Title
Forebrain CRF₁ modulates early-life stress-programmed cognitive deficits.

Permalink
https://escholarship.org/uc/item/0q07992z

Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(38)

ISSN
0270-6474

Authors
Wang, Xiao-Dong
Rammes, Gerhard
Kraev, Igor
et al.

Publication Date
2011-09-01

DOI
10.1523/JNEUROSCI.2259-11.2011

License
CC BY 4.0

Peer reviewed
Behavioral/Systems/Cognitive

Forebrain CRF₁ Modulates Early-Life Stress-Programmed Cognitive Deficits

Xiao-Dong Wang, Gerhard Rammes, Igor Kraev, Miriam Wolf, Claudia Liebl, Sebastian H. Scharf, Courtney J. Rice, Wolfgang Wurst, Florian Holsboer, Jan M. Deussing, Tallie Z. Baram, Michael G. Stewart, Marianne B. Müller, and Mathias V. Schmidt

1Max Planck Institute of Psychiatry, 80804 Munich, Germany, 2Department of Anesthesiology, Technische Universität, Klinikum rechts der Isar, 81675 Munich, Germany, 3Department of Life Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom, 4Departments of Anatomy/Neurobiology, Pediatrics and Neurology, University of California, Irvine, Irvine, California 92697-4475, 5Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany, and 6Deutsches Zentrum für Neurodegenerative Erkrankungen, German Center for Neurodegenerative Diseases, 80336 Munich, Germany

Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF₁), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF₁ knock-out (CRF₁-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF₁ in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF₁ deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF₁-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF₁ signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity.

Introduction

Early-life adverse events increase the danger of developing psychopathologies (Sadowski et al., 1999; Schenkel et al., 2005; Evans and Schamborg, 2009) in adult individuals with genetic risk factors (Feder et al., 2009), including specific polymorphisms and haplotypes of the corticotropin-releasing factor (CRF) gene (Smoller et al., 2005) and the CRF receptor 1 (CRF₁) gene (Bradley et al., 2008; Tyrk et al., 2009). The hippocampus, a region essential for the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and processing of spatial information, undergoes critical development early in life and is vulnerable to stress (Avishai-Eliner et al., 2002; Kim and Diamond, 2002; Lupien et al., 2009). In rodents, psychological stress during the first 2 weeks of life impairs hippocampus-dependent spatial learning and memory (Oitzl et al., 2000; Aisa et al., 2007; Rice et al., 2008), disrupts hippocampal long-term potentiation (LTP) (Champagne et al., 2005; Bagot et al., 2009; Ivy et al., 2010), and reduces dendritic complexity in hippocampal neurons later on (Brunson et al., 2005; Oomen et al., 2010).

In the hippocampus, CRF is released from inhibitory interneurons (Chen et al., 2001), binds with high affinity to CRF₁, abundant in dendritic spines of pyramidal neurons (Chen et al., 2004a), and modulates neuronal function (Aldenhoff et al., 1983; Sheng et al., 2008) and cognition (Radulovic et al., 1999; Row and Dohanich, 2008). Interestingly, the levels of hippocampal CRF and CRF₁ are much higher during the second and third weeks after birth compared with those in adulthood (Avishai-Eliner et al., 1996; Chen et al., 2001). Acute stress differentially activates hippocampal neurons in immature and adult brains, which is dependent on CRF₁ (Chen et al., 2006). Early-life stress evokes enduring elevations of hippocampal CRF (Ivy et al., 2010) and may disrupt hippocampal CRF₁ expression (O’Malley et al., 2011). Moreover, central administration of CRF to neonatal rats recapitulates the effects of early-life stress on cognition and hippocampal morphology (Brunson et al., 2001), whereas postnatal...
CRF1 antagonism prevents these effects (Ivy et al., 2010) and enhances spatial performance (Fenoglio et al., 2005) in adult rats. Hence, hippocampal CRF1 signaling may play an essential role in modulating the persistent programming effects of early-life stress on cognition.

