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1.  Introduction
Groundwater flow upscaling is a longstanding topic in hydrogeology, where either the whole model do-
main or each model grid is homogenized to capture the impact of sub-domain or sub-grid heterogeneity 
on flow (Durlofsky, 2003; Koltermann & Gorelick, 1996; Rubin & Gómez-Hernández, 1990; Scheibe & Ya-
busaki, 1998; Wen & Gómez-Hernández, 1996; among many others). This routine modeling task is usually 
done by upscaling the model parameters: hydrogeologists usually apply Darcy's law-based flow equations 
(where the groundwater velocity was assumed to be proportional to the hydraulic gradient (Bear,  1978; 
Whitaker, 1986)) including the Boussinesq equation (for unconfined aquifers with Dupuit assumptions) 
and the confined groundwater flow equation with effective, equivalent, or interpreted parameters such as 
the representative hydraulic conductivities to model domain-scale or grid-scale groundwater flow; see the 
extensive review by Sanchez-Vila et al. (2006).

Recent studies showed that pumping or injection can cause groundwater to flow differently from that de-
scribed by the Darcy's law-based flow models, motivating the upscaling of groundwater flow using parsimo-
nious flow models as a logical extension to the classical, stochastic flow models (Dagan, 1989; Gelhar, 1993). 

Abstract  Upscaling groundwater flow is a fundamental challenge in hydrogeology. This study 
proposed time-fractional flow equations (t-FFEs) for upscaling long-term, transient groundwater flow 
and propagation of pressure heads in heterogeneous media. Monte Carlo simulations showed that, with 
increasing variance and correlation of the hydraulic conductivity (K), flow dynamics gradually deviated 
from Darcian flow and exhibit sub-diffusive, time-dependent evolution which can be separated into three 
major stages. At the early stage, the interconnected high-K zones dominated flow, while at intermediate 
times, the transverse flow due to mixed high- and low-K zones caused delayed rise of the piezometric 
head. At late times when flow in the relatively high-K domains reached stability, cells with very low-K 
continued to block the entry of water and generate “islands” with low piezometric head, significantly 
extending the temporal evolution of the piezometric head. The elongated water breakthrough curve 
cannot be quantified by the flow equation with an effective K, the space-fractional flow equation, or the 
multi-rate mass transfer (MRMT) flow model with a few rates, motivating the development of t-FFEs 
assuming temporally non-Darcian flow. Model applications showed that both the early and intermediate 
stages of flow dynamics can be captured by a single-index t-FFE (whose index is the exponent of the 
power-law probability density function of the random operational time for water parcels), but the 
overall evolution of flow dynamics, especially the enhanced retention of flow at later times, required 
a distributed-order t-FFE with variable indexes for different flow phases that can dominate flow 
dynamics at different stages. Therefore, transient groundwater flow in aquifers with spatially stationary 
heterogeneity can be temporally non-Darcian and non-stationary, due to the time-sensitive, combined 
effects of interconnected high-K channels and isolated low-K deposits on flow dynamics (which is the 
hydrogeological mechanism for the temporally non-Darcian flow and sub-diffusive pressure propagation), 
whose long-term behavior can be quantified by multi-index stochastic models.
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Examples of the flow-upscaling method include the continuous-time random walk theory-based diffusion 
model (Cortis & Knudby, 2006), the multi-rate mass transfer (MRMT) flow model (Municchi & Icardi, 2020; 
Silva et al., 2009), and the space-fractional flow equation (s-FFE) assuming non-Darcian flow (shown below) 
(Cloot & Botha, 2006; Obember, 2020). A detailed debate of stochastic hydrological approaches including 
the models mentioned above (especially for pollutant transport) can be seen in Cirpka and Valocchi (2016), 
Fiori et al. (2016), Fogg and Zhang (2016), Rajaram (2016), and Sanchez-Vila and Fernàndez-Garcia (2016). 
Further efforts are still needed to explore the mechanisms and dynamics of long-term transient flow, and 
then test and improve the parsimonious upscaling models, motiving this study.

We extend the fractional engine (Metzler and Klafter, 2000, 2004), a promising tool originally proposed for solute 
transport (Zhang et al., 2009), to efficiently upscale long-term groundwater flow. The s-FFE is one of the main 
fractional-derivative models, and it has been proposed by various researchers to replace Darcy's law-based flow 
equations to quantify non-Darcy flow (meaning that the groundwater velocity is a non-linear function of the hy-
draulic gradient) (Cloot & Botha, 2006; Mehdinejadiani et al., 2013; Obember, 2020; among others). He (1998) 
was the first to describe non-Darcy flow using a space fractional derivative (see Equation 41 in He (1998)):









,x x
Pq K

x
‐� (1)

where qx [LT−1] denotes the water flux, P [L𝛾] is pressure, Kx [T−1] is the fractional hydraulic conductivity, 
and 𝛾 [dimensionless] (0 < 𝛾 ≤ 1) is the order of the Riemann-Liouville fractional derivative. The space 
fractional derivative in Equation 1 is a spatially nonlocal operator and can be expanded to a nonlinear (i.e., 
power-law) relationship between velocity and the (integer-order) hydraulic gradient; see for example, Zhou 
and Yang (2018). When 𝛾 = 1, Equation 1 reduces to the standard Darcy's law. Non-Darcian flow expressed 
by Equation 1 and its variants (such as the fractional Swartzendruber model) fit the nonlinear relationship 
between flux and hydraulic gradient (Qiu et al., 2019; Zhou & Yang, 2018; Zhou et al., 2019) and generalize 
existing formulas such as the well-known Ergun model (Ergun, 1952), Forchheimer model, and Izbash's 
equation (Watanabe, 1982) where the hydraulic gradient was assumed to be a power-law function of the 
bulk flow velocity. Inserting Equation 1 into the continuity equation of seepage flow, one obtains the s-FFE 
(only the one-dimensional (1D) case is shown here for simplicity):





   
      

,s x
P PS K
t x x
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where sE S  [L−1] denotes the specific storage for confined aquifers. The non-Darcian flow Equation 1 is attrac-
tive since it leads to the linear flow Equation 2, while the other non-Darcy models may result in nonlinear 
flow equations. The hydrogeological assumption underlying (2) is that the groundwater flow at a given 
point of the aquifer is affected by not only local properties of the piezometric field, but also the global spatial 
distribution of that field (Cloot & Botha, 2006).

The s-FFE (2), however, has not been systematically checked against transient flow in aquifers. Most im-
portantly, the space fractional derivative used in the non-Darcian flow Equation 1 assumes unbounded, 
super-diffusive, fast displacement of water parcels with a power-law leading edge, which may be valid for 
turbulent flow, for example after flooding events in streams or near a pumping well. Groundwater flow, 
however, is usually slow with bounded velocities. As will be shown by this study, transient groundwater 
flow matches the predictions of a time-fractional flow equation (t-FFE) rather than those of s-FFEs in-
cluding (2), likely due to the delayed pressure propagation and lack of power-law distributed, unbounded 
velocities in preferential flow paths.

This study fills three knowledge gaps in groundwater flow upscaling with FFEs by (a) exploring how ground-
water flow dynamics change with time in heterogeneous porous media under constant forcing terms, (b) 
upscaling transient water flow based on the long-term evolution of hydraulic head using novel FFEs, and (c) 
revealing the detailed medium heterogeneity dominating transient groundwater dynamics.

Transient groundwater flow is common in nature. After linking transient flow stages to medium heteroge-
neity, we will reproduce transient flow dynamics using upscaling models. For comparison purposes, both 
the deterministic groundwater flow model with upscaling parameters and promising stochastic models will 
be tested. Researchers in petroleum science (Raghavan, 2011), civil engineering (Deseri & Zingales, 2015), 
and mathematics (Li et al., 2016) proposed the standard t-FFE with fundamental mathematical analyses, 
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but critical questions related to the t-FFE remain unknown, including detailed model derivation, robust 
solutions under general hydraulic conditions, real-world applicability, parameter upscaling and sensitivity 
analysis, and hydrogeological mechanisms for transient flow dynamics. This study provides a detailed as-
sessment for the standard t-FFE (from derivation to application), and then improves it for upscaling tran-
sient flow, as well as detailed comparison with other models including the standard flow equation, the 
s-FFE (2), and the general MRMT model.

To reach the goal mentioned above, the rest of this work is organized as follows. Section 2 introduces the 
Monte Carlo approach used to obtain detailed flow dynamics in porous media with various degrees of 
heterogeneity. Section 3 checks the feasibility of the standard flow equation and the t-FFE with effective 
parameters by reproducing the flow dynamics obtained from the Monte Carlo simulations. For comparison 
purposes, a stochastic flow equation is derived using fractional calculus and is then applied to capture the 
Monte Carlo results. Section 4 derives a multi-index t-FFE to quantify the complete evolution of transient 
flow dynamics to improve the single-index t-FFE. Section 5 discusses the mechanisms responsible for the 
early, intermediate, and late time behaviors of transient flow, which deviate from those predicted by the 
standard flow equations assuming Darcy's law or the s-FFE model (2). The relationship between non-Dar-
cian flow and non-Fickian pressure propagation, model predictability, velocity distributions, and the rela-
tion between flow and transport are also discussed. Conclusions are drawn in Section 6. Model derivation, 
mathematical analysis, model comparisons, and model limitations are shown in Appendixes A, B, C, and D, 
respectively.

2.  Monte Carlo Simulation of Groundwater Flow
2.1.  Methodology

The Monte Carlo approach used here included two primary steps to estimate water flow in saturated po-
rous media. First, the medium heterogeneity was modeled by standard geostatistical methods. Second, 
groundwater flow was simulated using MODFLOW-2005 (Harbaugh, 2005), the U. S. Geological Survey's 
block-centered finite different solver for flow models. All steps were conducted using the software suite, 
Groundwater Modeling System.

