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ABSTRACT: We report the first experimental and theoretical evaluation
of the thermodynamic driving force for the reaction of metal−organic
framework (MOF) materials with carbon dioxide, leading to a metal−
organic carbonate phase. Carbonation upon exposure of MOFs to CO2 is
a significant concern for the design and deployment of such materials in
carbon storage technologies, and this work shows that the formation of a
carbonate material from the popular SOD-topology framework material
ZIF-8, as well as its dense-packed dia-topology polymorph, is significantly
exothermic. With knowledge of the crystal structure of the starting and
final phases in the carbonation reaction, we have also identified periodic
density functional theory approaches that most closely reproduce the
measured reaction enthalpies. This development now permits the use of
advanced theoretical calculations to calculate the driving forces behind the carbonation of zeolitic imidazolate frameworks with
reasonable accuracy.

■ INTRODUCTION
Over the past three decades, the chemistry of metal−organic
frameworks (MOFs) has become one of the central areas of
advanced materials research,1−3 with a wide range of proposed
applications, from gas storage, catalysis, and light harvesting to
extending shelf lives of vaccines and rocket propulsion.4−7 The
rapid development and high popularity of MOFs are to a large
extent due to their inherently modular node-and-linker
design,8,9 which permits the rational development of new
materials that combine previously unimaginable surface area
and microporosity with specific chemical or physical proper-
ties, such as color, luminescence, conductivity, sensing ability,
and more.6,10−15 Whereas the development of new MOF
designs is facilitated by concepts of reticular chemistry and,
very recently, methodologies for ab initio crystal structure
prediction (MOF-CSP),16 the understanding and reliable
design of thermodynamic stability in MOFs remains poorly
explored. This is both a significant challenge and an
opportunity for the further development of MOFs, as
thermodynamic stability is the driving force underlying a
wide range of environmental behaviors important for potential
applications of MOFs, such as resistance to moisture, chemical
reagents, temperature, etc.17−21 Important insights into the
relative stability of MOF polymorphs, as well as thermody-
namic relationships with respect to metal precursors, can be
gained from computational methods, particularly periodic
density functional theory (DFT) calculations. In that context,

our team has recently used a combination of solution
calorimetry and periodic DFT to provide the first quantitative
insights into how the thermodynamic stability of zeolitic
imidazolate frameworks (ZIFs), a class of MOFs exhibiting
zeolite-like topologies and based on imidazolate linkers and
tetrahedral ions such as Zn2+, Co2+, or Cd2+, is affected by
changes in topology, polymorphism, and of substituents on the
organic linker.22−24 These studies have revealed that
thermodynamic stability of ZIFs can be assessed through
simple tabulated parameters, such as Hammett σ-constants,
and even predicted from readily calculated linker parameters,
such as the electrostatic surface potential (ESP) of the linker
substituent.22 Moreover, the combined use of periodic DFT
and solution calorimetry measurements enabled quantitative
evaluation of the accuracy of the theoretical calculations and
establish that dispersion-corrected energy provides more
accurate energies for ZIF structures than pure semilocal
functionals. This work mainly addressed thermodynamic
stability of ZIFs with respect to the parent metal oxide plus
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linker, providing a measure of the sensitivity of the materials
toward hydrolysis. It remains important to evaluate the stability
of MOFs toward a wide range of environmental factors, such as
the presence of reactive gases (CO2, SO2, etc.).25−28 Although
one of the most prominent proposed applications of MOF
materials (including ZIFs) is storage of CO2, there have so far
been no studies of their thermodynamic stability to reaction
with CO2. Reactivity with CO2 is an important problem in
MOF development, and indeed, our group has previously
reported that exposure of diverse ZIFs to moist CO2
environments leads to the formation of mixed-ligand
carbonate-containing phases.29

We now provide the first experimental and theoretical study
of the thermodynamics of the reaction of the popular,
commercially relevant framework ZIF-8 (Figure 1a), based
on Zn2+ nodes and 2-methylimidazolate (MeIm−) linkers, to
form the carbonate phase Zn2(MeIm)2CO3 (Figure 1c) The
reaction of ZIF-8 with moist CO2 was previously reported to
rapidly yield the Zn2(MeIm)2CO3 phase,29 which also forms as

a side product upon mechanochemical synthesis of ZIF-8 if
basic zinc carbonate is used as the metal precursor.30

