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ABSTRACT OF THE DISSERTATION 
 

Advancing Variant Effect Prediction Beyond Protein-Level 
by Incorporating Systems-Level Architecture 

 

 
by 

 

Kivilcim Ozturk 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California San Diego, 2022 

Professor Hannah Carter, Chair 
Professor Prashant Mali, Co-Chair 

 

Cancer is a complex disease that harbors substantial genetic heterogeneity. Recent 

advances in sequencing technologies revealed large numbers of somatic mutations across 

human tumors. However only a small proportion of these mutations are expected to contribute 

to tumor growth and progression, making determining functional mutations an important 

challenge in cancer genomics. Missense variants are particularly difficult to understand as they 

change only a single amino acid in a protein sequence yet can have large and varied effects on 



xvii 
 

protein activity. Numerous tools have been developed to identify missense variants with 

putative disease consequences from protein sequence and structure. However, biological 

function arises through higher order interactions among proteins and molecules within cells, 

and diseases are often associated with perturbations to protein interactions. Different 

perturbations can result in different phenotypes, and the level of impact caused by mutations to 

the underlying molecular interaction network may determine the likelihood of generating a 

disease phenotype. Thus, in this dissertation, I aim to incorporate systems-level architecture to 

bridge the gap between genotype and phenotype in cancer by exploring different network-based 

strategies to study the impact of variants on biological systems. I first integrated protein 

structure and network information to design variant features that capture orthogonal 

information to classical amino acid features and showed their potential to improve variant 

classification within a machine-learning framework. Next, I investigated how patterns of 

network rewiring of mutations on cancer genes can be informative for unearthing different 

selective oncogenic pressures. Finally, I examined transcriptomic effects of perturbation of 

distinct protein interactions as a way to better define the landscape of prospective phenotypes 

reachable by individual amino acid substitutions. Overall, this body of work demonstrates that 

variant effect interpretation can be significantly improved by incorporating information about 

the role of proteins and their molecular interactions within biological systems.
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INTRODUCTION 
 

Cancer is a complex disease that harbors substantial genetic heterogeneity. Recent 

advances in sequencing technologies have significantly reduced the costs of genome sequencing, 

allowing detection of vast numbers of somatic mutations across human tumors. Studies of the 

mutational landscape of tumor genomes determined that the majority of detected mutations are 

passengers that are not involved in the oncogenic process [1–3]; while only a small number of 

causal driver mutations are expected to contribute to tumor growth and progression [4]. Therefore, 

determining causal driver mutations and the genes they target has become an important challenge 

in cancer genomics. 

Multiple methods exist to identify candidate driver mutations based on signatures of 

functional impact using information about protein sequence and structure [2,5,6]. Another 

approach is to look for signatures of positive selection for mutations at the gene level. Genes can 

be prioritized based on signatures of positive selection, including elevated mutation rate relative 

to expectation [7,8] or unexpected clustering within protein sequence or structure [9,10]. Then 

mutations within such genes can be classified as drivers or passengers according to their predicted 

effect on the function of the gene. Typically, these tools rely on protein sequence and structure 

information to predict variant effects at the protein level, and the scores they provide tend to 

capture coarse grained estimates of impact (e.g., damaging, benign, and tolerated). 

Systems biology provides a toolkit for modeling complex biological systems and their 

constituent interactions. Increasingly, techniques from systems biology such as network analysis 

are being applied to analyze genomic data in order to better understand disease [11]. Networks 

have been employed in the study of tumor cohorts in order to gain insights into tumor biology, to 

identify putative biomarkers and relevant disease subtypes, and to find possible targets for therapy. 
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In these scenarios, networks are often used to control heterogeneity and to increase statistical 

power through aggregation. The structures of the networks can be defined from known molecular 

interactions (e.g., protein–protein interactions), such that the network itself is a model of the 

biological system. This confers meaning to interactions within the network such that connected 

nodes are expected to be more functionally related than distant nodes, and traversal of adjacent 

edges in the network can be loosely interpreted as biological information flow. 

Biological functions and cellular behaviors arise from interactions among proteins and 

other molecules within cells, and diseases are often associated with perturbations to protein 

interactions. Different perturbations can result in different phenotypes [12], and the level of impact 

caused by mutations to the underlying molecular interaction network may determine the likelihood 

of generating a phenotype [13]. Thus, a protein’s location within the system provides biological 

context that may be important for understanding the effects of mutations [14]. 

Proteins themselves also frequently have multiple functions via complex interaction 

dynamics with multiple partners. Therefore, different mutations on the same protein may have 

different effects on its functions [15,16]. While destabilizing mutations at the core of a protein are 

likely to interfere with all protein activities, mutations on the surface could potentially interfere 

with specific protein activities while preserving others [16]. It follows that different mutations 

targeting the same protein might perturb its interactions differently, affecting different pathways 

that the protein is involved in, resulting in different disease phenotypes [17]. Indeed, analyses have 

demonstrated an unexpected enrichment of Mendelian mutations [18–20] and somatic mutations 

[10,21–23] at protein interaction interfaces. Although protein structure-derived features have long 

been integral to variant effect interpretation, some more recent features capturing 3D location of 

mutations within key protein regions including local density of mutation and location at interface 
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regions have emerged [24–27]. While these features begin to capture information about the 

potential of variants to affect distinct interactions, they do not incorporate context about the 

importance of specific interactions within the larger interactome. 

