
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Revisiting Conventional Assumptions in Static and Dynamic Tensor Mining

Permalink
https://escholarship.org/uc/item/0pz1t281

Author
Pasricha, Ravdeep Singh

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/0pz1t281#supplemental

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, available at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pz1t281
https://escholarship.org/uc/item/0pz1t281#supplemental
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Revisiting Conventional Assumptions in Static and Dynamic Tensor Mining

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Ravdeep Singh Pasricha

September 2022

Dissertation Committee:

Dr. Evangelos E. Papalexakis, Chairperson
Dr. Eamonn Keogh
Dr. Michalis Faloutsos
Dr. Tamar Shinar

Copyright by
Ravdeep Singh Pasricha

2022

The Dissertation of Ravdeep Singh Pasricha is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost I would like to thank my advisor Dr. Evangelos (Vagelis) Papalexakis

for his support and guidance, without which this work wouldn’t have been possible. I would

also like to thank other members of the committee Dr. Michalis faloutsos, Dr. Tamar Shinar

and Dr. Eamonn Keogh for being part of my dissertation thesis committee and providing

valuable comments and suggestions on how to improve my work. I would also like to

thank Dr. Vassilis Tsotras, who provide valuable comments which sparked the inspiration

for greedy algorithm for adaptive granularity in tensors work. A huge thanks to all my

collaborators for their valuable insights and suggestions.

Next I would like to thank my friends who were always there for me and supported

me throughout my PhD journey. Thank you, Ishu Kataria, Payas Rajan, Abhishek Srivas-

tava, Jason Ott, Shelly Ott, Saheli Ghosh, Bashar Romanous, Ekta Gujral, Uday Saini,

Pravallika Devineni, Yorgos Tsitsikas, and Kiran Ranganath.

Finally I would like to thank my parents and family for their support and letting

me pursue my dreams.

iv

For my loving grandmother.

v

ABSTRACT OF THE DISSERTATION

Revisiting Conventional Assumptions in Static and Dynamic Tensor Mining

by

Ravdeep Singh Pasricha

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2022

Dr. Evangelos E. Papalexakis, Chairperson

Tensor methods have been used successfully in modeling multi-aspect data and finding use-

ful latent factors in various applications. These applications range from finding meaningful

communities in social networks, detecting fake news, brain data analysis (EEG) and count-

less other applications in various domains like Chemometrics, Psychometrics, and Signal

Processing.

Despite the success of tensor methods in a wide variety of problems, the application

of tensor methods typically entails a number of assumptions which, even though they may

pertain only to a limited set of applications or to certain algorithms, are so pervasive that

they are considered conventional. However, those assumptions may not be generalizable

and, in fact, may hurt performance of tensor methods broadly. The main motivation behind

this thesis is to revisit some of those conventional assumptions, propose methods to tackle

problems arising from relaxing those assumptions, and observing the subsequent advantages

of doing so.

vi

Below is the list of works covered in this thesis. Firstly, we focus on a domain

specific problem, in which we create a richer feature space for hyperspectral pixel classifica-

tions. The next three projects focus on time-evolving graphs, specifically how latent factors

evolve over time in streaming tensor decomposition and adaptive granularity in multi-aspect

temporal data.

• Feature Space Explosion: In this work, we used tensor factorization to generate

a richer feature space for pixel classification in hyperspectral images. We propose a

feature explosion technique which maps the input space to a higher dimensional space,

which is contrary to the typical low-rank factorization to a low-dimensional space. We

propose an algorithm called Orion, which exploits the multi-linear structure of the

3-D hyperspectral tensor using tensor decomposition and generates a space which

is more expressive than the original input space. Effectiveness of our method was

demonstrated against traditional linear and non-linear supervised learning methods

such as SVM with kernels, and the Multi-Layer Perceptron model.

• Concept Drift in Streaming Tensor Decomposition: Streaming tensor decom-

position is usually performed on incoming data in batches to find latent factors and

update the existing decomposition results. The number of latent factors are consid-

ered to be fixed over time, which is not the case in most scenarios. The number of

latent factors might change from batch to batch. For example in time-evolving social

graphs, communities don’t remain static; they evolve over time. Some communities

disappear and some new communities are formed. In this work and to the best of

our knowledge, we were the first to introduce the notion of latent concept drift in the

vii

context of streaming tensor decomposition and propose an algorithm called SeekAnd-

Destroy which detects concept drift, discovers new latent factors and updates the

existing decomposition result.

• Greedy Algorithm for Adaptive Granularity: Time evolving graphs are usually

modelled as tensors where each time unit is represented as an adjacency matrix and

then whole data over a certain time interval can be modelled as a 3-D tensor. In such

scenarios, granularity of collected data can decide on the utility of tensor decompo-

sition algorithms. If data is collected at very frequent intervals, the resulting tensor

might be extremely sparse and hence not amenable to tensor decompositions. Usually

practitioners combine data points to form fixed time-intervals. For instance, an ap-

plication may combine milliseconds to form seconds, or seconds to form a minute etc.

But there might exist a natural aggregation which can provide important insights in

the form of latent factors. In this work, we introduce the problem of temporal aggre-

gation in tensors called Trapped Under Ice and we provide a greedy solution called

IceBreaker, which locally maximizes some quality function and finds a tensor with

meaningful structure.

• Factorization-based Granularity Estimation: Lastly we introduce a method

called Harvester, in which the problem of aforementioned Adaptive Granularity

is framed in terms of a factorization-based optimization problem. To the best of

our knowledge, Harvester is the first principled factorization-based approach which

seeks to identify the best temporal granularity of a given tensor. Unlike IceBreaker

which follows a greedy approach, Harvester leverages multiple aggregated views of

viii

the tensor, and a carefully-designed optimization problem, in order to uncover the best

reasonable aggregation. We extensively evaluated Harvester on synthetic, semi-

synthetic and real datasets, and demonstrated that it consistently produces tensors

of very high quality.

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Thesis Organization . 4

2 Preliminaries 5
2.1 Preliminary Definitions . 5

3 Tensorized Feature Spaces for Feature Explosion 11
3.1 Introduction . 11
3.2 Problem Definition . 13
3.3 Algorithm . 14

3.3.1 The Orion algorithm . 14
3.3.2 Intuition Behind Orion . 16

3.4 Experimental Evaluation . 16
3.4.1 Datasets . 17
3.4.2 Baseline Methods . 18
3.4.3 Results . 20
3.4.4 Discussion about Salinas-A and Salinas 22

3.5 Related Work . 23
3.6 Contributions . 23

4 Concept Drift in Streaming Tensor Decomposition 29
4.1 Introduction . 29
4.2 Problem Formulation . 30
4.3 Method . 36
4.4 Experimental Evaluation . 43

4.4.1 Experimental Setup . 43
4.4.2 Evaluation Metrics . 45
4.4.3 Baselines for Comparison . 45

x

4.4.4 Q1: Approximation Quality . 45
4.4.5 Q2: Concept Drift Detection Accuracy 46
4.4.6 Q3: Sensitivity Analysis . 47
4.4.7 Q4: Effectiveness on Real Data . 47

4.5 Related Work . 48
4.6 Contributions . 49

5 Adaptive Granularity in Tensors: Problem Formulation and a Greedy
Algorithm 55
5.1 Introduction . 56
5.2 Problem Formulation . 58

5.2.1 Tensor decomposition quality . 58
5.2.2 The Trapped Under Ice problem . 59
5.2.3 Solving Trapped Under Ice optimally is hard 61

5.3 Algorithms . 63
5.3.1 The IceBreaker algorithm . 63
5.3.2 Utility functions . 64
5.3.3 The IceBreaker++ algorithm . 66

5.4 Experimental Evaluation . 66
5.4.1 Evaluation measures . 67
5.4.2 Baseline methods . 68
5.4.3 Performance for synthetic data . 68
5.4.4 Performance for semi-synthetic data 71
5.4.5 Data mining case study . 73

5.5 Related Work . 79
5.6 Contributions . 79

6 Harvester: Principled Factorization-based Tensor Temporal Granularity
Estimation 84
6.1 Introduction . 85
6.2 Problem Formulation . 87

6.2.1 Measures of low rank tensor decomposition quality 87
6.2.2 Problem Definition . 88

6.3 Proposed Method . 90
6.3.1 Proposed method: Harvester . 93

6.4 Experimental Evaluation . 100
6.4.1 Evaluation Metrics and Baseline . 101
6.4.2 Performance on synthetic datasets 103
6.4.3 Performance on semi-synthetic data 107
6.4.4 Ablation and Sensitivity Analysis . 109
6.4.5 Scalability Analysis . 114
6.4.6 Real-world case study: Foursquare Dataset 117

6.5 Related Work . 122
6.6 Contributions . 123

xi

7 Conclusion 127
7.1 Summary . 127
7.2 Future Work . 129

Bibliography 130

xii

List of Figures

2.1 3-mode rank-1 tensor . 7
2.2 CP Decomposition of 3-mode tensor . 9

3.1 Ground truth of Salinas and Salinas-A HSI datasets. 18
3.2 Mean accuracy vs. Rank of the tensor observed over 10 runs. As rank

increases, the classification accuracy increases and stabilizes after a certain
point. 22

4.1 Complete overlap of concepts . 32
4.2 Concept appears . 33
4.3 Concept disappears . 34
4.4 Problem formulation . 50
4.5 SeekAndDestroy is able to successfully detect concept drift, which is man-

ifested as changes in the rank throughout the stream 52
4.6 Timeline of concepts discovered in Enron 54

5.1 Starting from raw CSV files, IceBreaker++ discovers a tensor that has
good structure (under various measures of quality, including interpretability
and predictive quality), outperforming traditional fixed aggregation heuris-
tics. Furthermore, IceBreaker++ using various notions of locally optimal
structure, discovers different resolutions in the data. 57

5.2 Creating Synthetic Data . 70
5.3 CP fit and Corcondia of best fit tensor & its absolute change at each iteration

for SD1. 71
5.4 CP fit and CORCONDIA of best fit tensor & its absolute change at each

iteration for SD2. 72
5.5 CP fit and CORCONDIA of best fit tensor & its absolute change at each

iteration for Enron Weekly. 73
5.6 CP fit and CORCONDIA of best fit tensor & its absolute change at each

iteration for Enron Daily. 74
5.7 CP fit and CORCONDIA of best fit tensor & its absolute change at each

iteration for Enron Hourly. 75

xiii

5.8 CP fit and CORCONDIA of best fit tensor & its absolute change at each
iteration for Chicago Crime Dataset. 76

5.9 Analyzing the Chicago data from Iteration-2 (X1) 76
5.10 Analyzing the Chicago data from Iteration-3 (X2). Chicago heatmap value

ranges from 0.0 to 1.0 . 77
5.11 Analyzing the Chicago data from Iteration-4 (X3). Chicago heatmap value

ranges from 0.0 to 1.0 . 78

6.1 Total Loss vs. Sparseness Count of diagonal of Λ matrix for various hyper-
parameter settings. 101

6.2 SD2: Different Loss vs. iterations of the algorithm for a particular set of
hyperparameter values . 105

6.3 SD4: CP FIT vs. CORCONDIA . 108
6.4 SD4: CP FIT vs. (1/RMSE) . 109
6.5 Enron: CP FIT vs. CORCONDIA . 110
6.6 Enron: CP FIT vs (1/RMSE) . 111
6.7 Harvester: MultiView CORCONDIA . 112
6.8 Harvester: MultiView Fit . 113
6.9 Harvester: MultiView RMSE . 114
6.10 Harvester: MultiView CORCONDIA . 115
6.11 Harvester Rank Sensitivity CORCONDIA on dataset: 100× 100× 10 rank 10116
6.12 Harvester Rank Sensitivity Fit on dataset: 100× 100× 10 rank 10 117
6.13 Harvester Rank Sensitivity RMSE on dataset: 100× 100× 10 rank 10 . . . 118
6.14 Harvester Scalability analysis . 119
6.15 Harvester vs IceBreaker++ scalability analysis 120
6.16 Harvester rank scalability analysis . 121
6.17 Foursquare: Fit vs. CORCONDIA . 121
6.18 Foursquare: Fit vs. 1/RMSE . 122
6.19 Foursquare: Word Cloud of Top 50 venue categories and Temporal Activity.

Latent factor seems to correspond to venue category: Bar 123
6.20 Foursquare: Word Cloud of Top 50 venues and Temporal Activity - Latent

factor seems to correspond to venue category: Restaurant 124
6.21 Foursquare: Word Cloud of Top 50 venues and Temporal Activity - Latent

factor seems to correspond to venue category: Park and Outdoor 125
6.22 Foursquare: Word Cloud of Top 50 venues and Temporal Activity - Latent

factor seems to correspond to venue category: Coffee Shop 126

xiv

List of Tables

2.1 Symbols and their description . 6

3.1 Classification accuracy of all the methods for 80-20 split 25
3.2 Classification accuracy of all the methods for 30-70 split 26
3.3 Mean F1-Score of all the methods for 80-20 split over 10 runs 27
3.4 Mean F1-Score of all the methods for 30-70 split over 10 runs 28

4.1 Table of Datasets analyzed . 44
4.2 Approximation error for SeekAndDestroy and the baselines. SeekAnd-

Destroy outperforms the baselines in the realistic case where all methods
start with the same rank . 51

4.3 Experimental results for error of approximation of incoming batch with dif-
ferent matching threshold values. Dataset SDS2 and SDS4 are of dimension
R100×100×100 and R300×300×300 , respectively. We see that the threshold is
fairly robust around 0.5, and a threshold of 0.8 achieves the highest accuracy. 53

4.4 Experimental results on SDS1 for error of approximation of incoming slices
with known and predicted rank. 53

4.5 Evaluation on Real dataset . 53

5.1 Table of Synthetic Datasets analyzed . 69
5.2 Table of Semi-synthetic Datasets analyzed 69
5.3 Entropy of top-3 components in factors for area and crime type 83

6.1 Table of Synthetic Datasets analyzed . 104
6.2 Table showing how many times each method was on the Pareto Boundary

using CORCONDIA, Relative CP fit and RMSE for tensor completion. . . 107

xv

Chapter 1

Introduction

Many real world applications deal with data that are multi-dimensional in nature.

An example of multi-dimensional data can be interactions between different users in a

social network over a period of time. Interactions such as “who messages whom”, “who

liked whose posts” or “who shared (re-tweeted) whose posts”. This can be modeled as a

three-mode tensor. Tensors and tensor decomposition algorithms has been successfully used

in various applications like social networks [66, 63, 9], detecting misinformation [33], neuron

activity analysis [88], chemometrics [7, 6, 20], signal processing [60, 80], health care [91, 39]

recommendation system [68], EEG data [58] and many more to extract meaningful latent

factors.

Tensor decomposition is an important tool in the unsupervised learning toolbox

[44, 65, 79, 26]. The focus of thesis is to revisit and re-examine some of the conventional

assumptions in the literature. These assumptions are not always generalizable, even though

they might provide great results for certain applications in a domain. In particular, we use

1

the following three problems as vehicles for understanding the limitations of conventional

assumptions and providing alternative solutions: (a) Hyperspectral pixel classification, (b)

Streaming tensor decomposition, and (c) Adaptive granualrity in tensors

Hyperspectral pixel classification The first problem we tackle in this thesis is hyper-

spectral pixel classification, where the image of an object is captured in hundreds of spectral

bands. In particular we focus on hyperpspectral images of a land area. These images in

multiple spectral band can be modelled as 3-D tensor. We developed a novel framework

that uses tensor factorization to generate richer feature spaces for pixel classification in

hyperspectral images. We proposed the Orion algorithm [73] which takes as input a hy-

perspectral image tensor and a rank, and outputs an enhanced feature space from the factor

matrices of the decomposed tensor exploiting the multi-linear structure of the tensor. Our

method is a feature explosion technique that maps low dimensional input space in RK to

high dimensional space in RR, where R≫ K, like a kernel, which is contrary to dimensional

reduction techniques like low rank factorization.

Streaming tensor decomposition The second problem we tackle in thesis is that of

streaming tensor decomposition. Many real-world applications are dynamic in nature. To

deal with this dynamic nature of data, there exist a variety of online tensor decomposi-

tion algorithms. A central assumption in all such algorithms is that the number of latent

concepts remains fixed throughout the entire stream. However, this need not be the case.

Every incoming batch in the stream may have a different number of latent concepts, and the

difference in latent concepts from one tensor batch to another can provide insights into how

a particular application behaves and deviates over time. In this work, we define “concept”

2

and “concept drift” in the context of streaming tensor decomposition as the manifesta-

tion of the variability of latent concepts throughout the stream. Furthermore, we introduce

SeekAndDestroy [71] an algorithm that detects concept drift in streaming tensor decom-

position and is able to produce results robust to that drift. To the best of our knowledge,

this is the first work that investigates concept drift in streaming tensor decomposition.

Adaptive granualrity in tensors The third problem we tackle in this thesis is that of

adaptive granularity in the temporal mode of tensor. We introduce the problem of finding a

tensor of adaptive aggregated granularity that can be decomposed to reveal meaningful latent

concepts from datasets that, in their original form, are not amenable to tensor analysis.

Such datasets fall under the broad category of sparse point processes that evolve over space

and/or time. We call this problem Trapped Under Ice. We provide two solutions to this

problem.

(a) Greedy Algorithm for Adaptive Granularity: To the best of our knowledge, this is the

first work that explores adaptive granularity aggregation in tensors. We developed an

efficient and effective greedy algorithm called IceBreaker [72] which follows a num-

ber of intuitive decision criteria that locally maximize the “goodness of structure”,

resulting in high-quality tensors, hence making datasets amenable to tensor analy-

sis. We also developed an recursive algorithm IceBreaker++ which takes output of

IceBreaker as input, until the temporal dimension is only a single slice (a matrix)

or stopping condition is met. Hence providing multiple tensors of different resolution

which can provide useful insights into the data.

3

(b) Factorization-Based Granularity Estimation: In this work we provide a new frame-

work to solve the Trapped Under Ice problem. We introduced an factorization based

approach called Harvester which take multiple aggregated views of the tensor as

input and uses those aggregated views to solve an optimization based problem to find

a tensor of “good” aggregation which is further more aggregated then the views used.

Hence providing an tensor of resolution which better latent factors then the original

tensor and the views.

1.1 Thesis Organization

The rest of the thesis is organized as follows. We introduce some of the preliminary

definitions on tensors and tensor decomposition required for the thesis in Chapter 2. In

Chapter 3, we present our work on Tensorized Feature Spaces for Hyperspectral Pixel

Classification. Our work on detecting and alleviating concept drift in streaming tensor

decomposition is discussed in Chapter 4. In Chapter 5, we present our work on greed

algorithm for adaptive granularity in tensors. In Chapter 6, we present the factorization-

based solution to adaptive granularity in tensor problem. Finally, we conclude the thesis in

Chapter 7.

4

Chapter 2

Preliminaries

In this chapter, we present some of the preliminary definitions and concepts which

are used in this thesis. These definitions are required to define various problems and their

solutions in upcoming chapters in the thesis. Table 2.1 describes the symbols used and their

descriptions.

2.1 Preliminary Definitions

Tensor: Tensors are multi-dimensional arrays and are used to model multi-aspect

data. Each dimension of a tensor is called a mode. For example, a 1-mode tensor is a vector,

and a 2-mode tensor is a matrix. A 3-mode tensor is represented by X, where X ∈ RI×J×K .

Fibers: The row and column vectors are fibers in a matrix. Given an n-mode

tensor, we obtain fibers by fixing the n − 1 indices. For example, in a 3-mode tensor X

with indices I, J,K, X(:, J,K),X(I, :,K) and X(I, J, :) are considered mode-1, mode-2 and

mode-3 fibers respectively.

5

Table 2.1: Symbols and their description

Symbols Description

X,X,x, x Tensor, matrix, column vector, scalar

R Set of Real Numbers

◦ Outer product

X(I, J, :) Spanning all elements in the 3rd-mode of X

⊗ Kronecker product

⊙ Khatri-Rao product
⃝∗ Element wise product

∥A∥F , ∥a∥2 Frobenius norm, ℓ2 norm

X(:, r) rth column of X

Tensor Slice: A tensor slice for a 3-mode tensor X ∈ RI×J×K is derived by fixing

indices in one mode and varying indices for two other mode. The different various type of

slices one can have for 3-tensor are horizontal X(I,:,:) , lateral X(:,J,:), and frontal X(:,:,K)

slices.

Tensor Batch: A batch is a (N-1)-mode partition of tensor X ∈ RI×J×K where

size is varied only in one mode and other modes remain unchanged. Here, tensor Xnew is

of dimension RI×J×tnew and existing tensor Xold is of dimension RI×J×told . The full tensor

X = [Xold;Xnew] where its temporal mode K = told + tnew.

Outer Product: The outer product of two vectors a and b of dimension of I × 1

and J × 1 respectively is given by:

a ◦ b = abT

The resulting abT is a matrix of size I × J . This definition can be extended to n number

of vectors to generalize for n-way outer product.

Kronecker Product: The Kronecker product of two matrices A ∈ RI×J and

B ∈ RM×N is given by A⊗B ∈ RIM×JN

6

A⊗B =



a11B a12B . . . a1JB

a21B a22B . . . a2JB

...
...

. . .

aI1B aI2B . . . aIJB


where aij refers to elements in matrix A.

Khatri-Rao Product: Khatri-Rao product of two matrices A ∈ RI×R and B ∈

RJ×R is the column-wise Kronecker product given by A⊙B ∈ RIJ×R.

A⊙B = [a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR]

where [a1,a2 . . . ,aR] and [b1,b2 . . . ,bR] are columns of A and B respectively.

Rank-1 Tensor: A tensor is a rank-1 tensor if it can represented as an n-way

outer product of vectors. Figure 2.1 shows a rank-1 tensor for a 3-mode tensor which can

be represented as an outer product of three vectors as a1 ◦ b1 ◦ c1

Figure 2.1: 3-mode rank-1 tensor

7

Low Rank of a Tensor: The rank(X) is the minimum number of rank-1 tensors

computed from its latent components which are required to re-produce X as their sum.

Computing the actual rank of a tensor is a hard problem [36, 38].

Matricization: A tensor can be unfolded or flattened into one of its modes to

form a matrix. For example, a 3-mode tensor X ∈ RI×J×K can be matricized in three

ways: X1 ∈ RI×JK , X2 ∈ RJ×IK and X3 ∈ RK×IJ , where Xn represents matricization in

nth-mode.

The n-Mode product: The n-mode product of a tensor [65, 44]X ∈ RI1×I2×...×Im

and matrix W ∈ RIn×K(predicated on matching dimensions in the n-th mode of the tensor

and the rows of the matrix) is given as

Y = X×n W

where, in the general case:

Y(i1, i2 . . . , in−1, k, in+1, . . . , im) =

In∑
j=1

X(i1, . . . , in−1, j, in+1, . . . , im)W(j, k)

and tensor Y ∈ RI1×...In−1×K×In+1...×Im

For instance, a tensor of size I × J ×K where n = 3 and W of size K ×K∗, the

product X×n W multiplies all third mode slices of X with W and results in a I × J ×K∗

tensor.

