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Abstract

BACKGROUND: Wrist-worn actigraphy can objectively measure sleep, and has advantages over 

self-report, particularly for people with Bipolar Disorder (BD) for whom self-reports might be 

influenced by affect. Clinically useful data reduction approaches are needed to explore these 

complex data.

METHODS: We created a composite score of sleep metrics in BD based on 51 BD and 80 healthy 

comparison (HC) participants. Subjects wore an actigraph for up to 14 consecutive 24-hour 

periods, and we assessed total sleep time (TST), wake after sleep onset (WASO), percent sleep 

(PS), and number of awakenings (NA). We focused on participants who had at least 5 nights 

of actigraphy data. We computed z-scores for within-person means of sleep measures for BD 
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subjects versus HCs, which were averaged to create a composite measure. We correlated this 

composite with participant characteristics, and used LASSO regression to identify sleep measures 

best explaining variability in identified correlates.

RESULTS: Sleep measures and the composite did not differ between BDs and HCs; however, 

there was considerable variability in z-scores among those with BD. In BDs, the composite score 

was higher in women (t(49) = 2.28, p = 0.027) and those who were employed (t(34) = 2.34, p 
= 0.025), and positively correlated with medication load (r = 0.41, p = 0.003) while negatively 

correlated with Young Mania Rating Scale (YMRS; r = −0.35, p = 0.030). In Lasso regression, 

TST and NA best explained medication load while PS best explained employment and YMRS.

CONCLUSION: While a composite score of sleep metrics may provide useful information about 

sleep quality globally, our findings suggest that selection of theory-driven sleep measures may be 

more clinically meaningful.
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INTRODUCTION

In recent years, there has been an explosion in the availability of consumer wearables (e.g., 

Fitbit, Apple watch) (Voets, 2013) which are able, through accelerometry, heart rate, and 

“real time” physiologic signal, to provide insights on lifestyle, including sleep. The ubiquity 

of these devices means that a wealth of data is now available for understanding sleep in 

diverse populations, including those with serious mental illness such as bipolar disorder 

(BD). Sleep disturbance is highly prevalent in BD and associated with psychopathology 

(Harvey et al., 2009; Sylvia et al., 2018; Sylvia et al., 2012). Using objective forms of 

sleep measurement (e.g., polysomnography, actigraphy) in BD may be more accurate than 

clinical interviews, as self-report of sleep may be influenced not only by recall, but by 

current affective states inherent in BD (Baillet et al., 2016). While polysomnography is the 

most validated means of measuring sleep, wearables can generate important data about sleep 

quality that has been validated against polysomnography (Ancoli-Israel et al., 2015; Cole et 

al., 1992; Sadeh et al., 1994). Indeed, past studies show altered sleep patterns as measured 

by actigraphy in BD vs. healthy subjects (see De Crescenzo et al. (2017) as example).

Accelerometry can estimate a number of sleep parameters, including total sleep time (TST; 

time a subject was asleep in minutes), wake after sleep onset (WASO; time awake while in 

bed in minutes after sleep onset), percent sleep (PS; percent of time spent asleep at night), 

number of awakenings (NA; number of times awaken at night) amongst others (Ancoli-

Israel et al., 2003). While these individual parameters, by themselves, are clinically relevant 

and provide important data to identify mechanisms for outcomes, there are some statistical 

challenges, including Type 1 error which can be problematic when looking at multiple 

outcomes (e.g., different affective states, psychiatric symptoms, inflammatory biomarkers) 

as are commonly measured in studies of BD (Ketter, 2010).
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Distilling sleep parameters into one joint construct may help identify those with poor sleep 

and in need of sleep intervention. Approaches such as machine learning can cluster people 

based upon patterns of sleep, and past studies in sleep using these methods have shown 

promising results (Sathyanarayana et al., 2016; Willetts et al., 2018; Wolz et al., 2017). 

However, these approaches have limitations in their applicability and generalizability to 

individual patients (Graham et al., 2019), and are often hard to communicate to those 

unfamiliar with these methods, limiting their clinical utility. Other investigators have sought 

to identify actigraphic measures most important in distinguishing sleep quality across 

subjects. For example, Natale et al. (2009) used linear discriminant function analysis 

to find that TST, sleep onset latency, and NA were the best combination of actigraphy 

statistics differentiating those with insomnia from those with healthy sleep patterns. 

