from the right 
hemisphere of Monkey O during left arm trials and include both M1 and PMd activity. (B) 
Confusion matrices for cross-validated target classification using LDA. The color of cells within 
a subplot indicates the row-normalized frequency of a predicted target for a given true target. 
The target labels in the bottom left subplot are color coded to the corresponding targets in the 
cartoon of panel A. Classifiers were only created for trials where the reaching hand began in the 
centered start position, and separate classifiers were trained for each posture of the stationary 
hand. Right hand target labels were mirrored to combine with left hand trials. Both M1 and 
PMd activity was included in each model. Note that target 6 was omitted, as this target was 
unreachable when the stationary hand was held in a centered position. Note also that each 
subplot uses a different colorbar scale. 
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reach targets, and therefore reflect dimensions of the signal that distinguish movement 
types and may ignore changes in neural activity that are common to all movements like 
stationary arm posture. To determine whether these classifier models were sensitive to 
posture of the stationary arm, we implemented a model generalization testing approach. 
The same testing set of neural data was used to evaluate models trained using either 1. 
held-out trials with the same posture of stationary hand (“Within” training condition), 
or 2. trials with the stationary hand in the other posture (“Across” training condition). 
A drop in performance between these two training conditions would indicate an 
interaction between posture of the stationary arm and target coding. 

Models were trained using populations from a single hemisphere so that ipsi- and 
contralateral sensitivity could be analyzed separately and compared. Models were also 
trained separately for each task phase. Units from PMd and M1 were combined. 
Accuracy of target predictions for each of these conditions is summarized in Figure 
3.3A, with each pair of connected datapoints indicating the same testing set data 
evaluated in each of the two training conditions. We found that training models using a 
different posture of the stationary hand did in fact incur a generalization cost (Figure 
3.3B). We analyzed the effects on model accuracy using a permutation-based repeated 
measures ANOVA for the following factors: Hand (2 levels – Ipsi, Contra), Phase (2 
levels – Instruct, Move), and Training Condition (2 levels – Within, Across). The three-
way interaction was significant in both monkeys (monkey O: p=0.042, monkey W: 
p=0.025), so follow-up two-way tests were performed.  

For ipsilateral classifiers, there was a significant two-way interaction between 
Phase and Training Condition (monkey O: pIpsi=8.2e-3, monkey W: pIpsi=2.9e-3). 
Across-posture classifiers performed worse than Within-posture classifiers during both 
phases (one-way test – monkey O: pIpsi,instruct=1.0e-5, pIpsi,Move=1.0e-5; monkey W: 
pIpsi,Instruct=0.037, pIpsi,Move=2.0e-4), but the generalization cost was greater during the 
Move phase. On average, the performance drop was -5.9%/-4.5% during the Instruct 
phase and -10.5%/-11.9% during the Move phase. For contralateral classifiers, there was 
no interaction between Phase and Training Condition for either animal (monkey O: 
p=0.90, monkey W: p=0.98), and a performance drop across arm postures was only 
significant for monkey O (monkey O: pContra =2.1e-4; monkey W: pContra=0.24). However, 
this performance drop for contralateral classifiers in monkey O was less than the drop 
for ipsilateral classifiers in both phases, averaging -3.0% during Instruct and -3.2% 
during Move. The interaction effect representing this differential sensitivity was 
significant for the Move phase, but just below the threshold for significance in the 
Instruct phase (monkey O, Hand x Training Condition interaction – pInstruct=0.057, 
pMove=4.4e-4). 

In summary, changes in posture of the stationary hand counterintuitively affected 
classification of reach targets on individual trials. Ipsilateral signals were most sensitive  
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Figure 3.3. Posture of the stationary hand impacts the ability to classify reach 
targets. (A) Performance of LDA target classifiers across postures of the stationary hand. 
Models were trained to predict reach targets using neural data from both M1 and PMd in a 
single hemisphere. Classifiers were trained on either trials with the stationary hand in the same 
posture as the test set (”Within” closed circles) or on trials of the other posture (”Across” open 
circles) using fully cross-validated methods to make the two measures comparable. Each pair of 
datapoints connected by grey lines corresponds to data from a single recording session. Only the 
5 targets that were in the target set for both stationary hand postures were used in the models, 
making chance level 0.2. Because classifiers at or below this value would not contain meaningful 
information about model generalization, any datapoints meeting those criteria in the “Within” 
condition were removed from statistical analysis but remain plotted in grey. (B) Generalization 
cost across stationary hand postures. The drop in accuracy between the two model training 
conditions (Across - Within) was computed for each set of datapoints to measure the 
generalization cost associated with switching postures of the stationary hand. Pairs of datapoints 
connected by grey lines represent the same set of units recorded in a single recording session 
from a single hemisphere evaluated during either ipsi- (blue dots) or contralateral (red dots) arm 
trials. 
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to this perturbation, incurring a greater generalization cost when models were trained 
and tested on different postures. The effect was also most prominent during the 
movement itself, as compared to the instructed-delay period. 

3.2.4    Target coding shifts congruently with shifts in the posture 
of the stationary hand 

In order to investigate the specific ways in which classifier performance was being 
affected, we analyzed the confusion matrices associated with these models. We 
computed the relative change in prediction frequencies for each of the targets between 
the two training conditions and plotted the results in Figure S3.3. For example, if neural 
activity during trials for target 2 was more frequently predicted as target 1 when the 
classifier was trained using a different stationary hand posture, then we would observe 
an increase in the matrix cell corresponding to True Target 2 and Predicted Target 1. 

We were specifically interested in the direction of shifts in these erroneous 
predictions, and therefore summarized the results by computing changes in frequency for 
target misclassifications in each direction: high, low, same direction as the postural shift, 
or opposite direction of the postural shift. These frequencies represented predictions of 
the closest target in the given direction from the true target. Consider, for example, 
target predictions for left arm movements when the stationary right arm is held in the 
centered position (Figure 3.4A). The Across-posture condition would represent 
predictions for a model trained with the stationary right hand shifted rightward to the 
eccentric position. Therefore, if the top-middle target were misclassified as the top-right 
target, it would be considered a miss in the same direction as the postural shift. The 
resulting changes in directional miss frequencies that we observed are displayed in 
Figure 3.4B. We were particularly interested in whether predictions shifted horizontally 
in the same direction as the postural shift, as this is what would be predicted if a 
component of the population signal reflected the movement that the stationary arm 
would perform if it were selected for action. Additionally, this feature could point to 
coding of relative arm states or bilateral state-dependent modulation that could be 
important for bimanual coordination.  

As in the previous section, we performed a permutation-based repeated measures 
ANOVA for the following factors: Hand (2 levels – Ipsi, Contra), Phase (2 levels – 
Instruct, Move), and Miss Direction (2 levels – Same, Opposite). No significant 
interactions were found involving the Miss Direction factor; however, a main effect of 
Miss Direction was observed for both monkeys (monkey O: p=3.0e-5; monkey W: 
p=1.0e-5). The change in prediction frequency was higher for misses in the same 
direction as the postural shift than it was for the opposite direction. In fact, while misses 
in the same direction as the postural shift increased on average (monkey O: µ=3.4%; 
monkey W: µ=2.6%; mean taken across hands and phases), across-posture classifiers  
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Figure 3.4. Target coding shifts congruently with changes in stationary arm 
posture. (A) Schematic illustrating misclassification directionality. Consider classifiers of left 
arm reaches tested on trials with the stationary right hand in the centered posture. Classifiers 
are trained using either trials of the same posture (”Within Model”) or with the stationary hand 
shifted rightward to the eccentric position (”Across Model”). In this example, the two trained 
classifiers have learned to associate the same neural state to 2 different reach targets, indicated 
by the dotted lines in the top panels. When tested, the Within Model predicts the correct target 
(green) while the Across Model predicts the target to the right (orange). Since the postural and 
prediction shifts are in the same direction, this Across Model prediction is labeled as a same 
direction miss. (B) Each plot displays the change in frequency for misclassification in each of 4 
different directions: high (H), Low (L), same direction as the postural shift (S), and opposite 
direction of the postural shift (O). To construct these plots, the number of times that a classifier 
predicted the target adjacent to the true target in the specified direction was computed and 
divided by the total number of trials. The plotted values represent the difference in these 
proportions between the Within-posture and Across-posture classifier conditions. A positive 
value indicates an increase in the directional miss frequency in the Across-posture case.  
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actually became less likely to miss in the opposite direction of the shift (monkey O: µ=-
0.9%; monkey W: µ=-1.9%). These results suggest that across both hands and phases, 
target coding at the population level shifts congruently with changes in the posture of 
the stationary hand.  

3.2.5    Target classifiers fail to generalize across the two hands  
Since target coding displayed a tendency to shift congruently with the posture of 

the stationary hand, it is possible that a component of the population signal reflects 
what that stationary hand would do if it had been selected for execution of the action. 
This component of the signal would be present during movements of either arm, albeit 
likely greater in magnitude when it represents the selected movement. Therefore, an 
additional prediction of this hypothesis is that target coding will show some level of 
generalization across the two arms.  

 

 
Figure 3.5. Target classifiers fail to generalize across the hands. Classifiers were trained 
to predict movements of one hand using activity from one hemisphere, then tested on trials of 
the other hand. Plot colors indicate which hand the classifiers were tested on (red: contra, blue: 
ipsi). Generalization was tested in both extrinsic and intrinsic reference frames, where target 
labels were mirrored across the midline to obtain predictions in the intrinsic space. Filled circles 
(left side of each set) represent the extrinsic reference frame, and open circles (right side of each 
set) represent the intrinsic reference frame. Each datapoint represents a single recording, and 
thick horizontal lines indicate the mean across recordings. 
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We tested this prediction by training LDA models to predict movements of one 
hand and testing them on the other. Models were evaluated in both directions: trained 
on ipsilateral movements, tested on contra, and vice-versa. We also evaluated 
generalization in both extrinsic and intrinsic (mirrored target labels) reference frames. 
These classifiers failed to generalize across the arms in all circumstances (Figure 3.5). 
Target-specific modulation in both the Instruct and Move phases caused cross-arm 
classification accuracy to become more variable simply because there was more variance 
in the signals. This is indicated by the increase in spread during the Instruct and Move 
phases in Figure 3.5. However, the relationship between this modulation and the 
behavior was not strongly preserved across the two arms and thus resulted in mean 
accuracy being similar to classifiers trained using neural data prior to target 
presentation (Rest phase). These results suggest that the associations between neural 
activity and behavior that are modeled by these LDA classifiers are not strongly 
maintained across the two arms.  

3.2.6    Analysis of the interactions between target and posture 
coding using dPCA  

To further analyze the interactions between target and posture coding, we used 
demixed principal components analysis (dPCA) [136]. dPCA attempts to decompose the 
population signal into components that each exclusively represent variance associated 
with a single task parameter or set of parameter interaction terms. We applied the 
method using 3 task parameters: Time (condition-independent), Target, and Posture (of 
the stationary arm). The marginalization procedure yields both main effect and 
interaction terms, which we grouped into 4 categories: Time (only Time term), Target 
(Target, Time x Target), Static Posture (only Posture term), and Posture Interaction 
(all interactions involving Posture). Our primary interest was in the Posture Interaction 
group, as these components would be those responsible for the generalization cost 
observed during LDA classification.   

Unit data were trial-averaged, normalized, and combined across recording 
sessions for this method. Since we were no longer limited by the number of units 
simultaneously recorded during a single session (which was the case using LDA), our 
unit counts were effectively larger and allowed us to separate PMd and M1 as well as 
data from each hemisphere in order to analyze the areas independently. Each model was 
therefore trained using data from a single monkey, a single area (PMd/M1), a single 
hemisphere, and a single hand (ipsi/contra). The number of components was selected 
independently for each model as the minimum number that provided at least one 
component in each term category and a total of 8 condition-specific (non-Time) 
components [123]. 
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Results from two example datasets are displayed in Figure 3.6, using PMd 
activity in either hemisphere of monkey O during ipsilateral reaches. The remaining 
datasets are displayed in the supplement (Figure S3.3-4). As designed, the model 
identified components that primarily captured variance for specific marginalizations of 
the data. The bars in Figure 3.6A-B display the proportion of total variance accounted 
for by each component. These bars are actually composed of horizontally stacked 
segments that represent the variance from each term source, yet each bar is primarily a 
single color as a result of the demixing. The models ranged in size from 12-18 
components and captured an average of 88% of the total variance. As in previous 
reports in forelimb motor tasks (e.g. [123]), the majority of variance was related to the 
condition-independent Time term (average 60% of total; Figure 3.6A-B, Figure S3.3-4, 
blue bars). On average, target components explained the next most variance (average 
20% of total; Figure 3.6A-B, Figure S3.3-4, orange bars).  

The amount of variance captured along Static Posture dimensions was greater for 
ipsilateral arm movements but did not differ substantially across PMd and M1. These 
components accounted for an average of 10% in Ipsi PMd, 1% in Contra PMd,  11% in 
Ipsi M1, 2% in Contra M1 (averages include 4 samples: 2 hemispheres from each 
monkey). The Posture Interaction dimensions followed this same trend (Ipsi>Contra) 
and captured the least variance, averaging 3% in Ipsi PMd, 1% in Contra PMd, 2% in 
Ipsi M1, 1% in Contra M1. To consider the relative impact on movement-specific 
activity patterns, we also calculated the ratio of variance captured across Target 
dimensions and Posture Interaction dimensions. This ratio, expressed as Posture 
Interaction divided by Target, averaged 0.18 in Ipsi PMd, 0.04 in Contra PMd,  0.13 in 
Ipsi M1, 0.03 in Contra M1. These results complement our previous observation that 
LDA target classifiers were more sensitive to posture when classifying ipsilateral reaches. 

