
UC Berkeley
UC Berkeley Previously Published Works

Title
Formal Analysis of AI-Based Autonomy: From Modeling to Runtime Assurance

Permalink
https://escholarship.org/uc/item/0q02f9xx

ISBN
978-3-030-88493-2

Authors
Torfah, Hazem
Junges, Sebastian
Fremont, Daniel J
et al.

Publication Date
2021

DOI
10.1007/978-3-030-88494-9_19
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0q02f9xx
https://escholarship.org/uc/item/0q02f9xx#author
https://escholarship.org
http://www.cdlib.org/


Formal Analysis of AI-Based Autonomy:
From Modeling to Runtime Assurance?

Hazem Torfah1, Sebastian Junges1, Daniel J. Fremont2, and Sanjit A. Seshia1

1 University of California, Berkeley, USA
{torfah,sjunges,sseshia}@berkeley.edu
2 University of California, Santa Cruz, USA

dfremont@ucsc.edu

Abstract. Autonomous systems are increasingly deployed in safety-
critical applications and rely more on high-performance AI/ML-based
components. Runtime monitors play an important role in raising the
level of assurance in AI/ML-based autonomous systems by ensuring that
the autonomous system stays safe within its operating environment. In
this tutorial, we present VerifAI, an open-source toolkit for the formal
design and analysis of systems that include AI/ML components. Ver-
ifAI provides features supporting a variety of use cases including for-
mal modeling of the autonomous system and its environment, automatic
falsification of system-level specifications as well as other simulation-
based verification and testing methods, automated diagnosis of errors,
and automatic specification-driven parameter and component synthesis.
In particular, we describe the use of VerifAI for generating runtime
monitors that capture the safe operational environment of systems with
AI/ML components. We illustrate the advantages and applicability of
VerifAI in real-life applications using a case study from the domain of
autonomous aviation.

1 Introduction

In recent years, there has been an increase in autonomous and semi-autonomous
systems operating in complex environments and relying on artificial intelligence
(AI) and machine learning (ML) components to perform challenging tasks in
perception, prediction, planning, and control. However, the unpredictability and
opacity of AI/ML-based components has hindered the deployment and adoption
of autonomous systems in safety-critical applications. To raise the level of as-
surance in autonomous systems, it is thus important to understand under which
environment conditions the behavior of an AI/ML-based component is trusted
to keep the system in a safe state. Runtime monitors can help monitor environ-
ment conditions to maintain situational awareness, and are also useful for tasks
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such as hardware failure detection, sensor validation, performance evaluation,
and system health management. Thus, runtime monitors are indispensable in
the deployment of autonomy in cyber-physical systems (CPS).

Developing techniques to automatically construct runtime monitors that ac-
curately capture the safe operating conditions of AI/ML-based components is
a key challenge in the quest for safe and reliable autonomous systems [40]. It
is particularly important to capture conditions that ensure that system-level
safety specifications are met. Traditionally, monitors are constructed from for-
mal specifications given in some logical formalism, which poses a problem in the
setting of autonomous systems: while the requirements on the system are typi-
cally well-understood and easily formalized, the conditions on the environment
under which the system will be correct are not (fully) known. Consider, for ex-
ample, an ML-based perception module in an autonomous car used for tracking
speed signs. The perception module is trained on a data set of labeled images of
signs, but correct behavior of the module may depend on other factors such as
the velocity of the car or the weather. Analyzing the module in isolation with
this data set does not tell us anything about its behavior under such environment
factors. One instead needs to construct a model of the system’s environment and
its other components, and analyze the behavior of the module in that context.
There is an urgent need for a systematic approach for understanding at design
time how AI/ML-based components behave in complex environments, and from
this analysis, constructing reliable runtime monitors that ensure AI/ML-based
components are only executed under their safe operation conditions.

In this tutorial, we present such an approach based on VerifAI [11], an
open-source toolkit for the formal design and analysis of systems that include
AI or ML components. We explore the various features of VerifAI through
its capabilities of generating runtime monitors for capturing the safe operation
environment of AI/ML-based components. VerifAI provides multiple features
including (i) formal modeling of autonomous systems and their environment;
(ii) formal specification of AI-based autonomous systems; (iii) falsification, fuzz
testing, and other simulation-based runtime verification methods; (iv) computa-
tional methods for diagnosing and explaining the success and failure of AI/ML-
based autonomous systems; (v) specification-driven synthesis of parameters for
AI-based autonomy, and (vi) techniques for runtime monitoring and assurance.
We present the complete pipeline of VerifAI, from modeling the environment
of a system to generating the corresponding runtime assurance modules.

