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Controlling the viscosities of antibody solutions through control 
of their binding sites

Miha Kastelica, Ken A. Dillb, Yura V. Kalyuzhnyic, and Vojko Vlachya,*

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 
Ljubljana, Slovenia

bLaufer Center for Physical and Quantitative Biology and Departments of Physics and Chemistry, 
Stony Brook University, Stony Brook, NY 11794

cInstitute for Condensed Matter Physics, Svientsitskii 1, 79011 Lviv, Ukraine

Abstract

For biotechnological drugs, it is desirable to formulate antibody solutions with low viscosities. We 

go beyond previous colloid theories in treating protein–protein self–association of molecules that 

are antibody–shaped and flexible and have spatially specific binding sites. We consider 

interactions either through fragment antigen (Fab–Fab) or fragment crystalizable (Fab–Fc) 

binding. Wertheim's theory is adapted to compute the cluster–size distributions, viscosities, second 

virial coefficients, and Huggins coefficients, as functions of antibody concentration. We find that 

the aggregation properties of concentrated solutions can be anticipated from simpler–to–measure 

dilute solutions. A principal finding is that aggregation is controllable, in principle, through 

modifying the antibody itself, and not just the solution it is dissolved in. In particular: (i) 

monospecific antibodies having two identical Fab arms can form linear chains with intermediate 

viscosities. (ii) Bispecific antibodies having different Fab arms can, in some cases, only dimerize, 

having low viscosities. (iii) Arm–to–Fc binding allows for three binding partners, leading to 

networks and high viscosities.
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1. Introduction

Most of the therapeutics produced by today's biotechnology are monoclonal antibodies 

(mAbs). The current global market for biotechnological drugs is around $100 billion per 

year [1]. A principal challenge is to formulate liquid solutions that are sufficiently 

concentrated in antibodies to be efficacious, and yet sufficiently dilute and inviscid that 

patients can inject them into their bodies. Typical therapeutic mAbs formulations have 

concentrations around 100 mg/mL [2, 3], higher concentrations may yield prohibitively high 

viscosities. It is clear that the high viscosities of antibody solutions mostly arise from 

protein–protein interactions [4–14]. But, it is not yet clear how to rationally design 

formulations that can both maximize efficacy (protein concentration) and minimize viscosity 

[15, 16]. Here we propose a microscopic theory of antibody aggregation.

There are several previous modeling studies [17–22]. Because atomistic level molecular 

simulations are not practical for studying phase equilibria of these complicated systems, a 

traditional approach has been to treat protein aggregation using statistical mechanical 

theories for solutions of spherical charged particles [23–26]. And beyond simple small 

spherical proteins, antibodies too have been treated using these spherical–particle 

approaches [4, 5, 17], based on early hard–sphere theories [14, 27–29]; for review see [30]. 

We have recently found that an approach based on the Wertheim theories can satisfactorily 

handle orientation–dependent and short–ranged interactions between model molecules, 

giving good predictions of the phase behaviors in globular protein solutions [31– 33]. 

However, antibodies are more complex than globular proteins. Most similar in spirit to the 

present work is the approach of Schmit et al. [34]. Schmit et al use a binding–polynomial 

formulation to compute the clustering of featureless 2–arm particles that can link together 

into chains of different lengths. Then, they compute the viscosities of the few–particle 

clusters by using long–chain polymer entanglement theory.

Our approach here is different than those above in the following respects. First, we develop a 

structure–based theory. While simple proteins can often be approximated as spheres or 

featureless particles, antibodies, in contrast, are big, flexible and Y–shaped, and have 

interaction sites at particular locations on the Y. Second, we are able to treat a broader range 
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of situations than just 2–arm (monospecific antibodies) binding. For example, of recent 

interest are synthetic bispecific antibodies (bsAbs), where each arm of the Y can bind to a 

different epitope, or with a different affinity [35]. Bispecific antibodies are attractive for 

cancer immunotherapies, where one arm binds to the tumor cell, while the other arm binds 

to a natural killer T cell, bringing the killer cell close enough to destroy the tumor cell [36, 

37].

The present model is able to explore the aggregation properties of both monospecific, with 

two equal fragment antigen arms (Fab) and bispecific antibodies (unequal fragment antigen 

arms), as well as situations in which the Fc (fragment crystalizable) fragment is attractive. 