While there is already some evidence for the involvement of the CRF-CRF1 system in mediating the effects of early-life stress on cognition, previous pharmacological approaches were limited with regard to regional specificity. Therefore, we here used transgenic mouse lines with conditional CRF1 deficiency (Müller et al., 2003) or CRF overexpression (Lu et al., 2008) specifically in forebrain regions to investigate the role of hippocampal CRF1, signaling in early-life stress-induced later-life cognitive impairments. A novel mouse model of early-life stress was used (Rice et al., 2008), in which the mother–pup interaction is disrupted by an impoverished postnatal environment. We examined whether forebrain CRF overexpression would reproduce the effects of early-life stress on spatial learning and memory during adulthood, and whether forebrain CRF1 inactivation would prevent the functional, structural, and molecular abnormalities induced by early-life stress.

Materials and Methods

Animals. Male transgenic mice with postnatal inactivation of the Crf1 gene in forebrain neurons (referred to as CRF-COE hereafter) were generated as described previously (Müller et al., 2003; Wang et al., 2011). To generate a mouse line with forebrain-restricted overexpression of CRF in principal neurons, R26STOPcrfCre mice were crossed to CaMKII-Cre mice (Lu et al., 2008). Male R26STOPcrfCreCaMKII-Cre mice (referred to as CRF-COE hereafter) were obtained in the F2 generation. CRF1-CKO and CRF-COE mice were kept on a mixed 129S2/Sv background.

Adult female CRF1-EGFP reporter mice were used to test the colocalization of CRF1 and neurexins. The detailed step-by-step targeting procedure will be published in *Science* (Rejofo et al., 2011) or is available upon request (to J.M.D.). Briefly, the endogenous Crf1 locus was modified by homologous recombination in embryonic stem cells. Gene targeting resulted in a Cref1 knock-in allele where EGFP is inserted in frame into exon 2 of the Crf1 gene; concomitantly a selection cassette was introduced into intron 2 harboring a strong splice acceptor. In this configuration, exon 2 is spliced to the selection cassette, resulting in a Crf1-EGFP reporter allele which is at the same time a Crf1-null allele due to an immediate stop codon.

All animals were housed under a 12 h light/dark cycle (lights on at 6:00 A.M.) and constant temperature (22 ± 1°C) and conditions with ad libitum access to both food and water. At 7–8 months of age, all mice were killed. The experiments were performed in accordance with European Communities Council Directive 2010/63/EU. The protocols were approved by the committee for the Care and Use of Laboratory Animals of the Government of Upper Bavaria, Germany.

Early-life stress procedure. The limited nesting and bedding material paradigm was performed as described previously (Rice et al., 2008). Two successive batches of dams were used. Briefly, the day of birth was designated postnatal day 0 (P0). On the morning of P2, litters were culled to 6–8 pups, keeping at least one female and as many male pups as possible. Control dams (n = 5 and n = 10 for each cohort) were provided with sufficient amount of nesting material (2 squares of Nestlets, Indulab) and standard sawdust bedding. In the “stress” cages, dams (n = 5 and n = 9 for each cohort) were provided with limited quantity of nesting material (1/2 square of Nestlets), which was placed on a fine-gauge aluminum mesh platform (McNichols). All litters remained undisturbed during P2–P9. On P9, all dams were provided with standard nesting and bedding material. Male offspring were weaned on P28 and group housed in 4–5 per cage. Tail tips were collected and genotyped upon weaning when appropriate. At 5 months of age, all mice were single housed.

Behavioral and cognitive testing. To assess the effects of early-life stress on spatial learning and memory in wild-type and CRF1-CKO mice, two successive batches of mice (control wild-type, n = 20; control CRF1-CKO, n = 17; stressed wild-type, n = 18; stressed CRF1-CKO, n = 10) were tested under the same conditions and results were pooled. To assess the effects of postnatal forebrain CRF overexpression on spatial learning and memory, wild-type and CRF1-COE mice (both n = 13) were used, and only one wild-type and one CRF1-COE mice were selected from each litter. Mice were tested at 6 months of age, and the tests were always performed between 8:00 A.M. and 12:00 noon and scored by the ANYmaze software (ANY-maze 4.50, Stoeling).