As networks impact the potential of variants to have a phenotypic effect, and variants cause 

phenotypic effects with rewiring of molecular networks, it should be possible to use network 

information to study variants. Thus, in this dissertation, I aim to incorporate systems-level 

architecture to bridge the gap between genotype and phenotype in cancer by exploring different 

network-based strategies to study the impact of variants on biological systems. Chapter 1 seeks to 

assess the potential for artificial intelligence-based methods for variant interpretation to derive new 

information from molecular interaction data. I achieved this by first integrating protein structure 

and network information to enable mapping of mutations to network edges to describe their 

potential to impact biological function. Then I designed features capturing information about 

proteins and amino acids in the context of their importance to the network architecture and 

evaluated them within a machine-learning variant classification framework, and found that 

network-based features capture orthogonal information to classical amino acid sequence/structure-

based features, and can improve variant classification. Chapter 2 investigates how patterns of 

network rewiring of mutations on cancer genes can be informative for unearthing different 

selective oncogenic pressures. Here, I focus on a distinct pattern of network architecture 

perturbation in the tumor suppressor B2M subnetwork, and show that the mutational pattern 

targeting B2M’s interaction with HLA-A, HLA-B, and HLA-C proteins could be indicative of 

immune evasion type pressures. I explored this with a mechanistic investigation of the interaction 

in terms of mutation burden, antigen binding affinity, and immune infiltration in tumors, which 

provides insight into how mutations perturbing this interaction enable immune escape. Chapter 3 
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examines transcriptomic effects of perturbing distinct protein interfaces as a way to better define 

the landscape of prospective phenotypes reachable by individual amino acid substitutions. I 

investigated this by employing an interface-guided Perturb-seq style approach to generate 

mutations at physical interfaces of the transcription factor RUNX1 with the potential to perturb 

different interactions, and therefore produce transcriptional readouts implicating different aspects 

of the RUNX1 regulon. I analyzed these readouts to identify functionally distinct groups of 

RUNX1 mutations, characterize their effects on cellular programs and study the implications for 

cancer mutations. Overall, my research helps advance variant effect interpretation in cancer 

beyond protein-level by integrating the architecture of biological systems. 
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CHAPTER 1: Revisiting the impact of coding variants through the lens of biological 

systems architecture 

1.1 Foreword 
 

The analysis of genomic data and its relation to phenotypes is a fundamental step for study 

of human diseases. Although in the last decades many studies have uncovered genetic variants 

associated with diseases [1], the complexity of biological systems makes it difficult to evaluate 

their impact at the level of cellular processes and behaviors. Networks provide a versatile 

framework for modeling the architecture of biological systems, wherein nodes usually represent 

biomolecules, and edges represent interactions among them. Graphical modeling then allows 

quantitative measures to be derived from the network topology for analyzing different aspects of 

biological systems. The network structure itself can be analyzed, or biological measurement data 

can be mapped onto network nodes and edges to facilitate integration or interpretation of those 

measurements to capture organization of the underlying system. To link genotype to phenotype, 

genetic alterations can be mapped onto their respective proteins to identify PPIs and biochemical 

pathways that are potentially affected. 

Studies of PPI network topology have generated multiple insights linking protein location 

and connectivity within the network to particular phenotypes. The characteristics of PPI network 

topology that enable function and robustness of biological systems also create certain kinds of 

vulnerability. PPI networks tend to have a scale-free topology, such that the number of edges 

connecting to each node follows a power-law distribution [2], meaning that only a minority of 

nodes are hubs with large numbers of interaction partners while most nodes participate in only a 

few interactions. This is thought to render the system robust to random error, since genetic variants 

at random are more likely to affect a protein with few interactors, and thus cause only a minor 
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perturbation to the overall topology of the network. However, this leads to vulnerabilities, as 

mutations affecting a highly connected hub are likely to have a significant impact on the system 

and can be very disruptive to function [3]. 

Various network metrics have been developed to describe characteristics of nodes within 

networks [4], and can be used to identify nodes with key “roles” within the network topology [5]. 

Centrality measures can capture the importance of a node to information flow in a network. For 

example, degree centrality, quantifying the number of interaction partners, can be used to designate 

proteins as hubs or peripheral nodes; while betweenness centrality describes the number of shortest 

paths that traverse a node, inspecting it as a potential bottleneck (Figure S1.6). Closeness centrality 

measures the overall closeness to all other nodes in the network; while eigenvector centrality 

informs centrality of the neighbors by quantifying if a node is connected to other high-degree 

nodes (Figure S1.6), and the clustering coefficient measures the embeddedness of the immediate 

network neighborhood of a node. Nodes can also be assigned to modules within the network using 

community detection algorithms [6,7]. 

Given the clear evidence that nodes with distinct characteristics in the network support 

different aspects of the function of biological systems and are under different evolutionary 

constraints, it makes sense to evaluate the implications for fitness-related phenotypes. Many 

studies have taken advantage of network measures to examine different classes of genes. Essential 

genes encode proteins that are required for organismal survival, such that the loss of the gene is 

lethal. These genes are reported to have higher degrees in the PPI networks [8], higher betweenness 

centralities [9], and higher clustering coefficients [10,11]. Cancer genes are also found to be highly 

central by several studies [12–15]. In contrast, Mendelian disease genes are found to be less central 

than essential and cancer genes [12,13], particularly when essential Mendelian genes are excluded 
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from the analysis [13]. Interestingly, disease genes associated with dominant disorders are found 

to have higher degrees than genes associated with recessive disorders [10]. In contrast, gene 

deletion at the periphery of the network is less frequently associated with an essential or disease 

phenotype [12,16]. 