Third, we relate the viscosities to cluster distributions, building on the traditional solution 

theories of Einstein, Huggins, and Sudduth [38–40], rather than as entangled chains, since 

antibody clusters appear too small to be treatable as long–chain polymers. The results are 

presented for three different situations: (1) Monospecific mAbs, where the two Fab arms 

bind equally, and there is no binding to Fc. (2) Bispecific synthetic antibodies, where each 

Fab arm binds differently, and there is no binding to Fc region. And (3) Arms–to–Fc: Fab 

arms are identical, and either one of them can bind to Fc. Schematic illustration of clustering 

described above is shown in Fig. 1.

2. The 7–bead antibody model

Much of solution statistical mechanics tends to focus on spherical particles. However, 

Wertheim's theories [41–43] afford us an interesting opportunity for modeling more complex 

particle shapes. We model antibody solution in two steps, starting with a multi–component 

mixture of hard spheres (each sphere having diameter σ = 3 nm) that have different attractive 

interactions. Those spheres self–assemble into Y–shaped molecules, as if they were 

covalently linked; see Fig. 2.

First we define the short-range interactions between spheres i and j, uDD
(i j)(zDD), uEE

(i j)(zEE) as

exp [ − βuDD
(i j)(zDD)] − 1 ΩiΩ j

= (δi1 + δ1 j)(1 − δi j) ∑
m = 2

4
(δim + δm j) × KDD

(i j)δ(ri j − σ), (1)

exp [ − βuEE
(i j)(zEE)] − 1 ΩiΩ j

= (1 − δi1)(1 − δ1 j)(δi( j + 3) + δi( j − 3)) × KEE
(i j)δ(ri j − σ), (2)

where β = (kBT)−1 and T is the absolute temperature. Here rij denotes the distance between 

spheres of the type i and j, and Ωi, Ωj their orientations. zDD and zEE are the distances 

between sites D–D and E–E. Angular brackets 〈…〉Ω1Ω2 denote the orientation average, 

δ(…) is the Dirac delta function, and δij the Kronecker delta. Kronecker delta symbols 

within the curly brackets {…} provide rules for the intramolecular bond formations between 

the spheres i and j and sites D and E: 1D–D2, 1D–D3, 1D–D4, 2E–E5, 3E–E6, and 4E–E7 
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(six intramolecular bonds altogether). Note that each of the sites D and E can be bonded 

only once. Finally, the molecules modeling antibodies are formed upon enforcing the 

condition KDD
(i j) and KEE

(i j) ∞. Once this limit is taken, no dissociation to separate spheres is 

possible. Within Wertheim's thermodynamic perturbation theory [41–43] the model 

molecules are flexible; the only restriction is the sequence of “bonds”, Eqs. (1) and (2), 

connecting the hard spheres as shown in Fig. 2.

Second, those Y–shaped particles then form a model one–component fluid of molecules, 

interacting via short–range attractive potentials from their unsatisfied attractive sites; see 

Fig. 2b. The sites are labeled A (green), B (blue), C (red), D (orange) and E (black). Only 

sites of the same color can bond to each other. For example, spheres of type 1 assemble at 

the center of the molecule; it has 3 C sites, contacting other sphere types 2, 3, and 4. In the 

first stage of incipient assembly, type D–D and E–E bonds form to create the Y–shaped 

antibody molecules. If the number density of hard spheres of type i (i = 1 … 7) is ρi then the 

number ρ of antibody molecules is also equal to ρi. These sites allow intermolecular 

association. We can write the pair potential among model antibody molecules k and l, ukl, as

ukl( r k, r l) = ∑′
i = 1

7
∑′
j = 1

7
uhs

(i j)(ri j) + ∑
m = 5

7
∑

n = 5

7
δimδn juα(m)α(n)

(i j) (zα(m)α(n)) , (3)

where primes on the summation signs label the spheres composing antibody molecules k and 

l. Further, uhs
(i j)(ri j) is the hard–sphere potential, while the sums over m and n count the 

intermolecular interactions among A, B, and C. Notice that α(5) = A, α(6) = B, and α(7) = 

C. Similarly as above, zAA, zAB, zAC, zBB, zBC, and zCC designate the distances between the 

pairs of sites.

Interactions among sites A, B, and C in Eq. (3), uα(m)α(n)
(i j) , have a form of the site–site square 

well potentials:
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uα(m)α(n)
(i j) (zα(m)α(n)) =

m = 5, n = 5:
−εAA for zAA < ω,

0 for zAA ≥ ω,

m = 5, n = 6:
−εAB for zAB < ω,

0 for zAB ≥ ω,

m = 5, n = 7:
−εAC for zAC < ω,

0 for zAC ≥ ω,

m = 6, n = 6:
−εBB for zBB < ω,

0 for zBB ≥ ω,

m = 6, n = 7:
−εBC for zBC < ω,

0 for zBC ≥ ω,

m = 7, n = 7:
−εCC for zCC < ω,

0 for zCC ≥ ω,

(4)

where εAA, εAB = εBA, εAC = εCA, εBB, εBC = εCB, and εCC (all defined as positive) are 

their square–well depths, and ω their range. Attraction between the sites causes for the 

model antibodies to form clusters. Note that two Fab ends are named A and B, while C 

stands for Fc end. Clustering is possible through attractive Fab–Fab and Fab–Fc interactions.