In Step 1, 2D fields for hydraulic conductivity (K) were generated (with one example shown in Figure 1), 
where the random K was assumed to be log-normal, whose distribution follows an isotropic spherical 
semi-variogram model (one of the most used models) with zero nugget. The value of K at the peak of the 
probability density function (PDF) is equal to 3.0 × 10−3 cm/s, representing gravel/sand (the typical K rang-
es for sand and gravel are 10−7–10−2 cm/s (Domenico & Schwartz, 1990)). This 2D plane represents a hori-
zontal plane with direction-independent depositional properties. To explore the impact of internal structure 
of the K field on flow dynamics, we consider (a) three levels of variance σLn(K) (0.1, 1, and 10), and (b) three 
levels of correlation range, R, of the spherical model (R equal to 10, 100, and 500 cm). The correlation range 
(or scale) of K is considered to examine the effects of the scale of the observed domain relative to the scale 
of geological features. Most importantly, fast flow along the interconnected high-K zones may bring water 
from distant areas, so that the local variation of flow may be affected by flow at a large range of (upstream) 

Figure 1.  Hydraulic conductivity distribution for realization 1 in scenario 9, and the initial head distribution. Notably, 
here the K's range is up to Ln(K) of 3 (∼20 cm/s), representing the saturated hydraulic conductivity of well sorted gravel 
(usually in the range of 101–102 cm/s).
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locations. This is the concept of “spatial nonlocality” (Cushman, 1997), the core assumption underlying the 
space fractional derivative models (1) and (2).

Hence, a total of nine scenarios with stationarity and various degrees of heterogeneity were generated (see 
Table 1 and Figure 2). For each scenario, a series of 500 equally probable but different realizations were 
developed, leading to 4,500 K fields. All realizations have a size of 4,000 cm and 1,000 cm along the longitu-
dinal and transverse directions, respectively, and hence the longitudinal size is 8–400 times larger than the 
correlation range. The cell size of 10 cm by 10 cm in the longitudinal (x) and transverse (y) directions was 
selected to achieve a balance between computational burden and detailed representation of heterogeneity. 
The 2D model was selected for computational efficiency and for simplicity of visualizing results. Extension 
of model dimensionality will be discussed in Appendix D.

In Step 2, transient groundwater flow was simulated using the same domain and cell dimensions from the 
geostatistical realizations. A Dirichlet boundary condition was used for the left and right boundaries to sim-
ulate longitudinal flow from the left boundary (with a constant head of 50 cm) to the right boundary (with a 
constant head of 10 cm) with the initial head of 10 cm, resulting in a general hydraulic head gradient paral-
lel to the longitudinal direction (Figure 1). The remaining domain boundaries are impermeable boundaries. 
The mathematical model for the transient flow process is the classical groundwater flow equation with 
initial and boundary conditions defined below:

               
    

          

, , , , , ,
, ,s xx yy

H x y t H x y t H x y t
S K x y K x y

t x x y y� (3a)

     0, , 0 ,H x y t H x y� (3b)

   , , |x x llH x y t H� (3c)

   , , |x x rrH x y t H� (3d)

    
 

 
 

, , | 0 ; , , | 0y y y yb tH x y t H x y t
y y� (3e)

where the specific storage coefficient sE S  is constant and equal to 0.001 in this study; Kxx and Kyy [LT−1] de-
note the conductivity components along the x and y directions, respectively; H(x,y,t = 0) (=10 cm) denotes 
the initial distribution of the hydraulic head; xl and xr denote the left and right boundaries of the domain, 
respectively; yb and yt denote the minimum and maximum coordinates along the y-axis, respectively; and Hl 
(=50 cm) and Hr (=10 cm) denote the constant head at the left and right boundaries, respectively.

Range Category C = 0.1 C = 1 C = 10

R = 10 cm Scenario Scenario 1 Scenario 2 Scenario 3

CFE (4) eE K   = 2.77 eE K   = 1.95 eE K   = 0.60

FFE (12)   ,e eE K K   = 1   ,e eE K K   = 1 
eE K   = 1.9, E   = 0.87

R = 100 cm Scenario Scenario 4 Scenario 5 Scenario 6

CFE (4) eE K   = 2.93 eE K   = 2.60 eE K   = 2.91

FFE (12)   ,e eE K K   = 1   ,e eE K K   = 1 
eE K   = 31, E   = 0.63

R = 500 cm Scenario Scenario 7 Scenario 8 Scenario 9

CFE (4) eE K   = 2.98 eE K   = 2.46 eE K   = 1.60

FFE (12) 
eE K   = 3.5, E   = 0.98 

eE K   = 10, E   = 0.86 
eE K   = 168, E   = 0.50

Note. Also shown are parameters to fit the Monte Carlo simulations by the conventional flow equation (CFE) (4) and 
the fractional flow equation (FFE) (12). In the legend, “R” (cm) denotes the effective range of Ln(K), “C” (Ln(m/s)) 
denotes the variance of Ln(K), “  eE K  ” (×10−3 cm/s) denotes the effective conductivity for the CFE model (4), and “  

eE K  ” 
(×10−3 cm/sα) denotes the fractional-order effective conductivity for the FFE model (12).

Table 1 
Parameters of the Spherical Semi-Variogram Model for the Nine Scenarios of Heterogeneous K Fields
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The relatively large general hydraulic head gradient (0.01) was used to obtain complete flow dynamics 
within the modeling period of 1 × 106 seconds. The impact of the general hydraulic head gradient on flow 
dynamics will be discussed in Section 3.3. Ensemble averages of transient hydraulic head at various down-
stream control planes were calculated and analyzed below.

2.2.  Monte Carlo Simulation Results

Numerical results of the Monte Carlo simulations show that groundwater dynamics transition from pis-
ton-like flow to meandering, channel-like flow with the increase of the variance of Ln(K) and the effective 
range R (Figure 3). For example, for scenario 1 with the smallest variance and the shortest effective range, 
water moves almost parallel to the longitudinal axis with a uniform velocity (Figure 3a), which is explained 
in Sections 3.3 and 5.5. With the increase of Ln(K) variance in scenarios 2 and 3 (while the effective range 
remains unchanged), the greater K-contrast forces more water into the high-K zones, generating more chan-
neled flows (Figures 3b and 3c). Multiple channels with similar capacity to conduct water are generated, 
resulting in a relatively uniform network filled with thin and short channels due to the small effective range 
R (Figures 3b and 3c). Because there are many thin flow channels, the average direction of flow at any  

Figure 2.  The simulated Ln(K) distribution for realization #1 for all nine scenarios. Plots (a∼i) represent scenarios 
1∼9, respectively. Note that for a clear view, only the first 1,000 cm is shown for the full 4,000 cm extend along the 
longitudinal direction.
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longitudinal distance is approximately parallel to the no-flow boundaries. When both the variance of Ln(K) 
and the effective range R increase, a smaller number of dominant channels occurs and the transverse veloc-
ity can increase significantly, resulting in complex patterns filled with elongated, sinuous flow paths. Water 
from the left boundary (the upgradient boundary) tends to converge into discrete flow pathways while mov-
ing downgradient, different from the dispersed, parallel flow observed in scenarios 1∼3 (Figures 3f and 3i).

Hydraulic head evolution at various control planes (located at x = 1,000, 2,000, and 3,000 cm) also revealed 
enhanced tailing behavior in piezometric head with an increasing variance of Ln(K) and effective range R 
(Figure  4). For example, for scenario 1 representing the most “homogeneous” media, the transient head 
curve, which is called the “water Breakthrough Curve” (BTC) in this study and represents the temporal 
evolution of piezometric head (which is the mean of the heads in all cells along the control plane), is rela-
tively steep (Figure 4a), due to the piston-like flow pattern. The water BTC (which may also represent en-
ergy breakthrough when the hydraulic head represents potential energy) can be defined mathematically as 

 

1( , ) ( , , )yt

ybt b
E H x t H x y t dy

y y
 , where yt and yb (used also to define the boundaries for the classical flow model  

Figure 3.  The simulated flow velocity for realization #1 for all the nine scenarios at time t = 1,000 s. The white regime 
represents low velocity zones (i.e., relatively immobile zones) with velocity lower than 0.1 × 10−3 cm/s. Plots (a∼i) 
represent scenarios 1∼9, respectively. For illustration purposes, only the first 1,000 cm is shown for the full 4,000 cm 
extend along the longitudinal direction in these plots.
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(3)) are the y-coordinates at the top and bottom of the control plane, respectively. Hydraulic head can rise rel-
atively quickly and then stabilize, implying relatively smooth propagation of hydrostatic pressure through the 
medium. For scenario 9 with strong variation of Ln(K) and high correlation (i.e., larger R), analysis of water 
movement (see for example Figure 3i) reveals that the velocity of the waterfront increased due to dominant 
preferential pathways with lower tortuosity, while water retained in relatively low-permeability zones was also 
delayed (discussed further in Section 5.2). Hence, both the early arrivals and delayed flow can be observed 
for scenario 9, producing an elongated water BTC (Figure 4i). Notably, the hydraulic head did not stabilize in 
scenario 9 even at the end of the modeling period (106 s). Here the “tailing behavior” means that the water BTC 
tail (at the early and/or late time) is heavier than that estimated by the Darcy's law based classical flow model, 
which is analogous to the well documented tailing behavior in the pollutant transport BTC (Zhang et al., 2009).

It is also noteworthy that the Monte Carlo results provide information about a potential threshold for (or 
the upper limit on) the variance of Ln(K), denoted as σ*Ln(K), for generating non-Darcian flow dynamics (the 

Figure 4.  The transient piezometric head at three control planes (i.e., mean of the heads in all cells along the control plane) (located at x = 1,000, 2,000, and 
3,000 cm) for all nine scenarios in a log-log plot: Monte Carlo simulations (symbols) versus model results (lines) using both the Conventional Flow Equation 
(CFE) model (4) and the Time Fractional Flow Equation (t-FFE) model (12).
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“non-Darcian flow dynamics” are characterized by the elongated late-time BTC tail shown in Figure 4i). For 
porous media with the Ln(K) variance below σ*Ln(K), the transient head will not exhibit any apparent tailing 
behavior, regardless of the magnitude of the correlation range, since the variation of Ln(K) is not strong 
enough to form any apparent preferential flow pathways. Only when the Ln(K) variance is above σ*Ln(K) 
will apparent channeled flow appear. In this study, this threshold σ*Ln(K) is found to be no larger than 0.1 
(with units of Ln(cm/s)). This threshold, however, contains high uncertainty, due to the limited scenarios 
(9 total) built in this study. A quantitative, strict criterion for the definition of σ*Ln(K) requires many more 
scenarios and a systematic modeling analysis, which is beyond the focus of the current work and can be 
pursued independently. In addition, if the water BTC corresponding to the test Ln(K) variance exhibits a 
visible discrepancy at the tailing portion as compared to the classical flow equation, we refer to it as an “ap-
parent tailing behavior.” The corresponding hydrogeologic interpretation is that the piston-type water flow 
changed gradually to a more complex flow dominated by channelized flow.

