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A comparison of two quantile models with
endogeneity

Kaspar Wüthrich
Department of Economics, UC San Diego

August 16, 2018

Abstract

This paper studies the relationship between the two most-used quantile models
with endogeneity: the instrumental variable quantile regression (IVQR) model (Cher-
nozhukov and Hansen, 2005) and the local quantile treatment effects (LQTE) model
(Abadie et al., 2002). The key condition of the IVQR model is the rank similarity
assumption, a restriction on the evolution of individual ranks across treatment states,
under which population quantile treatment effects (QTE) are identified. By contrast,
the LQTE model achieves identification through a monotonicity assumption on the
selection equation but only identifies QTE for the subpopulation of compliers. This
paper shows that, despite these differences, there is a close connection between both
models: (i) the IVQR estimands correspond to QTE for the compliers at transformed
quantile levels and (ii) the IVQR estimand of the average treatment effect is equal to
a convex combination of the local average treatment effect and a weighted average of
integrated QTE for the compliers. These results do not rely on the rank similarity
assumption and therefore provide a characterization of IVQR in settings where this
key condition is violated. Underpinning the analysis are novel closed-form represen-
tations of the IVQR estimands. I illustrate the theoretical results with two empirical
applications.

Keywords: Instrumental variables, quantile treatment effects, local quantile treatment ef-
fects, rank similarity
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1 Introduction

Quantile regression methods have become popular tools for analyzing the heterogenous

impact of policy variables beyond simple averages. When the policy variable of interest

is endogenous, classical quantile regression (Koenker and Bassett, 1978) is inconsistent for

estimating quantile treatment effects (QTE). To overcome this problem, different instru-

mental variable (IV) approaches have been proposed. This paper studies the relationship

between the two most-used IV quantile models: the instrumental variable quantile regres-

sion (IVQR) model (Chernozhukov and Hansen, 2005) and the local quantile treatment

effect (LQTE) model (Abadie et al., 2002).

The key condition underlying the IVQR model is rank similarity, a restriction on the

evolution of individual ranks across treatment states. By virtue of this assumption, the

IVQR model identifies QTE for the overall population. While rank similarity has substan-

tial identifying power, it is a strong and controversial condition that substantially restricts

treatment effect heterogeneity (e.g., Heckman and Vytlacil, 2007). In the LQTE model

identification is achieved through a monotonicity assumption on the selection equation.

As this model allows for unrestricted treatment effect heterogeneity, only the QTE for the

subpopulation that responds to the instrument—the compliers—are identified. The LQTE

model has been criticized because in many policy evaluation problems other subpopula-

tions such as the treated or the overall population are of primary interest; see for instance

the controversial discussion by Imbens (2010), Deaton (2010), and Heckman and Urzua

(2010). Thus, researchers face a fundamental trade-off between the LQTE model that

allows for unrestricted treatment effect heterogeneity but only identifies treatment effects

for the compliers, and the IVQR model that restricts treatment effect heterogeneity but

identifies population treatment effects.

On the surface, the IVQR and the LQTE model do not seem to be connected. The

estimands of both models are different and the underlying assumptions are non-nested,

non-contradictory, and concern different aspects of the models. Because neither model is

more general than the other, Chernozhukov and Hansen (2013) have described the IVQR

model and the LQTE model as complementary approaches for estimating heterogeneous

treatment effects and suggested a further investigation of their similarities and differences.
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Furthermore, comparisons of both models have been used as specification checks for the

underlying assumptions (e.g., Chernozhukov and Hansen, 2004).

The main contribution of this paper is to characterize the treatment effect estimands

based on the IVQR model under the LQTE assumptions. I show that irrespectively of the

validity of the rank similarity assumption, the IVQR QTE estimands are equal to LQTE

at transformed quantile levels. Moreover, the IVQR estimand of the average treatment

effect (ATE) can be decomposed into a convex combination of the local average treatment

effect (LATE) and a weighted average of integrated LQTE. Thus, the IVQR estimands are

not completely arbitrary when the rank similarity assumption is violated, but correspond

to well-defined (functions of) causal effects for the compliers. Differences between the

estimands of both models are determined by discrepancies between the potential outcome

distributions of always-takers, never-takers, and compliers and the relative size of these

subpopulations. The theoretical analysis further implies analytical characterizations of

the bias of the IVQR estimands when rank similarity is violated. I show that the key

observable determinant of the bias is the size of the instrument first stage. Underpinning

the theoretical analysis are novel closed-form solutions of the IVQR estimands, which may

be of independent interest.

On the one hand, this paper confirms that with unrestricted treatment effect hetero-

geneity all the information about the treatment effects has to come from the compliers. On

the other hand, it shows how IVQR extrapolates from the compliers to the whole popula-

tion. This motivates the use of IVQR as an approach to extrapolation based on the LQTE

model; see, for example, Angrist and Fernandez-Val (2013) and the references therein for

alternative approaches to external validity. Constructive identification through extrapola-

tion based on the IVQR model has been studied in independent and concurrent work by

Vuong and Xu (2017). However, in sharp contrast to the present paper, their results rely on

the IVQR assumptions and thus do not provide a characterization of IVQR in the absence

rank similarity, which is one of the main contributions of this paper. Moreover, they do

not provide closed-form solutions for the IVQR estimands, but implicit characterizations

based on counterfactual mappings.

The analysis is extended to more general settings that allow for failures of the LQTE
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monotonicity assumption, nonbinary instruments, and covariates. I show that the main

results describing the relationship between the IVQR estimands and their counterparts in

the LQTE model have intuitive analogues in these more general settings.

I illustrate the theoretical results using two empirical applications. In the first appli-

cation, I re-examine the causal effect of Job Training Partnership Act (JTPA) training

programs on the distribution of subsequent earnings. In the second application, I consider

the problem of estimating the structural effect of Vietnam veteran status on civilian wages

using draft lottery data.

This paper contributes to the extensive literatures on identification and estimation based

on both models. The IVQR model has been introduced by Chernozhukov and Hansen (2004,

2005, 2006). Estimation and inference in linear conditional quantile models have been ana-

lyzed by Chernozhukov and Hong (2003), Chernozhukov and Hansen (2006), Chernozhukov

et al. (2007), Chernozhukov and Hansen (2008), Chernozhukov et al. (2009), Kaplan and

Sun (2017) and Chen and Lee (2018). Nonparametric estimation has been studied by Cher-

nozhukov et al. (2007), Horowitz and Lee (2007), Chen and Pouzo (2009), Chen and Pouzo

(2012), Gagliardini and Scaillet (2012), and Su and Hoshino (2016). Recent surveys of the

IVQR model are provided by Chernozhukov and Hansen (2013) and Chernozhukov et al.

(2017).

The LQTE model, introduced by Abadie et al. (2002), extends the LATE framework

(Imbens and Angrist, 1994; Imbens and Rubin, 1997) to the analysis of conditional LQTE

using the weighting theorem of Abadie (2003). In subsequent work, Frandsen et al. (2012)

have analyzed estimation of LQTE based on regression discontinuity frameworks, Frölich

and Melly (2013) have studied nonparametric identification and estimation of unconditional

LQTE with covariates, De Chaisemartin (2017a,b) has analyzed the LQTE framework

under a weaker version of the monotonicity assumption, and Belloni et al. (2017) have

derived the properties of regression-based estimators for unconditional LQTE after selection

among high-dimensional controls. A recent survey of the LQTE model is provided by Melly

and Wüthrich (2017).

The remainder of the paper is organized as follows. Section 2 introduces the basic

notation and reviews both models. In Section 3, I characterize the IVQR treatment effect
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estimands under the LQTE assumptions. Section 4 generalizes these results to setups

that allow for failures of the LQTE monotonicity assumption, nonbinary instruments, and

covariates. In Section 5, I present two empirical applications. Section 6 concludes. The

appendix contains all proofs, some additional results, and implementation details for the

applications.

