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A y-Ray Tracking Algorithm for the 
GRETA Spectrometer 

G.J. Schmid, M.A. Deleplanque, I.Y. Lee, F.S. Stephens, K. Vetter, R.M. Clark, 

R.M. Diamond, P. Fallon, A.O. Macchiavelli, R.W. MacLeod 

Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 

Abstract: We discuss a y-ray tracking algorithm that has been developed for the proposed 

Gamma Ray Energy Tracking.Array (GRETA). This algorithm has been designed so as to 

maximize the resolving power for detecting high-multiplicity y-ray events. The conceptual 

basis for this algorithm will be presented. In addition, Monte Carlo simulated data will be 

used to assess performance over a large range of relevant parameters. A discussion of the 

potential y-ray polarimeter performance of GRETA is also presented. 



1. Introduction 

A new 47t ,,(-ray detector array is currently being developed by the nuclear structure 

group at the Lawrence Berkeley National Laboratory (LBNL). This array, known as the 

Gamma-Ray Energy Tracking Array (GRETA), will use the technique of"( ray tracking to 

improve detection of high multiplicity "(-ray cascades. The resolving power of GRETA 

should exceed that of existing arrays [1,2] by morethan two orders of magnitude. 

The concept behind GRETA has been discussed in recent papers [3,4]. The 

fundamental idea is to replace the modules of Compton suppressed Ge detectors that 

comprise.the current arrays with a spherical shell of -100 highly segmented Ge detectors. 

Rather than suppress those "( rays that escape from one detector into another, the goal of the 

GRETA array is instead to track each "( ray throughout its path and attempt to recover its 

full energy. 

Research and development into GRETA has focused on two areas. The first has 

been the experimental study of charge/current pulse shapes in a single GRETA prototype 

detector [4]. The goal here has been to benchmark techniques for determining the position 

and energy of "(-ray interactions in a highly segmented, co-axial Ge detector. The second 

area of research has been to benchmark a "( ray tracking algorithm for resolving the tracks 

of multiple, coincident, "( rays, and that is the subject of this paper. In the discussion that 

follows, the focus will be on describing the algorithm that has been developed, and also 

presenting its results as a function of several important parameters. These parameters will 

include: "(ray energy, By; "(ray multiplicity, M (which is the number of coincident ,,(-rays 

incident on the array); and also the attainable position resolution in the array, ili'. 

2. Definition of problem 

2.1 GRETA geometry 

Preliminary designs for GRETA are based on a shell with an inner radius of 12cm 

and an outer radius of 21 cm. These dimensions are arrived at by considering the size of 
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currently available co-axial Ge detectors, the need for space between target and detector to 

accommodate auxiliary detectors, and the cost of the array. For nuclear structure studies, 

the beam would enter through a hole on one side, interact with the target at the center, and 

exit through a hole on the other side. In what follows, an algorithm will be developed and 

tested using a simple spherical shell of Ge with f} = 12cm and r2=21 cm. Results for a more 

realistic geometry, consisting of 120 close packed, tapered, high purity Ge detectors 

(including Al housing cans), will be presented at the end. 

2.2 Scenarios considered 

The ,,{-ray tracking algorithm was developed with some likely scenarios in mind. In 

particular, the search for, and description of, superdeformed and hyperdeformed bands. 

Experimental studies in this regime are characterized by high-fold data analysis. For 

example, the formation and decay of a superdeformed band typically involves the emission 

of 3-5 neutrons, with En=I-5 MeV, and 20-25 "{ rays, with Ey=0.1-2.0 MeV. These 
\ 

particles will hit the Ge shell nearly simultaneously (with a small time delay between "(rays 

and neutrons), and thus a considerable number of interaction points can be expected. For 

example, 25 coincident 1.3 MeV "{ rays would be expected to give -100 "{-ray interaction 

points in the Ge shell (neglecting electron tracks). The accompanying neutrons will add 

more interaction points, but we would seek to eliminate these by using stringent time cuts. 