3.  Upscaling With Deterministic and Stochastic Models
This section develops physical models with spatially independent, effective parameters to upscale flow dy-
namics. We focus on 1D effective models, which may recover the transient head observed in the Monte 
Carlo simulations shown above (Figure 4).

3.1.  Conventional Flow Equation With Effective K for Upscaling Groundwater Flow

The Conventional Flow Equation (CFE) with the effective K takes the form:

   


 

2

2

,,
,e

s

H x tH x t K
t S x

� (4)

where H x t( , ) denotes the column (transversely)-averaged hydraulic head, and eE K  [LT−1] is the effective 
hydraulic conductivity.

The upscaling of hydraulic conductivity of heterogeneous media has been a topic in hydrology for over a 
century (Pinczewski & Paterson, 2002). Various methods have been developed in the last four decades to 
estimate the equivalent permeability/hydraulic conductivity (which is a constant permeability/hydraulic 
conductivity tensor that generates the same flow as the heterogeneous medium at the boundaries of the do-
main) or effective permeability/hydraulic conductivity (an intrinsic physical magnitude that is used for a sta-
tistically homogeneous medium and is independent of the macroscopic boundary conditions) for saturated 
porous media (Renard & de Marsily, 1997). Extensive reviews by Garboczi (1990), Wen and Gómez-Hernán-
dez  (1996), Renard and de Marsily  (1997), and Sanchez-Vila et  al.  (2006) identified the advantages and 
disadvantages of the upscaling methods. For example, as commented by Renard and de Marsily (1997), the 
heuristic, deterministic, and stochastic methods are the three main methods for upscaling steady-state flow. 
Although these methods can provide a reasonable range of the equivalent or effective hydraulic conductivity, 
the heuristic method (which calculates the mean hydraulic conductivity using for example the power aver-
age or averaging means) tends to neglect geometric structure of medium heterogeneity during the upscaling 
process (Knudby et al., 2002). The deterministic method (which assumes that the geological model is per-
fectly known) works better for media with weak heterogeneity (Renard & de. Marsily, 1997), and the stochas-
tic method (which assumes medium properties to be random variables) is generally based on assumptions 
not always valid for natural media (Dagan, 1993; Dykaar & Kitanidis, 1992; Gelhar & Axness, 1983). Recent 
studies also developed experimental techniques (Cai et al., 2012; Kendrick et al., 2021; Strangfeld, 2020; Wei 
et al., 2021), hydraulic tomography (Bellin et al., 2020), deep learning (Moghaddam, 2020), as well as multi-
scale characterization (Colecchio et al., 2020), among other approaches, to define the effective hydraulic con-
ductivity. Here we select the Monte Carlo simulation of groundwater flow to calculate the effective hydraulic 
conductivity Ke for two reasons. First, it can provide the accurate Ke although the process is computationally 
demanding. Second and most importantly, we will show that the effective hydraulic conductivity typically 
used in flow models cannot upscale non-Darcian flow in strongly heterogeneous porous media.

To obtain Ke, we first calculated the steady-state flux for each 2D heterogeneous K field (by rerunning MOD-
FLOW), and then obtained the ensemble average of the steady-state flux F* (the steady-state flux for each 



Water Resources Research

XIA ET AL.

10.1029/2020WR029554

9 of 30

realization is the vertically integrated total flux across each control plane when the groundwater flow model 
stabilizes) for each scenario (note that for scenario 9, a longer modeling time, 109 s, was needed and used 
to approximate the steady-state condition). We then applied Darcy's law to calculate the effective param-
eter Ke = F*/J, where J is the general hydraulic gradient (equal to 0.01 for all scenarios). The resultant Ke 
listed in Table 1 shows that, on one hand, when the variance of Ln(K) is relatively small (i.e., σLn(K) = 0.1, 
for scenarios 1, 4, and 7), water moves slightly faster with an increasing correlation range of K (resulting 
in a larger effective conductivity Ke), due to the slightly enhanced channels in the longitudinal direction. 
This is expected. On the other hand, when the correlation range of K is relatively small (i.e., R = 10 cm, for 
scenarios 1, 2, and 3), the increase of the variance of Ln(K) can generate more low-K blocks, and water must 
bypass these almost impermeable blocks (which can overshadow the fast flow due to the increased number 
of high-K blocks when the variance of Ln(K) increases), resulting in a lower stable total flux and Ke. Hence, 
the variance and correlation range of K tend to exert different impacts on the effective conductivity Ke. With 
an increasing variance and correlation range of K, the competition between the two factors can cause com-
plex variation of Ke, as shown in Table 1.

After Ke is defined, we apply the CFE (4) to predict the temporal evolution of the hydraulic head for each 
scenario. With the following boundary and initial conditions similar to (3):

   0, 0 ,H x t H� (5a)

   , |x x llH x t H� (5b)

   , |x x rrH x t H� (5c)
the analytical solution for the CFE (4) is:

H H H H
n
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x e

r l r n
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
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
2 1

1
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

sin .




.� (6)

3.2.  Generalized, Time-Nonlocal Darcian Flow to Derive the Upscaled Flow Model

For comparison purposes, we also developed a model of time-nonlocal upscaled flow based on the following 
observations. Figure 4 shows that the water BTCs are relatively flat for porous media with a larger variance 
and a longer correlation range of K, showing that the hydraulic head starts rising more immediately and rises 
more gradually than that of scenarios with a smaller variance and a shorter correlation rage of K. Hence, the 
water might have been retained in low-K zones for a period of time, an impact similar to the memory effect 
reported by Cortis and Knudby (2006) for groundwater flow in confined aquifers. Comparing Figures 3 and 4 
shows that increased abundance of transverse channels results in a lower slope of the water BTC (i.e., strong-
er temporal memory). Further analysis shows that the transverse velocity fluctuates across several orders of 
magnitude for Scenario 9 (Figure 5), and therefore different water parcels may spend different periods of time 
while crossing the same column, resulting in a strong memory effect and late time tailing of the water BTC.

In a traditional 1D upscaled model (such as the CFE (4)), differences of head in a column of cells perpen-
dicular to the main flow direction may not be captured by an average head assigned to the representative 
longitudinal cell. Water can redistribute in a column of cells, while the average head remains unchanged. 
Only water movement from one column to another can change the average head at that column. This helps 
to explain the memory effect (meaning the persistent water head, or the BTC tailing behavior). Water can 
translocate perpendicularly to the main flow direction without contributing to the change of the average 
head; from the standpoint of average heads and flows, the water parcels appear to be trapped. In other 
words, the history of water redistribution at the local position can affect the current propagation of pressure 
or water mass at this position (or water fluxes in and out of the same position), which describes the impact 
of “time nonlocality” on groundwater flow (Cushman,  1997). Additional treatment is therefore needed 
in the 1D upscaled model to account for the impact of cross-section heterogeneity on flow dynamics. For 
example, the differential transverse flow paths and travel periods can be interpreted as water trapped or 
retained by the column for random amounts of time using a new stochastic model.
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Based on the analyses shown above, we propose a stochastic flow model that accounts for memory effects 
in water movement. The continuity equation of water flow can be written as:

    
 

 

, ,
,s

H x t q x t
S

t x
� (7)

where the water flux q x t( , ) is expressed by the following generalized, time-nonlocal Darcy's law (which 
defines the “temporally non-Darcian flow”; see Section 5.3):

        
      0

,
, ,t

e
H x s

q x t K t s G t s ds
x

� (8)

where E  is the Dirac delta function, and G t( ) denotes the memory function. Here the water flux q x t( , ) can 
be divided into two parts. The first part in the integral including the Dirac delta function is the immediate 
contribution (at time t) from the present longitudinal head gradient, expressed by -K H x

e

  /  following the 
classical, time-local, Darcy's law. The second part is due to the delayed response of water flowing through 
(transverse) columns from time 0 to t (i.e., the whole history), which can be quantified by the convolution 
K H x s x G t s ds

e

t        0 , /  , a time nonlocal term.

Substituting Equation 8 into Equation 7 and taking Laplace transform (  E t  ), one obtains:

    
    


  


          


2

0 2

,
, 1 ,s e

H x
S H x H x K G

x
� (9)

where the tilde represents the Laplace transform, and 0( )E H x  denotes the initial hydraulic head at position 
x. Here the memory function G t( ) accounts for the probability of water parcels staying in the transverse 
column for time t, which is an upscaled parameter assumed to be independent of position x for station-
ary media. The explicit expression of G, however, is uncertain due to the complex retention processes and  

Figure 5.  Frequency of the transverse velocity in scenario 9. The dashed line shows the best-fit trendline using a 
power-law function.
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memory effects. Figure 5 reveals that G may have a power-law declining tail. Moreover, this function accounts 
for the ensemble average of the retention time distribution of hundreds of realizations, so it may obey the law 
of large numbers and converge to the half-axis stable distribution, which has an explicit Laplace transform:

    ,G e� (10)

where the exponent E  is between 0 and 1.

Substituting Equation 10 into Equation 9, we have

 
         

2

0 2 1 .s e
HS H H K e

x
� (11)

When   0E  (representing  E t  ), one has 
  1E e  , and hence Equation 11 leads to the following 

t-FFE (after taking the inverse Laplace transform):

   





  


 

2

2
, ,

,e

s

H x t H x tK
St x

� (12)

where the index   1E  , and the constant factor   1E  [  1E T  ] is added here for units conversion. Hence, 
the effective hydraulic conductivity 

eE K  has the commonly used units for hydraulic conductivity [ E LT−1], 
which is more easily interpreted than the fractional hydraulic conductivity xE K  [  E L T−1] in Equation 2 whose 
hydrogeologic interpretation remains unclear. For description simplicity, the units converter E  is no longer 
shown in the following formulas ( E  is “absorbed” by the effective hydraulic conductivity 

eE K  ). When   1E  , 
the t-FFE (12) reduces to the CFE (4).