Y-maze. The Y-maze apparatus was made of gray polylvinyl chloride with three symmetrical arms (30 × 10 × 15 cm3) marked by triangle-, bar- and plus-signs, respectively, as intra-maze spatial cues, and was evenly illuminated (30 lux) (Sterlemann et al., 2010). Prominent extra-maze spatial cues were attached to the walls at a distance of ~25 cm from the apparatus. During the first trial (acquisition phase; 10 min), the mice were allowed to explore two of the three arms with the third arm blocked. After a 30 min intertrial interval, the mice were placed in the center of the Y-maze and allowed to explore all arms freely (retrieval phase; 5 min). An arm entry was counted when all four limbs of the mouse were within an arm. The percentage of time spent in the novel arm and the two familiar arms was calculated, with a higher preference for the novel arm being rated as intact spatial recognition memory. Four mice (3 CRF-COE and 1 wild-type control) jumped out of the apparatus during the test and were therefore excluded from analysis.

Morris water maze. At 1 d after the Y-maze test, the Morris water maze test was performed as described previously (Sterlemann et al., 2010). A circular tank (110 cm in diameter) was filled with opaque colored water (22 ± 1°C), and prominent extra-maze visual cues were attached to the walls at a distance of ~50 cm from the pool. After day 1 with a 60 s free swim trial, mice were trained to locate a visible platform (10 cm in diameter) above the surface of the water for 4 trials (visual training). In the following spatial training sessions, mice received 4 trials per day to locate the submerged platform in a fixed position over 3 consecutive days. The order of starting locations was varied throughout trials. Next day, the reference memory was assessed in a 60 s probe trial with platform removed, and the latency to reach the platform area and the time spent in each quadrant were calculated. After 4 d of rest, mice received 4 trials to locate the hidden platform placed in the quadrant opposite to that in the spatial training sessions (reversal learning). The trials in visual, spatial and reversal training sessions were terminated once the mouse found the platform or 60 s had elapsed, and the latency to reach the platform was recorded for each trial. The intertrial interval was 10 min. Four mice (1 control wild-type and 3 control CRF1-CKO) that did not employ a search strategy and floated in the tank in all trials were excluded from analysis.

Brain slice preparation and electrophysiological recordings. Test-naive mice (control wild-type, n = 5; control CRF1-CKO, n = 4; stressed wild-type, n = 5; stressed CRF1-CKO, n = 6 each mouse was selected from a different litter in each group) of 7–8 months old were anesthetized with isoflurane and decapitated, and brains were quickly removed. Brain slices were prepared using a vibrating microtome in ice-cold Ringer solution (containing, in mM: 124 NaCl, 3 KCl, 26 NaHCO3, 2 CaCl2, 1 MgSO4, 10 n-glucose, and 1.25 NaH2PO4, pH 7.3) bubbled with a 95% O2–5% CO2 mixture. All slices were placed in a holding chamber for at least 60 min and were then transferred to a superfusing chamber for extracellular recordings. The flow rate of the solution through the chamber was 1.5 ml/min. Extracellular recordings were made using glass microelectrodes (2–3 MΩ) filled with bath solution. All experiments were performed at room temperature (RT).
The recordings were amplified, filtered (3 kHz) and digitized (9 kHz) using a laboratory interface board (ITC-16, Instrutech), and stored with the acquisition program Pulse, version 8.5 (Heka Electronik). Data were analyzed offline with the analysis program IgorPro v.6 (WaveMetrics) software. Measurements of the amplitude of the fEPSP were taken and normalized with respect to the 30 min control period before tetanic stimulation.

Results
Forebrain CRF₁ signaling mediates early-life stress-impaired spatial learning and memory
It has been suggested that hippocampus-dependent learning and memory is selectively impaired by early-life stress in middle-aged but not young rats (Brunson et al., 2005). Therefore, all mice were tested at 6 months of age. Spatial memory in adult wild-type and CRF₁-CKO mice was first evaluated by the Y-maze test (Fig. 1A). A significant main effect of stress (F(1,81) = 4.482, p < 0.05) on time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF₁-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as experimental N per group (two-way ANOVA of condition, F(1,33) = 5.790, p < 0.05; and p < 0.05 for control versus stressed wild-type mice, Bonferroni’s test).

