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Weed Optimization Algorithm for Optimal
Reservoir Operation

Hamid-Reza Asgari1; Omid Bozorg Haddad2; Maryam Pazoki3; and Hugo A. Loáiciga, F.ASCE4

Abstract: This study introduces the weed optimization algorithm (WOA) to optimal reservoir operation. The WOA is a metaheuristic
optimization method inspired by weeds’ life cycle. The effectiveness of the WOA is demonstrated with the optimization of mathematical
functions and reservoir systems. The WOA is applied in continuous-time and discrete-time formulations of reservoir-operation
optimization and its results are compared with global optimal solutions obtained with nonlinear programming (NLP), linear programming
(LP), and the genetic algorithm (GA). The results show the WOA’s fast convergence to solutions that are very near the global
optimal solutions of the reservoir optimization problems. DOI: 10.1061/(ASCE)IR.1943-4774.0000963. © 2015 American Society
of Civil Engineers.

Author keywords: Optimization; Reservoir operation; Genetic algorithm; Weed optimization algorithm.

Introduction

Reservoir operation is based on a series of rules that determine the
amount of water that is stored and released under different system
conditions. These reservoir operation rules determine how reservoir
water is allocated during periods of droughts, normal climate, or
wet climate.

Methods used for the optimal operation of reservoirs can be
classified into two main categories: classic algorithms, and
evolutionary and metaheuristic algorithms. Although classic meth-
ods are relatively simple, they have limitations such as the possibil-
ity of not achieving global optima, convergence to local optima,
and being hindered by high dimensionality (the curse of dimension-
ality problem). Evolutionary and metaheuristic algorithms are
generally inspired by natural phenomena. One of the advantages
of the latter algorithms is that they generally converge to
near-global optima for any well-defined optimization problems.
In addition, they can solve multiobjective problems. The main dis-
advantage of evolutionary and metaheuristic algorithms is the long
processing time needed to converge to a solution. This has led
many researchers to search for and produce newer, computationally
more efficient, evolutionary and metaheuristic algorithms.

Many classic and metaheuristic optimization techniques
have been recently developed and applied in various aspects of water

resources systems such as reservoir (Fallah-Mehdipour et al. 2011,
2012a, 2013a), hydrology (Orouji et al. 2013), water-resources man-
agement (Bozorg Haddad et al. 2010b; Fallah-Mehdipour et al.
2012b), irrigation (BozorgHaddad et al. 2009; Fallah-Mehdipour et al.
2013b), power plants (Bozorg Haddad et al. 2011c), structures
(Bozorg Haddad et al. 2010a), distribution networks (Seifollahi-
Aghmiuni et al. 2011, 2013), aquifers (Bozorg Haddad and Mariño
2011), infrastructures (Karimi-Hosseini et al. 2011), and algorithmic
developments (Shokri et al. 2013). None of these works dealt with the
application of the weed optimization algorithm (WOA) in water re-
sources systems, or, in particular, to solve reservoir optimal operation.

Concerning the application of evolutionary and metaheuristic
algorithms to reservoir operation, Esat and Hall (1994) resorted
to the genetic algorithm (GA) to optimize reservoir operation
for energy production and water for irrigation. Oliveira and Loucks
(1997) employed the GA to evaluate rules concerning the operation
of multi-reservoir systems. Sharif and Wardlaw (2000) imple-
mented the GA in several multi-reservoir systems and obtained so-
lutions very close to those calculated with dynamic programming
(DP). Ahmed and Sarma (2005) compared the GA’s performance
with that of stochastic dynamic programming and reported that the
GA was superior in calculating desired solutions for optimizing
multiobjective reservoir operation. Tospornsampan et al. (2005)
applied the simulated annealing (SA) algorithm to optimize the
operation of a multi-reservoir system. Kumar and Reddy (2006)
implemented the ant colony optimization (ACO) metaheuristic
algorithm to optimize the operation of a multiobjective reservoir.
Bozorg Haddad et al. (2006) introduced the honey-bee mating op-
timization (HBMO) metaheuristic algorithm to reservoir operation.
Bozorg Haddad et al. (2008) used the HBMO and nonlinear pro-
gramming (NLP) for the design and operation of a single and multi-
ple reservoir system. Wang et al. (2011) introduced the multi-tier
interactive GA (MIGA) for long-term optimization of reservoir op-
eration. Jothiprakash et al. (2011) used the GA and stochastic dy-
namic programming (SDP) for the operation of a five-reservoir
system in Kodaiyar, India. Ostadrahimi and et al. (2012) calculated
operation rules of a multi-reservoir system using the multipopula-
tion approach in multi-swarm particle swarm optimization
(MSPSO) algorithm. Ngoc et al. (2013) applied the constrained
GA to derive optimal operation principles of multiobjective
reservoirs. Bozorg Haddad et al. (2014) applied the bat algorithm
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(BA) to determine the optimal operation of reservoir policies for
Karoon 4 and four-reservoir system in continuous domain.
Bozorg Haddad et al. (2015) used the water cycle algorithm
(WCA) to determine the optimal operation of reservoir policies
of the Karoon 4 reservoir. They also compared the results of the
WCA with those obtained with the GA and NLP.