To justify the t-FFE (12) built upon the assumed time-nonlocal Darcy's law (8), we derived the t-FFE (12) 
using the time subordination approach (Appendix A), which also reveals the form of the temporal non-Dar-
cian flow and will be discussed further in Section 5.3.

With the boundary and initial conditions defined by Equation  5, the t-FFE model (12) has an analytic 
solution:

H H H H
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where E E  denotes the Mittag-Leffler function.

3.3.  Model Application and Comparison

Applications show that the CFE model (4) predicts the temporal change of the hydraulic head for scenarios 
with a relatively small variance of Ln(K) and a relatively short correlation range (including scenarios 1, 2, 
4, 5, and 7) (Figure 4). For strongly heterogeneous K fields with a larger variance and correlation range (in-
cluding scenarios 3, 6, and 9), the CFE (4) not only underestimates the early arrival of water parcels moving 
along preferential flow pathways, but also underestimates the late-time arrivals of water parcels trapped 
previously by low-K zones. Note that the CFE (4) cannot significantly change the slope of the water BTC 
in a log-log plot by increasing the effective hydraulic conductivity eE K  . This is because the slope of the water 
BTC is not sensitive to the effective hydraulic conductivity, although an increasing eE K  results in an earlier 
tail in the water BTC (Figure 6). This is expected considering the analytical solution 6. According to (6), the 

maximum slope of the simulated water BTC in a log-log plot appears at time 



2

2 2
s

e

S LE t
K n

 (so that the water 

BTC shifts toward younger ages (i.e., shorter travel times) with an increasing eE K  ), and the maximum slope 

of the water BTC can be approximated by   


 
   

 
12 sinl rE H H x e

L
 (so that the maximum slope does not 

change with eE K  in a log-log plot, as shown in Figure 6). Therefore, the CFE (4) cannot capture the water 
BTCs whose slope changes with the medium heterogeneity.

The t-FFE model (12) with the best-fit index E  and effective conductivity (denoted as 
eE K  to be distinguished 

from the effective conductivity eE K  used in the CFE model (4)) listed in Table 1 can capture the overall trends 
of the water BTCs (see the blue lines in Figure 4). It is not possible to predict 

eE K  , except for fitting the 
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measured water BTC or when the index   1E  in the t-FFE (2). When   1E  (i.e., for the medium with weak 
heterogeneity), 

eE K  reduces to the classical effective hydraulic conductivity that may be predicted. When 
  1E  (i.e., for the medium with weak heterogeneity), both the index E  (which cannot be directly measured; 
see further discussion in Section 5.4) and 

eE K  affect the shape of the water BTC. The same challenge exists 
for the effective dispersion coefficient in the fractional-derivative models for pollutant transport, which 
remains a scale-dependent fitting parameter to compensate for the missing local velocity in a macroscopic 
model (Zhang et al., 2020). To further check the predictability of the best-fit parameters in the t-FFE (12), we 
predicted the water BTC using scenario 3 but with the general hydraulic gradient reset to 0.02 and 0.001 in 
the Monte Carlo simulations. Results show that the t-FFE (12) with the fractional index E  and the fractional 
conductivity 

eE K  fitted for the general head gradient of 0.01 can successfully predict the flow dynamics for 
other general head gradients (Figure 7).

The t-FFE (12) with a single index α, however, overestimates the late-time speed of water motion for some 
scenarios with large correlation ranges (scenarios 3 and 6) (notably, this overestimation is not apparent in  
scenario 9, because it takes longer for the retention effect to appear in scenario 9) (Figure 4). Hence, a 

Figure 6.  Sensitivity scenarios of the simulated water BTC using the Conventional Flow Equation (CFE) model (4) with different eE K  (units: cm/s) for scenario 
9. (a) Is a log-log plot, and (b) is a linear-linear plot. The symbols and lines represent the Monte Carlo data and the CFE (4) solutions, respectively.

Figure 7.  The Monte Carlo data (symbols) versus the best-fit water BTC using the Conventional Flow Equation 4 and the t-FFE (12) (lines) for scenario 9 
when the hydraulic head gradient is 0.001 (left) or 0.02 (right). The t-FFE (12) with all the two parameters (the fractional index E  and the fractional conductivity 


eE K  ) fitted for the general head gradient of 0.01 is used here to predict the water BTCs generated by the Monte Carlo simulations with a different general head 

gradient (0.001 and 0.02).
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new t-FFE with multiple scaling rates might be needed for transient water flow, especially to capture the 
enhanced water retention at late times (with hydrogeological explanation discussed in Section 5.2), motivat-
ing the distributed-order fractional-derivative model discussed below.

4.  Full-Range Transient Flow Using a Distributed-Order Fractional Flow 
Equation (d-FFE)
To capture the distinct impacts of relatively high-K and low-K materials on transient flow dynamics, we 
separate the saturated porous media into mobile and relatively immobile zones, with the corresponding 
hydraulic head denoted as H x t

m
( , ) and H x t

im
( , ) , respectively. Dynamics of the mobile zone, consisting of 

the major flow paths, may be affected by the slow mass exchange with the surrounding low-permeability 
zones. Following the concept of the mobile-immobile flow model (Silva et al., 2009), we propose a govern-
ing equation for the head in the mobile zone (  mE H  ):

       







        

21

21

, , 1 , , ,m me im
m im

s s

H x t H x tK K H x t H x t
S Sxt

� (14)

where the suffix “ E m ” and “ E im ” of E H represent the hydraulic head in the mobile and immobile phases, re-
spectively; E  [dimensionless] denotes the volumetric proportion of the mobile zone; ( )1   /  represents 
the ratio of immobile to mobile volume, which is similar to the concept of the capacity coefficient used for 
the MRMT model for chemical transport (Haggerty et al., 2000); and imE K  denotes the effective hydraulic 
conductivity for the immobile zone.

The relatively immobile zone contains low-K cells with small to even negligible flow rates. Monte Carlo 
results in Section 2 showed that the water flow rate within the immobile zone is very small, and the tem-
poral change of hydraulic head in the immobile zone is mainly due to the mass exchange between mobile 
and immobile flow zones. These results motivate us to propose the following fractional-derivative model to 
describe the evolution of the immobile hydraulic head (  imE H  ):

     





   

2

2

,
, , ,im im

m im
s

H x t K H x t H x t
St

� (15)

where the index 2E  can be different from the index 1E  used in the mobile model (14) to capture different 
effects of mobile and immobile phases on the overall flow dynamics. Here the index 2E  characterizes the 
residence time distribution of water trapped in the low-permeability islands (described in Section 5.2). Spe-
cifically, 2E  defines the exponent of the power-law PDF for this residence time distribution. The effective 
hydraulic conductivity imE K  characterizes the capacity of mass exchange between the low-permeability is-
lands and the surrounding materials. Although these parameters have clear physical meanings, they cannot 
be measured directly at present and must be fitted. The same limitation (i.e., poor parameter predictability) 
persists for most nonlocal, upscaling transport models (Zhang et al.,  2020). Empirical approximation of 
model parameters will be discussed in Section 5.4.

The total hydraulic head, totE H  , is a weighted summation of the mobile and immobile head:

          , , 1 , .tot m imH x t H x t H x t� (16)

Mathematically, the d-FFE (14)∼(16) follows the definition of distributed-order fractional-derivative equa-
tions (Chechkin et al., 2002; Luchko, 2011; Naber, 2004), which were proposed to capture time-dependent 
dynamics (although they have not been checked against real-world hydrologic processes). The smaller of 
the two indexes 1E  and 2E  dominates the late-time flow behavior, such as the late-time water retention 
missed by the single-index t-FFE (12). When the indexes 1E   = 1 and 2E   = 1 (i.e., without memory impact in 
any zones), models (14) and (15) reduce to the standard MRMT flow model with a single mass-transfer rate, 
such as Equations 5 and 6 in Silva et al. (2009). When E   = 1 (i.e., without separation of mobile/immobile 
zones), model (14) reduces to the single-index t-FFE (12).

Boundary and initial conditions for the three hydraulic heads listed above can be written as:

H x x t H
k l l
( , ) , � (17a)

H x x t H
k r r
( , ) , � (17b)



Water Resources Research

XIA ET AL.

10.1029/2020WR029554

14 of 30

H x t H
k r
( , ) , 0� (17c)

where the suffix E k  = m, im, or tot, representing the mobile, immobile, or total phase, respectively.

Taking the Laplace transform of Equation 15 (  E t  ), one obtains:

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where T K S
im s

 /  denotes the diffusion coefficient for water pressure, and 0E H  denotes the initial hydraulic 
head of the immobile zone. Inserting Equation 18 into the Laplace transform of Equation 14, taking the 
inverse Laplace transform, and considering the fact that T ( )1   /  is small, we obtain the solution for the 
hydraulic head in the mobile phase:
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where  Δ l rE H H H  .

Inserting Equation 18 into the Laplace transform of Equation 16 yields:

  

 

  

 

 
 
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2 2

1
.tot m

T
H H H

T T
� (20)

Equation 20 is consistent with the known conditions listed below. When E   = 1, Equation 20 shows that 
tot mE H H  and all the domains are mobile, showing that the d-FFE (14) and (15) reduce to the single-index 

t-FFE (12), as expected. In addition, for the case of E T   = 0 (i.e., impermeable deposits comprising the immo-
bile zone), Equation 18 reduces to  0

imE H H  , consistent with no head change in the impermeable domain, 
and Equation  20 reduces to H H H H H

tot m m im
        ( ) ( )1 1

0  , which is consistent with the 
total head defined by Equation  16. When E T  is non-zero and the time  E t  (corresponding to   0E  ), 
Equation 18 shows the trend im mE H H  and Equation 19 predicts a linear gradient of head from lE H  at lE x  to 

rE H  at rE x  , and Equation 20 leads to tot mE H H  . Hence, Equation 20 defines the temporally nonlocal relation-
ship between totE H  and mE H  . When 2E   = 1, the memory function is an exponential function representing weak 
retention in flow, and when 2E  < 1, the memory function is a power law function capturing strong retention 
in water flow.