Most genetic variants are not loss of function events, but rather result in more subtle 

changes to protein sequences, and mutations within the same protein can have very different effects 

on its function [17]. It has been shown experimentally that most nonsynonymous Mendelian 

disease mutations generate stable proteins, supporting that mutation effects on specific protein 

activities rather than absence of protein drives disease phenotypes [18]. Mapping variants to nodes 

in the network cannot capture such subtle differences in variant effect, however the integration of 

information about protein structure and functional sites with protein interactions has made it 

possible to better discriminate variants in some cases by mapping them to network edges. Das et 

al. [19], Sahni et al. [20] and Zhong et al. [21] introduced the concept of “edgetics” to describe the 

potential of mutations to perturb distinct interactions in which a protein participates. Under this 

model, variants mapping to the core have the potential to eliminate all interactions by destabilizing 

the protein, while variants mapping to interaction interfaces have the potential to perturb specific 

subsets of interaction. 

Studies of edgetic effects require information about the three-dimensional structure of 

protein complexes, so that amino acid residues can be labeled according to their location in the 

protein core, on the surface or at an interface between interacting proteins (Figure S1.7). The 

framework of edgetics thus allows variants to be studied not only in the context of their location 

in the network, but also according to their direct impact on network topology. Structurally resolved 

interactome networks, which integrate information about the domains or amino acid residues that 
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physically interact, are increasingly available to explore the mechanisms by which mutations cause 

disease at scale [19,22–25]. Multiple studies using structurally resolved networks revealed a 

statistical excess of known disease mutations at protein interaction interfaces [26–28], with in-

frame disease mutations enriched at interfaces relative to truncating mutations [28], confirming 

the utility of such networks for systematically investigating disease mechanisms. 

My research in Chapter 1 aims to assess the potential for artificial intelligence-based 

methods for variant interpretation to derive new information from molecular interaction data, and 

shows that network-based features capture orthogonal information to classical amino acid 

sequence/structure-based features, and can improve variant classification. 
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1.2 Abstract 

Variant interpretation remains a central challenge for precision medicine. Missense 

variants are particularly difficult to understand as they change only a single amino acid in a protein 

sequence yet can have large and varied effects on protein activity. Numerous tools have been 

developed to identify missense variants with putative disease consequences from protein sequence 

and structure. However, biological function arises through higher order interactions among 

proteins and molecules within cells. We therefore sought to capture information about the potential 

of missense mutations to perturb protein interaction networks by integrating protein structure and 

interaction data. We developed 16 network-based annotations for missense mutations that provide 

orthogonal information to features classically used to prioritize variants. We then evaluated them 

in the context of a proven machine-learning framework for variant effect prediction across multiple 

benchmark datasets to demonstrate their potential to improve variant classification. Interestingly, 

network features resulted in larger performance gains for classifying somatic mutations than for 

germline variants, possibly due to different constraints on what mutations are tolerated at the 

cellular versus organismal level. Our results suggest that modeling variant potential to perturb 

context-specific interactome networks is a fruitful strategy to advance in silico variant effect 

prediction. 
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1.3 Introduction 

Advances in high throughput sequencing technologies have resulted in the rapid 

accumulation of genomic data and allowed profiling of patient genomes in clinical settings. Such 

studies frequently uncover previously unobserved and uncharacterized genetic variants of 

ambiguous relevance to health, making variant interpretation an important challenge in precision 

medicine [29]. Missense mutations are particularly challenging as they only change a single amino 

acid in a protein sequence yet can have effects spanning no difference to complete loss of function. 

Numerous methods have been developed to prioritize functional missense variants [30–38]. 

Typically, these tools rely on protein sequence/structure information to predict variant effects at 

the protein level, and the scores they provide tend to capture coarse grained estimates of impact 

(e.g damaging, benign, tolerated). 

Biological functions and cellular behaviors arise from interactions among proteins and 

other molecules within cells, and biological systems evolve to be robust to random error [39]. 

Diseases are often associated with perturbations to protein interactions, different perturbations can 

result in different phenotypes [40], and the level of impact caused by mutations to the underlying 

molecular interaction network may determine the likelihood of generating a phenotype [41]. For 

example, loss of function mutations were more likely to be tolerated when they affected proteins 

at the periphery of the interactome [16]. Similarly, variants that otherwise were predicted to have 

little effect were more likely to be deleterious if they had a large number of interaction partners 

[42] and de novo missense variants in autism probands with functional Polyphen2 predictions were 

enriched at protein interfaces of more central proteins relative to similar mutations in control 

siblings [43]. Thus, a protein’s location within the system provides biological context that may be 

important for understanding the effects of mutations [44]. 
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Within proteins, different mutations may have different effects on protein functions 

[20,21]. While destabilizing mutations at the core of a protein are likely to interfere with all protein 

activities, mutations on the surface could potentially interfere with specific protein activities while 

preserving others [21]. In this way, different mutations targeting the same protein might perturb 

its interactions differently, affecting different pathways that the protein is involved in, and resulting 

in different disease phenotypes [45]. Indeed, analyses have demonstrated an unexpected 

enrichment of Mendelian mutations [26–28], and somatic mutations [46–49] at protein interaction 

interfaces. Although protein-structure derived features have long been integral to variant 

classification, some more recent features capturing 3D location of mutations within key protein 

regions including local density of mutation and location at interface regions have emerged [50–

53]. While these features begin to capture information about the potential variants to affect distinct 

interactions, they do not incorporate context about the importance of specific interactions within 

the larger interactome. 

