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A quantitative CBCT pipeline based on 2D antiscatter grid and 
grid-based scatter sampling for image guided radiation therapy

Farhang Bayata, Dan Ruanb, Moyed Miftena, Cem Altunbasa

aDepartment of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO 
80045, USA.

bDepartment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 
90095, USA.

Abstract

Background: Quantitative accuracy is critical for expanding the role of cone beam CT (CBCT) 

imaging from target localization to quantitative treatment monitoring and plan adaptations in 

radiation therapy. Despite advances in CBCT image quality improvement methods, quantitative 

accuracy gap between CBCT and multi-detector CT (MDCT) remains.

Purpose: In this work, a physics-driven approach was investigated that combined robust scatter 

rejection, raw data correction and iterative image reconstruction to further improve CBCT image 

quality and quantitative accuracy, referred to as quantitative CBCT (qCBCT).

Methods: qCBCT approach includes tungsten 2D antiscatter grid hardware, residual scatter 

correction with grid-based scatter sampling, image lag, and beam hardening correction for 

offset detector geometry linac-mounted CBCT. Images were reconstructed with iterative image 

reconstruction to reduce image noise. qCBCT was evaluated using a variety of phantoms to 

investigate the effect of object size and its composition on image quality, and image quality 

was benchmarked against clinical CBCT and gold standard MDCT images used for treatment 

planning.

Results: qCBCT provided statistically significant improvement in CT number accuracy and 

reduced image artifacts when compared to clinical CBCT images. When compared to gold 

standard MDCT, mean HU errors in qCBCT and clinical CBCT were 17±9 HU and 38±29 

HU, respectively. Magnitude of phantom size dependent HU variations were comparable between 

MDCT and qCBCT images. With iterative reconstruction, contrast-to-noise ratio improved by 

25% when compared to clinical CBCT protocols.

Conclusions: Combination of novel scatter suppression techniques and other data correction 

methods in qCBCT provided CT number accuracy comparable to gold standard MDCT used for 

treatment planning. This approach may potentially improve CBCT’s promise in fulfilling the tasks 
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that demand high quantitative accuracy, such as online dose calculations and treatment response 

assessment, in image guided radiation therapy.

Keywords

Cone beam computed tomography (CBCT); IGRT; quantitative imaging; adaptive radiation 
therapy

1. Introduction

Even though CBCT imaging is the most used 3D in-room imaging modality to localize 

targets during image guided radiation therapy (IGRT), its poor quantitative accuracy 

and tissue visualization remain a challenge in implementation of contemporary treatment 

paradigms, such as CBCT-based dose delivery monitoring and radiation treatment 

plan adaptations1. However, such approaches require accurate CT numbers and clear 

visualization of image features, which remain as challenges due to relatively poor image 

quality of CBCT images2–4.

Reasons behind poor CBCT image quality are numerous, such as scattered radiation, motion 

artifacts due to long scan times, limitations of flat panel detectors (poor quantum efficiency, 

image lag, limited dynamic range), suboptimal image reconstruction due to circular source 

trajectory, and suboptimal beam hardening correction5. Cumulative effect of these problems 

yields poor CT number accuracy, increased noise, blurring, and lower contrast the collective 

effect of whom degrades visualization of anatomical structures and targets.

Among these, scattered radiation is considered one of the most fundamental problems 

in CBCT, for which we previously proposed and investigated a novel 2D antiscatter 

grid-based approach to address the issue6–8. While this approach can robustly suppress 

scatter6,7,9, scatter suppression by itself is not sufficient to improve CBCT image quality to 

levels comparable to MDCT. Other data correction methods, such as image lag and beam 

hardening corrections, are needed. Furthermore, scatter correction along with relatively 

lower quantum efficiency and higher electronic noise of amorphous silicon flat panel 

detectors results in increased image noise in CBCT images6,10,11. If data correction and 

image denoising methods were to be combined with 2D antiscatter grid-based scatter 

suppression in one data processing pipeline, both HU accuracy and soft tissue visualization 

in CBCT imaging can be potentially improved further.

In this work, we developed a raw data processing and iterative reconstruction pipeline that is 

used in conjunction with a 2D antiscatter grid for high fidelity CBCT imaging in radiation 

therapy. The pipeline consists of a 2D antiscatter grid prototype8,12, a measurement-based 

scatter correction method6,13, image lag correction, and beam hardening correction. In 

addition, an iterative image reconstruction method was incorporated as part of the pipeline to 

reduce image noise. This approach is referred to as quantitative CBCT, or qCBCT.

Image quality improvement methods in CBCT have been extensively studied5, and state-of-

the-art clinical CBCT systems combine numerous image quality improvement methods in 

one data processing pipeline14–19. However, none of the existing work utilizes 2D antiscatter 
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grid-based scatter suppression in conjunction with software-based data correction and image 

denoising methods.

In short, the novelty of this work lies in the integration of 2D antiscatter grid-based 

scatter rejection and correction methods with existing raw data correction and iterative 

image reconstruction in one data processing pipeline, aimed towards CBCT-guided radiation 

therapy. This approach aims to close the gap in CT number accuracy between CBCT 

and MDCT for radiation therapy. In addition, this work benchmarks the image quality 

performance of our proposed approach for the first time with respect to state-of-the-art 

CBCT imaging methods used in C-shaped linacs and gold standard MDCT images in a 

comprehensive set of phantom experiments.