VerifAI follows a data-driven approach to learning monitors. Data is gen-
erated using VerifAI’s simulation-based runtime verification techniques. Ver-
ifAI allows us to analyze AI/ML-based components using system-level specifi-
cations. To scale to complex high-dimensional feature spaces, VerifAI operates
on an abstract semantic feature space. This space is typically represented using
Scenic, a probabilistic programming language for modeling environments [17].
Using Scenic, we can define scenarios, distributions over spatial and temporal
configurations of objects and agents, in which we want to deploy and analyze a
system. By simulating the system in the different sampled scenes and applying



the formal analytical backends of VerifAI, we can create the training data sets
needed for building the monitors.

Once the training data is created, specialized algorithms for learning different
types of monitors can be applied. We discuss the different types of learning
algorithms for learning monitors from data. These vary from exact algorithms to
statistical approaches such as PAC-based learning algorithms with their passive
and active variants. We discuss the advantages and disadvantages of the these
algorithms with respect to our setting.

VerifAI has been applied in several real case studies including with indus-
trial partners (e.g., see [19, 16]). We report on one case study from the domain of
autonomous aviation, in collaboration with Boeing [16]. We analyzed TaxiNet, an
experimental autonomous aircraft taxiing system developed by Boeing for the
DARPA Assured Autonomy project. In a previous effort using VerifAI [16],
we falsified the system, diagnosed root causes for a variety of identified failure
cases, and generated synthetic data to retrain the system, eliminating several
of these failures and improving performance overall. In this paper, we build on
this case study to describe the automated pipeline needed for the construction
of runtime monitors for AI/ML-based systems and illustrate the advantages and
applicability of VerifAI in generating such monitors.

Outline. The rest of this paper is organized as follows. We start with a motivating
example from the domain of autonomous aviation. In Section 3 we present the
general architecture of VerifAI and its ability to model environments using the
Scenic language. Section 4 introduces the process of generating data for learning
runtime monitors. In Section 5 we discuss and compare the different types of
data-driven monitor learning algorithms and discuss some of the monitors we
learned with these algorithms. In Section 6 we integrate the monitors into an
architecture for runtime assurance. We conclude with a discussion of important
desiderata for runtime monitors and directions for future work.

2 Motivating Example: Autonomous Aircraft Taxiing

Consider the scenario of an airplane taxiing along a runway depicted in the
images in Figure 1. This scenario is based on a challenge problem provided
by Boeing in the DARPA Assured Autonomy program. The plane is equipped
with a perception module, a deep neural network called TaxiNet, that based on
images captured by a camera mounted on the plane estimates the cross-track
error (CTE), i.e., the left-right offset of the plane from the centerline of the
runway. The estimated values are forwarded to a controller that adjusts the
steering angle of the plane in order to track the centerline.

The deep neural network is a black box, with no further information provided
about what images were used to train the network nor any knowledge about
potential gaps in the training set and corresponding potential failure cases. Our
goal is to construct and equip the system with a monitor that captures the
conditions under which the deep neural network is expected to behave correctly



Fig. 1. Example input images to TaxiNet, rendered in X-Plane, showing a variety of
lighting and weather conditions [16].

and alert the system about any violation to switch in time to more trustworthy
safe components (such as human control).

Many factors can influence the behavior of the deep neural network, and
often are not considered in the training process. For example, while TaxiNet
was trained on images, its behavior may depend on high-level parameters such
as weather conditions (like overcast or rain), time of day, the initial airplane
position and heading on the runway, the frequency of skid marks on the ground,
or the velocity of the airplane. We refer to these factors as semantic features
(discussed further in the next section). For our goal, these features must be
measurable and monitorable at run time.

Once we fix the semantic features which we intend to use to monitor the
neural network, the next step is to establish a connection between values of these
semantic features and the value of a system-level specification. For example, the
system-level specification could be one requiring that the CTE value should
not be larger than 2.5 meters over more than 10 time steps. A monitor for
validating the performance of the deep neural network is one that based on the
semantic features predicts whether the system-level specification will be violated.
For example, under rainy weather conditions, the monitor might predict that
the network will consistently yield poor CTE estimates and lead to the plane
deviating too far from the centerline.

To establish such a connection, we need a systematic approach that allows us
to find the environment conditions under which the aircraft significantly devi-
ates from the centerline when using the deep neural network. We need to explore
the diverse set of scenarios possible under different instantiations of the afore-
mentioned semantic features. We need to analyze the executions of the system
to identify distinct failure cases and diagnose potential root causes resulting in
unsafe CTE values. Lastly, we need to deploy the right learning techniques that
based on data generated by the exploration and analysis processes, learn a mon-
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Fig. 2. The architecture of VerifAI.

itor that predicts a faulty behavior of the system. With VerifAI we provide a
toolkit that includes all the necessary features for learning such a monitor.