The crystal structure of Zn2(MeIm)2CO3 was previously
determined from powder X-ray diffraction (PXRD),30 and the
data present Zn2+ metal centers tetrahedrally coordinated to
two imidazolate and two carbonate linkers (Figure 1). Notably,
the availability of crystallographic data for Zn2(MeIm)2CO3

enabled us to develop and compare different semiempirical
dispersion-corrected periodic density functional (SEDC-
DFT)31−37 approaches to evaluate the driving force for the
carbonation reaction of ZIF-8 and of dia-Zn(MeIm)2.

To the best of our knowledge, this work presents the first
experimental evaluation of the thermodynamics of the reaction
of an MOF with carbon dioxide. Moreover, the high degree of
agreement between experimentally determined enthalpies and
theoretically calculated reaction energies demonstrates, for the
first time, the ability to theoretically calculate with high
accuracy the driving force for MOF carbonation using periodic
DFT.

Figure 1. Structure of (a) SOD-Zn(MeIm)2, (b) dia-Zn(MeIm)2, (c) Zn2(MeIm)2CO3, (d) carbonate and imidazolate linkers, and (e) the 2-
methylimidazole (HMeIm) ligand. Zn, oxygen, carbon, hydrogen, and nitrogen atoms are depicted by green, red, black, gray, and blue spheres,
respectively.
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■ EXPERIMENTAL METHODS
Detailed synthesis and characterization of the materials are
provided as Supporting Information.
Thermodynamic Measurements. Room temperature

acid solution calorimetry (in 5 N HCl) measures the heats
of dissolution, from which heats of formation are calculated.
Calorimetric measurements are performed in a CSC4400
isothermal microcalorimeter. The calorimeter is calibrated
through the dissolution of KCl at room temperature (25 °C).
The experimental procedure is well-established.38−40

Theoretical Calculations of Reaction Thermodynam-
ics. Periodic DFT geometry optimization calculations are used
to compute the energies of all of the individual reaction
components. All geometry optimizations are performed using
plane-wave periodic DFT in the code CASTEP 19.11.41 The
input files are generated using the program cif2cell from the
experimentally determined crystal structures.42 For calculating
the energies of gas molecules of CO2 and H2O using periodic
DFT, a cell of dimension 20 × 20 × 20 Å3 is created with one
molecule of H2O and CO2 inside to mimic the gaseous phase
of these two species. Moreover, because the liquid phase water
is involved in eqs 1−5, the experimentally measured enthalpy
of water vaporization, which is 43.9 kJ mol−1 at 25 °C, is the
energy used to convert from gas- to liquid-phase water.
Calculations are performed with five different computational
methods in order to investigate the effect of using different
functionals and dispersion correction schemes on the resulting
reaction energies: PBESOL functional, PBE functional with
Grimme D3 dispersion correction, PBE with many-body
dispersion (MBD*) correction scheme, PBE with Tkatch-
enko−Scheffler (TS) dispersion correction scheme, and
PBESOL with TS dispersion correction scheme.43−49 The
plane-wave cutoff is set to 700 eV, and the first electronic
Brillion zone is sampled with a 2π × 0.07 Å−1 k-point grid
spacing. The ultrasoft pseudopotentials from the default
CASTEP internal library are used. For the convergence of
geometry optimization, the criteria of maximum energy change
2 × 10−5 eV/atom, maximum force on atom 0.05 eV/Å,
maximum atom displacement 0.001 Å, and residual stress 0.01
GPa are employed. The calculated energies of all reagent and
product structures for each of the periodic DFT methods are
listed in Table S1. These values are used to compute the
theoretical energies for the reactions describing the formation
of Zn2(MeIm)2CO3 (Table 2).The error reported for results
from calorimetric experiments refers to the standard error (two
standard deviations of the mean) for at least six experiments
per sample. In this work, the accuracy of the experimental
results is statistically significant to two decimal places, as
reported in Tables 1 and 2. The DFT calculations are
numerically exact, meaning that repeating the calculation
provides the same numerical value; hence, the choice of
significant figures for values obtained from DFT is arbitrary. In
the context of this work, the number of significant figures in
the results from DFT is made to be consistent with results
from calorimetry.