3. Wertheim's thermodynamic perturbation theory

To calculate properties of the model fluid we use Wertheim's thermodynamic perturbation 

theory (TPT1) [41–43]. In this approach we decompose the Helmholtz free energy F in the 

ideal Fid, hard-sphere Fhs, and association term Fass:

βFid
V = ∑

i = 1

7
ρ[ ln (Λ3ρ) − 1] (5)

βFhs
V = 4η − 3η2

(1 − η)2 ρt (6)

βFass
V = ρ ln (XAXBXC) −

XA + XB + XC
2 + 3

2 − 6[ ln (ρσ3ghs
(py)) − 1] (7)

where Λ is the de Broglie thermal wavelength [44], ρt = 7ρ, η = πρtσ3/6, 

ghs
(py) = (1 + η/2)/(1 − η)2 is the Percus–Yevick expression for the contact value of the hard–
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sphere radial distribution function [45], and XA, XB, and XC are the fractions of the 

particles, which do not bond via sites A, B, and C, respectively. The fractions follow from 

the statistical–mechanical analogue of the mass action law [43]:

XA = (1 + ρΔAAXA + ρΔABXB + ρΔACXC)−1, (8)

XB = (1 + ρΔABXA + ρΔBBXB + ρΔBCXC)−1, (9)

XC = (1 + ρΔACXA + ρΔBCXB + ρΔCCXC)−1, (10)

where

Δi j = 4πghs
(py) ∫

σ

σ + ω

f i j(r)r2dr, (11)

f i j(r) = ( exp (βεi j) − 1)(ω + σ − r)2(2ω − σ + r)/(6σ2r), (12)

for i and j to be A, B, or C. Here f̄ij(r) is the orientation average of the Mayer function for the 

square–well site–site interaction [46]. The orientation average is taken over all possible 

positions of sites A, B, C, D, and E on the beads. This introduces certain flexibility into the 

model, as indicated in Fig. 2.

Note that the association free energy, Eq. (7), contains the intermolecular association term 

and six intra–molecular terms each equal to [ ln (ρσ3ghs
(py)) − 1]. Osmotic pressure Π is now 

readily available using standard thermodynamic relations [44]. The second virial coefficient 

B2, quantifying the binary solute–solute interaction in dilute solutions, is defined as

βΠ
ρ = 1 + B2ρ + O(ρ2), (13)

and can be obtained from this expression at low number densities ρ. Note again that ρi 

stands for the number density of individual spheres i = 1 … 7, being equal to the number 

density of the antibody molecules ρ. It is necessary to emphasize that such models are only 
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applicable in the domain of concentrations and pH values where proteins do not undergo 

major conformational changes [47, 48].

4. Fractions of nonbonded sites determine the solution properties

4.1. Modeling monospecific antibodies: both A and B arms bind identically, and C does not

The simplest possible case to examine is the one where the sites A and B are physically 

identical so εAA = εAB = εBB. Fab sites interact only in–between (there is no interaction 

with Fc site) so: εAC = εBC = εCC = 0. The quantity which completely determines the n–

distribution, H(n, γ), and weight fraction distribution, P(n, γ), is the fraction of molecules, 

not bonded through site A, XA (XA = XB). From polymer physics it follows [49]

H(n, γ) = XA(1 − XA)n − 1, (14)

In addition to H(n, γ), we also defined the average cluster size, 〈n〉, as [49]

〈n〉 = ∑
n = 1

∞
nH(n, γ), (15)

and obtain the exact result,

〈n〉 = 1
XA

. (16)

Note that P(n, γ) and H(n, γ) are related as 〈n〉P(n, γ) = nH(n, γ) and normalized: 

∑n = 1
∞ P(n, γ) = ∑n = 1

∞ H(n, γ) = 1.