To further assess spatial learning and memory, mice were tested in the Morris water maze task (Fig. 1B). On the first day of spatial training, a significant stress × genotype interaction (three-way ANOVA, F(1,57) = 4.028, p < 0.05) effect on escape latency was noticed. Spatial acquisition was hampered by early-life stress in wild-type mice, as shown by a significant increase in the latency to locate the hidden platform compared with the controls (two-way ANOVA of condition, F(1,33) = 6.622, p < 0.05). This impairment was mostly evident in the third trial (p < 0.01, unpaired t test). In contrast, stressed CRF₁-CKO mice spent similar time to reach the platform compared with the controls. Similar findings were revealed by using the number of the litters as experimental N (two-way ANOVA of interaction, F(1,31) = 3.233, p < 0.1; and p < 0.05 for control versus stressed wild-type mice, Bonferroni’s test). Notably, impaired spatial learning in stressed wild-type mice was not due to swimming ability or motivation as shown by similar swim speed to the controls (data not shown),
Animals from all groups acquired the task similarly on the following 2 d. In addition, no difference was observed among groups in the retention of spatial information (probe trial, data not shown) and cognitive flexibility (reversal learning).

Next, we evaluated the cognitive performance of conditional forebrain CRF-overexpressing mice, whose forebrain CRF-CRF₁/CRF₂ signaling is persistently augmented. In the Y-maze task (Fig. 1C), wild-type but not CRF-COE mice distinguished the novel arm from the familiar ones (p < 0.05, paired t test). In the Morris water maze task (Fig. 1D), the performance of CRF-COE mice was significantly poorer in the first 2 d of spatial training (F₁,24 = 11.043, p < 0.01, and F₁,24 = 4.709, p < 0.05, respectively) and the reversal learning session (F₁,24 = 5.302, p < 0.05) compared with wild-type mice. No differences in swimming ability or reference memory were found between groups (data not shown).

Together, these data suggest that stressful early-life experience attenuates hippocampus-dependent learning and memory in adulthood, and that this effect is largely dependent on forebrain CRF signaling. To investigate the mechanisms underlying forebrain CRF₁-modulated cognitive impairments induced by early-life stress, only CRF₁-CKO mice and corresponding wild-type mice were used in the following experiments.

Forebrain CRF₁ inactivation abolishes the impairment of CA3 LTP and enhances CA1 LTP in early-life-stressed mice

LTP is considered a major cellular correlate for learning and memory (Lynch, 2004). In the rat it was previously shown that early-life stress impaired hippocampal LTP (Brunson et al., 2005) in a CRF₁-dependent manner (Ivy et al., 2010). To assess whether impaired spatial memory in stressed wild-type mice is associated with altered synaptic plasticity in hippocampal circuits, we examined both mossy fiber-CA3 LTP and SCCP-CA1 LTP in acute brain slices (Fig. 2). A significant condition × genotype interaction (F₁,24 = 4.648, p < 0.05) effect on mossy fiber-CA3 LTP was revealed. In the final 10 min, LTP was significantly impaired in stressed wild-type mice compared with the controls (p < 0.05, Bonferroni’s test). LTP deficits seen in stressed wild-type mice were prevented by forebrain CRF₁ deficiency, as indicated by similarly prominent LTP in hippocampal CA3 neurons in both control and stressed CRF₁-CKO mice (Fig. 2A). In the CA1 region, a significant interaction effect (F₁,30 = 8.457, p < 0.01) and a main effect of genotype (F₁,30 = 12.850, p < 0.01) on LTP were observed. Unlike findings in middle-aged rats (Brunson et al., 2005; Ivy et al., 2010), fEPSP potentiation was similar in control and stressed wild-type mice, whereas HFS-induced LTP was surprisingly augmented in stressed CRF₁-CKO mice compared with control and stressed counterparts (p < 0.05 and p < 0.001 respectively, Bonferroni’s test; Fig. 2B). These results point to the possibility that CRF₁ inactivation may overcompensate disrupted synaptic function in specific neuronal networks induced by early-life stress.

Forebrain CRF₁ deficiency attenuates structural alterations Evoked by early-life stress

Stress-induced structural modifications such as dendritic atrophy (Brunson et al., 2005; Ivy et al., 2010) and loss of dendritic...
ence in fEPSP potentiation was noticed between control and stressed wild-type mice, whereas adult wild-type and CRF1-CKO mice. Representative traces for control and LTP are shown. Figure 2.