2 Setup and models

I consider a setup with an absolutely continuous outcome variable Y , a binary treatment

D, and a binary instrument Z. Let FY |D=d,Z=z and fY |D=d,Z=z denote the cumulative

distribution function (CDF) and the density function of Y |D = d, Z = z and define p(d|z) ≡

P (D = d|Z = z). Covariates are omitted for deriving the main results of the paper.

Section 4 presents extensions that incorporate covariates and nonbinary instruments. The

analysis is developed within the potential outcomes framework (cf. Rubin, 1974). Potential

outcomes and potential treatments are denoted by Yd, d ∈ {0, 1}, and Dz, z ∈ {0, 1}.

Observed outcomes and observed treatments are given by Y = DY1 + (1 − D)Y0 and

D = ZD1 + (1− Z)D0.

Based on their potential treatments (D0, D1), individuals can be categorized by four

types, T ∈ {a, n, c, f} (e.g., Angrist et al., 1996):

Definition 1. (a) Compliers (T = c): subpopulation with D1 = 1 and D0 = 0. (b) Always-

takers (T = a): subpopulation with D1 = D0 = 1. (c) Never-takers (T = n): subpopulation

with D1 = D0 = 0. (d) Defiers (T = f): subpopulation with D1 = 0 and D0 = 1.

Henceforth, for each type T = t, let πt, FYd|t, fYd|t, and QYd|t denote its proportion, the

CDF of Yd, the density function of Yd, and the quantile function (QF) of Yd.

In this paper, I focus on estimands of the CDF and the QF of Yd, FYd and QYd , the

τ -QTE, δ(τ) ≡ QY1(τ)−QY0(τ), and the ATE, ∆ ≡ E(Y1− Y0) =
∫ 1

0
δ(τ)dτ . Without loss

of generality, I consider the following structural QF, q(d, τ) = QYd(τ):

q(d, τ) = dδ(τ) +QY0(τ). (1)
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By the Skorohod representation of random variables, potential outcomes can be related to

the structural QF as follows (Chernozhukov and Hansen, 2005):

Yd = q(d, Ud), where Ud ∼ U(0, 1).

Similarly, observed outcomes can be expressed as Y = q(D,U), where U ≡ UD. This

representation is essential for the IVQR model.

2.1 IVQR model

The IVQR model consists of the following main conditions (e.g., Chernozhukov and Hansen,

2005, 2013):

Assumption 1. The following conditions hold jointly with probability one:

1. Monotonicity: q(d, τ) is strictly increasing in τ .

2. Independence: for each d, Ud is independent of Z.

3. Selection: D ≡ ρ(Z, V ) for some unkown function ρ(·) and random vector V .

4. Rank similarity: conditional on (Z, V ), {Ud} are identically distributed.

Assumption 1.1 restricts the outcome to be nonatomic conditional on the instrument.

The independence condition in Assumption 1.2 states that potential outcomes are inde-

pendent of the instrument. In Assumption 1.3, the random vector V leads to differences

in treatment choices among observationally identical individuals. Assumption 1.4 is the

key condition of the IVQR model. It requires that individual ranks are constant across

potential outcome distributions up to unsystematic deviations from a common rank level

U . Rank similarity is considered to be a strong restriction in many applications. For

instance, as noted by Heckman and Vytlacil (2007), rank similarity precludes scenarios

in which agents self-select based on their individual effects and does not allow for effect

heterogeneity as generated by the generalized Roy model. For in-depth discussions of the

IVQR model the interested reader is referred to Chernozhukov and Hansen (2005) and the

reviews by Chernozhukov and Hansen (2013) and Chernozhukov et al. (2017).
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The main statistical implication of Assumption 1 is the following nonlinear conditional

moment restriction (Chernozhukov and Hansen, 2005, Theorem 1):

P (Y ≤ Dδ(τ) +QY0(τ)|Z) = τ. (2)

Chernozhukov and Hansen (2005) prove point identification of δ(τ) and QY0(τ) under an

additional full rank condition on the Jacobian of (2); see Section 1 of the appendix. The

conditional moment restriction (2) justifies the following unconditional moment equations

for estimation:

E ((τ − 1 [Y ≤ Dδ(τ) +QY0(τ)]) f(Z)) = 0, (3)

where 1[·] is the indicator function and f(Z) is a vector of (transformations of) instruments.

The introduction provides references to different estimation procedures.

Note that the main theoretical results of this paper do not rely on Assumption 1.

Instead, the idea is to take the unconditional IVQR moment conditions as given and to

characterize the solutions for δ(τ) and QY0(τ) under the LQTE assumptions.

2.2 LQTE model

The LQTE model is based on the following set of assumptions (e.g., Abadie et al., 2002).

Assumption 2.

1. Independence: (Y1, Y0, D1, D0) are jointly independent of Z.

2. Nontrivial assignment: 0 < P (Z = 1) < 1.

3. First-stage: p(1|1)− p(1|0) > 0.

4. Monotonicity: P (D1 ≥ D0) = 1.

Assumption 2.1 states that both potential outcomes and potential treatments are in-

dependent of the instrument. This assumption is stronger than the corresponding inde-

pendence assumption in the IVQR model. Assumption 2.2 requires that the instrument

assignment is nontrivial. Assumption 2.3 is a standard first stage assumption. Note that,
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under Assumption 2, the size of the first stage corresponds to the fraction of compliers,

πc = p(1|1) − p(1|0). Hence, Assumption 2.3 can alternatively be stated as πc > 0. The

monotonicity Assumption 2.4 rules out the presence of defiers. Consequently, always-takers,

never-takers, and compliers exhaustively partition the whole population. If the instrument

satisfies one-sided non-compliance as in the application of Section 5.2, Assumption 2.4 holds

by design. Furthermore, Assumption 2.4 is often plausible in field experiments, where the

presence of defiers would imply counter-intuitive behavior to the experimental protocol

(Huber and Wüthrich, 2018). By contrast, in quasi-experimental settings, Assumption 2.4

is not innocuous and is likely to be violated in many instances (e.g., De Chaisemartin,

2017b). Vytlacil (2002) shows that Assumption 2 is equivalent to a selection model in

which selection into the program is modeled by a latent index crossing a threshold. I refer

to Melly and Wüthrich (2017) for a recent review of the LQTE model.

Under Assumption 2, the potential outcome QFs and the LQTE for the compliers,

δc(τ) ≡ QY1|c(τ)−QY0|c(τ), are identified from the following weighted population quantile

regression (Abadie et al., 2002; Abadie, 2003):(
QY0|c(τ), δc(τ)

)
= arg min

(QY0|c,δc)
E
(
κ · ρτ

(
Y − δcD −QY0|c

))
, (4)

where ρτ (u) = u (τ − 1[u < 0]) is the usual check function and κ = 1− D(1−Z)
1−P (Z=1)

− (1−D)Z
P (Z=1)

.

The introduction reviews different approaches for estimating conditional and unconditional

QTE based on the LQTE model.

3 IVQR estimands under the LQTE assumptions

In this section, I characterize the IVQR estimands under the LQTE assumptions. I focus

on the following unconditional IVQR moment conditions:

E
((
τ − 1

[
Y ≤ δ∗(τ)D +Q∗Y0(τ)

])
(1, Z)′

)
= 0, τ ∈ (0, 1), (5)

where δ∗(τ) and Q∗Y0(τ) are referred to as the IVQR estimands of δ(τ) and QY0(τ). When

the instrument Z is binary, δ∗(τ) and Q∗Y0(τ) also solve the conditional moment restrictions

(3); see Section 2 of the appendix. The IVQR estimands of the potential outcome CDFs,

F ∗Y1 and F ∗Y0 , are given by the inverses of the corresponding QFs, and the IVQR estimand
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of the ATE is obtained as ∆∗ =
∫ 1

0
δ∗(τ)dτ . Except for Section 3.5, the analysis in this

paper does not rely on the IVQR assumptions. Hence, the IVQR estimands will generally

be biased. For instance, δ∗(τ) will generally differ from δ(τ).