The following works have implemented the WOA in a variety of
engineering optimization problems, but not to reservoir operation
as of yet. Mehrabian and Lucas (2006) introduced the WOA. They
solved two engineering problems and compared the results with the
GA, memetic algorithm (MA), particle swarm optimization (PSO)
algorithm, shuffled frog leading algorithm (SFLA), and the simu-
lated annealing (SA) algorithm. Their results showed a relatively
superior performance by the WOA. Mehrabian and Yousefi-Koma
(2007) applied the WOA to optimize the location of piezoelectric
actuators on a smart fin. Mallahzadeh et al. (2008) tested the
flexibility, effectiveness, and efficiency of the WOA in optimizing
a linear array of antenna and compared the computed results with
those of the PSO algorithm. Sahraei-Ardakani et al. (2008) used
WOA to optimize the generation of electricity. Roshanaei et al.
(2009) applied the WOA to optimize uniform linear array
(ULA) used in wireless networks, such as commercial cellular
systems, and compared their results with those from the GA and
least mean square (LMS). Mallahzadeh et al. (2009) used the
WOA to design vertical antenna elements with maximal efficiency.
Krishnanand and Nayak (2009) compared the effectiveness of the
WOA, GA, PSO algorithm, artificial bee colony (RBC), and
artificial immune (AI) by solving five basic standard mathematical
problems with multivariate functions. Zhang et al. (2010) used
heuristic algorithm concepts for developing the WOA. They
introduced the WOA with crossover function and tested the new
algorithm on standard mathematical problems and compared the
results of the developed WOA with those of the standard WOA
and PSO. Sharma et al. (2011) used the WOA to solve dynamic
economic dispatch (DED). Their results showed that the WOA al-
gorithms reduced production costs relative to those obtained with
the PSO and AI algorithms and differential evolution (DE). Jaya-
barathi et al. (2012) implemented the WOA for solving economic
dispatch (DE) problems. Kostrzewa and Josiński (2012) introduced
a new version of the WOA and tested their algorithm on several
standard mathematical problems. Abu-Al-Nadi et al. (2013) ap-
plied the WOA for model order reduction (MOR) in linear
multiple-input-multiple-output systems (MIMO). Sang and Pan
(2013) introduced the effective discrete WOA (DIWO) to solve
the problem of flow shop scheduling with average stored buffers,
and compared their results with the hybrid GA (HGA), hybrid PSO
algorithm (HPSO), and the hybrid discrete differential evolution
algorithm (HDDE). Saravanan et al. (2014) applied the WOA to
solve the unit commitment (UC) problem for minimizing the total
costs of generating electricity. They compared their results with
those calculated with the GA, SFLA, PSO algorithms, Lagrangian
relaxation (LR), and the bacterial foraging (BF) algorithm. Barisal
and Prusty (2015) used the WOA to solve economic problems on a
large scale with the aim of minimizing the costs of production and
transfer of goods subject to restrictions on production, market
demand, the damage caused to goods during transportation, and
to alleviate other calamities.

The reviewed literature established that the WOA has not been
applied to optimize reservoir operation. This study introduces the
WOA to the field of reservoir operation and compares its results
with those obtained with the GA, linear programming (LP), and
NLP. Several comparative examples are solved to measure the
performance of the WOA against those of well-established
optimization methods.

