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Abstract 

This note shows that a very simple model can generate returns that resemble most of the temporal and 

distributional behavior of long returns surprisingly well. The model is based on the stochastic unit root 

process introduced in Granger and Swanson (1997).  
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1. Introduction 

Long memory properties of returns in stock prices and foreign exchange are well documented. However, 

developing models that describe the phenomena turns out not to be easy. For instance, the popular models of 

ARCH and GARCH do not produce large enough memory in returns. Much effort has been made to explain 

the long memory properties in returns. See, for instance, long memory ARCH models in Ding and Granger 

(1996), FIGARCH model in Baillie et al. (1996) and Bollerslev and Mikkelsen (1996), HARCH model in 

Müller et al. (1997), and long memory stochastic volatility model in Breidt et al. (1998). This note presents a 

very simple time series model that seems to explain most of the stylized facts about the temporal and 

distributional properties of returns. The model is a simple generalization of a random walk process, the 

standard model for speculative prices since Bachelier (1900). 

 

2. Some stylized facts of returns 

Some well-known facts on long returns are reviewed in this section. The following classifications are 

available in Rydén et al. (1998), which are based mostly on the observations in Ding et al. (1993) and 

Granger and Ding (1995). First, on the temporal properties of returns:  

TP1:  Returns, tr , are not autocorrelated (except possibly at lag one). 

TP2: The autocorrelation functions of tr  and 2
tr  decay slowly and ( ) ( )2 2, ,t t k t t kcorr r r corr r r− −> . 
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The decay is much slower than the exponential rate of a stationary AR or ARMA model. The 

autocorrelations remain positive for very long lags. 

TP3: Autocorrelations of powers of an absolute return are highest at power one: 

( ) ( ), ,d d
t t k t t kcorr r r corr r r− −> , 1d ≠ . Granger and Ding (1995) call this property the 

Taylor effect, following Taylor (1986). 

TP4:  The observed autocorrelations of sign ( )tr  are insignificant.1 

Rydén et al. (1998) also consider the following distributional properties associated with (absolute) returns: 

DP1:  tr  and sign ( )tr  are (contemporaneously) independent. 

DP2:  tr  has the same mean and standard deviation.  

DP3:  The marginal distribution for tr  is exponential.  

A random variable with an exponential distribution has the same mean and standard deviation. Its skewness 

and kurtosis are 2 and 9. Granger et al. (2000) show that these properties hold for many economic series from 

various speculative markets. Ding and Granger (1996) show that an integrated GARCH(1, 1) process cannot 

explain the temporal properties and propose a new class of models. Rydén et al. (1998) use a mixture of 
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normal variables along with a hidden Markov model. See Granger et al. (2000) for other approaches; however, 

all of the models are not based on a firm theoretical foundation. In this note, a very simple model is presented 

that generates returns that resemble most of the temporal and distributional properties of the stylized facts 

surprisingly well.  

 

3. A stochastic unit root process 

The following simple model is used for ty , which might be regarded as stock prices in logarithms: 

( ) 11t t t ty a y ε−= + +                               (1) 

for 1,...,t T= , where ( )2~ . . 0,t aa i i N σ  and ( )2~ . . 0,t i i N εε σ . ta  and tε  are independent. 

Normality assumption is only for convenience. 0y  is a constant. ty∆  is the continuously compounded rate 

of return or simply return at time t. Given that ( ) 0tE a = , ty  has a unit root only on average and is called 

a stochastic unit root process. It is introduced in Granger and Swanson (1997) and Leybourne, McCabe, and 

Tremayne (1996).2 It is also called a random coefficient autoregressive or doubly stochastic process.3 

                                                 
2 They use somewhat different functional forms from (1). Readers are referred to their papers for details. 

3 Various applications of this important and flexible class of models include Leybourne, McCabe, and Mills 

(1996), Gonzalo and Lee (1998), Bleaney et al. (1999), Sollis et al. (2000), Gonzalo and Montesinos (2000), 

and Taylor and van Dijk (2002), among others. 
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Market efficiency dictates that the price should be ( )1I  and ty  is ( )1I  on average. The process is not 

covariance stationary as the variance of ty  diverges to infinity as t increases. The process cannot be 

transformed into stationarity by taking differences.4 This observation is in contrast to the current practice that 

assumes stationarity of the first differenced speculative prices. Additionally,  

 ( ) ( ) ( )12 2 2 2| 1
h

t h t a t aVar y y εσ σ σ
−

+∆ Ι = + + ,  

for 1,2,...h = , where tΙ  denotes an information set available at time t. The model is similar to the 

nonstationary nonlinear heteroskedasticity discussed in Park (2002) in that conditional heteroskedasticity 

depends on (stochastically) integrated variables.  

 

4. Simulation results 

The main results of this note are now presented. Two sets of observations, { } 1

T
t ty

=
∆ , are generated with 

40,000T =  and 2,000 , respectively. For 40,000T = , 2 20.02aσ =  and for 2,000T = , 2 20.1aσ = . 