The method by which we selected the number of components ensured that there 
would be Posture Interaction dimensions in our models, but what we were most 
interested in was precisely how the relationship between target signals changed as a 
function of stationary hand posture, and how this relates to the physical geometries of 
the target configuration and postural states. A general trend across the datasets is 
illustrated in the bottom plots of Figure 3.6C-D where projections onto the top Posture 
Interaction components from two example models are displayed. During Rest, the two 
postural states were shifted with a simple DC offset from each other (left of vertical red 
dotted line). Following instruction (right of vertical red dotted lines), the neural states 
along this dimension deviated in opposite directions for the two postures, either 
converging on each other or even becoming mirrored with respect to their Rest phase 
relationship. Leading up to and during movement (vertical blue dotted lines), target 
traces began to separate from each other in a way that reflected their horizontal 
geometry. This resulted in movements toward the contralateral space being most  
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Figure 3.6. Analysis of the interactions between posture and movement coding 
using dPCA. Example dPCA results from PMd of monkey O during ipsilateral reaching trials. 
The left column uses the left hemisphere (ipsi=left hand) and the right column uses the right 
hemisphere (ipsi=right hand). (A-B) The proportion of total variance explained by each 
component for the left hemisphere (A) and right hemisphere (B) models. Each color represents a 
certain set of marginalization terms. Component numbers reflect the ranked order based on 
variance accounted for, and only the top component from each grouping is labeled. The bars are 
actually composed of horizontally stacked segments that represent the variance from each term 
source, yet each bar is primarily a single color as a result of the demixing. (C-D) Projections 
onto the top component for each term set for the left hemisphere (C) and right hemisphere (D) 
models. Each plot shows all 10 signal traces (2 stationary arm postures x 5 targets). Solid lines 
represent the centered stationary arm posture and dashed lines represent the eccentric posture. 
Target traces are color coded to the cartoon in the top right. 
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affected (Figure 3.6C bottom plot blue lines, 3.6D bottom plot green lines), which is 
indicated in the plots by the deviation between centered and eccentric postures for 
corresponding target traces. We note that these reaches towards the contralateral space 
correspond to the targets that experience the greatest angular change in the vectors 
connecting the stationary hand position to target position in physical space (Figure 
3.1B, boxed schematic). 

Target separation along the top Posture Interaction components was rarely (and 
weakly) observed during the Instruct period, as in the examples of Figure 3.6. 
Quantitative comparisons between ipsi- and contralateral movements or PMd and M1 
have not yet been performed, although the same trends appear to be present across 
most of the models. A notable exception was PMd activity for monkey W, where 
Posture Interaction Components appeared noisier and only very weakly showed the 
mirroring properties, if at all (Figure S3.3, right column). This may be due to the lower 
cell counts entered into those models (left hemisphere: 66 units, right hemisphere: 73 
units), which should be taken into consideration during interpretation. 

 

3.3    Discussion 
In the present study we have demonstrated that reaching signals at the single-

unit and population levels are sensitive to bilateral arm posture. Classifiers trained to 
predict reaching targets incurred a generalization cost when the posture of the 
stationary hand was different between training and testing sets. This sensitivity in the 
mapping between neural state and behavior was more prominent for activity ipsilateral 
to the reaching hand and contralateral to the stationary hand that experienced the 
postural shift. The direction of classification errors shifted congruently with the changes 
in the postural state. Components of the population response capturing the interaction 
between posture and target coding primarily affected the horizontal dimension with 
preferential impact on reaches to the contralateral space.  

3.3.1    Interpretation through the lens of bimanual coordination 
 The motor cortex secures its name by being the cortical region with the most 
projections to spinal motor neurons (including pre- and primary sub-regions [73]) and 
requires the lowest amplitude stimulation for evoking movements [170]. However, it has 
long been known that the motor cortex exhibits significant sensory responses as well [84, 
106, 198]. There is evidence that motor cortical function is modulated by limb state [99, 
189, 190]. Sensory signals in the motor cortex have been discussed in terms of long-
latency reflex responses and feedback control capable of integrating information across 
the joints to provide appropriate responses [98, 177]. One might similarly ask whether 
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the motor cortex integrates state information across the two arms to provide 
appropriate motor output during bimanual coordination.  

 We report that the posture of the stationary limb influences the mapping 
between neural activity and reaching movements in the motor cortex, as captured by 
LDA classifier models. During active movement of both limbs, previous studies have 
identified distinct bimanual activity patterns in the motor cortex that are not simple 
combinations of what is observed during unimanual behavior [69, 72, 133]. While 
evidence of these bimanual patterns has been shown in both M1 and PMd, it has been 
recently argued that neural populations closer to the central sulcus maintain stronger 
independence between signals for the two arms [55]. Rather than looking at interactions 
between two active movement signals, our study instead investigates the interaction 
between active reaching signals of a single arm and the passive state of the other arm. It 
is important to note that we cannot definitively say whether the different postural states 
represent a truly passive manipulation, as we did not record EMG and cannot rule out 
differences in muscle activity for active maintenance of the two postures. However, we 
may speak more generally in terms of the “state” of the limb, which may include 
efference as well as afference that do not change over time. A recent imaging study has 
shown that although generic suppressive responses in the ipsilateral motor cortex are 
observed during both active and passive finger movements, only active movement 
produces activity specific to the movement type (i.e. finger-specific [16]). Our results 
nicely complement this work, suggesting that although passive changes in ipsilateral 
limb state may not induce movement-specific activity patterns, these changes may still 
impact the functional organization of the circuit. A potential future analysis for drawing 
further parallel with this imaging study would be to test performance in classifying 
postural states during the Rest period using ipsilateral or contralateral activity. If the 
results for finger movements translated to arm postures, then we would expect weak or 
non-existent performance from the ipsilateral hemisphere. 

 We now discuss the two complementary results that: (1) classification errors 
when generalizing across postures tend to occur congruently with the postural shift 
(Figure 3.5), and (2) neural dimensions that capture the interaction between target and 
posture coding reflect the horizontal geometry of reaches, and preferentially capture 
signal changes during reaches to the contralateral space (Figure 3.6). These results may 
have a few different interpretations within the lens of bimanual coordination. First, it 
stands to reason that signal interactions between the two arms would be most pertinent 
when they are close together in physical space. For two effectors to interact during 
behavior, they must be close together. The biased effect during reaches to the 
contralateral space may reflect this concept: reaches away from the stationary hand are 
relatively unaffected by its postural state, since they will not be interacting, but reaches 
toward the stationary hand experience a greater modulation due to posture, since they 
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are entering into the same workspace. The signal interactions that we observe could also 
speak to a form of whole-body control. Since the two arms are physically linked through 
the torso, changing the posture of the stationary hand would impact mechanical 
properties of the system as a whole. These changes in the mechanical properties of the 
linked body may require modification of the reaching command, since the rotational 
forces induced by reaching will be experienced differently after the postural adjustment. 
These final ideas, while reasonable, should be considered speculative until more 
specifically tested. 

 

3.3.2    Covert motor commands for the stationary arm 
 Covert motor commands, which we operationally define as any activity patterns 
that mirror true movement while the limb remains stationary, have been reported in 
several forms. “Mirror” neurons display an intriguing behavior whereby similar patterns 
of activity are produced during both action and action-observation. These mirror 
neurons were first identified in premotor cortex [70], but have also been reported in M1 
[211]. The activity of these cells may also be related to the concept of mental rehearsal, 
where a non-executed action is simulated in neural circuits. Indeed, it is possible to train 
decoders for brain-machine interfaces (BMI) control using activity during passive 
observation of a task [206], suggesting that those activity patterns are similar to what 
the subject may naturally attempt to produce when controlling the BMI. 

 Might it be possible that circuits in the motor cortex could produce covert motor 
commands while simultaneous executing another? This could provide an account of 
motor signals ipsilateral to the active hand as being weakened simulations of what the 
contralateral (stationary) hand would do should it be selected for action. Our result that 
unimanual reaching signals are sensitive to posture of the stationary arm would align 
with this sort of account. Changing the position of the stationary arm would alter the 
implied reach trajectory to each target (Figure 3.1B) and would therefore modify a 
putative simulation of the neural activity required to execute that trajectory. We also 
observed that target classification errors tended to shift congruently with the posture of 
the stationary hand (Figure 3.4B) and the same targets that would be expected to see 
the greatest changed in implied trajectory were the ones that were most distinguished 
along neural dimensions that captured posture and target coding interactions (Figure 
3.6).  

This hypothesis would rely upon the same neurons being involved in movements 
of either arm, having the same response properties for both arms as well. If some 
component of the activity during ipsilateral arm movements were a weakened simulation 
of what the contralateral arm would do, then one would expect to see similar patterns of 
activity regardless of which arm was selected. We did observe many bilaterally tuned 
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units (Table S3.1) but tuning across those sub-populations was only modestly correlated 
for the two arms and didn’t show a preference for a particular references frame (Figure 
S3.2). Additionally, LDA classifiers failed to generalize across the two arms (Figure 3.5). 
However, it is important to note that changes in the magnitude of the signal may cause 
these classifiers to fail, rather than the patterns per se, i.e. similar patterns underneath a 
global suppression of activity might show similar results. Simultaneous representations 
of multiple different action choices have been previously reported in PMd neurons [47, 
50], but only during periods where the upcoming action requirement is left ambiguous to 
the subject. In line with what one might expect, after a cue arrives to indicate which 
action to choose, activity associated with the non-selected action fades away. Our results 
therefore offer some support for a covert motor command hypothesis, but do not 
produce other key predictions that, together with the existing literature, make it 
dubious to assign such a specific meaning to the presence of ipsilateral activity. 

                

3.3.3    Additional considerations and future analysis ideas 
In the current work, dPCA results have been presented in a largely qualitative 

manner. The trends can be seen visually but should be captured within a quantitative 
measure that can be further compared across brain areas (PMd/M1), laterality 
(ipsi/contra), and task phase (Instruct/Move). A first step may be to compute the root 
mean square (RMS) distance between target traces for the two postures in the Posture 
Interaction components to measure the relative impact that postural state has on each 
target along these neural dimensions. Additionally, consider the fact that components 
from different term categories are designed to be uncorrelated, but not necessarily 
orthogonal. Measuring the actual alignment between these dimensions could yield 
additional insight as to how the postural state is affecting target readouts from LDA. 
For example, if posture and target components are not orthogonal, then their additive 
effect could impact target coding by translating the neural state of all targets in one 
posture into a region of state space that is closest to the neural state associated with a 
single target in the other posture. Additionally, Laterality could be added as a 
parameter to the dPCA marginalization to examine which aspects of the task are limb-
dependent [55, 223]. In general, it may be possible to further tap the dPCA results for 
information regarding the geometric changes in target coding that result from postural 
changes of the stationary arm.   

In a similar vein, our directional miss results using LDA classifiers (Figure 3.4) 
could be nicely complemented by regressing the reach vectors in continuous space on the 
population neural activity. This may allow us to investigate the specific geometry of the 
effects induced by changing the stationary arm posture without being constrained to 
target representations. 
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 An additional consideration to make is whether the change in postural state 
induces target-specific micromovements of the stationary hand. We have found that the 
stationary hand does move very slightly during the Move phase (Figure 2.1E, Results 
2.2.1). EMG activity was not recorded, but these movements did not seem target-
specific in nature. However, this has not been exhaustively tested. The most plausible 
scenario in which stationary arm movements could be influencing our results can be 
described as follows: Movements to the contralateral space come in closer proximity to 
the stationary hand than those to the ipsilateral space and induce some resulting 
movement in the stationary hand that spuriously codes for the horizontal target 
position. When the stationary hand is moved to the eccentric position, it lies farther 
from the reaching path of the active hand. Those induced movements of the stationary 
hand are therefore mitigated or otherwise change in nature, resulting in an interaction 
between the spurious target code and stationary hand posture. This consideration was 
made during the experimental design, which is the reason why the bottom target to the 
contralateral space was removed from the set of possible reach targets. Visually, this 
seemed a conservative way of ensuring that the two hands would not exhibit any form 
of movement interaction. A more generic form of this concept would be that the change 
in postural state affects the rotational forces on the body during movement, which 
begins to mesh with hypotheses surrounding bimanual coordination as we have 
described earlier. In the future, we may perform control analyses that attempt to decode 
reach target and/or postural state from the (small) velocities of the stationary hand. 
This would not necessarily preclude the more generic form of this idea, where target- 
and posture-specific changes in motor output would reside in the axial musculature of 
the trunk. Performing new experiments with EMG recordings could provide testing of 
that idea by decoding movements from the axial musculature.   

 

3.4    Methods 
3.4.1    Dataset details 
 The datasets presented here overlap with those of the previous chapter. The same 
recording sessions are analyzed but include additional behavioral manipulations. In the 
caudal aspect of the dorsal premotor cortex (PMd) we recorded 433 (242 left 
hemisphere) and 113 (57 left hemisphere) single-units in monkeys O and W, 
respectively. In the primary motor cortex (M1) we recorded 331 (196 left hemisphere) 
and 289 (195 left hemisphere) single-units. For population level analyses (LDA, dPCA), 
a small number of multi-units were included. A multi-unit was defined by waveform 
clusters that separated from the noise cluster and were stable over time, yet did not 
quite meet the criteria for confident single-unit isolation (see Methods 2.4.3). For 
monkey O, the average proportion of multi-units in each single session population 
sample was 17%, ranging 12-25%. For monkey W, average 20%, ranging 12-32%. These 
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data were collected across 13 sessions for monkey O and 7 sessions for monkey W. In 
each session, monkey O performed between 606 and 1000 successful trials, and monkey 
W performed between 307 and 525 successful trials.  