2. Method

2.1. Overview of data processing steps and image reconstruction

Overall flow of our data processing pipeline (Fig. 1) is explained in the following sections. 

Briefly, a CBCT scan was acquired with a 2D antiscatter grid in place, and by using a linac 

mounted CBCT system. CBCT projections were dark and flat field-corrected by the clinical 

CBCT system and subsequently exported for downstream processing, which are referred as 

raw projections.

Each raw projection was corrected for image lag, residual scatter, grid septal shadows 

(referred as gain correction), and beam hardening. For objects larger than transverse field of 

view, a truncation correction was also applied20. CBCT images were reconstructed either by 

using filtered backprojection or OS-ASD-POCS21 22. For filtered backprojection, an offset 

detector weighting scheme was implemented to reconstruct in offset detector geometry23.

2.2. Image Lag Correction

Each CBCT projection inherits a residual signal from prior projections in a CBCT scan, 

known as image lag24. For image lag correction25, a flood CBCT scan without 2D grid was 

acquired, and a second order exponential model was fitted to parameterize the mean signal 

intensity as a function of projection number in the scan, Iflood
fitted i ,   i = 1… . , M. Relative 

intensity difference between two consecutive flood projections yielded the relative image 

lag, referred as lag coefficient,

coeffflood
lag i = Iflood

fitted i + 1 − Iflood
fitted i

Iflood
fitted i + 1

,   i = 1… . , M − 1

(1)

Subsequently, flood and phantom CBCT projections were corrected using the following,

Projcorrected i = Projuncorrected i − Projuncorrected i − 1 × coeffflood
lag 1 − Projuncorrected i − 2 × coeffflood

lag 2 − …
− Projuncorrected i − k × coeffflood

lag k ,   k = min i − 1, M

(2)
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where Projuncorrected i − k × coeffflood
lag k  represents the lag carried over from the frame i − k to 

i. Since magnitude of image lag from one projection to subsequent projections goes down 

exponentially, only image lag up to M prior projections were accounted. M = 300 was used 

based on the visual evaluations of image lag correction (Fig. 2). This correction was applied 

consistently for both phantom and flood projections.

There are other potentially more robust lag correction techniques that model image lag after 

termination of the X-ray beam26. Such methods require the X-ray beam to be turned off and 

read out frames to measure lag, which cannot be achieved with the clinical system’s current 

acquisition scheme. Therefore, they were not implemented in this pipeline.

2.3. Grid-Based Scatter Sampling (GSS) Method

While 2D grid rejects majority of scatter fluence, it does not fully eliminate scatter. To 

correct residual scatter, previously developed Grid-based Scatter Sampling method was 

employed6,13. For completeness, a brief description is provided. In the GSS method, a 2D 

antiscatter grid is employed as a residual scatter measurement, or “sampling”, device. The 

grid’s footprint, or septal shadow, acts as a micro-fluence modulator, where ratio of signal 

in grid holes to shadows in a small neighborhood of pixels varies as a function of scatter 

intensity. In gain-corrected projections, this variation in signal ratio manifests itself as a 

signal intensity difference, d, between pixels residing in grid shadows and adjacent pixels 

residing in grid holes. Assuming scatter intensity S is piecewise uniform in pixels residing 

both in grid shadows and grid holes in a small neighborhood of pixels (typically a 7×7 pixel 

region, corresponding to an area of 2.7×2.7 mm2), scatter can be defined as6,13,

S x1, y1 = d x1, y1
GMgrid x1, y1 − GMℎole x2, y2

(3)

Where x1 and y1 are for pixels in grid shadows and x2 and y2 are for pixels in grid holes. 

GMgrid and GMℎole are the values of gain maps (defined in 2.4) in grid septal shadows and 

holes, respectively.

Using Eq. 3, residual scatter was first estimated in pixels residing in grid shadows and 

subsequently, residual scatter values in each detector pixel were obtained via interpolation. 

Residual scatter was subtracted from projections to achieve scatter corrected projections.

2.4. Gain Correction

Gain or flat field correction procedure suppresses the 2D grid’s septal shadows in 

projections and reduces grid-induced artifacts in CBCT images. A flood CBCT scan, i.e., 

a scan without a phantom, was acquired to characterize grid shadows in projections as a 

function of source or gantry angle27. Gain maps are generated as below:

GM x, y, φ = I0
Flood projections x, y, φ

(4)
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Where x and y are detector pixel indices and φ represents projection index (scan angle). 

Subsequently, gain maps are multiplied with CBCT projections at matching source angles.