In neuropsychological assessment, cognitive test scores are commonly standardized as 

compared to a normative population, and can then be merged into a composite. Using 

a similar approach, but with actigraphic sleep measurements, may yield a clinically 

meaningful way to summarize sleep quality across measures among those with BD.

Sleep quality is associated with a number of demographic and clinical characteristics. For 

example, in community-based samples, poor sleep is associated with lower overall health 

quality (Medic et al., 2017), increased risk for depression (Zhai et al., 2015), higher body 

mass index (BMI) (Rahe et al., 2015), lower cognition (Lo et al., 2016), higher levels of 

inflammation (Irwin et al., 2016), among other negative health outcomes. In BD, poor sleep 

is associated with these same characteristics but at a more pronounced level; and poor sleep 

is also associated with worsening BD symptoms (e.g., depression and mania) (Barbini et 

al., 1996; Fava and Kellner, 1991; Gruber et al., 2011; Jackson et al., 2003; Perlman et al., 

2006), poorer overall mood (Cretu et al., 2016), impaired cognition (Bradley et al., 2020), 

and greater inflammation (Dolsen et al., 2018), among others. To have construct validity 

and be clinically meaningful, a composite sleep measure in BD should be correlated with 

demographic and clinical characteristics consistent with past studies of sleep quality.

In this study we created a composite score for sleep across accelerometer-derived sleep 

variables in a sample of those with BD. The main aims of this study were to identify 

the clinical utility of this composite measure by examining demographic, clinical, and 

biological correlates within subjects, and to identify the sleep variables most contributing 

to associations between the composite measure and these associated variables. We 

hypothesized that better sleep quality as seen in our composite measure would be associated 

with fewer depressive and mania symptoms, greater medication load, and lower cognition 

and inflammation. We hypothesized that any observed correlations would be driven by 

multiple sleep indices included in the overall composite score.

MATERIAL AND METHODS

Study design and participants

Data came from a longitudinal study of cognition and inflammation in BD. We recruited 

those with BD and HCs from outpatient clinics, community settings, and other research 

studies at UC San Diego. BD was defined as a diagnosis of Bipolar I or II DSM-IV Disorder 

receiving outpatient care. Exclusion criteria included: acute illness or pregnancy, a recent 

Kaufmann et al. Page 3

J Psychiatr Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vaccination, history of various health conditions (dementia, seizures, Parkinson’s, stroke, or 

head trauma), cancer treatment in past, diabetes/hypertension that is not controlled, among 

others. Among HCs, we also excluded individuals who had a history of DSM-IV Axis I 

disorders, previous use of psychotropic medications, as well as having a first degree relative 

with history of depression, BD, or schizophrenia. Each year of the study, participants were 

asked to complete a 2-week burst of assessments consisting of three in-person visits and 

completion of up to 14 24-hour periods of wrist-worn actigraphy. We focused on a subset of 

51 persons with BD and a comparable group of healthy controls [HCs] (n=80) who had valid 

wrist actigraphy data which we defined as having actigraphy data recorded for at least five 

nights. Of note, some individuals had more than one period of actigraphy assessment (e.g., 

in years 1 and 2 of the study) or did not have valid actigraphy data for year 1 but valid data 

for year 2. Consequently, we analyzed the first valid actigraphy assessment period available 

for each participant. This study was approved by the UCSD Institutional Review Board and 

was carried out in accordance with the Declaration of Helsinki. All participants completed 

informed consent prior to study involvement.

Actigraphy data and processing

Data were gathered from wrist-worn Actisleep-BT device (Actigraph, Pensacola, FL) which 

measures raw acceleration data in gravitational units (g’s) using a tri-axial accelerometer 

sampling at 30Hz. Over continuous 24-hour wear periods, this device can be used to monitor 

movement allowing for estimation of sleep/wake patterns similar to methods described by 

Ancoli-Israel et al. (2003). In-bed and out-of-bed times were set based upon both actigraphy 

data and information from morning surveys on a cell phone survey. If participant sleep 

records were missing entirely, sleep onset and awake time were manually determined by a 

specially trained research assistant using the detection methods outlined by Full, et al. (Full 

et al., 2018). TST, WASO, PS, and NA were computed based upon these in/out bed intervals. 