Canonical Polyadic Decomposition: The most popular and extensively used

tensor decompositions is the Canonical Polyadic or CANDECOMP/PARAFAC decompo-

8

sition, [24, 35] referred to as CP decomposition henceforth. The CP decomposition of a

3-mode tensor X ∈ RI×J×K for a particular rank R is given by sum of R rank-one tensors:

X ≈
R∑

r=1

A(:, r) ◦B(:, r) ◦C(:, r)

where A, B, and C are factor matrices of size I × R, J × R and K × R respectively and

◦ represents the three way outer product. The above definition of the CP decomposition is

usually interpreted as sum of R rank-1 tensor. In case of an n-mode tensor, it represents

an n-way outer product. Figure 2.2 shows a CP decompoition of three mode tensor X as

sum of R rank-1 tensors.

Figure 2.2: CP Decomposition of 3-mode tensor

CP decomposition is essentially unique under mild conditions – which is much

different from matrix rank decomposition [78]. For fitting the decomposition, in this thesis

we adopt existing work that uses least squares approximation, which is by far the most

popular approach [79, 44, 65], and is minimizing the loss L ≈ min 1
2 ||X − A(C ⊙ B)T ||2F

where ||X||2F is the sum of squares of its all elements and ||.||F is Frobenius (norm).

9

Tucker Decomposition [85] of a tensor X ∈ RI×J×K with multi-linear rank

R1, R2, R3 is given by

X ≈
R1∑
p=1

R2∑
q=1

R3∑
r=1

gpqrap ◦ bq ◦ cr = JG; A, B, CK

where G ∈ RR1×R2×R3 is the so-called core tensor that captures the interactions between

the different latent factors of A ∈ RI×R1 , B ∈ RJ×R2 and C ∈ RK×R3 . A,B,C are usually

taken to be orthonormal. [44]

Tensor Completion: Tensor completion is the task of predicting missing values

in a tensor using tensor factorization. Tensor factorization strives to capture the underlying

hidden structure even with the case of missing values [3, 53].

We refer interested reader to [44, 65, 79], which present detailed surveys on tensors,

tensor decompositions and their applications. This work uses MATLAB format of matrix

and vector indexing, for instance, A(i, :) spans the i-th row of matrix A whereas A(:, j)

spans the j-th column, and so on.

10

Chapter 3

Tensorized Feature Spaces for

Feature Explosion

This chapter is based on material published in [73].

Conventional Assumption Revisited:

High-rank tensor decompositions are typically not desirable.

Contribution:

High-rank decomposition, exploiting uniqueness properties of tensor decomposition,

can provide a more expressive feature space.

3.1 Introduction

Hyperspectral imaging techniques capture images of objects or materials with hun-

dreds of spectral bands at each pixel [30]. A particularly important use of these techniques

is in capturing images of land area on the earth’s surface from above using an aircraft or a

11

satellite fitted with sensors. Since objects under observation reflect different wavelengths of

the spectral band, each pixel has a large number of features corresponding to the spectral

bands. These features have most popularly been used to accomplish two tasks – identify

the class of each given pixel, a classification task [23, 25, 55] or, see what that pixel is

made of, an unmixing task [43, 18]. Bioucas et al. [17] present a survey of problems often

encountered in analyzing hyperspectral remote sensing data. In this work, we focus on the

pixel classification task, where labelled data for some of the pixels is available.

Hyperspectral images (HSI) can be considered as a set of images stacked together

like a 3D cube. For hyperspectral images with high spatial resolution, the pixel classification

task assumes that each pixel is ‘pure’, i.e. it corresponds to a single class. In contrast with

the classification task, the unmixing task assumes that each pixel may be composed of

multiple materials or ‘endmembers’ [17]. The main challenges involved in hyperspectral

pixel classification are the large number of spectral bands, leading to high dimensionality

and the limited availability of labelled data. Previous work considered the feature space

generated using kernel functions for HSI classification [23, 22, 25]. These works treat data

as a matrix where each row is a pixel in multi-spectral bands. However, there are three

challenges in these kernel spaces (a) choice of kernel and its parameters. For example,

tuning the parameter γ in Radial Basis Function (RBF) kernel is non-trivial and impacts

the performance of the classifier, (b) the number of features generated by the kernel methods

is dependent on the number of pixels, i.e. the kernel function K(X,X) → F takes the k

spectral bands for xy pixels as X ∈ Rxy×k will yield a feature matrix F ∈ Rxy×xy, and (c)

12

these kernel spaces assume that the pixels are independent and identically distributed (IID)

samples and ignore the spatial correlation that exists between the pixels.

In this work we address these challenges by exploring a new feature explosion

method called Orion that uses tensor completion to generate a richer feature space by

exploiting the multi-dimensional nature of data. Orion allows relaxing the dimension of

the obtained feature space F ∈ Rxy×R instead of fixed dimension xy from kernel methods.

While we demonstrate the usefulness of Orion for HSI classification, we would like to

emphasize that it can be applied to a broader range of problems.

3.2 Problem Definition

This work explores a new feature space using tensor completion and to show its

effectiveness, we apply it to hyperspectral pixel classification. Previous literature related to

HSI employed methods like feature reduction and kernel methods [22, 25]. In our work, we

exploit the multi-linear structure of the hyperspectral image tensor using tensor decompo-

sition to generate a richer space, where the pixels are linearly separable.

More formally we define our problem as follows:

Given a three dimensional hyperspectral image tensor X ∈ RI×J×K , a label matrix

Y ∈ RI×J and rank R, generate a feature space for a classifier such that pixels in the

images are classified into one of the given classes.

13

3.3 Algorithm

In this section, we introduce our method Orion and present the intuition behind

it. Orion takes as input a three dimensional tensor X and a tensor rank R and generates

a feature space using tensor factorization. The general idea behind the proposed method

lies in mapping the input data to some high dimensional space corresponding to the rank

decomposition of the tensor.

3.3.1 The Orion algorithm

Algorithm 1 presents the steps involved inOrion, applied to the hyperspectal pixel

classification problem. Consider a 3-mode tensor X ∈ RI×J×K , where I and J represent

the resolution of the image and K represents the number of spectral bands. For a given

test size, we select pixels with non-zero classes using stratified sampling as specified in line

2 of the algorithm 1. We do this in order to ensure that the training and testing data has

the same percentage of representation from each class. We mark all spectral values of test

pixels as zero, i.e. all the third mode fibers of the test data points are marked as zero,

treating the problem of filling missing values as a tensor completion task. We employ the

tensor completion algorithm CP-WOPT (Weighted Optimization) [3], implemented in [12]

to predict the missing values. This produces three factor matrices A, B and C. The first

two matrices A and B correspond to the two modes of the image are used to generate a

new feature space.

data = A⊙B

14

where ⊙ represents Khatri-Rao product. To scale up the values, we multiply data

with diagonalized λ matrix as shown in line 6 in algorithm 1. We use initial training and

testing indices to generate training and testing data respectively, removing all the data

points with class value as 0. Using the newly created feature space, we now train a linear

Support Vector Machine (SVM) with 5-fold cross validation.

Algorithm 1 Orion

Input: A 3-mode tensor X, a label matrix Y, rank r and testSize

Output: A vector of predicted classes

1: Extract pixel indices [I, J] of all the non-zero classes.

2: Split [I, J] into training and testing data in a stratified fashion.

3: Create tensor P of ones with same dimensions as X

4: P [testI, testJ, :] = 0

{% Tensor completion problem}

5: A,B,C,λ = CP WOPT (X,P, Rank) [3]

6: data = (A⊙B) ∗ diag(λ)

7: Using indices in Step 2, split data into training and testing data

8: Train a linear SVM using training data with 5-fold cross validation

9: Run the model against testing data

10: return model predictions

15

3.3.2 Intuition Behind Orion

The idea behind Orion is to map the input space to higher dimensional space by

exploiting multi-linear structure of the tensor. Consider a 3-mode tensor, X ∈ RI×J×K .

The CP decomposition with rank R of X yields three factor matrices A, B and C of size

I×R, J×R & K×R respectively. The Khatri-Rao product of matrices A and B generates

the new data space in RIJ×R. Whereas unfolding of tensor X in third mode would generate

data space in RIJ×K . Since K ≪ IJ , the matrix rank is bounded by K. However, the

upper bound on tensor rank for which CP can still uniquely identify the components within

the tensor is min (IJ, JK,KI) [79, 78], which is considerably larger. Thus, by using a large-

enough rank, by virtue of CP’s uniqueness [79, 78], we are able to extract a feature space

that is more expressive than simple unfolding of the features (or any spectral method in

that unfolded matrix).

3.4 Experimental Evaluation

In this section, we describe our experimental setup and present our results. We use

Tensor Toolbox [12] in Matlab for our tensor completion task, CP-WOPT [3] is implemented

in this toolbox. For classification algorithms we use Python Scikit-Learn [74] and tensorly

[47] for tensor operations. In the interest of reproducibility, the implementation of our

algorithm and baselines used is publicly available1.

1https://github.com/ravdeep003/ORION

16

https://github.com/ravdeep003/ORION

3.4.1 Datasets

To evaluate our method, we use the following publicly available datasets [28].

• Indian Pines: This dataset was acquired using the AVIRIS2 sensor [14] and consists

of 145 × 145 pixels and 200 spectral bands. This dataset consist of 10249 labelled

pixels spanning over 16. There is high class imbalance in this dataset.

• University of Pavia: This dataset was collected using ROSIS sensor over Pavia

in Northern Italy. The original image resolution of the dataset is 610 × 610 but

most of the image didn’t contain any information so the image resolution is reduced

to 610 × 340 over 103 spectral bands. This dataset consist of 42776 labelled pixels

spanning over 9 classes

• Salinas: This dataset was gathered using AVIRIS sensor over Salinas Valley, Cali-

fornia. The dataset consists is of 512× 217 resolution over 204 spectral bands. It has

54219 non-zero pixels, labelled with 16 classes. Figure 3.1(a) shows the ground truth

of Salinas dataset.

• Salinas-A: This dataset represents a subscene in the Salinas dataset. It consists of

86×83 pixels and 6 classes. Number of nonzero pixels in this dataset are 5348. Figure

3.1(b) presents the ground truth of Salinas-A dataset.

2https://aviris.jpl.nasa.gov/

17

https://aviris.jpl.nasa.gov/

(a) Salinas Full. (b) Salinas Subscene.

Figure 3.1: Ground truth of Salinas and Salinas-A HSI datasets.

3.4.2 Baseline Methods

We evaluate our proposed method Orion against traditional linear and non-linear

methods like the Kernel SVM and Multi-Layer Perceptron, and employ grid search to tune

the hyperparameters in these methods.

Support Vector Machines (SVMs)

Support vector machines (SVMs) [27] are supervised learning methods that are

powerful classifiers, specially when combined with kernels. SVMs discriminate between

18

between data points by finding a hyperplane which maximizes the margin. Given a dataset

(xi, yi), where xi are data points and yi are labels,

min
w,b,ξ

1

2
wTw+ C

∑
i

ξi (3.1)

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi and ξi ≥ 0 for all i = 1 . . . n

where w is a normal to the hyperplane separating the data points, C is a penalty

term for misclassification, ξ is slack variables, ϕ is mapping from input space to kernel space

and b is the bias or the offset for the hyperplane. Equation 3.1 is the primal form and it

has dual form:

min
α1,...αn

1

2

∑
i,j

αiαjyiyjKij −
n∑
i

αi (3.2)

such that 0 ≤ αi ≤ C and
∑n

i αiyi = 0

where αi are Lagrange multipliers and Kij is inner product of data points in kernel

space. We use the following kernels in our experiments:

• Linear Kernel: We tune the parameter C in the objective function. We do a grid

search from 10−3 to 103 in multiples of 10.

K(xi, xj) = xi
Txj

• Polynomial Kernel: We tune the parameters C and degree of the polynomial. C is

tuned in the range 10−3 to 103 and degree is tuned in the range from 2 to 5. We

perform a grid search to tune these parameters.

K(xi, xj) = (xi
Txj + 1)d

where d is the degree of the polynomial.

19

• RBF Kernel: We tune the parameters C and γ. C is tuned from the same range as

before and γ is tuned from 10−3 to 10 in multiples of 10.

K(xi, xj) = exp (−γ||xi − xj ||2)

Multi-Layer Perceptron (MLP)

We use a Multi Layer Perceptron model (also known as artificial neural network)

as one of our baselines. Various parameters involved in training the model were tuned using

grid search. These parameters include hidden layer sizes [(50, 100, 50), (100, 100, 100), (150, 100, 150)],

alpha - L2 regularization term [10−4, 10−3, 10−2], initial learning rate [10−4, 10−3, 10−2] and

learning rate (constant or adaptive). We used ReLu (rectified linear unit) activation func-

tion, Adam optimization solver, and an iteration count of 500.

All of the models were trained with 5-fold cross validation on training data and

using weighted F1 as scoring function for 10 different runs. We chose the weighted F1 as our

scoring function since the datasets are multi-class and have imbalanced classes. To evaluate

the performance of different models, we use overall accuracy and F1 score of the classifier

against test data. We also employ one against one scheme for multi-class classifiers.

3.4.3 Results

We performed an 80 − 20 stratified split on the datasets, where 80% of the data

was used for training and the rest 20% for testing, and ran experiments using Orion and

baseline methods. Table 3.1 presents the results of that experiment. In case of Indian Pines

20

and Salinas, we see that Orion with rank 1000 and 2000 performs better than the baselines.

In case of University of Pavia, Orion with 2000 rank performs better than all baselines,

with the Multi-Layer Perceptron being a close second. We discuss the results of Salinas-A

in subsection 3.4.4.

One of the challenges in HSI classification is that the amount of labelled data

available is limited. To demonstrate this, we run all experiments using 30-70 stratified split,

where 30% is training data and 70% is testing data. For the most part, our results remain

similar as shown in table 3.2. For Indian Pines and Salinas datasets, Orion with 1000 and

2000 rank provides better overall classification accuracy. In case of University of Pavia, two

best performing methods are SVM with RBF kernel and MLP, but Orion with rank 2000

performs at par with the baseline and has similar classification accuracy. This depicts that

Orion is effective even with limited labelled data. For both of the scenarios (80-20 and

30-70 split), tables 3.3 and 3.4 report mean F1 scores of our method and baselines. They

follow the same trend as the overall accuracy.

We explore the effect of rank on the overall accuracy for Indian Pines and Salinas-

A datasets. Figure 3.2 shows the plot of mean accuracy vs. rank for Indian Pines dataset.

We observed that as the rank increases, classification accuracy improves as well until a

certain point, where the change in rank does not provide any significant improvements and

the accuracy stabilizes.

21

0 250 500 750 1000 1250 1500 1750 2000

Ranks
0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

50

100

200
300 500 1000 2000

IndianPines: Mean accuracy over 10 runs vs Rank

RBF-SVM
Linear-SVM
Matrix Rank-Upper Bound

Figure 3.2: Mean accuracy vs. Rank of the tensor observed over 10 runs. As rank increases,
the classification accuracy increases and stabilizes after a certain point.

3.4.4 Discussion about Salinas-A and Salinas

The Salinas-A (Figure 3.1(b)) dataset has 5348 labelled pixels with 6 classes, and

is a subscene of the full Salinas (Figure 3.1)(a) dataset which has 54129 labelled pixels

and 16 classes. For Salinas-A, all baselines outperform Orion with rank 1000 and 2000,

however, in the case of Salinas, Orion with same ranks outperforms all the baselines. This

trend is similar in both 80-20 and 30-70 splits. Upon visual inspection, Salinas-A appears

linearly separable whereas Salinas is not. We conjecture that Salinas appears to have more

concrete and uniform blocks, potentially better trilinear structure that is exploited via CP

decomposition. Judging the trilinearity of a dataset is a difficult problem and while there

exist heuristics for this [21], we reserve further investigation for our future work.

22

3.5 Related Work

Hyperspectral image classification takes as input a set of observations and assigns

a unique label to each pixel [18]. Supervised linear methods in HSI classification are prone

to the curse of dimensionality due to the lack of large number of training samples [40].

Support vector machines (SVM) have been employed to deal with this phenomenon [22].

SVMs allow classification of data points in a higher dimensional space using a nonlinear

transformation.

Tensor methods like CP decomposition [55, 42] have been used to represent high-

order feature data in low-dimensional space with good accuracy. [56] presented a deep

learning-based classification method that hierarchically constructs high-level features au-

tomatically. In particular, their model exploits a convolutional neural network (CNN) to

encode the spectral and spatial information of pixels and a multilayer perceptron to con-

duct the classification task. [59] use recurrent neural network (RNN) to characterize the

sequential property of a hyperspectral pixel vector for the classification task. Our proposed

method Orion employs factors obtained from tensor factorization to generate a feature

space that maps the given feature space to a higher-dimensional space in order to improve

classification accuracy.

3.6 Contributions

Our contributions in this work are as follows:

• Tensorized Feature Space: We introduce a new feature space based on factors

generated using tensor factorization. This works better or on par with traditional

23

state-of-the-art classification methods. To the best of our knowledge, this is the first

work that presents a formal study of feature space explosion with defined number of

features R, unlike kernel methods that fix the length of the dimension for the number

of available samples.

• Experimental Evaluation: We demonstrate the effectiveness of our proposed method

Orion by evaluating it on publicly available hyperspectral datasets and compare it

against traditional state-of-the-art baselines, linear and nonlinear supervised learning

methods like Linear, Polynomial and RBF Support Vector Machines, and Multi-Layer

Perceptrons.

24

In
d
ia
n
P
in
es

P
av
ia

U
n
iv
er
si
ty

S
al
in
as
-A

S
al
in
as

L
in
ea
r
S
V
M

0.
87

0
8±

0.
00

35
0.
91

76
±

0.
00

17
0
.9
9
8
6
±

0
.0
0
1
6

0.
93

39
±

0.
00

14

P
ol
y
n
o
m
ia
l
S
V
M

0.
89

7
9±

0.
00

54
0.
94

81
±

0.
00

15
0.
99

78
±

0.
00

15
0.
94

63
±

0.
00

14

R
B
F
S
V
M

0.
91

7
8±

0.
00

50
0.
96

22
±

0.
00

20
0
.9
9
8
5
±

0
.0
0
1
7

0.
96

20
±

0.
00

24

M
L
P

0.
91

8
2±

0.
00

57
0
.9
6
3
5
±

0
.0
0
4
1

0.
99

82
±

0.
00

10
0.
96

29
±

0.
00

45

O
r
io
n
-1
0
0
0

0
.9
9
1
6
±

0
.0
0
2
2

0.
95

02
±

0.
00

32
0.
96

90
±

0.
00

67
0
.9
9
2
7
±

0
.0
0
1
0

O
r
io
n
-2
0
0
0

0
.9
9
4
9
±

0
.0
0
2
2

0
.9
8
2
8
±

0
.0
0
3
0

0.
96

80
±

0.
00

63
0
.9
9
5
4
±

0
.0
0
0
6

T
a
b
le

3.
1:

C
la
ss
ifi
ca
ti
on

ac
cu

ra
cy

of
al
l
th
e
m
et
h
o
d
s
fo
r
80

-2
0
sp
li
t

25

In
d
ia
n
P
in
es

P
av
ia

U
n
iv
er
si
ty

S
al
in
as
-A

S
al
in
as

L
in
ea
r
S
V
M

0.
83

7
1
±

0.
00

34
0.
91

34
±

0.
00

15
0
.9
9
6
5
±

0
.0
0
1
0

0.
93

22
±

0.
00

07

P
ol
y
n
o
m
ia
l
S
V
M

0.
85

1
1
±

0.
00

42
0.
93

67
±

0.
00

10
0.
99

41
±

0.
00

17
0.
94

06
±

0.
00

09

R
B
F
S
V
M

0.
87

3
9
±

0.
00

41
0
.9
5
4
6
±

0
.0
0
0
7

0
.9
9
6
6
±

0
.0
0
1
1

0.
95

15
±

0.
00

12

M
L
P

0.
86

9
3
±

0.
00

98
0
.9
5
5
6
±

0
.0
0
2
9

0.
99

31
±

0.
00

29
0.
94

75
±

0.
00

41

O
r
io
n
-1
0
00

0
.9
7
2
5
±

0
.0
0
3
2

0.
91

19
±

0.
00

15
0.
86

07
±

0.
01

46
0
.9
6
6
2
±

0
.0
0
1
3

O
r
io
n
-2
0
00

0
.9
8
0
6
±

0
.0
0
3
1

0.
95

44
±

0.
00

21
0.
89

82
±

0.
00

73
0
.9
8
3
2
±

0
.0
0
1
3

T
a
b
le

3.
2:

C
la
ss
ifi
ca
ti
on

ac
cu

ra
cy

of
al
l
th
e
m
et
h
o
d
s
fo
r
30

-7
0
sp
li
t

26

In
d
ia
n
P
in
es

P
av
ia

U
n
iv
er
si
ty

S
al
in
as
-A

S
al
in
as

L
in
ea
r
S
V
M

0.
87

0
0
±

0.
00

36
0.
91

62
±

0.
00

19
0
.9
9
8
6
±

0
.0
0
1
6

0.
93

26
±

0.
00

16

P
ol
y
n
o
m
ia
l
S
V
M

0.
89

7
7
±

0.
00

54
0.
94

77
±

0.
00

16
0.
99

78
±

0.
00

15
0.
94

54
±

0.
00

14

R
B
F
S
V
M

0.
91

7
5
±

0.
00

50
0.
96

20
±

0.
00

20
0
.9
9
8
5
±

0
.0
0
1
7

0.
96

20
±

0.
00

24

M
L
P

0.
91

8
0
±

0.
00

56
0
.9
6
3
4
±

0
.0
0
4
0

0.
99

82
±

0.
00

10
0.
96

28
±

0.
00

45

O
r
io
n
-1
0
00

0
.9
9
1
5
±

0
.0
0
2
2

0.
94

84
±

0.
00

38
0.
96

87
±

0.
00

68
0
.9
9
2
7
±

0
.0
0
1
0

O
r
io
n
-2
0
00

0
.9
9
4
9
±

0
.0
0
2
2

0
.9
8
2
3
±

0
.0
0
3
2

0.
96

75
±

0.
00

66
0
.9
9
5
4
±

0
.0
0
0
6

T
a
b
le

3.
3:

M
ea
n
F
1-
S
co
re

of
al
l
th
e
m
et
h
o
d
s
fo
r
80

-2
0
sp
li
t
ov
er

10
ru
n
s

27

In
d
ia
n
P
in
es

P
av
ia

U
n
iv
er
si
ty

S
al
in
as
-A

S
al
in
as

L
in
ea
r
S
V
M

0
.8
3
58
±

0.
00

33
0.
91

18
±

0.
00

16
0
.9
9
6
5
±

0
.0
0
1
0

0.
93

10
±

0.
00

06

P
o
ly
n
om

ia
l
S
V
M

0
.8
5
03
±

0.
00

42
0.
93

61
±

0.
00

10
0.
99

41
±

0.
00

17
0.
93

96
±

0.
00

09

R
B
F
S
V
M

0
.8
7
34
±

0.
00

41
0
.9
5
4
4
±

0
.0
0
0
7

0
.9
9
6
6
±

0
.0
0
1
1

0.
95

12
±

0.
00

12

M
L
P

0
.8
6
90
±

0.
00

95
0
.9
5
5
5
±

0
.0
0
2
9

0.
99

31
±

0.
00

29
0.
94

69
±

0.
00

41

O
r
io
n
-1
00

0
0
.9
7
2
5
±

0
.0
0
3
2

0.
90

68
±

0.
00

18
0.
85

83
±

0.
01

51
0
.9
6
6
1
±

0
.0
0
1
3

O
r
io
n
-2
00

0
0
.9
8
0
4
±

0
.0
0
3
1

0.
95

28
±

0.
00

25
0.
89

61
±

0.
00

74
0
.9
8
3
2
±

0
.0
0
1
2

T
a
b
le

3.
4:

M
ea
n
F
1-
S
co
re

of
al
l
th
e
m
et
h
o
d
s
fo
r
30

-7
0
sp
li
t
ov
er

10
ru
n
s

28

Chapter 4

Concept Drift in Streaming Tensor

Decomposition

This chapter is based on material published in [71].