3 The VerifAI Framework

VerifAI follows a paradigm of formally-driven simulation, using formal models
of a system, its environment, and its requirements to guide the generation of
testing and training data [11]. The high-level architecture of VerifAI is shown
in Fig. 2. To use VerifAI, one first writes an environment model which defines
the space of environments that the system should be tested or trained against.
Simple models can be specified by manually defining a set of environment pa-
rameters and their corresponding ranges; more sophisticated models can be built
using the Scenic probabilistic modeling language, as we will describe below. In
either case, the environment model defines an abstract semantic feature space,
representing environments as vectors in a space of semantic features such as
object positions and colors. Such a space can have much lower dimension than
the “concrete feature space” of inputs to the system (e.g. the space of images
for our aircraft taxiing scenario), and it ensures that any counterexamples we
find are semantically meaningful, unlike traditional adversarial machine learn-
ing [12]. On the other hand, actually testing the system requires turning abstract
features into low-level sensor data, for which we depend on a simulator. In order
to support a variety of application domains, VerifAI provides a generic simula-
tor interface allowing it to make use of any simulator which supports the desired
domain of systems and environments.

Once the abstract feature space has been defined, VerifAI can search the
space using a variety of algorithms suited to different applications. These include
passive samplers which seek to evenly cover the space, such as low-discrepancy
(Halton) sampling, as well as active samplers which use the history of past tests



to identify parts of the space more likely to yield counterexamples. Each point
sampled from the abstract feature space defines a concrete test case which we
can execute in the simulator. During the simulation, VerifAI monitors whether
the system has satisfied or violated its specification, which can be provided as
a black-box monitor function or in a more structured representation such as a
formula of Metric Temporal Logic [27]. VerifAI uses the quantitative semantics
of MTL, allowing the search algorithms to distinguish between safe traces which
are closer or farther from violating the specification. The results of each test can
be used to guide future tests as mentioned above, and are also saved in a table
for offline analysis, including monitor generation.

To enable modeling the complex, heterogeneous environments of cyber-physical
systems, VerifAI accepts environment models written in the Scenic domain-
specific probabilistic programming language [17]. A Scenic program defines a
distribution over configurations of physical objects and their behaviors over time.
For example, Fig. 3 shows a Scenic program for a runway taxiing scenario used
in our previous case study [16]. This program specifies a variety of semantic
features including time of day, weather, and the position and orientation of the
airplane, giving distributions for all of them (with cloud type and rain percentage
being correlated, for example). While this scenario only involves a single object,
Scenic’s convenient syntax for geometry and support for declarative constraints
make it possible to define much more complex scenarios in a concise and readable
way (see [17] for examples). Scenic also supports modeling dynamic behaviors
of objects, with syntax for specifying temporal relationships between events and
composing individual scenarios into more complex ones [18]. Finally, Scenic is
also simulator- and application-agnostic, being successfully used in a variety of
CPS domains besides aviation including autonomous driving [19], robotics [17],
and reinforcement learning agents for simulated sports [3]. In all these applica-
tions, the formal semantics of Scenic programs allow them to serve as precise
models of a system’s environment.

4 Training Data Generation

In this section, we discuss the generation of training (and testing) data for the
data-driven generation of monitors. The training data for a monitor M is pro-
vided as a table of labeled traces of the form (σ, `), where σ is a sequence of
events from the space of inputs over which the target monitor is defined, and
` is a truth value indicating whether σ should be accepted or rejected by M .
Training data in this form is generated from the execution runs of several simu-
lations through a process consisting of three phases, mapping, segmentation, and
disambiguation, as depicted in Figure 4.

4.1 Mapping

The role of the mapper is to establish the connection between the sequence of
events collected during a simulation and the inputs to the monitor. In general,
the mapper consists of:



1 # Time: from 6am to 6pm. (+8 to get GMT, as used by X-Plane)

2 param zulu_time = (Range(6, 18) + 8) * 60 * 60

3
4 # Rain: 1/3 of the time.

5 # Clouds: types 3-5 for rain; otherwise any type.

6 clouds_and_rain = Discrete({

7 (Uniform(0, 1, 2, 3, 4, 5), 0): 2, # no rain

8 (Uniform(3, 4, 5), Range(0.25, 1)): 1. # 25%-100% rain

9 })

10 param cloud_type = clouds_and_rain[0]

11 param rain_percent = clouds_and_rain[1]

12
13 # Plane: up to 8m to left/right of the centerline,

14 # 2000m down the runway, and 30 degrees to left/right.