 

3.4.2    Task design 
The basic form of the instructed-delay reaching task is described in the previous 

chapter. The key manipulation that was included in the present experiments was the 
starting configuration of the hands (Figure 3.1B). To initiate a trial, monkeys were 
required to place both hands in designated start positions (spherical targets, 4cm radius) 
that were arranged in one of three configurations: left hand eccentric with right hand 
centered, both hands centered, or left hand centered with right hand eccentric (Figure 
3.1B, corresponding panels ordered left to right). Centered starting positions were 4cm 
from the midline, and eccentric starting positions were 15cm from the midline. Reach 
targets were arranged in a 2x3 fronto-parallel grid at a depth of 8cm from the starting 
positions. The three columns of targets were located at the midline and +/-11cm on the 
horizontal axis (Figure 3.1A). The vectors connecting the start position to each target 
were therefore dramatically altered between configurations (Figure 3.1B, boxed image). 
This manipulation was designed to test if and how the mapping between neural activity 
and reaching behavior was sensitive to the position of the stationary hand.  

The trial timeline consisted of three phases (Figure 3.1C). These phases are 
described in more detail in the previous chapter and summarized here. A “Rest” phase 
began each trial, during which both hands remained stationary in the designated 
starting configuration. An “Instruct” phase then followed, when the monkeys were given 
instructions about the upcoming movement but were required to remain still. Finally, 
monkeys reached towards the target to obtain a reward during the “Move” phase.  

Trials were organized in nested blocks, with the starting configuration being the 
outer block and the hand assignment being the inner block (Figure 3.1D). Using a single 
starting configuration, monkeys would perform two trials per target reaching with the 
left hand, then two trials per target with the right. The starting configuration would 
then switch, and the blocks of left- and right-hand reaches would repeat with new 
randomized target orders. Note that in certain configurations one of the targets was 
removed from the set of possible targets presented to the animal. When the stationary 
hand was in the centered position, we did not present the bottom target in the 
contralateral space (e.g. left hand reaches to the bottom-right target), as the reach path 
to that target put the two arms in close proximity to one another and we wanted to 
prevent the risk of the two arms physically interacting at all (e.g. bumping into each 
other). 
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3.4.3    Surgical implantation 
All procedures were conducted in compliance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by the 
University of California at Berkeley Institutional Animal Care and Use Committee 
under protocol ID AUP-2014-09-6720-1. This protocol approval and all surgical methods 
apply to each chapter of this thesis. Two adult male rhesus monkeys (Macaca mulatta) 
were implanted bilaterally with custom acute recording chambers (Grey Matter 
Research LLC, Bozeman, MT). Partial craniotomies within the chambers allowed access 
to the arm regions of dorsal premotor (PMd) and primary motor (M1) cortices in both 
hemispheres. Localization of target areas was performed using stereotactically aligned 
structural MRI collected just prior to implantation, alongside a neuroanatomical atlas of 
the rhesus brain [169].  

 

3.4.4    Single-unit tuning 
To determine whether single-units were tuned to reaches of a given arm, a one-

way ANOVA was performed to determine whether firing rates were different for at least 
one of the reach targets. Tuning was determined using trials where the stationary hand 
was in the eccentric position so that all 6 targets were reachable by the active hand. 
The mean firing rate within phase windows was computed for each trial. For the 
Instruct phase, this window was 200ms to 500ms post-instruction. For the Move phase, 
this window was the first 300ms following movements onset. The ANOVA therefore 
operated on 6 vectors for a single phase, where each vector contained the mean firing 
rates on each trial performed for that target. An alpha level of 0.05 was used to 
determine significance. 

 

3.4.5    Comparison of tuning profiles across stationary arm 
postures 

For testing whether tuning profiles changed significantly across postures of the 
stationary arm, the average firing rate across trials was computed for each reach target 
(i.e. the firing rate on each trial was first averaged within the phase window, then 
averaged across trials for each target). Only the 5 targets that were reachable with both 
postures of the stationary arm were included in these analyses, thus the tuning profile 
was represented as a vector 𝑋𝑋 ∈ ℝ5. The observed angle between postures 𝑎𝑎 and 𝑏𝑏 could 
then be computed as: 
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𝜃𝜃𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑋𝑋𝑎𝑎 ∙ 𝑋𝑋𝑏𝑏

‖𝑋𝑋𝑎𝑎‖‖𝑋𝑋𝑏𝑏‖
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A reduced 2-target example of this method is illustrated in Figure S3.1. A permutation 
testing approach was used to determine whether observed angular differences were 
significant. Posture labels were shuffled across trials within individual targets (i.e. All 
trials for target 1 from both postures were combined, then reassigned randomly to 2 new 
groups of the same size as the original posture groups. This would then be repeated for 
each target.). The angular difference in tuning was then computed between these 
permuted datasets, and a p-value was assigned as the proportion of permutations that 
resulted in an angular difference at least as large as what was observed. 

 

3.4.6    Analysis of similarity between ipsilateral and contralateral 
target responses 

 The similarity between ipsilateral and contralateral tuning was assessed by 
analyzing the correlations between the mean firing rates associated with reaches to each 
target. Only those units which were considered tuned to movements of both arms were 
included in analysis. The starting configuration with both hands in the center was used, 
and only the 4 targets that were reachable from that configuration for both hands (top 
row, bottom-middle target) were included. Two vectors were constructed by 
concatenating the mean firing rates for these 4 targets across all units, yielding 
𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟,𝑋𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ ℝ4𝑛𝑛 , where 𝑛𝑛 is the number of units. Spearman’s correlation coefficients 
were then computed between these two vectors. Correlations were assessed in both an 
extrinsic reference frame, where target labels were maintained for the two hands, and an 
intrinsic references frame, where target labels were reflected across the midline so that 
cross-body movements were considered equivalent. 

 

3.4.7    Linear discriminant analysis (LDA) generalization 
procedure 

 Linear discriminant analysis (LDA) was used in this study to model associations 
between neural population activity and behavior, and then test whether those 
associations depended upon experimental manipulations. LDA was applied using the 
same preparation as in the previous chapter (see 2.4.9 Linear discriminant analysis). 
Mean firing rates on each trial were taken within the same phase windows as those used 
for single-unit analyses. These mean firing rates were then used as predictors in the 
LDA models.  

To assess how sensitive classifiers were to posture of the stationary hand, two 
different training conditions were used to predict the same target reaches. Leave-one-out 
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cross-validation was used for the “Within” posture evaluation. For the “Across” posture 
evaluation, the entire trial set from the other posture was used to train the classifier 
model. Cross-validation therefore allowed comparison of the two conditions without the 
risk of overfitting effects. Each value of accuracy represented the mean of both postures, 
i.e. Each “Within” accuracy datapoint was the mean of center-trained, center-tested and 
eccentric-trained, eccentric-tested performance. Each “Across” accuracy datapoint was 
the mean of center-trained, eccentric-tested and eccentric-trained, center-tested 
performance. 

Generalization across reaches of the two arms was also tested. It was expected 
that changing the reaching arm would negatively impact classifier performance, and the 
question was instead whether generalizing across the two arms would provide 
classification above chance level at all. Models were therefore trained for one hand and 
tested on the other in each phase. Separate models were trained and tested separately 
for each of the 3 starting arm configurations, and their predictions were all combined for 
computing a single accuracy value. Only the targets reachable by both hands were 
included in analysis, and that target set was different depending on the configuration. 
The chance level was therefore not simply 1/number of targets. The resulting accuracies 
for the Instruct and Move phase were compared against the Rest phase values, since the 
Rest phase came prior to target presentation and therefore should not contain any 
information about the forthcoming reach. 

 

3.4.8    LDA exclusion criteria 
 The analyses in this study generally followed a fully within-subject design: neural 
data from a single hemisphere was evaluated for each hand, phase, and model. For 
assessing generalization of LDA classifiers across postures of the stationary hand, it was 
necessary that the within-posture classifiers perform above chance level, since 
performance drops would not be meaningful otherwise. For each statistical test, any 
classifier that performed at or below the chance level (1/number of targets) was 
therefore removed. To maintain the within-subject design, all data associated with that 
same dataset was also removed. 

 

3.4.5    Demixed principal components analysis (dPCA) 
Interactions between target and posture coding were analyzed using demixed 

principal components analysis (dPCA) [136]. dPCA attempts to decompose the 
population signal into components that each exclusively represent variance associated 
with a single task parameter or set of parameter interaction terms. In this way, it 
marginalizes and decomposes the data like an ANOVA. We applied the method using 3 
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task parameters: Time (condition-independent), Target, and Posture (of the stationary 
arm). The marginalization procedure yields both main effect and interaction terms, 
which we grouped into 4 categories: Time (only Time term), Target (Target, Time x 
Target), Static Posture (only Posture term), and Posture Interaction (all interactions 
involving Posture). Components within each term group are designed to be orthogonal 
or near-orthogonal. However, components across term groups are only designed to be 
uncorrelated, and may not necessarily be orthogonal.  

Unit firing rates were first binned in 20ms non-overlapping bins, then smoothed 
using a gaussian kernel with standard deviation 50ms. These firing rate estimates were 
then trial-averaged and soft normalized using the full firing rate range +5Hz [8, 80, 108, 
123]. Units were then combined across recording sessions. The number of components to 
use in each model was determined independently, using the minimum number of 
components necessary to obtain at least one component for each term category and 8 
total condition-specific (i.e. not Time) components. Using 8 condition-specific 
components has been used previously under the rationale that 6-8 components typically 
capture much of the condition-specific variance in similar tasks [123]. 

 

3.4.11    Permutation-based ANOVA 
Permutation tests were used for both single and multi-factorial hypothesis testing 

when parametric tests were inappropriate. Multi-factorial repeated-measures ANOVA 
tests constrained permutations to exchangeable units where possible, resulting in 
approximate interaction testing and exact main effects testing [9]. p-values were 
estimated as the proportion of permutations resulting in test statistics that were at least 
as extreme as what was observed. In cases where the observed test statistic was more 
extreme than any permutations, we assigned a p-value of 1/number of permutations = 
1.0e-4.  
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3.5    Supplementary Figures 
 

 
Table S3.1.  Proportions of significantly tuned single-units across task phases. For 
well isolated single-units in each brain area, the proportions of units that were significantly 
tuned to different target reaches (one-way ANOVA comparing firing rates across targets, 
p<0.05) are displayed in each cell of the table. Note that this is different from the significant 
modulation data in Table 2.1 – tuning refers to activity for at least one of the targets being 
different from the rest, while modulation referred to significant deviation from baseline activity 
in general and could be identical across targets. For each phase, single-units were classified as 
uniquely ipsi, contra, or bilaterally tuned. Top row in each pair of rows represents Monkey O, 
bottom row Monkey W. 

 

 

 
Table S3.2.  Proportions of tuning profiles that were sensitive to posture of the 
stationary hand. Each cell of the table displays the proportion of significant tuning profiles 
that were also significantly different between the two postures of the stationary hand 
(permutation test, p<0.05). Top row in each pair of rows represents Monkey O, bottom row 
Monkey W. 
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Figure S3.1. Quantifying differences in target tuning. (A) Schematic of a reduced 
example in 2-dimensional space. Consider tuning profiles defined by firing rates to target 1 (𝑥𝑥1) 
and target 2 (𝑥𝑥2). Datasets 𝑎𝑎 and 𝑏𝑏 each have their own distributions of firing rates for trials to 
these two targets, and the means of those distributions can be taken to represent each dataset’s 
tuning profile as a vector in 2-dimensional space (𝑋𝑋𝑎𝑎, 𝑋𝑋𝑏𝑏). The angle between those resulting 
vectors quantifies the difference in target tuning across the two datasets. This provides a non-
parametric method of assessing tuning in replacement of parametric methods like cosin-tuning, 
which requires a polar coordinate frame. (B) Mathematical formulation in the 5-target case.   



81 
 

 
Figure S3.2. Similarity of ipsilateral and contralateral tuning profiles. (A-D) Change 
in firing rate relative to Rest for ipsilateral and contralateral target reaches. Each datapoint 
represents a single target for a single unit. The left panel of each pair of plots assigned target 
labels in an extrinsic reference frame, while the right panels expressed targets in an intrinsic 
reference frame by mirroring target labels across the midline for one of the two hands. Only 
units that were tuned for movements of both arms were included. Only the 4 targets that were 
reachable with both hands when starting from the centered posture are included. Each target is 
displayed in a different color. Regression lines are plotted in black. Larger plots are monkey O; 
inset plots are monkey W. (E) Spearman’s correlation coefficients for the data displayed in A-D. 
Datapoints show bootstrapped median +/- 95% confidence intervals.  
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Figure S3.3 dPCA results for PMd. Each pair of plots represents a single dPCA model and 
includes a bar chart representing the proportion of variance explained by each dPCA component 
and a projection of the neural activity for all targets and postures onto the top Posture 
Interaction component. These plots are displayed in the same manner as the examples from 
Figure 3.6. The left column is monkey O, and the right column is monkey W. Each row 
corresponds to a specific combination of hemisphere and hand.  
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Figure S3.4 dPCA results for M1. This plot is the same as Figure S3.3, except for models 
trained using data from M1.   
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Chapter 4 

Interhemispheric population 
dynamics during bimanual 
coordination 
 

 

4.1    Introduction 
 Coordinated use of the two arms involves a widely distributed system of neural 
structures. The two cortical hemispheres represent important nodes in this network, and 
their communication with each other has shown critical for bimanual coordination. 
Research with callosotomy patients has revealed that typical patterns of spatial 
interaction between the two hands are largely abolished in the absence of the corpus 
callosum, the largest fiber bundle connecting the two cortical hemispheres [79, 88, 132]. 
The supplementary motor area (SMA) is the cortical brain region that has historically 
been most tied to bimanual coordination, having the densest transcallosal projections 
and expressing unique bimanual deficits upon lesion or perturbation [22, 157, 184, 197]. 
However, the primary motor cortex (M1) and other premotor areas maintain 
interhemispheric connections as well (including connections with the SMA [184]) and 
display unique bimanual-related activity patterns [69, 72]. Bilateral activity arising in 
the M1 and premotor cortices is thus likely to both be influenced by and participate in 
the computations that underly coordination of the two arms. 