When interpreting the theoretical results, it is important to note that the IVQR and

the LQTE assumptions are non-nested and neither set of assumptions is more general than

the other. As discussed in Section 2.2, the LQTE assumptions are not innocuous and are

likely to be violated in many applications. Section 4.1 therefore extends the analysis to

settings where the LQTE monotonicity assumption is violated.

To derive the main results, I impose the following additional assumption. Let S(A)

denote the support of a random variable A and define Sd ≡
[
y
d
, yd

]
, where −∞ < y

d
<

yd <∞ for d ∈ {0, 1}.

Assumption 3. For (d, t) ∈ {0, 1} × {a, c, n}:

1. Regularity: fYd|t is continuous.

2. Support: S(Yd|T = t) = S(Yd), where S(Yd) = Sd.

Assumption 3.1 is a standard regularity condition. Assumption 3.2 imposes full support

of the subpopulation potential outcome distributions. This full support assumption is the

key condition for deriving the closed-form solutions underlying the main results of this

paper.

Remark 1. Section 1 of the appendix shows that, under Assumptions 1 and 2, Assumption

3 is implied by the identification conditions in Chernozhukov and Hansen (2005), including

full rank and continuity of the Jacobian of (2). Hence, Assumption 3 does not impose any

additional restrictions relative to the analysis in Chernozhukov and Hansen (2005).

Remark 2. Assumption 3.2 can be weakened if one is only interested in a shorter range

of quantiles; for instance, τ ∈ [0.1, 0.9]. However, to compute the ATE (cf. Section 3.3),

Assumption 3.2 is required.

3.1 QTE

Theorem 1 presents the first main result of the paper.
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Theorem 1. Suppose that Assumptions 2 and 3 hold and that the IVQR estimands solve

the moment conditions (5). Then, for all τ ∈ (0, 1),

δ∗(τ) = δc
(
FY0|c

(
Q∗Y0(τ)

))
= δc

(
FY1|c

(
Q∗Y1(τ)

))
.

Theorem 1 relies on closed-form solutions for δ∗(τ) in terms of the joint distribution of

(Y,D,Z), which are derived from the IVQR moment conditions (5). They key condition

underlying these closed-form solutions is Assumption 3. It ensures that, for d ∈ {0, 1}, FYd|c
and thus QYd|c and Q∗Yd are strictly monotonic, which implies that the moment conditions

(5) have a unique solution.

Theorem 1 shows that the IVQR QTE estimands are equivalent to LQTE for the com-

pliers at transformed quantile levels. These transformations reflect differences between the

IVQR estimands of the potential outcome CDFs, F ∗Y1 and F ∗Y0 , and the corresponding CDFs

for the compliers, FY1|c and FY0|c, as measured by the probability-probability transforms

FY0|c ◦Q∗Y0 and FY1|c ◦Q∗Y1 . Theorem 2 below derives analytical expressions for F ∗Y1 and F ∗Y0

in terms of the identified potential outcome distribution and quantile functions of always-

takers, never-takers, and compliers. While the IVQR estimand δ∗(τ) will generally differ

from the true QTE, δ(τ), when Assumption 1 is violated, Theorem 1 shows that δ∗(τ) is

not completely arbitrary but corresponds to a well-defined causal effect for the compliers.

Theorem 1 has interesting implications for the connection between both models, which

are summarized in the following corollary.

Corollary 1. Under the assumptions of Theorem 1,

1. δc(τ) ≥ 0 for all τ ∈ (0, 1) implies that δ∗(τ) ≥ 0 for all τ ∈ (0, 1) and δc(τ) ≤ 0 for

all τ ∈ (0, 1) implies that δ∗(τ) ≤ 0 for all τ ∈ (0, 1).

2. if δc is monotonically increasing (decreasing) then δ∗ is monotonically increasing (de-

creasing).

3. δc(τ) = δc for all τ ∈ (0, 1) implies that δ∗(τ) = δc(τ) = δc for all τ ∈ (0, 1).

Corollary 1 shows that the IVQR QTE estimand, δ∗(τ), inherits various qualitative

features from the LQTE, which is the QTE for the the largest subpopulation for which this
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effect is identified. As a consequence, δ∗(τ) exhibits several desirable robustness properties

in settings where the IVQR assumptions are violated. Specifically, δ∗(τ) does not suffer

from undesirable sign reversals: if the QTE is positive (negative) for all subpopulations and

all quantiles, δ∗(τ) will not be negative (positive) at any quantile. Similarly, if the QTE

is monotonically increasing (decreasing) for all subpopulations, δ∗ will not be constant or

monotonically decreasing (increasing). Corollary 1 further shows that δ∗(τ) is equal to

δc(τ) at all quantiles if δc is constant, as implied, for example, by a location-shift model for

the compliers. As a consequence, the IVQR QTE estimand exhibits effect heterogeneity

across quantiles if and only if there is effect heterogeneity in the LQTE.

3.2 Potential outcome CDFs and QTE for subpopulations

To further discuss and interpret Theorem 1, it is useful to analyze closed-form characteri-

zations for the IVQR estimands of the potential outcome CDFs.

Note that under Assumption 2, one can decompose FY0(y) and FY1(y) as

FY1(y) = πcFY1|c(y) + πaFY1|a(y) + πnFY1|n(y), (6)

FY0(y) = πcFY0|c(y) + πaFY0|a(y) + πnFY0|n(y). (7)

Imbens and Rubin (1997) and Abadie (2002) show that the following potential outcome

distributions are identified from the data:

FY1|c(y) = F̃Y1(y), FY1|a(y) = FY |D=1,Z=0(y), FY0|c(y) = F̃Y0(y), and FY0|n(y) = FY |D=0,Z=1(y),

where

F̃Y1(y) ≡
p(1|1)FY |D=1,Z=1(y)− p(1|0)FY |D=1,Z=0(y)

p(1|1)− p(1|0)
,

F̃Y0(y) ≡
p(0|0)FY |D=0,Z=0(y)− p(0|1)FY |D=0,Z=1(y)

p(1|1)− p(1|0)
.

Moreover, the proportions of the three subpopulations are identified as πc = p(1|1)−p(1|0),

πa = p(1|0), and πn = p(0|1). However, FY1|n(y) and FY0|a(y), and, consequently, FY1(y)

and FY0(y), are not point identified under the LQTE assumptions. By contrast, these quan-

tities are identified under the IVQR assumptions. The following theorem shows how IVQR
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imputes the unidentified quantities FY1|n(y) and FY0|a(y) using the rank similarity assump-

tion. To describe the results, let Y1 ≡
{
Q∗Y1(τ) : τ ∈ (0, 1)

}
and Y0 ≡

{
Q∗Y0(τ) : τ ∈ (0, 1)

}
denote the regions of interest.

Theorem 2. Suppose that Assumptions 2 and 3 hold and that the IVQR estimands solve

the moment conditions (5). Then, for all (y1, y0) ∈ Y1 × Y0,

F ∗Y1(y1) = πcFY1|c(y1) + πaFY1|a(y1) + πnFY0|n
(
QY0|c

(
FY1|c(y1)

))
,

F ∗Y0(y0) = πcFY0|c(y0) + πaFY1|a
(
QY1|c

(
FY0|c(y0)

))
+ πnFY0|n(y0).