15 ego = Plane at Range(-8, 8) @ Range(0, 2000),

16 facing Range(-30, 30) deg

Fig. 3. Scenic runway taxiing scenario (updated slightly from [16]).

– Projections: mapping a sequence of simulation events to a (sub)set of events
that can be reliably observed at runtime. A monitor must be defined over
inputs that are observable by the system during runtime. Properties of other
entities in the environment may be known during simulation, but not during
runtime. Thus, the data collected at runtime must be projected to a stream
of observable data. We especially want to project the data onto reliable and
trustable data. Some data may be observable, but should not be used by a
monitor because it is not based on reliable hardware or because it typically
is unreliable in the particular scenario at hand. For example, a monitor for
validating the confidence in the TaxiNet camera-based neural network can
be based on the data of the weather condition and the time of day, whereas
it might be better to refrain from using the images captured by the camera
or the output of the neural network perception module.

– Filters: mapping traces to other traces using transformation functions that
may have an internal state (based on the history of events). Beyond project-
ing, we may use the data available at runtime to estimate an unobservable
system or environment state by means of filtering approaches and then use
this system state (or statistics of this state) as an additional observable en-
tity. For example, to validate the conditions for TaxiNet, we may want to
use data computed based on an aggregate model that evaluates the change
in the heading of the airplane. A filtering approach must (implicitly or ex-
plicitly) use a model that connects the observed traces with the notion of a
system state based on the dynamics: in our example, the definition of the
aggregate. The model does not need to be precise, although the quality of the
monitor surely benefits from added precision. Furthermore, uncertainty in
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the model may be made explicit, be it nondeterministic [22], stochastic [44],
or both [26]. These filters can also be based on neural networks [7].

At all times, mappers should preserve the order of events as received from the
evaluator.

4.2 Segmentation

Once the sequence of events from the simulator have been transformed to traces
over adequate input data, they are forwarded to a segmentation process. The
result of the segmentation process is a table of pairs (σ, `) where σ is an infix of
a trace received from the mapper and ` defines the behavior of the ideal monitor
Mtrue upon observing a sequence of input data σ.

Extracting Segments (Windowing). Rather than considering traces from
the initial (simulation) state, a sliding window approach can be used to generate
traces σ of fixed length starting in any state encountered during the simulation.
This approach is important to avoid generating monitors that overly depend on
the initial situation or monitors that (artificially) depend on outdated events. For
example, the behavior of TaxiNet may depend on the size of skid mark patches
along the runway. Small patches may not cause major errors in the CTE values
or perhaps only for a short recoverable period of time. Larger regions of skid
marks may however cause a series of errors that could lead the airplane to leave
the runway. A monitor for TaxiNet should check for continuous regions of skid
marks over a fixed period of time. Therefore, the monitor does not need the
entire history of data, as the plane will recover from small patches, but the
monitor should switch from TaxiNet to manual control when the plane drives
over a long region of skid marks. In general, the length of segments needs to
be tuned based on the application at hand and the frequency in which data is
received. We remark that the loss of information due to ignoring events earlier



in the history can be partially alleviated by adding a state estimate to the trace
using an appropriate filter in the mapping phase.

Computing Labels. When determining the labels ` for each of the extracted
segments σ, one needs to take into account the requirement that monitors for
validating safe operation conditions must be predictive [9, 8], i.e., after observing
σ, the verdict of the monitor is one that predicts whether the safe operation
conditions will hold in the future. In our TaxiNet scenario, we want the monitor
to alert the system in advance, such that the airplane does not deviate much
from the centerline in the (near) future. Segments should thus be associated
with the behavior of the plane a few steps into the future. The latter can be
characterized with respect to a prediction horizon, usually defined based on the
time needed for executing certain contingency plans to ensure the system stays
safe. Once a prediction horizon of length n is determined, a segment is labeled
with the truth value corresponding to evaluating some property ϕ up to n steps
into the future (along the original simulation run). The property ϕ is defined
over the events of traces received from the evaluator, and may be different from
the system-level property used by the evaluator. In particular, it could be an
aggregation over the labels computed by the evaluator, e.g., defining a threshold
for the allowable number of deviations from the centerline over a period of time.