 Coordination as a general phenomenon requires coupling the dynamics for the 
two (or more) plants being controlled. This ought to produce overall lower-dimensional 
dynamics, where the state of each participating plant influences control of the others 
and constrains behavior to fit the coordinative demands [188]. In the context of 
bimanual coordination in the motor cortex, it may be expected that control signals 
directed at one arm (the contralateral arm) would have access to state information 
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regarding the other arm (the ipsilateral arm). Not only should state information 
regarding the ipsilateral arm be represented in the motor cortex, but this information 
would be expected to alter the neural dynamics that give rise to control signals.  

Non-invasive neural recording methods have revealed changes in macroscopic 
coupling between motor cortical hemispheres that are related to bimanual coordination 
[96, 197]. How this coupling is reflected in the networks of individual neurons is yet 
unclear. Emerging research has pointed to the importance of cortical population 
dynamics for directing the evolution of patterned output for motor control [44, 200, 
217]. However, there is much yet to be understood about interhemispheric interactions 
and their relationship with bimanual coordination at this level of description. In M1, 
intracortical spiking activity from a single hemisphere is predictive of spiking activity in 
the contralateral hemisphere [8], yet the dynamics of their interaction and any 
relationship with coordination have yet to be explored. 

 In the current study, we investigated whether ipsilateral motor activity in the M1 
and dorsal premotor cortex (PMd) participates in coupling interhemispheric population 
dynamics for bimanual coordination. We used a novel behavioral task in monkeys that 
was designed to provide comparison between unimanual control, independent bimanual 
control, and coordinated bimanual control. We found that kinematic decoders trained on 
isolated unimanual movements generalized better for independently controlled bimanual 
actions than for coordinated bimanual actions, indicating a change in the neural 
representations of movement across the control modes that impacted both hemispheres. 
We then fit linear dynamical system (LDS) models to capture the dynamics of motor 
cortical activity in each task variant. Activity during coordinated control depended less 
heavily on high frequency oscillatory dynamics than activity during independent 
bimanual control; however, the dynamics were largely context-invariant on the whole. 
These results do not support a role for ipsilateral motor cortical activity in altering 
interhemispheric dynamics for bimanual coordination. Rather, they may be more in line 
with a hypothesis involving selective inhibition during independent control. 

  

   

4.2    Results 
4.2.1    Task design 
 The behavioral task in the current study was designed to distinguish true 
bimanual coordination from both isolated unimanual control and simultaneous control of 
the two arms with independent action goals. On each trial, monkeys were required to do 
some combination of two actions: (1) reach towards a target with the left hand, and (2) 
pull a joystick with the right hand (Figure 4.1). Stimulus presentation on a virtual  
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Figure 4.1. Task design. A. The physical setup of the task. Monkeys reached to one of six 
targets with the left hand and pulled a joystick with the right. Endpoint feedback for the 
reaching hand (cursor) and all other stimuli were presented on a virtual reality display. Stimulus 
presentation dictated one of two different control modes. B. Independent Mode control. 
Monkeys initiated a trial by placing the reaching hand in a central starting target (yellow 
sphere) and were required to have no deflection of the joystick. A yellow spherical reaching 
target was then displayed at one of six possible locations. After a randomly sampled delay 
period, the first action was cued. To indicate a reach cue, the starting target disappeared, and 
the reaching target enlarged. To indicate a pull cue, the reaching target turned red until the pull 
was initiated. The second action was then cued at a fixed delay using the same stimulus 
associations as the first cue. On certain “catch” trials, no second action was cued, and the animal 
was required to complete the first action without initiating the other. This prevented the 
monkey from ignoring the second cue and learning to perform the second action at a fixed delay. 
If all cued actions were initiated in the requisite order and completed, a juice reward was 
delivered. C. The different stimulus presentations for the Independent Mode resulted in four 
trial types: Reach-Pull (top row), Pull-Reach (second row), Reach-Catch (third row), Pull-Catch 
(bottom row). Each row displays a trial timeline with steps indicating the response initiation 
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window for the two potential actions (yellow: reach, purple: pull). Cartoon water droplets 
indicate reward delivery. Note that the initiation order was constrained by the task, but 
movements could be overlapping during their execution. D. Coordinated Mode control. With 
Feedback trials were initiated in the same manner as the Independent Mode, and cues were 
presented using the same stimuli; however, the first action on all trials was the reach. In 
contrast to the fixed timing of the Independent Mode, the timing of the second action (pull) was 
contingent upon the execution of the reaching movement, with the pull cue presented at the 
moment the reaching hand entered the reach target. In No Feedback trials, the behavioral 
constraints of the task were identical to the With Feedback trials; however, as soon as the reach 
was initiated the reaching cursor became invisible, and the pull cue was never delivered. These 
No Feedback trials required the monkeys to perform the task using only feed-forward planning 
and feedback provided by internal/proprioceptive state. 
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display dictated two different control modes for completion of the bimanual responses: 
Independent Mode (Figure 4.1B-C) and Coordinated Mode (Figure 4.1D). All trials 
began with the monkeys placing their reaching hand in a central starting target. 
Position of the joystick hand was unconstrained so long as it did not move the joystick 
from its neutral position at the start of the trial, though both monkeys tended to rest 
the joystick hand in close proximity to the joystick handle between trials. A reaching 
target was then displayed at one of six locations for a variable delay period during 
which the monkeys were required to keep both hands still. This marked the last point 
along the trial timeline where Independent and Coordinated Mode trials were the same. 

 For Independent Mode trials (Figure 4.1B), an imperative signal was then 
presented instructing one of the two actions. To cue the reach, the starting target 
disappeared, and the reach target enlarged. To cue the pull, the reach target turned red. 
After a fixed delay, the second action was cued; however, on a subset of trials (“catch” 
trials) the second cue was never provided, and the monkeys were required to withhold 
the second action. This resulted in four different trial sub-types determined by the order 
of the two actions and presence of a “catch” (Reach-Pull, Pull-Reach, Reach-Catch, Pull-
Catch; Figure 4.1C). The critical distinction of the Independent Mode is that the 
requirements for each action are fully uncorrelated. Given the range of potential 
responses and lack of foreknowledge about the trial sub-type, optimal behavior would 
entail independently responding to each subsequent cue with the appropriate action. 

 In contrast, Coordinated Mode trials (Figure 4.1D) always instructed the reach 
action first and there were never catch trials. Rather than presenting the pull cue at a 
fixed delay, the pull cue was now contingent upon the execution of the reach action as 
well – as soon as the reaching hand entered its reach target, the pull cue was presented. 
Not only was there foreknowledge of the action order, but this contingency between the 
behavioral requirements for the two limbs provided the distinctive “coordinated” nature 
of these trials. Optimal behavior would therefore entail coordinated use of the two arms, 
whereby the state of the reaching hand would be integrated into the commands for the 
pull hand. Notably, this task could be accomplished without any further visual stimuli 
following the first go-cue (under optimal coordination conditions). We included trials 
where this was the case (Figure 4.1D “No Feedback”). As soon as the reaching 
movement was initiated, visual feedback regarding the endpoint position (cursor) was 
removed, and a pull cue was never delivered. Success on these No Feedback trials 
required the use of feed-forward planning and/or proprioceptive feedback control, both 
internally driven processes. Independent and Coordinated Mode trials were performed in 
fully separate blocks, and a sequence of four auditory tones preceded the Coordinated 
block to indicate the control mode. This design aimed to produce output behavior that 
was similar for Independent Reach-Pull trials and Coordinated trials despite the 
contexts and optimal control policies being quite different. 
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4.2.2    Behavioral performance and task validation 
 Two monkeys were trained to perform the behavioral task described above. 
Attentional demands were high for this task, in particular for the Independent Mode. 
There were five types of errors for initiated trials: early first action, wrong first action, 
early second action, late second action, and execution errors (e.g., not holding the reach 
target for the requisite time). Despite the difficulty of the task, each monkey was able to 
perform both the Independent and Coordinated Mode trials. We focus here on the 
Independent Reach-Pull trials and Coordinated trials, as these were the two conditions 
that were roughly matched in terms of behavior. A full summary of trial outcomes for 
the two monkeys is provided in Table S4.1 and Table S4.2. 

 Errors very rarely occurred for the first action. Of all trials that were initiated for 
the Independent Mode more than 95% advanced past the first action in both monkeys. 
The most common error type for Reach-First Independent trials was pulling the joystick 
early (note that for Reach-Catch trials any pull would be considered early). Combined 
across Reach-Pull and Reach-Catch trials, this accounted for 20% of the trials that had 
already advanced past the first action in Monkey O, and 5% in Monkey W. The next 
most common failure mode was pulling the joystick late, accounting for 42% of all 
Reach-Pull Independent trials that had advanced to the second go-cue in Monkey O, 
and 3% in Monkey W. However, we note that the response windows differed across the 
two monkeys. Other execution errors occurred in 0% of Reach-Pull trials for Monkey O 
and 1% for Monkey W. Overall success rates in the Independent Mode were 72% for 
Monkey O and 91% for Monkey W. 

 Errors in the reach component of Coordinated trials were similarly rare, and the 
most common error type was again completing the pull too early. Pulling the joystick 
early accounted for a similar proportion of trials as in the Independent Mode for 
Monkey O (19%) and was slightly greater for Monkey W (11%). The proportion of trials 
resulting in a late pull was greatly reduced for Monkey O (<1%) but similar for Monkey 
W (4%). Overall success rates in the Coordinated Mode were 77% for Monkey O and 
83% for Monkey W, both having similar rates with or without visual feedback. 

 Single trial examples of the kinematics in each trial sub-type are provided in 
Figure S4.1. To analyze the behavioral timing, we timestamped 5 different behavioral 
events related to the reach and the pull. For the reach, we marked the onset, peak 
velocity, and target entry. For the pull, we marked the onset of both pull hand 
movement (“Pull onset”) and joystick deflection (“Joystick onset”), which only truly 
differed from each other for Monkey W who had an idiosyncratic delay between lifting 
the pull hand and contacting the joystick. We plotted the distributions of these events 
aligned to the onset of the first go-cue for Independent Reach-Pull, Coordinated With  
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Figure 4.2. Behavioral event correlation plots. The correlations between behavioral event 
timestamps, aligned to the onset of the reach cue, are displayed for each of three trial types: 
Independent Reach-Pull trials matched to the coordinated behavior (left column), Coordinated 
trials with visual feedback (middle column), and Coordinated trials without visual feedback 
(right column). The cells within each matrix show scatterplots for pairwise comparisons of 
behavioral events along with a least squares fit line and Spearman’s correlation coefficient. Cells 
along the  diagonal show marginal distributions of the timing for each behavioral event. A red 
box outlines the six comparisons describing relationships between the two movements, e.g. pull 
onset and reach peak. Abbreviations: RO – reach onset, RP – reach peak, ET – enter target, PO 
– onset of pull hand movement, JO – onset of joystick deflection. A. Monkey O, B. Monkey W. 
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Feedback, and Coordinated No Feedback trials in Figure S4.2. One of the goals of the 
task was to produce distributions of action timestamps that were similarly overlapping 
for both the Independent and Coordinated Modes. This was largely the case, although 
both monkeys did perform the Independent trials more sequentially (less overlap in the 
distributions for reach and pull event times). Reaction times (RT) and movement 
durations were generally longer during the Independent Mode (Figure S4.2, top row). 
This was very pronounced for Monkey O. While the peak of Monkey O’s pull RT 
distribution was around 500ms, he responded with a nearly uniform distribution (Figure 
S4.2A, top row). Combined with the observation that Monkey O exhibited large 
proportions of mis-timed pull actions, this indicated that he did not pay close attention 
to the pull cue on many trials. This was not a problem provided that the reach and pull 
movement times were not correlated with each other (i.e. coordinated). The primary 
validation of our behavioral paradigm was therefore to analyze the correlations of reach 
and pull event times on each trial.  

 Correlation plots for each of the 5 behavioral events are plotted in Figure 4.2. We 
were interested specifically in correlations across the two actions (Figure 4.2 red outlined 
subplots). Correlations between reach and pull timestamps were weak for the 
Independent Mode in both monkeys. Spearman’s correlation coefficients ranged from 
0.03-0.21 across all six pairwise comparisons. As intended, correlations between the two 
actions were much stronger in the Coordinated Mode. In Monkey O, the strongest 
correlation was between reach peak and pull onset (With Feedback, rRP,PO=0.58; No 
Feedback, rRP,PO=0.56). Similarly, the strongest correlations for Monkey W were 
between reach peak and joystick onset (With Feedback, rRP,JO=0.76; No Feedback, 
rRP,JO=0.79). The task itself constrained these correlations since the response window for 
the pull movement was aligned to target entry. The joint distributions in Figure 4.2 
only include trials where the monkeys completed the joystick pull within that time 
window, thus it is theoretically possible that these distributions could be groomed by 
the success criteria to artificially produce strong correlations. However, the high success 
rates together with the tendency for stronger coupling between pull movements and 
reach peak (as opposed to target entry) suggest that the coordination profiles were self-
generated rather than being an artifact of joint distributions that were groomed by 
success criteria. 