Applications show that the d-FFE (14)∼(16) can capture the overall trend of the Monte Carlo solutions of 
the water BTC (Figure 8). The best-fit model parameters have the following values: for scenario 3, 1E   = 0.95, 
2E   = 0.13, E   = 0.9, and E T   = 0.04 2 2E cm s  ; and for scenario 6, 1E   = 0.71, 2E   = 0.11, E   = 0.92, and T = 0.04 

2 2E cm s  .

Figure 8.  The transient piezometric head at three control planes (located at x = 1,000, 2,000, and 3,000 cm) for scenario 3 (left) and scenario 6 (right) in a log-
log plot: Monte Carlo simulations (symbols) versus the distributed-order fractional flow equation (d-FFE) results (lines).
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In Appendix B, we explain and validate further how the d-FFE (14)∼(16) can distinguish flow retention at 
different times, especially the intermediate and late times. We also conduct detailed model comparison in 
Appendix C, where results show that the d-FFE (14)∼(16) (with four fitting parameters: 1E  , 2E  , E  , and imE K  ) 
is superior to the s-FFE (2) and the general MRMT flow model in capturing the overall pattern of the water 
BTCs.

5.  Discussion
5.1.  Impact of High-K on Early Arrivals in Water BTC

The simulated velocities shown in Figure 3 imply that the flow network consisting of high-K channels plays 
a key role in the transient flow process. Both the variance and correlation range of K can affect properties of 
the preferential pathways and therefore affect early arrivals of water parcels. On one hand, a small variance 
of Ln(K) produces a relatively uniform flow velocity without apparent bifurcations. With an increasing 
variance of Ln(K), the flow network exhibits densely braided channels (if the correlation range of K is short, 
such as in scenario 3) or fewer dominant meandering channels (if K is highly correlated, such as in scenario 
9). The broader distribution of high-K materials enhances the tortuosity of the flow network. On the other 
hand, a larger correlation range of K can result in wider channels with more direct connections between the 
inlet and outlet filled with fast-flowing water. However, if the variation of Ln(K) is below a threshold (which 
is 0.1 in this study; see Section 2.2), the impact of correlation range on the flow network is negligible, due to 
the relatively uniform K. Therefore, the correlation range of K acts as a secondary factor in controlling flow 
patterns as compared to the variance of K.

Time-dependent streamlines (at relatively early times) for scenarios 1 and 9 are shown in Figure 9. When 
the K of the porous medium has a large variance and strong correlation range, water tends to move down-
stream along multiple meandering preferential pathways. These preferential pathways grow in space with 
the downstream motion of the water wave, and the water flow velocity can significantly change with time 
even at the same position in the channel. The channel can bifurcate (to bypass low-permeability zones) 
or converge (due to spatial connectivity of high-permeability zones), while the average thickness of major 

Figure 9.  Conductivity field (top row) and the simulated streamlines (three bottom rows) for realization 1 in scenario 
1 (left) and scenario 9 (right). The dotted line (in the upper right plot) connecting high-K areas shows the main pathway 
of water.
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flow channels may not significantly change with distance, due likely to the stationary heterogeneity of the 
medium.

5.2.  Impact of Low-K on Transient Flow

At intermediate times, the transverse differential flow paths due to the low-K zones surrounding the high-K 
channels or mixed with high-K areas generate a wide distribution of prolonged arrival times for water par-
cels, which delays the propagation of hydraulic pressure. With the increase in the K-variance and K-correla-
tion range, there are larger continuous areas of low-K materials that impede longitudinal water movement 
and increase the transverse flow velocity (for example, see Figure 10). The low-K materials, therefore, are 
responsible for the delayed flow at the intermediate stage. When the variance of K is small, K is relatively 
uniform, which cannot significantly intercept incoming water, resulting in piston flow. This may also ex-
plain why there exists a threshold of K-variance, which triggers complex flow dynamics.

At late times, “islands” consisting of discrete low-K cells begin to significantly affect flow dynamics (Fig-
ure 11). For the purposes of this discussion, islands are defined as cells where the increase of the hydraulic 
head is no more than 1 cm (resulting in a large head different (>30.0 cm) with the surrounding cells) after 
time t = 105 s. The volumetric proportion of the islands is low (typically <10%). Values of K for these is-

lands vary from 10−10 cm/s to 10−7 cm/s, representing silt/clay deposits 
(the typical K ranges for silt and clay are 10−11–10−5 cm/s (Domenico & 
Schwartz, 1990)). Due to the extremely low K, these discrete areas do not 
allow water to penetrate easily, and hence the hydraulic head increases 
very slowly. At late times when the hydraulic head in the surrounding ar-
eas has stabilized, the island remains at a low hydraulic head (close to its 
initial head) and hence is surrounded by a relatively high hydraulic head 
gradient. It can take an extremely long time (e.g., >107 s) for the head to 
rise in the island, and for the whole system to reach stability (Figure 12). 
This effect explains the enhanced retention behavior at late times for sce-
narios 3 and 6, where the average hydraulic head at each control plane 
arrives slowly during the late period of 105–106 s. This time-dependent 
behavior cannot be captured by the single-index t-FFE (12), which as-
sumes a stationary memory function (meaning that the memory function 
(10) has a fixed exponent E  ). As demonstrated in Section  4, stochastic 
models with multiple indexes, such as the d-FFE (14)∼(16), are needed 
to capture the strong impact of both high-K and low-K materials on tran-
sient flow dynamics.

Figure 10.  Streamlines (denoted by the red lines) for realization #1 in scenario 9, at t = 1,000 s. Plot (b) shows the 
content in the rectangle depicted in (a). Note that the “pale green” lines represent the dense streamlines with relatively 
high velocities.

(a) (b)
x=1000 x=2000

Figure 11.  “Islands” consisting of low-K zones for scenario 3 (left) and 
scenario 6 (right). Here the islands (represented by the dots) are defined 
as cells where the increase of the hydraulic head is no more than 1 cm 
(resulting in a large head different (>30.0 cm) with the surrounding cells) 
after time t = 105 s.
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Therefore, the low-K zones provide a possible mechanism to generate 
temporally non-Darcian flow and non-Fickian propagation of water pres-
sure at late times. Water flux with the delayed transfer of water pressure 
due to low-K islands violates the standard Darcy's law-based flow equa-
tion (with constant parameters) which is a classical (Fickian) diffusion 
equation. This mechanism is more like a sub-diffusive transfer of water 
pressure, similar to the concept of “sub-diffusive flow in a composite me-
dium” proposed first by Raghavan and Chen (2020), which is opposite to 
the super-diffusive flow defined by the s-FFE (2).

5.3.  Non-Darcian Flow and Non-Fickian Pressure Propagation

We did not find the non-Darcian flow defined by Equation 1 or the result-
ant non-Fickian pressure propagation due to the non-Darcian flow (1) in 
the stochastic K fields built for this study. Equation 1 usually describes 
turbulent flow, inertial flow, or other high velocity flow, which causes su-
per-diffusive non-Fickian spreading of water pressure. Super-diffusion of 
the pressure front is precluded in this study by the finite number of pref-
erential flow paths, implying that the PDF of the longitudinal seepage 
velocity cannot be as heavy as the E  -stable density (see further discussion 
and model comparison in Appendix C). The same conclusion was found 
by Zhang et al. (2014) when modeling flow and transport in thousands of 
alluvial aquifer/aquitard systems represented by high-resolution hydro-
facies models. However, it is possible that the spherical semi-variogram 
model used by this study cannot capture power-law distributed and cor-
related K fields. A power-law PDF for velocity is one of the core condi-
tions to generate super-diffusive displacement of water parcels. Several 
recent studies showed that the (well-connected) high K is needed in the 
Monte Carlo models to reproduce super-diffusion for solutes observed at 
the MADE aquifer (Bianchi & Zheng, 2016; Yin et al., 2020), where the 
non-Darcian flow (1) might exist. This assumption may be addressed in 
a future study.

Sub-diffusive non-Fickian propagation of water pressure in this study, characterized by the elongated wa-
ter BTCs, is caused by water trapping or transverse retention at intermediate times (due to the differential 
transverse flow paths and the corresponding random travel periods, as discussed in Section 3.2) and water 
retention at late times (due to the long-term mass exchange between the high-K and low-K islands, as 
discussed in Section  5.2). This is analogous to the well-documented anomalous transport for conserva-
tive solutes in heterogeneous geological media: non-Fickian diffusive flux analogous to model (1) causes 
super-diffusive non-Fickian transport of solutes, while the commonly observed sub-diffusive non-Ficki-
an transport is caused by solute retention where solute diffusion in the operational time remains Fickian 
(Zhang et al., 2020).

Notably, non-Darcian flow and non-Fickian pressure propagation may be related. As shown by Equa-
tion A5, although there is no spatially nonlocal flow in our random K fields, water retention/delay due to 
low-K materials may be characterized by the time-nonlocal non-Darcian flow equation expressed by Equa-
tion A5. To distinguish the hydrogeological mechanisms underlying Equations 1 and 5, we call Equation 1 
the “spatially non-Darcian flow equation” and Equation A5 the “temporally non-Darcian flow equation.” In 
this study, temporally non-Darcian flow is more likely than spatially non-Darcian flow as a result of sub-dif-
fusive non-Fickian pressure propagation.