Weed Optimization Algorithm

A common phenomenon in agriculture inspired the WOA. The
WOAwas developed on the basis of weeds’ growth characteristics.
Weeds are plants that grow spontaneously and may be harmful to
pastures, farms, and gardens. They can easily adapt to almost any
environment and new conditions. Despite its simplicity, the WOA
emulates numerically many characteristics of plants such as seed
production, growth, and competition. The following characteristics
describe the growth of weed colonies:
• A limited number of seeds are spread in a search area.
• Each seed turns into a weed that produces seeds based on its

quality in the colony.
• Produced seeds spread randomly in the environment and make

new seeds.
• This process is repeated until the maximum number of plants in

a colony is reached. Then, competition for survival starts
between weeds so that in each stage weeds of lower quality
are removed. This process continues to produce weeds of the
highest quality.
The detailed steps of the WOA are as follows:

1. Start with an initial population: the initial population (Pinitial) is
produced and spread randomly in a d-dimensional search area.
In fact, each plant is a solution whose location in any
dimension of d-dimensional area is a decision making
parameter. A bunch of several plants constitutes a colony.

2. Reproduction: In this stage plants are allowed to produce seeds
according to the quality of the colony, their own quality, and
the maximum and minimum number of produced seeds
(NoSmax), (NoSmin), which the user can choose. Seed produc-
tion is illustrated in Fig. 1 approximately as a linear function.

The reproduction stage adds an important advantage to the
algorithm. In evolutionary algorithms population agents con-
stitute a range from appropriate solutions to inappropriate
ones. Appropriate samples have a higher probability of
reproduction than inappropriate ones, but there is always
the possibility that population elements that seem inappropri-
ate at each stage contain important information that even
suitable plants lack. It is therefore probable that, with a suit-
able reproduction, inappropriate plants survive an unsuitable
environment and find a hidden suitable environment. This
process is observed in nature.

3. Spread of seeds: At this stage adoption and randomness are
introduced in algorithm. The produced seeds are spread
randomly with normal distribution and zero mean in a
d-dimensional area. Therefore new plants spread randomly
around the parent plants, but their standard deviation is

Min Max 

Plant 

maxNoS

minNoS

Plant 

Fitness in 
colony 

Number of 

Produced seeds 

Fig. 1. Level of reproduction for each plant with respect to fitness

© ASCE 04015055-2 J. Irrig. Drain Eng.

 J. Irrig. Drain Eng., 2016, 142(2): 04015055 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
28

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



variable. The standard deviation is reduced from the initial
predetermined value (maximum) to a final predetermined va-
lue (minimum) according to Eq. (1)

σiter ¼
ðitermax − iterÞn

ðitermaxÞn
ðσinitial − σfinalÞ þ σfinal ð1Þ

where σiter = standard deviation of the current iteration; itermax
= maximum iteration number (reproduction stages); iter = cur-
rent iteration number; σinitial = initial standard deviation; σfinal
= final standard deviation; and n = nonlinear modulus (Non-
linear Modulation Index) selected by the user. The probability
of placing a seed far from its parent plant in the beginning of
the algorithm is high, and it decreases during later stages of the
algorithm when the number of appropriate plants increases.

4. Competitive exclusion: if a plant does not produce seeds it will
become extinct. If all the plants produce seeds and the seeds
grow, the number of plants increases exponentially. Therefore
a competitive process is necessary to limit and remove some of
the existing plants. After several reproductions, the number of
plants in the colony reaches its maximum (Pmax). This is when
the process of omitting unsuitable plants starts, and is repeated
until the end of the algorithm. Fig. 2 depicts a flowchart of
the WOA.

Testing the WOA with Mathematical Functions

Two mathematical functions were used in this study to test the op-
timizing capacity of the WOA. The Ackley unbound n-dimensional
mathematical function, and a constrained mathematical problem

with seven parameters was used in this test. The Ackley function
is given by Eq. (2)

Min: fðxÞ ¼ −20 exp
�
− 1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x2i

s �
− exp

�
1

n

Xn
i¼1

Cosð2πxiÞ
�

þ 20þ e − 5 ≤ xi ≤ 5 ð2Þ

The Ackley function has global optimum fðx�Þ ¼ 0 at
x� ¼ ð0; : : : ; 0Þ. Fig. 3 displays this function in a two dimensional
space. It is shown from Fig. 3 that this function has many local
optima. The Ackley function was solved for 5, 10, 20, 50, and
100 dimensions using the GA and the WOA with 10 runs (one
run for a different initial population). The GA was implemented
with the following characteristics: number of decision-making
parameters = 5–100, population size = 50–100, the number of iter-
ations ranged between 500 and 1500, the selection method was the
Roulette Wheel, the Crossover Function was single point, the
Constraint Dependent was uniform, the Crossover Possibility
ranged between 0.7 and 0.8, and the mutation probability ranged
between 0.015 and 0.05. The best values for each parameter
were chosen after analyzing the parameters’ sensitivities. The
WOA’s parameters were as follows: number of decision-making
parameters = 5–100; Pinital ¼ 5–10; Pmax ¼ 15–30; σinitial ¼ 1–2;
σfinal ¼ 0.00001–0.01; n ¼ 3; NoSmax ¼ 3–5; NoSmin ¼ 0–1;
and itermax ¼ 500–1,000. The best parameter values were chosen
after analyzing the parameters’ sensitivities. The results of the 10
runs corresponding to maximum, mean, and minimum standard
deviation and coefficient of variation are presented in Table 1. It
is shown in Table 1 that the WOA problem is more effective than