 

4.2.3    Strength of movement representations in each hemisphere 
across task conditions 

 We began by investigating the strength of movement representations in each 
hemisphere across the different task conditions. Linear kinematic decoders were trained 
on spiking data from either the hemisphere contralateral to the reaching hand (right  
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Figure 4.3. Kinematic decoding across control modes. A. Example kinematics and 
decoded predictions for 5 consecutive trials of the Coordinated Mode task. Linear decoders were 
trained using neural activity at multiple time lags. This example from Monkey W includes 
activity from both hemispheres, and predicts the 3D endpoint position of the reaching hand in 
cartesian coordinates (top 3 subplots) and the speed of the hand pulling the joystick (bottom 
plot). B. Decoders were assessed for each of three trial sets: coordinated trials (Coord, blue), 
independent matched trials (Indep, orange), and isolated unimanual movements from the 
independent control mode (Iso, red). For Monkey O, Iso trials consisted only of the independent 
catch trials. However, for Monkey W, Iso trials consisted of catch trials as well as the dual-
action trials with long delays between the two movements such that they each was performed 
largely in isolation. Datapoints on white backgrounds were trained and tested using the same 
trial type and cross-validation. Datapoints on grey backgrounds were trained using Iso trials. 
Separate models were trained using both hemispheres (Bihem, squares), only the hemisphere 
contralateral to the reaching hand (Contra, open circles), and only the hemisphere ipsilateral to 
the reaching hand (Ipsi, filled circles). Single R2 values for each session were taken as the mean 
over the R2 for each dimension of the reaching movement. Note that more cells were recorded in 
the ipsilateral hemisphere, so their raw performance is not readily compared to the contralateral 
hemisphere. However, changes in performance across model training conditions may be. The 
data are displayed as mean +/- standard deviation.   
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hemisphere), ipsilateral to the reaching hand (left hemisphere), or from both 
hemispheres. Separate decoder models were fit for each of three different task variants: 
all Coordinated trials, Independent Reach-Pull trials that were matched to the 
Coordinated behavior, and isolated reach or pull movements from the Independent 
Mode. Movements were decoded in 3D cartesian space. An example of bihemispheric 
decoder predictions on five consecutive Coordinated trials is displayed in Figure 4.3A. 

 We focus now on decoding movements of the reaching arm, since the pull 
movement was very similar on each trial aside from its timing, and it was the state of 
the reaching arm that governed the response windows in the Coordinated Mode. Reach 
decoding tended to be strongest in the Coordinated Mode but provided accurate 
predictions for all trial types using either hemisphere (Figure 4.3B, white backgrounds). 
This could also be influenced by the greater number of Coordinated trials, which was 
not accounted for in model training (See Methods 4.4.4, 4.4.5). If the ipsilateral 
representation of movement provides state information in order to guide coordinated 
action of the two arms, then we would expect it to be amplified in the Coordinated 
Mode dataset. To test this specifically, we assessed the performance of decoders trained 
on isolated unimanual movements (“Iso-trained” decoders) and tested on either the 
Coordinated trials or the Independent matched trials. The prediction of the bimanual 
coordination hypothesis is that decoder performance using would be stronger in the 
Coordinated trials than the Independent matched trials, specifically for the ipsilateral 
decoders and not those that have access to contralateral activity patterns. This was not 
the case. In fact, Iso-trained decoders performed worse on the Coordinated trials (Figure 
4.3B, grey backgrounds). This was a generic effect impacting each hemisphere to 
roughly the same degree, i.e., bihemispheric, contralateral, and ipsilateral models were 
equally affected (two-way permutation-based repeated measures ANOVA, 3 Hemispheric 
Input x 2 Condition; MECondition: pMonkeyO=1.0e-5, pMonkeyW=1.0e-5; IE: pMonkeyO=0.77, 
pMonkeyW=0.064). This means that the features of the bihemispheric neural signals that 
are leveraged by Iso-trained decoders are altered during Coordinated trials, causing a 
preferential decrement in performance as compared to the Independent matched trials.  

 

4.2.4    Population dynamics in the ipsilateral vs contralateral 
hemisphere 

 If ipsilateral neural activity provides state information regarding one limb in 
order to coordinate descending drive for the contralateral limb, then one might expect to 
see alterations in the neural population dynamics when use of the two arms is intended 
to be interactive. We began investigating this hypothesis by characterizing the dynamics 
in both hemispheres across a range of behavioral tasks. PCA projections of neural data 
during both the unimanual reaching task of the previous chapters (Figure 3.2A) and the 
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bimanual task of the current chapter (Figure 4.4A) reveal prominent rotations through 
neural state space. Higher dimensions likely include additional dynamical structure. To 
capture the dynamical behavior of population activity, we fit linear dynamical system 
(LDS) models to single-trial data, modeled in the form: 

 𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵 (1) 
The 𝐴𝐴-matrix therefore relates the current neural state, 𝑥𝑥𝑡𝑡, to the future neural state, 
𝑥𝑥𝑡𝑡+1. Eigendecomposition of the 𝐴𝐴-matrix allows us to isolate separable dynamic modes 
describing particular aspects of the dynamical behavior, which can be visualized as in 
Figure 4.4B (more on this in the following section). 

 We began by assessing the LDS model fits in each of three different tasks: The 
Coordinated and Independent (Reach-Pull trials only) Modes of the bimanual task, and 
the isolated unimanual reaching task from the previous chapters. Cross-validated R2 
values were computed for each dataset using the contralateral and ipsilateral 
hemispheres separately, where contralateral and ipsilateral refers to the relationship to 
the reaching hand. These values were compared against time-shuffled models that 
maintained any autoregressive accuracy that was a simple result of data smoothing. 
These results are plotted in Figure 4.4C. Both contralateral and ipsilateral models had 
significantly stronger fits than the time-shuffled models in all three tasks (two-sample t-
test, p<0.05), suggesting that both hemispheres display significant dynamical behavior. 
In the unimanual reaching task, both monkeys displayed significantly greater R2 values 
for the contralateral models than the ipsilateral models (two-sample t-test; Monkey O: 
p=2.4e-3, Monkey W: p=0.010). Contralateral models had larger R2 values on average 
across both versions of the bimanual task as well; however, the significance of these 
differences varied (Monkey O: pCoord=0.054, pIndep=0.42; Monkey W: pCoord=0.029, 
pIndep=0.057). It is important to note that contralateral reaching signals have greater 
signal-to-noise overall. Therefore, it is difficult to say whether a greater R2 for the LDS 
model predictions would reflect more tightly imposed dynamical behavior, or rather a 
stronger signal in general.  

Performance of model fits was similar across the two control modes of the 
bimanual task for both the contralateral and ipsilateral hemispheres. Coordinated and 
Independent R2 values only had a statistically significant difference in the ipsilateral 
models of Monkey O (Independent>Coordinated, paired-sample t-test, p=1.9e-5). 
Although this reached statistical significance, the effect size was quite small 
(R2Ipsi,Coord=0.71, R2Ipsi,Indep=0.73). Taken as a whole, this suggests that the strength of 
dynamical structure in each independent hemisphere is not heavily modulated by the 
coordinative demands of the task. However, this does not necessarily mean that the 
dynamical structure itself is the same across both control modes; it is possible that 
different sets of dynamical rules govern the evolution of activity in each mode while 
doing so with equal strength. The structure of these dynamics will be further  
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Figure 4.4. Neural population dynamics. A. PCA projections of trial-averaged neural data 
from the reach phase of Coordinated Mode trials. The data displayed here is from Monkey O 
and includes PMd and M1 in both hemispheres. Each target is plotted separately according to 
the color code indicated by the cartoon in the upper right. Line colors fade from grey to their 
respective color to indicate the advancement of time, extending from 200ms before reach onset 
to 300ms after. Note the visible rotation through neural state space that completes 
approximately one full period. B. Linear dynamical system (LDS) models were fit to single trial 
data (smoothed, but not averaged). The eigenvectors of the resulting A matrices provided 
separable “dynamic modes.” These eigenvectors may be thought of as slices through neural state 
space that capture specific linear dynamics. This example from Monkey O projects observed 
data from a single session onto two eigenvectors that form a complex conjugate pair (the real 
part of the first and the imaginary part of the second). The arrows in the background illustrate 
the flow field at different points in neural state space. The effects of this dynamic mode may be 
summarized by the Decay time (to 1/e) and Oscillation frequency, which is displayed above the 
plot. The plotted example is from Monkey O and follows the same coloring rules as the lines in 
A. C. Cross-validated R2 values for the fitted LDS models are displayed for both monkeys in 
each of three different tasks: the Coordinated and Independent (Reach-Pull) Modes of the 
bimanual task, and the unimanual reaching task in the previous chapters. Model fits are 
assessed using units from the Contra- and Ipsilateral hemispheres separately and may be 
compared against a Time-shuffled control that uses units from both hemispheres. The Time-
shuffled control shuffled binned spike counts before smoothing the data, and therefore captures 
artificial dynamics created by the smoothing. Asterisks indicate significance at the p<0.05 level.  
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investigated in the following sections. In summary, consistent dynamical behavior is 
observed in populations of neurons within each hemisphere during both coordinated and 
independently controlled bimanual behavior, as well as during isolated unimanual 
reaching. 

 

4.2.5    Comparison of dynamical mode properties across 
coordinated and independent control 

 In order to examine the dynamical behavior of each dataset, we performed 
eigendecomposition of the A-matrices and examined dynamics in a latent space defined 
by the resulting eigenvectors (see Methods). Put simply, this allowed us to analyze 
independent components of the dynamics in what we refer to as “dynamical modes.” 
Figure 4.4B displays an example of observed neural data projected onto two such 
modes, along with the flow field describing their dynamical properties. Each mode may 
be associated with both a decay time and an oscillation frequency (if rotational). 

  

 
Figure 4.5. Comparison of the oscillatory and decay patterns across behavioral 
tasks. Each plot displays the decay time and oscillation frequency for all significant dynamic 
modes identified in each task. Note that oscillatory modes come in conjugate pairs, such that 
the two will have the same decay time and sign-flipped frequencies. A. Monkey O, B. Monkey 
W.  
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We began with an exploratory investigation of the dynamical mode properties in each 
task variant: Coordinated, Independent Reach-Pull matched trials, Independent Catch 
trials, and Unimanual reaching from the experiments of the previous chapters. Here, 
LDS models were fit to bihemispheric activity. We distinguished “significant” modes in 
each dataset by comparing decay times of observed modes against a null distribution 
obtained from time-shuffled data and applying a threshold cutoff (see Methods 4.4.6, 
Figure S4.3). The joint distributions of decay times and oscillation frequencies of 
significant modes in each task variant are displayed in Figure 4.5. Between the two 
monkeys, there appeared to be fewer modes at oscillation frequencies above 1.5Hz in the 
Coordinated Mode. In Monkey W, there was a unique emergence of oscillatory modes in 
the range of 1-1.5Hz with long delay times. Overall, the distributions did not appear 
extremely different across the tasks. 

  

 
Figure 4.6. Relative importance of oscillatory dynamics for each behavioral context. 
A,C. We used a “lesioning” approach to determining the relative importance of dynamical modes 
with different oscillation frequencies (see Methods 4.X). Each datapoint in these plots represents 
a single dynamical mode. The ratios plotted on the y-axes represent the reduction in model 
performance when a single mode is lesioned, as a proportion of the unlesioned model 
performance. Larger values indicate greater importance of the respective mode for predicting 
changes in neural activity. Only significant modes are plotted for each of the three trial types. 
B,D. The data in A,C are summarized by taking an average over all significant modes, weighted 
by their R2Les values. This metric provided a coarse summary of the oscillatory behavior of 
neural population dynamics across task conditions. The plots show mean +/- bootstrapped 95% 
confidence intervals. 
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To determine the relative importance of different dynamical modes, we implemented an 
A-matrix “lesioning” procedure (see Methods 4.4.7). In short, we decomposed the A-
matrix, removed a single dynamical mode, then reconstructed the A-matrix from the 
remaining modes and re-tested performance in predicting future neural activity. The 
drop in performance, which we call R2Les, relates the relative importance of the lesioned 
dynamics for capturing neural variance. We looked specifically at the importance of 
modes across the spectrum of oscillation frequencies (Figure 4.6). As a summary 
statistic, we computed the average frequency of all significant modes in each dataset, 
weighted by their R2Les. These average frequencies were significantly lower in the 
Coordinated trials than they were in the Independent matched trials in both monkeys 
(Figure 4.6B,D – blue vs yellow; permutation test, Monkey O: p=6.0e-5, Monkey W: 
p=1.8e-3). This would suggest that non-oscillatory and low-frequency oscillatory 
dynamics are more dominant during coordinated control. However, the same 
relationship did not hold for both monkeys when comparing the Coordinated Mode with 
Independent Catch trials (Figure 4.6B,D – blue vs red). Weighted average dynamical 
mode frequencies were significantly lower in the Coordinated Mode than the 
Independent Catch trials for Monkey W (permutation test, p=1.6e-3) but not Monkey 
O (p=0.26). It is therefore unclear whether this bias towards lower frequency dynamics 
is truly a unique feature of the neural activity during coordinated control. 

 

 

 
Figure 4.7. Generalization of dynamical behavior across behavioral contexts. LDS 
models were trained using data from each of the three task conditions, and then tested on each 
of the three task conditions. Model performance was assessed using the R2 of predicted changes 
in neural activity under each training and testing combination, using cross-validation in all 
cases. Generalization across trial types indicates condition-invariant dynamical behavior, 
whereas lack of generalization indicates dynamics that are present in one condition and fully 
unobserved in another. The data are displayed as mean +/- standard deviation.  
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To test whether any task-specific differences in the properties of the neural 
population dynamics actually accounted for a significant amount of the overall variance, 
we used a generalization procedure with the LDS models. Separate models were trained 
on the Coordinated trials, Independent Reach-Pull matched trials, and Independent 
Catch trials. Each model was then tested on all three task variants (using cross-
validation), resulting in nine pairwise comparisons. Data from each task tended to be 
best captured by its natively trained model, yet R2 values were quite high for models 
that were generalized across tasks as well (Figure 4.7). The largest generalization cost 
was only a 4.4% drop in R2 for Monkey O (Coordinated testing data, Independent 
Reach-Pull training data) and 3.8% for Monkey W (Coordinated testing data, 
Independent Catch training data). Taken together, these results suggest that although 
neural activity in each task may make preferential use of different dynamical properties 
(Figure 4.6), the dynamics are not categorically different across tasks. Models fit to each 
dataset still maintain a largely condition-invariant basis set of dynamical modes, such 
that the majority of neural variance is still captured by generalized models (Figure 4.7). 