To construct our composite score, in the absence of publicly-available norms, we chose to 

normalize BD subjects’ sleep measures based upon the HCs as a normative sample. We first 

computed means and standard deviations of actigraphy sleep measures of TST, WASO, PS, 

and NA in the HC group. Based upon this, we created standardized z-scores in the BD group 

by subtracting each BD individual’s sleep measure (for TST, WASO, PS, and NA) from the 

means of measures in HCs, and dividing by the SDs in the HC group. We multiplied WASO 

and NA by −1 to keep variables in the same direction (higher scores = better sleep). We then 

computed the mean of z-scores across all measures to create our composite.

Measures

We also assessed age (years), education (years), gender (female, male), minority status 

(Caucasian, non-Caucasian), marital status (single/divorced/separated/widowed, married/

cohabitating), employment (which we categorized as employed full- or part-time, 

unemployed including on disability), depression (using the Patient Health Questionaire-9, 

PHQ-9) (Kroenke et al., 2001), cognitive functioning (the Measurement and Treatment 

Research to Improve Cognition Schizophrenia [MATRICS] Consensus Cognitive Battery 

(Nuechterlein and Green, 2006) global cognitive and working memory [T-scores]), body 

mass index (BMI), the Perceived Stress Scale total score (Cohen et al., 1983), sleep 

medication use as reported on item 7 (component # 6) of the Pittsburg Sleep Quality Index 
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(PSQI) (Buysse et al., 1989), age of onset, duration of illness, Young Mania Rating Scale 

(YMRS) (Young et al., 1978), Hamilton Depression Rating Scale (HAM-D) (Hamilton, 

1960), Brief Psychiatric Rating Scale (BPRS) (Overall and Gorham, 2016), and global 

assessment of functioning (GAF), as well as a computed medication load variable that 

combines information about the number, and relative dose, of all psychotropic medications 

based on methods previously discussed elsewhere (Versace et al., 2008). Additionally, 

subjects were asked to answer daily surveys sent to a mobile device regarding use of 

alcohol and cannabis. We computed the percentage of surveys answered in which the subject 

indicated they used alcohol or cannabis that day. Participants also gave three fasting blood 

samples over a two-week period, and biomarkers of inflammation were assayed using a 

Meso Scale Discovery (MSD) MULTI-SPOT® Assay System and processed on a SECTOR 

Imager 2400 instrument (Rockville, MD, USA). We focused on the Interleukin-6 (IL-6), 

tumor necrosis factor (TNF)-alpha, and C-reactive protein (CRP) inflammatory markers as 

these biomarkers have been shown to be associated with sleep quality (Irwin et al., 2016). 

We log-transformed inflammatory values and averaged the results across the three blood 

draws for analyses.

Analyses

After computing the individual sleep statistics and composite z-scores, we sought to 

determine whether the sleep was of overall worse quality in BDs as compared to HCs 

by testing if the z-scores were different from 0 (no difference between groups). We 

then assessed the correlation of the composite with demographic and clinical variables 

using Pearson correlations (continuous measures) and t-tests (binary/categorical variables). 

Finally, for variables significantly correlated with the composite sleep z-score, we conducted 

LASSO regression (Ahrens et al., 2018, 2019) to identify the individual sleep statistics most 

contributing to this correlation. The demographic and clinical variables served as outcomes 

and predictors were the z-scores for TST, WASO (which was inverse coded), PS, and NA 

(also inverse coded). LASSO identified the sleep metrics or combination that best predicted 

demographic and clinical variables. All analyses were completed in Stata SE version 15 

(Stata Corp, College Station, TX).

RESULTS

The mean age of our BD sample was 47.9 (SD = 9.18) years and mean education was 

14.4 (SD = 2.10) years. Over half were female (61%), 73% were Caucasian, and 28% were 

married or cohabitating. Compared to HCs, the BD group had fewer years of education and 

were less likely to be employed and married or cohabitating (all p’s ≤ 0.038). Groups did not 

differ by age, gender, and minority status.

Figure 1 shows the distribution of computed z-scores of all BD subjects for TST, WASO, 

PS, and NA, as well as the composite (the mean of TST, WASO, PS, and NA z-scores) 

based upon respective means from the HC group. While the NA z-score differed statistically 

significantly from 0 (mean = 0.35, SD = 1.18, p = 0.039) suggesting more awakenings in the 

BD group, the composite and most individual z-scores did not (Composite: mean = 0.13, SD 

= 0.98, p = 0.340; TST: mean = 0.05, SD = 1.44, p = 0.817; WASO: mean = 0.09, SD = 
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1.08, p = 0.570; PS: mean = 0.04, SD = 1.25, p = 0.806) indicating comparability between 

the BD and HC groups. In the BD group, there was substantial inter-individual variability in 

z-scores by about 1 SD.