2.5 Beam Hardening Correction

For polyenergetic x-rays, the log attenuation of projections can be calculated by

p = − log I
I0

= − log ∫ Ω E e−∫ μE, sdsdE

(5)

Where Ω E  is the incident x-ray spectrum, I0 and I represent the incident and transmitted 

intensities and μE, s is the linear attenuation coefficient of the object at a specific energy E
and path s. The relationship between p and the path s is not linear, a problem known as 

beam hardening. In the clinical CBCT system, beam hardening is caused by both the imaged 

object and the aluminum bow tie filter28. To address this issue, a water-equivalent beam 

hardening correction method was implemented28. Mapping functions were generated for 

source spectra at 125 kVp and 140 kVp with 0.89 mm Titanium filtration29,30, such that the 

projection log attenuation values have a linear relationship with water equivalent thickness 

of the object (path length). For any water equivalent path length s with bowtie thickness l a 

correction factor CF s, l  was calculated and log attenuation was updated:

p* s, l = p s, l × CF s, l

(6)

Methods that account for both water and bone beam hardening were not utilized in this study 

since such methods31 require differentiation of bone and soft tissue regions in 3D images, 

which may be unreliable in the presence of anatomical motion and the slowly rotating linac 

gantry.

2.6. Iterative Reconstruction

To reduce image noise, Ordered Subset Adaptive Steepest Descent Projection Onto Convex 

Sets (OS-ASD-POCS) algorithm21 was employed to seek the optimal image f  with respect 

to the following regularized L1 norm objective32:

f * = argmin A   f −   gdata + τ f
TV

(7)

The first data fidelity term encourages consistency between measured projections and 

reconstructed image, where A is the system matrix and gdata is the acquired post-correction 

CBCT projection. The second term penalizes total variation to encourage piecewise 

smoothness in the reconstructed image. The weight constant τ controls the tradeoff between 

these two terms. Implementation details and hyperparameters were provided in Section 2.8.
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2.6.1. Implementation of OS-ASD-POCS in offset detector geometry—We 

observed that OS-ASD-POCS implementation may cause ring and streak artifacts in offset 

detector geometry (Fig. 3). These artifacts are caused by data inconsistency induced by 

scatter on the medial edge of the detector, where projection data is truncated due to 16 cm 

lateral offset in detector position (Fig. 4a). To demonstrate this problem, CBCT scans were 

acquired with various scatter suppression schemes (Fig. 3). When compared to 1D grid, 2D 

grid and additional residual scatter correction reduced ring and streak artifacts. However, 

such data inconsistency artifacts were not fully eliminated.

To address this issue, a projection-domain weighting scheme was implemented, where 

pixel-specific values of the data fidelity term were gradually reduced on the medial edge 

of the detector by applying multiplicative weights to pixel-by-pixel difference between 

experimentally acquired projection and forward projection of the image reconstruction at 

each iteration (Fig. 4b). These projection weights were identical to offset detector weights 

used in filtered backprojection reconstruction23, following

w t = 1
2 sin

πtan−1 t
R

2tan−1 θ
R

+ 1 ,       − θ ≤ t ≤ θ

(8)

where R is source to detector-distance, t is the spatial position of the detector and θ the 

corresponding smaller span of the array (Fig. 4a), It is important to emphasize that the 

purpose of offset detector weights in iterative reconstruction is different than the ones in 

filtered backprojection, where offset detector weights reduce the weight of detector pixels 

that double sample the central region of the object (red circle in Fig. 4a) due to offset 

detector geometry.

In iterative reconstruction, offset detector weights were applied to the pixels in the double 

sampled region during data fidelity term calculation (Fig. 5) to reduce data inconsistency in 

each iteration.

2.7. Image quality evaluations

First, all CBCT and MDCT image sets of any given phantom were rigidly co-registered. 

Subsequently, several image quality metrics were employed to benchmark the image quality 

of qCBCT against the clinical CBCT and MDCT. To evaluate the statistical significance 

of image quality differences between qCBCT and MDCT, we tested the null hypothesis 

that qCBCT HU accuracy metrics agree with the ones extracted from the reference MDCT. 

One-sided paired t-test was used at a significance level of p =   0.05, to the test the statistical 

significance of differences in HU loss and nonuniformity among imaging methods.

2.7.1. HU Loss—Object size dependent HU variations, or loss, were evaluated using two 

phantoms made from the same material in two different sizes,

ΔHU metℎod = HUsmall,  metℎod − HUlarge,  metℎod
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(9)

ΔHU metℎod is the average absolute HU difference between any method’s HU values for the 

large and the small object made from the same material.

HU loss also depends on the material properties. ROI locations chosen for analyses were 

separated into two groups, one for soft-tissue-like and the other for bone-like regions in each 

phantom.

2.7.2. HU nonuniformity—Mean HU nonuniformity was defined as the absolute 

difference between the HU value of each ROI with respect to the ensemble mean of all 

ROIs in a CBCT image:

mean nonuniformity = 1
N ∑i = 1

N HU ROI i − 1
N ∑i = 1

N HU ROI i

(10)

Where HU ROI  is the average HU calculated in itℎ ROI placed in the same phantom 

material. To calculate HU nonuniformity, a total of 20 ROIs were evenly distributed and 

selected in each transverse CBCT image’s soft tissue-equivalent background.

2.7.3. Evaluation of low-contrast imaging performance—Low contrast imaging 

performance was evaluated by measuring relative CNR improvement, edge spread function 

in soft tissue mimicking object boundaries, and structure similarity index.

Relative change in CNR (rCNR) with respect to the images of the same phantom acquired in 

clinical mode using FDK (further explained in Section 2.8) was calculated as,

rCNRpℎantom,  ROI i
metℎod = CNRpℎantom, ROI i

method

CNRpℎantom, ROI i
Clinical FDK

(11)

Where CNRpℎantom, ROI i
metℎod  represents the calculated CNR value for the data processing method 

of interest in ROI i  for each phantom. The ROIs were selected to span contrast objects in 

electron density and Catphan phantoms.