2.3 Monte Carlo simulation 

The performance of the "{-ray tracking algorithm was assessed using Monte Carlo 

simulated events. For the most part, these simulations used the GEANT [5] Monte Carlo 

code. For simulations involving the simple Ge shell, electron tracks were not included. 

The reasoning here was that for the energy range of interest, the e- tracks (as initiated by 

Compton-recoil and photo electrons) are always less than the best attainable position 

resolutions (-1-2 mm). However, for the realistic GRETA geometry discussed at the end, 
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electron tracking was included to gauge absorption effects. In situations involving 

transport of polarized y rays, the Monte Carlo code of [6] was used. 

2.4 Position resolution 

The interaction points generated by the Monte Carlo simulation were further 

processed so as to simulate a position resolution effect in the Ge shell. For cases where the 

electron tracks were not included, position resolution was effected by simply dividing 3-D 

space into cubic voxels of side L1r. All interaction points within a given cubic voxel were 

then added together. For cases where the electron tracks were included, a different 

scheme, based on clustering of interaction points, was used. This scheme for effecting 

position resolution is independent of the fixed coordinate system, and thus better handles 

the real-life complication of electron tracks. In tests that were done, the two schemes gave 

similar results for the "no electron track" case. 

In contrast to the position resolution, the energy resolution is not a sensitive 

parameter to the overall performance of the algorithm in the GRETA array. This aspect is 

addressed further in section 3. 

2.5 Testing the algorithm 

The algorithm was tested using a 32 bit, 75 MHz, SUN sparcstation. Performance 
J 

was gauged by calculating the GRETA efficiency (c) and peak-to-total (Pff) values for 

various scenarios. For each case, the algorithm running time was also noted. 

3. The y-ray tracking algorithm 

For Ii Ge shell (q=12cm, r2=21cm) operated as a single (unsegmented) detector, 

one would expect excellent performance for single y-ray events. In particular, Monte Carlo 

simulation shows that at Ey=1.332 MeV, the efficiency is 0.7 and the peak-to-total is 0.78. 
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However, for cases where two or more y rays hit simultaneously, this mode of operation 

fails completely (due to summing). 

In this section we discuss the details of a y-ray tracking algorithm that has been 

developed to handle the case of multiple, coincident, y rays. The basic function of the 

algorithm is to process the y-ray interaction points in the shell so as to determine the 

number and energy of all incident y rays. The technique is as follows: organize the 

interaction points into clusters; evaluate the clusters using Compton tracking; and then sort 

each cluster into one of several possible groups depending on what operation needs to be 

done on that cluster in order to recover the complete track of an incident y-ray. 

3.1 Clustering 

Because of the forward peaking of the Compton scattering cross section, as well as 

the decreasing mean free path with decreasing energy, the y-ray interaction points will tend 

to be clustered in a 2-dimensional 8-<1> space (polar coordinates). Because of this, the 

criteria for clustering the points was set as follows: any two interaction points within a 

given angle separation (a), as viewed from the origin, are grouped into the same cluster. 

The angle a is a variable parameter in this scheme, and different values of a will produce 

different sets of clusters (e.g. for larger a, the number of clusters formed will decrease). 

The clustering algorithm works by first assigning polar coordinates 8, <I> to each 

interaction point. The interaction points are then ordered by their 8 value. For a given 

point (80, <1>0), all non-committed points which have their 8 value in the range 80 +/- a 

degrees are searched to see if their <I> value is consistent with a total angular separation of a 

degrees, or less, as viewed from the origin. In general, this means that ~<I> (=abs[<I>-<I>oD 

must satisfy the following relation: 

~<I> ~ abs(cos -I [cosa. - co.s8cos80 ]J . 
sm8sm80 

(1) 
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If a point with the desired angular separation is found, it is added to the (80, <1>0) 

cluster. When the initial search using (80, <1>0) is complete, subsequent searches are then 

performed using each of the new points added. This process continues until no new links 

are found (i.e. the cluster is completely formed). At this stage, we then look at the next 

non-committed point in the ordered 8 queue, and begin forming another cluster. The 

resulting set of clusters is unique, and depends only on the initial a value which is chosen. 