Figure 12.  The evolution of the Monte Carlo simulation of the hydraulic 
head contour for realization 1 of scenario 6. The domain size is 4,000 cm 
by 1,000 cm along the longitudinal and transverse directions, respectively. 
The area of “islands,” denoted by the low-K blocks with relatively lower 
hydraulic head than the surrounding cells, shrinks with time. The domain 
size shown in this plot is 4,000 cm by 1,000 cm along the longitudinal and 
transverse directions, respectively.
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5.4.  Model Parameter Estimation and Impact of K-Fields on 
Water Dynamics

Here we provide an empirical estimate of the fractional index E  using 
the variance of Ln(K) (denoted as C) and/or the correlation range R. The 
analyses shown above reveal that both the variance and correlation range 
of K are positively correlated with E  . Given the best-fit results in Sec-
tion 3, we obtain an empirical formula to predict the fractional index E  
in the t-FFE (12):

       
0.6991 0.095 0.09 0.322 .Ln R C� (21)

To test the prediction (21), we then set a new scenario with the correlation 
range, R, being 300 cm and the Ln(K) variance, C, being 5. The predicted 
E  using Equation 12 is 0.72, which is close to the best-fit value (0.71). For 
the d-FFE (14)∼(16), the empirical formula takes a similar form:

       
0.699

1 1 0.082 0.09 0.365 .Ln R C� (22)

We also evaluated the impact of K-fields on water dynamics, by first eval-
uating the influence of the lower bound of K (denoted as minE K  here) on the 
late-time flow. For the previous K fields, all values below a threshold val-
ue were set to the threshold value, and the flow models were rerun. The 
results show that, with a relatively large minE K  (equal to 1 × 10−9 cm/s), 
the islands persist in scenarios 3 and 6 at a late time t = 105 s (Figure 13). 

These islands, however, will then disappear earlier (at t = 106 s) than those in Section 3 (with a much small-
er minE K  ), since water can now enter the islands more quickly. Hence, increasing the lower bound of the 
hydraulic conductivity does not prevent the appearance of islands, but shortens their duration.

We also test the sensitivity of flow dynamics to the hydraulic conductivity at the peak K value of the dis-
tribution, denoted as peakE K  here (which represents the mode of Ln(K)). Scenario 9 is selected as the target 
medium. In the Monte Carlo simulations shown in Section  3, peakE K  is 3.0  ×  10−3  cm/s, and the best-fit 
parameters for the t-FFE (12) are: eE K   = 1.7 × 10−1 cm/s and E   = 0.50 for scenario 9. When peakE K  decreases 
to 1.0  ×  10−3  cm/s, Monte Carlo simulations show that the water BTC for scenario 9 exhibits a similar 
trend, although the overall arrival of water is now delayed (Figure 14a). The best-fit parameters using the 
t-FFE (12) are as follows: eE K   = 8.0 × 10−2 cm/s, and E   = 0.53. When peakE K  increases to 1.0 × 10−2 cm/s, 
the resultant water BTC shifts toward younger ages which can be fitted by the t-FFE (12) with parameters 

eE K   = 2.7 × 10−1 cm/s and E   = 0.53 (Figure 14b). Therefore, the scale index E  is not sensitive to peakE K  , while 
the effective conductivity eE K  increases with an increasing peakE K  . This result is consistent with expectations. 

Figure 13.  Sensitivity analysis: Monte Carlo simulations of the hydraulic 
head contour at time 1 × 105 s for realization 1 of scenario 3 (a), and 
realization 1 of scenario 6 (b), when the lower bound (i.e., the minimum) 
of the hydraulic conductivity Kmin = 1 × 10−9 cm/s. The domain size 
shown in this plot is 4,000 cm by 1,000 cm along the longitudinal and 
transverse directions, respectively. The color scale is the same as that 
shown in Figure 12.

Figure 14.  Sensitivity analysis: the transient piezometric head at three control planes (located at x = 1,000, 2,000, and 3,000 cm, respectively) for scenario 9 in a 
log-log plot with the peak PDF of K = 1.0 × 10−3 cm/s (a) and 1.0 × 10−2 cm/s (b): Monte Carlo simulations (symbols) versus the t-FFE (12) results (lines).
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On one hand, the internal architecture of the medium, which is mainly affected by the variance and corre-
lation range of E K , controls the overall temporal evolution of groundwater flow, which can be captured by 
the index E  . Hence, it is not the mode of E K (or Ln( E K )), but the distribution of E K that significantly affects the 
scale index E  . On the other hand, peakE K  affects the overall permeability, and therefore controls the effective 
conductivity eE K  .

It is also noteworthy that the physical/mathematical meaning of the index E  is clear: E  is the (absolute) 
exponent of the power-law PDF of the random operational time for water parcels in the porous medium. 
It is, however, not feasible to directly measure E  , because one cannot monitor each water parcel at present. 
This work provides guidance to empirically approximate this parameter based on statistics of measurable 
sedimentary properties (see Equations 21 and 22).

5.5.  Velocity Distributions and Pollutant Transport

The velocity distributions for all scenarios when the hydraulic heads stabilize are plotted in Figure 15. The 
resultant velocity PDFs have a narrow distribution for aquifers with a small variance and short correlation 
for K, including scenarios 1, 4, and 7. For these scenarios with weak heterogeneity, the velocities along the 
longitudinal direction slightly deviate from the mean (Figure 15a), while the transverse velocities fluctuate 
around zero (where the mean transverse velocity is zero) (Figure 15c). These narrow velocity PDFs explain 
the observed piston flow without the apparent flow retention in Figure 4.

With the increase of medium heterogeneity (characterized by a larger variance and longer correlation for 
K), the longitudinal velocity PDF expands to include greater probabilities for both large velocities (along 
preferential flow paths) and small velocities. The skewness of the longitudinal velocity PDF increases with 
the increase in the medium heterogeneity, implying the presence of enhanced flow regions. The peak veloc-
ity decreases with the increase in the velocity PDF's skewness, to maintain a constant mean velocity (Fig-
ure 15a). The “small” longitudinal velocity can be negative, representing local reverse flow due likely to the 
sinuous flow channels and the existence of low-K zones. Meanwhile, the transverse velocity PDF expands 
and remains symmetric (Figure 15c), as expected.

It is noteworthy that the leading tail of the longitudinal velocity PDFs, which represents large velocities, 
declines exponentially (Figure 15b), which is lighter than a power-law function (i.e., not strong enough to 
produce super-diffusive displacement for water parcels) and validates our hypothesis in Section 5.3. The 
velocity PDF may be qualitatively related to the time index E  in the t-FFE (12): a broader velocity PDF (for 
scenarios with a larger correlation range and variance for Ln(K)) with a higher probability for low longitudi-
nal velocities (including negative velocities) (such as scenarios 3, 6, and 9 shown in Figure 15a) and a wider 
range of transverse velocities (such as scenarios 3, 6, and 9 shown in Figure 15c) represents stronger flow re-
tention, which can be captured by a smaller index E  in the t-FFE (12). The qualitative correlation (between 
E  and Ln(K) properties) provides the hydrogeological interpretation for the empirical Equations 21 and 22.

The PDFs for the longitudinal and transverse velocity depicted in Figure 15 are insufficient for pollutant 
transport analysis, because dynamics of pollutant transport depend on both the velocity and dispersion, as 
well as the spatial structure of velocities. For example, Monte Carlo simulations showed that sub-diffusion 
for conservative pollutant transport in heterogeneous porous media was dominated by molecular diffusion 
(Zhang et al., 2007). Properties of low-permeable deposits, such as their thicknesses, affect the strength of 
molecular diffusion and therefore can be linked to the index of sub-diffusion (Zhang et al., 2014). Several 
other studies did reveal the potential correlation between the power-law distributed, uncorrelated velocities 
and anomalous transport (e.g., Herrick et al., 2002; Dentz & Bolster, 2010), but they focused on super-dif-
fusion. In addition, the transient flow condition considered in this study makes it more difficult (than the 
steady-state flow) to link the time-dependent velocity PDF to complex anomalous transport. Pollutant trans-
port dynamics require a detailed evaluation, which are not the focus of the current study.

The main parameter E  in Equation  12, however, may reveal new, important information for pollutant 
transport. This study found that some water BTCs can be quantified by the t-FFE (12), which contains 
two parameters: the index E  and the effective hydraulic conductivity 

eE K  . The main parameter E  differs 
from the time fractional index E  in the fractional-derivative model to define sub-diffusive transport: 
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


    

  
 

2

2
C C CE V D

xt x
 . Forward and backward diffusion in low-permeability deposits is the main 

mechanism for sub-diffusive transport, while the blocking of water entry due to very low-permeability de-
posits is the major cause of groundwater retention. Although these two indexes ( E  vs. E  ) characterize differ-
ent mechanisms for different processes (water flow vs. pollutant transport), they are all related to properties 
of low-permeability deposits and therefore may be quantitatively related. For example, a smaller index E  in 
the water BTC due to more low-K materials (i.e., a stronger groundwater retention process) may correspond 
to a smaller index E  in the pollutant BTC (i.e., a stronger solute retention). In addition, the applicability of 
the d-FFE (14)∼(16) revealed that pollutant transport under transient flow is most likely a nonstationary 
process with a time-dependent index E  ; however, this inference requires further validation using similar 
Monte Carlo transport experiments.

Figure 15.  Probability density functions (probability density function) of Darcy velocity for scenarios 1∼9 along the longitudinal (x) direction (a) and 
the transverse (y) direction (c) in a semi-log plot after stabilization of hydraulic head. Panels (b) and (d) are the log-log plots of (a) and (c), respectively, to 
emphasize the leading tail.
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5.6.  Water BTC and Transport BTC

From the point of view of mathematical models, the water BTC calculated by this study relates to two spe-

cial cases of transport BTCs. First, according to Darcy's law q K
H t H t

L
e

x l 
( () )  (where eE K  is the effective 

hydraulic conductivity, H t
l
( ) is the known head at the left boundary which is constant in this study, and E L 

denotes the longitudinal distance from the left boundary to the control plane E x where H t
x
( ) was calculated), 

the normalized water BTC, H t
x
( ) , may approximate the average (i.e., ensemble of all E K -field realizations), 

normalized BTC for pollutants driven by pure advection with a continuous, stable source at the upstream 
boundary.