Theorem 2 shows that the IVQR estimands can be decomposed into mixtures of the

potential outcome CDFs that are identified under the LQTE assumptions and the IVQR

estimands of FY1|n(y) and FY0|a(y):

F ∗Y1|n(y) ≡ FY0|n
(
QY0|c

(
FY1|c(y)

))
,

F ∗Y0|a(y) ≡ FY1|a
(
QY1|c

(
FY0|c(y)

))
.

The additive mixture structures of F ∗Y0(y) and F ∗Y1(y) allow separating the determinants

of the discrepancies between the estimands of both models. Consider the difference between

F ∗Y0(y) and FY0|c(y):

F ∗Y0(y)− FY0|c(y) = πa
(
FY1|a

(
QY1|c

(
FY0|c(y)

))
− FY0|c(y)

)
+ πn

(
FY0|n(y)− FY0|c(y)

)
. (8)

The difference in equation (8) is determined by two factors: (i) discrepancies between

the potential outcome distributions of compliers and always-takers (through FY1|a ◦ QY1|c)

and discrepancies between the potential outcome distributions of compliers and never-

takers (through FY0|n(y)−FY0|c(y)) and (ii) the fractions of always-takers and never-takers,

which are related to the first stage as πa + πn = 1 − πc. The analysis of the difference

between F ∗Y1(y) and FY1|c(y) is symmetric and thus omitted. It is important to note that

discrepancies between the estimands of both models cannot be used to assess the validity

of the rank similarity assumption, because rank similarity is fundamentally untestable with

binary instruments (Kim and Park, 2017).

Next, I use the closed-form solutions in Theorem 2 to analyze the bias of the IVQR

estimands in settings where the underlying assumptions are violated. Consider the bias of
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F ∗Y0(y):

BF ∗Y0
(y) ≡ F ∗Y0(y)− FY0(y).

The analysis of the bias of F ∗Y1(y) is similar and thus omitted. Theorem 2 implies that

BF ∗Y0
(y) = πa

(
F ∗Y0|a(y)− FY0|a(y)

)
= πa

(
FY1|a

(
QY1|c

(
FY0|c(y)

))
− FY0|a(y)

)
.

Thus, the bias is determined by discrepancies between the IVQR estimand F ∗Y0|a(y) and

FY0|a(y), which result from violations of the IVQR assumptions, and the proportion of

always-takers, πa. Since FY0|a(y) is fundamentally unidentified, the key observable deter-

minant of the bias is πa, which is related to the instrument first stage as πa = 1− πc − πn.

Thus, for fixed πn, the bias decreases if the size of the first stage increases. Violations

of the IVQR assumptions can be modeled similar to Masten and Poirier (2017). Suppose

that, for t ∈ [0, 1],

FY0|a(y) = tFY1|a
(
QY1|c

(
FY0|c(y)

))
+ (1− t)G(y), (9)

where G is an unrestricted CDF. In equation (9), the mixing factor t captures the de-

gree of failure of the IVQR assumptions. For t = 1, the IVQR assumptions hold and

FY0|a(y) = FY1|a
(
QY1|c

(
FY0|c(y)

))
, while for t = 0 the IVQR assumptions fail in a com-

pletely unrestricted way and FY0|a(y) = G(y). The case of t ∈ (0, 1) captures partial failures

of the IVQR assumptions. Based on equation (9), BF ∗Y0
(y) be expressed as a function of

the fraction of always-takers and the degree of violation of the IVQR assumptions:

BF ∗Y0
(y) = πa(1− t)

(
FY1|a

(
QY1|c

(
FY0|c(y)

))
−G(y)

)
. (10)

Equations (9) and (10), combined with similar expressions for FY1|n(y) and BF ∗Y1
(y), can

be used to derive bounds for the IVQR estimands of the CDFs which imply bounds for the

QFs, the QTE, and the ATE; see for instance Manski (2003).

Theorems 1 and 2 imply explicit characterizations of the IVQR QTE estimands for the

always-takers and never-takers. Let Q∗Y1|n and Q∗Y0|a denote the QFs associated with F ∗Y1|n

and F ∗Y0|a and define δ∗n(τ) ≡ Q∗Y1|n(τ)−QY0|n(τ) and δ∗a(τ) ≡ QY1|a(τ)−Q∗Y0|a(τ).

Corollary 2. Under the assumptions of Theorem 1, for all τ ∈ (0, 1),

δ∗n(τ) = δc
(
FY0|c

(
QY0|n(τ)

))
δ∗a(τ) = δc

(
FY1|c

(
QY1|a(τ)

))
.
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Corollary 2 shows that the differences between the LQTE and the IVQR QTE esti-

mands for the never-takers and always-takers are determined by differences between the

identified potential outcome distributions as measured by the probability-probability trans-

forms FY0|c ◦QY0|n and FY1|c ◦QY1|a, but do not depend on the relative size of the respective

subpopulations.

3.3 ATE

As a consequence of the results in the previous sections, the IVQR estimand of the ATE can

be expressed as a convex combination of the LATE, ∆c, and IVQR estimands of the ATE

for always-takers and never-takers, which correspond to integrated LQTE at transformed

quantile levels.

Theorem 3. Suppose that Assumptions 2 and 3 hold and that the IVQR estimands solve

the moment conditions (5). Then

∆∗ = πc∆c + πa∆
∗
a + πn∆∗n,

where ∆∗a ≡
∫ 1

0
δc
(
FY1|c

(
QY1|a(τ)

))
dτ and ∆∗n ≡

∫ 1

0
δc
(
FY0|c

(
QY0|n(τ)

))
dτ .

Theorem 3 implies that the difference between the IVQR ATE estimand and the LATE

is equal to a weighted average of the differences between the IVQR ATE estimands for

always-takers and never-takers and the LATE:

∆∗ −∆c = πa (∆∗a −∆c) + πn (∆∗n −∆c) .

The differences ∆∗a−∆c and ∆∗n−∆c reflect differences between the subpopulation potential

outcome distributions and are weighted by the proportions of always-takers and never-

takers.

Moreover, Theorem 3 implies the following expression for the bias of the IVQR ATE

estimand:

B∆∗ ≡ ∆∗ −∆ = πa (∆∗a −∆a) + πn (∆∗n −∆n) .

Thus, the bias B∆∗ is equal to a weighted average of the differences between the IVQR

estimands of the always-taker and never-taker ATE and the corresponding true ATEs.
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Such differences are caused by violations of the IVQR assumptions; see Section 3.2 for a

further discussion. The weights are equal to the proportions of always-takers and never-

takers, which are the key observable determinants of the bias.

The IVQR estimand of the ATE inherits some of the robustness properties outlined

in Corollary 1. Specifically, the sign of the IVQR estimand coincides with the sign of the

LATE if the LQTE is strictly positive or strictly negative at all quantiles and the IVQR

estimand is equal to the LATE if the LQTE is constant across quantiles.

3.4 One-sided non-compliance

The results in the previous sections have interesting implications when the instrument

satisfies one-sided non-compliance as for example in empirical application in Section 5.2.

Under one-sided non-compliance, only individuals with Z = 1 can choose D = 1.

Assumption 4. One-sided non-compliance: p(1|0) = 0.

Assumption 4 rules out the existence of both defiers and always-takers, which implies

that the monotonicity Assumption 2.4—one of the main conditions underlying the analysis

in this paper—holds by design. The key implication of Assumptions 2 and 4 is that QY0(τ)

is identified as

QY0(τ) = QY |D=0,Z=0(τ).

This allows for deriving more explicit analytical characterizations of the IVQR QTE esti-

mands in Theorem 1, which shed light on the nonlinear interactions between the different

determinants of the discrepancies between both models and the bias of IVQR.