■ RESULTS AND DISCUSSION
The results from calorimetric experiments (Table 1) are
consistent with previous measurements for ZIF-8 and its close-
packed polymorph dia-Zn(MeIm)2 and show that formation of
the Zn2(MeIm)2CO3 is highly exothermic with respect to
ZnO. Specifically, the measured enthalpy of formation (ΔH°f)

for Zn2(MeIm)2CO3 of ca. −88 kJ mol−1 corresponds to the
enthalpy of the reaction involving ZnO, HMeIm, H2O, and
CO2 as precursors (eq 1).

+ +

+

2ZnO(s, 298 K) CO (g, 298 K) 2HMeIM(s, 298 K)

Zn (MeIm) CO (s, 298 K) H O(1, 298 K)
2

2 2 3 2 (1)

Compared to the ΔH°f values for ZIF-8 and dia-Zn(MeIm)2
(−21 and −31 kJ mol−1, respectively), the new calorimetric
data indicate a significantly higher enthalpic driving force for
the formation of carbonate phase Zn2(MeIm)2CO3 from ZnO
plus linker than for the formation of ZIF without carbonate.
The driving force for the formation of the Zn2(MeIm)2CO3
phase becomes smaller, but still exothermic (−15 kJ mol−1,
Table 2), if the reaction proceeds through a modified route eq
2, with CO2 being delivered in the form of ZnCO3.

+ +

+

ZnO(s, 298 K) ZnCO (s, 298 K) 2HMIm(s, 298 K)

Zn (MeIm) CO (s, 298 K) H O(l, 298 K)
3

2 2 3 2 (2)

This less exothermic enthalpy simply reflects the stability of
ZnCO3 relative to that of ZnO + CO2.

Besides establishing the enthalpies of formation for
Zn2(MeIm)2CO3, the obtained thermodynamic data enable
evaluation of the thermodynamic driving force (eq 3) for the
carbonation reaction of Zn(MeIm)2 frameworks ZIF-8 and
dia-Zn(MeIm)2.

+ +

+

Zn(MeIm) (s, 298 K)
1
2

CO (g, 298 K)
1
2

H O(1, 298 K)

1
2

Zn (MeIm) CO (s, 298 K) HMeIm(s, 298 K)

2 2 2

2 2 3 (3)

The obtained values (Table 2) show that the conversion of
ZIF-8 to Zn2(MeIm)2CO3 is exothermic by ca. 23 kJ mol−1,
which is consistent with the observed rapid transformation
either in moist CO2 or upon exposure of an aqueous
suspension of ZIF-8 to a flow of CO2 gas. The reaction
enthalpy is less exothermic (−13 kJ mol−1) but still significant
for the dia-Zn(MeIm)2 phase. Having demonstrated a strong
enthalpic driving force for the reaction of ZIF carbonation, we
also explored the thermodynamics of other routes for the
formation of Zn2(MeIm)2CO3. In particular, we envisage that
the formation of Zn2(MeIm)2CO3 from SOD- and dia-
Zn(MeIm)2 frameworks could also take place by reaction
with ZnCO3 (eq 4) or a combination of equimolar amounts of
ZnO and CO2 as the source of carbonate (eq 5).

Table 1. Enthalpies of Dissolution (ΔHdis, in kJ mol−1) in 5
N HCl at 25 °C and Formation from End Members (Metal
Oxide and Linker)a

sample ΔHdis (kJ mol−1) ΔH°f (kJ mol−1)

HMeIm −43.75 ± 0.59
ZnO50 −72.29 ± 0.17
H2O51 −0.5
ZnCO3 0.71
SOD-Zn(MeIm)2 −138.25 ± 0.5 −21.04 ± 0.79
dia-Zn(MeIm)2 −127.86 ± 1.08 −31.09 ± 1.10
Zn2(MeIm)2CO3 (CO3-ZIF-8) −143.68 ± 0.43 −87.88 ± 0.74

aFor Zn2(MeIm)2CO3, the enthalpy of formation (ΔH°f, in kJ mol−1)
is calculated relative to the metal oxide, linker, and CO2.
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+Zn(MeIm) (s, 298 K) ZnCO (s, 298 K)