2.7.4. Modulation Transfer Function (MTF) and bar pattern analysis—One of 

the high contrast objects in the head-sized electron density phantom was used to measure 

MTF, and MTF was calculated using the method by Friedman et al33. Spatial frequency at 

10% MTF level was used to compare spatial resolution. In addition, line-pair pattern module 

in small Catphan phantom was evaluated. The goal of MTF measurements was to show the 

noninferiority of spatial resolution in qCBCT images with respect to the MDCT and clinical 

CBCT images.

2.7.5. HU correlation histogram—The correlation of HU values between CBCT and 

MDCT images was investigated by pairing co-registered CBCT and MDCT image voxels 
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and generating HU correlation histograms. To establish a reference HU correlation between 

the two modalities, images of the head-sized electron density phantom were utilized, which 

were affected the least from scatter, beam hardening and image lag. As a first order 

approximation, the correlation between the HU values of CBCT and MDCT was assumed 

to be piecewise linear. Two separate linear fits were performed for CBCT-MDCT HU pairs, 

one for soft tissue-like materials and the other for bone-like materials. Mean and standard 

deviation of distance (error) between the HU values of CBCT images and the linear fit was 

calculated to quantify the CBCT HU inaccuracy for each phantom.

2.8. Experiment Setup

Two types of CBCT data were acquired using a TrueBeam linac mounted CBCT (Varian 

Medical Systems, Palo Alto, CA). First data set was acquired with our 2D antiscatter grid 

prototype and the proposed data processing pipeline, referred as “qCBCT”. A second data 

set was acquired using the standard Pelvis CBCT protocol, referred as “Clinical CBCT”.

Clinical CBCT scans were reconstructed using two different options34.1) Standard 

reconstruction that employs FDK based filtered backprojection35 and scatter correction 

based on scatter kernel superposition15. 2) An iterative reconstruction method combined 

with a more robust scatter correction algorithm that solves Boltzmann transport equation14. 

These methods were referred as Clinical FDK and Clinical IR, respectively.

Likewise, qCBCT images were reconstructed using the FDK algorithm and iterative 

reconstruction, which were referred as qCBCT FDK and qCBCT IR, respectively. In qCBCT 

IR, hyperparameters were tuned to achieve noninferior spatial resolution with respect to 

clinical CBCT and MDCT images while maximizing CNR36,37. A zero-value image was 

used for initialization. In each iteration, a subset of blocksize = 50 projection views were 

used to approximate the gradient of the cost function. We count one iteration after all 

900 projections were used with 900
50 = 18 sub-iterations. Overall, iter = 50 POCS/descent 

iterations were used. In each iteration, the image update coefficient factor was set to be 

λ = 1 without any reduction factor for a faster convergence. The TV-steepest descent step 

size was initialized to α = 0.002 and executed for TV iter = 15 times when the change in the 

image due to TV-steepest descent is assessed. If this change exceeded rmax = 0.94 times data 

fidelity POCS based update, the TV-steepest descent step size is reduced by αred = 0.95. 

The implementation was performed with the TIGRE MATLAB/CUDA toolbox with GPU 

acceleration22.

Both qCBCT and clinical CBCT datasets were acquired using the same Pelvis CBCT 

protocol parameters in offset detector geometry (i.e., half fan geometry). 900 projections 

were acquired with a bow tie filter and 0.89 mm titanium beam filter in place, and detector 

pixel size was 0.388×0.388 mm2. Scans were acquired at 125 kVp and 1080 mAs, except 

for the pelvis phantoms which were acquired at 140kVp and 1680 mAs. qCBCT and clinical 

CBCT were reconstructed using 0.9×0.9×2 mm3 and 0.908×0.908×1.98 mm3 voxel size, 

respectively.
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Focused tungsten 2D antiscatter grid prototype had a grid ratio of 12, grid pitch of 2 

mm, and septal thickness of 0.1 mm, designed for offset detector CBCT geometry in 

TrueBeam38. The 2D grid was installed on the FPD, after removing the default (1D) 

antiscatter grid.

Effects of scattered radiation and CBCT image quality strongly depend on the object 

size and composition. Therefore, experiments were conducted using 7 different phantoms 

spanning from 20 cm diameter head sized phantoms to a large pelvis phantom with a lateral 

dimension of 55 cm. Anatomically more realistic thorax and pelvis phantoms were also 

employed.

Finally, a third set of image data was acquired with the MDCT (Philips Brilliance Big Bore 

16 slice MDCT, Netherlands) which served as the gold standard reference39. Images were 

acquired using 0.9×0.9×3 mm3 voxel size. MDCT scans were acquired in helical mode 

using 120 kVp and 140 kVp (for pelvis phantom scans). For both CBCT and MDCT scans, 

CTDI values were 16 mGy and 37 mGy for low and high kVp scans, respectively.