Conventional Assumption Revisited:

Rank remains constant in streaming tensor decomposition.

Contribution:

Not assuming constant rank gives us qualitatively and quantitatively better results.

4.1 Introduction

In today’s world data is not static, data keeps on evolving over time. In real

world applications like stock market and e-commerce websites hundred of transaction (if

not thousands) takes place every second, or in applications like social media where every

second, thousands of new interactions take place forming new communities of users who

29

interact with each other. In this example, we consider each community of people within the

graph as a concept.

There has been a considerable amount of work in dealing with online or streaming

CP decomposition [93, 34, 61], where the goal is to absorb the updates to the tensor in the

already computed decomposition, as they arrive, and avoid recomputing the decomposition

every time new data arrives. However, despite the already existing work in the literature,

a central issue has been left, to the best of our knowledge, entirely unexplored. All of the

existing online/streaming tensor decomposition literature assumes that the concepts in the

data (whose number is equal to the rank of the decomposition) remains fixed throughout

the lifetime of the application. What happens if the number of components changes? What

if a new component is introduced, or an existing component splits into two or more new

components? This is an instance of concept drift in unsupervised tensor analysis, and this

chapter is a look at this problem from first principles.

4.2 Problem Formulation

Let us consider a social media network like Facebook, where a large number of

users (≈ 684K) update information every single minute, and Twitter, where about ≈ 100K

users tweet every minute1. Here, we have interactions arriving continuously at high velocity,

where each interaction consists of User Id, Tag Ids , Device, and Location information etc.

How can we capture such dynamic user interactions? How to identify concepts which can

signify a potential newly emerging community, complete disappearance of interactions, or a

1https://mashable.com/2012/06/22/data-created-every-minute/

30

https://mashable.com/2012/06/22/data-created-every-minute/

merging of one or more communities to a single one? When using tensors to represent such

dynamically evolving data, our problem falls under “streaming” or “online” tensor analysis.

Decomposing streaming or online tensors is challenging task, and concept drift in incoming

data makes the problem significantly more difficult, especially in applications where we

care about characterizing the concepts in the data, in addition to merely approximating the

streaming tensor adequately.

Before we conceptualize the problem that this chapter deals with, we define certain

terms which are necessary to set up the problem. Consider X and Y be two incremental

batches of a streaming tensors of rank R and F respectively. Let X be the initial tensor at

time t0 and Y be the batch of the streaming tensor which arrives at time t1 such as t1 > t0.

The CP decomposition for these two tensors is given as follows:

X ≈
R∑

r=1

A(:, r) ◦B(:, r) ◦C(:, r) (4.1)

Y ≈
F∑

r=1

A(:, r) ◦B(:, r) ◦C(:, r) (4.2)

Concept: In case of tensors, we define concept as one latent component; a sum of R such

components make up the tensor. In above equations tensor X and Y has R and F concepts

respectively.

Concept Overlap: We define concept overlap as the set of latent concepts that are common

or shared between two streaming CP decompositions. Consider Figure 4.1 where R and F

both are equal to three, which means both tensors X and Y have three concepts. Each

concept of X corresponds to each concept of Y. This means that there are three concepts

that overlap between X and Y. The minimum and maximum number of concept overlaps

31

between two tensors can be zero and min(R,F) respectively. Thus, the value of concept

overlap lies between 0 and min(R,F).

In Section 4.3 we propose an algorithm for detecting such overlap.

0 ≤ Concept Overlap ≤ min(R,F) (4.3)

Y

X

§

§

R=3

a1 a2

b1 b2

c1
c2

+

a3

b3

c3

+

Concept 1 Concept 2 Concept 3

Concept 1 Concept 2

Overlap Concept

J

I

J

I

F=3

A
=

B

Bt0

t1

a1 a2

b1 b2

c1
c2

+

a3

b3

c3

+

Concept 3

A
=

B

B

Figure 4.1: Complete overlap of concepts

New Concept: If there exists a set of concepts which are not similar to any of the concepts

already present in the most recent tensor batch, we call all such concepts in that set as new

concepts. Consider Figure 4.2, where X has two concepts (R = 2) and Y has three concepts

(F = 3). We see that at time t1 tensor Y batch has three concepts, out of which, two

32

match with tensor X concepts and one concept(namely concept 3) does not match with any

concept of X. In this scenario we say that concept 1 and 2 are overlapping concepts and

concept 3 is a new concept.

Y

X
a1 a2

b1 b2

c1 c2

+§

§

R=2

a1 a2

b1 b2

c1
c2

+

a3

b3

c3

+

Concept 1 Concept 2

Concept 3Concept 1 Concept 2

Overlap Concept

J

I

J

I

F=3

New Concept

BA
=

B

A
=

B

B

t0

t1

Figure 4.2: Concept appears

Missing Concept: If there exists a set of concepts which was present at time t0, but was

missing at future time t1, we call the concepts in the set missing concepts. For example,

consider Figure 4.3, at time t0, the CP decomposition of X has three concepts, and at time

t1 CP decomposition of Y has two concepts. Two concepts of X and Y match with each

other and one concept, present at t0, is missing at t1; we label that concept, as missing

concept.

33

Y

X

a1 a2

b1 b2

c1 c2

+

§

§

R=3

a1 a2

b1 b2

c1
c2

+

a3

b3

c3

+

Concept 1 Concept 2 Concept 3

Concept 1 Concept 2

Overlap Concept

J

I

J

I

F=2

Missing

Concept
BA

=
B

A
=

B

Bt0

t1

Figure 4.3: Concept disappears

Running Rank: Running Rank (runningRank) at time t is defined as the total number of

unique concepts (or latent components) seen until time t. Running Rank is different from

tensor rank of a tensor batch. It may or may not be equal to rank of the current tensor

batch. Consider Figure 4.1, runningRank at time t1 is three, since the total unique number

of concepts seen until t1 is three. Similarly runningRank of Figure 4.3 at time t1 is three,

even though rank of Y is two, since the number unique concepts seen until t1 is three.

Let us assume rank of the initial tensor batch X at time t0 is R and rank of the

subsequent tensor batch Y at time t1 is F . Then runningRank at time t1 is sum of running

rank at t0 and number of new concepts discovered from t0 to t1. At time t0 running rank

is equal to initial rank of the tensor batch in this case R.

34

runningRankt1 = runningRankt0 + num(newConcept)t1−t0 (4.4)

Concept Drift: Concept drift is usually defined in terms of supervised learning [16, 86,

87, 29]. In [86], authors define concept drift in unsupervised learning as the change in

probability distribution of a random variable over time. We define concept drift in the

context of latent concepts, which is based on rank of the tensor batch. We first give an

intuitive description of concept in terms of running rank, and then define concept drift.

Intuition: Consider running rank at time t1 be runningRankt1 and running at time t2 be

runningRankt2 . If runningRankt1 is not equal to runningRankt2 , then there is a concept

drift i.e. either a new concept has appeared, or a concept has disappeared. However,

this definition does not capture every single case. Assume if runningRankt1 is equal to

runningRankt2 . In this case, there is no drift only when there is a complete overlap. However

there may be concept drift present even if runningRankt1 is equal to runningRankt2 , since

a concept might disappear while runningRank remains the same.

Definition: Whenever a new concept appears, a concept disappears, or both from time t1

to t2, this phenomenon is defined as concept drift.

In a streaming tensor application, a tensor batch arrives at regular intervals of

time. Before we decompose a tensor batch to get latent concepts, we need to know the rank

of the tensor. Finding tensor rank is a hard problem [36, 38] and it is beyond the scope

of this work. There has been considerable amount of work which approximates rank of a

tensor [62, 57]. In this work we employ AutoTen [62] to compute a low rank of a tensor.

As new advances in tensor rank estimation happen, our proposed method will also benefit.

35

Given (a) tensorX of dimensions I×J×K1 and rank R, (b)Y of dimensions I×J×K2

of rank F at time t0 and t1 respectively as shown in Figure 4.4. Compute Xnew of

dimension I × J × (K1 + K2) of rank equal to runningRank at time t1 as shown in

equation (5) using factor matrices of X and Y.

Xnewt1
≈

runningRank∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r) (4.5)

4.3 Method

Consider a social media application where thousands of connections are formed

every second, for example, who follows whom or who interacts with whom. These connec-

tions formed can be viewed as forming communities. Over a period of time communities

disappear, new communities appear or some communities re-appear after sometime. Num-

ber of communities at any given point of time is dynamic. There is no way of knowing

what communities will appear or disappear in future. When this data stream is captured

as a tensor, communities refer to latent concepts and appearing and disappearing of com-

munities over a period of a time is referred to as concept drift. Here we need a dynamic

way of figuring out number of communities in a tensor batch rather than assuming constant

number of communities in all tensor batches.

To the best of our knowledge, there is no algorithmic approach that detects concept

drift in streaming tensor decomposition. As we mentioned in Section 4.1, there has been

considerable amount of work [34, 93, 61] which deals with streaming tensor data and applies

36

batch decomposition on incoming slices and combine the results. But these methods don’t

take change of rank in consideration, which could reveal new latent concept in the data

sets. Even if we know the rank(latent concept) of the complete tensor, the tensor batches

of that tensor might not have same rank as the complete tensor.

Here we propose SeekAndDestroy, a streaming CP decomposition algorithm

that does not assume rank is fixed. SeekAndDestroy detects the rank of every incom-

ing batch in order to decompose it, and finally, updates the existing decomposition after

detecting and alleviating concept drift, as defined in Section 4.2.

An integral part of SeekAndDestroy is detecting different concepts and iden-

tifying concept drift in streaming tensor. In order to do this successfully, we need to solve

following problems:

P1: Finding the rank of a tensor batch.

P2: Finding New Concept, Concept Overlap and Missing Concept between two consecu-

tive tensor batch decomposition.

P3: Updating the factor matrices to incorporate the new and missing concepts along with

concept overlaps.

Finding Number of Latent Concepts: Finding the rank of the tensor is be-

yond the scope of this work, thus we employ AutoTen [62]. Furthermore, in Section 4.4,

we perform our experiments on synthetic data where we know the rank (and use that in-

formation as given to us by an “oracle”) and repeat those experiments using AutoTen,

comparing the error between them; the gap in quality signifies room for improvement that

SeekAndDestroy will reap, if rank estimation is solved more accurately in the future.

37

Finding Concept Overlap: Given a rank of tensor batch, we compute its latent

components using CP decomposition. Consider Figure 4.4 as an example. At time t1,

the number of latent concepts we computed is represented by F , and we already had R

components before new batch Y arrived. In this scenario, there could be three possible

cases: (1) R = F (2) R > F (3) R < F .

For each one of the cases mentioned above, there may be new concepts appear

at t1, or concepts disappear from t0 to t1, or there could be shared concepts between two

decompositions. In Figure 4.4. we see that, even though R is equal to F , we have one new

concept, one missing concept and two shared/overlapping concepts. Now, at time t1, we

have four unique concepts, which means our runningRank at t1 is four.

In order to discover which concepts are shared, new, or missing we use the Cauchy-

Schwarz inequality which states for two vectors a and b we have aTb ≤ ||a||2||b||2. Algo-

rithm 3 provides the general outline of technique used in finding concepts. It takes a

column-normalized matrices Aold and Abatch of size I × R and I × batchRank respec-

tively as input. We compute the dot product for all permutations of columns between two

matrices, as shown below

AT
old(:, coli) ·Abatch(:, colj)

coli and colj are the respective columns. If the computed dot product is higher than

the threshold value, the two concepts match, and we consider them as shared/overlapping

between Aold and Abatch. If the dot product between a column in Abatch and with all

the columns in Aold has a value less than the threshold, we consider it as a new concept.

38

Algorithm 2 SeekAndDestroy for Detecting & Alleviating Concept Drift
Require: Tensor Xnew of size I × J ×Knew ,

Factor matrices Aold,Bold,Cold of size I × R, J × R and Kold × R respectively,

runningRank, mode.

Ensure: Aupdated,Bupdated,Cupdated of size I×runningRank, J×runningRank & (Knew +Kold)×runningRank, ρ, runningRank.

1: batchRank ← getRankAutoten(Xnew, runningRank)

2: [A,B,C,λ] = CP
(
Xnew, batchRank

)
.

3: colA, colB, colC← Compute Column Normalization of A,B,C.

4: normMatA,normMatB,normMatC← Absorb λ and Normalize A,B,C.

5: rhoV al← colA . ∗ colB . ∗ colC

6: [newConcept, conceptOverlap, overlapConceptOld]← findConceptOverlap(Aold,normMatA)

7: if newConcept then

8: runningRank← runningRank + len(newConcept)

9: Aupdated←
[
Aold normMatA(:, newConcept)

]
10: Bupdated←

[
Bold normMatB(:, newConcept)

]
11: Cupdated← update C depending on the New Concept,

Concept Overlap, overlapConceptOld indices and runningRank

12: else

13: Aupdated← Aold

14: Bupdated← Bold

15: Cupdated← update C depending on the Concept Overlap, overlapConceptOld indices and runningRank

16: end if

17: Update ρ depending on the New Concept and Concept Overlap indices

18: if newConcept or (len(newConcept) + len(conceptOverlap) < runningRank) then

19: Concept Drift Detected

20: end if

This solves problem P2. In the experimental evaluation, we demonstrate the behavior of

SeekAndDestroy with respect to that threshold.

SeekAndDestroy: This is our overall proposed algorithm, which detects concept

drift between the two consecutive tensor batch decompositions, as illustrated in Algorithm

2 and updates the decomposition in a fashion robust to the drift. SeekAndDestroy takes

factor matrices(Aold, Bold, Cold) of previous tensor batch (say at time t0), running rank at

t0(runningRankt0) and new tensor batch(Xnew) (say at time t1) as inputs. Subsequently,

39

SeekAndDestroy computes the tensor rank for the batch (batchRank) for Xnew using

AutoTen.

Using the estimated rank batchRank, SeekAndDestroy computes the CP de-

composition of Xnew, which returns factor matrices A,B,C. We normalize the columns of

A,B,C to unit ℓ2 norm and we store the normalized matrices into normMatA, normMatB,

and normMatC, as shown by lines 3-4 of Algorithm 2. Both Aold and normalized ma-

trix A are passed to findConceptOverlap function as described above. This returns the

indexes of new concept and indexes of overlapping concepts from both matrices. Those

indexes inform SeekAndDestroy, while updating the factor matrices, where to append

the overlapped concepts. If there are new concepts, we update A and B factor matrices

simply by adding new columns from normalized factor matrices of Xnew as shown in lines

9-10 of Algorithm 2. Furthermore, we update the running rank by adding number of new

concept discovered to the previous running rank. If there is only overlapping concepts and

no new concepts, then A and B factor matrices does not change.

Updating Factor Matrix C: In this work, for simplicity of exposition, we are

focusing on streaming data that are increasing only on one mode. However, our proposed

method readily generalizes to cases where more than one modes grow over time.

In order to update the “evolving” factor matrix (C in our case), we use a different

technique from the one used to update A and B. If there is a new concept discovered in

normMatC then

Cupdated =

 Cold zeroCol

zerosM normMatC(:, newConcept)

 (4.6)

40

where zeroCol is of size Kold× len(newConcept), zerosM is of size Knew×R and

Cupdated is of size (Kold +Knew)× runningRank.

If there are overlapping concepts, then we update C accordingly as shown below; in this

case Cupdated is again of size (Kold +Knew)× runningRank.

Cupdated =

 Cold(:, overlapConceptOld)

normMatC(:, conceptOverlap)

 (4.7)

If there are missing concepts we append an all-zeros matrix (column vector) to

those indexes.

The Scaling Factor ρ: When we reconstruct the tensor from updated factor

(normalized) matrices, we need a way to re-scale the columns of those factor matrices. In

our approach we compute element wise product on normalized columns of factor matrices

(A, B, C) of Xnew as shown in line 5 of Algorithm 2. We use the same technique as the one

used in updating C matrix, in order to match the values between two consecutive intervals,

and we add this value to previously computed values. If it is a missing concept, we simply

add zero to it. While reconstructing the tensor we take the average of vector over the

number of batches received and we re-scale the components as follows

Xr =

runningRank∑
r=1

ρrAupd.(:, r) ◦Bupd.(:, r) ◦Cupd.(:, r).

41

Algorithm 3 Find Concept Overlap
Require: Factor matrices Aold, normMatA of size I ×R, I × batchRank respectively.

Ensure: newConcept, conceptOverlap, overlapConceptOld

1: THRESHOLD ← 0.6

2: if R == batchRank then

3: Generate all the permutations for [1:R]

4: for all permutation do

5: Compute dot product of Aold and normMatA(:,permutation)

6: end for

7: else if R > batchRank then

8: Generate all the permutations(1:R, batchRank)

9: for all permutation do

10: Compute dot product of Aold(:, permutation) and normMatA

11: end for

12: else if R < batchRank then

13: Generate all the permutations (1:batchRank, R)

14: for all permutation do

15: Compute dot product of Aold and normMatA(:,permutation)

16: end for

17: end if

18: Select the best permutation based on the maximum sum.

19: If dot product value of a column is less than threshold its a New Concept

20: If dot product value of a column is more than threshold then its a Concept Overlap.

21: Return column index’s of New Concept and Concept Overlap for both matrices

42

4.4 Experimental Evaluation

We evaluate our algorithm on the following criteria:

Q1: Approximation Quality: We compare SeekAndDestroy’s reconstruction accu-

racy against state-of-the-art streaming baselines, in data that we generate synthetically so

that we observe different instances of concept drift. In cases where SeekAndDestroy

outperforms the baselines, we argue that this is due to the detection and alleviation of

concept drift.

Q2: Concept Drift Detection Accuracy: We evaluate how effectively SeekAndDe-

stroy is able to detect concept drift in synthetic cases, where we control the drift patterns.

Q3: Sensitivity Analysis: As shown in Section 4.3, SeekAndDestroy expects the

matching threshold as a user input. Furthermore, its performance may depend on the se-

lection of the batch size. Here, we experimentally evaluate SeekAndDestroy’s sensitivity

along those axes.

Q4: Effectiveness on Real Data: In addition to measuring SeekAndDestroy’s per-

formance in real data, we also evaluate its ability to identify useful and interpretable latent

concepts in real data, which elude other streaming baselines.

4.4.1 Experimental Setup

We implemented our algorithm in Matlab using tensor toolbox library [12] and

we evaluate our algorithm on both synthetic and real data.We use [62] method available in

literature to find rank of incoming batch.

43

In order to have full control of the drift phenomena, we generate synthetic tensors

with different ranks for every tensor batch, we control the batch rank of the tensor with

factor matrix C. Table 4.1 shows the specification of the datasets created. For instance

dataset SDS2 has an initial tensor batch whose tensor rank is 2 and last tensor batch

whose tensor rank is 10(full rank). The batches in between the initial and final tensor batch

can have any rank between initial and final rank(in this case 2-10). The reason we assign

the final batch rank as the full rank is to make sure the tensor created is not rank deficient.

We make the synthetic tensor generator available as part of our code release.

DataSet Dimension Initial Rank Full Rank Batch Size Matching Threshold

SDS1
100 x 100 x 100 2

5
10 0.6

SDS2 10

SDS3
300 x 300 x 300 2

5
50 0.6

SDS4 10

SDS5
500 x 500 x 500 2

5
100 0.6

SDS6 10

Table 4.1: Table of Datasets analyzed

In order for us to obtain robust estimates of performance, we require all experi-

ments to either 1) run for 1000 iterations, or 2) the standard deviation converges to a second

significant digit (whichever occurs first). For all reported results, we use the median and

the standard deviation.

44

4.4.2 Evaluation Metrics

We evaluate SeekAndDestroy and the baselines methods using relative error.

Relative Error provides the measure of effectiveness of the computed tensor with respect to

the original tensor and is defined as follows (lower is better):

RelativeError =
(||Xoriginal −Xcomputed||F

||Xoriginal||F

)
(4.8)

4.4.3 Baselines for Comparison

To evaluate our method, we compare SeekAndDestroy with two state-of-the-

art streaming baselines: OnlineCP [93] and SamBaTen [34]. Both baselines assume that

the rank remains fixed throughout the entire stream. When we evaluate the approximation

accuracy of the baselines, we run two different versions of each method, with different

input ranks: 1) Initial Rank, which is the rank of the initial batch, same as the one that

SeekAndDestroy uses, and 2) Full Rank, which is the “oracle” rank of the full tensor, if

we assume we could compute that in the beginning of the stream. Clearly, Full Rank offers

a great advantage to the baselines since it provides information from the future.

4.4.4 Q1: Approximation Quality

The first dimension that we evaluate is the approximation quality. More specif-

ically, we evaluate whether SeekAndDestroy is able to achieve good approximation of

the original tensor (in the form of low error) in case where concept drift is occurring in the

stream. Table 4.2 contains the general results of SeekAndDestroy’s accuracy, as com-

pared to the baselines. We observe that SeekAndDestroy outperforms the two baselines,

45

in the pragmatic scenario where they are given the same starting rank as SeekAndDe-

stroy (Initial Rank). In the non-realistic, “oracle” case, OnlineCP performs better than

SamBaTen and SeekAndDestroy, however this case is a very advantageous lower bound

on the error for OnlineCP.

Through extensive experimentation we made the following interesting observation:

in the cases where most of the concepts in the stream appear in the beginning of the stream

(e.g., in batches 2 and 3), SeekAndDestroy was able to further outperform the baselines.

This is due to the fact that, if SeekAndDestroy has already “seen” most of the possible

concepts early-on in the stream, it is more likely to correctly match concepts in later batches

of the stream, since there already exists an almost-complete set of concepts to compare

against. Indicatively,in this case SeekAndDestroy achieved 0.1176 ± 0.0305 where as

OnlineCP achieved 0.1617± 0.0702.

4.4.5 Q2: Concept Drift Detection Accuracy

The second dimension along which we evaluate SeekAndDestroy is its ability

to successfully detect concept drift. Figure 4.5 shows the rank discovered by SeekAnd-

Destroy at every point of the stream, plotted against the actual rank. We observe that

SeekAndDestroy is able to successfully identify changes in rank, which, as we have al-

ready argued, signify concept drift. Furthermore, Table 4.4 shows three example runs that

demonstrate the concept drift detection accuracy.