Fig. 2. Flowchart of the WOA algorithm
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the GA in approximating the global optimum of the Ackley
function.

The second test function is a constrained mathematical problem
whose objective function is given in Eq. (3) and its constraints are
written in Eqs. (4)–(8)

Min: fðXÞ ¼ ðx1 − 10Þ2 þ 5ðx2 − 12Þ2 þ x43 þ 3ðx4 − 11Þ2
þ 10x65 þ 7x26 þ x47 − 4x6x7 − 10x6 − 8x7 ð3Þ

Subject to:

−127þ 2x21 þ 3x42 þ x3 þ 4x24 þ 5x5 ≤ 0 ð4Þ

−282þ 7x1 þ 3x2 þ 10x23 þ x4 − x5 ≤ 0 ð5Þ

−196þ 23x1 þ x22 þ 6x26 − 8x7 ≤ 0 ð6Þ

4x21 þ x22 − 3x1x2 þ 2x23 þ 5x6 − 11x7 ≤ 0 ð7Þ

−10 ≤ xi ≤ 10 i ¼ 1; : : : ; 7 ð8Þ
The global minimum of Eqs. (3)–(8) is fðX�Þ ¼ 680.630057 at

point X� ¼ ð2.331; 1.951;−0.489; 4.365;−0.624; 1.038; 1.597Þ
(Parsopoulos and Vrahatis 2002).

Eqs. (3)–(8) was solved with 10 different runs (each correspond-
ing to a different initial population) with the GA and the WOA. The
solution results are listed in Table 2. The parameters in the GA
were chosen after sensitivity analysis as follows: number of
decision-making parameters = 7; population size = 100; number
of iterations = 1,000; selection method was roulette wheel;
crossover function was single point; mutation function was
uniform; crossover probability = 0.8; and the mutation probability
= 0.012. The WOA’s parameters after sensitivity analysis were
as follows: number of decision-making parameters = 7;
Pinitial ¼ 10; Pmax ¼ 50; σinitial ¼ 2; σfinal ¼ 0.001; n ¼ 3;
NoSmax ¼ 5;NoSmin ¼ 1; and itermax ¼ 500. The results of Table 2
establish that the WOA converged to 99.99% of the global
optimum. Moreover, even the worst solution obtained with the
WOAwas better than the best solution from the GA. These results
show that WOA is more effective than GA even in the type of con-
strained problem herein considered.

The convergence (correlation) graph for the mean value of the
GA and the WOA for the 10 runs used to solve the bound problem
is presented in Fig. 4. Fig. 4 shows that the WOA converged to the
global optimum of the problem whereas the GA did so to a local
optimum.

Reservoir Operation Model

The WOA was tested with a single-reservoir operation problem
with irrigation function and with a four-reservoir problem in dis-
crete and continuous domains. The objective function for the
single-reservoir problem that meets downstream water demand is

Min: OF ¼
XT
t¼1

�
Det − Rt

Demax

�
2

ð9Þ

where OF = objective function of relative shortage during operation
periods; t = period index; t ¼ 1; 2; : : : ;T; T = number of operation
periods; Det = volume of required downstream water during oper-
ation period t; Demax = maximum volume of downstream water
requirement during operation periods; and Rt = release volume dur-
ing operation period t.