3. Results

3.1. Effect of data processing pipeline on qCBCT image quality

Effect of the data processing pipeline steps is shown in Fig. 6. When only 2D grid was 

utilized, periphery of the phantom had lower HU values than the center (blue arrows), 

largely due to increased scatter-to-primary ratio (SPR) in peripheral regions by the bow 

tie filter. Residual scatter also caused dark streaks between high density objects and ring 

artifacts in the central region (yellow arrow).

While most shading and ring artifacts were suppressed after scatter correction, other artifacts 

are still visible, such as image lag artifacts in the periphery (black arrow). Central section 

of the phantom body has higher HU values mostly due to beam hardening introduced by 

the bow tie filter. After image lag correction, median image HU nonuniformity in the radar 

artifact region was reduced from 16 to 4 HU (Fig.7a). Likewise, beam hardening correction 

reduced median HU nonuniformity between the center and periphery from 43 HU to 5 HU 

(Fig. 7b).

Using OS-ASD POCS without offset detector weights reduced stochastic noise but 

introduced ring and streak artifacts due to data inconsistency at the truncated edge of the 

detector. Application of the proposed offset detector weights eliminated these artifacts.

3.2. Qualitative evaluation of qCBCT image quality

Image quality differences between qCBCT and clinical CBCT images were comparable in 

head sized phantoms due to lower SPR (Fig. 8). Relatively less streak artifacts between high 

density objects in qCBCT images were due to robust scatter suppression in qCBCT images.

The importance of robust data correction was evident in larger phantoms. Clinical IR 

images have less artifacts than Clinical FDK in large phantoms with heterogenous material 

composition. qCBCT FDK further improved HU accuracy and reduced artifacts across all 
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phantoms. qCBCT FDK and IR images have similar HU values, but less noise was observed 

in qCBCT IR.

In visual comparisons of pelvis and large pelvis phantoms (Fig. 8, last two rows), CT 

number degradation in bony anatomy is evident in Clinical FDK images. While qCBCT 

significantly reduces HU degradation, they also appear noisier than Clinical CBCT images. 

This is due to low primary fluence transmitted through the large pelvis phantom and 

relatively high residual SPR despite the 2D Grid, which causes noise amplification after 

scatter correction.

Ring artifacts in the outer region of the phantoms in qCBCT images (red arrows, Fig. 8) are 

due to flickering detector pixels (pixel values are substantially lower or higher than expected 

in a certain pixel value range) when 2D grid was present. The cause of this issue needs 

further investigation. In the qCBCT IR images of the standard pelvis phantom, HU values 

were different in bone and soft tissue interfaces (blue arrow, Fig. 8). This is caused by 2×7 

pixel binning in projections. Iterative reconstruction aims to preserve possible edges while 

smoothing homogeneous areas. When using large pixels, volume averaging problems can be 

exacerbated by the iterative reconstruction process, which may lead to artifacts in bone-soft 

tissue interfaces. We have not observed such artifacts when using smaller pixel sizes.

3.2.1. HU Loss—Average HU loss in soft tissue equivalent sections of the electron 

density phantom was 62, 22, 7, and 5 HU for Clinical FDK, Clinical IR, qCBCT IR, and 

MDCT images, respectively (Fig. 9a). HU loss in qCBCT and MDCT images were similar 

in electron density phantoms, implying that qCBCT can provide comparable HU accuracy to 

MDCT.

Average HU loss for bone-like objects was significantly higher; it was 170, 120, 43, and 38 

HU for Clinical FDK, Clinical IR, qCBCT IR, and MDCT images, respectively (Fig. 9d). 

Differences in HU loss between qCBCT FDK and IR images were within 1HU.

For Catphan phantoms, differences in HU loss were smaller between Clinical and qCBCT 

images (Fig. 9b and 9e). For the Clinical FDK, Clinical IR, qCBCT IR, and MDCT images, 

the average Hounsfield unit (HU) loss in soft tissue equivalent sections was 37, 17, 15, and 7 

HU, respectively (Fig. 9c). In bone-mimicking sections, the average HU loss was 46, 27, 13, 

and 15 HU for Clinical FDK, Clinical IR, qCBCT IR, and MDCT images, respectively (Fig. 

9f).

When compared to MDCT, HU loss p values for qCBCT and clinical CBCT IR were 0.5 

and 2e-11 in electron density phantoms, respectively. In pelvis phantoms, HU loss p values 

for qCBCT and clinical CBCT IR were 0.77 and 0.009, respectively. These results imply 

that HU loss differences between MDCT and qCBCT were not statistically significant. For 

Catphan phantoms, HU loss p values for qCBCT and clinical CBCT IR were 7e-4 and 1e-7, 

respectively. While, these differences are statistically significant, HU loss in qCBCT has 

better agreement with MDCT than clinical CBCT IR images.

3.2.2. HU nonuniformity—Similar to the trends in HU loss, HU nonuniformity in 

qCBCT was substantially less than Clinical CBCT, and particularly in pelvis-sized phantoms 
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(Table 1 and Fig. 10b); mean nonuniformity across all phantoms was 32, 23, 10, 10, 

and 6 HU for Clinical FDK, Clinical IR, qCBCT FDK, qCBCT IR, and MDCT images, 

respectively. However, large ROI-to-ROI HU deviations were observed in a small subset of 

ROIs due to image artifacts, particularly in clinical CBCT images. For example, maximum 

ROI-to-ROI HU deviation was 193 HU in Clinical FDK images of the pelvis electron 

density phantom. Such ROI-to-ROI deviations were only 15 HU in qCBCT FDK images.