Of the clusters that have been formed, some will exactly correspond to the 

interaction points of fully-absorbed y-rays (the "good" clusters) and others will not (the 

"bad" clusters). For example, bad clusters can arise when two good clusters are 

misidentified as one, or one good cluster is misidentified as two. Further processing of the 

bad clusters can be done in order to recover more good clusters (e.g. the bad clusters can 

be split, added, etc.). However, since this first step of the algorithm is relatively fast, it is 

worthwhile to evaluate the total performance at this stage (e.g. what are the results if we 

assume that all clusters created are good clusters). 

Figure 1 shows the efficiency and peak-to-total for the clustering-only scenario as a 

function of a and also as a function of the position resolution of the array. This Figure is 

for the case of 25 coincident (isotropic) 1.332 Me V y-rays.l The dashed line in Figure 1 

shows the measured performance ofthe Gammasphere array [1], one of the world's most 

powerful y-ray spectrometers for nuClear structure studies. It is seen that the current results 

offer large gains in efficiency but at the cost of peak-to-total. At lower energies, where the 

y-ray clusters are more confined, the clustering-only scenario works much better. This is 

shown in Figure 2, where we have plotted the results for 0.1 MeV. 

1 This particular energy was chosen because !t corresponds to the well-known 60Co calibration line. The 

data points in Figure 1, and in most other figures here, represent 104 y-rays launched. In this case, that 

means 400 M=25 events (which makes the error on each point less than the size of the plotted symbol). 
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3.2 Compton tracking 

In order to determine which original clusters are good, and which need further 

processing, we want to evaluate the clusters and assign each one a "figure-of-merit". Akin 

to the approach in [7], we do the evaluation using the energy-angle relationship of the 

Compton scattering process: 

E' 
'Y - 0.511 ' 

1+---cos8 
E C 

'Y 

0.511 
(2) 

where E'y is the scattered y-ray energy in MeV, By is the incident y-ray energy in MeV, 

and 8c is the polar scattering angle. 

The technique is to assume that the cluster is good (i.e. a full absorption), and that 

all the N interaction points in it are Compton interactions, except for one, which is a 

photoabsorption. For a given 3-point combination, we use (2) to construct a figure-of­

merit (FM) function which compares the calculated scattering angle, 8c (based on the 

energies of the interaction points), to a measured scattering angle, 8m (based on the 

positions of the interaction points). By treating the origin as the "zeroth" point, we then 

look for a one-two combination among the interaction points which minimizes the FM. 

Having found this 0-1-2 combination, we then use a similar FM minimizing procedure to 

find the unknown 3rd point in the 1-2-3 scatter. This approach continues until we reach the 

last 3-point combination, (N-2)-(N-l )-(N). The total FM for the whole cluster is then the 

sum of these optimum, single scatter, FM's. The lower the total FM, the more likely that 

the cluster is "good". The 3-point approach that is used here to obtain the total FM requires 
N-2 

that we make N(N-l)+ Ln separate calculations.2 

n=1 

2 This is small compared to the N! combinations in a rigorous N-point tracking approach. Investigations 

have concluded that the somewhat larger success rate of the rigorous approach does not merit the greatly 

increased computing time. 
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We can formulate our PM calculation in mathematical terms as follows. We start by 

defining a randomly ordered set of points, Pn, which consists of the nth assumed Compton 

scatter point as well as all the other cluster points which are assumed to follow it in time . 
. ~ 

We can then define Ej,n (Ek,n) to be the energy of the lh (kth) point from set P n. From (2), 

the nth Compton scatter angle from pointj, 8cj,n' can then be given as: 

8 ,= -1[1 a 0.511 _ 0.511 ] 
c J,n cos . + ~ ~ . 

.L.J Ek,n .L.J Ek,n - E j,n 
'k k 

(3) 

For a given three point combination, we can also measure the nth Compton scatter 

angle from the middle point,j, as follows: 

8 . -1 ( A A) (4) 
mj,k,n = cos Vj . vk ' 

where v j is the vector from the (n-l)th Compton scatter point to the jth point of P n, and vk 
being the vector from the lh point of P n to the kth point of P n. For n= 1, the zeroth 

Compton scatter point is defined to be the origin. 