Fig. 3. Graph of the Ackley function in two dimensions

Table 1. Results of 10 Runs of the GA and the WOA for the Ackley Function with 5, 10, 20, 50, and 100 Dimensions

Dimension
number

Optimization
method Minimum Average Maximum SD

Coefficient of
variation

5 GA 0.000153 0.000468 0.000964 0.622515 0.000292
WOA 0.000053 0.000092 0.000123 0.243669 0.000023

10 GA 0.001519 0.000773 0.002124 0.780005 0.000603
WOA 0.000016 0.000020 0.000023 0.103054 0.000002

20 GA 0.001519 0.003284 0.004741 0.309534 0.001016
WOA 0.000030 0.000037 0.000044 0.134394 0.000005

50 GA 0.023687 0.107699 0.497494 1.481381 0.159543
WOA 0.000083 0.000097 0.000106 0.071705 0.000007

100 GA 1.003671 1.140694 1.366686 0.094148 0.107394
WOA 0.001410 0.442132 1.323137 1.350323 0.597021

Table 2. Results of the GA and the WOA for 10 Runs for Mathematical
Problem with Constraints

Algorithm Minimum Average Maximum SD
Coefficient
of variation

GA 683.1057 687.5666 701.9914 5.500057 0.001990
WOA 680.6351 680.6499 680.6972 0.016994 0.000020

© ASCE 04015055-4 J. Irrig. Drain Eng.
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In the four-reservoir problem where the goal is to maximize the
benefit gained from reservoir-system operation according to
Eq. (10)

Max: Be ¼
Xn
i¼1

XT
t¼1

bi;t × Ri;t ð10Þ

where Be = income from allocated water; i = reservoir number; n =
total number of reservoirs; bi;t = income function in period t for
reservoir i; and Ri;t = required volume in period t for
reservoir i.

The key constraint in reservoir-operation modeling is the
conservation of water volume as stated by Eq. (11)

Si;tþ1 ¼ Si;t þQi;t þMn×nRi;t − Li;t − Spi;t ð11Þ
where Si;tþ1 = stored volume at the beginning of operation period
tþ 1 in reservoir i; Si;t = stored volume at the beginning of
operation period t in reservoir i; Qi;t = volume of monthly inflow
operation period t in reservoir i;M = an n × nmatrix expressing the
hydraulic connectivity among reservoirs; Li;t = volume of losses in
operation period t in reservoir i; and Spi;t = volume of overflow
from reservoir i in period t.

The reservoir storage falls between its maximum and minimum
values

Smini ≤ Si;t ≤ Smaxi ð12Þ
where Smin and Smax denote respectively the minimum and
maximum storages of reservoir i.

The maximum and minimum values for release are defined by
Eq. (13)

Rmini ≤ Ri;t ≤ Rmaxi ð13Þ
where Rmini and Rmaxi express the minimum and maximum al-
lowable release volume from reservoir i, respectively.

In most reservoir operation models the losses equal the algebraic
difference between precipitation and evaporation on the surface of
reservoirs. Other losses, such as leakage from the bottom of the
reservoir, are considered relatively small compared to other factors.
Storage loss is calculated according to Eq. (14)

Li;t ¼ Ai;t × Ei;t ð14Þ
where Ai;t = lake surface in operation period t in reservoir i; and
Ei;t = average water level during operation period t in reservoir i.
The lake surface is expressible as a function of the reservoir volume.

Reservoir overflow (spillage) occurs when the storage volume
exceeds storage capacity according to the following equation:

Spi;t ¼
�
Si;t − Smaxi if Si;tþ1 > Smaxi
0 else

ð15Þ

The initial and final volumes are frequently required to equal
each other, the so-called carryover condition, which is expressed
by Eqs. (16) and (17)

Si;1 ¼ Sinitiali ð16Þ

Si;Tþ1 ¼ Si;1 ð17Þ

where Sinitiali = initial reservoir volume before operation begins.
A penalty function is applied when the carryover condition is not
satisfied

P1i ¼ K1½Si;Tþ1 − Sinitiali�2 þ c ð18Þ

where P1i = penalty function for violating carryover limitation;
K1 = penalty coefficient; and c = constant value.

A penalty function is applied when reservoir storage is less than
Smin

P2i;t ¼ K2½Smini − Si;t�2 þ d ð19Þ

where P2i;t = penalty function for violating minimum reservoir
storage; K2 = penalty coefficient; and d = constant value. In
general, the sum of the penalty functions is defined by Eq. (20).
Depending on whether it is a maximization or minimization prob-
lem, it is added to or subtracted from the objective function,
respectively

P ¼
Xn
i¼1

P1i þ
Xn
i¼1

XT
t¼1

P2i;t ð20Þ

in which P = sum of penalty functions.