3.2.3. Low contrast imaging performance—Mean rCNR in Clinical IR images was 

in the range of 1.1 – 1.8 in head sized phantoms (Fig. 11). Mean rCNR in qCBCT FDK 

images was in the range of 1–1.4 respectively, indicating that qCBCT FDK provides modest 

improvement in CNR with respect to Clinical FDK images. rCNR in qCBCT IR images 

were 1.4 – 2.4, indicating that qCBCT can offer substantial CNR improvement using OS-

ASD-POCS reconstruction algorithm, due to reduction in noise (Fig. 11a).

3.2.4. Spatial resolution characteristics—Overall, spatial resolution of qCBCT was 

noninferior to Clinical CBCT and MDCT images (Fig.12a). The values of MTF at 10% level 

for Clinical FDK, Clinical IR, qCBCT FDK, and qCBCT IR were 0.39, 0.41, 0.43, and 

0.42 mm−1, respectively. 10% MTF level in MDCT images was 0.37 mm−1. In bar pattern 

phantom images, 3, 4, and 5 line pairs per cm were differentiated in MDCT, Clinical CBCT, 

and qCBCT images, respectively.

3.2.5. HU correlation histograms—Trends in CBCT-MDCT HU correlation 

histograms agreed with HU loss and nonuniformity evaluations. In soft tissue-mimicking 

regions of head sized phantoms, HU values for CBCT and MDCT were highly correlated 

due to highly accurate raw data and lower noise (Fig. 13a).

Mean error (Tables 2 and 3) values were in the range of 6 – 105 HU for Clinical CBCT 

images, whereas mean error was in the range of 5–35 HU for qCBCT images. Merging all 

HU correlation histograms into one composite histogram better visualizes the dispersion of 

CBCT HU values (Fig. 13).

HU correlation degraded substantially for bone-like regions in Clinical FDK images (Fig. 

13), indicating the challenges in improving raw data fidelity in high SPR conditions. qCBCT 

images preserved the expected linear behavior of HU values when compared to Clinical 

CBCT images. Mean errors across all phantoms for Clinical FDK, Clinical IR, qCBCT 

FDK, and qCBCT IR were 22, 16, 15, and 10 HU for soft tissue-mimicking regions (Table 

2) and 63, 49, 23 and 19 HU for bone-mimicking regions (Table 3), respectively. While 

noise reduction in qCBCT IR helped to improve HU correlation, improvement of raw data 

fidelity was the key factor in achieving higher qCBCT-MDCT HU correlation.

Except for the Catphan phantom, HU correlation errors in large phantoms were significantly 

less in qCBCT than the ones in Clinical CBCT images (p value < 0.05). In small phantoms, 

statistically significant HU correlation errors between qCBCT and clinical CBCT were not 

observed.
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4. Discussion

While the performance of 2D grids in CBCT imaging has been investigated previously6,8,38, 

HU accuracy and CNR improvement was limited due to lack of key raw data correction 

and image denoising methods. In this work, we presented a raw data correction and iterative 

reconstruction pipeline with 2D antiscatter grids, referred to as qCBCT, which further 

improves quality of CBCT images.

Even though scatter rejection and correction are the primary factors in achieving high image 

quality in qCBCT, they are not sufficient to achieve high HU accuracy comparable to 

MDCT. For example, localized HU nonuniformities in the periphery of the pelvis electron 

density phantom were 15 – 46 HU due to image lag and beam hardening. After beam 

hardening and image lag correction, HU nonuniformity was down 8 HU on average, 

indicating the essence of complete raw data correction chain for quantitatively accurate 

CBCT images.

Regarding HU accuracy, qCBCT provided statistically significant improvements over both 

Clinical CBCT imaging methods investigated. Since both qCBCT and Clinical CBCT utilize 

beam hardening and image lag correction methods, improved image quality in qCBCT 

was attributed to 2D antiscatter grids and Grid-based Scatter Sampling. Even though 2D 

grid does not eliminate all scatter, the remaining smaller amount of scatter can be more 

easily corrected with a scatter correction method. Conventional radiographic antiscatter 

grid in Clinical CBCT transmits a larger fraction of scatter fluence to the detector and 

makes residual scatter correction a more challenging task. Our results also reaffirm that 

Clinical IR has significantly better scatter correction performance than the scatter kernel 

superposition-based method used in Clinical FDK images.

In contrast to model-based patient scatter correction where glare/backscatter is not modeled 

and calls for further glare correction such as the deconvolution-based methods40. The Grid-

based scatter sampling method used in this work is a measurement-based scatter correction 

method that corrects the cumulative effects of all forms of scatter, including glare and 

detector backscatter without explicitly addressing each individual component. It is desirable 

to characterize the magnitude of any remaining glare or backscatter and perform further 

correction when needed.