In this manner, we can define a PM for the nth Compton scatter angle, FMn, as: 

8 'k -8 ' FM ' = mj, ,n Cj,n 
n,j,k i18, ' 

j,k,n 

(5) 

where the denominator is the calculated error on the quantity in the numerator (and is based 

on the position and energy uncertainties). 

To determine the 1st Compton interaction, n=l, we want to minimize (5) with 

respect to (j,k) by trying all possible 2-point combinations in Pn. For the (n=l) case, the 

set P n consists of all N interaction points. To determine subsequent scatters, n> 1, we now 

assume that all previous pOints <n are known, and thus we only need minimize (5) with 

respect to k. For these n> 1 minimizations, the set P n consists of all N points except those 

<no For all cases, the result of the minimization for Compton scatter n is: 

(6) 
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After minimizing (5) with respect to all points nS(N-l), we can sum up the 

resulting FM's, (6), and obtain a total FM which is related to the likelihood that the whole 

cluster is good: 

FM=(-I-)rFMn =(_I_)~lemn -een . (7) 
N - 1 n N - 1 n=1 ~en 

This FM is not defined for those clusters that have only one point. The one-point 

clusters are assumed to be Compton escape events, and are thrown out (note: this differs 

from the clustering-only scenario, where single hit events are kept). Throwing out single 

hit events will lead to decreased efficiency at the lower energies, but improved peak-to-total 

at the higher energies . 

. It should be noted that for the Ge detector array under consideration, the total error, 

~en' is always dominated by errors in ~em n (i.e. by the position resolution). This can be 

seen by realizing the following: 

~em n _ ~r while ~ee n _ Lilly 
em n A. ' ee n Ey' 

(8) 

where ~r is the position resolution, A. is the mean free path for the Compton interaction, 

and ~Ey is the energy resolution. Since we eventually expect ~r - 1 mm, A.-I cm, and 

~Ey - 2 keY (for a 1.3 MeV y-ray scattering in Ge), we see that ~emn - 0.1 and 
Ae emn 
~-0.01. 
een 

3.3 Further processing of clusters: the cluster modes 

As we showed in Figure 1, only about 30% of the originally defined clusters will 

correspond to actual incident y-rays for an M=25, Ey= 1.332 MeV event. The other 

clusters will need further processing. For example, Figure 3 shows the "cluster modes" 

that are present when 25 1.332 MeV y-rays hit the Ge shell. A given mode describes the 

operation that must be done on a formed cluster in order to recover an actual incident y-ray. 

Here are some of the modes that have been identified: 

a). Original mode - Cluster is good "as-is" (i.e. it matches an incident y-ray). 

b). Add mode - Cluster can be added to another cluster in order to recover 
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an incident y-ray. 

c). Split mode - Cluster can be split such that one of the resulting subclusters 

then forms a good incident y-ray. 

d). Split-Add mode - Cluster can be split such that one of the resulting 

subclusters can be added to another cluster in order to recover an 

incident y-ray. 

In Figure 3, the relative probability of some of these modes are plotted as a function 

of the angle parameter u. 

In order to identify the mode of each cluster, we can use the tracking-based figures­

of-merit introduced in section 3.2. For example, the "original" cluster FM will help 

identify mode a. In order to address mode b, clusters can be added together to form 

superclusters. These superclusters are then tracked using the same technique describec\. in 

the section 3.2. The resulting figure-of-merit is called the "add" FM. In order to address 

mode c, each clust~r can be split in a prescribed manner into two subclusters. These 

subclusters can then be individually tracked using the techniques of the section 3.2. The 

resulting FM's are called the "split" FM's. Finally, in order to address mode d, we can 

take the subclusters created in the split mode analysis, and look to add them to original 

clusters in order to form good clusters. These split-add clusters can be tracked in order to 

form "split-add/' FM's. 