Second, the flow Equation 3a 
      

           
S xx yy

H H HE S K K
t x x y y

 is mathematically similar to the trans-

port equation 
      

           
xx yy

C C CE D D
t x x y y

 if D K S
xx xx S

 /  and D K Syy yy S /  . Therefore, the water 

BTC can be regarded as a pure-diffusive transport BTC with a space-random dispersion coefficient which is 
proportional to the local hydraulic conductivity (i.e., D K S

xx xx S
 /  , and D K Syy yy S /  ).

6.  Conclusions
This study explored and upscaled the full-range dynamics for transient flow through saturated porous me-
dia (characterized by a stationary variogram model for the K distribution). Monte Carlo simulations and 
stochastic model analysis were combined to explore the hydrogeological mechanism for flow dynamics, and 
then state-of-the-art, time-nonlocal physical models were developed. Four conclusions were drawn.

First, high-K materials, which form interconnected preferential flow paths and affect the tortuosity, gen-
erate early arrivals of water parcels in downstream planes and dominate the early time dynamics of tran-
sient water flow, which however do not represent the super-diffusive pressure propagation assumed by the 
space-fractional, non-Darcian flow Equation 1. The preferential flow paths are enhanced with an increasing 
variance and correlation range of K. The resultant early tail in the water BTC is not as heavy as power-law, 
due to the limited number of flow channels. This behavior implies that the s-FFE (2) and others built upon 
Equation 1 tend to overestimate the early arrivals in transient flow, for the heterogeneous media considered 
in this study.

Second, the low-K zones cause transient flow dynamics which have not been fully characterized before. 
Particularly, the low-K zones exhibit different impacts on flow dynamics at intermediate and late times. At 
intermediate times, the low-K zones surrounding the preferential flow paths can enhance the transverse 
movement of water, while at late times when hydraulic head in the relatively high-K zones has stabilized, 
the low-permeability cells continue to resist the entry of water and therefore form islands where the local 
hydraulic head changes slowly from the initial value. Therefore, the low-K zones are the major cause of 
groundwater retention with observable effects at intermediate times to late times.

Third, transient groundwater flow can be temporally non-Darcian and non-stationary (with sub-diffusive 
behavior in pressure propagation) in porous media with stationary heterogeneity (i.e., built with the station-
ary variogram model). This temporally non-Darcian groundwater flow is not the spatially non-Darcian flow 
assumed by previous work for super-diffusion. Sub-diffusive propagation of the pressure front explains the 
memory effect in groundwater flow, including delayed flow due to transverse movement at intermediate 
times and water retention at late times due to long-term mass exchange between high-K and low-K zones 
(i.e., “islands”). The nonstationary evolution of groundwater flow may affect groundwater management and 
remediation strategy.

Fourth, multi-index time-fractional derivative models can upscale transient groundwater flow over the full 
time-range. A single-index stochastic model such as the single-index t-FFE model (12) can capture reten-
tion at intermediate times in the water BTCs, but tends to overestimate the rate of increase of the head at 
late times, when “islands” of low-K blocks resist changes of hydraulic head for an extremely long time. The 
same issue exists for the well-known and often-used MRMT model since the single-index t-FFE model is 



Water Resources Research

XIA ET AL.

10.1029/2020WR029554

22 of 30

equivalent to the MRMT model with upper-truncated rate coefficients. One major finding of this study is 
that the rate of decline of the pressure propagation at late times does not remain stable, but rather is time 
dependent. Hence, a multi-index stochastic model, such as the distributed-order fractional-derivative flow 
model developed in this study, should be used to capture the full time-range of water dynamics.

Appendix A:  Time Subordination Method to Derive the T-FFE and Temporally 
Non-Darcy's Law
The time-subordination approach, proposed first by Baeumer et al. (2001) to model anomalous transport 
for pollutants, has been applied to capture heavy-tailed responses from heterogeneous hillslopes (Harman 
et al., 2010; Zhang et al., 2017). Here we extended the approach to capture saturated flow in heterogeneous 
aquifers. Subordination is a mathematical method which transfers the clock time to operational time for 
random walkers (Feller, 1971), which are water parcels moving along streamlines in this study. The random-
ness in flow dynamics can be represented by the random time spent during each displacement for water 
parcels, which is the random operational time assumed by the subordination approach.

We randomize the operational time that a water parcel spends in motion in porous media, similar to the 
random operational time assumed by Harman et  al.  (2010) for a flow impulse spent in motion along a 
heterogeneous hillslope after precipitation. Following the definition in Harman et al.  (2010) and Zhang 
et al. (2017), we also assume that the PDF of the operational time follows the E  –stable density, whose sub-
ordinator satisfies the following governing equation:
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f s t f s t
b f s s
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where the scale factor E b  = 1 [  1E T  ] is analogous to the factor E  added to the model (12) for units conversion, 
and E f  [T−1] is the density of the operational time.

The continuity equation of seepage flow takes the form:
 

 
 s
hS q
t x� (A2)

Based on the time subordination described by Equation A1 and given any linear spatial operator defined on 
the right-hand side (RHS) of the continuity Equation A2, the time-subordinated flow has a hydraulic head 
that solves (Zhang et al., 2017):
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which is a time subordinated flow equation with a general velocity E q varying in space and time. Here the 
order of the time-fractional operator   1 1 

/ t  and the spatial operator  / x cannot be changed unless for a 
constant, effective E K  , where the temporal operator on the RHS of Equation A3 can go to the left-hand side 
as an inverse, leading to a simplified, linear flow model:
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which is mathematically equivalent to the t-FFE (12).

It is also noteworthy that the time subordinated flow Equation A3 defines a time-nonlocal, non-Darcian 
flow equation:
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� (A5)

which applies the time fractional derivative (instead of the space fractional derivative used in the non-Darcy 
flow Equation 1 to capture non-Darcian flux due to both water retention (by low-K materials discussed in 
Section 5.2 and water trapping or retaining (due to the transverse flow paths and the corresponding random 
travel periods during groundwater head evolution (see Sections 2 and 3.2).



Water Resources Research

XIA ET AL.

10.1029/2020WR029554

23 of 30

Appendix B:  How Can the d-FFE (14)∼(16) Capture Time-Dependent Flow 
Retention?
The core question to answer in this appendix is how the d-FFE (14)∼(16) can distinguish flow retention at 
different times, especially the intermediate and late times, which exhibit different dynamics and cannot be 
fully captured by the single-index t-FFE (12). Equations 19 and 20 show that the hydraulic head in mobile, 
immobile, and total phases approach the same asymptote: H H x L

r
  /  , when  E t  . To evaluate the ap-

proaching rate for each phase, we calculate the head residual (which is the difference between the current 
hydraulic head and its asymptote) for the mobile, immobile, and total phases (denoted as mE R  , imE R  , and totE R  , 
respectively) using the following formulas:

  Δ ,m r m
xR H H H
L� (B1a)

  Δ ,im r im
xR H H H
L� (B1b)

  Δ ,tot r tot
xR H H H
L� (B1c)

which also satisfy the original d-FFE (14)∼(16):
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    1 ,tot m imR R R� (B2c)

with different boundary and initial conditions:
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The solution for the head residual in the Laplace domain at a late time is:
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Therefore, we obtain the approximated decline rate for the head residual at late times:

 1 ,mR t� (B5a)

 ,imR t� (B5b)

 ,totR t� (B5c)

where     min ( 1 2, ) . At late times, the hydraulic head in the mobile phase approaches its asymptote at a 
speed proportional to  1E t  , while the heads at the immobile and total phases grow at a speed of E t  . Hence, 
if  2 1E  (which is the case for this study), the flow retention becomes stronger at late times.

We checked the “actual” head residual for Scenario 3 and Scenario 6 (see Figure B1). Monte Carlo simula-
tions show a power-law decline of the head residual in the total phase, and this rate changes with time: a  
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larger rate at intermediate time, followed by a smaller rate at very late time representing stronger reten-
tion (Figure B1). This behavior revealed by the numerical models is consistent with the analytical solution 
Equation B5.

Appendix C:  Model Comparison
Here we compare the d-FFE (14) and (15) with two other popular models related to fractional derivative 
models. First, we check the feasibility of the s-FFE (2) proposed by various researchers (Cloot & Botha, 2006; 
He, 1998; Mehdinejadiani et al., 2013), which can be written in the following form with an effective K:

   






 

,,
,s

H x tH x t
S K

t x
� (C1)

where the space index  1 2E  . Application shows that the s-FFE (C1) does capture early arrivals, but the 
resultant hydraulic head distributes nonlinearly in space, which deviates significantly from the “real,” linear 
head distribution at late times (Figure C1). The hydraulic head described by (C1) stabilizes very quickly 
due to the super-diffusive motion of water parcels, and there is no water retention at any time. Hence, the 
space-fractional flow model (C1) is not appropriate to capture the real early time tail of the water BTC ob-
served in this study. It is also noteworthy that the s-FFE (C1) describes a power-law distributed early arrival 
in the water BTC, due to the assumed super-diffusion. The actual early time tail of the water BTC, however, 
is not as heavy as power law, likely due to the limited number of preferential pathways (see Section 5.1 
and Figure 3). A limited number of early arriving pulses cannot form a wide distribution of the water BTC 
as heavy as a power-law function. In addition, model (C1) or any fractional-derivative models built upon 
the space fractional flow Equation 1 cannot capture the late-time tailing of the water BTC identified in 
Section 5.2. One more example of the s-FFE (C1) is shown in Figure C2, where the water BTC simulated 
by the s-FFE (C1) exhibits a steeper slope and earlier arrivals than those simulated by the time fraction-
al-derivative model (12), because the s-FFE (C1) captures super-diffusion only and excludes sub-diffusion 
characterized by apparent flow retention.