Figure 2. A, Effects of early-life stress on mossy fiber-CA3 LTP (A) and SCCP-CA3 LTP (B) in adult wild-type and CRF1-CKO mice. Representative traces for control and LTP are shown. A, After a HFS was delivered, mossy fiber-CA3 LTP was absent in stressed wild-type mice as indicated by significantly reduced amplitude of fEPSP in the last 10 min compared with wild-type controls. In contrast, CRF1-CKO mice showed intermediate LTP.

Early-life stress interacts with forebrain CRF1 to modulate excitatory and inhibitory synaptic networks in the hippocampus

To further investigate whether synaptic density in the apical dendritic region of hippocampal CA3 and CA1 is influenced by early-life stress and forebrain CRF1 inactivation, VGLUT1 and VGAT were immunostained as markers for excitatory and inhibitory synaptic terminals, respectively (Fig. 4). Two-way ANOVA revealed significant effects of interaction ($F_{(1,12)} = 5.593, p < 0.05$) and stress ($F_{(1,10)} = 8.091, p < 0.05$) on the number of VGLUT1-positive puncta in the stratum radiatum of CA3. As indicated by VGLUT1 immunostaining, there was no difference in excitatory synaptic density between control wild-type and control CRF1-CKO mice. The number of excitatory synapses was significantly reduced in stressed wild-type mice (both $p < 0.01$ versus control group) and a main effect of stress ($F_{(1,12)} = 17.920, p < 0.01$) on spine density was revealed (Fig. 3C, D). Specifically, stressed CRF1-CKO mice had higher spine density than control CRF1-CKO and stressed wild-type mice ($p < 0.001$ and $p < 0.05$ respectively, Bonferroni’s test). Notably, spine density in the middle molecular layer of DG and cell density of the hippocampus were similar among groups (data not shown).

Hippocampal neurexin-1 and neuroligin-3 are differentially altered by early-life stress and forebrain CRF1

The trans-synaptic cell adhesion molecules neurexins and neuroligins specify synaptic function of excitatory and inhibitory networks, and are implicated in synaptic plasticity and cognitive function (Südhof, 2008). Therefore, we evaluated gene expression levels of hippocampal neurexins and neuroligins in wild-type and CRF1-CKO mice (Fig. 5). A significant main effect of

spines (Chen et al., 2008) are associated with impaired synaptic plasticity and memory. We therefore measured apical dendritic spine density in CA3 and CA1 pyramidal neurons in wild-type and CRF1-CKO mice (Fig. 3). In the stratum radiatum of area CA3, a significant effect of interaction ($F_{(1,12)} = 29.790, p < 0.001$) on spine density was revealed (Fig. 3A, B). Stressed wild-type mice had fewer dendritic spines in CA3 stratum radiatum than the controls and stressed CRF1-CKO mice (both $p < 0.01$, Bonferroni’s test). The density of mature, Golgi-impregnated spines was lower in control CRF1-CKO mice compared with control wild-type mice, and this was reversed by early-life stress (both $p < 0.01$, Bonferroni’s test). In the stratum radiatum of area CA1, early-life stress did not influence spine density in wild-type mice. We found a significant effect of interaction ($F_{(1,12)} = 11.200, p < 0.01$) and a main effect of stress ($F_{(1,12)} = 17.920, p < 0.01$) on spine density (Fig. 3C, D). Specifically, stressed CRF1-CKO mice had higher spine density than control CRF1-CKO and stressed wild-type mice ($p < 0.001$ and $p < 0.05$ respectively, Bonferroni’s test). Notably, spine density in the middle molecular layer of DG and cell density of the hippocampus were similar among groups (data not shown).