Table 1 presents correlations between the composite z-score and demographic and clinical 

variables. Higher scores on the composite z-score was associated with gender (women had 

a higher composite; t(49) = 2.28, p = 0.027), employment (those employed had a higher 

composite; t(34) = 2.34, p = 0.025), higher medication load (r = 0.41, p = 0.003), and lower 

YMRS score (r = −0.35, p = 0.030). Although more than one individual sleep metric was 

significantly related to each of these factors, results from LASSO regression which included 

all of them individually in the same predictive model identified TST as most contributing to 

correlations with medication load (r = 0.51, p < 0.001); PS contributing most to correlations 

for employment (t(34) = 2.62, p = 0.013), and YMRS (r = −0.35, p = 0.029); and NA most 

contributing to medication load (r= 0.26, p=0.070; Supplemental Table 1) but this was not 

significant.

DISCUSSION

Past research on sleep in BD has focused on individual actigraphy measures (e.g., TST, 

WASO), and there is a need for a global measure of sleep derived from actigraphy. In this 

study, we explored whether a composite score would relate to expected clinical, cognitive, 

and biological factors and whether including multiple sleep variables was important to the 

observed relationships. While the composite score was related to variables in BD including 

gender, employment, medication load, and mania symptoms, these associations were for 

the most part driven by only one of the individual sleep metrics with the exception of 

medication load for which TST and NA jointly contributed. Our results suggest a composite 

score does not yield gains in predictive power over individual sleep metrics. In studies of 

BD, it may be more appropriate to choose metrics to examine based on theory rather than 

summarizing multiple sleep metrics together.

Our finding that a composite score is not as informative as examining individual sleep 

metrics alone may be explained by a number of factors. We focused on the averaged selected 

sleep indices measured over a two-week period, and it may be that examining changes in 

patterns of sleep over time, rather than means of sleep indices, could better capture more 

variability and thus compute a more nuanced composite score. Our goal, however, was to 

identify an intuitive approach for summarizing poor sleep in clinical practice, and thus we 

only focused on commonly used and often readily available sleep metrics. It is possible, 

however, that incorporating measures of circadian patterns would better support a composite 

measure approach. Additionally, population-based norms of actigraphic sleep indices do 

not currently exist, and thus we chose to use our healthy control sample as the norms for 

construction of z-scores. It is important that more research be conducted to generate norms 

for the purpose of computing composite measures as we sought to do in this study.

While a sleep composite may not provide additional utility beyond that of individual 

measures themselves, there was substantial variability in z-scores indicating there are 

persons with BD who may have worse or better sleep as compared to HCs by as much 
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as one standard deviation. This highlights the need for future research to identify cut-points 

based on z-scores identifying the worse sleepers. Similarly, it may be important to examine 

how daily fluctuations in sleep could be incorporated into a composite score. In BD, sleep 

often varies night-to-night (Kaufmann et al., 2016) and it could be that these nightly 

fluctuations are representative of poor sleep rather than simply average sleep measures 

across nights.

While clinical relationships to the composite z-score were generally driven by only one sleep 

measure, we found correlations with clinical variables pertinent to BD confirming previous 

literature. A higher score on our composite measure (e.g., better sleep) was associated 

with being female, being unemployed, having greater medication load and lower mania 

symptomatology. Similarly, studies in BD show that poor sleep (as defined by self-report or 

individual actigraphy statistics) is associated with worsening BD symptoms (e.g., depression 

and mania) (Barbini et al., 1996; Fava and Kellner, 1991; Gruber et al., 2011; Jackson et 

al., 2003; Perlman et al., 2006), among other correlates. Based upon LASSO regression, 

TST and NA most contributed to the correlation with medication load which may be 

reflective of the sedating properties of many psychotropic medications (both increasing sleep 

duration and lowering number of awakenings). PS contributed most to the correlations with 

employment, and mania symptoms, which may relate to sleep fragmentation and variability 

that has previously been shown to be associated with these variables (Gold and Sylvia, 

2016).

Because wrist actigraphy is easily administered and is less invasive compared to an inlab 

sleep evaluation and is easier to get longitudinal measures over the span of weeks, it 

is important for future research to identify other approaches that could reduce these 

voluminous data to actionable insights, especially for treating patients with BD where 

management of sleep is paramount. Clinicians could utilize a composite measure to identify 

patients with poor sleep overall and triage these patients to appropriate sleep treatment 

options based upon their individual sleep metrics. In the future, as such accelerometry data 

becomes available in many different populations, it may soon be possible to identify when 

poor sleep begins to emerge with the possibility of predicting a mood episode to offer 

just-in-time clinical interventions. More research is needed to develop tools using these data 

for future prediction of events for clinical monitoring.