46

4.4.6 Q3: Sensitivity Analysis

The results we have presented so far for SeekAndDestroy have used a matching

threshold of 0.6. The threshold was chosen because it is intuitively larger than a 50% match,

which is a reasonable matching threshold. In this experiment, we investigate the sensitivity

of SeekAndDestroy to the matching threshold parameter. Table 4.3 shows exemplary

approximation errors for thresholds of 0.4, 0.6, and 0.8. We observe that 1) the choice of

threshold is fairly robust for values around 50%, and 2) the higher the threshold, the better

the approximation, with threshold of 0.8 achieving the best performance.

4.4.7 Q4: Effectiveness on Real Data

To evaluate effectiveness of our method on real data, we use the Enron time-

evolving communication graph dataset [10]. Our hypothesis is that in such complex real

data, there should exists concept drift in streaming tensor decomposition. In order to vali-

date that hypothesis, we compare the approximation error incurred by SeekAndDestroy

against the one incurred by the baselines, shown in Table 4.5. We observe that the ap-

proximation error of SeekAndDestroy is lower than the two baselines. Since the main

difference between SeekAndDestroy and the baselines is that SeekAndDestroy takes

concept drift into consideration, and strives to alleviate its effects, this result 1) provides

further evidence that there exists concept drift in the Enron data, and 2) demonstrates

SeekAndDestroy’s effectiveness on real data.

47

The final rank for Enron as computed by SeekAndDestroy was 7, indicating

the existence of 7 time-evolving communities in the dataset. This number of communities is

higher than what previous tensor-based analysis has uncovered [10, 64]. However, analyzing

the (static) graph using a highly-cited non-tensor based method [19], we were able to detect

7 communities, therefore SeekAndDestroy may be discovering subtle communities that

have eluded previous tensor analysis. In order to verify that, we delved deeper into the

communities and we plot their temporal evolution (taken from matrix C) along with their

annotations (when inspecting the top-5 senders and receivers within each community) as

shown in Figure 4.6. Indeed, a subset of the communities discovered matches with the

ones already known in the literature [10, 64]. Additionally, SeekAndDestroy was able

to discover community #3, which refers to a group of executives, including the CEO. This

community appears to be active up until the point that the CEO transition begins, after

which point it dies out. This behavior is indicative of concept drift, and SeekAndDestroy

was able to successfully discover and extract it.

4.5 Related Work

Tensor decomposition: Tensor decomposition techniques are widely used for

static data. With the explosion of big data, data grows at a rapid speed and an extensive

study required on the online tensor decomposition problem. Sidiropoulos [61] introduced

two well-known PARAFAC based methods namely RLST (recursive least squares) and SDT

(simultaneous diagonalization tracking) to address the online 3-mode tensor decomposition.

Zhou et al. [93] proposed OnlineCP for accelerating online factorization that can track the

48

decompositions when new updates arrived for N-mode tensors. Gujral et al. [34] proposed

Sampling-based Batch Incremental Tensor Decomposition algorithm which updates online

computation of CP/PARAFAC and performs all computations in the reduced summary

space. However, no prior work addresses concept drift.

Concept Drift: The survey paper [86] provides the qualitative definitions of

characterizing the drifts on data stream models. To the best of our knowledge, however,

this is the first work to discuss concept drift in tensor decomposition.

4.6 Contributions

Our contributions in this work are the following:

• Characterizing concept drift in streaming tensors: We define concept and

concept drift in time evolving tensors and provide a quantitative method to measure

the concept drift.

• Algorithm for detecting and alleviating concept drift in streaming tensor

decomposition: We provide an algorithm which detects drift in the streaming data

and also updates the previous decomposition without any assumption on the rank of

the tensor.

• Experimental evaluation on real & synthetic data: We extensively evaluate our

method on both synthetic and real datasets and out-perform state of the art methods

in cases where the rank is not known a priori and perform on par in other cases.

49

F
ig
u
re

4.
4:

P
ro
b
le
m

fo
rm

u
la
ti
on

50

D
a
ta
S
et

O
n
li
n
eC

P
O
n
li
n
eC

P
S
am

B
aT

en
S
am

B
aT

en
S
e
e
k
A
n
d
D
e
st

r
o
y

(I
n
it
ia
l
R
a
n
k
)

(F
u
ll
R
an

k
)

(I
n
it
ia
l
R
an

k
)

(F
u
ll
R
an

k
)

S
D
S
1

0.
27

8
2±

0
.0
22

1
0.
19

7
±
0.
08

6
0
.2
6
1
±
0
.0
4
8

0.
31

7
±
0.
05

8
0.
28

3
±
0.
07

5
S
D
S
2

0.
25

3
7±

0
.0
12

5
0.
16

8
±
0.
50

7
0
.2
4
4
±
0
.0
2
8

0.
48

0
±
0.
05

1
0.
25

3
±
0.
04

12
S
D
S
3

0.
27

3
1±

0
.0
20

7
0.
20

5
±
0.
16

4
0.
38

5±
0.
02

1
0.
44

5
±
0.
16

4
0
.2
6
6
±
0
.0
8
1

S
D
S
4

0
.2
4
5±

0
.0
13

0.
17

1
±
0.
53

7
0.
29

9±
0.
04

5
0.
40

2
±
0.
04

9
0
.2
2
1
±
0
.0
4
2
3

S
D
S
5

0.
27

1
9±

0
.0
19

8
0.
20

6
±
0.
02

2
0.
55

9±
0.
04

6
0.
51

9
±
0.
02

19
0
.2
5
6
±
0
.1
0
5

S
D
S
6

0
.2
3
8±

0
.0
13

0.
17

1
±
0.
37

4
0.
51

0±
0.
03

6
0.
54

7±
0.
02

76
‘

0
.2
0
8
±
0
.0
4
3
3

T
a
b
le

4.
2:

A
p
p
ro
x
im

at
io
n
er
ro
r
fo
r
S
e
e
k
A
n
d
D
e
st

r
o
y
an

d
th
e
b
as
el
in
es
.
S
e
e
k
A
n
d
D
e
st

r
o
y
ou

tp
er
fo
rm

s
th
e
b
as
el
in
es

in
th
e

re
al
is
ti
c
ca
se

w
h
er
e
al
l
m
et
h
o
d
s
st
a
rt

w
it
h
th
e
sa
m
e
ra
n
k

51

(a) Increasing rank

(b) Decreasing rank

Figure 4.5: SeekAndDestroy is able to successfully detect concept drift, which is mani-
fested as changes in the rank throughout the stream

52

Threshold SDS2 SDS4

0.4 0.253±0.041 0.221 ± 0.042

0.6 0.253±0.041 0.221 ± 0.042

0.8 0.101 ±0.040 0.033 ± 0.011

Table 4.3: Experimental results for error of approximation of incoming batch with different
matching threshold values. Dataset SDS2 and SDS4 are of dimension R100×100×100 and
R300×300×300 , respectively. We see that the threshold is fairly robust around 0.5, and a
threshold of 0.8 achieves the highest accuracy.

Running Actual Predicted Approx. Error
Rank Rank Rank Actual Predicted

Rank Rank

6 [2,4,3,4,3,3,5,3,3,5] [2,4,3,4,3,3,5,3,3,6] 0.185 0.194
6 [2,4,3,4,3,3,5,3,3,5] [2,4,3,4,3,3,5,3,3,6] 0.185 0.197
7 [2,4,3,4,3,3,5,3,3,5] [2,4,3,5,3,3,6,3,3,6] 0.185 0.278

Table 4.4: Experimental results on SDS1 for error of approximation of incoming slices with
known and predicted rank.

Running Predicted Batch Approximation Error
Rank Full Rank Size SeekAndDestroy SambaTen OnlineCP

7±0.88 4±0.57 22 0.68 ± 0.002 0.759± 0.059 0.941± 0.001

Table 4.5: Evaluation on Real dataset

53

0 5 10 15 20 25 30 35 40 45

Weeks

-0.2

0

0.2

0.4

0.6

0.8

1

C
o
n
c
e
p
t
A

c
ti
v
it
y

Legal (senior levels)

Legal

Executives (CEO & VP)

Trading, COO, and Risk Mgtm

Traders/analysts

Executive & Govt. affairs

Govt. affairs & Regulatory affairs

CEO transition begins

Investigation begins

Figure 4.6: Timeline of concepts discovered in Enron

54

Chapter 5

Adaptive Granularity in Tensors:

Problem Formulation and a

Greedy Algorithm

This chapter is based on material presented in [72, 70].

Conventional Assumption Revisited:

Tensors created using raw data/fixed window aggregation have exploitable structure

for analysis.

Contribution:

Using raw granularities or fixed window aggregation yields poor quality. IceBreaker++

provides multiple tensors with exploitable structure of different resolution.

55

5.1 Introduction

In the age of big data, applications deal with data collected at very fine-grained

time intervals. In many real world applications, the data collected spans long periods of

time and can be extremely sparse. For instance, a time-evolving social network that records

interactions of users every second results in a very sparse adjacency matrix if observed at

that granularity. Similarly, in spatio-temporal data, if one considers GPS data over time,

discretizing GPS coordinates based on the observed granularity can lead to very sparse

data which may not contain any visible and useful structure. How can we find meaningful

and actionable structure in these types of data? A great deal of such datasets are multi-

aspect in nature and hence can be modeled using tensors. For instance, a three-mode

tensor can represent a time-evolving graph capturing user-user interactions over a period

of time, measuring crime incidents in a city community area over a period of time [81], or

measuring traffic patterns [92]. Tensor decomposition has been used in order to extract

hidden patterns from such multi-aspect data [79, 65, 44]. However the degree of sparsity in

the tensor, which is a function of the granularity in which the tensor is formed, significantly

affects the ability of the decomposition to discover “meaningful” structure in the data.

Consider a dataset which can be modeled as three-mode tensor, where the third

mode is temporal as shown in Figure 5.1. If the granularity of the temporal mode is

too fine (in milliseconds or seconds), one might end up with a tensor that is extremely

long on the time mode and where each instance of time has very small number of entries.

This results in a extremely sparse tensor, which typically is of very high rank, and which

usually has no underlying exploitable structure for widely popular and successful tensor

56

Figure 5.1: Starting from raw CSV files, IceBreaker++ discovers a tensor that has good
structure (under various measures of quality, including interpretability and predictive qual-
ity), outperforming traditional fixed aggregation heuristics. Furthermore, IceBreaker++
using various notions of locally optimal structure, discovers different resolutions in the data.

decomposition algorithms [79, 65, 44]. However, as we aggregate data points over time,

exploitable structure starts to appear (where-by “exploitable” we define the kind of low-

rank structure that a tensor decomposition can successfully model and extract). In this

chapter we set out to explore what is the best such data-driven aggregation of a tensor

which leads to better, exploitable, and interpretable structure, and how this fares against

the traditional alternative of selecting a fixed interval for aggregation.

As far as tackling the problem above, there is considerable amount of work that

focuses on a special case, that of aggregating edges of a time evolving graph into “mature”

adjacency matrices based on certain graph properties [82, 83, 84]. In our work, however,

we address the problem in more general terms, where the underlying data can be any point

process that is observed over time and/or space, and where the aggregation/discretization of

the corresponding dimensions directly affects our ability to extract interpretable patterns via

57

tensor decomposition. Effectively, as shown in Figure 5.1, in this chapter we work towards

automating the data aggregation starting from raw data into a well-structured tensor.

5.2 Problem Formulation

5.2.1 Tensor decomposition quality

Unsupervised tensor decomposition, albeit very popular, poses a significant chal-

lenge: how can we tell whether a computed decomposition is of “high quality”, and how

can we go about defining “quality” in a meaningful way? Unfortunately, this happens to

be a very hard problem to solve [62], and defining a new measure of quality is beyond the

scope of this work. However, there has been significant amount of work in that direction,

which basically boils down to 1) model-based measures, where the quality is measured by

how well a given decomposition represents the intrinsic hidden structure of the data, and 2)

extrinsic measures, where the quality is measured by how well the computed decomposition

factors perform in a predictive task. However, extrinsic measures do not generalize, as they

specialize to a particular labeled task, and in general we cannot assume that labels will be

available for the data at hand. Thus, in this work we focus on model-based measures, which

can provide a general solution.

In model-based measures, the most straightforward one is the fit, i.e., how well

does the decomposition approximate the data under the chosen loss function, in a low rank.

Low rank is key, because the number of components (rank) has to be as small and compact

as possible in order to lend itself to human evaluation and exploratory analysis. However,

fit has been shown to be unstable and prone to errors especially in real and noisy data, thus

58

the community has collectively turned its attention to more robust measures such as the

Core Consistency Diagnostic (CORCONDIA for short) [21], which measures how well the

computed factors obey the CP model.

Both types of quality measure capture different elements of what an end-user

would deem good in a set of decomposition factors. In this chapter, we are going to use

such popular measures of quality in order to characterize the quality of a given tensor

dataset X. In order to do so, we assume that we have a function Q (X) which, optimizes

the quality measure q () for a given tensor over all possible decomposition ranks R 1, i.e.,

Q (X) = max
R

q (X,A,B,C)

where A,B,C are the R-column factor matrices for X. Finally, a useful operation is the

n-mode product, where a matrix W is multiplied by the n-th mode of a tensor (predicated

on matching dimensions in the n-th mode of the tensor and the rows of the matrix), denoted

as X ×n W. For instance, an I × J ×K tensor where n = 3 and W of size K ×K∗, the

product X×n W multiplies all third mode slices of X with W and results in a I × J ×K∗

tensor.

5.2.2 The Trapped Under Ice problem

To give reader an intuition of the problem, consider an example of time-evolving

graph which captures social activity over the span of some time. This example can be

modeled as three-mode tensor X of dimensions I × J ×K where “sender” and “receiver”

are the first two modes, “time” being the third mode, and non-zero entry in the tensor

1In practice, this is done over a small number of low ranks, since low-rank structure is desirable.

59

represents communications between user at a particular time. If the time granularity is

extremely fine-grained (milliseconds or seconds), there might be only handful of data points

at a particular time stamp causing resulting tensor to be extremely sparse and to have a

high tensor-rank as a result. In that case, X might not have any interpretable low-rank

structure that can be exploited by CP. In this example we assume that the third mode

(time mode) is too fine-grained but in reality any mode (one or more) can be extremely fine

grained. For example, in spatio-temporal data, where the first two modes are latitude and

longitude and the third mode is time, all three modes can suffer from the same problem.

Given tensor X which is created using the “raw” granularities, how does one find

a tensor (say Y) which has better exploitable structure and hence can be decomposed into

meaningful latent structure. This, is informally the Trapped Under Ice problem that we

define here (which draws an analogy between the good structure that may exist within the

data as being trapped under the ice and not visible by mere inspection). Trapped Under

Ice has an inherent assumption that the mode in which we aggregate is ordered (e.g.,

representing time or space), thus permuting the third mode will lead to a different instance

of the problem.

More formally we define our problem as follows:

Given a tensor X of dimensions I × J ×K Find:

A tensor Y of dimensions I × J ×K∗ with K∗ ≤ K such that

max
W
Q (X×3 W)

60

where Q is a measure of goodness and W(i, j) = 1 if slice i in tensor X is aggregated

into slice j in the resulting tensor, otherwise W(i, j) = 0.

At first glance, Trapped Under Ice might look like a problem amenable to dynamic program-

ming, since it exhibits the optimal substructure property. However, it lacks the overlapping

subproblems property: there are overlapping subproblems across the set of different W

matrices (e.g., two different matrices may have overlapping subproblems) but not within

any single W. Thus, we still have to iterate over 2K−1 W’s refer subsection 5.2.3 for more

details.

Structure of W: The matrix W has a special structure. Here we provide an

example. Consider a three-mode tensor X of dimensions 10× 10× 10, with the third mode

being the time mode. Suppose that the optimal level of aggregation for Y is K∗ = 3.

In this case, W is of size 3× 10 and an example of such matrix is:

W =


1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1


This W aggregates first three slice of X to form first slice of Y, next three to form the

second slice and last four to form the third slice. No two W matrices will produce the same

aggregation. They can have the same K∗ but order of aggregation of slices will be different.

5.2.3 Solving Trapped Under Ice optimally is hard

Solving Trapped Under Ice optimally poses a number of hurdles. First and fore-

most, the hardness of the problem depends on the definition of function Q, and most reason-

able and intuitive such definitions are very hard to optimize since they are non-differentiable,

61

non-continuous, and not concave. So far, in the literature, to the best of our knowledge,

there are only heuristics for this quality function. Even so, those heuristic functions can

only be evaluated on a single already fully-aggregated tensor, not a partially aggregated

version thereof. Thus, Trapped Under Ice can be only solved optimally via enumerating all

admissible solutions and choosing the best. In order to conduct this enumeration, we need

to calculate the cardinality of the set of all W for a given instance of the problem.

Lemma 1 For an instance of a problem with K initial slices, the cardinality of the set of

all W is 2K−1

Proof. To get K∗ aggregated slices there are
(
K−1
K∗−1

)
ways to choose each of them leading to

a different W. This is a number of ways that K − 1 partition slots can be filled partitioned

by K∗ − 1 blocks. In order to get the final number, we need to sum up over all potential

K∗:
K−1∑
K∗=0

(
K − 1

K∗

)
= 2K−1

Direct corollary of the above lemma is that solving optimally Trapped Under Ice

requires calling the function Q O
(
2K

)
times, which is computationally intractable. There

may be small room for improvement by exploiting special structure in the set of all W,

however, given discontinuities in our objective functionQ, this is not be a feasible alternative

either. In this chapter we define proxy quality functions Q that lend themselves to partial

evaluation on a partially aggregated solution, thus allowing for efficient algorithms Thus,

in the next section we propose a greedy approach which locally optimizes different criteria

quality.

62

5.3 Algorithms

In this section, we propose our efficient and effective greedy algorithm called Ice-

Breaker which takes a tensor X as an input, which has been created directly from raw

data, and has no exploitable structure. and returns a tensor Y which maximizes the in-

terpretable and exploitable structure. The basic idea behind IceBreaker is to make a

linear pass on the mode for which the granularity is suboptimal, and using a number of

intuitive and locally optimal criteria for goodness of structure (henceforth referred to as

utility functions), we greedily decide whether a particular slice across that mode needs to

be aggregated2 into an existing slice or contains good-enough structure to stand on its own.

IceBreaker can choose from a number of intuitive utility functions which are based on

different definitions of good quality in matrices.

5.3.1 The IceBreaker algorithm

Algorithm 4 gives a high level overview of IceBreaker. More specifically, the

algorithm takes a three-mode tensor X of dimension I × J ×K as an input and loops over

all the K slices of tensor X. Two slices next to each other get aggregated into a single slice

if a certain utility function has stabilized, i.e., if aggregating the two slices does not offer

any additional utility (larger than a particular threshold), then the second slice should not

be aggregated with the first, and should mark the beginning of a new slice.

Consider a three-mode tensor X with time as third mode of dimension I×J×K is

ran through IceBreaker with a particular utility function. Our algorithm iterates over the

2For the purposes of our work, we use matrix addition as aggregation of slice but this might not be the
case and would depend on the problem domain. Other aggregation functions that can be used are OR, min,
max, depending on the application domain (e.g., binary data).

63

time mode (K slices) and aggregates slices as decided by the utility function. IceBreaker

is agnostic to utility function used. Let us consider a slice that has been aggregated into a

single slice from indices i to j − 1 called previous slice and another aggregated slice from

indices i to j called a candidate slice. Both previous and candidate slice are passed to utility

function separately to obtain a value each called previous and current value respectively.

These values are compared (line 5 in algorithm 4) to decide whether jth slice is absorbed(line

6 in algorithm 4) into previous slice or previous slice has stabilized and entry is added in

W to indicate which indices of tensor X are aggregated together(line 8− 9 in algorithm 4).

Now jth slice becomes the previous slice and aggregated slice of j and j + 1 become the

candidate slice, the whole process is repeated until all the slices are exhausted.

Note that IceBreaker’s complexity is linear in terms of the slices K of the original tensor,

and its overall complexity depends on the specific utility function used (which is called

O(K) times).

5.3.2 Utility functions

In this subsection, we summarize a number of intuitive utility functions that we

are using in this work. This list is by no means exhaustive, and can be augmented by

different functions (or function combinations) that capture different elements of what is

good structure and can be informed by domain-specific insights.

1. Norm: We use multiple norm types to find adaptive granularity of a tensor. For a

given threshold, if rate of change of norm between previous and candidate slice is less

64

than the threshold, candidate slice is not selected. Our assumption in this case is no

significant amount of information is being added to previous slice and is considered to

have been stabilized. Matrix W is updated accordingly with indices of the previous

slice (aggregated slices in previous slice). Otherwise the candidate slice is selected and

the process continues until all the slices are exhausted. Different norms demonstrated

in this work are Frobenius, 2-norm, and Infinity norm.

2. Matrix Rank: In case of matrix rank, we focus on the 95% reconstruction rank,

which is typically much lower than the full rank of the data, but captures the essence

of the number of components within the slice. In this case, we consider previous slice

to be stabilized if the matrix-rank of previous slice decreases by addition of new slice,

no more slices are added and an entry in matrix W is added. We keep aggregating

slices if the matrix-rank of the slice is increasing or remains constant.

3. Missing Value Prediction: If a piece of data has good structure, when we hide

a small random subset of the data, the remaining data can successfully reconstruct

the hidden values, under a particular model that we have chosen. To this end, we

employ a variant of matrix factorization based collaborative filtering [46] as a utility

function to see how good is the aggregated matrix in predicting certain percent of

missing values. This utility function takes percent of missing value as a parameter,

hides those percent of non zeros values in the matrix. Our implementation of matrix

factorization with Stochastic Gradient Descent tries to minimize the loss function:

minU,V
∑

i,j∈ΩRMSE (Aij −Ui,: ·V:,j) where A is a given slice, U,V are factor

matrices for a given rank (typically chosen using the same criterion as the matrix

65

rank above), and Ω is the set of observed (i.e., non-missing) values. In order to create

a balanced problem, since we are dealing with very sparse slices, we conduct negative

sampling where we randomly sample as many zero entries as there are non-zeros in

the slice, and this ends up being the Ω set of observed values.

5.3.3 The IceBreaker++ algorithm

IceBreaker algorithm returns a tensor Y as an output which is considered to

have an exploitable and better structure than the input tensor X. The idea behind Ice-

Breaker++ is to recursively feed the output back to IceBreaker until the third mode

is reduced to a single slice (matrix) or the dimenison of third mode does not change. Ice-

Breaker algorithm returns a tensor associated with each utility function. So if we used 5

utility functions, we would get 5 tensors associated with each of them. Now we select the

tensor with highest CP Fit (see 5.4.1), use that as input for IceBreaker and we repeat

this process until the stopping condition is met. The output of each iteration is a candidate

tensor. At the end we have multiple tensors (one for each iteration) which has different

temporal resolutions, which can help us get a tensor with optimal resolution based on the

evaluation measures used. Algorithm 5 describes the process discussed in this section.