Case Studies of Reservoir Operation

Single-Reservoir Operation Problem

The Bazoft reservoir’s data for 5 years (1955–1960) was considered
as a case study test the WOA. Bazoft dam is located in
Chaharmahal and Bakhtiari, Iran, and it was built on the Bazoft
River. It is a concrete arch dam whose height equals 160 m. Aver-
age annual flow into the reservoir is estimated at 2012 million cubic
meters. Maximum and minimum of reservoir storage are 450 and
142 million cubic meters, respectively (Fallah-Mehdipour et al.
2011). Fig. 5 displays reservoir inflow and downstream water de-
mand for the Bazoft reservoir. It is shown in Fig. 5 that in most
periods the amount of monthly Bazoft River flow is less than
the downstream water demand.

The Bazoft reservoir’s surface-storage equation is

At ¼ −0.0000002S2t þ 0.0128St þ 0.7605 ð21Þ

where At is in 103 × km2 and St is in 106 ×m3.
In this study the carryover condition (17) was not applied be-

cause of the long operation period. Only the penalty function (19)
was used with coefficients K2 ¼ 2, d ¼ 10.
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Fig. 4. Convergence of the GA and the WOA for 10 runs of the con-
strained mathematical problem
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The operation model of Bazoft reservoir was solved employing
the NLP Solver from Lingo 13.0, and with the GA and the WOA.
Sensitivity analyses were employed to determine the GA andWOA
parameters. Next, the Bazoft reservoir’s operation was optimized
using 10 runs (each corresponding to a different initial population).
The parameters of the GA were as follows: number of decision
making parameters = 60; population size = 60; number of iterations
= 2,000; selection method was the roulette wheel; the crossover
function was single point; mutation function was uniform;
crossover probability = 0.8; and the mutation probability =
0.015. The WOA parameters were as follows: number of
decision-making parameters = 60; Pinitial ¼ 10; Pmax ¼ 30;
σinitial ¼ 10; σfinal ¼ 0.1; n ¼ 3; Smax ¼ 5; Smin ¼ 0; and
itermax ¼ 1,000. The values of the minimum, maximum, and mean
standard deviation and the coefficient of variation for the 10 runs
are listed in Table 3. According to Table 3 the best objective func-
tion value was 0.2250 for the GA, and 0.1624 for the WOA. The
WOA optimal solution equaled 99.38% of the global optimum cal-
culated with NLP. The WOA achieved lower standard deviation
and coefficient of variation than the GA. Also, the worst value ob-
tained employing WOA was better than the best solution from
the GA.

The GA convergence graph is portrayed in Fig. 6. This graph
shows the minimum and maximum value of the objective function
of 10 runs for 2,000 iterations. Fig. 6 shows that the GA converged
after approximately 30,000 evaluations of the objective function.

The WOA convergence graph is shown in Fig. 7. This diagram
shows the minimum and maximum value of the objective function
in 10 runs for 1,000 iterations. Fig. 7 shows that the WOA con-
verged approximately after 5,000 evaluations of the objective
function.

The graph of mean values of the objective function for 10 runs
of the GA and the WOA is depicted in Fig. 8. It is evident in Fig. 8
that the WOA converged quickly to a solution, while the GA
exhibited slower convergence.

The results of release values obtained from NLP, GA, and WOA
for downstream requirements are shown in Fig. 9. Fig. 9 establishes
that the results from NLP meet downstream demand fully until
period 29. From period 29 onward, the results from NLP method
exhibited the smallest number of failed periods, while GA had the
maximum number of failed periods. Comparing release results
from the NLP method with the WOA’s release results in Fig. 9
indicates that release values obtained with the WOA are very close
to those calculated with the NLP method in all periods. The largest
difference between the results from NLP and the WOA occurred in
period 47 and equaled 3 million cubic meters, whereas in other
periods the deficit (difference) approximates the value of zero.

Fig. 10 graphs storage volumes calculated with NLP, GA, and
WOA. The three methods calculated reservoir storage similarly up
to period 30. After this period, there are larger differences between
the stored volumes calculated with NLP and the GA. Conversely,
the stored volumes obtained with the WOA correspond closely to
those calculated with NLP.
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Fig. 5. Monthly discharge against water demand for the Bazoft reser-
voir in the five-year operation period

Table 3. Results of 10 Runs of the GA and the WOA for Single-Reservoir
System

Run GA WOA NLP

1 0.2731 0.1711 —
2 0.2755 0.1627 —
3 0.2614 0.1655 —
4 0.2779 0.1624 —
5 0.2346 0.1624 —
6 0.2661 0.1625 —
7 0.2250 0.1626 —
8 0.2400 0.1725 —
9 0.2348 0.1624 —
10 0.2937 0.1724 —
Minimum 0.2250 0.1624 0.1614
Average 0.2583 0.1656 —
Maximum 0.2937 0.1656 —
SD 0.0218 0.0038 —
Coefficient of
variation