4.3 Disambiguation

After the table of training data is created by the segmentation process it can
be forwarded to any learning algorithm that generates a suitable artifact for
the monitor. In the next section, we elaborate on this generation process and
discuss what features one might need to consider in choosing the artifact. In
general, the data resulting from the mapping and segmentation process may be
ambiguous, i.e., the table may include pairs (σ, `) and (σ′, `′) where σ = σ′ but
` 6= `′. In this way, learned monitors can fail to be completely consistent with
the data; depending on the learning method used, such inconsistencies can lead
to undefined behavior. To further guide the learning process, one may want to
apply a preprocessing step, a disambiguation algorithm, that resolves ambiguity
in the data set. Such preprocessing can be either conservative and always label
a trace as violating a safety property if any pair labels it as violating, or take a
more quantitative approach (e.g. if labels are MTL robustness values, averaging
all such values for the trace).

5 Monitor Generation

In this section, we discuss different ways to translate the available data from
a simulation interface and high-level system description into a monitor Msyn.
In particular, we aim to construct an efficiently-computable function that for
any trace σ yields whether the monitor should issue an alert, i.e., Msyn(σ) ∈ B.
We wish to construct this monitor from the training data (and the simulation



interface) outlined in the previous section. Furthermore, the simulation-based
environment described above allows us to compare against the ideal monitor
Mtrue and define quality metrics in terms of false positives, false negatives, etc.
with respect to a sampled set of traces.

5.1 Learning Methods

In general, we can distinguish between exact and approximate learning methods,
on the one hand, and passive versus active learning on the other.

Exact and approximate learning. We start with a comparison between exact
and approximate learning and explain why approximate learning is more suitable
for our setting.

Exact learning. In exact learning [23, 48], the idea is to learn an artifact matching
the labeled samples, i.e., Msyn = Mtrue. The guarantee that these approaches
typically deliver is that they yield the simplest (and according to Ockham’s
razor, the best) explanation for the training data. If the training data were to be
exhaustive, the monitor would be perfect. Using exact learning algorithms in our
setting, however, comes with two main challenges. First, the training data is in
most cases noisy, whereas many efficient exact learning algorithms require noise-
free data. Such an assumption is unrealistic in our setting, even if the system is
deterministic, due to quantization and nondeterminism in the simulator. While
nondeterminism can be resolved by a disambiguation process (as outlined in
the previous section) and using methods such as in [1], this will result in very
conservative monitors that are not robust to noisy data. Second, the presence of
multiple sensors may yield a large alphabet size, which poses a serious challenge
even for state-of-the-art learning algorithms [1, 30]. For example, looking at the
training data generated for TaxiNet, even if we further discretize the data by
splitting the time of day into 16 different hours (counting night times as one), 6
types of clouds, 4 rain levels, 8 intervals for the initial position of the plane, and
a simple binary flag for the skid marks, we already obtain an alphabet size of
6144. Finer discretizations necessary for high-quality monitors would have even
larger alphabets.

Approximate learning. To construct monitors that are more robust to noisy data,
we may rely on approximate learning methods that learn an optimal monitor for
the training data with respect to a quantitative objective (e.g. the misclassifica-
tion rate). The literature includes a plethora of techniques for learning optimal
artifacts, including but not limited to, techniques for learning decision trees [34,
6], decision lists [36], or neural networks [5]. The typical guarantee for a monitor
generated using these methods is a statistical one, often in the form of a probably
approximately correct (PAC) monitor [49]. That is, assuming a sufficient amount
of training data from the simulator, the generated monitor will with high prob-
ability be (optimally) correct on most of the traces observed at runtime. While



approximately correct monitors do admit false negatives and false positives, by
adequately defining the weights of the quantitative objective we may bias the
learning process towards false positives. In the TaxiNet example, we used an
algorithm for learning decision trees and increased the weights corresponding to
the false positives. This allowed for the learning of monitors that triggered more
false alarms, but resulted in a fewer number of misclassifications of dangerous
situations where the plane left the runway.

Active versus passive learning. Both exact and approximate learning can
be either active or passive. In our setting, passive learning is simpler to apply
than active learning. We briefly mention some of the challenges.

Passive learning. Passive learning starts from a data set collected a priori.
This data would typically follow the distribution as specified in the environ-
ment model. However, the training set can be primed to include more negative
examples (even if they rarely occur). In particular for passive learning, it is in-
teresting to further prepare the data, e.g., by taking a windowed approach. The
major downside of exact passive learning is its NP-hardness in the presence of a
large alphabet (set of events) [33].