5.4 Experimental Evaluation

In this section we present a thorough evaluation of IceBreaker++ using variety

of data, including synthetic, semi-synthetic and real data. We empirically evaluate our

66

analysis using a number of criteria described in detail below. We implement our method in

Matlab using tensor toolbox library [12].

5.4.1 Evaluation measures

When formulating the problem, we did not specify a quality function Q to be

maximized, nor did we use such a function in our proposed method. The reason for that

is because we reserve the use of different quality functions as a form of evaluation. In

particular, we use the two following notions of quality:

• CP Fit: To evaluate effectiveness of our method, we compute CP fit of the computed

tensor for a particular rank with respect to the Input tensor.

Relative F it = 1−
(||XInput −Xcomputed||F

||XInput||F

)
(5.1)

• CORCONDIA: To evaluate the interpretability of the resulting tensor we employ

Autoten [62] that given a tensor and some estimated tensor rank, returns a COR-

CONDIA [21] score and low rank that provides best attainable tensor decomposition

quality in a user-defined search space.

We should note at this point that the two quality measures above are far from

continuous and monotonic functions, thus we do not expect that our method progresses the

quality will monotonically increase. Thus, we calculate the quality for the final solution of

IceBreaker++, and we reserve investigating whether monotonic and well-behaved quality

functions exist for future work.

67

In our experiments we used 5 utility functions (see 5.3.2) namely Frobenius norm,

2-norm, Infinity norm, Matrix Rank and Missing Value Prediction. In case of synthetic

datasets we ran all the utility functions once except for Missing Value Prediction which

we ran for 10 times. In case of both semi-synthetic and real datasets, in the interest of

computational efficiency, we ran all the utility functions once.

5.4.2 Baseline methods

A naive way to find tensor Y can be by aggregating time mode based on some

fixed intervals. If time granularity was in milliseconds, then combining one thousand slices

to form slices of seconds granularity reducing the third dimension of tensor X from K to

K/1000. This can be applied incrementally from seconds to minutes and so on to find a

tensor which has some exploitable structure. We compare the resulting tensorY determined

by IceBreaker against tensors constructed with fixed aggregations. For fixed aggregation

we aggregate the temporal with window size of 10, 100 and 1000 for synthetic data. For

semi-synthetic and real datasets we use appropriate time windows accordingly.

5.4.3 Performance for synthetic data

Creating synthetic data: In order to create synthetic dataset, we follow a two-step

process,

1. We create a random sparse tensor of specific sparsity.

2. Subsequently, we randomly distribute (drawn from uniform distribution) non zero

entries in each slice over some fixed number of slice as explained in below example.

68

Example: Consider a three-mode tensor X of dimension I × J × K, for purpose of this

example consider K = 4 as shown in Figure 5.2. Now for each slice of size I × J , distribute

randomly (drawn from Uniform distribution) all the non-zeros entries across W slices pre-

serving the I and J indices, creating a tensor of size I×J×W . Now append all the tensors

in the same order as they appeared in the original tensor, we get a resulting tensor of size

I × J × 4W , which is used as an input for IceBreaker. So if the original tensor if of size

I × J ×K and bucket size W , the resulting tensor is of size I × J ×KW approximately3.

Table 5.1 shows the synthetic data used for experiments.

Dataset Original Window Approximate Number of
Dimension size(W) Final Dimension datasets

SD1 100× 100× 10 50 100× 100× 500 10

SD2 100× 100× 100 50 100× 100× 5000 10

Table 5.1: Table of Synthetic Datasets analyzed

Dataset Original Window Approximate
Dimension size(W) Final Dimension

Enron Weekly 184× 184× 44 4 184× 184× 176

Enron Daily 184× 184× 44 30 184× 184× 1320

Enron Hourly 184× 184× 44 720 184× 184× 31680

Table 5.2: Table of Semi-synthetic Datasets analyzed

Results for synthetic data: In order to evaluate the performance of IceBreaker++,

we measure CORCONDIA and fit on 10 synthetic datasets for both type of datasets as

3The number of slice can be less than KW , since slice for each non-zero value is selected randomly, there
can be a case where a slice is not selected

69

Figure 5.2: Creating Synthetic Data

mentioned in Table 5.1. In interest of conserving space we only show one set of results

for both synthetic datasets. The leftmost part of the Figure 5.3 and 5.4 shows the best

fit at end of each iteration. The number on top of the dots represent the dimension of

the third mode after each iteration. The dotted line in the plot show the fit of the input

tensor and fixed intervals tensor.4 The rightmost part of the Figure 5.3 and 5.4 shows the

4The number in the parenthesis represents the dimension of the third mode for that tensor.

70

CORCONDIA computed at the end of each iteration and absolute change of CORCONDIA.

Absolute change of CORCONDIA is computed as shown below:

abs(corcondia(j + 1)− corcondia(j))

The dotted line in the plot represent CORCONDIA value for the fixed intervals

tensor. When there is sudden drop in the value of CORCONDIA we consider the iteration

before as an suitable candidate for tensor analysis. In the case of SD1 that would be

iteration number 2 and resulting tensor of size 100×100×8. In the case of SD2 that would

also be iteration number 2 and resulting tensor of size 100× 100× 57

0 1 2 3 4

Iterations

0

0.2

0.4

0.6

0.8

1

F
it

CP Fit

35

8

3

Input Fit (500)

Fixed Interval-10(50)

Fixed Interval-100(5)

Fixed Interval-1000(1)

Best Fits

0 1 2 3

Iterations

0

20

40

60

80

100

C
o
rc

o
n
d
ia

0

20

40

60

80

100

A
b

s
o

lu
te

 C
h

a
n

g
e

Corcondia and Absolute Change

35
8

3

Fixed Interval-10(50)

Fixed Interval-100(5)

Fixed Interval-1000(1)

Figure 5.3: CP fit and Corcondia of best fit tensor & its absolute change at each iteration
for SD1.

5.4.4 Performance for semi-synthetic data

Creating semi-synthetic data: Here we used Enron dataset [77, 11], which is dataset

of number of email exchanges between employees spread over 44 months. Each month is

71

0 1 2 3 4 5

Iterations

0

0.2

0.4

0.6

0.8

1

F
it

CP Fit

298

57

15
4

Input Fit (5000)

Fixed Interval-10(500)

Fixed Interval-100(50)

Fixed Interval-1000(5)

Best Fits

0 1 2 3 4

Iterations

0

20

40

60

80

100

C
o
rc

o
n
d
ia

0

20

40

60

80

100

A
b

s
o

lu
te

 C
h

a
n

g
e

Corcondia and Absolute Change

298 57

15

4

Fixed Interval-10(500)

Fixed Interval-100(50)

Fixed Interval-1000(5)

Figure 5.4: CP fit and CORCONDIA of best fit tensor & its absolute change at each
iteration for SD2.

represented by a matrix. To create the semi-synthetic data, we use the step 2 as described

in the generation of synthetic case. We take the non-zero elements and randomly distribute

non zero entries in each slice over some fixed number of slice. For this dataset we converted

the monthly data into weekly, daily and hourly data. Non-zero entries in each slice was

distributed over 4 different candidate slices of monthly (roughly aprroximating 4 weeks as

a month). In the case of daily each slice of monthly data was distributed over 30 different

slices as mentioned in Table 5.2 and finally in the case of hourly each non zero entry in the

monthly slice was distributed over 720 slices (24× 30).

Results for semi-synthetic data: The leftmost parts of Figures 5.5, 5.6 and 5.7 show

the fit of different iterations and rightmost part of the figures Figures 5.5, 5.6 and 5.7 show

the CORCONDIA computed at different iterations. In the case of Enron Weekly we see a

sudden drop in CORCONDIA after iteration 1 as shown in Figure 5.5 and corresponding

tensor is of size 184×184×17. In the case of Enron Daily we don’t see a significant change in

72

CORCONDIA values in two iterations and corresponding tensors are of size 184× 184× 78

and 184× 184× 5 giving us tensors of different granularity.

In the case of Enron Hourly we see a drop in CORCONDIA after iteration 1 and

2 as shown in Figure 5.7. In this case practitioner can make choice between a tensor of

resolution 184 × 184 × 469 or 184 × 184 × 34 depending on what evaluation metric they

value more, fit, CORCONDIA or both. Tensor after iteration 2 (184× 184× 34) seems to

have good score for both fit and CORCONDIA whereas Tensor after iteration 1 has good

COROCONIA score but not a good CP fit.

0 1 2 3

Iterations

0

0.2

0.4

0.6

0.8

1

F
it

CP Fit

17

2

Input Fit (176)

Fixed Interval-4(44)

Fixed Interval-52(4)

Best Fits

0 1 2

Iterations

0

20

40

60

80

100

C
o
rc

o
n
d
ia

0

20

40

60

80

100

A
b

s
o

lu
te

 C
h

a
n

g
e

Corcondia and Absolute Change
17

2

Fixed Interval-4(44)

Fixed Interval-52(4)

Figure 5.5: CP fit and CORCONDIA of best fit tensor & its absolute change at each
iteration for Enron Weekly.

5.4.5 Data mining case study

Chicago crime dataset: For our case study we use a dataset provided by the city of

73

0 1 2 3

Iterations

0

0.2

0.4

0.6

0.8

1

F
it

CP Fit

78

5

Input Fit (1320)

Fixed Interval-7(189)

Fixed Interval-30(44)

Fixed Interval-365(4)

Best Fits

0 1 2

Iterations

0

20

40

60

80

100

C
o
rc

o
n
d
ia

0

20

40

60

80

100

A
b

s
o

lu
te

 C
h

a
n

g
e

Corcondia and Absolute Change

78 5

Fixed Interval-7(189)

Fixed Interval-30(44)

Fixed Interval-365(4)

Figure 5.6: CP fit and CORCONDIA of best fit tensor & its absolute change at each
iteration for Enron Daily.

Chicago5 that records different types of crime committed in different areas of the city over

a period of time[81]. The tensor we create has modes (area, crime, timestamp), where

“community area” and “crime” are discretized by the city of Chicago and “timestamp” is

the coarsely aggregated (hourly) timestamp. The dates that we focused on span a period

of 7 years, between December 13, 2010 to December 11, 2017.

We ran IceBreaker++ on this dataset which of size 77× 32× 61321, and in right

most part of the Figure 5.8 we show its CORCONDIA for each iterations and we observe

that iterations 3, 4, 5 has high value of CORCONDIA, which would suggest they offer a

resolution with an exploitable structure. Iteration 1 and 2 also have decent CORCONDIA

value. Given these two range of CORCONDIA values, we decided to drill down and look

into the actual tensor components that can be extracted from those different tensors. In

the interest of space, we took the tensor returned by iteration 2 as X1, the tensor X2 and

5https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

74

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

0 1 2 3 4

Iterations

0

0.2

0.4

0.6

0.8

1

F
it

CP Fit

469

34
4

Input Fit (31680)

Fixed Interval-24(1320)

Fixed Interval-168(189)

Fixed Interval-720(44)

Best Fits

0 1 2 3

Iterations

0

20

40

60

80

100

C
o
rc

o
n
d
ia

0

20

40

60

80

100

A
b

s
o

lu
te

 C
h

a
n

g
e

Corcondia and Absolute Change

469

34

4

Fixed Interval-24(1320)

Fixed Interval-168(189)

Fixed Interval-720(44)

Figure 5.7: CP fit and CORCONDIA of best fit tensor & its absolute change at each
iteration for Enron Hourly.

tensor X3 returned by iteration 3 and 4 respectively. Tensor X1 contains three high-quality

components, whereas X2 and X3 contains two.

Figure 5.9, 5.10 and 5.11 shows sets of patterns6 for X1, X2 and X3 respectively:

interestingly, factor 1 of X1 and factor 1 of X2 pertain to the similar spatial and criminal

pattern. As shown in figure 5.10 and 5.11 we observed that both factors of tensor X2 and

X3 pertain to the similar spatial and criminal patterns. In summary, tensors X1, X2 and

X3 capture similar interpretable patterns over different temporal resolutions.

6We omit plotting the temporal mode since we lack external information that we can potentially correlate
it with, however, an analyst with such side information can find the different time resolutions of X1, X2 and
X3 useful.

75

0 1 2 3 4 5 6

Iterations

0

0.2

0.4

0.6

0.8

1

F
it

CP Fit

4189

1086

229

38
7

Input Fit (61321)

Fixed Interval-24(2556)

Fixed Interval-168(366)

Fixed Interval-720(86)

Fixed Interval-8640(8)

Best Fits

0 1 2 3 4 5

Iterations

0

20

40

60

80

100

C
o
rc

o
n
d
ia

0

20

40

60

80

100

A
b

s
o

lu
te

 C
h

a
n

g
e

Corcondia and Absolute Change

41891086

229 38 7

Fixed Interval-24(2556)

Fixed Interval-168(366)

Fixed Interval-720(86)

Fixed Interval-8640(8)

Figure 5.8: CP fit and CORCONDIA of best fit tensor & its absolute change at each
iteration for Chicago Crime Dataset.

Figure 5.9: Analyzing the Chicago data from Iteration-2 (X1)

.Chicago heatmap value ranges from 0.0 to 1.0

76

Figure 5.10: Analyzing the Chicago data from Iteration-3 (X2). Chicago heatmap value
ranges from 0.0 to 1.0

Comparison against fixed aggregation: A natural question is whether the results are

qualitatively “better” than the ones by a fixed aggregation. Answering this question heavily

depends on the application at hand, however, here we attempt to quantify this in the

following way: intuitively, a good set of components offers more diversity in how much of

the data it covers. For instance, a practitioner would prefer a set of results for the Chicago

crime dataset where the components span most of the regions of the city and uncover diverse

patterns of crime, over a set of components that seem to uncover a particular type of crime.

Even though there may be a number of confounding factors, aggregating on a regular time

interval may be very good in capturing periodic activity (in this example, crime that exhibits

77

Figure 5.11: Analyzing the Chicago data from Iteration-4 (X3). Chicago heatmap value
ranges from 0.0 to 1.0

normal periodicity that happens to coincide with the aggregation resolution we have chosen),

whereas aggregating adaptively may help discover structure that is more erratic and more

surprising. In order to capture this and test this hypothesis, we compute the coverage of

entities for the first and second mode of the tensor (i.e., areas of Chicago and crime types in

this example) in all the discovered components: for each component, we measure the top-k

entities, and through that we compute the empirical probability distribution of all entities

in the results. A more preferable set of results will have a higher coverage, resulting in a

distribution with higher entropy. In Table 5.3 we show the entropy for both modes 1 and

2 for IceBreaker++ and for the different fixed aggregations (averaged over 10 different

78

runs), where IceBreaker++ overall offers more diverse patterns in both space and criminal

activity.

5.5 Related Work

To the best of our knowledge, this is the first attempt at formalizing and solving

this problem, especially as it pertains in the tensor and multi-aspect data mining domain.

Nevertheless, there has been significant amount of work on temporal aggregations in graphs

[82, 83, 84] and in finding communities in temporal graphs [32]. In the graph literature, the

closest work to ours is [82], in which the authors looks at aggregating stream of temporal

edges to produce sequence of structurally mature graphs based on a variety of network

properties.

In the tensor literature, [5] are solving the inverse of this problem, where the

goal is to disaggregate a tensor. Concurrently to our work, Kwon et al. [49] develop a

streaming CP decomposition that works on the original granularity of the data, instead of

preprocessing the tensor in order to identify one or more optimal aggregations. We reserve

a full investigation of connections between our problem formulation and Kwon et al. [49]

for future work.

5.6 Contributions

Our contributions in this work are as follows:

• Novel Problem Formulation: We formally define the problem of optimally ag-

gregating a tensor, which is formed from raw sparse data in their original level of

79

aggregation, into a tensor with exploitable and interpretable structure. We further

show that solving this problem optimally is computationally intractable.

• Practical Algorithm: We propose a practical, efficient, and effective algorithm that

is able to produce tensors with exploitable structure from raw data without incurring

the combinatorial cost of the optimal solution. Our proposed method follows a greedy

approach, where at each step we decide whether different “slices” of the tensor are

aggregated based on a variety of intuitive functions that characterize the “goodness

of structure” locally.

• Experimental Evaluation: We extensively evaluate our proposed method on syn-

thetic, semi-synthetic data, and in real data where we use popular heuristic measures

of structure goodness to measure success. Furthermore, we conduct a data mining

case study on a large real dataset of crime over time in Chicago, where we identify

interpretable hidden patterns in multiple time resolutions.

80

Algorithm 4 IceBreaker

Require: Tensor X of dimension I × J ×K

Ensure: Tensor Y of dimension I × J ×K1and matrix W of size K1 ×K

1: i = 1; j = 2

2: previousV alue = UtilityFunction(X(:, :, i))

3: while j ≤ K do

4: currentV alue = UtilityFunction(sum(X(:, :, i : j), 3)

5: if previousV alue ⪋ currentV alue then

6: j = j+1 {Aggregate Slice}

7: else

8: {Create a New Slice}

Add a row in W with value as 1 for indices i to j − 1.

{Update indices for next candidate slice}

9: i = j; j = j + 1;

10: previousValue = UtilityFunction(X(:,:,i));

11: end if

12: end while

13: Y = X×3 W

14: return Y and W

81

Algorithm 5 IceBreaker++
Require: Tensor Y of dimension I × J ×K

Ensure: One Tensor for each iteration

1: while K ≤ 1 do

2: for all Uitlity Functions do

3: [Z, W] = IceBreaker (Y)

4: end for

5: Select Z with the best Realtive fit

{Third mode dimension}

6: K1 = size(X, 3)

7: if K1 == K then

8: break;

9: else

10: K = K1

11: Y = Z

12: end if

13: end while

14: return one Tensor for each iteration

82

It
er
a
ti
o
n

It
er
at
io
n

It
er
at
io
n

It
er
at
io
n

It
er
at
io
n

F
ix
ed

F
ix
ed

F
ix
ed

F
ix
ed

1
2

3
4

5
In
te
rv
al
-2
4

In
te
rv
al
-1
68

In
te
rv
al
-7
20

In
te
rv
al
-8
64

0

A
re
a

2
.8
5
5
4

2
.6
8
10

2.
58

5
0

2.
58

50
2.
58

50
2.
72

55
2.
58

50
2.
58

50
2.
58

50

C
ri
m
e

2
.8
7
8
3

2
.7
2
55

2.
25

1
6

2.
25

16
2.
08

50
2.
43

62
2.
25

16
2.
25

16
2.
11

83

T
a
b
le

5.
3:

E
n
tr
op

y
of

to
p
-3

co
m
p
on

en
ts

in
fa
ct
or
s
fo
r
ar
ea

an
d
cr
im

e
ty
p
e

83

Chapter 6

Harvester: Principled

Factorization-based Tensor

Temporal Granularity Estimation

Conventional Assumption:

Tensors created using raw data or fixed window aggregation have exploitable struc-

ture for analysis.

Contribution:

Harvester provides multiple tensors of aggregated resolution with high quality of

latent structure.

84

6.1 Introduction

Tensor decomposition methods have been used to find latent structures in multi-

modal data in a wide variety of applications like web link analysis [45], social network

analysis [8, 63], brain data analysis [2], health care data analysis [39, 75, 90] and many

more. When dealing with data that is temporal in nature, the granularity of data plays a

crucial role in determining its usability in any data mining or machine learning algorithms.

In applications like web mining, social networks or computer network analysis, if the data

is collected at very fine temporal granularity the resulting tensor can be extremely sparse

and noisy, in addition to being very high-dimensional. Unfortunately, tensors of that form

are typically not amenable to popular and widely-used tensor decompositions1, which seek

to identify low-rank latent structure in the data.

There is a considerable amount of work that deals with the temporal nature of

data in graphs [82, 83, 84] and tensors [32, 50]. In [32] authors try to learn overlapping

communities across times by imposing smoothness on the temporal mode motivated by the

fact that granularity may not be perfect; while in [50] the authors propose a data model and

family of online tensor decomposition (CP) algorithms which updates the factor matrices

of the CP decomposition in response to the new data point in the original granularity.

However these works are different from the problem we are trying to tackle in this work. In

this work, we seek the optimal aggregation of the temporal mode, which results in a tensor

with the highest “quality” of structure that can be extracted by tensor decomposition. Note

that extreme aggregation hides away the temporal information (and the model identifiability

1We use the terms “decomposition” and “factorization” interchangeably.

85

boost that comes with it), while no aggregation leaves us with very sparse and possibly noisy

data, which is not amenable to low-rank modeling. Hence the optimal level of aggregation

lies somewhere in between these two extremes, and our goal is to find it.

To circumvent the problem of having a long tensor in temporal mode and no ex-

ploitable structure, the most intuitive and widely-used approach is to aggregate the tempo-

ral mode using certain fixed window sizes. For example converting milliseconds to seconds,

seconds to minutes, minutes to hours, hours to days, and so on. This solution can work,

and has been serving tensor analysis of temporal data well for many years; however, there

are a few issues with it, which we seek to mitigate in our work. First, it requires a copious

amount of trial-and-error experimentation to evaluate what aggregation level works the best

for the given data and tensor decomposition method. Second, and more importantly, tensor

decomposition on these fixed size aggregated tensors may result in finding “good” latent

structures however there might exist more “natural” aggregation which does not follow any

fixed or arbitrary window size aggregations and might provide latent structures that are

missed because of fixed window aggregation. To tackle this problem, [69, 72] introduced

the problem Trapped Under Ice and provided a greedy solution called IceBreaker, which

iterates over the temporal mode and decides to aggregate two timestamps together or not

based on certain utility functions. [72] also introduced an IceBreaker++, which is recur-

sive algorithm based on IceBreaker, where output of one iteration of IceBreaker is

an input to the next iteration. So IceBreaker++ provides multiple candidate tensors of

different granularity which can be used for analysis or downstream tasks. This does find a

86

tensor which provides “good” quality structure however it takes multiple runs and is greedy

in nature. So the solution found might be a suboptimal one.

In this work, we introduce a principled way of finding an optimal aggregation of

the temporal mode. We take inspiration from [4, 5] which essentially tackles the inverse

problem to ours: given multiple views of an aggregated tensor in different modes (tempo-

ral and non-temporal), estimate the disaggregated tensor. Motivated by that approach,

we propose Harvester where we leverage multiple aggregated views of a tensor, derived

from the tensor in the original temporal granularity in the temporal mode, and define a

decomposition-based approach for recovering the best granularity.

6.2 Problem Formulation

6.2.1 Measures of low rank tensor decomposition quality

We take inspiration from [72, 69] and use the Core Consistency Diagnostic (COR-

CONDIA) [21] to measure the quality of the factors generated by CP decomposition. In

this work we also employ tensor completion [3, 53, 5] as an alternative way to measure the

quality of factors of tensor decomposition for a downstream task.

CORCONDIA: The Core Consistency Diagnostic was first introduced in [21]

as a new efficient way to discover the number of latent factors in the CP model. A CP

decomposition of a tensor X can be modelled as a restricted tucker3 model, if R1 = R2 =

R3 = F and factor matrices A,B,C are not orthogonal. The core tensor of the Tucker

model in that case is a super diagonal tensor. So if CP is a good model of the given data,

87

then the Tucker model for the same (now fixed) A,B,C should yield a core tensor G that

should be close to superdiagonal. The CORCONDIA criterion is computed as follows:

CORCONDIA = 100 ∗ (1−
∑F

i=1

∑F
j=1

∑F
i=1(G(i, j, k)− I(i, j, k))2

F
)

where G is the Tucker core tensor corresponding to the given A,B,C , and I is a tensor

with ones on its super diagonal.