The cluster splitting procedure'is complex enough to require further explanation. In 

order to split a cluster, we first construct a "moment-of-inertia" matrix using the positions 

of the cluster interaction points (where each point is assigned a unit "mass"). By 

diagonalizing this matrix, we are able to identify the three principal axes. The interaction 

points are then projected onto these three axes, and we look for the largest two gaps on 

each axis. These gaps, six in total, form candidate split points for the cluster. In separate 

analyses, the cluster is then split using each of the candidate split points, and the resulting 

sub-clusters are tracked. This yields a total of 12 FM's for each cluster. The lowest FM is 
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then assigned as the "split" FM for the cluster, representing the probability that a split 

operation is actually the correct operation for this cluster. The sub-cluster with the best FM 

will have a partner sub-cluster. This partner sub-cluster can be added to other original 

clusters, and the resulting split-add cluster can be tracked. This forms the "split-add" FM. 

3.4 Cluster sorting 

One technique for cluster sorting [3] is to calculate all possible FM's for each 

cluster (e.g. original, add, split, etc.), and then perform a splitting in the multi-dimensional 

FM space so as to determine the proper mode for the cluster. However, this procedure has 

proved too computationally time consuming. Therefore, a stepwise approach with regard 

to the FM calculations has been undertaken. In particular, the FM's are calculated in order. 

Only those clusters which fail a one-dimensional FM cut in one step (i.e. where the FM is 

above the cutoff) are propagated to the next step. Those clusters which survive a given cut 

are selected to be of that mode. In this manner, the time consuming add and split-add 

operations are only performed on a small subset of the entire cluster set. Figure 4a shows a 

histogram of the "original" figure-of-merit (OFM) for a position resolution of Imm. The 

solid line shows the good clusters, while the dashed line shows all the other cluster types. 

Figure 4b shows the "add" figure-of-merit (AFM) for those clusters that failed an OFM<80 

cut in 4a. These two figures show that good clusters can be selectively identified using the 

OFM, while the add clusters can be selectively separated out from the remaining clusters 

using the AFM. 

In order to obtain the optimal cuts for each mode, the algorithm was tested using 

Monte Carlo data. By calculating E and p/f for many possible combinations of cuts (i.e. 

using a grid search in the cut space), an optimum set of cuts was derived for given energy 

and multiplicity scenarios. We will refer to these as the "locally-optimized" set of cuts. 

However, a real-life situation will have energy and multiplicity distributions which are 

initially unknown. For this reason, it is also useful to have a single set of cuts which will 
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operate well over a large range of possible energy and multiplicity distributions. This 

single set of cuts will be referred to as the "globally-optimized" set of cuts. 

The procedure used· to produce the sets of optimized cuts necessitated the 

formulation of an explicit "trade-off" function which relates the overall performance to c 

and Pff.· In order to produce the current set of optimized cuts, a trade-off function known 

as the resolving power (RP) was used. Under a given set of assumptions, the resolving 

power for GRETA, as a function ofc, Pff, is derived in [4]. 

3.5 Cuts on macroscopic quantities 

A small improvement in algorithm performance is gained by requiring that 

acceptable clusters give macroscopic quantities within a prescribed range. Some 

macroscopic quantities that have been considered are: energy and position moments; 

number of interaction points; angular separation between clusters (for adding purposes). 

By performing a grid search among these parameters, and maximizing the resolving power, 

ideal cuts canbe arrived at for given energy and multiplicity scenarios. As with the figure­

of-merit cuts, the macroscopic quantity cuts can be locally/globally optimized. 

4. Algorithm results for Ge shell 

4.1 Recovery of different modes 

Figure 5 shows the possible cluster modes and their recovery using the current 

algorithm for M=25, E=1.332 MeV (locally optimized). The tradeoff in the add and split 

modes, versus angle parameter, yields an optimum performance at 10°. 