Corollary 3. Under the assumptions of Theorem 1 and Assumption 4, for all τ ∈ (0, 1),

δ∗ (τ) = δc
(
FY0|c (QY0(τ))

)
= QY1|c

(
FY0|c (QY0(τ))

)
−QY0(τ)

= QY1|c

(
τ − (1− πc)FY0|n (QY0(τ))

πc

)
−QY0(τ)

Corollary 3 shows that, under Assumption 4, the IVQR estimand Q∗Y0 is equal to the

true QF, QY0 , irrespective of the validity of the IVQR assumptions. As a consequence, the
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bias of δ∗(τ) is uniquely determined by differences between Q∗Y1 and QY1 :

Bδ∗(τ) ≡ δ∗ (τ)− δ(τ) = QY1|c

(
τ − (1− πc)FY0|n (QY0(τ))

πc

)
−QY1(τ).

The next corollary analyzes the implications of Theorem 2 under one-sided non-compliance.

Corollary 4. Under the assumptions of Theorem 2 and Assumption 4, for all (y1, y0) ∈

Y1 × Y0,

F ∗Y1(y1) = πcFY1|c(y1) + πnFY0|n
(
QY0|c

(
FY1|c(y1)

))
,

F ∗Y0(y0) = πcFY0|c(y0) + πnFY0|n(y0) = FY0(y0).

Corollary 4 shows that, under one-sided non-compliance, the IVQR estimand F ∗Y0 is

unbiased and equal to the true CDF, FY0 . It is instructive to relate this result to the

analysis in Section 3.2, where I derive the following expression for the bias of F ∗Y0 :

BF ∗Y0
(y) = πa

(
FY1|a

(
QY1|c

(
FY0|c(y)

))
− FY0|a(y)

)
.

Under one-sided non-compliance, there are no always-takers, πa = p(1|0) = 0, which implies

that BF ∗Y0
(y) = 0 and thus that F ∗Y0(y) = FY0(y).

Finally, based on the previous results, one can derive the following corollary to Theorem

3, which provides alternative characterizations of the IVQR estimands of the ATE under

one-sided non-compliance.

Corollary 5. Under the assumptions of Theorem 3 and Assumption 4,

∆∗ = πc∆c + πn∆∗n

=

∫ 1

0

QY1|c
(
FY0|c (QY0(τ))

)
dτ − E(Y0)

=

∫ 1

0

QY1|c

(
τ − (1− πc)FY0|n (QY0(τ))

πc

)
dτ − E(Y0).

3.5 Constructive identification through extrapolation

The results in the previous sections provide characterizations of the IVQR estimands in

settings where the underlying assumptions are potentially violated. Here I discuss the

implications of the main results for settings where the IVQR assumptions hold.
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Under the IVQR assumptions, the key implications of the previous results are the

following:

FY1|n(y) = FY0|n
(
QY0|c

(
FY1|c(y)

))
and FY0|a(y) = FY1|a

(
QY1|c

(
FY0|c(y)

))
, (11)

or, equivalently,

QY0|n
(
FY1|n(y)

)
= QY0|c

(
FY1|c(y)

)
and QY1|a

(
FY0|a(y)

)
= QY1|c

(
FY0|c(y)

)
.

Thus, the quantile-quantile transforms

P01|t(y) ≡ QY0|t
(
FY1|t(y)

)
and P10|t(y) ≡ QY1|t

(
FY0|t(y)

)
do not depend on the type T = t. Hence, one can use P01|c and P10|c, both of which

are identified under the LQTE assumptions, to impute the missing potential outcome

distributions for always-takers and never-takers. This is exactly how the IVQR model

achieves identification. Specifically, one first looks for the rank in the same-state outcome

distribution of compliers, and then uses the same quantile of the complier distribution in

the other treatment state to impute the missing counterfactuals. In other words, to obtain

point identification for the whole population, IVQR extrapolates from the compliers based

on the rank similarity assumption. Identification of the population treatment effects can

be described as a two-step procedure:

1. Obtain the proportions of the three types πc, πn, and πa as well as the subpopulation

potential outcome CDFs FY1|c, FY1|a, FY0|c, and FY0|n as described in Section 3.2 and

compute the quantile-quantile transforms P01|c and P10|c.

2. Impute missing counterfactual distributions FY1|n and FY0|a based on equation (11)

and obtain FY1 and FY0 based on equations (6) and (7). Obtain QY1 and QY0 by

inverting FY1 and FY0 and compute the τ -QTE and the ATE as δ(τ) = QY1(τ)−QY0(τ)

and ∆ =
∫ 1

0
δ(τ)dτ .

Step 1 exploits the LQTE assumptions. Step 2 is based on the IVQR assumptions and

specifically the rank similarity assumption. This suggests that IVQR constitutes a nat-

ural and constructive rank-based approach to external validity in the LQTE model; see
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Angrist and Fernandez-Val (2013) and the references therein for alternative extrapolation

approaches.

This discussion provides further intuition as to why the support Assumption 3.2 is

essential for deriving the results in this paper. Without this condition, the quantile-quantile

transforms P01|c and P10|c are not necessarily one-to-one and, consequently, FY1|n and FY0|a

and thus FY1 and FY0 are no longer point identified. Hence, full support of the complier

potential outcome distributions is the key condition for point identification. The rank-based

extrapolation in Step 2 will generally fail if the supports of the complier distributions do

not nest the supports of the same-state distributions of the always-takers and never-takers.

Finally, the analysis in this section shows that there is a close connection between IVQR

and the chances-in-changes (CIC) model of Athey and Imbens (2006). Both models impute

counterfactual quantities by restricting the evolution of the unobservables across treatment

states (IVQR) and time (CIC). Moreover, in both models, identification is achieved by

means of a specific subpopulation for which the potential outcome distributions of interest

are identified in both treatment states (IVQR) and time periods (CIC).

4 Extensions

This section presents three extensions of the main results. I focus on the IVQR estimands

of the QTE and the potential outcome CDFs. Results for ATE can be derived using similar

arguments as in Section 3.3 and are thus omitted.

4.1 LQTE assumptions without monotonicity

The monotonicity assumption of the LQTE model is restrictive and likely to be implausible

in many settings (e.g., De Chaisemartin, 2017b). By contrast, IVQR identifies causal effects

irrespective of the validity of the monotonicity assumption. Motivated by this observation,

I analyze a setting where only Assumptions 2.1–2.3 and 3 are maintained. Under these

assumptions neither the proportion nor the potential outcome distribution of any single

subpopulation are identified. In particular, the quantities that correspond to potential

outcome CDFs for the compliers under monotonicity are equal to weighted differences
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between compliers and defiers:

F̃Y1(y) =
πcFY1|c(y)− πfFY1|f (y)

πc − πf
≡ FY1|c−f (y),

F̃Y0(y) =
πcFY0|c(y)− πfFY0|f (y)

πc − πf
≡ FY0|c−f (y).

Henceforth, I refer to the mixture subpopulation corresponding to this mixture distribution

as the compliers-defiers. De Chaisemartin (2017a,b) has shown that under a weaker version

of the LQTE monotonicity assumption, FYd|c−f = FYd|cV , where FYd|cV is the CDF of Yd

for a subpopulation of the compliers that he refers to as the comvivors. Let fY1|c−f and

fY0|c−f denote the derivatives of FY1|c−f and FY0|c−f , let QY1|c−f and QY0|c−f denote the

inverses of FY1|c−f and FY0|c−f , and define the τ -QTE for the compliers-defiers as δc−f (τ) ≡

QY1|c−f (τ)−QY0|c−f (τ).

The following assumption generalizes Assumption 3 to allow for failures of monotonicity.

Assumption 5. For (d, t) ∈ {0, 1} × {a, c, n, f}:

1. Regularity: fYd|t is continuous.

2. Support: S(Yd|T = t) = S(Yd) and fYd|c−f (yd) > 0 for yd ∈ S(Yd), where S(Yd) = Sd.

Under Assumptions 2.1–2.3, FY1|c−f and FY0|c−f are not guaranteed to be monotonic.