Like matrix completion, Tensor Completion [3, 5, 53] is the task of predicting

missing values in data modelled as tensors. Tensor completion has been successfully used

in applications like recommendation systems, social networks, etc. In this work, we employ

tensor completion as one of downstream tasks to determine the usability of the aggregated

data model.

6.2.2 Problem Definition

Consider a tensor X ∈ RI×J×K which has extremely fine raw temporal granularity,

and is very long and sparse/noisy in the temporal mode (in this example we consider the

third mode as the temporal mode) which makes it ill-suited for compact modeling via CP

decomposition. Using the original granularity tensor X, we create multiple views which are

aggregated in the temporal mode given by Y1 ∈ RI×J×K1 and Y2 ∈ RI×J×K2 such that

K2 < K1 < K. Given only these views, we try to find an aggregated tensor Y ∈ RI×J×K∗

which has good “quality” tensor decomposition such that K∗ < K2 < K1 < K. Towards

this end, we need to make a reasonable assumption – see section 6.3 for details.

88

Given a tensor X ∈ RI×J×K and multiple view of the tensor X, Y1 ∈ RI×J×K1 and

Y2 ∈ RI×J×K2 , where K2 < K1 < K. Find an aggregated tensor Y ∈ RI×J×K∗ where

K∗ < K2 < K1 < K, such that its temporal mode latent factor matrix is an optimal

low-rank compression of the original temporal mode latent factor, while respecting the

temporal sequence of indices in that mode.

Creating Views: In this work, we focus on temporal data so the views are created

using some fixed window aggregation. For example if the original tensor X granularity is

seconds, some possible views for Y1 and Y2 can be of minute, hour, day, etc granularity.

We can create these views by using 3-mode product of tensor X with a matrix W. To give

a more concrete example, lets assume X is of size I ×J × 9 and if we want to aggregate the

third mode on some fixed window size, say 3, so W is of size 3× 9 and takes the form:

W =


1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1


The resulting tensor will be of size I ×J × 3, where the first 3 slices (1 to 3) are aggregated

into one slice, the next 3 slices (4 to 6) into a second slice and last three slices (7 to 9) into

the third slice. In this work, when we aggregate slices we add the values corresponding to

the same (i, j) indices, but, depending on the application, logical or can also be used as the

aggregation operator.

89

6.3 Proposed Method

In this section we present our optimization based solution to the transformed

version of the Trapped Under Ice problem introduced in [72]. Consider a three mode tensor

X ∈ RI×J×K where I, J denote the dimensions of the first two modes and K that of the

third mode which is temporal in nature and has fine granularity, making tensor X extremely

sparse and having no exploitable latent structure. The CP decomposition of tensor X for a

rank F is given by:

X ≈ JA, B, CK (6.1)

Where A ∈ RI×F , B ∈ RJ×F and C ∈ RK×F .

Let us assume there exists an oracle tensor Y, which has perfect latent structure,

which is created by the third mode-product of the tensor X with a matrix Wopt which has

special structure as specified in Section 6.2.2

Y = X×3 Wopt (6.2)

Wopt is of sizeKopt×K so the dimension ofY is I×J×Kopt, such thatKopt << K.

The CP decompositon of oracle tensor Y is given by

Y ≈ JA, B, CoptK (6.3)

where matrix Copt is of size Kopt × F

90

The key assumption we make is that C can be obtained by some dimensionality-

expanding linear transformation of the unknown (latent) Copt. This is tantamount to

assuming that there exists low rank matrix structure in the temporal mode.

C = MCopt (6.4)

where M ∈ RK×Kopt and M is a tall matrix.

We create m ≥ 2 views of tensor X as follows:

Y1 = X×3 W1 = JA, B, C1K; C1 = W1C (6.5)

Y2 = X×3 W2 = JA, B, C2K; C2 = W2C (6.6)

...

Ym = X×3 Wm = JA, B, CmK; Cm = WmC (6.7)

Before we formalize the problem, we need to address some issues regarding the

problem

1. Since we don’t have access to the oracle tensor Y we cannot directly estimate Copt.

2. Most importantly, we don’t know the size Kopt for the matrix Copt. Essentially we

don’t know what the perfect aggregation of the third mode is supposed to be. In

[4, 5], authors work on a problem where given different views of aggregated tensors,

they find the underlying disaggregated tensor, which is an inverse of our problem.

But they go from coarser to finer resolution, whereas we go the other way around –

and we do not know what is the “right” Kopt beforehand.

91

Thus, we seek to estimate C̃ as shown in the below equation 6.9, which is suppose

to be good approximation of Copt. Using equation 6.4 and the fact that Ci = WiC per

equations 6.5-6.7, we have,

Ci = WiMCopt (6.8)

In the above equation, we know Ci and Wi, but we do not know M and Copt – not even

Kopt. As a result, we do not know the product WiM. How can we bypass this seemingly

insurmountable challenge? We propose to bring in ideas from sparse regression. The idea

is to over-parameterize the product WiM as a new matrix variable Pi, and use a sparse

diagonal row-selection matrix to pick up the essential (reduced-dimension) row span of Copt.

In more detail, we approximate

Ci ≈ PiΛC̃ (6.9)

where Pi is of size Ki ×K, C̃ is of size K × F , and Λ is a sparse diagonal matrix of size

K ×K, whose zero entries are meant to strike out columns of Pi and corresponding rows

of C̃. The product PiΛ is a proxy for WiM, with the diagonal Λ effectively providing us

with a tall matrix of a priori unknown number of columns Kopt.

Using equation 6.9, we define our optimization problem as follows:

L = min
C̃,Pi,Λ

m∑
i=1

||Ci − PiΛC̃||2F + α||C̃T ||2F + β||Λ||1 + γ||Pi||2F (6.10)

We optimize equation 6.10 for matrices C̃, Λ and Pi. the sparsity or L-1 regularization

constraint on Λ is there to help reduce the granularity of the the C̃. The non-zero entries

in the diagonal of Λ control the final granularity of the resulting tensor.

Discussion: Since we are trying to find the best aggregation in the third mode and we

assume that there exists a low dimensional structure in that mode, one may ask why not

92

just perform singular value decomposition (SVD) on the third mode matricization of the

tensor and use the top-k right singular vectors as the basis for the aggregation, which would

yield the best compression in the least squares sense.

[U,S,V] = svd(X3)

Y = X×3 Vk

Y ≈ JA, B, CoptK

In our case, this does not solve the problem we set out to tackle, because even though there

may be low-rank structure in the temporal mode, captured by the aggregation matrix Vk,

this aggregation does not respect the temporal sequence of slices, therefore is not appropriate

for recovering the type of aggregation that solves our problem.

6.3.1 Proposed method: Harvester

In this section we present our methodHarvester to solve the problem in equation

6.10. We solve it using non negative multiplicative update (NMU) [51, 48] in an alternating

fashion. In this section we derive the update steps only using two views but this can easily

be extended to more views. Using tensor X we create two views for that tensor namely

Y1 and Y2 which have less resolution then the original tensor. To create these views we

multiply the third mode of the tensor with a W1 and W2 matrix.

Y1 = X×3 W1 (6.11)

Y2 = X×3 W2 (6.12)

We create a tensor Z by stacking tensor Y1 and Y2 onto one another hence making them

coupled in first two mode. The dimension of tensor Z is I × J × (K1 +K2). Then we per-

93

form CP decomposition on tensor Z which yields factor matrices need for our optimization

algorithm. We split factor matrix D into C1 and C2 based on their respective dimensions

as shown below:

Z = [Y1;Y2]

Z ≈ JA, B, DK

C1 = D(1 : K1, :)

C2 = D(K1 + 1 : K2, :)

(6.13)

We use equation 6.9 and 6.13 to create our optimization problem that follows from equation

6.10. The optimization steps to solve equation 6.14 are derived along the lines of [76].

L = min
C̃,P1,P2Λ

||C1 − P1ΛC̃||2F︸ ︷︷ ︸
f

+ ||C2 − P2ΛC̃||2F︸ ︷︷ ︸
g

+

α||C̃T ||2F + β||Λ||1 + γ||P1||2F + γ||P2||2F︸ ︷︷ ︸
h

(6.14)

The gradient of the loss function L in equation 6.14 with respect to C̃:

∂L
∂C̃

=
∂f

∂C̃
+

∂g

∂C̃
+

∂h

∂C̃

∂f

∂C̃
=

∂

∂C̃
(||C1 − P1ΛC̃||2F)

∂f

∂C̃
=

∂

∂C̃
Tr ((C1 − P1ΛC̃)(C1 − P1ΛC̃)T)

∂f

∂C̃
=

∂

∂C̃
Tr (C1C

T
1 −C1C̃ΛTPT

1 −P1ΛC̃CT
1 +P1ΛC̃C̃TΛPT

1)

∂f

∂C̃
= −ΛTPT

1 C1 −ΛTPT
1 C1 +ΛTPT

1 P1ΛC̃+ΛTPT
1 P1ΛC̃

∂f

∂C̃
= 2ΛTPT

1 P1ΛC̃− 2ΛTPT
1 C1

(6.15)

We can similarly derive ∂g

∂C̃
,

∂g

∂C̃
= 2ΛTPT

2 P2ΛC̃− 2ΛTPT
2 (6.16)

94

Gradient of h w.r.t C̃

∂h

∂C̃
=

∂

∂C̃
Tr (αC̃TC̃)

= 2αC̃

(6.17)

Combining equation 6.15, 6.16 and 6.17

∂L
∂C̃

= 2(ΛTP1
TP1ΛC̃+ΛTP2

TP2ΛC̃−ΛTP1
TC1 −ΛTP2

TC2 + αC̃) (6.18)

Setting ∂L
∂C̃

to zero and using non-negative multiplicative update method to compute update

step. ⃝∗ here represents element wise product and fraction equation below represents element

wise division.

C̃⇐ C̃⃝∗ ΛTP1
TC1 +ΛTP2

TC2

(ΛTP1
TP1Λ+ΛTP2

TP2Λ+ αI)C̃
(6.19)

The gradient of the loss function L in equation 6.14 with respect to P1 (or P2):

∂L
∂P1

=
∂f

∂P1
+

∂g

∂P1
+

∂h

∂P1

∂f

∂P1
=

∂

∂P1
(||C1 − P1ΛC̃||2F)

∂f

∂P1
=

∂

∂P1
Tr ((C1 − P1ΛC̃)(C1 − P1ΛC̃)T)

=
∂

∂P1
Tr (C1C

T
1 −C1C̃ΛTPT

1 −P1ΛC̃CT
1 +P1ΛC̃C̃TΛPT

1)

= −C1C̃
TΛT −C1C̃

TΛT +P1ΛC̃C̃TΛT +P1ΛC̃C̃TΛT

= 2(P1ΛC̃C̃TΛT −C1C̃
TΛT)

(6.20)

Gradient of g with respect to P1 is zero. Now computing gradient of h with respect to P1

∂h

∂P1
=

∂

∂P1
Tr (γP1P

T
1)

= 2γP1

(6.21)

Combining equation 6.20 and 6.21

∂L
∂P1

= 2(P1ΛC̃C̃TΛT − 2C1C̃
TΛT + 2γP1) (6.22)

95

Setting ∂L
∂P1

to zero and using non-negative multiplicative update method to compute update

step. Again ⃝∗ here represents element wise product and fraction equation below represents

element wise division.

P1 ⇐ P1 ⃝∗
C1C̃

TΛT

P1(ΛC̃C̃TΛT + γI)
(6.23)

We can compute update step for P2 similarly,

P2 ⇐ P2 ⃝∗
C2C̃

TΛT

P2(ΛC̃C̃TΛT + γI)
(6.24)

The gradient of the loss function L in equation 6.14 with respect to Λ:

∂L
∂Λ

=
∂f

∂Λ
+

∂g

∂Λ
+

∂h

∂Λ

∂f

∂Λ
=

∂

∂Λ
(||C1 − P1ΛC̃||2F)

∂f

∂Λ
=

∂

∂Λ
Tr ((C1 − P1ΛC̃)(C1 − P1ΛC̃)T)

=
∂

∂Λ
Tr (C1C

T
1 −C1C̃ΛTPT

1 −P1ΛC̃CT
1 +P1ΛC̃C̃TΛPT

1)

= −PT
1 C1C̃

T −−PT
1 C1C̃

T +PT
1 P1ΛC̃C̃T +PT

1 P1ΛC̃C̃T

= 2(PT
1 P1ΛC̃C̃T −PT

1 C1C̃
T)

(6.25)

We can similarly derive the derivative of g w.r.t. Λ,

∂g

∂Λ
= 2(PT

2 P2ΛC̃C̃T −PT
2 C2C̃

T) (6.26)

Next, Based on update steps in Section 2 of [48], we compute the Gradient of h w.r.t. Λ

∂h

∂Λ
=

∂

∂Λ
||βΛ||1

= βE

(6.27)

Where E is an matrix of all ones. We would like to reiterate that, although L-1 Norm is not

a differentiable function in the entirety of its domain and thus we must instead compute

96

its sub-gradient, the constraint of Non-Negativity on Λ allows us to circumvent that issue

and compute the gradient as long as values of Λ are not negative, which we guarantee by

initializing Λ as Non-Negative and following the non-negative multiplicative procedure to

ensure that each iterate turns out as non-negative, thereby fullfilling the criterion for dif-

ferentiablity.

The imposition of L-1 Penalty leads to sparsity [37] and the framework of Multiplicative

updates ensures non-negative iterates conditioned on non-negative initial values, thereby

yielding a sparse and non-negative Λ which accounts for interactions between latent dimen-

sions of adjacent factor matrices.

Combining equation 6.25, 6.26 and 6.27

∂L
∂Λ

= 2PT
1 P1ΛC̃C̃T − 2PT

1 C1C̃
T + 2PT

2 P2ΛC̃C̃T − 2PT
2 C2C̃

T + βE (6.28)

Setting ∂L
∂Λ to zero and using non-negative multiplicative update method to compute update

step. ⃝∗ represents element wise product and fraction equation below represents element

wise division.

Λ⇐ Λ⃝∗ 2P1
TC1C̃

T + 2P2
TC2C̃

T

2P1
TP1ΛC̃C̃T + 2P2

TP2ΛC̃C̃T + βE
(6.29)

Using the update steps that we derived in the equations 6.19, 6.23, 6.24 and 6.29, we present

our algorithm of Harvester in Algorithm 6.

Algorithm 6 return the matrices Λ, C̃, P1 and P2 which are needed to construct

the aggregated tensor. We can construct the aggregated tensor in the following ways:

Co = ΛC̃

97

Algorithm 6 Harvester
Input: C1, C2

Output: Λ, C̃,P1,P2

1: while Not Converged AND Max iteration not reached do

2: Update C̃ using equation 6.19

{making negative entries zero: Matlab notation}

3: C̃ = max(C̃, 0)

4: Update P1 using equation 6.23

5: Update P2 using equation 6.24 {making negative entries zero: Matlab notation}

6: P1 = max(P1, 0)

7: P2 = max(P2, 0)

8: Update Λ using equation 6.29

{making negative entries zero: Matlab notation}

9: Λ = max(Λ, 0)

10: end while

98

• We use one of the techniques from [72], namely norm aggregation and apply it to

matrix instead of tensor. Essentially we iterate over the rows of Co, add a candidate

row to previous row, if rate of change of norm between the previous row and sum of

previous and candidate row is more than a certain threshold. If not candidate row

becomes the previous row and process continues until we reach the end. We use that

norm aggregated matrix Cnorm to construct a tensor.

Wnorm = aggreagateOnNorm(Co, normThreshold)

Cnorm = WnormCo

Ynorm ≈ JA, B, CnormK

• Since Λ is not only a diagonal matrix but it’s also a diagonally sparse matrix, which is

used in update steps to turn off (zero out) the rows of C̃. We can just use those non

zero rows as anchor points to create a matrix Cspar which contains only the non-zero

rows of Co.

Wspar = aggreagateZeroRows(Co)

Cspar = WsparCo

Yspar ≈ JA, B, CsparK

We use tensors Ynorm and Yspar for evaluation.

99

6.4 Experimental Evaluation

In this section, we demonstrate the effectiveness of our method Harvester by

performing evaluation on variety of datasets: synthetic, semi-synthetic and real. We im-

plemented our method in Matlab using tensor toolbox [13] and for using CP-WOPT [3]

algorithm in tensor toolbox for tensor completion we make use of L-BFGS-B Matlab wrap-

per [15] which is based on L-BFGS [52].

Hyperparameter Tuning: Our problem formulation has three hyperparameter

which need to be tuned namely α, β and γ as in equation 6.14. We use different ranges for

the hyperparameters search space used in equation 6.14 based on the dataset, we specify

those ranges while discussing the results for those datasets in their respective sub sections.

We perform grid search over these values and choose two point from this grid search results

based on following conditions:

• Sparsity threshold: Number of non zero entries in diagonal of lambda(Λ) matrix is

less then some threshold. For synthetic dataset we set that threshold to be 1/10 of the

third dimension of tensor X. For example if input tensor of the size 100× 100× 500,

then the threshold is set at 500/10 = 50. This threshold can vary based on the dataset.

• Error threshold: From all the points that meets the above threshold condition, we

find median error and only consider points which have error less than that threshold.

After applying the above two thresholds, we choose two points one which has smallest error

on the loss function (min error point) and other one which has the lowest number of non-

zero entries in the diagonal of the lambda (Λ) matrix (min sparsity point) as shown in

100

figure 6.1 (two points which are marked as black). We use these two points for our analysis.

So for each of this point we create two tensors namely Ynorm and Yspar as mentioned in

previous section. In total Harvester produces 4 candidate tensor for evaluation namely

min error Ynorm, min error Yspar, min sparsity Ynorm, and min sparsity Yspar The result

presented in this work for our method Harvester will be of one or more of those points

unless specified otherwise.

0 200 400 600

Sparse Count

10
-2

10
-1

10
0

10
1

T
o
ta

l
lo

s
s

Total Loss vs Sparseness count of diagonal of Lambda

S
p

a
rs

e
 T

h
re

s
h

o
ld

Error Threshold

Figure 6.1: Total Loss vs. Sparseness Count of diagonal of Λ matrix for various hyperpa-
rameter settings.

6.4.1 Evaluation Metrics and Baseline

We evaluate our method Harvester on two model-based measure namely relative

fit of the model and CORCONDIA [21, 62] and also on a task-based measure on tensor

completion [3].

101

• Relative Fit of the model: We evaluate fit of a tensor for a particular rank given

by AUTOTEN [62] using CP NMU

Relative F it = 1−
(||XInput −Xcomputed||F

||XInput||F

)
(6.30)

• CORCONDIA: As explained in section 6.2.1, we use CORCONDIA to evaluate

quality tensor decomposition for given range of ranks. In this work we use CORCON-

DIA implemented in AUTOTEN [62] only using the frobenius norm version and also

we adapt it to use CP NMU instead of CP ALS implemented in tensor toolbox [13]

as we use non-negative factorization in our work. Higher the CORCONDIA, better

the ”quality” of the model.

• Tensor Completion: This can be viewed as task oriented evaluation, in which we

hide 20% of non-zero entries and use CP WOPT [3] for predicting the missing values.

And we report RMSE between the predicted and actual hidden values for the 20% of

entries which were marked as missing. Lower the RMSE better the performance on the

tensor completion task. For finding the Pareto boundary we instead use 1/RMSE.

Baseline: We compare our optimization based method Harvester against the

greedy based method IceBreaker++ [72], which introduced the problem of Trapped Under

Ice and provided a greedy approach to tackle the problem.

We also compare our method against fixed aggregations views generated from the

input tensor, which just aggregates the slices based on certain fixed window intervals.

102

6.4.2 Performance on synthetic datasets

We created the synthetic datasets in an similar fashion as mentioned in the [72].

We first create a sparse tensor of certain sparsity and then we distribute the non-zero entries

in each frontal slices X(:, :, k) over certain fixed number of slices(B). We repeat this for

every frontal slices in original tensor, every time distributing the non-zero entries to new

fixed bucket of slices(B) and concatenate all the buckets to create the dataset. Table 6.1

shows the different synthetic datasets used in the experiments. For example take SD1

(synthetic dataset 1), the original data is of size 100 × 100 × 10, all the non-zero entries

in the first slice X(i, j, 1) is randomly distributed over 50 slices in the third mode with the

same i, j indices. And we repeat this process of other 9 slices in the original tensor where

each slice distributed over new set of 50 slices. So finally we end up with a tensor of size

100× 100× 500 with high granularity and sparsity, which is then used for creating different

views of tensors Y1 and Y2.

We create 4 types of dataset as shown in table 6.1, for each type of dataset we create

10 datasets and we report our findings for these 40 datasets. Hyperparameter ranges used

are : for α we use the values [10−4, 10−3, 10−2], for β we use the values [10−2, 10−1, 100, 10]

and for γ we use the values [10−4, 10−3, 10−2].

Behavior of the Loss function

In figure 6.2, we show how does the loss function of our methodHarvester behave

with respect to iterations of the algorithms. Relative Error C1 and Relative Error C2 tracks

how does ||Ci − PiΛC̃||2F changes with iterations for both views. Total Relative Error is

103

D
at
a
se
t

O
ri
g
in
al

R
a
n
k

B
u
ck
et

A
p
p
ro
x
im

at
e

V
ie
w

1
V
ie
w

2
N
u
m
b
er

D
im

en
si
on

(X
o
g
)

(R
)

si
ze

(B
)

F
in
al

D
im

en
si
on

(
X
)

(Y
1
)

(Y
2
)

of
d
at
as
et
s

S
D
1

1
0
0
×
1
00
×
10

5
50

10
0
×
10

0
×
50

0
10

0
×
10

0
×
10

0
10

0
×
10

0
×
50

10

S
D
2

1
0
0
×
1
00
×
10

10
50

10
0
×
10

0
×
50

0
10

0
×
10

0
×
10

0
10

0
×
10

0
×
50

10

S
D
3

1
0
0
×
1
00
×
10

30
50

10
0
×
10

0
×
50

0
10

0
×
10

0
×
10

0
10

0
×
10

0
×
50

10

S
D
4

10
0
×
1
0
0
×
1
00

20
20

10
0
×
10

0
×
20

00
10

0
×
10

0
×
40

0
10

0
×
10

0
×
20

0
10

T
ab

le
6.
1:

T
ab

le
of

S
y
n
th
et
ic

D
at
as
et
s
an

al
y
ze
d

104

the sum of Relative Error C1 and C2. Total Error keep tracks of the total loss function as

defined in equation 6.14. To conserve space, we show results for only one dataset but we do

observe the similar behaviour with other datasets as well, depending on the values of the

hyperparameters.