4.2. Modeling bispecific antibodies: sites A and B bind differently, and C does not

Distinction among sites A and B can be introduced in several ways. Here we select for εAA 

≠ εBB and for the cross interaction to be zero; εAB = 0. As before, there is no interaction 

with Fc region. The n–distribution H(n, γ) is now determined not only by XA but also by the 

value of XB. Clusters of size n can be terminated by two A sites (A⋯A), by one A and one B 

site (A⋯B), or two B sites (B⋯B), depending on the parity of the n–mer cluster. If n is odd, 

only A⋯B terminated clusters are possible. For even n, the cluster starts and ends with same 

type of site. The n–distribution, H(n, γ), depends on the cluster parity [49]
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H(n, γ) = 〈n〉
1
2[(1 − XA)(1 − XB)](n − 2)/2 × [XA

2 (1 − XB) + XB
2 (1 − XA)] for even n,

XAXB[(1 − XA)(1 − XB)](n − 1)/2 for odd n,
(17)

where

〈n〉 =
2(XA + XB − XAXB)

XA
2 (1 − XB) + XB

2 (1 − XA) + 2XAXB
. (18)

In this case P(n, γ) and H(n, γ) as also 〈n〉 depend on values of εAA and εBB.

4.3. Modeling the Fab–Fc association

Here we assume that the sites A and B are bonded equally strongly to the C site (εAC = εBC) 

while all the other site–site attractions are set to zero. From the mass–action law, Eqs. (8), 

(9), and (10), we obtain the relation XC = 2XA − 1. Three attractive interactions per antibody 

molecule allow formation of clusters with branched topology. Similarly as above in 4.1 and 

4.2 we can obtain the n–distribution H(n, γ) and examine 〈n〉. Following Rubinstein and 

Colby [49], we write

H(n, γ) = (2n)!
n!(n + 1)! (1 − XA)n − 1XA

n + 1, (19)

and, in the next step, also the analytical result for 〈n〉,

< n > = 1
2XA − 1 = 1

XC
. (20)

In this example both distributions as also < n > depend solely on εAC = εBC value.

5. Solution viscosity depends on the antibody cluster–size distribution

Standard theories give the viscosity, η, of a solution as a polynomial function of the mass 

concentration γ of the solute particles (mg of protein per mL of solution) [39, 49],

η/η0 = 1 + [η]γ + kH[η]2γ2 + O(γ3) . (21)
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On the one hand, we give this expression here in order to define standard quantities of 

colloidal solutions, which we will use later. η0 is the viscosity of solvent, [η] is the intrinsic 

viscosity, kH is the Huggins constant [39, 49], while higher terms are of order γ3. On the 

other hand, polynomial function in this form is not sufficient for systems of associating 

particles, such as antibody solutions. To establish the connection between the cluster size 

and viscosity we assume that an increase of the mass concentration of the cluster with n 
antibody molecules dγn, contributes to the relative increase of viscosity dη/η as

dη
η = ∑

n = 1

∞
f (n)dγn . (22)

The one-component version of Eq. (22), which was originally proposed by Sudduth [40], is 

generalized here to account for the presence of clusters (n > 1). For f(n) we adopt the form:

f (n) = cnd, (23)

where c and d are adjustable parameters. This functional form is suggested by the 

experimental observations [34, 50], indicating a strong increase of solution viscosity for 

mAb concentrations above 90 mg/mL. Note that f(n) depends solely on the number of 

molecules involved, n, and not on their spatial distribution in the cluster. Increments of dγn 

depend on the total mass concentration of antibodies, γ, and the P(n, γ), which is the mass–

weighted probability of finding an antibody molecule as a part of n–mer (i.e. a cluster 

containing n antibody molecules), as

γn = γP(n, γ) . (24)

Integration of Eq. (22) yields an expression for η of the form

ln η
η0

= ∑
n = 1

∞
γ f (n)P(n, γ) . (25)

6. Viscosity increases as power law of the antibody concentration

First, we computed solution viscosities for case described in 4.1 above (monospecific 

antibodies) so we set εAA = εAB = εBB. We fit the model calculations to the experimental 

data of Schmit et al [34] for the antistreptavidin IgG1 monoclonal antibody, as functions of 

concentrations of protein, added NaCl, pH, and temperature of the solution. The mass 

concentration of solution is γ = M2ρ/NA, where NA is Avogadro's number and M2 = 142, 

000 g/mol is the molar mass of the antistreptavidin IgG1. Other parameters are obtained as 
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follows: (i) we assume that range of interaction ω roughly equals the hydrogen bond length 

[31], so ω = 0.18 nm for all the experimental conditions studied here. (ii) We obtain the 

energy depths εAA and constants c and d in Eq. (23) by fitting to the experimental data [34]. 