4.2.6    Interhemispheric interactions 
  As our final analysis, we investigated whether the neural population dynamics 
that we have modeled indicate any changes in interhemispheric interactions across 
control modes. We first asked whether dynamics for the two hemispheres are 
independent of one another, or whether there exist unique interactions between them 
that covary with task type. To test this, we created two different LDS models: one 
which combined activity from both hemispheres and fit a single A-matrix (“Combined” 
model), and another which fit separate A-matrices for activity from each hemisphere in 
isolation (“Separate” model). If any dynamics required joint observation of the two 
hemispheres, then they would be poorly fit by the Separate model. We computed the 
ratio of R2 values for the Combined and Separate models, with a value above 1 
indicating a benefit from access to interhemispheric dynamics. The Combined to 
Separate R2 ratio was not far from 1 for either monkey in the Coordinated Mode (Figure 
4.8A,D) and was only significantly greater than it was for the Independent Reach-Pull 
matched trials in monkey O (paired-sample permutation test, pMonkeyO=6.8e-4, 
pMonkeyW=0.061). 

 It is also possible, if not likely, that the Separate models may identify dynamics 
that are truly interactive across hemispheres purely by observing the component of 
those dynamics that exists within a single isolated hemisphere. If this were the case, 
then the R2 ratios of the two models would not differ substantially, since all dynamical 
patterns are still accounted for, but the number of significant dynamical modes would 
be greater in the Separate model since interhemispheric interactions would be “double-
logged” as two separate patterns within each hemisphere. We define the number of 
significant dynamical modes as the “dimensionality” of the dynamics. Although 
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Figure 4.8. Interhemispheric interactions. Each plot displays a different metric of 
interhemispheric interaction computed for both the Coordinated trials and the Independent 
Reach-Pull (matched) trials. A. The ratio of R2 for a combined bihemispheric LDS model over a 
model that fits two separate A matrices for each hemisphere to predict the same neural activity. 
The key difference in the two-part model is that each A matrix cannot fit any interactions 
between units in different hemispheres, and may only identify dynamics which are local to the 
hemisphere it was trained on. B. A ratio of the number of significant dimensions (or “dynamic 
modes”) for the same two models in A. If certain dynamical motifs are shared across the two 
hemispheres, then they may be consolidated and captured with fewer dimensions in the 
combined model. C. A ratio of the mean coefficient magnitudes in the A matrix that correspond 
to interactions of units in different hemispheres (Diff) over the same value corresponding to 
interactions between units of the same hemisphere other than themselves (Same). Connected 
datapoints in all plots indicate the same population of simultaneously recorded units used in 
analysis.   
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 dimensionality was reduced by 5-10% in the combined models for both monkeys, the 
consolidation was not significantly different across Control Modes (Figure 4.8B,E; 
paired-sample permutation test, pMonkeyO=0.99, pMonkeyW=0.36). 

 Since the A-matrix describes predictive relationships between the entire 
population of units, one may specifically analyze the portions that reflect interactions 
between units from different hemispheres. We computed a metric on the A-matrices that 
quantified the relative weights assigned to interactions of units in different hemispheres 
or the same hemisphere (but not the unit itself, which is located along the A-matrix 
diagonal). Lower values of this ratio indicate dynamics that operate relatively 
independently for each hemisphere. We again found that these probes of 
interhemispheric interaction did not vary significantly across control settings (Figure 
4.8C,F; paired-sample permutation test, pMonkeyO=0.10, pMonkeyW=0.073). In summary, we 
did not find any strong evidence that interhemispheric dynamics, as identified through 
LDS modelling, are adapted to the coordinative demands of the behavioral task. 

 

4.3    Discussion 
In the present study we have examined motor cortical population signals in each 

hemisphere as monkeys engage in a range of novel yet natural bimanual motor tasks, 
each differing in terms of its coordinative demands. Using population-decoding of 
reaching kinematics, we found that models trained on isolated unimanual movements 
generalized more poorly to coordinated bimanual movements than independently 
controlled bimanual movements. This was true of decoders using contra-, ipsi-, or 
bilateral populations of units. Furthermore, we fit LDS models to the neural data and 
performed an exploratory analysis of the dynamical motifs. We identified subtle 
differences between behavioral contexts yet found that dynamics were largely 
maintained regardless of the control setting. Finally, interhemispheric interactions in the 
LDS models were analyzed and showed that there was very little adaptation to the 
coordinative demands of the task. While ipsilateral activity in the motor cortex may still 
play some role in coordinating bimanual action, these results show little evidence that it 
does so flexibly by distinctly modifying dynamics in accord with the behavioral context. 

4.3.1    Interhemispheric neural population dynamics 
 Neurons in the motor cortex are densely interconnected, and their interactions 
give rise to intrinsic dynamics that may be leveraged for performing a variety of 
computations [217]. Dynamical motifs such as rotations and decays have been 
prominently reported in recent works [44, 119] and have been hypothesized to be 
important features of the population for producing appropriate patterns of activity for 
driving movement [207]. In this study we have analyzed dynamics across both 
hemispheres and examined their importance in facilitating bimanual coordination. We 
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have shown that signals in PMd and M1 of both hemispheres evolve with lawful 
dynamics, albeit less strictly in the ipsilateral hemisphere, even during isolated 
unimanual movements (Figure 4.4C). Previous studies have shown that bilateral 
distribution of motor cortical computations provides robustness to unilateral 
perturbations, with interactions between the hemispheres supporting recovery of the 
population state [151]. One critical step that we have taken beyond previous work is to 
determine whether dynamic coupling may be flexibly altered to suit the coordinative 
requirements of a task. While we found some subtle differences in the dynamics between 
Coordinated and Independent control (Figure 4.6), most of the evidence pointed to a 
largely context-invariant set of dynamics.  

 However, it should be noted that our investigation of these dynamics was largely 
exploratory. Our methods could be described as data-driven, rather than approaching 
the topic with specific, theoretically motivated expectations about how the dynamics 
could or should be changing. Understanding cortical computations through the 
framework of neural population dynamics is still in its nascent stages, making it difficult 
to develop strong expectations, yet examples of detailed theoretical undergirding exist. 
For example, some researchers have trained recurrent neural networks (RNNs) to 
perform behavioral tasks and compared features of the resulting artificial dynamics to 
observed neural responses in order to gain insights about the computations they are 
involved in [37, 207]. Distinct population geometries and dynamical properties have also 
been identified in M1 and SMA, theoretically motivated by a role of the SMA in 
providing contextual information and further supported by artificial network simulations 
[185]. Our study would benefit from similar theoretical or simulation-based hypothesis 
development. For example, looking at dynamical modes of a particular frequency that 
might support bilateral coupling, or analyzing fixed points and stability behavior that 
are relevant to the constraints placed on bimanual coordination. While our results do 
not strongly implicate interhemispheric population dynamics or ipsilateral activity 
patterns in the facilitation of bimanual coordination, it may be that these foundational 
descriptions have simply not touched the relevant features.  

In a similar vein, the method that we use to identify dynamics may also simply 
not be sensitive enough to identify the important differences. This is particularly 
relevant when considering how our decoder and dynamics results can be integrated – the 
decoder analysis did show condition-specificity and could just be the more sensitive 
probe. Other methods to consider for future dynamics analysis would be latent variable 
linear models like the Kalman filter [119] or RNN’s [185, 207]. 

4.3.2    Context-invariant dynamics in PMd and M1 
 Our results point to a largely context-invariant set of dynamics in the motor 
cortex. Russo et al., 2020 recently compared the neural dynamics present in M1 and the 
SMA [185], an area implicated in providing contextual information broadly, and 
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supporting bimanual coordination in particular. The authors found that activity in the 
SMA, but not M1, tracked the cycle number in a sequence of identical rhythmic actions 
by producing helical orbits through neural state space. This helical path could be 
described as a rotation, similar to those observed in M1, with an orthogonal decaying 
dimension along its rotational axis. This decaying dimension captured the context (cycle 
number). Our study may fall in line with the notion of M1 being context invariant; 
however, it is important to note that the context in our study is quite different. The 
study by Russo et al. considered the context of time: successive movements in a 
stereotyped series. Our study considered the context of bilateral state, which contains 
both spatial and temporal aspects. These different flavors of “context” may be treated 
differently by the brain.  

 Indeed, the dichotomy between spatial and temporal aspects of bimanual 
coordination/interference has proven an important one. In the callosotomy literature, 
timing constraints on bimanual behavior, such as synchronization of starting and 
stopping events, appear to be largely unaffected by disconnection of the cortical 
hemispheres [114, 132, 196, 213]. In contrast, many of the spatial constraints, such as 
difficulty drawing boxes in orthogonal orientations, are completely abolished [79, 88, 
132]. Both M1 single unit responses [72] and interhemispheric interaction patterns in 
intracortical local field potentials (LFP) [34] have been found to depend on specific non-
additive combinations of bimanual behavior, suggesting that computations in M1 do 
take into account context of the bilateral state in some form. This could be considered 
spatial context. In contrast, one recent study has suggested that M1 maintains 
independent representations of the two arms even during bimanual action [55]. While it 
is possible that the monkeys in our task could have been using purely temporal control 
policies, the task constraints were essentially spatial. Our current results therefore 
suggest that the context-invariance of PMd and M1 dynamics extends beyond the 
temporal domain and into the spatial domain as well. 

 

4.3.3    Inhibition versus coordination 
 The primary validation of our task was the disruption of intermanual correlation 
patterns across the two bimanual control modes (Figure 4.2). The intent was to invoke 
a type of bimanual “motor routine” [96] in the Coordinated Mode that was categorically 
different from Independent control. However, an alternative cognitive explanation for 
how the monkeys completed the task may be one of response inhibition. Through this 
lens, the monkeys may be using similar control in both versions of the task, but with an 
aspect of inhibition/selection layered on top in the Independent Mode. The Independent 
trials may therefore be considered as a version of the (selective) stop signal task [76] or a 
go/no-go task, where it is unknown whether the second action should be released or 
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withheld until a cue is provided. Foreknowledge that a specific action may need to be 
withheld has been shown to produce focal corticomotor inhibition [33, 152]. 

 If the Independent trials are being performed with a proactive and selective 
inhibition, but are otherwise similar to the Coordinated trials, then our result that the 
dynamics do not drastically change across contexts would not be surprising. Control in 
these two cases would be fundamentally the same. We did find that decoders trained on 
isolated unimanual movements generalized more poorly to Coordinated trials than to 
their Independent counterparts (Figure 4.3B, grey backgrounds). This could be in line 
with the inhibitory account, since the same inhibition would be present during the 
isolated unimanual trials (which consisted of Catch trials) as during the Independent 
Reach-Pull trials. The decoder would likely learn the relationship between neural 
activity and behavior with this inhibition taken into account, which is only maintained 
during the other Independent trials. However, that inhibition would be absent in the 
Coordinated Mode, which would counterintuitively cause a decrement in generalization 
performance. It is unclear whether this inhibition hypothesis could also explain the 
subtle differences in oscillatory frequency that we observed between Coordinated and 
Independent dynamics (Figure 4.6).  

 There are a few experiments and additional analyses that could help dissect this 
inhibition hypothesis. First, an additional block of trials performing purely unimanual 
reaches and another block performing purely unimanual joystick pulls would provide 
datapoints that isolate the two action components, yet lack the putative inhibitory 
process since they are outside the context of potential bimanual actions. If decoders still 
generalized more poorly to Coordinated trials than to their Independent counterparts, 
then the inhibition hypothesis would be unsupported. However, the hypothesis involving 
occupancy in different regions of the dynamical landscape would still be valid. Second, 
an analysis to specifically test for inhibition could be performed. One could compare 
mean firing rates immediately preceding the time when a cue would be delivered or 
omitted to assess any suppressive effects. It would likely be expected that this effect 
would be greatest in the hemisphere contralateral to the limb performing the second 
action, which in the case of the Reach-Pull Independent trials would be the left 
hemisphere. However, it should be noted again that the decoding effect we observed did 
not display a strong lateral bias. 

 The inhibition hypothesis may have broader applicability to theory on bimanual 
coordination. This hypothesis would suggest the Coordinated and Independent 
conditions are fundamentally the same in terms of control, and that Independent control 
simply consists of suppressing one component of the bimanual action. In a recent study 
developing shared control-based bimanual robotics, a “vocabulary” of bimanual actions 
was created by analyzing common patterns of human movement [178]. Each of the 
patterns identified by the authors consisted of either coordinated movement of the two 
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arms, or fixation of one arm while the other moved. It is plausible that the brain, and 
the contribution of the motor cortex, has a rigid default of coordinated dynamics. 
Attempts at independent movements of the two arms are often clumsy and may involve 
strategies of alternating rather than simultaneous control. Spatial and temporal 
interference patterns in bimanual action are well established [87, 124, 129, 130, 131, 135, 
173]. The Independent trials in our task were very difficult to perform, for Monkey O in 
particular (Table S4.1, Figure S4.2A). It may therefore be more appropriate to ask how 
inhibition plays a role in disrupting coordinated dynamics, rather than how coordinated 
dynamics emerge from some other baseline. 
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4.4    Methods 
4.4.1    Dataset details 
  Data from Monkey O were collected across 20 recording sessions. A total of 545 
units were recorded from the left hemisphere, and 218 units from the right. Data from 
Monkey W were collected across 31 recording sessions. A total of 503 units were 
recorded from the left hemisphere, and 443 units from the right. 