Based on the above we sought to assess the potential for artificial intelligence based 

methods for variant interpretation to derive new information from molecular interaction data. We 

first integrated structure and protein-protein interaction (PPI) networks to enable systematic 

annotation of proteins according to location and interactions (Figure 1.1a). We mapped various 

germline variants and somatic mutations to network edges to describe their potential to impact 

biological function (Figure 1.1b). We then designed features capturing information about proteins 

and amino acids in the context of their importance to the network architecture and evaluated them 

within a machine-learning variant classification framework (Figure 1.1c). We found that network-

based features capture orthogonal information to classical amino acid (AA) sequence/structure-
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based features and can improve variant classification, though they may be more informative for 

some variant classification tasks than others. 
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1.4 Results 

Disease causing genes are central in PPI networks. The architectures of biological 

networks can provide important information for understanding the pathogenesis of mutations 

[44,54]. The scale-free topology of PPI networks suggests that they are more tolerant to random 

failures, but variants affecting higher degree nodes are more likely to disrupt function [3]. Indeed, 

when we compared disease genes using a high-confidence human PPI network of experimentally 

verified interactions from STRING [55], cancer driver [56] and Mendelian disease genes [1] score 

higher with various centrality measures than other genes (Figure 1.2). This suggests that the 

network niche of a gene provides information about the potential of an amino acid substitution to 

create deleterious phenotypes, a relationship that has proven robust to study bias [57]; in our data, 

only node degree correlates weakly with the number of publications (Pearson r=0.23, Figure S1.1). 

Creating a structurally resolved PPI network. While disease mutations target proteins 

more central in interaction networks (Figure 1.2), protein level descriptors of centrality are not 

capable of distinguishing the effects of different mutations within proteins. Investigation of 

residue-specific network perturbations requires mapping of mutations to 3D protein structures and 

interaction interfaces so that we can model their potential to affect network edges (Figure 1.1b). 

We constructed a structurally resolved PPI network (called SRNet from here on) comprising 6,230 

proteins and 10,615 PPIs using 3D structures and homology models (Figure 1.1a). This network 

contains annotations for 530,668 interface residues, defined here as the subset of amino acid 

residues that mediate physical contact between proteins. Otherwise, amino acids are annotated 

according to location at the surface or core based on relative solvent accessible surface area 

calculated from protein 3D structures (Methods). SRNet is an updated and extended version of our 

previous structurally resolved PPI network [46]. 
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Disease mutations frequently target interface or core residues. We further assessed the 

potential for SRNet to capture information about residue-based network-perturbation by analyzing 

location of mutations relative to core, surface or interface regions. Similar to the finding in Engin 

et al. [46], SRNet supports that somatic missense mutations in tumors (obtained from The Cancer 

Genome Atlas (TCGA) [58]) target surface regions in oncogenes (OR=1.32, p=1.4e-06) and other 

genes (OR=1.15, p=1.07e-59), but are relatively depleted at surface regions in tumor suppressor 

genes (OR=0.91, p<0.1) due to a larger proportion of core mutations (Figure 1.3a), consistent with 

more loss of function mutations in tumor suppressors. However, when focusing only on surface 

positions, somatic mutations are more likely to be found at interface regions of oncogenes 

(OR=1.11, p<0.05) and tumor suppressors (OR=1.30, p=7.8e-07) relative to other genes (Figure 

1.3b). Analysis of pathogenic germline variants (ClinVar [59]) versus neutral variants (EXAC 

[60], SwissVar [61], ClinVar [59]) found similar trends. Pathogenic variants were relatively 

depleted at the surface (OR=0.56, p=1.5e-42), suggesting they were far more likely to affect core 

regions, whereas neutral variants were biased toward the surface (OR=1.69, p=1e-19) (Figure 

1.3c). On protein surfaces, pathogenic variants were more often found at interface regions 

(OR=5.65, p=2.2e-308) though neutral variants also showed increased odds of affecting an 

interface (OR=2.87, p=2.6e-115) (Figure 1.3d). 

Network-based features for variant classification. As the above analyses support that 

both protein and amino acid level information derived from networks is informative about disease-

association, we hypothesized that network information would be useful for machine-learning-

based variant classification. We designed and analyzed 16 features describing network-level 

effects of mutations, including 7 protein-level features (Figure 1.4a) that estimate the significance 

of the target protein in the network, and 9 residue-level features (Figures 1.4b-c) quantifying the 
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potential of individual amino acid positions on the protein to impact network architecture. The 

residue-level features are based on comparing network measures before and after removing edges 

in SRNet potentially affected by a mutation (Methods). These 16 features show potential to 

distinguish between different classes of variants (Figures 1.4a-c) and are not strongly correlated 

with other classic non-network based amino acid features used for variant classification, such as 

measures of site-specific conservation (Figure 1.4d), suggesting that they add new and useful 

information (Figure S1.2). 

Utility of network features for classifying cancer driver mutations. To evaluate the 

benefit of using network features for somatic mutation classification, we trained a Random Forest 

to predict driver or passenger class labels using different combinations of features. We separately 

evaluated classifier performance when trained using all 16 network derived features, only the 7 

protein-level features or the 9 residue-level features alone, or in combination with 83 amino acid 

level features obtained from the SNVBox database [62]. As a training set, we used likely-driver 

and likely-passenger missense mutations from Tokheim et al., which they obtained from TCGA 

using a semi-supervised approach based on known cancer driver gene annotations and mutation 

rates with the goal of generating a more balanced training set consisting of both driver and 

passenger mutations in cancer genes [52]. While passengers greatly outnumber drivers in practice, 

we constrained the ratio as 1:4 driver vs. passenger mutations for classifier training (Methods). 