Note that interaction energies define the fractions of the particles which do not bond via sites 

A, B, and C. This is the only information we need for further calculations. The resulting 

values of the parameters c and d are c = 0.01205 mL/mg and d = 0.3762, while εAA is taken 

to depend on solution conditions (pH and salt concentration but not temperature). εAA 

ranges from 32.8 to 37.9 kJ/mol, where larger values mean stronger attraction. Viscosity data 

for γ = 0, that is η0, are included in fit. Overall, we use 18 parameters to fit 96 experimental 

curves. Details of the fitting procedure are given in Section “Monospecific antibodies: 

Extraction of εAA from experimental data” of SI. The results, Fig. 3 and Fig. S1 of SI, show 

that viscosity increases sharply with protein concentration. And, with a few exceptions, the 

solution viscosities increase more rapidly with higher salt (NaCl) content and at higher pH 

values. Using Eq. (21) and the fit shown by the lines in Fig. 3 and Fig. S1, we obtained a 

value for the intrinsic viscosity, of [η] = (12.05 ± 0.05) cm3/g for all solution conditions. The 

value is close to the range from 7.0 to 11.5 cm3/g, observed in experimental studies on 

human, bovine, and pig IgG dissolved in aqueous solutions [51]. These values are higher 

than for globular proteins, where [η] ranges from 2.5 to 5.0 cm3/g, reflecting the sizes and 

shapes of the antibodies.

The model gives a microscopic explanation for the dramatic increases in viscosity. In Fig. 4 

we see the cluster–size distributions vs. antibody concentration and for different salt 

concentrations. The main conclusions is that, higher protein and salt concentrations (as also 

pHs) lead to larger average cluster sizes. Fig. 5 presents a normalized version of this 

observation. We define the fractional contribution of n–mers to the viscosity as

ξ(n, γ) = γ f (n)P(n, γ)
ln (η/η0) = f (n)P(n, γ)

∑n = 1
∞ f (n)P(n, γ)

. (26)

Fig. 5 shows how the cluster size distribution shifts with antibody concentrations. At low 

concentrations, clusters contain only 1–3 antibody molecules apiece. At higher 

concentrations, the most probable clusters contain about 3–5 molecules. In the left panel of 

Fig. 5 we see that at γ = 60 and 110 mg/mL, the largest contribution to viscosity comes from 

monomers, followed by dimers, trimers, and higher n–mers. At high protein concentration, 

where γ = 160 mg/mL, the contribution of monomers ξ(1, γ) is about the same as those of 

dimers. The high viscosity case, shown on the right panel of this figure, is more complex. In 

this example the ξ(n, γ) functions show the extrema, the positions of which depend on the 

protein concentration γ. Beyond a certain n value, the clusters make negligible contributions 

to viscosity. For the left panel this value is ten and for the right one n > 20. For the right 

panel we also calculated the position of maximum at different γ values. By applying the 

condition,
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[∂ξ(n, γ)/ ∂n]γ = 0, (27)

we obtain the term np

np = − (d + 1)/ ln (1 − XA), (28)

giving the largest contribution to the histogram. Because d is in our case merely a number 

(see Eq. (23)) equal to 0.3762, the fraction of non–bonded antibodies XA, or alternatively 

〈n〉 (see Eq. (16)), determine np for all the conditions, where such an extreme exists. In the 

high viscosity limit, where XA ≪ 1, we obtain the following approximate result: np ≈ 1.4 < 

n >.

7. High–concentration aggregation properties can be predicted from low–

density experiments

Exploring aggregation can be challenging because measuring properties in high–

concentration solutions can be quirky, slow and technique–limited. On the other hand, 

measurements done on dilute solutions are often simpler, quicker, and also more reliable. So, 

it is of interest to know if antibody aggregation properties can be predicted from dilute–

solution measurement. In a well–known example, this objective was achieved by George and 

Wilson [52], and then others [53–56], for predicting protein crystallization. George and 

Wilson showed a correlation between crystallization conditions (the high–concentration 

behavior) and the second virial coefficient, B22 (the low–concentration, pairwise–interaction 

behavior). They introduced the idea of “crystallization slot”, i.e. a region of B22 values 

between −20 × 10−5 and −80 × 10−5 cm3 mol g−2 [52], where protein crystallization is most 

likely to occur. B22 is defined through McMillan–Mayer osmotic virial equation [57],

Π
γRT = 1

M2
+ B22γ + O(γ2), (29)

where Π is the osmotic pressure, M2 the molar mass of protein and R the gas constant. B22 

can be obtained from the Eq. (29) at low mass concentrations γ and is related to B2 in Eq. 