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

Iteration

10
-4

10
-2

10
0

10
2

E
rr

o
r

Loss per iteration

Total Error

Total Relative Error

Relative Error C1

Relative Error C2

Figure 6.2: SD2: Different Loss vs. iterations of the algorithm for a particular set of
hyperparameter values

Effectiveness of Harvester on Synthetic Datasets

We evaluate the quality of our method Harvester and baseline method on the

three evaluation criteria as mentioned in section 6.4.1. We are seeking a tensor which

maximizes CP FIT, CORCONDIA and minimizes the RMSE for tensor completion (or

105

maximize 1/RMSE). This is essentially a multi-objective optimization problem, and a widely

accepted means of measuring optimality in this case is to identify points in that 3D space

which lie in the so-called Pareto frontier [54, 41], i.e., points which dominate the rest of

the points with respect to the three dimensions/objectives. To that effect, we find the

tensors which lie on the Pareto frontier of these evaluation metrics, and we count how

frequently a given method produces such tensors. The more frequently a method yields

tensors lying on the Pareto frontier, the better the quality of those tensors, thus, the higher

performing the method. We perform Pareto finding operation on all the data points obtained

using method Harvester, IceBreaker++, fixed aggregation views of the tensor which

we used with our method. Note that we find points lying on Pareto boundary using all

three dimensions of the data (i.e., CORCONDIA, Relative Fit and 1/RMSE), however, for

exhibition purposes, we show two scatterplots of pairs of dimensions at a time: In figure

6.3, we plot the CORCONDIA and CP FIT and in figure 6.4 we plot 1/RMSE and CP FIT

for all the methods for one dataset of type SD4. We highlight the Pareto frontier points

with diamond shape and red star is the original tensor(Xog). We do see that all the 4 points

found using Harvester lie on the Pareto frontier and 2 out of 5 points of IceBreaker++

lie on the Pareto frontier. Furthermore, none of the fixed aggregation point lie on the Pareto

frontier. In finding points that lie on the Pareto we didn’t include the original tensor point

since that was used to generate that fine granular dataset.

To measure the effectiveness of our method Harvester against baselines we count

the number of times each method is on the pareto frontier for all the synthetic datasets we

evaluated on and we present that information in table 6.2. We observe that points from

106

our method Harvester are always on the pareto boundary with variety of the synthetic

datasets. As shown in table 6.2, Harvester performs far better than the baseline methods.

In all of the synthetic datasets, we see that tensor generated by Harvester was found on

Pareto boundary. In SD4 IceBreaker++ did reasonably well, as it was on Pareto boundary

six times as opposed to Harvester which was on Pareto boundary for all ten datasets.

Dataset Original Approximate Harvester IceBreaker Views
Dimension (Xog) Final Dimension(X) Count Count Count

SD1 100× 100× 10 100× 100× 500 10 0 0

SD2 100× 100× 10 100× 100× 500 10 0 0

SD3 100× 100× 10 100× 100× 500 10 1 0

SD4 100× 100× 100 100× 100× 2000 10 6 0

Table 6.2: Table showing how many times each method was on the Pareto Boundary using
CORCONDIA, Relative CP fit and RMSE for tensor completion.

6.4.3 Performance on semi-synthetic data

We evaluate our methodHarvester and baseline methods on Enron email dataset

[77, 11] which consist of email sent between the 184 employees over 44 months. The size of

the dataset is 184×184×44, similarly as we did in creation of synthetic dataset we distribute

each matrix slice which represents a month over 30 days. The final input is of size 184×184×

1320, which is of daily aggregation. We create two views from this tensor, which are weekly

and biweekly of dimensions 184×184×189 and 184×184×95 respectively. Hyperparameter

range used are : for α we use the values [10−4, 10−3, 10−2, 10−1], for β we use the values

[10−5, 10−4, 10−3, 10−2, 10−1, 100] and for γ we use the values [10−4, 10−3, 10−2, 10−1].

107

0.2 0.4 0.6 0.8 1

CP Fit

40

60

80

C
o

rc
o

n
d

ia
Corcondia Vs Fit

Harvester - Pareto
IceBreaker++
IceBreaker++ - Pareto
Fixed Aggregation
Original Tensor

Figure 6.3: SD4: CP FIT vs. CORCONDIA

We compute CORCONDIA, CP FIT and RMSE for tensor completion for Har-

vester and baseline methods. Figure 6.5 and 6.6 shows the Pareto points on the COR-

CONDIA vs Fit plot and 1/RMSE vs Fit plot respectively. In this case we do observe

that Harvester lie on Pareto boundary. Both IceBreaker++ and fixed view aggregation

don’t lie on the Pareto frontier.

108

0.2 0.4 0.6 0.8 1

CP Fit

10
0

10
5

1
/R

M
S

E
1/RMSE Vs Fit

Harvester - Pareto
IceBreaker++
IceBreaker++ - Pareto
Fixed Aggregation
Original Tensor

Figure 6.4: SD4: CP FIT vs. (1/RMSE)

6.4.4 Ablation and Sensitivity Analysis

Are two compressed views enough?

In this section, we explore whether multiple views are more useful or the initial

fixed aggregation window used to create views. To explore this we use a single dataset of

type SD2 where the final dimension of a tensor X is 100 × 100 × 500, and then we create

three different initial conditions:

1. Two views Y1 and Y2 of dimensions 100×100×250 and 100×100×100 respectively.

2. Two views Y1 and Y2 of dimensions 100× 100× 100 and 100× 100× 50 respectively.

109

0.2 0.4 0.6 0.8 1

CP Fit

75

80

85

90

95

C
o
rc

o
n
d
ia

Corcondia Vs Fit

Harvester - Pareto
Harvester
IceBreaker++
Fixed Aggregation
Original Tensor

Figure 6.5: Enron: CP FIT vs. CORCONDIA

3. Three views Y1, Y2 and Y3 of dimensions 100 × 100 × 250, 100 × 100 × 100 and

100× 100× 50 respectively.

We run Harvester method on these three initial condition 5 times and we present those

results: CORCONDIA, Relative fit, RMSE for the tensor completion and third mode ag-

gregation in figure 6.7, 6.8, 6.9 and 6.10 respectively. All those results are average of 5 runs

with standard deviations.

Few observations on the results of this experiment:

• All of these tensors have good CORCONDIA score, the only tensors which have lower

CORCONDIA are tensors created using norm aggregation of min sparsity point.

110

0.2 0.4 0.6 0.8 1

CP Fit

10
0

10
5

1
/R

M
S

E
1/RMSE Vs Fit

Harvester - Pareto
Harvester
IceBreaker++
Fixed Aggregation
Original Tensor

Figure 6.6: Enron: CP FIT vs (1/RMSE)

• We see the similar behaviour with relative fit and RMSE as well. But realtive fit and

RMSE are reasonably good for all the tensors.

• Looking at figure 6.10, which shows the third mode dimension of the aggregated

tensors created by Harvester, we notice that all three points which are norm ag-

gregation of min sparsity point have third mode aggregation lower the original data

third mode (less than 10). Which is on par with our assumption that after some point

more aggregation doesn’t provide good solution.

• Lastly we observe tensors of different aggregation range have good CORCONDIA

score, fit and RMSE. Which is an indication of multiple candidate tensors with dif-

ferent aggregation level, which could be useful for analysis purposes.

111

This experiment does not provide supporting evidence for three views offering a

significant advantage over two views. However, we observe empirical evidence for the im-

portance of the initial condition (i.e., coarser 2-view vs. finer 2-view vs 3-view) coupled with

the aggregation criterion (i.e., min error or min sparsity), where it appears that different

initial conditions provide essentially different but valuable and high-quality resolutions.

Multi View - Corcondia

Min Erro
r:F

ine-2 views

Min Sparsity
:Fine-2 views

Min Erro
r:C

oarse-2 views

Min Sparsity
:C

oarse-2 views

Min Erro
r:3

 views

Min Sparsity
: 3

 views
0

20

40

60

80

100

C
o

rc
o

n
d

ia

Norm Agg

Spar Agg

Figure 6.7: Harvester: MultiView CORCONDIA

112

Multi View - Fit

Min Erro
r:F

ine-2 views

Min Sparsity
:Fine-2 views

Min Erro
r:C

oarse-2 views

Min Sparsity
:C

oarse-2 views

Min Erro
r:3

 views

Min Sparsity
: 3

 views
0

0.2

0.4

0.6

0.8

1
F

it

Norm Agg

Spar Agg

Figure 6.8: Harvester: MultiView Fit

Rank Sensitivity

In this section, we explore the sensitivity of our algorithmHarvester with respect

to different ranks. We run this experiment using a dataset of size 100× 100× 10 generated

using rank 10, which was then used to generate a fine grained tensor of size 100×100×500,

using the same method as described in section 6.4.2. In figure 6.11, 6.12 and 6.13 we report

mean and standard deviation of Corcondia, Relative fit and RMSE for the dataset over 5

runs. We do observe that Harvester has a steady pefromance for the initial rank increase

but further increase in the rank deteriorate some of the evaluation metrics. One more thing

we observe here is the tensor chosen based on minimum sparsity in the diagonal lambda

113

MultiView - RMSE

Min Erro
r:F

ine-2 views

Min Sparsity
:Fine-2 views

Min Erro
r:C

oarse-2 views

Min Sparsity
:C

oarse-2 views

Min Erro
r:3

 views

Min Sparsity
: 3

 views
-5

0

5

10

15

20

R
M

S
E

10
-3

Norm Agg

Spar Agg

Figure 6.9: Harvester: MultiView RMSE

and when we aggregate that point based on norm (min Sparsity Ynorm). It performs worst

of all the points chosen by harvester in this scenario.

6.4.5 Scalability Analysis

Scalability as the tensor dimensions grow

In this section we show the scalability analysis for Harvester as the third mode

grows, since Harvester depends on the views of the original tensor. We run Harvester

on the different settings one with coarser views and other one with finer views. In figure

114

MultiView - Third mode aggregation

Min Erro
r:F

ine-2 views

Min Sparsity
:Fine-2 views

Min Erro
r:C

oarse-2 views

Min Sparsity
:C

oarse-2 views

Min Erro
r:3

 views

Min Sparsity
: 3

 views
0

20

40

60

T
h

ir
d

 m
o

d
e

 d
im

e
n

s
io

n Norm Agg

Spar Agg

Figure 6.10: Harvester: MultiView CORCONDIA

6.14, we report time taken by harvester for both of this inputs. When third mode is smaller

both aggregation roughly take the same time, but as the dimension grows we see that

Harvester with coarser aggregation runs faster than the with finer aggregation.

We also evaluated scalability of Harvester against IceBreaker++. Figure 6.15

shows the time taken by each method. Since IceBreaker++ depends on the performance

of the utility functions, we ran IceBreaker++ with no missing value prediction utility

function as it’s the most time consuming of all the utility function used in that work.

We also ran IceBreaker++ with one iteration of missing value prediction utility function

as opposed to 10 times in the paper [72]. We compared it with Harvester with both

115

Rank Sensitivity - Corcondia

5 10 15 20 30

Different Ranks

0

50

100

C
o
rc

o
n
d
ia

minErrNormAgg

minErrSparAgg

sparsityNormAgg

sparsitySparAgg

Figure 6.11: Harvester Rank Sensitivity CORCONDIA on dataset: 100× 100× 10 rank 10

coarser and fine grained views. As shown in figure 6.15, Harvester is way faster than

IceBreaker++.

Scalability as the Harvester rank grows

In this section we evaluate the behaviour of Harvester as rank grows which is

used to compute the coupled tensor factorization to set up the problem with Ci’s. For an

input dataset to harvester of size 100×100×500 we ran it 10 times for each rank we report

the mean and standard deviation of time taken by harvester in figure 6.16. We observe that

Harvester scales linearly with respect to rank.

116

Rank Sensitivity - Fit

5 10 15 20 30

Different Ranks

0

0.5

1

F
it

minErrNormAgg

minErrSparAgg

sparsityNormAgg

sparsitySparAgg

Figure 6.12: Harvester Rank Sensitivity Fit on dataset: 100× 100× 10 rank 10

6.4.6 Real-world case study: Foursquare Dataset

We evaluated the efficiency of Harvester on real world dataset. For this purpose

we used the foursquare dataset2 [89] for check-ins in New York City collected over 10 months

from 12 April, 2012 to 16 February, 2014. We constructed a 3-mode tensor with user, venue

categories and time as the three modes where each entry in tensor is number of check-in for

a user for a particular venue category for a given day. We aggregated temporal mode on the

daily basis to create an input tensor and we used top 126 venue categories (venue categorises

which had more check-ins than the median check-in value of each categories). We, thus, end

up with a tensor of size 1083×126×250 (user, venue categories, days). We create two views

from the input tensor of size 1083× 126× 125 and 1083× 126× 50 respectively. These two

2https://www.kaggle.com/datasets/chetanism/foursquare-nyc-and-tokyo-checkin-dataset

117

https://www.kaggle.com/datasets/chetanism/foursquare-nyc-and-tokyo-checkin-dataset

Rank Sensitivity - RMSE

5 10 15 20 30

Different Ranks

-0.01

0

0.01

0.02

0.03
R

M
S

E
minErrNormAgg

minErrSparAgg

sparsityNormAgg

sparsitySparAgg

Figure 6.13: Harvester Rank Sensitivity RMSE on dataset: 100× 100× 10 rank 10

views were used by Harvester to find tensor of optimal granularity. Figure 6.17 shows the

plot for relative fit vs CORCONDIA for Harvester and baselines. In figure 6.18 plots the

relative fit vs 1/RMSE for Harvester and baselines. We see that only tensors generated

using Harvester are on the Pareto frontier.

The two points on the Pareto frontier areYnorm of size 1083×126×15 andYspar of

size 1083×126×48 created from the total minimum error point as mentioned in the starting

of section 6.4. Both of tensor were decomposed using rank 10, which was determined by

using AUTOTEN [62]. We decided to drill down onto those tensor generated with optimal

granularity using Harvester. In consideration of space we show some of the latent factors

for one of the tensors namely Ynorm, figure 6.19, 6.20, 6.21, and 6.22 shows the word cloud

for the top-50 venue categories and the temporal activity of the that factor. The date shown

118

250 500 1000 2000

Third Mode Dimesion

10
1

10
2

T
im

e
 i
n
 S

e
c
o
n
d
s

Scalability of Harvester

Coarser Aggregation
Fine Aggregation

Figure 6.14: Harvester Scalability analysis

on the x-axis of the temporal activity corresponds to the dates which were aggregated up

until that point from the previous date. In figure 6.19 corresponds to latent factor which

as highest venue category as ”Bar”, which make sense since bar is the one of the most

checked-in venues in the dataset. Figure 6.20 corresponds to the latent factor of restaurant,

foods and drink places. Figure 6.21 corresponds to the latent factor of park and outdoors,

and it has a temporal spike during spring season. Lastly the figure 6.22 corresponds to the

latent factor of coffee shops. Other latent factors corresponds for this tensor are Home (2nd

largest checked-in venue), Office (3rd largest checked-in venue), Gym & fitness center (5th

largest checked-in venue), Subway & Train Station(4th and 8th largest), Hotel, Resident

Building & Airport etc.

As a side note, without any external information about different events that co-

incide with the activity observed, we can only make speculations about the spikes and

119

250 500 1000 2000

Third Mode Dimesion

10
2

10
4

T
im

e
 i
n
 S

e
c
o
n
d
s

Scalability of Harvester vs IceBreaker++

Harvester Coarse Harvester Fine IceBreaker++ No MVP IceBreaker++

Figure 6.15: Harvester vs IceBreaker++ scalability analysis

fluctuations we observe in the temporal activity of different components. However, the

component corresponding to Figure 6.21 is rather intuitive, since most outdoors activities

in New York City flourish over the time where the spike is observed. Such an intuitive ex-

planation lends more credence to the quality of the components extracted. A platform like

Foursquare, or different vendors, however, can use such extracted components to understand

different spatio-temporal trends over the City, and potentially integrate those components

with other information (such as deals, specials, etc) which may not be available to us but

would certainly be available to vendors or Foursquare and would provide more tangible

information for time points where we discover different spikes of activity.

120

0 5 10 15 20 25 30 35

Ranks

0

10

20

30

40

50

T
im

e
 i
n
 S

e
c
o
n
d
s

Scalability of Harvester - Rank

Figure 6.16: Harvester rank scalability analysis

0 0.2 0.4 0.6 0.8 1

CP Fit

30

40

50

60

70

80

90

C
o
rc

o
n
d
ia

Corcondia Vs Fit

Harvester - Pareto
Harvester
IceBreaker++
Fixed Aggregation
Original Tensor

Figure 6.17: Foursquare: Fit vs. CORCONDIA

121

0 0.2 0.4 0.6 0.8 1

CP Fit

10
0

10
5

1
/R

M
S

E

1/RMSE Vs Fit

Harvester - Pareto
Harvester
IceBreaker++
Fixed Aggregation
Original Tensor

Figure 6.18: Foursquare: Fit vs. 1/RMSE

6.5 Related Work

There has been good amount of work when it comes to temporal edge aggregation

in graph literature [82, 83, 84]. There has been also been some work in tensor literature

to deal with temporal nature of the data [32, 50]. However these works deals with either

finding aggregating the temporal edges in the graph case or finding communities in temporal

graph and dealing with streaming tensor decomposition in tensor case. Our work does

take inspiration from [4] and [5], which solves the inverse problem of our problem. Given

aggregated data in one or two modes, they recover tensor in the original dis-aggregated

granularity. However closest to our work is [72, 70], which provides a greedy solution to the

adaptive aggregation in tensors problem. However to best of our knowledge we are the first

work to introduce a principled way to finding an optimal aggregation in the temporal mode

122

count

Bar
American Restaurant

Italian Restaurant

Mexican Restaurant

Music Venue

Pizza Place

Park

Movie Theater

Burger Joint

Clothing Store

Food & Drink Shop

Beer Garden

Diner

General Entertainment

Stadium

Café

French Restaurant

Ice Cream Shop

Theater

Airport

BBQ Joint

Performing Arts Venue

Seafood Restaurant

Sushi Restaurant

Gastropub

Thai Restaurant

Restaurant

Event Space

Convention Center

Food Truck

Cuban Restaurant

Salon / Barbershop

Hardware Store

Japanese Restaurant

Latin American Restaurant

Asian Restaurant

Spa / Massage

Ramen / Noodle House

Flea Market

Sandwich Place

Art Museum

Dessert Shop

Korean Restaurant

Furniture / Home Store

Steakhouse

Train Station

Hot Dog Joint

Art Gallery

Indian Restaurant

Burrito Place

03
-A

pr
-1

2

20
-A

pr
-1

2

12
-M

ay
-1

2

08
-J

un
-1

2

08
-J

ul
-1

2

14
-A

ug
-1

2

05
-S

ep
-1

2

16
-O

ct
-1

2

30
-O

ct
-1

2

16
-N

ov
-1

2

21
-N

ov
-1

2

08
-D

ec
-1

2

30
-D

ec
-1

2

13
-J

an
-1

3

28
-J

an
-1

3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
ti
v
it
y

Temporal Activity

Word Cloud - MinErr Norm Latent Factor:1

Figure 6.19: Foursquare: Word Cloud of Top 50 venue categories and Temporal Activity.
Latent factor seems to correspond to venue category: Bar

using aggregated views of the input data and formalizing it in terms of an optimization

problem.

6.6 Contributions

Our contributions in this chapter are as follows:

• Novel Problem Formulation: We provide a new and novel way to formulate the

problem in terms of a factorization problem which can be solved using optimization

techniques.

123

count

Deli / Bodega
Food & Drink Shop

Chinese Restaurant
Pizza Place

Gas Station / Garage

Salon / Barbershop

Bus Station

Caribbean Restaurant

Drugstore / Pharmacy

Government Building

Laundry Service
Building

Bakery

Bank

Movie TheaterGarden

Fried Chicken Joint

Latin American Restaurant

Arcade

Housing Development

Convenience Store
Clothing Store

Department Store

Electronics Store

Fast Food Restaurant

School

Restaurant

Library

Burger Joint Medical Center

Miscellaneous Shop
Bagel Shop

Donut Shop

Post Office

Residential Building (Apartment / Condo)

Food Truck

Other Great Outdoors

Cosmetics Shop

Diner

Sandwich Place

General Travel

BBQ Joint

Italian Restaurant

Ice Cream Shop

Paper / Office Supplies Store

Playground Church

Furniture / Home Store

Dessert Shop

Stadium

03
-A

pr
-1

2

20
-A

pr
-1

2

12
-M

ay
-1

2

08
-J

un
-1

2

08
-J

ul
-1

2

14
-A

ug
-1

2

05
-S

ep
-1

2

16
-O

ct
-1

2

30
-O

ct
-1

2

16
-N

ov
-1

2

21
-N

ov
-1

2

08
-D

ec
-1

2

30
-D

ec
-1

2

13
-J

an
-1

3

28
-J

an
-1

3
0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
ti
v
it
y

Temporal Activity

Word Cloud - MinErr Norm Latent Factor:3

Figure 6.20: Foursquare: Word Cloud of Top 50 venues and Temporal Activity - Latent
factor seems to correspond to venue category: Restaurant

• Efficient & Scalable Algorithm: We propose an efficient and scalable algorithm

called Harvester, which solves the formulated problem in alternating fashion using

non-negative multiplicative updates.

• Experimental Evaluation: We demonstrate the effectiveness of Harvester by

performing extensive experiments on synthetic, semi-synthetic and real datasets. In

evaluation, Harvester was preferred over the baseline for majority of the time.

124

count

Other Great Outdoors

Neighborhood
Park

Road
Bus Station

General Entertainment
General Travel

Drugstore / Pharmacy

Bridge

Medical Center

Mall

Scenic Lookout

City

Train Station

Beach

Government Building

Athletic & Sport

Miscellaneous Shop

Playground

American Restaurant

Food & Drink Shop

Stadium

Building

Moving Target

Paper / Office Supplies Store

Light Rail

Convenience Store

Bank

Plaza
Other Nightlife

Bakery

College Academic Building

Office

Housing Development

Donut Shop

Parking

Church

Harbor / Marina

Toy / Game Store

Restaurant

Post Office

Historic Site

Deli / Bodega

High School

Hot Dog Joint

Fast Food Restaurant

Department Store

Italian Restaurant

Diner

Ice Cream Shop

03
-A

pr
-1

2

20
-A

pr
-1

2

12
-M

ay
-1

2

08
-J

un
-1

2

08
-J

ul
-1

2

14
-A

ug
-1

2

05
-S

ep
-1

2

16
-O

ct
-1

2

30
-O

ct
-1

2

16
-N

ov
-1

2

21
-N

ov
-1

2

08
-D

ec
-1

2

30
-D

ec
-1

2

13
-J

an
-1

3

28
-J

an
-1

3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
ti
v
it
y

Temporal Activity

Word Cloud - MinErr Norm Latent Factor:6

Figure 6.21: Foursquare: Word Cloud of Top 50 venues and Temporal Activity - Latent
factor seems to correspond to venue category: Park and Outdoor

125

count

Coffee Shop
Food & Drink Shop

College Academic Building

Park

Clothing Store

Bakery

Medical Center

Sandwich Place

Café

Drugstore / Pharmacy
Mexican Restaurant

Burger Joint
Theater

Department Store

Building

Food Truck

Donut Shop

American Restaurant

School

Electronics Store

Movie Theater

Pizza Place

Bagel Shop

Residential Building (Apartment / Condo)

University

Church

Fast Food Restaurant

Playground

Airport

Italian Restaurant

Ice Cream Shop

Sushi Restaurant

Diner

Furniture / Home Store

Thai Restaurant

Ferry

Asian Restaurant

Breakfast Spot

Plaza

Bookstore

Laundry Service

Train Station

Cupcake Shop

Salon / Barbershop

Mall

Dessert Shop

Athletic & Sport

Vegetarian / Vegan Restaurant

Spa / Massage

Bridge

03
-A

pr
-1

2

20
-A

pr
-1

2

12
-M

ay
-1

2

08
-J

un
-1

2

08
-J

ul
-1

2

14
-A

ug
-1

2

05
-S

ep
-1

2

16
-O

ct
-1

2

30
-O

ct
-1

2

16
-N

ov
-1

2

21
-N

ov
-1

2

08
-D

ec
-1

2

30
-D

ec
-1

2

13
-J

an
-1

3

28
-J

an
-1

3
0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
ti
v
it
y

Temporal Activity

Word Cloud - MinErr Norm Latent Factor:9

Figure 6.22: Foursquare: Word Cloud of Top 50 venues and Temporal Activity - Latent
factor seems to correspond to venue category: Coffee Shop

126

Chapter 7

Conclusion

In this thesis, we revisited some of the conventional assumptions in tensor decom-

position domain and developed novel solutions for the problems arose from relaxing those

assumptions.