4.2 Results versus energy, position resolution, and angle parameter 

Figure 6 shows the c and Pff results for the current algorithm at M=25 and 

E= 1.332 Me V. The performance is gauged as a function of the clustering angle parameter 

(a) and position resolution. The dashed line represents the measured performance of 
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Gammasphere. Figure 7 shows the performance of the current algorithm as a function of 

energy and position resolution (for a= 10°). Figure 8 gauges the performance of the 

algorithm as a function of M and a at a position resolution of 1 mm. In this figure, the 

results fall off sharply as one approaches M=25. This is to be expected due to the 

increased overlap of "(-ray clusters. 

4.3 Computer processing time 

Figure 9 shows the average event processing time for the current algorithm in milli-

seconds as a function of position resolution. As the position resolution worsens, the 

number of interaction points decreases (due to individual interaction points being added 

together),and this causes the computing time to decrease. Figure 10 shows the average 

event processing time as a function of M, while Figure 11 shows the average event 

processing time versus a and Ey. There is a general trend to increase computing time as 

one increases a, and this is simply due to the increased number of points per cluster 

(increasing the number of points per cluster is more time consuming than increasing the 

number of clusters). The trend towards longer computing time at higher energies is also 

due to more interaction points. Figure 12 shows the average event processing time for each 

component subroutine as a function of a. 

Figures 9-12 have given the event processing time based on a 75 MHz SUN 

sparcstation. Current state-of-the-art is already more than a factor of 4 faster. If one 

extrapolates 5 years into the future using the rule-of-thumb "power law" for computer 

speed (i.e. state-of-the-art computer speed increases about a factor of 2 each year), another 

factor of 32 is realized. It is thus possible that a 100 fold increase in computing speed 

could be attained by the time GRETA is built. 3 

3 In fact. the GRETA discussion in [4] make~ this assumption. and thus quotes the processing time 

for M=25. ¥1.3 MeV. as "-lms per event" (instead of the -lOOms/event shown here). Based on 

this, a final GRETA array with 103 parallel processing computers would run at -Ills/event. 
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4.4 Local optimization vs. global optimization 

As referred to in section 3, figure-of-merit cuts can be determined in a locally or 

globally optimized fashion. Although the locally-optimized operation produces better 

performance in all cases, the globally-optimized approach is much simpler to implement, 

much more practical in real-world situations, and can give results which are not much 

worse. Figure 13 shows E and P{f for both cases in a given scenario. 

4.5 Application of algorithm to simulated spectra. 

Real-world applications of the GRETA array will not involve mono-energetic y­

rays, but instead will focus on arbitrary energy distributions. Figure 14 shows the E and 

Pff that result when exposing the GRETA array to the y-rays from the decay of 

superdeformed band-l in 152Dy. This was the first superdeformed band discovered using 

y-ray spectroscopy [8], and involves 21 coincident y-rays in the energy range E=O.6-1.5 

MeV. Shown in Figure 14 are the results from the globally-optimized performance (solid 

line) and the locally-optimized performance (dashed line). The locally-optimized results are 

obtained using cuts optimized for E= 1.0 Me V. It can be seen that the two cases give fairly 

similar results. 

4.6. Neutron background 

Neutron background is a potential problem for y ray tracking techniques. At the 

energies of interest, -1 Me V, neutrons interact with Ge primarily by elastic scattering. 

Using energy and momentum conservation, one can show that a maximum of -5% of the . 

neutron energy can be lost in each scatter. With a mean free path of about 4cm, a 1 MeV 

neutron will scatter -5-6 times and then leave the Ge shell without absorbing. 

To avoid intermingling of the y-ray and neutron interaction points, time cuts must 

be used. In particular, since neutrons'travel slower than y rays, one can seek to eliminate 
-

them by discarding all interactions occurring after some fixed time following the accelerator 
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beam burst. Tests have shown that a -15ns time cut, if possible, would serve quite well. 

The majority of neutron interaction points are eliminated, and those that remain are tightly 

clustered, and promptly eliminated during the "(-ray tracking phase of the algorithm (these 

small neutron clusters mimic bad "(-ray clusters, and thus have bad figures-of-merit). 

Another potential problem is the less frequent case of inelastic neutron scattering. 