Generalization error was estimated using a 5-fold cross-validation with gene hold out to prevent 

information leakage and consequent overfitting. We measured performance using the area under 

the ROC (auROC) and precision recall curve (auPRC) metrics, similar to prior variant effect 

prediction studies [52]. We note that use of network features limits training and prediction to 

mutations that can be annotated by SRNet. 
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For driver classification, protein-level network features performed better than residue-

specific features (Figures 1.5a and S1.3a), though performance for residue-level features was better 

for the top scoring ~20% of drivers (left edge of ROC curve). We note that residue-level features 

alone classify all surface non-interface mutations as passengers since their feature values should 

all be the same (there is no change to network centrality measures when no edges are affected). 

Combining residue-level features with more classic amino acid level features significantly boosts 

performance over residue-level features alone (Figures 1.5b and S1.3b). Interestingly, network 

features alone slightly outperform amino acid level features alone, pointing to the extreme 

centrality of driver genes. As residue-level features are likely to be most informative for mutations 

at interfaces, we further explored performance for interface mutations only (Figure 1.5c). Here we 

see that residue-specific network features perform considerably better as they are not hindered by 

misclassification of surface mutations (Figure 1.5c). Overall, the combination of network-based 

and amino acid features displays the highest performance (Figures 1.5b-c and S1.3b-c). Notably, 

precision-recall curves indicate that incorporating both network and classic AA features resulted 

in a significant drop in false positive predictions relative to either type of feature alone (Figure 

S1.3a-c). 

Incorporating in silico predicted interface residues. The restriction to analysis of 

mutations for which 3D structural information about interfaces is available is a problematic 

limitation. In silico prediction of interfaces can be used to augment interface coverage, as done for 

Interactome INSIDER [63]. To explore whether in silico predicted interfaces could boost mutation 

coverage without loss of performance, we repeated our analysis on an extended network with both 

structure-derived and predicted interfaces. This resulted in improved performance overall (Figures 

1.5d-f and S1.3d-f), suggesting that improvements to interface features and the ability to train on 
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a larger set of mutations enabled by higher coverage in the expanded network outweigh the 

introduction of noise caused by interface prediction error. We also noted a larger gain in precision 

for network features relative to AA features when using expanding the network (Figure S1.3e). A 

more stringent comparison considering only proteins shared between the original and the expanded 

network found similar results (auROC is 0.832 and 0.871 for SRNet and the extended network for 

the classifier with Network & AA features respectively).   

As we obtained our optimal performance using all features with the extended network, we 

used this classifier to evaluate feature importances. In Random Forest classifiers, feature 

importances is determined as the mean decrease in impurity when using that feature to split training 

examples according to class label during classifier training [64]. Fourteen of the top 21 features 

were network derived, including the top 9 (Figure S1.2). Protein-level network features were more 

informative than residue-level features, possibly reflecting the limitation of residue-level features 

to distinguish surface mutations. Simple 3D location annotating mutations to location at core, 

surface or interface contributed less information, which may reflect its redundancy with other 

network features.  

We further investigated residue-level network features in the extended network by 

examining cases where the classifier was successful in differentiating between driver and 

passenger mutations occurring in the same proteins. Since residue-level features only vary within-

protein for interface mutations, we looked for cancer genes where both driver and passenger 

mutations at interfaces were correctly classified. We found 7 cancer genes (EGFR, HRAS, KRAS, 

TP53, PIK3R1, CTNNB1 and PTEN) that contained both correctly classified interface driver and 

interface passenger mutations. Focusing on 212 correctly classified interface mutations in these 

genes, we observed a significant difference in distribution of residue-level features for the driver 
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and passenger classes (Figure 1.6), further supporting that residue-level network features provide 

information useful for within gene mutation classification. 

Overall performance on benchmark datasets. We next sought to evaluate the 

improvement obtained from network features on independent studies of cancer mutations. We used 

our highest performing classifier, trained on cancer mutations that map to the extended network 

and all network-based and classic amino acid features (Figure 1.5e, Net & AA classifier with 

auROC=0.880, Figure S1.2). Since no ‘gold standard’ dataset exists for cancer, we evaluated 

classifier performance relative to best-in-class methods that do not use network-derived features 

on 4 external pan-cancer datasets constructed using different approaches: an in vivo screen: Kim 

et al. [65], an in vitro assay: Ng et al. [66], and 2 literature-derived datasets: MSK-IMPACT and 

CGC-recurrent, previously described in Tokheim et al. [52]. For each dataset, considering the 

mutations scored by all methods, classifier performance was evaluated using the area under the 

ROC (auROC) and PR curves (auPRC), accuracy, F1 score and the Matthews correlation 

coefficient (MCC). 

We assessed the performance of our classifier relative to both cancer-specific: CHASM 

[67], ParsSNP [68], TransFIC [69], and CanDrA [70], and population-based methods: VEST [71], 

SIFT [32], PolyPhen [33], CADD [34], ClinPred [72], DANN [73], DEOGEN2 [74], FATHMM 

[75], LIST-S2 [76], LRT [77], M-CAP [78], MPC [79], MVP [80], MetaLR and MetaSVM [81], 

MutPred [38], MutationAssessor [82], MutationTaster [83], PROVEAN [84] and REVEL [36] 

(Figure 1.7). Comparison was based on the set of benchmark mutations scored by all methods, and 

was on the basis of auROC, auPRC, accuracy, F1 score and Matthew’s correlation coefficient 

(MCC). We note the later three use discrete labels rather than continuous scores. We used provided 

labels or recommended cutoffs for all methods as possible, and used a cutoff of 0.5 otherwise. 
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Our classifier performed well on all 5 metrics across the 4 benchmark sets relative to most 

other methods. It had the highest auPRC (Figure 1.7b), F1 score (Figure 1.7d) and MCC (Figure 

1.7e), of all methods on the 4 benchmark sets, and also performed well on auROC and accuracy 

(Figure 1.7a,c). In most cases, the difference in auROC relative to other methods was deemed 

significant by the DeLong test. After our method, the next best performing method was ParsSNP, 

after which there was considerable variation in what methods performed best by various measures. 