(13) as B22 = B2NA/M2
2. The concept of “crystallization slot” has been experimentally 

confirmed for lysozyme, BSA, ovalbumin, and other globular proteins with molar masses 

around 14 kDa. For larger proteins with molar mass around 140 kDa, Haas [58] and co–

workers suggested for the “crystallization slot” values ranging between −4 × 10−5 and −9 × 

10−5 cm3 mol g−2. This finding is of interest for us because many antibodies [11, 12, 59], 

including the one studied in this work, have molar masses in this range.
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7.1. Monospecific antibodies have identical binding arms

First, we show that two dilute–solution properties that reflect protein–protein pair 

interactions – the Huggins constant, kH and the second virial coefficient B22 – are closely 

related to each other, across a range of temperatures. Fig. 6 (left panel) shows excellent 

theoretical correlation between kH and B22. Note that both parameters B22 and kH are valid 

for dilute protein solutions, in our case this is up to 90 mg/mL. On the right panel of Fig. 6 

we show the viscosity of antistreptavidin IgG1 solutions studied at γ = 150 mg/mL and 

correlate them with corresponding B22 values from the left panel ( ). We supplement these 

data with the correlation between η and B22 measurements of Saito et al [59] for three 

subclasses of IgG1 antibodies at γ = 150 mg/mL and T = 20 °C: mAb–A (●), mAb–B (×), 

and mAb–C (Δ). The results indicate that B22 measurements, though in principle only apply 

to low protein concentration, contain important information about viscosity of concentrated 

solutions. This finding is confirmed by the recent work of Tomar el at [16], stating that large 

positive second osmotic coefficient is a good indicator of the low viscosity of antibody 

solutions up to 150 mg/mL.

7.2. Bispecific antibodies have two different binding arms. Each arm contributes differently 
to viscosity

Next we consider the aggregation of bispecific antibodies described in Section 4.2. The two 

arms, A and B, are not equal, so εAA ≠ εBB, and we assume εAB = 0. We call this Fab–Fab' 

association. Further, the binding energies are expressed in terms of r, the degree of 

asymmetry of the interactions,

εAA = ε0(1 + r), (30)

εBB = ε0(1 − r), (31)

where r takes on values from 0 (symmetric case) to 1. We set ε0 equal to 37.8 kJ/mol, which 

is the value for the site–site energy extracted from Fig. 3, for the case with highest viscosity 

(150 mM NaCl, pH = 6.5). Notice that while r varies the total strength of interaction, εAA + 

εBB, is kept constant. The calculation applies to T = 10 °C, while other potential parameters 

remain unchanged, ω = 0.18 nm, c = 0.01205 mL/mg, and d = 0.3762.

Fig. 7 (left panel) shows the predicted viscosities of bispecific antibodies as a function of 

both protein concentration and of the asymmetry of the arm interactions. The figure shows 

two points. First, it shows that when r = 0 (Fab arms are symmetrical), the viscosity 

increases sharply with concentration. Second, more interestingly, it shows that when r = 1 

(εAA = 2ε0 and εBB = 0, very different arm interactions), the antibody solutions are 

predicted to have much lower viscosities. The interpretation is clear. For r = 0 model 

antibodies can link to each other through two linkage sites (both arms), leading to networks 

of two–armed multi–antibody clusters, like chains of people at a party. In contrast, bispecific 
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antibodies in case that r = 1, can only link through a single arm, leading to clusters that are 

never bigger than dimers. The P(n, γ) distribution for this case (r = 1) drops from 1 to 0 for n 
= 1 and rises from 0 to 1 for n = 2 as soon as γ > 0. P(n, γ) distributions for intermediate 

values of r (0 ≤ r ≤ 1) are shown in the SI in Fig. S3.

Here is an implication for antibody design. Normally, for biological efficacy, it is desirable 

that both arms of an antibody bind to an epitope, either for monospecific or bispecific 

antibodies. And, normally the objective, for bispecific antibodies, is to bind well to two 

different epitopes. But, consider now a situation in which it would be sufficient for the 

biology to have an antibody that binds to only one epitope through only a single Fab arm. To 

explore this quantitatively, we introduce the quantity Q = γ/(η/η0), which is the ratio 

between the concentration of antibody and its relative viscosity, with units mg of protein per 

mL of solution. Now the ratio Q(r, γ)/Q(r = 0, γ) gives the performance (efficacy divided by 

viscosity) of a bispecific antibody with asymmetry r relative to a model antibody with r = 0. 