 

4.4.2    Task design 
The behavioral task was loosely inspired by [173], which required subjects to open 

a drawer with one hand and retrieve an item from that drawer using the other. The task 
required monkeys to perform bimanual actions: reaching a target with the left hand and 
pulling a joystick with the right. There were two primary modes of the task, the 
Independent Mode and the Coordinated Mode. 

During the Independent Mode, monkeys initiated a trial by placing the reaching 
hand in a central starting target (yellow sphere, 4cm radius) and were required to have 
no deflection of the joystick. A reaching target (yellow sphere, 3cm radius) was then 
displayed at one of six possible locations. These targets were arranged in the same 
configuration as the reaching task from the previous chapters. After a randomly sampled 
delay period (uniform, 1-2s), the first action was cued. To indicate a reach cue, the 
starting target disappeared, and the reaching target enlarged (4cm). To indicate a pull 
cue, the reaching target turned red until the pull was initiated. The second action was 
then cued at a fixed delay using the same stimulus associations as the first cue. For 
Monkey O, this delay period was 1s. For Monkey W, the delay time was either short or 
long. The short delays were 250ms for 5 of the sessions, and 300ms for the other 26. The 
long delays were 1.12s. On certain “catch” trials, no second action was cued, and the 
animal was required to complete the first action without initiating the other. This 
prevented the monkey from ignoring the second cue and learning to perform the second 
action at a fixed delay. If all cued actions were initiated in the requisite order and 
completed, a juice reward was delivered. The different stimulus presentations for the 
Independent Mode resulted in four trial types: Reach-Pull (top row), Pull-Reach (second 
row), Reach-Catch (third row), Pull-Catch (bottom row).  

Coordinated Mode trials were performed with or without feedback. With 
Feedback trials were initiated in the same manner as the Independent Mode, and cues 
were presented using the same stimuli; however, the first action on all trials was the 
reach. In contrast to the fixed timing of the Independent Mode, the timing of the second 
action (pull) was contingent upon the execution of the reaching movement, with the pull 
cue presented at the moment the reaching hand entered the reach target radius. In No 
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Feedback trials, the behavioral constraints of the task were identical to the With 
Feedback trials; however, as soon as the reach was initiated the reaching cursor became 
invisible, and the pull cue was never delivered. These No Feedback trials required the 
monkeys to perform the task using only feed-forward planning and feedback provided by 
internal/proprioceptive state. The delay times in the Independent Mode were titrated 
during training to roughly match the behavior in the Coordinated Mode. 

Independent and Coordinated trials were performed in fully separate blocks, 
typically with the Independent block being completed first in a session. At the beginning 
of Coordinated blocks, 4 beeps would sound to cue the monkey of the contextual switch. 
An acclimation period of 75 trials for Monkey O and 35 trials for Monkey W was 
removed from the start of each block for data analysis to ensure that only trials with 
steady state behavior were included. 

 

4.4.3    Surgical implantation 
All procedures were conducted in compliance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by the 
University of California at Berkeley Institutional Animal Care and Use Committee 
under protocol ID AUP-2014-09-6720-1. This protocol approval and all surgical methods 
apply to each chapter of this thesis. Two adult male rhesus monkeys (Macaca mulatta) 
were implanted bilaterally with custom acute recording chambers (Grey Matter 
Research LLC, Bozeman, MT). Partial craniotomies within the chambers allowed access 
to the arm regions of dorsal premotor (PMd) and primary motor (M1) cortices in both 
hemispheres. Localization of target areas was performed using stereotactically aligned 
structural MRI collected just prior to implantation, alongside a neuroanatomical atlas of 
the rhesus brain [169].  

 

4.4.4    Linear kinematic decoder 
 Prior to training kinematic decoders, spiking data were first binned in non-
overlapping 100ms bins ranging from 200ms before instruction onset to 500ms after the 
peak of the return movement. Binned spike counts were then square-root transformed to 
stabilize variance and smoothed with a 100ms guassian kernel. These firing rate 
estimates were then z-scored before model fitting. Linear models were then fit using 
ridge regression and ridge parameter 1. Kinematics were regressed on neural activity 
with 5 lagged time bins, i.e., extending 500ms into the past. Decoder performance for 
models trained and tested in the same trial type was assessed using leave-one-trial-out 
cross validation. We note that each task variant had a different number of trials, and no 
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corrections were made for these differing trial counts (see the final paragraph of Methods 
4.4.5 for more discussion). 

 

4.4.5    LDS fitting and testing 
 Prior to fitting LDS models, spiking data were first binned in non-overlapping 
20ms bins ranging from 200ms before movement onset to 300ms after movement onset. 
Binned spike counts were then square-root transformed to stabilize variance and 
smoothed with a 20ms guassian kernel. For time-shuffled models, binned spike counts 
were randomly reordered prior to the smoothing step. 

 We fit models of the form: 

 𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵 (1) 
by regressing neural activity on a time-lagged version of itself. Thus, here 𝑥𝑥𝑡𝑡+1 ∈
ℝ𝑛𝑛 𝑥𝑥 24𝑚𝑚 is the firing rate estimates of 𝑛𝑛 neurons across 𝑚𝑚 trials (24 samples per trial), 
and 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 𝑥𝑥 24𝑚𝑚  is the same neural activity one sample behind. Ridge regression with 
ridge parameter 1e-7 was used for fitting 𝐴𝐴 ∈ ℝ𝑛𝑛 𝑥𝑥 𝑛𝑛 and 𝐵𝐵 ∈ ℝ𝑛𝑛 𝑥𝑥 1 . By fitting a 𝐵𝐵 term 
we allowed the model to find non-zero fixed points, which may be computed as: 

 𝑥𝑥𝐹𝐹𝐹𝐹 = (𝐼𝐼 − 𝐴𝐴)−1𝐵𝐵 (2) 
 Predictions of the one-sample-forward neural signals were obtained using 10-fold 
cross-validation when models were being evaluated on their own trial type, i.e. 
iteratively trained on 𝑥𝑥𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑥𝑥𝑡𝑡+1,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ ℝ𝑛𝑛 𝑥𝑥 24(𝑚𝑚−1) , then tested on 𝑥𝑥𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ ℝ𝑛𝑛 𝑥𝑥 24 . For 
generalizing models across trial types, a single 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 were fit to the 
entire data that they were meant to represent, 𝑥𝑥𝑡𝑡+1, 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 𝑥𝑥 24𝑚𝑚 . These parameters 
were then used to predict the entire data from a different trial type, since those testing 
data were inherently unused in the model training. Model performance was evaluated 
using the coefficient of determination, R2. 

 We note that there were different numbers of trials in each task variant and no 
adjustments were made to account for this during model training. These models should 
be improved upon by adopting a cross-validation protocol that sets a fixed training 
sample size to be used for all task variants so that sample size does not have any effect 
on the results. However, our datasets are likely all large enough to where any effects due 
to differing trial counts would be minimal, yet this is not known for certain. 

 

4.4.6    Characterization of dynamical modes 
 Eigendecomposition was performed on the 𝐴𝐴 matrices fit to each dataset using 
the eig function in MATLAB. This decomposes the 𝐴𝐴 matrix into a set of eigenvectors 
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contained in the matrix 𝑇𝑇 and their associated eigenvalues located along the diagonal of 
matrix 𝐿𝐿, such that: 

 𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 (3) 
and 

 𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇−1 (4) 
The LDS expressed in equation 1 may therefore be re-expressed as: 

 𝑥𝑥𝑡𝑡+1 = 𝑇𝑇𝑇𝑇𝑇𝑇−1𝑥𝑥𝑡𝑡 + 𝐵𝐵 (5) 
By pre-multiplying both sides by 𝑇𝑇−1 and substituting 𝑇𝑇−1𝑥𝑥 with a new variable 𝑧𝑧, we 
may now observe the dynamics of a new matrix 𝐿𝐿 acting on latent variable 𝑧𝑧: 

 𝑧𝑧𝑡𝑡+1 = 𝐿𝐿𝑧𝑧𝑡𝑡 + 𝑇𝑇−1𝐵𝐵 (6) 
Recall that 𝐿𝐿 is a diagonal matrix of eigenvalues, making each dimension independent of 
one another. 

  The dynamical behavior of these separable “dynamical modes” can be 
characterized by their eigenvalues, which may be complex numbers in the form 𝑙𝑙 = 𝑎𝑎 +
𝑏𝑏𝑏𝑏, where 𝑎𝑎 is the real component and 𝑏𝑏 is the imaginary component. We used the 
eigenvalues for each dynamical mode to compute the 1

𝑒𝑒
 decay time as: 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

−(bin width)
ln (√𝑎𝑎2 + 𝑏𝑏2)

 
(7) 

and the oscillation frequency as: 

 
𝑓𝑓 =

tan−1 �𝑏𝑏𝑎𝑎�
2π(bin width)

 
(8) 

where the bin width just provides the change in time for a single sample. 

 Decay times were used to determine “significance” of dynamic modes. Since the 
time-shuffled modes resulted solely from noise-fitting and data smoothing, their decay 
times should be fast. These values therefore represent a distribution of dynamic modes 
reflecting features that we are not interested in, and can be used to apply a cutoff for 
filtering dynamic modes that capture features that we are interested in. A cutoff below 
100ms was used to filter out unwanted modes, which eliminated nearly the entire time-
shuffled distribution (Figure S4.3). This left only modes that were persistent, i.e., not 
quickly decaying, in the dataset. 

Please see [134] for an excellent python notebook tutorial from which most of 
these methods were adapted. 
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4.4.7    Procedure for “lesioning” dynamical modes 
 In order to determine the relative importance of individual dynamic modes, we 
performed a “lesioning” procedure which selectively eliminated specific eigenvectors from 
the A-matrix. In short, we decomposed the A-matrix, removed a single dynamical mode, 
then reconstructed the A-matrix from the remaining modes and re-tested performance in 
predicting future neural activity. The drop in performance, which we call R2Les, relates 
the relative importance of the lesioned dynamics for capturing neural variance. More 
precisely, give eigendecomposition in equation (4), we followed the protocol: 

1. Remove column 𝑖𝑖 from 𝑇𝑇, yielding 𝑇𝑇𝑖𝑖 ∈ ℝ𝑛𝑛 𝑥𝑥 (𝑛𝑛−1)   
2. Remove row and column 𝑖𝑖 from 𝐿𝐿, yielding 𝐿𝐿𝑖𝑖 ∈ ℝ(𝑛𝑛−1) 𝑥𝑥 (𝑛𝑛−1)    
3. Compute new 𝑇𝑇𝑖𝑖−1 ∈ ℝ(𝑛𝑛−1) 𝑥𝑥 𝑛𝑛  by taking the pseudo-inverse of 𝑇𝑇𝑖𝑖 
4. Reconstruct new 𝐴𝐴𝑖𝑖 ∈ ℝ𝑛𝑛 𝑥𝑥 𝑛𝑛 = 𝑇𝑇𝑖𝑖𝐿𝐿𝑖𝑖𝑇𝑇𝑖𝑖−1 
5. Reconstruct data matrix  𝑥𝑥�𝑡𝑡+1,𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑥𝑥𝑡𝑡 + 𝐵𝐵 
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4.5    Supplementary Figures 
 

Monkey  
O 

Indep 
Total 

Reach 
-First 

Reach 
-Pull 

Reach 
-Catch 

Pull 
-First 

Pull    
-Reach 

Pull 
-Catch 

 Coord 
Total 

With 
FB 

No FB 

Initiated 7123 3685 1523 1415 3128 1421 1517  6387 4566 1771 
Early 1st 
action 

209 
3% 

       187 
3% 

  

Wrong 1st 
action 

101 
1% 

       22 
<1% 

  

Early 2nd 
action 

937 
13% 

747 
20% 

  190 
6% 

   1238 
19% 

856 
19% 

382 
24% 

Late 2nd 
action 

687 
10% 

633 
17% 

633 
42% 

 54 
2% 

54 
4% 

  8 
<1% 

6 
<1% 

2 
<1% 

Execution 
error 

42 
1% 

0 
0% 

0 
0% 

0 
0% 

42 
1% 

42 
3% 

0 
0% 

 0 
0% 

0 
0% 

0 
0% 

Success 5147 
72% 

2305 
63% 

890 
58% 

1415 
100% 

2842 
91% 

1421 
94% 

1421 
100% 

 4932 
77% 

3704 
81% 

1228 
76% 

 

Table S4.1.  Monkey O trial outcome proportions. Trial outcomes were coded according 
to five different error types, or success. Percentages reflect the proportion of initiated trials. The 
“Initiated” trials here refer to those that advanced past key milestones along the trial timeline. 
In the “Indep Total” and “Coord Total” columns, this refers to all trials where a first action 
(whether correct or incorrect) was initiated. In the “Reach-First,” “Pull-First,” “With FB,” and 
“No FB” columns, initiated trials are those where the first action was correctly initiated. In the 
“Reach-Pull” and “Pull-Reach” columns, initiated trials are those where the trial advanced past 
the go-cue for the second action. The only error type represented in the catch trial columns was 
execution error – the table does not discriminate between early 2nd actions on dual-action trials 
and un-cued 2nd actions on dual-action trials, which are both represented in the “Reach-First” or 
“Pull-First” columns as “Early 2nd action”.   
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Monkey  
W 

Indep 
total 

Reach 
-First 

Reach 
-Pull 

Reach 
-Catch 

Pull 
-First 

Pull    
-Reach 

Pull 
-Catch 

 Coord 
total 

With 
FB 

No FB 

Initiated 14214 7104 5433 1290 6809 5339 1306  13491 5596 7687 
Early 1st 
action 