0.0843 0.0229 —
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Fig. 6. Convergence of GA for 10 runs of the single-reservoir problem
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Four-Reservoir System Problem

A schematic of the four-reservoir system is depicted in Fig. 11. The
connectivity matrix for the four-reservoir system is

M ¼

2
64
−1 0 0 0

0 −1 0 0

0 1 −1 0

1 0 1 −1

3
75 ð22Þ

The water released from reservoirs is used for irrigation and
hydroelectricity. Reservoir losses were not considered in the
operation model of this system. The following penalty function
was employed to prevent exceeding the maximum storage:

P3i;t ¼ K3½Si;t − Smaxi;t�2 ð23Þ

This four-reservoir system was operated over a 12-period inter-
val with each period lasting 2 h. The goal of the operation was
maximization of the benefit of released water.

Continuous-Time, Four-Reservoir, Operation Problem
Te Chow and Cortes-Rivera (1974) introduced this problem, which
used a continuous-time formulation of reservoir operation
optimization. Murray and Yakowitz (1979) solved it. The minimum
value of release for all reservoirs is 0.005 units and the maximum
value of release for reservoirs 1– 4 equals 4, 4.5, 4.5, and 8 units
respectively. The minimum reservoir storage is one unit and the
maximum reservoir storage differs among periods.

The water storage volume at the beginning of operation equaled
the final storage volume at the end of operation and is equal to
6, 6, 6 and 8 units for reservoirs 1–4, respectively. The penalty
coefficients in Eqs. (18) and (19) equal K1 ¼ K2 ¼ 40,
c ¼ d ¼ 0 (Heidari et al. 1971; Bozorg Haddad et al. 2011a).

The value of the global optimum and optimal operation rule for
the four-reservoir system problem in continuous domain was cal-
culated employing the LP solver from Lingo 13.0. Next, the GA
and the WOA were used to solve this problem for 10 runs each
corresponding to a different initial population. The GA was
implemented with the number of decision making parameters =
48; population size = 200; number of iterations = 8,000; the selec-
tion method was the roulette wheel; crossover function was single
point; mutation function was uniform; crossover probability = 0.7;
and mutation probability = 0.06. The parameters of the WOA, after
sensitivity analyses, were as follows: the number of decision
making parameters = 48; Pinitial ¼ 10; Pmax ¼ 50; σinitial ¼ 4;
σfinal ¼ 0.01; n ¼ 4; Smax ¼ 5; Smin ¼ 0; and itermax ¼ 20,000.
The results of the 10 runs are listed in Table 4. It is shown in Table 4
that the WOA converged to 99.95% of the global optimum while
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Fig. 8. Average of the objective function for 10 runs with the GA and
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Fig. 11. Schematic of the four-reservoir system
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the GA converged to 97.46% of the global optimum. The WOA
exhibited lower values of standard deviation and change coefficient
that those calculated with the GA. In addition, the worst solution
obtained with the WOAwas better than the best solution reached by
GA. The value of the global optimum obtained with Lingo equaled
308.29, whereas the best values reached by GA and WOA in 10
runs were 300.47 and 308.15, respectively.

The convergence graphs of GA and WOA for the 10 runs are
shown in Figs. 12–14. These graphs show the smallest and largest
values of the metaheuristic function in 10 runs. It is shown in Fig. 14
that the GA converges to the solution faster than the WOA up to
about 700,000 functional evaluations because of its larger popula-
tion. Thereafter, the WOA exhibits better convergence to the opti-
mal solution than the GA. Moreover, the results of release values
obtained with LP, GA, and the WOA are graphed in Fig. 15. Fig. 16
represents storage volumes calculated with the LP, the GA and
the WOA.

Discrete-Time, Four-Reservoir, Operation Problem
This problem was introduced and solved by Larson (1968) using a
discrete-time formulation of the reservoir-operation optimization
problem. It was also solved by Esat and Hall (1994) and Wardlaw
and Sharif (1999). The water released from the reservoirs is used
for irrigation and hydroelectricity. The minimum value of release
for all reservoirs equals zero and the maximum value of release for
reservoirs 1– 4 equals 10, 10, 10, and 15 units, respectively. The

value of the initial water storage for all reservoirs is 5 units, and the
final value of reservoir storage at the end of operation period for
reservoirs 1– 4 equals 5, 5, 5, and 7 units respectively.