Aggregate evaluations across all ROIs and phantoms showed that the HU loss differences 

between qCBCT and MDCT were small, suggesting comparable HU accuracy in both 

imaging modalities. However, MDCT images had slightly fewer artifacts, particularly 

in larger phantoms. These small differences could be attributed to suboptimal scatter 

suppression, beam hardening, and lag correction, as well as the limitations of FPD 

technology. For example, primary x-ray fluence was attenuated 4–5 orders of magnitude 

in large, bone-containing phantoms. At such low signal levels, limited dynamic range 

and relatively high electronic noise in FPDs41 may challenge raw data correction and 

accurate measurement of primary signals. These issues are further amplified by relatively 

low quantum efficiency of FPDs and associated quantum noise in primary signal.
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Given that the 2D antiscatter grid in qCBCT has higher primary transmission than the 

radiographic grid used in clinical CBCT (85% versus 70%)8,38, and better scatter rejection 

performance, one would expect to achieve higher CNR in qCBCT than Clinical CBCT 

images. Several factors might have contributed to this discrepancy. First, measured CNR is 

sensitive to spatial resolution properties. qCBCT FDK images had slightly higher spatial 

resolution than Clinical CBCT images (Fig. 12). If spatial resolution properties of qCBCT 

and Clinical CBCT images are matched better, CNR in qCBCT images can be improved 

further. Second, qCBCT images did not employ any high spatial frequency artifact reduction 

algorithms, such as ring artifact correction methods, as in Clinical CBCT. Such high 

frequency artifacts can increase noise and reduce CNR. Implementation of such artifact 

reduction methods in qCBCT will be an area of future investigations.

Scatter rejection by 2D grid and residual scatter correction with the GSS method improve 

contrast but also amplify noise in CBCT images6. Despite noise reduction with OS-ASD-

POCS, qCBCT images of large phantoms appear noisier than MDCT and on par with 

Clinical CBCT, which imply the need for improved noise reduction in qCBCT.

This work emphasizes the importance of phantom size and composition in CBCT image 

quality evaluations. Image quality differences among all imaging methods were generally 

small in 20 cm diameter phantoms, because the effects of scatter, beam hardening, and 

image lag are less in such phantoms. When human torso sized phantoms with bony 

structures were used, HU loss exceeded 100 HU. Hence, the use of standard head-sized 

phantoms and absence of bone-like embedded objects in CBCT image quality evaluations 

may not fully reveal the extent of image quality issues in CBCT images16,42.

There are several factors that may impact the performance of the proposed pipeline. Firstly, 

long-term variations in gantry flex could cause suboptimal suppression of grid artifacts, 

leading to the introduction of fixed pattern noise, or ring artifacts. Although we did not 

observe major detrimental effects of gantry flex, further investigations are needed to assess 

the impact of long-term gantry flex variations. Secondly, residual scatter measurement in 

very large phantoms is challenging due to the very low primary signal levels, which may 

introduce errors in scatter estimation. Thirdly, while the use of a 2D grid provides higher 

average primary transmission (>80%), the primary signal in grid shadows is lower than 

that in the grid holes. This may amplify the effects of additive electronic noise in pixels 

residing in grid shadows and requires further investigation. Lastly, the image quality metrics 

utilized in this study do not fully depict the impact of qCBCT on clinical tasks in CBCT-

guided radiation therapy. For example, improved CNR in relatively uniform phantoms as 

in our study may not warrant improved visualization of anatomical structure boundaries in 

CBCT images. Further research is required to investigate the effects of qCBCT on specific 

clinical tasks, such as online dose calculations, radiomics feature extraction, and improved 

visualization during localization.

5. Conclusion

The utilization of a 2D antiscatter grid and grid-based scatter sampling in combination with 

other raw data correction methods and an iterative reconstruction method has been shown to 
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significantly improve the quality of CBCT images used in radiation therapy. Specifically, the 

Hounsfield unit (HU) accuracy in qCBCT images approaches the HU accuracy of the gold 

standard MDCT images.

From a qualitative perspective, improved image quality in qCBCT may increase the 

clinician’s confidence during target localization in image-guided radiation therapy. From 

a quantitative imaging perspective, qCBCT images have the potential to be used for CBCT-

based dose calculations during treatment delivery to either confirm delivered dose or support 

decisions for plan adaptation. Furthermore, anatomical changes and treatment response over 

the course of treatment can be potentially better assessed in qCBCT images.
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Fig.1. 
Raw Data Correction and Iterative Reconstruction Pipeline for qCBCT scans acquired with 

2D antiscatter grid.
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Fig. 2: 
Image lag correction for (a) M=50 (b) M=100 (c) M=200 and (d) M=300 over 16 averaged 

slices. HU Window=[−250 250].
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Fig.3. 
CBCT scans were acquired using offset detector geometry and reconstructed using OS-

ASD-POCS with (a) 1D antiscatter grid (b) 2D antiscatter grid (c) 2D antiscatter grid + 

GSS scatter correction. When scatter is present, projection truncation due to offset detector 

geometry causes ring and streak artifacts due to data inconsistency at the truncated edge 

of the detector. The use of 2D grid instead of 1D grid reduces these artifacts. 2D grid and 

residual scatter correction substantially reduce artifacts, but artifacts are not fully eliminated. 