When Q(r, γ)/Q(r = 0, γ) > 1, it means that using the second arm for viscosity control has 

paid off in allowing for greater concentrations, while Q(r, γ)/Q(r = 0, γ) = 1 implies no 

benefit in this regard.

In Fig. 7 (right panel) we investigate the effect of degree of asymmetry r on Q(r, γ)/Q(r = 0, 

γ). For r > 0 and for γ > 40 mg/mL we observe strong increase of the Q(r, γ)/Q(0, γ) ratio. 

At even higher γ values, small deviations of r from zero substantially increase this ratio. For 

example, changing r from 0 to 0.2 at γ = 120 mg/mL increases the Q(r, γ)/Q(r = 0, γ) ratio 

from unity to around 1.5, while the corresponding viscosity (η/η0) decreases from 9.5 to 7.0 

as seen from the left panel in Fig. 7. Bispecific antibodies thus meet two important criteria 

for therapeutic applications: (i) they have low viscosity, and (ii) because higher 

concentrations can be used, their biological activity is enhanced. Note that in our theory the 

probability for the site on one Fab arm does not depend on the occupancy of the site on the 

other Fab arm. Violation of this assumption would change the results for Q.

7.3. When Fc is also attractive, the viscosity increases dramatically

Here, we consider again a situation of monospecific antibodies, in which the two arms are 

equally attractive. But now in addition, we allow for the possibility that the Fc site can also 

stick to either Fab arm. So we set εAC = εBC (as before equal to 37.8 kJ/mol), while all the 

other site–site attractions are equal to zero, see also Section 4.3 for details.

Summarizing, we find that these solutions have very high viscosity. Fig. 8 compares this to 

the earlier calculations above. This three–fold comparison is simple to interpret. In arms–to–
Fc binding each antibody molecule has three attractive arms, so it can link to three 

neighboring antibody molecules. It can form highly connected branched networks, resulting 

in high viscosities. The P(n, γ) distributions for these solution conditions are given in Fig. 

S4 of SI. In monospecific binding, antibodies can, at most, link together as linear chains, 

leading to intermediate viscosities. In bispecific binding, antibodies can preferebly link 

together as dimers, leading to lower viscosities. In all three cases η/η0 rises with γ. For low 

protein concentration (up to 60 mg/mL), the differences between these three curves are 

small. At higher γ values the curves start to deviate strongly from each other. Under 

equivalent conditions the bispecific antibodies (green curve) appear to have the lowest 
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solution viscosity. They are followed by the symmetric Fab–Fab case (red curve). In view of 

the solution viscosity, the worst scenario is the Fab–Fc association (blue curve). The reason 

for high viscosity in this case lyes in the fact that, because three sites are involved, branched 

clusters can be formed. Such antibodies are not good candidates for therapeutic use and 

should be avoided by synthesis. The three scenarios are illustrated in Fig. 8.

8. Conclusions

Monoclonal antibodies constitute a major form of modern therapeutics. These biological 

drugs are usually formulated and delivered as highly concentrated solutions of antibody 

molecules. The problem is that such solutions tend to aggregate and have high viscosities. 

Unfortunately it is not understood how such solution aggregation properties are encoded 

within the molecular energies and locations of the attractive sites on the antibody molecules. 

In the present model, seven spherical particles self–assemble first into Y–shaped model 

antibody molecules, which then further self–assemble to form antibody clusters. We adapt 

the Wertheim theory of strongly associating liquids to calculate measurable properties. We 

used the data of Schmit et at [34] and our model to analyze viscosity measurements as 

functions of antibody concentration, pH, temperature and added sodium chloride 

concentration.

We study three situations: Monospecific: two identical Fab arms that are attractive. 

Bispecific: the two Fab arms have different attractive potential. Arms–to–Fc: two identical 

Fab arms and Fc are all attractive. The conclusion is that the arms–to–Fc case gives the 

highest viscosities because each molecule can link to three neighbors, forming dense 

networks (top curve of Fig. 8). The monospecific case (the middle curve) has lower 

viscosities because each molecule can link only to two neighbors, leading to linear chains. 

The bispecific case (the bottom curve) has the lowest viscosity since (in the limiting case, 

where r = 1) each molecule can link to only one neighbor. A general point here is that 

antibody solutions can be tailored to have different aggregation properties by tinkering with 

the antibody molecules themselves, rather than current strategy of tinkering with their 

formulation solutions.

The present study provides an additional evidence that coarse–grained models can be, in 

conjunction with Wertheim's theory, useful in interpreting experimental data of protein 

solutions. The model can in principle be extended in a spirit of our previous study [60] to 

include ions and water molecules explicitly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We model the aggregation properties of antibodies in aqueous solutions.