This type of event will produce "( rays that correspond to the first few excited states in the 

Ge isotopes. Further study on this aspect of neutron background is recommended. 

5. Gamma-ray polarization sensitivity 

The projected high position resolution of GRETA leads to the possibility that, in 

addition to use as a spectrometer, the array could find use as a powerful Compton 

polarimeter. Typical ,,(-ray Compton polarimeters [9,10] operate by measuring an azimuthal 

asymmetry in the Compton scattering (an up-downlleft-right scattering asymmetry), and 

relating this to the incident ,,(-ray polarization. The more accurately one can measure the 

azimuthal scattering angle, the more accurate the polarimeter. 

The first step in operating GRETA as a polarimeter is to identify the first two 

interaction points in the Compton scattering of a "(-ray. This information is determined in 

the tracking stage of the algorithm. Figure 15 shows, for two different energies (at M=l), 

the fraction of ,,(-rays which have had their 1st and 2nd points correctly identified by the 

algorithm. The results are shown as a function of position resolution. At 1 mm, the results 

show a 95% and 90% success rates for Ey=1.4 MeV and 0.4 MeV respectively. The 

better performance at Ey= 1.4 Me V is due to the better angular resolution afforded by the 

larger mean free path at this energy. 

Given that the identification succesS rate is quite high for the 1 st two interaction 

points, it is interesting to see what the actual polarization sensitivity of the GRETA detector 

is as a function of position resolution and energy. The polarization sensitivity, Q, is simply 

the proportionality constant which relates the measured experimental asymmetry, A, to the 
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incident y-ray polarization, P. Figure 16 shows the measured Q as a function of 8r for 

E=0.4 MeV.. At infinitesimal resolution (8r=0), one recovers the maximum Q allowed by 

the Klein-Nishina formula (which gives the polarization sensitivity of the Compton 

scattering process). As the resolution worsens, Q approaches 40%. These projected 

GRETA results are compared to the measured results of the Gammasphere segmented Ge 

detectors [6]. Figure 17 shows the Q as a function of By. 

6. Realistic GRETA geometry 

Until now, results have been presented only for the simplified geometry of a Ge 

shell of inner radius 12cm and outer radius 21cm. To gauge the performance of the 

algorithm on a more realistic geometry, we have designed a GEANT Monte Carlo 

simulation which incorporates a close-packed 120 detector configuration. The first 110 of 

these detectors are hexagonal, tapered, co-axial Ge detectors. This preliminary packing 

leaves 12 pentagonal holes. Ten of these holes are filled with pentagonal, tapered, co-axial 

Ge detectors. Two pentagonal holes are left for entrance and exit of the incident beam. 

Each Ge detector (Ge crystal + Al housing can) has a gap of 0.5mm on all sides (i.e. the 

close-packed detectors are not actually touching). 

The hexagonal detectors are positioned so that their front faces are exactly 12cm 

from the origin (target), while the pentagonal detectors are 12.09cm back. The length of 

the detectors is set at 9cm, and the taper of each detector is 10°. Each detector consists of a 

Ge crystal (hole diameter of 8mm) and a surrounding Al housing structure which is 0.5 

mm in thickness, and is offset from the Ge crystal by a gap of Imm. 

Figure 18 shows, by the diamond data points, the results (at M=25, E=I.332 MeV) 

for the realistic GRETA geometry including electron tracking. A conservative position 

resolution of 2mm is assumed. One observes a substantial drop in performance as 

compared with the simple Ge shell results presented earlier (shown here as solid circles). 

The two curves for the realistic geometry (with and without electron tracking), show the 

.j 
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. rela~ive contribution of two factors which decrease perfonnance: loss of solid angle to the 

inter- and intra- detector gaps; and also, loss of full energy events due to electron 

absorption in AI. For the case of the efficiency, the largest drop is due to the loss in solid 

angle. For the peak-to-total, the electron absorption is more important. 