Overall, these results suggest that network-derived features that capture abstract information about 

the role of proteins in networks and the potential of mutations to perturb this role, are helpful for 

driver classification across a variety of settings, though the gains over methods trained on classic 

amino acid based features are modest.  

We separately compared our approach to two methods that incorporate interactome related 

features: SuSPect [42] and CHASMplus [52]. SuSPect includes protein degree as a predictive 

feature, while CHASMplus now includes a feature indicating the number of interactions affected 

if a mutation occurs at a protein interaction interface, along with other improvements relative to 

the original method. Location at an interface was reported as the second most informative feature 

after a feature describing within protein clustering of observed mutations [52]. We noted improved 

performance relative to SuSPect and comparable performance to CHASMplus (Figure S1.4). We 

note that both our method and CHASMplus derive classic AA features from the SNVbox database 

[62]. We further analyzed mutations that were correctly classified by our method but misclassified 

by SuSPect or CHASMplus to see whether the network features implemented relative to these 

methods explained the difference. These mutations were significantly enriched at interface regions 

compared to surface or core (OR=3.78, p=1.45e-11) and they had significantly different 

distributions of all network features (Mann-Whitney U test, p<0.05) apart from closeness change 
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(p=0.22), when compared to mutations misclassified by our method but correctly classified by 

SuSPect or CHASMplus, suggesting that even though some shared features exist between the 

methods, our classifier better reflects the network rewiring by mutations. 

However, it should also be considered that our network-based approach is dependent on 

the inclusion of proteins in the network and availability of annotations mapping amino acid 

residues to core, surface or interface residues. This generally results in a smaller training set than 

other methods, and an inability to score some fraction of mutations. For the benchmark sets 

evaluated here, 95.77% of Kim et al., 72.03% of Ng et al., 78.82% of MSK-IMPACT, and 74.11% 

of CGC recurrent dataset mutations could be scored respectively. It is possible that better network 

and amino acid annotation coverage could further boost performance.  

Utility of network features for classifying pathogenic germline variants. We next 

evaluated whether network features are also useful in the context of germline variation. We 

previously observed that inherited disease genes were less central than cancer genes and both 

pathogenic and neutral mutations were enriched at interface positions, though to different extents. 

We once again trained a Random Forest classifier to prioritize missense mutations that alter protein 

activity using the 16 network-based features and 83 amino acid descriptors, using a training set 

composed of pathogenic and neutral variants (described in the section “Disease mutations 

frequently target interface or core residues”). 

For germline variants, residue-specific features yielded similar (with SRNet) or higher 

performance (with extended network) than protein-level features for all mutations (Figures 1.8a  

and S1.5a), and for interface mutations only (Figures 1.8c and S1.5c). But overall, network features 

are outperformed by non-network amino acid features (Figures 1.8b and S1.5b) which is the 

opposite of the case with cancer driver classifier. This is consistent with proteins targeted by 
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pathogenic germline variants being less central than cancer driver genes. Since proteins harboring 

germline pathogenic variants have fewer interaction partners, pathogenic variants in the protein 

core or at interfaces tend not to result in as extreme values of residue-level network features as 

driver mutations do (Figure 1.4c), despite the observed enrichment for these variants in core and 

interface regions (Figures 1.3c-d). The similar performance by network features in both SRNet 

and the extended network (Figure 1.8) suggests that either increased coverage does not improve 

performance as much, or the noise introduced by interface prediction error counteracts the 

performance gained by higher coverage in this setting. A stricter comparison considering only 

shared proteins between networks once again showed similar performance (auROC is 0.835 and 

0.849 for SRNet and the extended network for the classifier with Network & AA features 

respectively). Precision-recall curves show similar results (Figure S1.5). 
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1.5 Discussion 

Understanding the functional consequences of protein coding variants remains a 

challenging task. Machine learning methods developed thus far to predict whether a mutation is 

likely to impair protein activity or cause a pathogenic phenotype have largely been protein-centric, 

however a growing body of work points to perturbation of the interactome as a major determinant 

of pathogenicity [12,18,20,26–28,40,42,43,46–49,85–89]. Such studies of variant distribution in 

biological systems have provided insights as to how molecular interaction networks evolve to 

ensure robustness or vulnerability to genetic variation [41]. It is increasingly apparent that the role 

of proteins within molecular networks is a key determinant of the potential of variants to exert 

deleterious effects [16,42,43]. Motivated by these studies, we investigate here how network-

derived features can capture novel information about variant effects that is not already present in 

the classical amino acid features used by most variant classification methods, and show that 

combining both sets of features improves classifier performance. 

Our approach relies on a structurally resolved PPI network that allows variants to be 

characterized according to their potential to affect network architecture by mapping them to their 

location on protein structures and protein-interaction interfaces. These mappings are used to 

capture the potential of variant positions to perturb information flow through the network. We 

developed protein-level features to capture the relative importance of a protein within the network, 

and residue-level features to capture the potential of mutations to alter the architecture of the 

network. Though protein-level network features are shared by all variants in a protein, they 

nonetheless can interact with other amino acid level features to support classification; in all cases, 

combining both protein and residue-level network features with classic amino acid features 

outperformed combining only residue-level network features with classic amino acid features. 
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Residue-level features were helpful for distinguishing between variants within proteins, however 

because we designed them to capture the potential of mutations to alter the network architecture, 

all surface non-interface variants received the same value for these features. We also did not 

consider the possibility that surface mutations could generate a new edge in the network. Such 

mutations could be more common in cancer, where missense mutations have been reported to alter 

binding specificities for kinases and their substrates thereby remodeling network architectures 

[90]. 