• In difference with previous theories the model molecules have a realistic (Y-

like) shape and flexibility.

• Wertheim's theory is adapted to analyse the measurements.

• The aggregation can be controlled through modifying the antibody itself: bi-

specific antibodies have lower viscosities than the monospecific ones.
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Figure 1. 
Three types of antibody clustering studied in this work: top (1) Monospecific 2–arm binding, 

middle (2) Bispecific 1–arm binding, and bottom (3) Arms–to–Fc binding.
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Figure 2. 
a) Hard spheres form model antibody molecules through intramolecular sites D (orange) and 

E (black). b) Once the molecules are formed, they interact via the intermolecular sites A, B, 

and C. For better visualization the interaction sites A, B, C, D, and E are enlarged. Possible 

movements of the beads are on panel b) indicated by arrows. Notice that similar movements 

below and above the plane of the paper are possible. In this figure A and B sites represent 

Fab (fragment antigen–binding) regions and C the Fc (fragment crystalizable) region.
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Figure 3. 
Comparison of experimental data [34] (symbols) with the results of our model analysis 

(lines). NaCl concentrations are 0, 50, 100, and 150 mM, pH values studied here 5.0, 5.5, 

6.0, 6.5, while the temperatures vary from 10 °C (top–blue) to 35 °C (bottom–red) in 

increments of 5 °C. The site–site interaction range ω is fixed to 0.18 nm for all calculations, 

while εAA varies from panel to panel. The data presented here are merely a part of the 

complete fit shown in Fig. S1.
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Figure 4. 
P(n, γ) for different cluster size n (1 denotes the monomer, 2 dimer, … etc; up to decamer 

denoted by 10) as a function of the protein mass concentration γ at 10 °C. (i) Left panel 

shows the low viscosity trends – no salt present, pH = 5.0, and (ii) the right panel presents 

the high viscosity trends – concentration of added NaCl is 150 mM, pH = 6.5; see also Fig. 

3.
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Figure 5. 
Histogram of relative contributions of n–mers, ξ(n, γ), to viscosity at 10 °C; Eq. (26). 

Results are presented for three antibody concentrations: (i) γ = 60 – green, (ii) 110 – blue, 

and (ii) 160 mg/mL – red. Left panel: pH = 5.0, no salt added. Right panel: pH = 6.5, 

concentration of added NaCl is 150 mM, see also Fig. 4.
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Figure 6. 
Left panel: theoretical correlation of the Huggins constant kH, Eq. (21), and the second virial 

coefficient B22, for the conditions of Fig. 3 and Fig. S1 – colors from cold to hot correspond 

to different temperatures. Note that both quantities are valid for dilute protein solutions, in 

our case this is up to 90 mg/mL. Right panel: correlation between the viscosities and second 

virial coefficients, B22, at T = 20 °C and γ = 150 mg/mL. (i) η–B22 theoretical correlation 

for antistreptavidin IgG1 solutions studied above: viscosities ( ) correspond to fits in Fig. 3 

and Fig. S1 and are correlated with B22 values from the left panel for solutions with different 

pH and concentration of NaCl. The green line is the best least–square fit through the data. 

(ii) experimentally measured correlation of Saito et al [59] for mAb–A (●), mAb–B (×), and 

mAb–C (Δ) solutions. Black lines serve to guide the eye.
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Figure 7. 
Left panel: relative viscosity η/η0 decreases sharply as the energies of the attractive sites A 

and B start to deviate from each other; that is for r > 0. Right panel: normalized quality 

factor Q(r, γ)/Q(r = 0, γ) as a function of protein concentration γ and degree of asymmetry 

r. Asymmetry r > 0 increases Q(r, γ)/Q(r = 0, γ) rapidly for γ > 100 mg/mL.
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Figure 8. 
Relative viscosity η/η0 as a function of antibody concentration γ for three scenarios studied 

so far. From bottom to top: (i) model of bispecific antibodies at the degree of asymmetry r = 

0.2 ( ), ε0 = 37.8 kJ/mol, see Eqs. (30) and (31); (ii) symmetric Fab–Fab model of 

antibodies ( ), εAA = εAB = εBB = 37.8 kJ/mol; and (iii) model of interacting Fab–Fc 

terminals ( ), εAC = εBC = 37.8 kJ/mol. Other parameters are ω = 0.18 nm, c = 

0.01205 mL/mg, and d = 0.3762. Calculations apply to T = 10 °C.
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