136 
1% 

       89 
1% 

  

Wrong 1st 
action 

165 
1% 

       119 
1% 

  

Early 2nd 
action 

545 
4% 

381 
5% 

  164 
2% 

   1506 
11% 

670 
12% 

836 
11% 

Late 2nd 
action 

236 
2% 

179 
3% 

179 
3% 

 57 
1% 

57 
1% 

  571 
4% 

314 
6% 

257 
3% 

Execution 
error 

157 
1% 

72 
1% 

72 
1% 

0 
0% 

85 
1% 

85 
2% 

0 
0% 

 44 
<1% 

44 
1% 

0 
0% 

Success 12975 
91% 

6472 
91% 

5182 
95% 

1290 
100% 

6503 
96% 

5197 
97% 

1306 
100% 

 11162 
83% 

4568 
82% 

6594 
86% 

 

Table S4.2.  Monkey W trial outcome proportions. Same as Table S4.1, except for 
Monkey W. Note that for Monkey W there were both long and short delay dual-action 
Independent trials, which is why there are more dual-action trials than catch trials (See 
Methods 4.4.2). 
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Figure S4.1 Single trial examples of behavioral kinematics. For each trial sub-type, an 
example single trial showing the speed of both hands along with the deflection of the joystick is 
displayed. Vertical lines indicate task events, and markers placed along the kinematic traces 
indicate behavioral events, e.g. the time of peak speed for the reaching hand (blue diamond). All 
examples are from Monkey W. A. Independent Mode trial sub-types, B. Coordinated Mode trial 
sub-types. 
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Figure S4.2 Distributions of behavioral events along the trial timeline. Each subplot 
displays the timing distributions for all behavioral events aligned to the reach cue. Plots are 
made for only the Independent Reach-Pull trials that were matched to the Coordinated behavior 
(top row), the Coordinated trials with visual feedback (middle row), and Coordinated trials 
without visual feedback (bottom row). Red lines in the top row show the time of the pull cue, 
which was at a fixed delay from the reach cue in Independent Reach-Pull trials (1s for Monkey 
O, 0.3s for Monkey W). In 5/31 sessions for Monkey W, an earlier pull cue was used, as 
indicated by the grey line (0.25s). A. Monkey O, B. Monkey W. 
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Figure S4.3. Determination of significant dynamic modes. These plots display the 
cumulative distributions of decay times associated with the dynamic modes fit in each dataset. 
Each line represents modes collected across all recording sessions. Dotted lines represent time-
shuffled data. The time-shuffled data serve as a null distribution over decay time values since 
they are the sole result of noise-fitting and data smoothing, both of which should result in fast 
decay times. Vertical grey lines at 100ms indicate the cutoff for “significant” dynamic modes. 
Nearly the entire time-shuffled distribution lies to the left of this line, conservatively filtering 
out only modes from the observed data that were persistent (i.e., did not quickly decay) in the 
datasets. Note that these models produce as many dynamic modes as there are recorded units, 
so it should be expected that a small proportion of those would be considered significant.  
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Chapter 5 

Conclusion 
 

 

 It is reasonable to assume that all movements we make with our arms are in fact 
bimanual. Some are more obvious than others: typing on a keyboard, tying your shoes, 
swinging a bat. Yet, even movements that seem to involve just one arm communicate 
forces across the body that may impact the contralateral limb. While a significant body 
of work coming from clinical neurology and experimental neuroscience have made clear 
that the motor cortex is principally involved in driving muscle activity on the opposite 
side of the body, the presence of activity related to bilateral movements may not be all 
too surprising when considering how we use our arms during daily activity. In this 
thesis, we have considered multiple hypotheses regarding laterality in the motor cortex 
and investigated them using a range of bimanual motor tasks. Here, we summarize the 
contributions of our work and discuss their implications for future avenues of research. 

5.1    Summary of contributions 
5.1.1    Independence and interaction of unimanual reaching 

signals 
In Chapter 2 we investigate the organizational properties of population signals in 

the motor cortex as they evolve across the process of motor preparation and execution, 
with specific interest in laterality. This study can be thought of as linking and 
expanding upon two recent observations made in the field. 

First, it has been shown that pre-movement activity develops within a neural 
subspace that is roughly orthogonal to the subspace spanned by peri-movement activity 
[80, 122]. A dominant theory surrounding motor cortical function posits that this allows 
preparatory neural activity to develop towards an optimal initial state without causing 
movement itself [5, 40, 43]. Second, two recent studies have found that motor cortical 
activity related to each arm resides in orthogonal neural subspaces as well [8, 108]. In 
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the same way that preparatory activity may refrain from causing movement, activity 
related to one arm may refrain from causing movement in the other arm. Together, 
these studies suggest a constant reorganization of the population statistics to serve 
different computational functions and target different effectors. How then can we 
integrate these ideas to gain a holistic understanding of how unimanual motor 
commands develop within the motor cortex? At what point in the process do signals for 
the two arms diverge? Precisely what organizational structure results in this divergence, 
and is there any heterogeneity in these properties? 

We find that divergence of arm-specific neural subspaces occurs gradually 
throughout preparation and movement. The two phases did not appear categorically 
different from one another; rather, the same organizational principles that produced 
subspace separation were present in both phases but to different extents. Divergence of 
these subspaces was the unique result of units that were strongly dedicated to one arm 
or the other. This was commonly the contralateral arm. It has been previously observed 
that many units in the motor cortex exhibit modulation during movements of either arm 
[8, 45, 108], which has led to a notion that signals for the two arms are mixed within 
units [8]. This is a puzzling notion given our understanding of contralateral bias in the 
motor cortex. We found that units which were more strongly modulated also tended to 
have stronger arm preference, which resolves these two ideas by positing that bilaterally 
active units exist in high quantity yet still account for a relatively small portion of the 
population variance. 

We additionally found that signals which were mixed within units did not 
distinguish between the two arms even in terms of their population covariance patterns. 
This component of the population response did contain behaviorally specific information 
such that reach targets could be classified from its activity. Interestingly, we did not 
find strong differences between PMd and M1 regarding these laterality properties. That 
is not to say that they were not different in general, as PMd was clearly more active 
during the preparatory period, but conditioned upon the units being active at all they 
were not readily distinguished by the metrics we assessed (e.g. during movement). 
Together, our results from Chapter 2 suggest a heterogeneity in the population 
responses within the motor cortex, consisting primarily of an arm-dedicated component 
yet also containing a component that is fundamentally bilateral in nature. 

5.1.2    Integration of bilateral state for unilateral motor 
commands 

The distributed component of Chapter 2 was highly relevant to the question 
asked in Chapter 3. Is bilateral state integrated into unilateral motor commands? We 
designed an experiment that tested the sensitivity of unimanual motor signals to posture 
of the stationary hand. We considered two main scenarios in which this effect would 
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exist. First, we considered whether covert motor commands for the stationary hand 
might exist in the motor cortex ipsilateral to the active hand. This activity would in 
fact reflect what the stationary hand would do if it were selected for movement. Second, 
we considered whether the state of the stationary hand might influence the neural 
activity associated with movements of the active arm for the purpose of facilitating 
bimanual interactions. 

Our primary finding was that decoders trained to predict reaching movements 
were counterintuitively sensitive to the posture of the stationary hand, which was not 
directly involved in the action. The errors that these decoders made tended to miss in 
the same direction as the shift in posture of the stationary hand, which is a prediction 
that follows from the covert motor command hypothesis. However, we obtained mixed 
support for this hypothesis as response properties for the two hands were not strongly 
correlated in any particular reference frame, which would be another prediction.  

An alternative interpretation centers on bimanual coordination or interaction. M1 
has been shown to integrate information across multiple joints of a single limb in order 
to produce contextually appropriate feedback responses [177]. It may be the case that 
M1 and its connected secondary motor areas may perform a similar computation that 
integrates information across the two arms. One version of this hypothesis may focus on 
manipulatory actions, where commands provided to one arm need to know the state of 
the other when acting on a common object (e.g., opening a drawer to remove an item). 
Another version may draw stronger analogy to multi-joint integration. While the two 
arms can move with some level of independence, they are still mechanically coupled 
through the torso similar to how the joints of a single arm are connected through direct 
linkages. Movements that on the surface appear to isolate a single arm may in fact 
require coordinated whole-body control to counter the rotational forces communicated 
through the torso. Our results also lend strong evidence to these bimanual hypotheses, 
yet are limited by the lack of EMG recordings. 

5.1.3    Interhemispheric population dynamics involved in 
bimanual coordination 

Chapter 4 presents a novel task for distinguishing unimanual action from 
coordinated or independent (but simultaneous) bimanual action. Using this design, we 
asked if, and how, the population dynamics in each hemisphere adapt to different 
bimanual coordination requirements. 

We found that kinematic decoders trained on isolated unimanual movements 
generalized poorly to coordinated bimanual trials, suggesting that the relationship 
between neural activity and behavior differed across control modes. The effect was not 
specific to ipsilateral activity, however. Despite this difference, we found little evidence 
that the neural population dynamics were adapting to the coordination requirements of 
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each task variant. These two primary results suggest that there may be a context-
invariant dynamical landscape while the neural state in different contexts simply 
occupies different regions of that landscape. For example, the initial state may be seeded 
differently but obey the same flow-field (this specific idea has not been tested in the 
current work). 

Our results may also point to a qualitatively different account of how 
independent and coordinated patterns of behavior are produced. Rather than flexibly 
switching between two control modes where the limbs are either treated as a unified 
plant or two independent plants, control may be always subject to certain bimanual 
constraints (i.e. coordinated). The presence of decorrelated behavior for the two arms 
may be the product of a separate process of response selection/gating, where the 
bimanual motor plan is adapted post-hoc by selectively withholding or modifying certain 
components. These processes would likely be distributed across the broader motor 
system and not simply reflected in motor cortical activity. 

5.2    Future directions 
 A valuable complement to the work of this thesis would be comparison with 
activity in the SMA, a region commonly implicated in bilateral control. In particular, it 
would be useful to know how this area interacts with PMd/M1 during the behavioral 
tasks of Chapter 4. Our investigation of the interhemispheric dynamics across different 
bimanual behaviors (which may be expanded upon with further analysis) showed limited 
adaptation to the coordination requirements. Observing the interactions with both the 
ipsi- and contralateral SMA may offer new insights into the distributed computations 
underlying flexible adaptation of bimanual behavior. 

 The investigation of neural population dynamics in Chapter 4 was quite 
exploratory. Future work should be done to develop strong theoretical hypotheses about 
precisely how dynamics may change to create different coordinated profiles of behavior. 
A powerful tool for this would be recurrent neural networks (RNNs). Training an RNN 
to perform similar task-switching and observing the behavior of the model may provide 
key hypotheses that would guide improved testing in the biological analogs. 

Our results from Chapter 2 suggest that there is a limited amount of independent 
ipsilateral activity in PMd and M1. These areas have historically been common targets 
for control signals in brain-machine interfaces (BMIs). An area of translational relevance 
for the work in this thesis is applying BMIs to restore mobility in patients with 
hemispheric stroke. With signals in one hemisphere no longer available, resulting in 
hemiparesis, one would hope to use a BMI to allow the intact hemisphere to do two 
jobs: isolate signals for reinnervating the paretic limb while continuing natural control of 



122 
 
the other. The weak independent ipsilateral signals that we observe present a critical 
engineering consideration. In order to achieve high quality control signals, many 
channels of recording may be required to “find” an appropriate amount of activity in a 
single hemisphere that is independent of the signals involved in contralateral control. 
BMI performance would also likely benefit from decoder training protocols that 
explicitly learn two independent readouts, e.g. training a decoder to not only create 
intended movements but to create no movement (learn a null space) during movements 
of the other limb. This would prevent the shared (or “distributed) component of the 
population activity from causing inadvertent movement of the BMI during movement of 
the intact limb. Additionally, one could design a decoder that leverages the shared 
signal. To distinguish this activity from contralateral control, it would require a form of 
gating mechanism – for example, a two-stage decoder that first classifies which hand 
control signals belong to and then outputs a continuous motor signal. The independent 
ipsilateral activity could serve this gating function in addition to direct control.   

 An additional BMI consideration in light of our Chapter 4 results is whether a 
bimanual BMI using only control signals in PMd/M1 would be capable of producing the 
type of coordinated arm usage that occurs in natural control. Our results showed limited 
contextual information about the coordination requirements specific to each bimanual 
task variant. This study would be nicely complemented by a BMI equivalent testing 
whether flexible switching between coordinated patterns of behavior may be produced 
from control signals located purely in the same areas where we recorded.  

 

5.3    Publications and presentations resulting from thesis 
 

Main thesis work 

1. Dixon TC, Merrick CM, Wallis JD, Ivry RB, Carmena JM. 2020. Hybrid 
dedicated and distributed coding in PMd/M1 provides separation and interaction 
of bilateral arm signals. bioRxiv. doi: 10.1101/2020.09.23.310664. under review. 

2. Dixon TC, Merrick CM, Knight RT, Ivry RB, Carmena JM. 2019. Emergence 
of lateralized population activity in motor cortex across instructed-delay and 
execution phases of reaching. Poster presented at: The Society for Neuroscience 
49th Annual Meeting; 2019 October 19-23; Chicago, IL. 

3. Dixon TC, Merrick CM, Knight RT, Ivry RB, Carmena JM. 2019. Bilateral 
representation of reaching movements in motor cortex. Poster presented at: The 
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9th International IEEE EMBS Conference on Neural Engineering; 2019 March 20-
23; San Francisco, CA. 

4. Dixon TC, Merrick CM, Knight RT, Ivry RB, Carmena JM. 2018. Stability and 
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cortex. Poster presented at: The Society for Neuroscience 48th Annual Meeting; 
2018 November 3-7; San Diego, CA. 
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