Active learning. In active learning, the learner adaptively runs the simulations.
Thus, the data is no longer pre-selected: rather, we give the learner direct access
to the simulator. The challenge here is that we then must produce a simula-
tion that after mapping and segmentation yields a particular requested trace.
A naive workaround for this problem is to run the simulator until such a trace
is found and heavily rely on caching. While generally, such an approach is not
feasible, there are cases where the observation trace contains enough information
to control the simulation accordingly: e.g., consider a car where the observation
is throttle and steering, or a setting where we only vary the initial (static) part of
the environment. Furthermore, most learners select traces that accelerate learn-
ing (possibly ignoring properties of the trace such as its relative likelihood). This
selection scheme can pose a challenge for creating monitors for rare events. Fi-
nally, while (approximate) active learners are typically more data-efficient than
passive learners, their statistical guarantees are weaker.

5.2 Learning Monitors for TaxiNet

We used VerifAI in experiments implementing the aircraft taxiing example
introduced in Section 2. For a given deep neural network implementing the per-
ception module, we used VerifAI to learn a monitor which decides, based on
the initial configuration of the airplane, weather conditions, time of day, and
skid marks, whether to use an autopilot dependent on the perception module
or switch to manual control. In the following, we provide some details on the
experimental setup and results.



Fig. 5. Example runs using TaxiNet without and with learned monitor. On the left:
TaxiNet without learned monitors. On the top right: TaxiNet with monitor learned
using mapper 1. On the bottom right: TaxiNet with monitor learned using mapper 2.
Note that that the deviation from the centerline is greater on the left than on the right.

Experimental Setup. Our setup uses VerifAI’s interface to the X-Plane
flight simulator [35]. The perception module was executed as part of a closed-
loop system whose computations were sent to a client running inside X-Plane.
As a client, we used X-Plane Connect [45], an X-Plane plugin providing access to
X-Plane’s “datarefs”. These are named values which represent simulator state,
such as the positions of aircraft and weather conditions, etc.

The deep neural network was trained on images collected from several X-
Plane simulations, where each image was labeled with the CTE value observed
in that image. The images were taken from a camera mounted on the right
wing facing forward, as shown in Figure 1. The environment was modelled by
the Scenic program depicted in Figure 3, originally used to falsify and retrain
TaxiNet in [16]. The evaluator used the MTL specification ϕ = [0,10] (CTE <
2.5), requiring that the plane get within 2.5 m of the centerline within 10 s
and maintain that maximum CTE for the entire simulation. We used the robust
semantics for MTL, subsequently mapping positive robustness values (including
0) to true and negative values to false. To label the traces for monitor learning,
we used a smoothed version of our specification designed to ignore short-term
violations: specifically, we defined the label to be true when the property ϕ was
true at least 8 out of 10 times in the 10 time steps following the prediction
horizon of 5 time steps. Traces from 500 simulations were annotated with the
truth value of the smoothed specification at each time step. We then applied a
procedure for learning optimal decision trees over this training data.

Learned Monitors. We used two mappers for constructing two types of moni-
tors. The first mapper used a segment length of 1 and filtered out all simulation
data except for the weather conditions, the time of day, and the initial con-



figuration, thereby covering all static factors. Using this mapper, our approach
resulted in a monitor that mainly issued alerts in the afternoon, between 12 pm
and 6 pm, in clear weather conditions. This matched our observation (also made
in [16]) that the perception module did not behave well under these conditions,
leading the airplane to exit the runway in most simulations (see the top row
of Figure 5 for an example). During these times we noticed that the shadow
of the airplane confused the perception module, which was an indication that
the neural network may have not been trained on data during these times and
weather conditions. In fact, in very cloudy weather conditions during the after-
noon, where no shadow can be observed, the number of alerts by the monitor
decreased drastically. This result is in line with the manual analysis performed
in [16]. There, the TaxiNet network was retrained on images during these times
and weather conditions, which successfully eliminated the negative influence of
shadows and yielded more robust performance.

Continuing our experiments, we further noticed that even after integration of
the learned monitor, in many simulations the plane deviated from the centerline
and left the runaway near markers indicating 1000 feet down the runway (shown
in the bottom left image in Figure 5). This showed that the static features
filtered by the first mapper were not enough to characterize the safe operating
conditions of the perception module. To overcome this problem, we implemented
a second mapper that additionally includes information about the skid marks
on the runway (using a segment length of 10). Indeed, close to the 1000 foot
markers, the runway had a long region of black skid marks that covered the white
centerline, resulting in images on which TaxiNet produced wrong values. Using
data that included information about the skid marks, our approach was able to
learn a monitor that after driving for a period of 10 time steps over a skid mark
region, issued an alert forcing a switch to the safe controller (manual control),
which maneuvered the airplane back to the center (as shown in the bottom right
image in Figure 5). As soon as the plane left this region, the monitor switched
back to using TaxiNet.