. Comparison of the predicted perfonnance of GRETA to the measured perfonnance 

of Gammasphere demonstrates the potential improvements associated with the GRETA 

concept. In terms of the GRETA resolving power presented in [4], the peak perfonnance 

of GRETA in the "with electron tracking" case (£=0.22, Pff=0.61, RP=1.7 x 106) is seen 

to offer a -600 fold gain over Gammasphere (where, from [4], RP=3 x 103). 

7. Conclusion 

Based on the algorithm presented in this paper, the GRETA concept would appear 

to offer (at M=25, E=1.332 MeV, L\r=2mm) at least a 2.5 foJd gain in efficiency and a 1.2 

fold gain in Pff over the performance of Gammasphere. This corresponds to a resolving 

power of 1.7 x 106, a -600 fold gain over Gammasphere. It is hoped that these large 

potential gains will motivate further work in designing and developing the GRETA array. 
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Figure Captions 

1. Results of "clustering only" algorithm (i.e. no tracking) for M=25, Ey=1.332 MeV. 

Different position resolutions are shown. 

2. Results of "clustering only" algorithm for M=25, Ey=0.1 MeV. Single-hit photo­

absorption events dominate at this energy. 

3. Cluster modes for 400 M=25, Ey=1.332 MeV events (104 yrays in total). Infinitesimal 

position resolution (L\r=Omm) and a hypothetically perfect reconstruction are assumed. 

This plot indicates the maximum number of y rays that can be recovered using each 

technique. 

4. a) Histogram of the OFM for M=25, Ey=1.332 MeV, dr=lmm, showing the "good" 

and "bad" clusters. 

b) A histogram of the AFM for those events which fell outside an OFM<80 gate. By 

gating on AFM<100, we can now separate out most of the "add" cases. 

5. Cluster modes for M=25, Ey=1.332 MeV, dr=Omm using the actual algorithm (104 y 

rays total). Comparison with the hypothetical "best-case scenario" of Figure 3, one 

sees that the split mode is not well recovered. 

6. Algorithm results for M=25 and Ey=1.332 MeV as a function of a. and Ar. The 

dashed line shows the measured performance of Gammasphere. 

7. For M=25, 0.=10°, this plot shows'the algorithm results vs. dr and By. 

8. For Ey=1.332 MeV, dr=lmm, this plot shows the algorithm results vs. M and a.. 
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9. Average event processing time for the algorithm as a function of ~r (for M=25, 

Ey=1.332 MeV, a=100). 

10. Average event processing time for the algorithm as a function of M (for 

Ey=1.332 MeV, a=10°, ~r=lmm). 

11. Average event processing time as a function of a and By (for M=25, ~r=lmm). 

12. Average processing time for the various subroutines as a function of a (for 

Ey=1.332 MeV, M=25, ~r=lmm). 

13. For Ey=1.332, M=25, ~r=lmm, the relative performance of locally-optimized 

vs. globally-optimized cuts is demonstrated. 

14. The solid line shows the predicted response to the superdeformed band #1 in 

152Dy [8] with ~r=lmm. These results, using globally-optimized parameters, are 

compared to locally optimized results at 1.0 MeV (for M=25, ~r=lmm). 

15. For 1.4 MeV (top) and 0.4 MeV (bottom) 'V-rays, this graph shows the fraction 

of events which have had their 1st two points correctly identified in the tracking 

(assuming M=1 and at least 2 points in the cluster). 

16. Polarization sensitivity (Q) as a function of & (assuming M=I, Ey=400 keV). The 

dashed line represents the measured performance of the Gammasphere segmented Ge 

detectors [6]. 

17. Polarization sensitivity (Q) as a function of By (assuming M=I, ~r=lmm). The 

dashed line represents the measured performance of the Gammasphere segmented Ge 

detectors [6]. 

18. Results using the realistic, 120 detector, geometry are shown by the diamond points 

(for M=25, Ey=1.332 MeV, ~r=2mm). These diamond points include the effects of 

recoil e- tracks. Also shown are the results for the Ge shell (circles), realistic 

geometry with no e- tracking (squares), and the measured performance of 

Gammasphere (dashed line). 
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