However, assuming that FY1|c−f and FY0|c−f are strictly increasing is essential for deriving

the closed-form solutions for the IVQR estimands and is implied by the identification

conditions in Chernozhukov and Hansen (2005); see Section 1 of the appendix.

The next theorem characterizes the IVQR QTE estimands under the LQTE assumptions

without monotonicity.

Theorem 4. Suppose that Assumptions 2.1–2.3 and 5 hold and that the IVQR estimands

solve the moment conditions (5). Then, for all τ ∈ (0, 1),

δ∗(τ) = δc−f
(
FY0|c−f

(
Q∗Y0(τ)

))
= δc−f

(
FY1|c−f

(
Q∗Y1(τ)

))
.

Theorem 4 shows that the IVQR estimands are equivalent to QTE for the compliers-

defiers at transformed quantile levels. The next theorem provides closed-form solutions for

the IVQR estimands of the potential outcome CDFs.
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Theorem 5. Suppose that Assumptions 2.1–2.3 and 5 hold and that the IVQR estimands

solve the moment conditions (5). Then, for all (y1, y0) ∈ Y1 × Y0,

F ∗Y1(y1) = πcFY1|c(y1) + πaFY1|a(y1) + πnFY0|n
(
QY0|c−f

(
FY1|c−f (y1)

))
+πfFY0|f

(
QY0|c−f

(
FY1|c−f (y1)

))
,

F ∗Y0(y0) = πcFY0|c(y0) + πaFY1|a
(
QY1|c−f

(
FY0|c−f (y0)

))
+ πnFY0|n(y0)

+πfFY1|f
(
QY1|c−f

(
FY0|c−f (y0)

))
.

Theorems 4 and 5 constitute natural generalizations of Theorems 1 and 2. Without

monotonicity, the role of the compliers is played by the compliers-defiers.

4.2 Multivalued instruments

Suppose that instead of being binary, the instrument Z takes values in a finite set Z =

{z1, z2, . . . , zK} with 0 < z1 < z2 < · · · < zK < ∞. The following assumption extends the

LQTE model as defined by Assumption 2 to multivalued instruments (e.g., Imbens, 2007;

Frölich, 2007).

Assumption 6.

1. Monotonicity: P (Dzk ≥ Dzj) = 1 for any two values (zk, zj) ∈ Z × Z with zk > zj.

2. Independence: (Y1, Y0, {Dzk}zk∈Z) are jointly independent of Z.

3. Nontrivial assignment: 0 < P (Z = zk) < 1 for all zk ∈ Z.

4. First-stage: P (D = 1|Z = zk) > P (D = 1|Z = zj) for any two values (zk, zj) ∈ Z×Z

with zk > zj.

Under Assumption 6, there are K + 1 different types. Consistent with the standard

LQTE model, I denote individuals with Dzk = 0 for all zk ∈ Z as never-takers and indi-

viduals with Dzk = 1 for all zk ∈ Z as always-takers. In addition, there are K − 1 different

types of compliers, T = czj , indexed by a unique instrument value zj at which their treat-

ment status switches from zero to one. For each type T = t, t ∈ {a, n, {czj}Kj=2}, let πt,

fYd|t, FYd|t, and QYd|t denote its proportion, the density function of Yd, the CDF of Yd, and

the QF of Yd.
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Under Assumption 6, the conditional probabilities p(d|zk) ≡ P (D = d|Z = zk) are

related to the proportions of types as

p(1|zk) = πa +
k∑
j=2

πczj and p(0|zk) = πn +
K∑

j=k+1

πczj

and the observed conditional CDFs FY |D=d,Z=zk are related to the potential outcome CDFs

of the K + 1 types as (provided that these quantities are well defined for all zk ∈ Z)

FY |D=1,Z=zk (y) =
πaFY1|a(y) +

∑k
j=2 πczjFY1|czj (y)

πa +
∑k

j=2 πczj

FY |D=0,Z=zk (y) =
πnFY0|n(y) +

∑K
j=k+1 πczjFY0|czj (y)

πn +
∑K

j=k+1 πczj
.

Hence, the data are informative about the fraction of all subpopulations as well as the

distributions of Y1 for always-takers and compliers and the distributions of Y0 for never-

takers and compliers (e.g., Imbens, 2007).

I study IVQR estimands δ∗(τ) and Q∗Y0(τ) that solve the following moment equations:

E
((
τ − 1

[
Y ≤ δ∗(τ)D +Q∗Y0(τ)

])
(1, Z)′

)
= 0, τ ∈ (0, 1). (12)

Remark 3. Equation (12) is not the only possible moment condition that could be used

with multivalued instruments. All instrument of the form 1[Z = zk] are valid instruments

and any combination of instruments identifies the same parameter under the IVQR as-

sumptions. This testable implication can be used to develop overidentication-type tests of

the IVQR model and the rank similarity assumption with nonbinary instruments (e.g., Kim

and Park, 2017; Yu, 2017; Wüthrich, 2017); see Section 2 of the appendix.

The following assumption extends Assumption 3 to multivalued instruments.

Assumption 7. For (d, t) ∈ {0, 1} ×
{
a, {czj}Kj=2, n

}
:

1. Regularity: fYd|t is continuous.

2. Support: S(Yd|T = t) = S(Yd), where S(Yd) = Sd.
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With multivalued instruments, the IVQR estimands will be functions of the following

mixtures distributions:

F̃Y1(y) ≡
∑K

j=2wjπczjFY1|czj (y)∑K
j=2wjπczj

and F̃Y0(y) ≡
∑K

j=2wjπczjFY0|czj (y)∑K
j=2 wjπczj

,

where

wj ≡
(
E(Z|Z ≥ zj)

E(Z)
− 1

)
P (Z ≥ zj).

Let Q̃Y1 and Q̃Y0 denote the inverses of F̃Y1 and F̃Y0 . The mixture weight attached to the

CDF of compliant type T = cj, FYd|czj , is determined by two components: (i) the weighting

function wj and (ii) the size of the respective compliant subpopulation, πczj . Note that

the weights wj are strictly positive because E(Z|Z ≥ zj) > E(Z) for j ≥ 2. To gain some

intuition about the shape of the weighting function, consider the difference between two

adjacent weights:

wj+1 − wj =

(
1− zj

E(Z)

)
P (Z = zj).

Thus, the weighting function is increasing whenever zj is smaller than E(Z) and decreasing

whenever zj is larger than E(Z).

Remark 4. The weights wj are similar to the weights that linear IV models attach to the

LATE for compliers T = czj (e.g., Heckman and Vytlacil, 2005, 2007).

The following theorem shows that, under the generalized LQTE assumptions, the IVQR

QTE estimands can be expressed as QTE for the mixture of all compliant types, δ̃(τ) ≡

Q̃Y1(τ)− Q̃Y0(τ), at transformed quantile levels.

Theorem 6. Suppose that Assumptions 6 and 7 hold and that the IVQR estimands solve

the moment conditions (12). Then, for all τ ∈ (0, 1),

δ∗(τ) = δ̃
(
F̃Y0

(
Q∗Y0(τ)

))
= δ̃

(
F̃Y1

(
Q∗Y1(τ)

))
.