Figure 2. A, B, Effects of early-life stress on mossy fiber-CA3 LTP (A) and SCCP-CA3 LTP (B) in adult wild-type and CRF1-CKO mice. Representative traces for control and LTP are shown. A, After a HFS was delivered, mossy fiber-CA3 LTP was absent in stressed wild-type mice as indicated by significantly reduced amplitude of fEPSP in the last 10 min compared with wild-type controls. In contrast, CRF1-CKO mice showed intermediate LTP.
stress ($F_{(1,29)} = 4.429, p < 0.05$) on CA3 neurexin-1 mRNA levels was revealed (Fig. 5A, B). Compared with the controls, stressed wild-type but not CRF$_1$-CKO mice showed a significant decrease in neurexin-1 mRNA levels ($p < 0.05$, Bonferroni’s test). Moreover, the mRNA levels of neuroligin-3 were reduced in CA1 by early-life stress (two-way ANOVA of condition, $F_{(1,27)} = 14.360, p < 0.001$) in both wild-type and CRF$_1$-CKO mice (both $p < 0.05$, Bonferroni’s test; Fig. 5C, D). Neuroligin-3 gene expression was also affected by stress in CA3 (two-way ANOVA of condition, $F_{(1,27)} = 8.634, p < 0.01$) and DG (two-way ANOVA of condition, $F_{(1,27)} = 12.420, p < 0.01$). Post hoc test revealed that neuroligin-3 mRNA levels were significantly reduced in the DG of stressed wild-type mice ($p < 0.05$ versus wild-type controls, Bonferroni’s test). In contrast, the gene expression levels of neurexin-1 in CA1 and neuroligin-1 and neuroligin-2 in all hippocampal subregions remained unaltered among groups (data not shown).

Additionally, we found that CRF$_1$ was in close proximity with neurexins in specific subcellular compartments of hippocampal pyramidal neurons (Fig. 5E). This partial colocalization was prominent in neuronal soma and dendrites, suggestive of potential functional interactions between CRF$_1$ and neurexins.

Discussion

In this study, we demonstrate that early-life stress impairs hippocampus-dependent spatial learning and memory in adult mice, and is associated with physiological, morphological and molecular abnormalities in the hippocampus. Impairments of spatial learning and memory by early-life stress are recapitulated by forebrain CRF overexpression and attenuated by forebrain CRF$_1$ inactivation, suggesting that forebrain CRF$_1$ is crucial for the programming of cognitive function by early-life stress.

Early-life stress-induced late-onset cognitive deficits, forebrain CRF$_1$, and glucocorticoids

Early experiences shape brain development and cognitive function (Korosi and Baram, 2009; Lupien et al., 2009). In rodents, exposure to an impoverished postnatal environment, which disrupts maternal behavior and mother–pup interaction, impairs hippocampal integrity and cognition of adult offspring (Fenoglio et al., 2006). Consistent with findings using the same stress paradigm (Rice et al., 2008), adult stressed wild-type mice exhibited impaired performance in spatial tasks. Intriguingly, the cognitive impairments in stressed animals were abolished by forebrain CRF$_1$ inactivation, extending the findings using postnatal treatment of a selective CRF$_1$ antagonist (NBI-30775) (Ivy et al., 2010). These data suggest that the interactions between environmental risk factors and genetic predispositions are decisive in sculpting brain function and the expression of psychopathology (Charney and Manji, 2004; Schmidt, 2010).

The involvement of CRF and CRF$_1$ in stress-induced cognitive decline has been investigated in previous studies. Transgenic CRF overexpression (Heinrichs et al., 1996) or postnatal CRF administration (Brunson et al., 2001) impaired spatial learning and memory in adult rodents, whereas postnatal administration of NBI-30775 prevented these effects (Ivy et al., 2010) and improved spatial performance in adult rats (Fenoglio et al., 2005). However,
these approaches manipulated multiple brain regions, thus leave the neuroanatomical sites of action unclear. We observed that forebrain CRF-overexpressing mice exhibited impaired spatial performance, mirroring the cognitive phenotype of stressed wild-type mice, while stressed CRF1-CKO mice performed similarly to the controls. These findings pinpoint the importance of forebrain CRF1 in modulating cognitive function after postnatal stress exposure.

Because the calcium/calmodulin kinase II(H9251)driven suppression of CRF1 did not take place until the end of the second postnatal week (Wang et al., 2011), the deletion of the Crf1 gene in CRF1-CKO mice occurred after the epoch of early-life stress (P2–P9). Although these mice were likely capable of forebrain CRF1 signaling during the stress, its absence in the critical weeks after the stress protected them from structural and functional disturbances of the hippocampus. This indicates that following early-life stress is a window of opportunity where hippocampal plasticity is still present, and where intervention might rescue from the adverse effects of early-life stress (Ivy et al., 2010).