Our study has some limitations. First, our analysis was cross-sectional and retrospective. 

Research should explore ways that changes in sleep quality longitudinally may be 

incorporated in this composite measure. Second, we focused on the means of sleep 

parameters as our main purpose was to examine an intuitive composite score for poor sleep. 

Future studies may want to identify whether night-to-night variability in sleep or circadian 

patterns can improve a composite measure (Ancoli-Israel et al., 2003). Third, in the absence 

of published norms for actigraphic sleep measures for healthy individuals of comparable 

age to our BD sample, we used our own HC sample as the normative group. To the extent 

that our HC sample was relatively small (n=80) and participants were not selected on the 

basis of having no reported sleep abnormalities, this may have introduced some bias into 

the composite scores. It may be important for future studies to compare this method to 

other approaches which do not use a normative sample (e.g., linear discriminant function). 
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Fourth, our sample size was small and given the number of correlates assessed with the 

composite score, there is a possibility of significant findings due to chance alone. However, 

our study evaluates a potential way to combine actigraphic measurements, and future studies 

with larger samples may help examine this further. Finally, we did not have measures of 

sleep apnea which may contribute to disturbed sleep (especially sleep fragmentation as 

characterized by PS, WASO, and NA). However, sleep apnea is often undiagnosed (Simpson 

et al., 2013), and in a clinical setting, clinicians may need to base their assessment of sleep 

on wrist actigraphy alone.

In conclusion, we found that while a sleep composite measure based upon actigraphy 

measures was correlated with patient characteristics similar to that in other studies, it does 

not add more information beyond individual sleep metrics alone and future research might 

benefit from selecting individual sleep metrics based on theory rather than use a composite 

measure approach. While our approach may have limited utility in BD, it may be important 

for research to examine this in other clinical groups, including those with other serious 

mental illnesses. As sleep becomes more frequently measured by actigraphy, efforts to 

improve the use and applicability of these unique data will be important for understanding 

the dynamics of sleep in those with BD.

Supplementary Material
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Figure 1: 
Distribution of z-scores for both individual sleep statistics as well as composite in subjects 

with Bipolar Disorder (n=51)

Note: TST = total sleep time, WASO = wake after sleep onset, PS = percent sleep, NA = 

number of awakenings. WASO and NA are inverse coded.
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Table 1:

Relationships between z-scores for composite sleep measure and demographic and clinical variables in 

subjects with Bipolar Disorder (n=51)

N Composite r or t-score

Demographics

Age 50 r=−0.09

Education 50 r=0.01

Gender

 Female 31
t(49)=2.27*

 Male 20

Race/Ethnicity

 Caucasian 37
t(49)=−0.22

 Non-Caucasian 14

Marital Status

 Single/Divorced/Separated/Widowed 36
t(48)=1.12

 Married/Cohabitating 14

Employment

 Employed full- or part-time 15
t(34)=2.34*

 Unemployed 21

Clinical Characteristics

PHQ-9 Depression Scale 38 r=−0.19

Global Cognitive T-Score 36 r=−0.10

Working Memory T-Score 37 r=0.04

Body Mass Index 51 r=−0.10

Perceived Stress Scale Total Score 38 r=−0.14

Use of Alcohol (mean % of surveys) 51 r=−0.22

Use of Cannabis (mean % of surveys) 51 r=−0.06

PSQI Component 6: Sleep Medication 50 r=−0.11

Medication Load 49 r=0.41*

Age of Onset 41 r=0.21

Duration of Illness 41 r=−0.03

Young Mania Rating Scale 39 r=−0.35*

Hamilton Depression Rating Scale 39 r=0.10

Brief Psychiatric Rating Scale 39 r=−0.22

Current Global Assessment of Functioning Score 43 r=−0.08

Inflammatory Biomarkers (log transformed)

IL-6 51 r=−0.27

TNF-alpha 51 r=−0.18

CRP 51 r=−0.17
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Notes:

*
significant at p<0.05. Inflammatory biomarkers are log transformed. Pearson correlations are presented for continuous variables and t-scores for 

categorical variables. Positive t-scores indicate better sleep quality in the first category.
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