6 Runtime Assurance

Runtime assurance (enforcement) techniques aim to ensure that a system meets
its (safety) specification at runtime [9, 13, 38]. Abstractly speaking, a runtime
assurance module modifies the behavior of the system when necessary so that
the system remains in a safe state. The key ingredient of runtime assurance
components is a monitor (also referred to as decision module, shield or mask) that
triggers a modification in the system’s outputs. Realizations of runtime assurance
vary, and span from suppressing [2] to manipulating the system’s executions [42].

In the setting where the goal is to evaluate the performance of a black-box
component, as in the case of TaxiNet, runtime assurance is realized by switching
to a provably-safe operating mode, i.e., switching to a verified controller that,
although it may potentially be less performant than the black-box, is guaranteed
to enforce the safety properties of the system. A prominent example of such a
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runtime assurance architecture is the Simplex architecture [42], which has been
used in many domains, especially avionics [41] and robotics [31]. A runtime
assurance module based on Simplex, depicted in Figure 6, typically consists of
two controllers, an advanced controller (AC) and a safe controller (SC), and a
decision module that implements a switching logic between the AC and SC. The
AC is used for operating the system under nominal circumstances. The SC is a
certified backup controller that takes over operating the system when anomalies
in the behavior of the AC or its safe operating conditions are detected. An SC for
TaxiNet could stop the plane and/or ask for human intervention. The decision
module decides whether it is necessary to switch from the AC to the SC to keep
the system in a safe state and when to switch back to the AC to utilize the high
performance of the AC to optimally achieve the objectives of the system. In our
TaxiNet example, the decision module is realized by the learned monitor, the
AC is a controller that is built on top of the TaxiNet neural network, and the
safe controller is a simple mock controller mimicking human control.

When realizing a runtime assurance architecture like Simplex, we should keep
the following aspects of the implementation of the decision module in mind:

– the decision module should execute asynchronously, i.e., it should be able to
trigger a switch whenever necessary.

– the decision module should aim to use the AC as much as possible without
violating safety, i.e., it should switch from SC to AC (AC to SC) as often
(little) as possible.

– the decision module needs to be efficient, i.e., it needs to provide, as early
as possible, a correct assessment to switch between the AC and SC.

To this end, programming frameworks are needed to implement runtime assur-
ance modules that are guaranteed to satisfy these criteria. An example of such
a framework is Soter [9, 43], a runtime assurance framework for building safe
distributed mobile robots. A Soter program is a collection of asynchronous
processes that interact with each other using a publish-subscribe model of com-
munication. A runtime assurance (RTA) module in Soter consists of a safe



controller, an advanced controller, and a decision module. Soter allows pro-
grammers to construct RTA modules in a modular way with specified timing
behavior, combining provably-safe operation with the feature of using AC when-
ever safe so as to achieve good performance. A key advantage of Soter is that
it also allows for straightforward integration of many monitoring frameworks.

The design and implementation of the decision module is critical to achieve
principled switching between the AC and SC that keeps performance penalties
to a minimum while retaining strong safety guarantees. Monitors can be defined
and implemented using a variety of frameworks [21, 15, 29, 10, 14, 28, 32], ranging
from automata and logics to very expressive programming languages with a
trade-off between expressivity and efficiency guarantees. The choice of monitor
language depends on the requirements of the application and constraints of the
implementation platform.

7 Discussion

We have seen how to use VerifAI and Scenic to learn runtime monitors for
autonomous systems, and how these monitors help to achieve runtime assurance.
In this last section, we discuss a more general wish list for such monitors and
prospects for additional learning methods to explore.

7.1 Desiderata for Effective Monitors

Runtime monitors for autonomous systems should satisfy several different crite-
ria in order to be useful in practice. While our criteria align partially with those
given in [37] for runtime monitors in general, we will see some differences. We
also emphasize that our desiderata are not strict requirements: indeed, to the
best of our knowledge, no current formalism or method achieves them fully.

Implementability. A monitor should be realizable on the target system and be
executable during runtime. This requires that all data the monitor depends on
is available and that the monitor can compute the resulting alerts with in a
response time sufficient for the system to take corrective action.

Regarding the availability of the inputs, we remark that while we may eval-
uate monitor performance during simulation by taking into account the ground
truth or unobservable data, the real monitor cannot. This concern necessitated
the mapping and disambiguation phases in our discussion above.