Though network features show fairly different distributions for different classes of variants 

(Figure 1.4) and are orthogonal to the features typically used for variant classification, the best 

classifier combining both feature types show only modest gains over classifiers that use only 

classic amino acid features. This may result from more limited availability of training set mutations 

due to the requirement for structure and interface information to estimate network feature values. 

This requirement also constrained the coverage of benchmark set mutations that could be 

classified, though the values remained generally high, and over 70% in the worst case. 

Performance generally improved when we included predicted protein interactions from 

Interactome INSIDER [63], suggesting that in silico approaches may be an effective strategy to 

boost performance until more complete experimentally derived interaction maps are available.  

Network features were more informative in the context of somatic mutations than when 

classifying inherited variants, though performance gains were observed in both cases. This is 

perhaps expected since inherited disease genes tended to be less central in PPI networks than 

cancer genes (Figure 1.2), and location at an interface by itself was less discriminatory in the 

germline setting (Figure 1.3d). We speculate that these differences may arise from different 

selective pressures acting on somatic versus germline variation. Because development at the 
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organismal level is likely dependent on the integrity of molecular interaction networks, both 

pathogenic and neutral variants may be more constrained by network architecture; whereas in 

cancer, where selection operates at the cellular level and is predominantly positive, mutations may 

be better tolerated and be more advantageous in central network positions. We note also, however, 

that training sets for the driver versus passenger classification problems tend to be more gene-

centric leading to concerns over whether cancer mutation classifiers distinguish primarily between 

genes [91]. Although we made an effort to include both drivers and passengers in each driver gene 

to mitigate this, it may still be reflected in the higher utility of protein-level network features for 

driver classification.  

In conclusion, our study suggests that information about molecular interaction networks 

can be incorporated into machine-learning based variant interpretation frameworks. This opens 

future directions for the development of novel features capturing network information. Since 

networks can be constructed to model cell-type and condition specificity [92], it may be possible 

to build classifiers that can capture context-specific effects of variants. Furthermore, as studies 

have shown different interfaces are associated with different protein activities, network-based 

features could make it possible for machine-learning methods to provide more insight into the 

potential for mutations within a protein to have distinct functional consequences. We anticipate 

such advances will boost the utility of variant classification tools for precision medicine 

applications. 
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1.6 Materials and Methods 

Data and code are available at https://github.com/cartercompbio/NetFeatures. 

Source of protein interaction data. To analyze disease gene centrality, we obtained a 

human PPI network of 12,811 proteins that are involved in 97,376 experimentally verified 

undirected interactions with a confidence score higher than 0.4 from STRING v11.0 [55]. 

Disease genes. A list of 125 high confidence cancer genes consisting of 54 oncogenes and 

71 tumor suppressor genes was obtained from Vogelstein et al. [56]. We also obtained a list of 

4524 Mendelian genes from the OMIM database [93]. These genes were used to evaluate disease 

gene centrality (Figure 1.2). 

Collecting structural protein and protein interaction data. We obtained human protein 

interaction data (complete set) from Interactome3D [24], which contains a collection of a highly 

reliable set of experimentally identified human PPIs. We collected experimental co-crystal 3D 

structures for 5865 of these interactions from the Protein Data Bank (PDB) [94] and homology 

models for 5768 additional interactions [24] making a total of 11,633 interactions between 6807 

proteins with structural protein and interaction data. 

Creating a structurally resolved PPI network. Amino acid residues were annotated as 

participating in a protein interaction interface based on KFC2 [95] scores, and we removed 

interactions containing fewer than 5 interface residues on either partner. Additionally, we 

calculated relative solvent accessible surface areas (RSA) using NACCESS [96] for all residues in 

each protein structure. Residues with RSA<5% and RSA>15% were designated as core and surface 

residues respectively. Residues with RSAs between these thresholds were excluded from further 

analysis due to ambiguity. When multiple PDB chains were available for the same protein, we 

used the consensus designation as the final label. The mapping of PDB residue positions onto 
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UniProt residue positions was performed via PDBSWS web server [97]. After this mapping, we 

created a structurally resolved PPI network (named SRNet) of 6230 proteins and 10,615 undirected 

protein-protein interactions with a total of 530,668 interface residues. To extend coverage of the 

structurally resolved network, we defined an extended network based on the “High Confidence” 

dataset of Interactome INSIDER [63], a human PPI network of 14,445 proteins with 110,206 

undirected interactions containing in silico interface residue predictions in addition to those 

derived from 3D structures. 

Source of somatic mutation data. To investigate structural location of cancer mutations 

on proteins (Figure 1.3), we mapped more than 1.4 million somatic missense mutations from 

TCGA [58] onto the structurally resolved PPI network using structural annotations. Only 

mutations mapping to canonical proteins were used. After this mapping, we identified a total of 

56,667 interface residues of 5005 proteins that are involved in 9235 interactions as mutated. 