Second, we compare the d-FFE (14)∼(16) with the MRMT model for water flow proposed by Silva 
et al. (2009). The MRMT model for flow with linear mass exchange between mobile and immobile phases, 

Figure B1.  Monte Carlo simulation results: the transient residual of the hydraulic head in the total phase for scenario 
3 and scenario 6 at various control planes (x = 1,000, 2,000, and 3,000 cm, respectively). In the legend, “S3” denotes 
scenario 3, and “S6” denotes scenario 6. Here the head residual is the difference between the current hydraulic head 
and its asymptote, which was calculated by Equation B1.
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which is analogous to the well-known MRMT model for solute transport (Haggerty et al., 2000), takes the 
form (see Equations 1 and 2 in Silva et al. (2009)):
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where mE S  and ,im jE S  [L−1] denote the specific storage coefficient in the mobile and the jth immobile zones, 
respectively; E q [LT−1] is the water flux (assuming the longitudinal direction here for simplicity), and  jE  [T−1] 
denotes the jth rate coefficient which was defined as  

j im j im j im j
K L , , ./  by Silva et al. (2009) (where  ,im jE  

Figure C1.  Comparison between the time and space fractional-derivative models: the spatial distribution of the 
hydraulic head at time t = 106 s for Scenario 6. In the legend, “SFFE” denotes the space-fractional flow Equation 2 
(here the spatial distribution of hydraulic head is the solution of the s-FFE (2) assuming non-Darcian flow (1) by fitting 
the Monte Carlo water BTC), “FFE” denotes the time-fractional flow Equation 12, and “MC” denotes the Monte Carlo 
result.

0 500 1000 1500 2000 2500 3000 3500 4000

Location (cm)

10

15

20

25

30

35

40

45

50

H
y
d
ra

u
li

c
h
ea

d
(c

m
)

SFFE

MC

FFE

Figure C2.  Further comparison between the time fractional-derivative model (“FFE”, model (12)) and the space 
fractional-derivative model (“SFFE”, model (2) or (C1)): the simulated water BTC for scenario 6 with a distance 
x = 200 cm.
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[L2L−3] is the specific surface of the jth immobile zone, ,im jE K  [LT−1] is the effective hydraulic conductivity 
for the jth immobile zone, and .im jE L  [L] is the distance from the mobile zone to the jth immobile zone). In 
the Monte Carlo simulations conducted in this study, the storage coefficient was assumed to be constant.

According to Haggerty et al. (2000), hydraulic head in the immobile phase is the convolution of head in the 
mobile phase:

 
 . ,tj

im j j mh e h� (C3)

with the overall memory function defined as 
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j
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j t
e
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  
/  (Haggerty et al., 2000). The symbol “ E  ” in (C3) 

denotes convolution. At a late time t  1/
min

  (where minE  denotes the minimum rate coefficient, and 1/
min

  
represents the mean time for water parcels staying in the immobile zone with the slowest mass exchange 
rate), the mobile and immobile heads begin to stabilize.

There is no analytical solution for the general form of (C2), and hence we solve it numerically using an 
iterative approach with an implicit finite different scheme. Extensive fitting exercises show that the late-
time behavior of the water BTC cannot be captured with a single rate coefficient. For example, for scenar-
io 9 at the distance of x = 1,000 cm, the MRMT model (C2) with a single rate E   = 10−3 s−1 overestimates 
the rate of increase of the “measured” hydraulic head after time   310E t  s (because after 1/ , the immobile 
phase can no longer block the flow and the hydraulic head in the immobile phase begins to reach equi-
librium) (Figure C3). We tested the single-rate mass transfer model (i.e., N = 1 in model (C2)) with many 
values of E  , and none of them could capture the overall trend of the water BTC (not shown here). Multiple 
rate coefficients are therefore needed to capture the time-dependent, enhanced water trapping behavior. 
For the example shown in Figure C3, at least four rate coefficients are needed, which may create challeng-
es for applicability of the MRMT model (C2). Notably, this comparison revealed that more mass exchange 
rates are needed when (transient) water flows for a longer time in a single spatial region, because water 
samples more low-permeability zones with increasing time. This implies that transient water flow may 
not be a stationary process, requiring additional rate coefficients in the MRMT model. In other words, 
the classical MRMT model may not be efficient in capturing transient flow with non-stationary water 
retention, while the d-FFE (14)∼(16) provides an efficient alternative to the classical MRMT to model this 
non-Darcian flow. This is a new capability provided by our model in comparison with the MRMT classical 
model.

Figure C3.  Best fit curves for the water BTC (for scenario 9 with a distance x = 100 cm) using the multi-rate mass 
transfer model (C2). The legend shows the number of rate coefficients, the “1 rate” means a single rate coefficient 
(α = 10−3 s−1); the “2 rates” means two rate coefficients (α1 = 10−3 s−1 and α2 = 10−4 s−1); the “3 rates” model has three 
rates: α1 = 10−3 s−1, α2 = 10−4 s−1, and α3 = 10−5 s−1; and the “4 rates” model has four rates: α1 = 10−3 s−1, α2 = 10−4 s−1, 
α3 = 10−5 s−1, and α4 = 10−6 s−1.
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Appendix D:  Model Limitations and Future Extension
Monte Carlo modeling in this study used a finite domain size, focused on the hydraulic head only, used 
a constant storage coefficient, and considered only 2D media (while realistic aquifers are always 3D). Al-
though these four simplifications in numerical modeling were needed for an extensive quantification of 
transient groundwater head upscaling, each of them requires consideration before extending the results 
of this study. Therefore, specific cautions for interpreting results and logical future improvements are dis-
cussed below. Since none of these extensions are trivial, they may be the focus of future studies.

Non-ergodic versus ergodic heterogeneous fields: The limited domain size relative to the range of K can 
cause non-ergodic heterogenous fields, resulting in artificial phenomena in the ensemble mean of the water 
BTC. On one hand, when the correlation range of K approaches the flow domain size, there is increased 
variability in the structure of the generated stochastic realizations of K fields, wherein the individual re-
alizations (especially for scenarios 7∼9 on the 4,000 cm scale with R equal to 500 cm, with one realiza-
tion for each scenario shown by Figures 2g–2i) can deviate significantly from the ensemble mean behavior 
(such as the ensemble mean water BTCs depicted in Figures 4g–4i). This calls into question the meaning 
of an ensemble average water BTC (and the existence of any “effective hydraulic conductivity”) when av-
eraging over a potentially non-ergodic K field. For example, tails in the apparent, mean water BTCs do 
not necessarily represent flow phenomena for individual realizations. Therefore, conclusions drawn from 
Figures 4g–4i may contain high uncertainty for the limited domain size used in this study. On the other 
hand, the scenarios with a shorter-range R (such as scenario 3) may reveal similar flow processes as the 
scenarios with a longer-range R (i.e., scenario 9, with the same semi-variogram model (except for R) and K 
statistics) at a longer travel distance. This is because scenario 9 produces the same structure, but in essence 
with increasing magnification, compared to scenario 3. For example, the overall pattern of the Monte Carlo 
approach derived water BTC for scenario 3 (R = 10 cm) at x = 500 cm may look similar to that for scenario 
9 (R = 500 cm) at x = 500 × (500/10) = 25,000 cm, if scenario 9 is assigned a much lower general head gra-
dient. Since all water BTCs in scenario 3 exhibit tailing and multi-stage characteristics, the same properties 
are expected for scenario 9, which can at least partially prove that the results shown in Figure 4 are reliable. 
A larger domain, however, is needed for scenario 9 in a future study to reduce the medium's intrinsic uncer-
tainty and check the hypothesis proposed here. Notably, the impact of the boundary condition on transient 
flow dynamics also needs further evaluation: this study assumed constant head boundaries to generate the 
overall longitudinal flow, but the constant heads at the upstream boundary may wipe out transverse chang-
es in the hydraulic head at the boundary.

Hydraulic head versus volumetric flux: This study focused on the transient behavior of hydraulic head, since 
it represents groundwater information that can be directly measured in the field. Groundwater fluxes and 
water balance on the scales of aquifers or aquifer systems are often important when upscaling the hydraulic 
conductivity (such as from pumping tests), and the water flux is closely related to groundwater quantity and 
quality. The relevant question would be that if a representative effective eE K  works for steady state for an in-
dividual realization (by matching the stable volumetric flux), does that effective eE K  remain valid in the tran-
sient case (i.e., to properly reproduce the transient, volumetric flux profile)? The total transient flux across 
each control plane, therefore, should also be calculated and analyzed as the objective function in upscaling. 
Figure 4 and Table 1 showed that the effective eE K  obtained for upscaling the steady-state flux only works for 
the transient flow in less heterogeneous media (with a small variance and correlation range for K). It would 
be informative to systematically evaluate in a future study how the effective eE K  obtained for upscaling the 
steady-state flux can change for transient flow.

Fixed versus transient storage coefficient: The Monte Carlo simulations of transient flow assumed a con-
stant specific storage sE S  , and the effective storage coefficient was also treated as constant when upscaling 
transient flow. The upscaled sE S  , however, may increase with time in certain transient cases. With more het-
erogeneity and smaller K values in parts of the domain, because of less immediate access to storage changes 
in the tighter materials (as shown by the “islands” identified in the main text), the effective upscaled sE S  may 
start out smaller than the average sE S  and increase over time, as the full system gradually experiences storage 
changes. The time-dependent sE S  may provide an alternative (and possibly easier) way (as opposed to the 
concept of memory function and the resultant t-FFE) to quantify the full-range of transient flow dynamics. 
This hypothesis remains an open research question.
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2D versus 3D porous media: This study provides a simplified, planar view of 3D media. If a 2D porous 
medium is extended to 3D, the water BTC may exhibit different behaviors, especially the early and/or late 
time tailing. For example, a 3D medium will have more preferential pathways than a 2D medium with the 
same variance and correlation scale for K. Because water can now bypass low-permeability blocks via the 
third dimension, the effective hydraulic conductivity will be larger (and probably be easier to approximate 
using for example the arithmetic mean), resulting in earlier arrivals. Meanwhile, some water parcels may 
travel a greater distance due to longer and more sinuous flow paths in 3D, resulting in a heavier late-time 
tail in the water BTC. Systematic Monte Carlo analysis of 3D domains is needed in a future study to check 
the hypotheses mentioned above.

Data Availability Statement
Data are available here https://www.researchgate.net/publication/353368534_Data_of_Time-Fraction-
al_Flow_Equations_t-FFEs_to_Upscale_Transient_Groundwater_Flow_Characterized_by_Temporally_
Non-Darcian_Flow_Due_to_Medium_Heterogeneity.
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