HU window= [−500 500].
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Fig.4. 
(a), Offset detector geometry used in the CBCT experiments. Medial edge of the projection 

is closest to the piercing point and the object is truncated, which causes data inconsistency 

when scatter is present. (b), data inconsistency is reduced by applying correction weights to 

the fidelity term of pixels within 4 cm of the piercing point.
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Fig.5. 
Flowchart for updated iterative reconstruction step to account for scatter induced data 

inconsistency and associated ring artifacts.
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Fig.6. 
Effect of the data processing pipeline steps on qCBCT image quality. Blue arrows: transition 

zone between the peripheral shading artifacts caused by bow tie filter and the central region. 

Yellow arrow: Ring artifacts caused by residual scatter and associated suboptimal gain 

correction. Balck arrow: Radar or image lag artifacts. Window = [−250 250].
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Fig.7. 
Effects of image lag and beam hardening correction are show in (a) and (b), respectively. 

ROI locations for image lag induced HU nonuniformity calculations were indicated by red 

arrows. ROI locations for beam hardening induced HU nonuniformity calculations were 

indicated with circles. Central mark indicates the median, and the bottom and top edges 

of the box indicate the 25th and 75th percentiles, respectively. Whiskers extend to the 

most extreme data points not considered outliers, and the outliers (if available) are plotted 

individually using the ‘+’ marker symbol. Window = [−250 250].
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Fig.8. 
Images of 7 phantoms acquired with all 5 CBCT and MDCT methods. Ring artifacts in 

the periphery of head qCBCT images (red arrows) are caused by the detector readout. 

Differences in bone - soft tissue interface in the qCBCT IR pelvis phantom (blue arrow) was 

caused by pixel binning in projections. HU window is [−250 250] for all phantoms except 

obese pelvis which has a HU window of [−500 500].
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Fig. 9. 
HU loss for (a) water-equivalent background and (d) bone-like objects for head and pelvis-

sized electron density phantoms, (b) water-equivalent background and (e) bone-like objects 

for small and large Catphan and (c) water-equivalent background and (f) bone-like objects 

for small and large pelvis. Central mark indicates the median, and the bottom and top 

edges of the box indicate the 25th and 75th percentiles, respectively. Whiskers extend to the 

most extreme data points not considered outliers, and the outliers (if available) are plotted 

individually using the ‘+’ marker symbol.
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Fig. 10. 
(a) noise reduction factor for qCBCT IR with respect to qCBCT FDK and (b) HU 

nonuniformity as a function of CBCT imaging methods. Centerline, box, and whiskers 

represent median, 25–75 quartile, and most extreme data points not considered outliers, 

respectively. The outliers are presented by crosses.
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Fig.11. 
rCNR as a function of CBCT imaging methods in (a) head and pelvis-sized electron density 

phantom and (b) small and large Catphan phantoms. Relative CNR is the change in CNR 

with respect to Clinical FDK reconstructions.
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Fig.12. 
Comparison of spatial resolution for different imaging methods. (a) MTF and (b) bar pattern 

phantom images.
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Fig. 13. 
Composite HU correlation histograms over all phantoms for each CBCT imaging method. 

Histograms were generated from (a) soft tissue and (b) bone mimicking regions of each 

phantom. Expected HU correlation between MDCT and CBCT images is indicated by the 

dotted line.
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Table 1.

HU nonuniformity for all phantoms and imaging methods. Mean ± std.

Head electron 
density

Pelvis electron 
density Small Catphan Large Catphan Thorax Pelvis Large pelvis

Clinical FDK 20±14 75±57 6±4 29±21 38±29 18±11 67±31

Clinical IR 13±11 32±20 4±2 19±12 30±19 21±13 49±32

qCBCT FDK 4±4 8±3 6±2 4±4 6±4 14±10 26±18

qCBCT IR 4±4 5±3 2±1 4±3 6±4 14±10 31±20

MDCT 8±4 4±3 0.4±0.5 2±1 3±2 9±7 17±12

p value
qCBCT vs MDCT 0.02(*) 0.35 (NS) 0.97 (NS) 1e−2 (*) 8e−3 (*) 0.03 (*) 0.53 (NS)

p value
Clinical CBCT vs 

MDCT
0.04 (*) 5e−6 (*) 5e−3 (*) 3e−5(*) 6e−7(*) 2e−4(*) 1e−3 (*)
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Table 2.

Mean and standard deviation of absolute errors in soft tissue mimicking regions of CBCT images when 

compared to gold standard MDCT images.

Head electron density Pelvis electron density Small Catphan Large Catphan Thorax

Clinical FDK 12±10 36±34 8±5 19±14 36±31

Clinical IR 8±8 24±18 6±3 13±9 31±24

qCBCT FDK 9±8 21±16 10±8 18±14 15±13

qCBCT IR 7±7 13±11 8±7 10±8 12±11

p value
Clinical IR vs qCBCT IR 0.38 0.02 0.73 0.37 9e-4
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Table 3.

Mean and standard deviation of absolute errors in bone mimicking regions of CBCT images when compared 

to gold standard MDCT images.

Head electron density Pelvis electron density Small Catphan Large Catphan Thorax

Clinical FDK 9±8 105±85 73±58 59±28 67±52

Clinical IR 9±6 81±57 65±54 44±32 46±48

qCBCT FDK 7±5 20±15 35±16 28±17 23±22

qCBCT IR 5±4 12±10 34±19 21±15 22±19

p value
Clinical IR vs qCBCT IR 0.22 7e−19 0.04 9e−4 7e−6
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