Theorem 7 generalizes Theorem 2 to multivalued instruments.
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Theorem 7. Suppose that Assumptions 6 and 7 hold and that the IVQR estimands solve

the moment conditions (12). Then, for all (y1, y0) ∈ Y1 × Y0,

F ∗Y1(y1) =
K∑
j=2

πczjFY1|czj (y1)P (Z ≥ zj) +
K∑
j=2

πczjFY0|czj

(
Q̃Y0

(
F̃Y1(y1)

))
P (Z < zj)

+ πaFY1|a(y1) + πnFY0|n

(
Q̃Y0

(
F̃Y1(y1)

))
,

F ∗Y0(y0) =
K∑
j=2

πczjFY1|czj

(
Q̃Y1

(
F̃Y0(y0)

)) E(Z|Z ≥ zj)

E(Z)
P (Z ≥ zj)

+
K∑
j=2

πczjFY0|czj (y0)
E(Z|Z < zj)

E(Z)
P (Z < zj) + πaFY1|a

(
Q̃Y1

(
F̃Y0(y0)

))
+ πnFY0|n(y)

Theorem 7 shows that the basic mechanism described in Theorem 2 pertains when the

instrument is multivalued. The key CDFs, F̃Y1 and F̃Y0 , are convex combinations of the

CDFs of the K − 1 different compliers. In contrast to the previous results, Theorem 7

implies that the transformations of the quantile levels in Theorem 6 do not only reflect

differences between the potential outcome distributions of the untreated compliers and

never-takers and treated compliers and always-takers, but also differences between the

potential outcome distributions of the K − 1 different compliers and their mixture.

4.3 Incorporating covariates into the analysis

Including additional covariates X into the analysis can be important for at least three

reasons. First, conditioning on a set of covariates may be crucial to achieve rank similarity

as pointed out by Chernozhukov and Hansen (2005). Second, the instrument may only be

valid conditional on appropriate covariates. For example, Chernozhukov and Hansen (2004)

assume that 401(k) eligibility is exogenous conditional on income (and further covariates).

Third, even if the instrument and the rank similarity assumption are unconditionally valid,

it may be interesting to consider conditional QTE; see for instance Frölich and Melly

(2013) for a discussion of the differences between conditional and unconditional QTE. All

the results in this paper can be taken to hold conditional on covariates. With discrete

X the analysis can proceed within subsamples defined by X = x. Alternatively, one can

consider fully saturated models for the conditional quantiles. When X contains continuous

elements, the fully saturated approach is obviously not feasible. In this case, it is common
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to work with linear-in-parameters IVQR and LQTE models as in Chernozhukov and Hansen

(2006) and Abadie et al. (2002). Such models can be interpreted as approximations to the

true potentially nonlinear conditional QFs. Because the results obtained in the previous

sections are fully nonparametric, they can be expected to hold approximately. The quality

of these approximations can be improved by choosing richer specifications (e.g., through

interactions, polynomials, or splines).

5 Empirical applications

This section illustrates the theoretical results using two empirical applications.

5.1 Implementation details

Here I provide a brief overview over the estimation and inference procedures used in the

empirical applications. Section 3 of the appendix contains more details.

• The IVQR QTE are estimated using the plug-in approach by Wüthrich (2017).

• The complier QFs and the LQTE are estimated by inverting the sample analogs of

the complier CDFs. To deal with the potential lack of monotonicity, I rearrange the

original estimates as suggested by Chernozhukov et al. (2010).

• Pointwise confidence intervals for the IVQR QTE estimands and the LQTE are ob-

tained using the empirical bootstrap. Validity of the bootstrap follows from the

results in Wüthrich (2017).

• In both applications, I employ Kolmogorov–Smirnov (KS) and Cramér–von Mises

(CM) tests to formally assess the null hypothesis that the estimands of both models

are equivalent:

H0 : δ∗(τ) = δc(τ) for each τ ∈ T , (13)

where T denotes a set of quantile indices. Critical values are computed using the

empirical bootstrap.
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• The CDFs and QFs for the always-takers and never-takers are computed using the

empirical distribution and quantile functions in the subsamples with (D = 1, Z = 0)

and (D = 0, Z = 1). The probability-probability transforms and the IVQR QTE

for the always-takers and never-takers are computed using the sample analogs of the

corresponding expressions in Theorem 2 and Corollary 2.

• To estimate the IVQR ATE for the always-takers and never-takers, I use trimmed ver-

sions of the sample analogs of the expressions in Theorem 3. The LATE is estimated

using 2SLS.

5.2 JTPA

I consider the estimation of the causal effect of JTPA training programs on subsequent

earnings. I use the same data set as Abadie et al. (2002), restricting the analysis to the

subsample of men. As described for example in Bloom et al. (1997) and Abadie et al. (2002),

the JTPA was a largely publicly-funded federal training program that started in October

1983 and lasted up until the late 1990’s. An important part of the JTPA were training

programs for the economically disadvantaged (classroom training, on-the-job training, job

search assistance, etc.). The JTPA also included a mandate for a large-scale randomized

training evaluation study that collected data from about 20000 participants in 16 different

sites. I use the randomized assignment as an instrument (Z) for estimating the causal effect

of actual participation in training programs (D) on the sum of earnings in the 30 months

after the random assignment (Y ). About 38% of the men in the sample who received

a training offer chose not to participate in the training program. Less than 1% of the

individuals participated in the program despite the fact that they did not receive an offer,

implying that Z satisfies one-sided non-compliance (Assumption 4) almost perfectly. For

the purpose of illustration, I drop these observations from the sample, which yields a total

of N = 5083 observations. There are 62% compliers and 38% never-takers. Abadie et al.

(2002) provide additional information about the dataset and present descriptive statistics.

In this application, the LQTE assumptions are plausible by design since the instrument

is randomly assigned and satisfies one-sided non-compliance, while the IVQR assumptions

are unlikely to hold as discussed below.
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Figure 1 presents the empirical results. Panel A compares the QTE estimates based

on the IVQR and the LQTE model. The estimates are very similar and are characterized

by substantial effect heterogeneity across quantiles and overall increasing QTE estimates

ranging from around zero to over 4000 USD. The null hypothesis (13) cannot be rejected

based on the KS and the CM test: TKSN = 6.24 · 104 (p = 0.996) and TCMN = 7.06 · 108

(p = 0.991).

The key condition of the IVQR model is the rank similarity assumption. In this appli-

cation, rank similarity requires that the individual ranks in the potential wage distributions

with and without the training program are the same up to unsystematic deviations from a

common rank level, postulating a “one-factor” model in which counterfactual earnings are

determined by a single unobservable “ability” index. Dong and Shen (2018) statistically

reject rank similarity based on a similar dataset. It follows from the analysis in Section

3.2 and Corollaries 3–5 that the key observable determinant of the bias of IVQR in the

absence of rank similarity is the size of the never-taker subpopulation, which is related to

the first stage as πn = 1− πc. The estimated proportion of never-takers and the first stage

are π̂n = 0.38 and π̂c = 0.62, suggesting that IVQR is relatively robust to violations of

rank similarity in this application.

Corollaries 3–5 show that, under one-sided non-compliance, differences between both

models are determined by the proportions of never-takers and compliers and differences

between the distributions of Y0 of never-takers and compliers. Panel B shows that the esti-

mated CDFs of Y0 of never-takers and compliers exhibit substantial differences at the lower

quantiles. These differences lead to deviations of the estimated probability-probability

transform F̂Y0|c ◦ Q̂Y0|n from the 45◦-line in Panel C. Panel D compares the IVQR QTE

estimate for the never-takers to the LQTE. Although qualitatively similar, the never-taker

QTE are smaller than the corresponding LQTE at most quantiles. The reason for this

finding is the combination of the increasing LQTE and the shape of F̂Y0|c ◦ Q̂Y0|n, which

implies that the τ -QTE for the never-taker corresponds to the τ ′-LQTE, where τ ′ < τ .

Finally, I compute the IVQR estimates of the never-taker ATE and the overall ATE

based on Corollary 5. The estimated never-taker ATE is ∆̂∗n = 1275.48 and thus smaller

than the estimated LATE, ∆̂c = 1715.96. This is because the QTE for the never-takers is
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Figure 1: Panel A: QTE estimates including 90% confidence intervals computed using

the empirical bootstrap with 1000 repetitions. Panel B: subpopulation CDFs. Panel C:

probability-probability transform. Panel D: subpopulation QTE estimates.
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smaller than the LQTE at most quantiles in Panel D. The overall ATE estimate based on

the IVQR model is

∆̂∗ = π̂c∆̂c + π̂n∆̂∗n = 1549.82.