Glucocorticoids, acting via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs), are other key stress mediators affected by early-life stress (Joëls and Baram, 2009). Glucocorticoid excess during postnatal stress exposure, the resultant disruption of glucocorticoid feedback and the imbalance between hippocampal MR and GR have been postulated as a leading molecular basis of stress-induced cognitive deficits (de Kloet et al., 1999; Joëls et al., 2006; Oitzl et al., 2010). However, neonatal dexamethasone (a synthetic glucocorticoid) treatment failed to consistently impair cognition in adult rats (Kamphuis et al., 2003; Lin et al., 2006). Recent evidence indicates that the alterations of hippocampal GR after early-life experience may be secondary to changes of CRF1 signaling in the paraventricular nucleus (Korosi and Baram, 2009; Korosi et al., 2010) and likely the hippocampus (Fenoglio et al., 2005), and may be paralleled with, instead of being causally related to, cognitive changes. In addition, basal corticosterone levels and stress response were unaltered by chronic stress in adult wild-type and CRF1-CKO mice (Wang et al., 2011) or by forebrain CRF overexpression (Lu et al., 2008). Therefore, our data support the hypothesis that abnormal hippocampal CRF1 signaling largely accounts for the cognitive deficits in adult mice experienced early adversities.

Figure 4. Effects of early-life stress on excitatory and inhibitory synaptic density in area CA3 and CA1 in adult wild-type and CRF1-CKO mice. A. The number of VGLUT1-positive synaptic puncta in CA3 stratum radiatum was significantly reduced in stressed wild-type but not stressed CRF1-CKO mice. B. VGAT puncta density in area CA3 remained unchanged among groups. C. Representative confocal images taken from the stratum radiatum of CA3a (alongside stratum lucidum) showing VGLUT1- and VGAT-immunoreactive synaptic puncta. D. The number of VGLUT1-positive puncta in CA1 stratum radiatum was also decreased in stressed wild-type but not stressed CRF1-CKO mice. E. VGAT puncta density in area CA1 was reduced by early-life stress in both wild-type and CRF1-CKO mice. F. Representative confocal images taken from the stratum radiatum of CA1b (alongside stratum pyramidale) showing VGLUT1- and VGAT-immunoreactive synaptic puncta. CT, Control; ES, early-life stress; KO, CRF1-CKO. Scale bars, 5 μm. *p < 0.05, **p < 0.01 versus the control group. n = 3–4 mice per group.
Early-life stress-induced synaptic dysfunction and dendritic spine loss are attenuated by forebrain CRF1 inactivation

LTP, an activity-dependent enhancement of synaptic efficacy (Lynch, 2004), is disrupted in adult rodents by early-life stress in CA3 (Brunson et al., 2005), CA1 (Brunson et al., 2005; Champagne et al., 2008; Ivy et al., 2010) and DG (Bagot et al., 2009) in a CRF1-dependent manner (Ivy et al., 2010). Whereas the commissural/associational LTP was examined in rats, we also found disturbed mossy fiber-CA3 LTP in stressed wild-type mice. Moreover, LTP in SCCP-CA1 synapses was normal in stressed wild-type mice, whereas deficits were observed in stressed rats. This disparity may arise from species/age differences and the sensitivity of the procedure, as there was a reduction in the number of excitatory synapses in CA1 in both species (dendritic atrophy in stressed rats and reduced VGLUT1 immunoreactivity in stressed mice). Interestingly, forebrain CRF1 inactivation not only abolished the effects of early-life adversity on CA3 LTP maintenance, but facilitated SCCP-CA1 LTP in stressed mice, indicating an important involvement of CRF1 signaling in both neural circuits.

Acute stress initiates the release of CRF (Chen et al., 2004a) that promotes rapid loss of CA3 dendritic spines (Chen et al., 2008), which is dependent on CRF1 and correlates with cognitive defects and LTP attenuation (Chen et al., 2010); whereas recurrent exposure to high “stress levels” of CRF results in dendritic atrophy (Chen et al., 2004b). We found an overt reduction in CA3 spine density and the total number of excitatory synapses, coupled with attenuated CA3 LTP and spatial performance, in stressed wild-type but not stressed CRF1-CKO mice. In area CA1, however, more subtle loss of excitatory synapses took place in stressed wild-type mice. Because the relative number of spines on each dendrite remained unchanged in these animals, the loss of excitatory terminals in CA1 likely reflects the shrinkage of dendritic branches. Together with published data in rats (Brunson et al., 2005; Ivy et al., 2010), these results suggest that early-life stress may hamper the development of CA3 neurons, which in turn remodels structure and function in CA1.