On the real system, monitor performance is an additional factor. Promptness
(i.e., the lag of the monitor) and memory-efficiency (are sufficient resources avail-
able) are well-known concerns [14]. In particular, complex numerical or iterative
monitor definitions can be problematic, as are huge lookup tables. However, to
put these concerns into perspective, we remark that many AI-based controllers
are themselves more resource-consuming than traditional embedded controllers.
To ensure performance, a first step is limiting the history-dependency through



segmentation. A second step is to limit the size of the artifact, which most learn-
ing formalisms support (e.g., limiting the depth of the tree or the size of the
network during learning). While we provide monitors in an executable format,
compilation onto a real system is currently beyond the scope of our tool.

Quantitative Correctness. Achieving absolute correctness, i.e., ensuring that
Msyn(σ) = Mtrue(σ) for all possible traces σ, is unrealistic as it would require an
exhaustive search through the joint behaviors of the system and its environment.
Indeed, AI-based components are most helpful in settings such as perception
where correct behavior is difficult to capture in a formal specification, so that
there is little hope for fully-correct monitors. A popular approach in verification
when full correctness is out of reach is to generate an over-approximate (sound)
monitor that only admits a one-sided error. However, such monitors are gener-
ally too conservative. Conservative monitors yield many alarms, which typically
leads to their outputs being disregarded, defeating their purpose. Rather, we
advocate to allow two-sided errors, but to discount false positives over false neg-
atives. Thus, while our monitors do tend to almost always raise an alarm when
necessary, they may still err on the conservative side.

To reduce quantitative error, one possibility is to increase the amount of
simulation data, thereby covering corner cases with a higher probability. This is
not the only option: in order to avoid indistinguishability of various traces, it can
also be helpful to increase the variety of data that may be used by the monitor,
as we saw in Section 5.2. A third possibility is to increase the expressivity of
the monitor formalism: relatively simple models such as decision lists, trees, and
finite automata may not be able to adequately capture the underlying dynamics
determining system safety in a compact monitor. More elaborate frameworks
such as RTLola [14, 4, 46] deliver more flexibility in defining a monitor, while
still ensuring a performant implementation as described above.

Trustworthiness. Monitors for autonomous systems which are quantitatively cor-
rect in the sense above do not come with the same hard guarantees that many
specification-based monitors provide. However, in order to alleviate weaknesses
of the system, they must be more trustworthy than the system itself. For vali-
dation and certification, monitors can be inspected either manually or by verifi-
cation and other tools. A level of explainability or (machine-)interpretability is
thus a central aspect that must be considered when constructing monitors that
come with statistical or empirical correctness claims [47]. One approach that
VerifAI supports is to simulate the system including its monitor, generating
concrete examples of monitor failures using falsification. However, we observe
that to some extent, explainability trades off with increasing the quantitative
correctness of the tool, as monitors based on a plethora of inputs can be harder
to understand and analyze. To better understand the trade-offs, one can use
techniques for exploring the Pareto-optimal space of monitors [47].



7.2 Monitor Refinement and Synthesis

Beyond classical learning approaches, an alternative is the use of (oracle-guided)
inductive synthesis [24, 25], e.g., counterexample-guided inductive synthesis to
learn a monitor by querying an oracle. Such an approach can be used as an
extension of active or passive learning algorithms, or alone.

Inductive synthesis is heavily used in the context of programming languages
but can also be used for perception modules and control [20]. Rather than learn-
ing a program, we learn a monitor. The main idea here is that rather than
learning a complete monitor, we have a skeleton of the monitor that may be
extracted from domain specific knowledge or learned. In our aviation example,
we might search for a monitor that combines the forward speed and estimated
CTE and compares this to some threshold. The question to find a monitor then
is to find a function of forward speed, CTE and a threshold.

Rather than first collecting the training data offline, an inductive synthesis
solver will typically assume some candidate monitor and then use an oracle
(here, VerifAI) to evaluate the system with and without the monitor to find
false positives and false negatives. These samples are counterexamples that can
be used to refine the candidate monitor into a more accurate monitor. We remark
that the criteria for the synthesis loop to accept a monitor can either be as in
the exact learning case, or PAC-based.

Another direction for monitor synthesis is the paradigm of introspective en-
vironment modeling (IEM) [40, 39]. In IEM, one considers the situation where
the agents and objects in the environment are substantially unknown, and thus
the environment variables are not all known. In such cases, we cannot easily
define a Scenic program for the environment. The only information one has is
that the environment is sensed through a specified sensor interface. One seeks
to synthesize an assumption on the environment, monitorable on this interface,
under which the desired specification (e.g. safety property) is satisfied. While
very preliminary steps on IEM have been taken [39], significant work remains to
be done to make this practical, including efficient algorithms for monitor synthe-
sis and the development of realistic sensor models that capture the monitorable
interface.
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