The operation model of four-reservoir system was implemented
with LP in Lingo software. Then, the optimal operation rule
was calculated with 10 runs of the WOA and the results of

Table 4. Results of the GA and the WOA for 10 Runs of the Four-
Reservoir Problem in Continuous Time

Run GA WOA LP

1 298.89 307.90 —
2 300.47 307.54 —
3 298.36 308.10 —
4 299.25 308.15 —
5 300.35 307.25 —
6 300.08 307.91 —
7 299.87 308.00 —
8 300.45 307.70 —
9 300.01 308.01 —
10 299.20 306.99 —
Minimum 298.36 306.99 —
Average 299.69 307.75 —
Maximum 300.47 308.15 308.29
SD 0.6890 0.3640 —
Coefficient of variation 0.0023 0.0011 —
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Fig. 12. Convergence of the GA for 10 runs of the four-reservoir
problem in continuous time
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Fig. 13. Convergence of the WOA for 10 runs of four-reservoir
problem in continuous time
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Wardlaw and Sharif (1999) were reported as those from the GA.
Also, the values of the minimum, mean, maximum, standard
deviation and the coefficient of variation for the 10 runs are listed
in Table 5. In the WOA the number of decision-making
parameters = 48; Pinitial ¼ 10; Pmax ¼ 40; σinitial ¼ 3; σfinal ¼ 1;
n ¼ 3; Smax ¼ 5; Smin ¼ 0; and itermax ¼ 5,000. The best value

of the objective function of the WOA in 10 runs was 401.3. The
low standard deviation and coefficient of variation for the WOA’s
10 runs shows that this algorithm performs well in solving
reservoir-operation problems defined in discrete space. The conver-
gence graph for the WOA for the 10 runs is shown in Fig. 17. This
graph shows the minimum andmaximum value of the objective func-
tion in 10 runs for 5,000 iterations. It is clear from Fig. 17 that the
WOA exhibited acceptable convergence since the initial iterations.

The release values obtained with LP method and the WOA are
plotted in Fig. 18. It can be seen in Fig. 18 that for all reservoirs in
all periods the calculated release volumes with WOA are fully
consistent with the calculated release volumes from LP.

Fig. 19 graphs calculated storage volumes with LP and the
WOA. It is shown in Fig. 19 that the storage volumes calculated
with the WOA in all periods are consistent with the volumes
calculated with LP.

Conclusion

This study introduced and implemented the WOA to reservoir op-
eration optimization, and compared the WOA results with those
from NLP, LP and the GA. This study’s results have demonstrated
a superior performance of the WOA compared with that of the GA
in solving several optimization problems, constrained or uncon-
strained. The value of the metaheuristic function obtained with
WOAwas 38.79% better than that from GA for the single-reservoir
problem, and 2.53% percent better for the continuous four-reservoir
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Table 5. Results of the GA and the WOA for 10 Runs of the Four-
Reservoir Problem in Discrete Domain

Run
GA, Wardlaw

and Sharif (1999) WOA LP

1 Not reported 401.1 —
2 Not reported 401.1 —
3 Not reported 401.2 —
4 Not reported 401.2 —
5 Not reported 401.3 —
6 Not reported 401.2 —
7 Not reported 401.3 —
8 Not reported 401.3 —
9 Not reported 401.1 —
10 Not reported 401.3 —
Minimum Not reported 401.1 —
Average Not reported 401.21 —
Maximum 401.3 401.3 401.3
SD Not reported 0.03801 —
Coefficient of variation Not reported 0.00009 —

0

1

2

3

4

5

6

7

8

9

R
el

ea
se

s 
(u

ni
ts

)

Period (month)

Max. LP WOA Min.

1 4 8 12 1  4 8 12 1 4 8 12 1 4   8 12

Reservoir 1 Reservoir 2 Reservoir 3

Reservoir 4
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problem. This indicates a better capacity of the WOA to achieve
near-optimal solutions than the GA. Analysis of convergence
graphs showed that the GA converges to a near solution faster than
the WOA in the initial iterations, but the WOA converges faster to
very near the global optimal solution in the latter iterations. The
WOA exhibited lower standard deviation and coefficient of
variation than the GA, proving the former algorithm superior
accuracy and precision over the GA. Moreover, the WOA’s conver-
gence to the optimum in the discrete-time, four-reservoir, operation
problem also demonstrates its capacity to solve problems of this
type. It is recommended that further development and testing of
the WOA with different problems be done to fully assess its
capabilities to solve a variety of water-resources optimization
algorithms.
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