Also, 2 1εσ =  with 0 100y =  and the first 100 observations are discarded for both sets of observations. All 

                                                 

4  With 0 0y = , it is not difficult to show that ( ) 0tE y = , ( ) ( ){ }2
2
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simulations in this note are done with GAUSS. Table 1 lists some descriptive statistics for ty∆ . Clearly, both 

data sets are far from a normal distribution. Table 2 shows descriptive statistics for ty∆ . Figure 1 shows the 

generated series in level and first difference for 40,000T = .  

The data series { } 1

T
t ty

=
∆  can be easily confused with (G)ARCH processes. For instance, for 

40,000T = , GARCH(1, 1) estimation results are: 

(0.12)
ˆ0.0008t ty ε∆ = − +                                 (2) 

2
1 1(4.37) (19.7) (940)

ˆ0.002 0.020 0.979t t th hε − −= + × + × , 

where t̂ε  is residual and t t tz hε = , with ( )~ . . 0, 1tz i i N . The estimation is done with the BHHH 

method. Absolute t-values are reported in the parenthesis. Additionally, the sum of coefficients is very close 

to 1, so that an IGARCH(1,1) process could have been entertained. Similarly for 2,000T = , which is not 

shown to save space, the results are 

(0.31)
ˆ0.0093t ty ε∆ = − +                                 (3) 

   2
1 1(3.33) (7.61) (67.1)

ˆ0.034 0.101 0.891t t th hε − −= + × + × . 

An IGARCH model seems to be a plausible approximation.5 

Can the simulated series generate the stylized facts of returns discussed in section 2? The following 

                                                 
5 The estimation results are not changing much if a constant is not used in (2) and (3) for ty∆ .  
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results are obtained with 40,000T =  observations: 

TP1: Figure 2 shows the estimated autocorrelation functions [ACFs] of ty∆ . Approximate 95% confidence 

bands of ( )1.96 0.0098T± =  are also plotted, corresponding to the ACFs of i.i.d. Gaussian noise. 

The autocorrelations are all small in magnitude. 

TP2: Figure 3 compares the ACFs of ty∆  and 2
ty∆ . They are decaying slowly and indeed 

( ) ( )2 2, ,t t k t t kcorr y y corr y y− −∆ ∆ > ∆ ∆ . The autocorrelations remain outside the approximate 95% 

confidence bands for very long lags, up to 2500k = . 

TP3: Figures 4 and 5 shows the ACFs corresponding to different values of d = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 

1.75, 2. The relationship ( ) ( ), , , 1d d
t t k t t kcorr r r corr r r d− −> ≠  appears to hold for different 

values of d.  

TP4: The ACFs of sign ( )ty∆  are indeed very small. It is not shown here to save space. 

Similar results are obtained for 2,000T = . Results are not shown to save space. For the distributional 

properties of returns,  

DP1: The estimate correlation between ty∆  and sign ( )ty∆  is very small; -0.007 for 40,000T =  and  

-0.012 for 2,000T = . 

DP2: The estimated mean and standard deviation of ty∆  are 1.411 and 1.501 for 40,000T = . They are 

1.509 and 1.665 for 2,000T = . The ratio of mean and standard deviation is about 0.94 and 0.91, 
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respectively. 

DP3: The estimated skewness and kurtosis of ty∆  are 2.83 and 15.93 for 40,000T = . They are 2.93 and 

16.02 for 2,000T = .  

Ding and Granger (1996) note that 0.25d =  produces the strongest long-memory property for some series 

like exchange rates. Figure 6 shows that the process considered in this note can generate this property as well 

with 2,000T = , for { }dty∆ , 0.25,0.5,0.75,1d = . Same results are found when 1,1.25,1.5,1.75,2d = . 

 

5. Conclusions 

This note presents a very simple model that generates returns with similar temporal and distributional 

properties to those observed in stock prices and foreign exchange. The model is based on the stochastic unit 

root process of Granger and Swanson (1997) and is a simple generalization of a random walk model. The 

results should not be interpreted as implying that stock prices are generated by the simple stochastic unit root 

process considered here. The mere fact that a model has certain properties that are also observed in data does 

not necessarily imply that the model is a true data generating process. Instead, this note should serve as a 

warning that one should pay more attention to the time series properties of the data series under investigation 

before taking necessary transformations or estimating various heteroskedastic models.
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Table 1. Descriptive statistics for { } 1

T
t ty

=
∆  

T mean st.dev minimum maximum skewness kurtosis JB 
40,000 -0.0003 2.060 -17.72 17.43 -0.01 9.20 64085 
2,000 -0.0040 2.247 -13.01 17.44 -0.04 9.72 3787 

{ } 1

T
t ty

=
∆  is generated from (1) with 0 100y = . st.dev is standard deviation and JB denotes the Jarque-Bera 

test for normality.  