We observed that forebrain CRF1 inactivation per se reduced spine density in the apical dendrites of CA3 pyramidal neurons, which was not apparent after early-life stress. Considering that cognition and synaptic plasticity in control CRF1-CKO mice remained intact, mechanisms such as increased complexity of CA3 proximal dendrites (Chen et al., 2004b) likely compensate these morphological changes. It should be noted that the predominant thin and filopodia-like spines observed in YFP-expressing CRF1 mutant mice (Chen et al., 2008) may be poorly impregnated by the Golgi method used here, resulting in a potential underestimation of the total number of spines in control CRF1-CKO mice.

Moreover, stressed CRF1-CKO mice had more spines in CA1 neurons, which may account for enhanced SCCP-CA1 LTP.

In the hippocampus, excitatory synapses are found on dendritic spines whereas inhibitory synapses are primarily perisomatic. As CRF1 resides on spines (Chen et al., 2004a), it is not surprising that the major contribution of CRF1 to the effects of early-life stress involved more excitatory than inhibitory synapses. The modulation of excitatory and inhibitory network by the interaction between CRF1 and early-life stress may be responsible for the observed functional alterations.

Potential link between CRF-CRF1 and neurexin-neuroligin may modulate the effects of stress on synaptic plasticity, learning and memory

Excitatory and inhibitory synapses are modulated by the neurexin-neuroligin complex (Südhof, 2008). Neurexins are a family of synaptic cell adhesion molecules which primarily localize at presynaptic sites, while postsynaptic neuroligins abound in and act on excitatory and inhibitory synapses (Chubykin et al., 2007). Recently, the neurexin-neuroligin complex has been implicated in cognitive diseases (Jamain et al., 2003; Kim et al., 2008; Rujescu et al., 2009), and studies in mutant mice highlight their importance in synaptic transmission and cognition (Etherton et al.,
2009; Blundell et al., 2010; Dahlhaus et al., 2010). In stressed wild-type mice, both neurexin-1 and neuroligin-3 mRNA levels were reduced, whereas only neuroligin-3 was decreased in stressed CRF1-CKO mice. Hence, neurexins and neuroligins are potential molecular substrates which may partly mediate the effects of early-life stress on synaptic plasticity and cognition. Furthermore, the colocalization of CRF1 with neurexins raises the possibility that the CRF-CRF1 system interacts with the neurexin-neuroligin complex to modulate synaptic activity.

The current study also has a few limitations. First, the overexpression of forebrain CRF augments both CRF1 and CRF2 signaling, and thus is not exactly the opposite of forebrain CRF1 deficiency. The involvements of CRF1 signaling and the innervation of other brain regions by forebrain CRF in shaping the cognitive phenotype of CRF-COE mice cannot be excluded. In addition, genetic mouse models always carry the inherent risk of compensatory mechanisms, which might affect the observed phenotype. Third, as we examined the expression of several synaptic proteins at 1 week after the behavioral tests, the potential influences of testing on the expression changes should be considered when interpreting the data. Finally, although the impact of individual housing on the behavioral profile of male mice remains a matter of debate (Arndt et al., 2009; Bartolomucci et al., 2009), one should keep in mind that single housing of mice may alter their behavior and interact with early-life experience and genotype to contribute to the observed findings, which merits future studies.

Together, we provide evidence that forebrain CRF1 signaling mediates, at least in part, the programming effects of early-life stress on cognition. Intriguingly, forebrain CRF1 inactivation enhances the function of specific neuronal networks after postnatal stress exposure, such as LTP and spine density in CA1. Manipulation of forebrain CRF1 may be a promising therapeutic strategy to abate the deleterious consequences of early-life stress on cognition and conceivably, to prevent or delay the onset of early-life stress-related psychiatric disorders.

References
Ivy AS, Rex CS, Chen Y, Dubé C, Maras PM, Grigoriadis DE, Gall CM, Lynch...