5.3 Veteran status and earnings

Here I study the causal effects of Vietnam veteran status (D) on the distribution of annual

labor earnings (Y ). Because veteran status is likely to be endogenous, I follow Angrist

(1990) and use the U.S. draft lottery as an instrument (Z) that takes the value one if

someone is eligible for being drafted and zero otherwise. I use the same dataset as Abadie

(2002) and Chernozhukov et al. (2010). The data contain information about N = 11637

white men, born in 1950–1953, from the Current Population Surveys of 1979, and 1981–

1985; 2461 are Vietnam veterans and 3234 are eligible for military service. In total, there are

18% always-takers, 71% never-takers, and 12% compliers (fractions are rounded). Abadie

(2002) provides more information about the dataset.

Figure 2 presents the empirical results. Panel A compares the QTE estimates based on

the IVQR and the LQTE model. The estimates exhibit similar overall patterns indicating

that there is substantial effect heterogeneity across quantiles. In particular, there are

large negative effects at the lower quantiles of the wage distribution and small positive

impacts at higher quantiles. In contrast to the JTPA application in Section 5.2, there are

economically significant differences between the QTE estimates up to the third quartile.

The null hypothesis (13) is marginally rejected at the 10%-level based on the KS-test

(TKSN = 7.24 · 105, p-value = 0.098), but cannot be rejected based on the CM-test (TCMN =

5.15 · 1010, p-value = 0.133).

In this application, rank similarity requires that individual ranks in the potential wage

distributions as veterans and non-veterans are the same up to unsystematic deviations

from a common rank level. Rank similarity would be violated if there are several unob-

servable factors that determine wages and are differentially relevant under both treatment

states such that a one-factor model is not appropriate. Examples of such wage determi-

nants include motivation, perseverance, intelligence, communication skills, physical skills,

resilience, and loyalty. Theorems 1–3 show that, if rank similarity is violated, the key ob-
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Figure 2: Panel A: QTE estimates including 90% confidence intervals computed using

the empirical bootstrap with 1000 repetitions. Panel B: subpopulation CDFs. Panel C:

probability-probability transform. Panel D: subpopulation QTE estimates.
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servable determinant of the bias of IVQR is the relative size of the three subpopulations.

Because the majority of the individuals (89%) are never-takers and always-takers in this

application, and, consequently, there are only very few compliers (12%), IVQR cannot be

expected to be very robust against violations of rank similarity.

It follows from Theorems 1–2 that the discrepancies between the QTE estimands of both

models are determined by the proportions of the three types and differences between the

subpopulation potential outcome distributions. Panel B shows that there are pronounced

differences between the estimated CDFs of Y0 of never-takers and compliers at the lower

quantiles, while the differences at the higher quantiles are smaller. The differences at the

lower quantiles matter because there are 71% never-takers. By contrast, the estimated

CDFs of Y1 of always-takers and compliers are rather similar and their discrepancies are

not as important since there are only 18% always-takers. Panel C reports estimates of the

probability-probability transforms FY1|c◦QY1|a and FY0|c◦QY0|n. Panel D compares the IVQR

QTE estimates for the never-takers and always-takers to the LQTE. The discrepancies

between the never-taker and complier CDFs in Panel B result in large deviations of F̂Y0|c ◦

Q̂Y0|n from the 45◦-line in Panel C. In conjunction with the substantial heterogeneity in the

LQTE at the lower quantiles, this leads to the large differences between the never-taker

QTE and the LQTE in Panel D. By contrast, the differences between the always-taker

QTE and the LQTE are rather small, reflecting the similarities between the always-taker

and complier distributions.

The IVQR ATE estimates for the always-takers and never-takers are ∆̂∗a = −1666.71

and ∆̂∗n = −1401.26. Both estimates are larger (in absolute value) than the LATE, ∆̂c =

−1277.78, reflecting the differences between the QTE estimates reported in Panel D of

Figure 2. The IVQR estimate of the overall ATE is

∆̂∗ = π̂c∆̂c + π̂a∆̂
∗
a + π̂n∆̂∗n = −1434.58.

When interpreting the results in this application, it is important to note that the va-

lidity of the instrument exclusion restriction underlying both models is questionable due

to the direct effect of draft lottery on college enrollments (e.g., Card and Lemieux, 2001;

Deuchert and Huber, 2017). If the exclusion restriction is violated, F̃Y1 and F̃Y0 are not

equal to FY1|c and FY0|c, but correspond to mixtures of instrument- and type-specific po-
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tential outcome CDFs (e.g., Huber, 2014). Because the closed-form solutions for the IVQR

estimands in Lemma 1 of the appendix do not rely on the validity of the exclusion restric-

tion, they can be used to characterize the IVQR estimands when this condition is violated.

This analysis suggests that the IVQR QTE estimands correspond to QTE associated with

mixture distributions at transformed quantile levels. Discrepancies between the estimands

of both models reflect differences between the instrument- and type-specific potential out-

come distributions, which are partly driven by violations of the exclusion restriction. A full

theoretical analysis of the IVQR and the LQTE estimands under violations of the exclu-

sion restriction is beyond the scope of this paper, but is certainly worth pursuing in future

research.

6 Conclusion

In this paper, I characterize the IVQR estimands under the LQTE assumption when treat-

ment effect heterogeneity is unrestricted. I show that even when the rank similarity as-

sumption fails, the IVQR QTE estimands correspond to LQTE at transformed quantile

levels. Moreover, the IVQR estimate of the ATE is equal to a convex combination of the

LATE and weighted averages of integrated LQTE at transformed quantile levels. Under-

pinning these results are closed-form representations for the IVQR estimands, which may

be of independent interest. For example, Wüthrich (2017) builds on these closed-form

solutions to construct plug-in estimators for unconditional QTE.

I analyze IVQR estimands with binary treatments and binary instrument as well as

multivalued instruments based on exactly identified GMM problems, but I do not cover

nonbinary treatments, continuous instruments, and overidentified GMM. Analyzing the

IVQR estimands with nonbinary treatments would be particularly insightful as there is no

straightforward way to generalize the LQTE model to accommodate nonbinary treatment

variables. Alas, such an extension cannot be based on the closed-form solutions in this

paper as they rely on the binary nature of the treatment variable. The arguments used

to derive the closed-form solutions further rely on exact identification and do not directly

extend to overidentified GMM problems. In contrast, incorporating continuous instruments

into the analysis is conceptually straightforward based on Lemma 2 in the appendix; see
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for example Yu (2016).

For the empirical practitioner, I would like to emphasize several take-aways messages of

this paper. First, the IVQR estimands have a meaningful interpretation even when the con-

troversial rank similarity assumption is violated. Second, the key observable determinants

of the bias of the IVQR estimands are the proportions of always-takers and never-takers

and the instrument first stage. Hence, it is important to report estimates of these key

quantities in applications. Third, I show that IVQR achieves identification of population

treatment effects by extrapolating from the compliers based on the rank similarity assump-

tion. Hence, IVQR can be viewed as a rank-based approach to external validity in the

LQTE model. Fourth, in settings where the assumptions of both models are plausible, one

can use the results in this paper to estimate treatment effects for the always-takers and

never-takers. Such an analysis provides valuable information about the treatment effect

heterogeneity across subpopulations. Finally, based on the results in this paper, Kim and

Park (2017) show that rank similarity is fundamentally untestable with binary instruments.

Thus, comparisons of the estimands of both models cannot be used to assess the validity

of this key condition. By contrast, rank similarity is testable with nonbinary instruments;

see Section 2 of the appendix.
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