Zn (MeIm) CO (s, 298 K)
2 3

2 2 3 (4)

+
+

Zn(MeIm) (s, 298 K) ZnO(s, 298 K)

CO (g, 298 K)) Zn (MeIm) CO (s, 298 K)
2

2 2 2 3
(5)

The thermodynamic cycles for these alternative pathways
show that the reaction of Zn(MeIm)2 and ZnCO3 to form a
carbonated ZIF phase is endothermic by ca. 6 kJ mol−1 (for
ZIF-8) and 16 kJ mol−1 (for dia-Zn(MeIm)2). This means that
considering the enthalpic driving force for the reaction, the
carbonate phase Zn2(MeIm)2CO3 may be metastable toward
dissociating into an equimolar mixture of ZnCO3 and the
corresponding ZIF. Although the entropy associated with this
reaction is not known, it is likely to be small in magnitude for
the reaction involving only solid phases, and the sign of the
free energy change for the reaction is probably determined by
the endothermic enthalpy term. In contrast, the reaction
described in eq 5, where the source of additional zinc and
carbonate is a combination of ZnO and CO2, is exothermic by
−67 and −57 kJ mol−1 for ZIF-8 and dia-Zn(MeIm)2 as
reactants, respectively. The entropy of reaction is almost
certainly negative because CO2 gas is consumed, but the sign
of the free energy change is likely to be dominated by the
strongly exothermic enthalpy term.51

With the established experimental enthalpies for the
formation of Zn2(MeIm)2CO3 via five reaction pathways, we
explored the possibility to theoretically calculate the energy
differences for the reactions described by eqs 1−5. Whereas we

have previously demonstrated the high accuracy of periodic
DFT for calculating energy differences between composition-
ally similar crystalline solids, the calculation of energies for
reactions in eqs 1−5 is additionally challenged by the physical
and chemical differences between the reaction components.
For the periodic DFT calculations, we have tested the
performance of DFT functionals with and without dispersion
semiempirical dispersion corrections (SEDCs).46,49,52,53 The
use of SEDCs has been found essential to correctly reproduce
the energy ranking of ZIF polymorphs, but it is not clear
whether they will perform equally well when modeling solid
state transformations involving at the same time crystalline
metal−organic phases (SOD- and dia-Zn(MeIm)2,
Zn2(MeIm)2CO3), inorganic crystalline phases (ZnO,
ZnCO3), and noncrystalline components CO2(g) and
H2O(l). Modeling the thermodynamics of such reactions,
therefore, requires treatment of three states of aggregation, as
well as balancing the interconversions between organic and
inorganic phases, where the former typically require treatment
with dispersion corrections while the latter generally do not.
We have previously highlighted the challenge of modeling such
processes, in the context of decomposition of putative metal
pentazolate frameworks and of ZIF combustion.4,54,55 In order
to achieve the best possible understanding of the performance
of periodic DFT calculations for calculating reaction energies
involving such diverse components, we decided to employ a
wider range of methods. Besides the previously used PBE44

functional, we also introduced its modified version PBESOL,56

which is specifically tailored to the calculations for solid
materials. Alongside these functionals, we have tested the effect
of various available dispersion correction approaches, namely

Table 2. Measured and Calculated Thermodynamic Data for the Reactions Leading to the Formation of the Zn(MeIm)2CO3
Carbonate Phase, Including Enthalpies of Formation (ΔHo

f, in kJ mol−1) and Enthalpies of Reaction Starting from ZIF-8
(ΔHo

f,ZIF‑8, in kJ mol−1) and dia-Zn(MeIm)2 (ΔHo
f,dia, in kJ mol−1), as Well as Corresponding Energies Based on Periodic

SEDC-DFT Calculations

reaction from eq
no.

reference
framework

experimental
(kJ mol−1)

PBE+D3
(kJ mol−1)

PBESOL
(kJ mol−1)

PBE+MBD*
(kJ mol−1)