7.1 Summary

Hyperspectral Image Classification (Chapter 3): We developed a novel hy-

perspectral pixel classification model that employs tensor factorization to generate a new

feature space. Specifically, our method Orion exploits the multi-linear structure of the

tensor to find a richer space. We showcase the effectiveness of our method by conducting

experiments on publicly available hyperspectral image datasets where we compared Orion

against baseline methods like Kernel SVMs and Multi-layer Perceptrons. Orion is signifi-

cantly more accurate in a majority of the cases, even with limited training samples.

127

Concept Drift in Streaming Tensor Decomposition(Chapter 4): We intro-

duce the notion of “concept drift” in streaming tensors and developed an algorithm called

SeekAndDestroy, which detects and alleviates concept drift without making any assump-

tions about the rank of the tensor. SeekAndDestroy outperforms other state-of-the-art

methods when the rank is unknown and is effective in detecting concept drift.

Greedy Algorithm for Adaptive Granularity (Chapter 5): To the best of

our knowledge, this work is first to define and formalize the Trapped Under Ice problem

in constructing a tensor from raw sparse data. We demonstrate that an optimal solution

is intractable and subsequently proposed IceBreaker++, a practical solution that is able

to identify good tensor structure from raw data, and construct tensors from the same

dataset that pertains to multiple resolutions. Our experiments demonstrate the merit of

IceBreaker++ in discovering exploitable structure, as well as providing tools to data

analysts in automatically extracting multi-resolution patterns from raw multi-aspect data.

Factorization-based Granularity Estimation (Chapter 6): In this work we

developed a factorization-based tensor temporal granularity estimation algorithm called

Harvester, which provides a new framework to deal with the Trapped Under Ice problem.

Using multiple aggregated views of the input data we were able to find a tensor of opti-

mal aggregation which provide better utility latent factors for tensor decomposition. We

demonstrated using extensive experimentation that Harvester performs better than the

baselines and finds tensor which has “better” latent structure.

128

7.2 Future Work

There are several directions in which these works can be extended or build upon.

For instance we only investigated Orion (Chapter 3) in hyperspectral image data,

either Orion or some modified version of Orion can be used in other application like EEG

data, sensor data where a richer feature space is needed for classification.

In Chapter 4, we introduced an algorithm called SeekAndDestroy which keep

tracks of evolving latent factor only in one mode. However, there could be datasets which

can evolve in multiple mode (like spatio-temporal data). An interesting variation of this

problem would be to keep track of evolving latent factors based on two or more mode of

dataset evolving with time.

Another way to solve the problem presented in Chapter 4 to keep track of new,

overlap and missing latent factor can be to keep track of the subspace of the rank-1 latent

factor as the data grows larger.

Finally, Chapters 5 and 6 deal with finding optimal aggregation of the tensor

only in single mode (temporal mode). However a dataset can have poor granularity in

multiple modes. A naive way would be to use Harvester (or IceBreaker++) on each

mode separately until optimal aggregation is found in each mode. However more interesting

problem would be to use the information from multiple modes (or all the modes) to find an

optimal aggregation in all of the modes by exploiting multi-linear structure of the data.

129

Bibliography

[1] Chicago data portal. https://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-present/ijzp-q8t2.

[2] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent Yener. Mul-
tiway analysis of epilepsy tensors. Bioinformatics, 23(13):i10–i18, 2007.

[3] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. Scalable tensor
factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems,
106(1):41–56, 2011.

[4] Faisal M Almutairi, Charilaos I Kanatsoulis, and Nicholas D Sidiropoulos. Tendi: Ten-
sor disaggregation from multiple coarse views. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 867–880. Springer, 2020.

[5] Faisal M Almutairi, Charilaos I Kanatsoulis, and Nicholas D Sidiropoulos. Prema:
Principled tensor data recovery from multiple aggregated views. IEEE Journal of
Selected Topics in Signal Processing, 15(3):535–549, 2021.

[6] José Manuel Amigo, Marta J Popielarz, Raquel M Callejón, Maria L Morales, Ana M
Troncoso, Mikael A Petersen, and Torben B Toldam-Andersen. Comprehensive analysis
of chromatographic data by using parafac2 and principal components analysis. Journal
of Chromatography a, 1217(26):4422–4429, 2010.

[7] Charlotte Møller Andersen and Rasmus Bro. Practical aspects of parafac modeling
of fluorescence excitation-emission data. Journal of Chemometrics: A Journal of the
Chemometrics Society, 17(4):200–215, 2003.

[8] Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prith-
wish Basu, Ananthram Swami, Evangelos E Papalexakis, and Danai Koutra. Com2:
fast automatic discovery of temporal (‘comet’) communities. In Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining, pages 271–283. Springer, 2014.

[9] Brett W Bader, Michael W Berry, and Murray Browne. Discussion tracking in enron
email using parafac. In Survey of text mining II, pages 147–163. Springer, 2008.

130

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

[10] Brett W Bader, Richard A Harshman, and Tamara G Kolda. Analysis of latent relation-
ships in semantic graphs using dedicom. Technical report, Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States); Sandia . . . , 2006.

[11] Brett W Bader, Richard A Harshman, and Tamara G Kolda. Temporal analysis of
semantic graphs using asalsan. In Seventh IEEE international conference on data
mining (ICDM 2007), pages 33–42. IEEE, 2007.

[12] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.6. Available
online, February 2015.

[13] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 3.1. Available
online, June 2019.

[14] Marion F. Baumgardner, Larry L. Biehl, and David A. Landgrebe. 220 band aviris
hyperspectral image data set: June 12, 1992 indian pine test site 3, Sep 2015.

[15] Stephen Becker. L-bfgs-b-c. https://github.com/stephenbeckr/L-BFGS-B-C, 2015.

[16] Albert Bifet, Joao Gama, Mykola Pechenizkiy, and Indre Zliobaite. Handling concept
drift: Importance, challenges and solutions. PAKDD-2011 Tutorial, Shenzhen, China,
2011.

[17] José M Bioucas-Dias, Antonio Plaza, Gustavo Camps-Valls, Paul Scheunders, Nasser
Nasrabadi, and Jocelyn Chanussot. Hyperspectral remote sensing data analysis and
future challenges. IEEE Geoscience and remote sensing magazine, 1(2):6–36, 2013.

[18] José M Bioucas-Dias, Antonio Plaza, Nicolas Dobigeon, Mario Parente, Qian Du, Paul
Gader, and Jocelyn Chanussot. Hyperspectral unmixing overview: Geometrical, sta-
tistical, and sparse regression-based approaches. IEEE journal of selected topics in
applied earth observations and remote sensing, 5(2):354–379, 2012.

[19] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[20] Rasmus Bro. Parafac. tutorial and applications. Chemometrics and intelligent labora-
tory systems, 38(2):149–171, 1997.

[21] Rasmus Bro and Henk AL Kiers. A new efficient method for determining the num-
ber of components in parafac models. Journal of Chemometrics: A Journal of the
Chemometrics Society, 17(5):274–286, 2003.

[22] Gustavo Camps-Valls and Lorenzo Bruzzone. Kernel-based methods for hyperspec-
tral image classification. IEEE Transactions on Geoscience and Remote Sensing,
43(6):1351–1362, 2005.

[23] Gustavo Camps-Valls, Luis Gomez-Chova, Jordi Muñoz-Maŕı, Joan Vila-Francés, and
Javier Calpe-Maravilla. Composite kernels for hyperspectral image classification. IEEE
geoscience and remote sensing letters, 3(1):93–97, 2006.

131

https://github.com/stephenbeckr/L-BFGS-B-C

[24] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of “eckart-young” decomposition. Psychome-
trika, 35(3):283–319, 1970.

[25] Yi Chen, Nasser M Nasrabadi, and Trac D Tran. Hyperspectral image classification via
kernel sparse representation. IEEE Transactions on Geoscience and Remote sensing,
51(1):217–231, 2012.

[26] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao,
Cesar Caiafa, and Huy Anh Phan. Tensor decompositions for signal processing ap-
plications: From two-way to multiway component analysis. IEEE signal processing
magazine, 32(2):145–163, 2015.

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[28] Grupo de Inteligencia Computacional. Hyperspectral remote sensing scenes. http:
//www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes.

[29] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM computing surveys (CSUR),
46(4):1–37, 2014.

[30] Alexander FH Goetz, Gregg Vane, Jerry E Solomon, and Barrett N Rock. Imaging
spectrometry for earth remote sensing. science, 228(4704):1147–1153, 1985.

[31] Ehsan Goodarzi, Mina Ziaei, and Edward Zia Hosseinipour. Introduction to optimiza-
tion analysis in hydrosystem engineering. Springer, 2014.

[32] Alexander Gorovits, Ekta Gujral, Evangelos E Papalexakis, and Petko Bogdanov. Larc:
Learning activity-regularized overlapping communities across time. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1465–1474, 2018.

[33] Gisel Bastidas Guacho, Sara Abdali, Neil Shah, and Evangelos E Papalexakis. Semi-
supervised content-based detection of misinformation via tensor embeddings. In 2018
IEEE/ACM international conference on advances in social networks analysis and min-
ing (ASONAM), pages 322–325. IEEE, 2018.

[34] Ekta Gujral, Ravdeep Pasricha, and Evangelos E Papalexakis. Sambaten: Sampling-
based batch incremental tensor decomposition. In Proceedings of the 2018 SIAM In-
ternational Conference on Data Mining, pages 387–395. SIAM, 2018.

[35] Richard A Harshman et al. Foundations of the PARAFAC procedure: models and
conditions for an explanatory multimodal factor analysis. UCLA Working Papers in
Phonetics, 16:1–84, 1970.

[36] Johan H̊astad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644–654,
1990.

132

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

[37] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[38] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal
of the ACM (JACM), 60(6):1–39, 2013.

[39] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. Marble: high-throughput phenotyping
from electronic health records via sparse nonnegative tensor factorization. In Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 115–124, 2014.

[40] Gordon Hughes. On the mean accuracy of statistical pattern recognizers. IEEE trans-
actions on information theory, 14(1):55–63, 1968.

[41] Ali Jahan, Kevin L Edwards, and Marjan Bahraminasab. Multi-criteria decision analy-
sis for supporting the selection of engineering materials in product design. Butterworth-
Heinemann, 2016.

[42] Mohamad Jouni, Mauro Dalla Mura, and Pierre Comon. Hyperspectral image clas-
sification using tensor cp decomposition. In IGARSS 2019-2019 IEEE International
Geoscience and Remote Sensing Symposium, pages 1164–1167. IEEE, 2019.

[43] Nirmal Keshava and John F Mustard. Spectral unmixing. IEEE signal processing
magazine, 19(1):44–57, 2002.

[44] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[45] Tamara G Kolda, Brett W Bader, and Joseph P Kenny. Higher-order web link analysis
using multilinear algebra. In Fifth IEEE International Conference on Data Mining
(ICDM’05), pages 8–pp. IEEE, 2005.

[46] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 447–456, 2009.

[47] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly:
Tensor learning in python. Journal of Machine Learning Research (JMLR), 20(26),
2019.

[48] Denis Krompaß, Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Non-negative
tensor factorization with rescal. In Tensor Methods for Machine Learning, ECML
workshop, pages 1–10, 2013.

[49] Taehyung Kwon, Inkyu Park, Dongjin Lee, and Kijung Shin. Slicenstitch: Continuous
CP decomposition of sparse tensor streams. In 37th IEEE International Conference
on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pages 816–827.
IEEE, 2021.

133

[50] Taehyung Kwon, Inkyu Park, Dongjin Lee, and Kijung Shin. Slicenstitch: Continuous
cp decomposition of sparse tensor streams. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pages 816–827. IEEE, 2021.

[51] Daniel Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization.
Advances in neural information processing systems, 13, 2000.

[52] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1):503–528, 1989.

[53] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for
estimating missing values in visual data. IEEE transactions on pattern analysis and
machine intelligence, 35(1):208–220, 2012.

[54] Alexander V Lotov and Kaisa Miettinen. Visualizing the pareto frontier. In Multiob-
jective optimization, pages 213–243. Springer, 2008.

[55] Konstantinos Makantasis, Anastasios D Doulamis, Nikolaos D Doulamis, and Antonis
Nikitakis. Tensor-based classification models for hyperspectral data analysis. IEEE
Transactions on Geoscience and Remote Sensing, 56(12):6884–6898, 2018.

[56] Konstantinos Makantasis, Konstantinos Karantzalos, Anastasios Doulamis, and Niko-
laos Doulamis. Deep supervised learning for hyperspectral data classification through
convolutional neural networks. In 2015 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), pages 4959–4962. IEEE, 2015.

[57] Morten Mørup and Lars Kai Hansen. Automatic relevance determination for multi-
way models. Journal of Chemometrics: A Journal of the Chemometrics Society, 23(7-
8):352–363, 2009.

[58] Morten Mørup, Lars Kai Hansen, Christoph S Herrmann, Josef Parnas, and Sidse M
Arnfred. Parallel factor analysis as an exploratory tool for wavelet transformed event-
related eeg. NeuroImage, 29(3):938–947, 2006.

[59] Lichao Mou, Pedram Ghamisi, and Xiao Xiang Zhu. Deep recurrent neural networks
for hyperspectral image classification. IEEE Transactions on Geoscience and Remote
Sensing, 55(7):3639–3655, 2017.

[60] Dimitri Nion, Kleanthis N Mokios, Nicholas D Sidiropoulos, and Alexandros Potami-
anos. Batch and adaptive parafac-based blind separation of convolutive speech mix-
tures. IEEE Transactions on Audio, Speech, and Language Processing, 18(6):1193–
1207, 2009.

[61] Dimitri Nion and Nicholas D Sidiropoulos. Adaptive algorithms to track the parafac
decomposition of a third-order tensor. IEEE Transactions on Signal Processing,
57(6):2299–2310, 2009.

[62] Evangelos E Papalexakis. Automatic unsupervised tensor mining with quality assess-
ment. In Proceedings of the 2016 SIAM International Conference on Data Mining,
pages 711–719. SIAM, 2016.

134

[63] Evangelos E Papalexakis, Leman Akoglu, and Dino Ience. Do more views of a graph
help? community detection and clustering in multi-graphs. In Proceedings of the 16th
International Conference on Information Fusion, pages 899–905. IEEE, 2013.

[64] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Parcube:
Sparse parallelizable tensor decompositions. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 521–536. Springer, 2012.

[65] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Tensors
for data mining and data fusion: Models, applications, and scalable algorithms. ACM
Transactions on Intelligent Systems and Technology (TIST), 8(2):1–44, 2016.

[66] Evangelos E Papalexakis, Konstantinos Pelechrinis, and Christos Faloutsos. Location
based social network analysis using tensors and signal processing tools. In 2015 IEEE
6th International Workshop on Computational Advances in Multi-Sensor Adaptive Pro-
cessing (CAMSAP), pages 93–96. IEEE, 2015.

[67] Evangelos E Papalexakis, Nicholas D Sidiropoulos, and Rasmus Bro. From k-means to
higher-way co-clustering: Multilinear decomposition with sparse latent factors. IEEE
transactions on signal processing, 61(2):493–506, 2012.

[68] SungJin Park, Suan Lee, and Jinho Kim. Estimating revenues of seoul commercial
alley services using tensor decomposition & generating recommendation system. In
2020 IEEE International Conference on Big Data and Smart Computing (BigComp),
pages 287–294. IEEE, 2020.

[69] Ravdeep Pasricha, Ekta Gujral, and Evangelos Papalexakis. Adaptive granularity in
time evolving graphs as tensors. In Proceedings of the 16th International Workshop on
Mining and Learning with Graphs (MLG), 2020.

[70] Ravdeep Pasricha, Ekta Gujral, and Evangelos E Papalexakis. Adaptive granularity
in time evolving graphs as tensors. Ratio, 20(40):60.

[71] Ravdeep Pasricha, Ekta Gujral, and Evangelos E Papalexakis. Identifying and allevi-
ating concept drift in streaming tensor decomposition. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 327–343. Springer,
2018.

[72] Ravdeep Pasricha, Ekta Gujral, and Evangelos E Papalexakis. Adaptive granularity in
tensors: A quest for interpretable structure. arXiv preprint arXiv:1912.09009, 2019.

[73] Ravdeep S Pasricha, Pravallika Devineni, Evangelos E Papalexakis, and Ramakrishnan
Kannan. Tensorized feature spaces for feature explosion. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 6298–6304. IEEE, 2021.

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

135

[75] Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. Sparse hierarchical
tucker factorization and its application to healthcare. In 2015 IEEE International
Conference on Data Mining, pages 943–948. IEEE, 2015.

[76] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Tech-
nical University of Denmark, 7(15):510, 2008.

[77] Carey E. Priebe, John M. Conroy, David J. Marchette, and Youngser Park Park. Enron
data set, 2006.

[78] Nicholas D Sidiropoulos and Rasmus Bro. On the uniqueness of multilinear decom-
position of n-way arrays. Journal of Chemometrics: A Journal of the Chemometrics
Society, 14(3):229–239, 2000.

[79] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E
Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and
machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

[80] Nicholas D Sidiropoulos, Georgios B Giannakis, and Rasmus Bro. Blind parafac re-
ceivers for ds-cdma systems. IEEE Transactions on Signal Processing, 48(3):810–823,
2000.

[81] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. FROSTT: The formidable repository of open sparse tensors and tools,
2017.

[82] Sucheta Soundarajan, Acar Tamersoy, Elias B Khalil, Tina Eliassi-Rad, Duen Horng
Chau, Brian Gallagher, and Kevin Roundy. Generating graph snapshots from stream-
ing edge data. In Proceedings of the 25th International Conference Companion on
World Wide Web, pages 109–110, 2016.

[83] Rajmonda Sulo, Tanya Berger-Wolf, and Robert Grossman. Meaningful selection of
temporal resolution for dynamic networks. In Proceedings of the Eighth Workshop on
Mining and Learning with Graphs, pages 127–136, 2010.

[84] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S Yu. Graphscope:
parameter-free mining of large time-evolving graphs. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
687–696, 2007.

[85] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3):279–311, 1966.

[86] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean.
Characterizing concept drift. Data Mining and Knowledge Discovery, 30(4):964–994,
2016.

[87] Geoffrey I Webb, Loong Kuan Lee, François Petitjean, and Bart Goethals. Under-
standing concept drift. arXiv preprint arXiv:1704.00362, 2017.

136

[88] Alex H Williams, Tony Hyun Kim, Forea Wang, Saurabh Vyas, Stephen I Ryu, Kr-
ishna V Shenoy, Mark Schnitzer, Tamara G Kolda, and Surya Ganguli. Unsuper-
vised discovery of demixed, low-dimensional neural dynamics across multiple timescales
through tensor component analysis. Neuron, 98(6):1099–1115, 2018.

[89] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. Modeling user ac-
tivity preference by leveraging user spatial temporal characteristics in lbsns. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 45(1):129–142, 2014.

[90] Kai Yang, Xiang Li, Haifeng Liu, Jing Mei, Guotong Xie, Junfeng Zhao, Bing Xie, and
Fei Wang. Tagited: Predictive task guided tensor decomposition for representation
learning from electronic health records. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

[91] Kejing Yin, William K Cheung, Yang Liu, Benjamin CM Fung, and Jonathan Poon.
Joint learning of phenotypes and diagnosis-medication correspondence via hidden in-
teraction tensor factorization. In IJCAI, pages 3627–3633, 2018.

[92] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts,
methodologies, and applications. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 5(3):1–55, 2014.

[93] Shuo Zhou, Nguyen Xuan Vinh, James Bailey, Yunzhe Jia, and Ian Davidson. Accel-
erating online cp decompositions for higher order tensors. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1375–1384, 2016.

137

	List of Figures
	List of Tables
	Introduction
	Thesis Organization

	Preliminaries
	Preliminary Definitions

	Tensorized Feature Spaces for Feature Explosion
	Introduction
	Problem Definition
	Algorithm
	The Orion algorithm
	Intuition Behind Orion

	Experimental Evaluation
	Datasets
	Baseline Methods
	Results
	Discussion about Salinas-A and Salinas

	Related Work
	Contributions

	Concept Drift in Streaming Tensor Decomposition
	Introduction
	Problem Formulation
	Method
	Experimental Evaluation
	Experimental Setup
	Evaluation Metrics
	Baselines for Comparison
	Q1: Approximation Quality
	Q2: Concept Drift Detection Accuracy
	Q3: Sensitivity Analysis
	Q4: Effectiveness on Real Data

	Related Work
	Contributions

	Adaptive Granularity in Tensors: Problem Formulation and a Greedy Algorithm
	Introduction
	Problem Formulation
	Tensor decomposition quality
	The Trapped Under Ice problem
	Solving Trapped Under Ice optimally is hard

	Algorithms
	The IceBreaker algorithm
	Utility functions
	The IceBreaker++ algorithm

	Experimental Evaluation
	Evaluation measures
	Baseline methods
	Performance for synthetic data
	Performance for semi-synthetic data
	Data mining case study

	Related Work
	Contributions

	Harvester: Principled Factorization-based Tensor Temporal Granularity Estimation
	Introduction
	Problem Formulation
	Measures of low rank tensor decomposition quality
	Problem Definition

	Proposed Method
	Proposed method: Harvester

	Experimental Evaluation
	Evaluation Metrics and Baseline
	Performance on synthetic datasets
	Performance on semi-synthetic data
	Ablation and Sensitivity Analysis
	Scalability Analysis
	Real-world case study: Foursquare Dataset

	Related Work
	Contributions

	Conclusion
	Summary
	Future Work

	Bibliography