 

Table 2. Descriptive statistics for { } 1

T
t t

y
=

∆  

T mean st.dev minimum maximum skewness kurtosis 
40,000 1.411 1.501 0.00 17.72 2.83 15.93 
2,000 1.509 1.665 0.00 17.44 2.93 16.02 

 

 

 

 



 9 

References 

Bachelier, Louis, 1900, Theory of speculation, reprinted in P. Cootner (ed.), The Random Character of Stock 

Market Prices, MIT Press: Cambridge, MA 

Baillie, Richard T., Tim Bollerslev, and Hans Ole Mikkelsen, 1996, Fractionally integrated generalized 

autoregressive conditional heteroskedasticity, Journal of Econometrics, 74, 3-30 

Bleaney, Michael E., Stephen J. Leybourne, and Paul Mizen, 1999, Mean reversion of real exchange rates in 

high-inflation countries, Southern Economic Journal, 65, 839-854 

Bollerslev, Tim and Hans Ole Mikkelsen, 1996, Modeling and pricing long memory in stock market volatility, 

Journal of Econometrics, 73, 151-184 

Breidt, F. Jay, Nuno Crato, and Pedro de Lima, 1998, The detection and estimation of long memory in 

stochastic volatility, Journal of Econometrics, 83, 325-348 

Ding, Zhuanxin and Clive W.J. Granger, 1996, Modeling volatility persistence of speculative returns: A new 

approach, Journal of Econometrics, 73, 185-215 

Ding, Zhuanxin, Clive W.J. Granger, and Robert F. Engle, 1993, A long memory property of stock market 

returns and a new model, Journal of Empirical Finance, 1, 83-106 

Gonzalo, Jesus and Tae-Hwy Lee, 1998, Pitfalls in testing for long run relationships, Journal of Econometrics, 

86, 129-154 



 10 

Gonzalo, Jesus and Raquel Montesinos, 2000, Threshold stochastic unit root models, manuscript 

Granger, Clive W.J. and Zhuanxin Ding, 1995, Some properties of absolute returns: An alternative measure of 

risk, Annales d’Économie et de Statistique, 40, 67-91 

Granger, Clive W.J., Scott A. Spear, and Zhuanxin Ding, 2000, Stylized facts on the temporal and 

distributional properties of absolute returns: An update, in W. Chan, W.K. Li and H. Tong (ed.), 

Statistics and Finance: An Interface 

Granger, Clive W.J. and Norman R. Swanson, 1997, An introduction to stochastic unit-root processes, Journal 

of Econometrics, 80, 35-62 

Leybourne, Stephen J., Brendan P.M. McCabe, and Andrew R. Tremayne, 1996, Can economic time series be 

differenced to stationarity? Journal of Business and Economic Statistics, 14, 435-446 

Leybourne, Stephen J., Brendan P.M. McCabe, and Terence C, Mills, 1996, Randomized unit root processes 

for modelling and forecasting financial time series: Theory and applications, Journal of Forecasting, 15, 

253-270 

Müller, Ulrich A., Michael M. Dacorogna, Rakhal D. Davé, Richard B. Olsen, Olivier V. Pictet, and Jacob E. 

von Weizsäcker, 1997, Volatilities of different time resolutions- Analyzing the dynamics of market 

components, Journal of Empirical Finance, 4, 213-239 

Park, Joon Y., 2002, Nonstationary nonlinear heteroskedasticity, Journal of Econometrics, 110, 383-415 



 11 

Rydén, Tobias, Timo Teräsvirta, and Stefan Åsbrink, 1998, Stylized facts of daily return series and the hidden 

Markov model, Journal of Applied Econometrics, 13, 217-244 

Sollis, Robert, Stephen J. Leybourne, and Paul Newbold, 2000, Stochastic unit root modelling of stock price 

indices, Applied Financial Economics, 10, 311-315 

Taylor, A.M. Robert and Dick van Dijk, 2002, Can tests for stochastic unit roots provide useful portmanteau 

tests for persistence? Oxford Bulletin of Economics and Statistics, 64, 381-397 

Taylor, Stephen J., 1986, Modelling Financial Time Series, Wiley: Chichester, UK 



 12 

Captions for figures 

Figure 1: Simulated series with first difference, ty∆ , with 40,000T =  

Figure 2: Estimated autocorrelation functions of ty∆ , with 40,000T =  

Figure 3: Estimated autocorrelation functions of ty∆  and d
ty∆ , 1,2d =  with 40,000T =  

Figure 4: Estimated autocorrelation functions of d
ty∆ , 1,0.75,0.5,0.25d = , from high to low, with 

40,000T =  

Figure 5: Estimated autocorrelation functions of d
ty∆ , 1,1.25,1.5,1.75,2d = , form high to low, with 

40,000T =  

Figure 6: Estimated autocorrelation functions of d
ty∆ , 1,0.75,0.5,0.25d = , from low to high, with 

2,000T =  
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