PBE+TS
(kJ mol−1)

PBESOL+TS
(kJ mol−1)

1 −87.88 ± 0.74 −78.06 −101.37 −88.21 −83.58 −96.79
2 −14.88 ± 0.70 −26.05 −38.14 −30.80 −30.76 −15.51
3 dia −12.53 ± 0.70 −39.86 −36.66 −37.30 −38.30 −53.07
3 SOD −22.92 ± 0.44 −55.13 −29.05 −52.70 −61.96 −77.74
4 dia 16.53 ± 1.16 −26.88 −24.12 −23.99 −27.27 −20.19
4 SOD 6.14 ± 0.66 −42.15 −16.51 −39.40 −50.93 −44.85
5 dia −56.47 ± 1.17 −78.89 −87.35 −81.41 −80.09 −101.47
5 SOD −66.86 ± 0.68 −94.16 −79.74 −96.81 −103.75 −126.13

Figure 2. Linear regression plots showing the comparison between experimental and calculated reaction energies for the different periodic DFT
methods: (a) PBESOL and PBESOL+TS; (b) PBE+D3, PBE+MBD*, and PBE+TS.
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Grimme D3,45 Tkatchenko−Scheffler (TS),49 and many-body
dispersion (MBD*).47−49 Because not all combinations of
functionals and dispersion corrections are available in CA-
STEP,41 we performed the calculations with the following
methods: PBESOL, PBE+D3, PBE+MBD*, PBE+TS, and
PBESOL+TS. Comparison of the calculated and experimental
reaction energies revealed that the PBESOL functional without
any dispersion corrections provides the best overall agreement
with experiment (R2 = 0.92, Figure 2), superior to any of the
dispersion-corrected methods. However, this overall trend
misses one important consideration, namely, that PBESOL
incorrectly ranks the energies of the two polymorphs of
Zn(MeIm)2, placing the dia polymorph 7.61 kJ mol−1 above
the SOD polymorph, while experimentally the dia structure is
found to be 10.39 kJ mol−1 lower in energy than ZIF-8. The
dispersion-corrected methods, on the other hand, have all
ranked the stability of the polymorphs of Zn(MeIm)2 correctly,
with the best overall match between theory and experiment
displayed by the PBE+MBD* method (R2 = 0.88). The
introduction of dispersion correction schemes is therefore
crucial for correctly describing the relative energetic stability of
MOF structures, owing to the presence of organic fragments in
their structures.57 The PBE+MBD* that was previously found
to offer the best agreement with the calorimetrically measured
energies of ZIF polymorphs23 is therefore shown to also
reliably characterize the energetics of the carbonation reactions
of ZIFs. We attribute the superior performance of the MBD*
dispersion correction to the inclusion of higher order
interaction terms in this correction scheme as opposed to
pairwise-only interactions considered under the Grimme D3
and TS schemes.

Typically, the formation of higher density frameworks is
energetically preferred (Figure 3), suggesting that the higher
density of the carbonated framework Zn2(MeIm)2CO3
compared to parent ZIFs may contribute to its energetically
favorable formation, perhaps pointing to increase in density as
a plausible driving force for the reaction.58−60 The results from
this work might help explain previously observed facile

carbonation of other ZIF materials29 because the structures
proceed toward thermodynamically much more stable frame-
works.

■ CONCLUSIONS
We have provided the first experimental evaluation of the
thermodynamic force underlying a MOF carbonation reaction
and also investigated the dependence of this driving force on
the polymorphic form of the reacting framework. With
experimental enthalpies at hand, we also were able to conduct
a unique study of how different theoretical approaches can
evaluate the energies of the targeted MOF carbonation
reaction. Our periodic DFT results match the trends for
formation of Zn2(MeIm)2CO3 via five reaction pathways in a
challenging system that includes organic, metal−organic, and
inorganic crystalline materials as reactants or products. Despite
these challenges, the calculated reaction energies show a strong
correlation with the corresponding experimental values with
the best overall performance shown by the dispersion-
corrected PBE+MBD* method. This work provides an
opportunity to not only understand the behavior of a single
system but also to begin exploring and potentially even
predicting different pathways through which MOFs in general
might react with CO2.
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