Training set for cancer mutation prediction. We collected a set of cancer missense 

mutations designated as likely-driver (n=2051) and likely-passenger (n=623,992) from Tokheim 

et al. [52]. Of these, 961 driver mutations from 32 genes and 28,043 passenger mutations from 

2986 genes mapped to SRNet for a total of 29,004 mutations. All 32 genes with driver mutations 

also contain passenger mutations. To handle the driver vs. passenger mutation count imbalance in 

the training set by maintaining an approximate 1:4 driver vs. passenger mutation ratio similar to 

Carter et al. [67] while not overrepresenting particular genes, we limited the number of passenger 

mutations for each gene to 16 (median per gene driver mutation count) and collected 4626 

passenger mutations at random across all genes with passenger mutations. In the extended network, 

we mapped 1513 driver mutations from 52 genes and 118,777 passenger mutations from 4478 

genes for a total of 120,290 mutations. Thirty-eight of 52 genes with driver mutations also contain 
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passenger mutations. To maintain an approximate 1:4 driver vs. passenger ratio as described 

above, we limited the number of passenger mutations for each gene to 17 (median per gene driver 

mutation count) and collected 6549 passenger mutations at random across all genes with passenger 

mutations. 

Training set for pathogenic variant prediction. We collected 5608 ‘pathogenic’ variants 

from ClinVar [59], and 3418 neutral variants including ‘common’ variants (allele frequency>1%) 

from EXAC [60], variants with ‘polymorphism’ classification from SwissVar [61] and ‘benign’ 

variants from ClinVar [59], that map to SRNet, totaling 9026 missense variants. We also collected 

21,819 pathogenic, and 35,522 neutral variants from the same databases that map to the extended 

network, totaling 57,341 missense variants. 

Features. We designed 16 network-based features to quantify the potential impact of a 

mutation to the underlying network architecture, comprising 7 protein-level and 9 residue-level 

features. The 7 protein-level features are degree, betweenness, closeness, eigenvector and load 

centralities, clustering coefficient, and pagerank of the proteins within the PPI network. They are 

computed using the NetworkX package of Python and they aim to characterize the centrality of a 

protein in the network based on measures such as the number of nodes it is directly connected to 

(degree), the amount of shortest paths it is involved in (betweenness and load), the overall 

closeness to all other nodes (closeness), its embeddedness (clustering coefficient), and the 

centrality of its neighbors (eigenvector and pagerank). 9 residue-level features describe mutation 

3D location (core, interface, surface) on the protein and changes in centrality of the protein within 

the PPI network resulting from mapping the mutation to network edges. Core mutations are 

assumed to affect all edges in the network, while interface mutations are mapped to corresponding 

edges in the network, and surface mutations retain all edges. Each interface mutation causes the 
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removal of all edges that they are mapped to. The remaining 8 residue-level features are based on 

this description of how the mutation perturbs the network by capturing degree change, 

betweenness change, closeness change, eigenvector change, clustering coefficient change, load 

change, pagerank change and percent degree change. Non-network related amino acid based 

features (n=83) obtained from the SNVBox database [62] describe substitution effects on amino 

acid biophysical properties, evolutionary conservation of variant sites, local sequence biases, and 

site-specific functional annotations. Pearson correlation coefficient was used to evaluate feature 

correlations. Our proposed classifier (used in Figure 1.7) uses a total of 99 features consisting of 

all 16 network-based features (7 protein-level and 9 residue-level features) and 83 non-network 

related amino acid based features. The importance of each feature is computed as the normalized 

total reduction of the criterion brought by that feature (mean decrease in impurity), also known as 

the Gini importance (Figure S1.2). 

The number of PubMed studies featuring each gene was obtained from the NCBI database 

(https://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.gz) for all genes in SRNet with NCBI (Entrez) 

gene IDs. This was used to assess the potential for protein-level features to be affected by study 

bias. 

Classifier training. We trained a Random Forest classifier (n_estimators=1000, 

max_features='sqrt') on the training set using the scikit-learn Python package. To avoid classifier 

overfitting, we performed prediction using a 5-fold gene hold out cross-validation by dividing the 

training set into 5 random folds for cross-validation while ensuring a balanced number of disease 

and neutral mutations across the folds. All mutations occurring in the same gene were kept within 

the same fold. The classifier score represents the percentage of decision trees that classify a 

mutation as a disease mutation (driver or pathogenic). Receiver Operator Characteristic (ROC) 
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and precision- recall curves were constructed from the classifier scores and the AUC statistic was 

used as a measure of classifier performance. To compare the performance of different features for 

identifying disease mutations, we trained different classifiers on different sets of features: all 16 

network-based features (Net), dividing network-based features into 7 protein-level features (Prot) 

and 9 residue-level features (Res), 83 non-network amino acid (AA) features, 83 amino acid 

features combined with 9 residue-level features (AA & Res) or 83 amino acid features combined 

with all 16 network features (AA & Net). Training our proposed classifier (used in Figure 1.7) on 

8062 cancer mutations (1513 driver and 6549 passenger mutations mapping to ExtNet) using all 

99 features takes ~5.15 seconds using a Jupyter Notebook on a quad Intel Xeon E5-4650 v4 cpu 

with a total of 56/112 cores/threads and 512GB of RAM. Prediction of 100,000 mutations takes 

~2.27 seconds. 

Benchmark datasets. We obtained 4 pan-cancer benchmark sets of missense mutations 

consisting of an in vivo screen: Kim et al. [65], an in vitro assay: Ng et al. [66], and 2 literature-

derived datasets: MSK-IMPACT and CGC-recurrent from Tokheim et al. [52]. The in vivo screen 

contains 71 mutations selected based on their presence in sequenced human tumors and screened 

in mice to assess oncogenicity and then labeled as ‘functional’ or ‘neutral’ based on their 

abundance [65]. The in vitro assay consists of 747 mutations from a growth factor dependent cell 

viability assay annotated as ‘activating’ for increased cell viability, or as ‘neutral’ for the 

remaining, with the assumption that a mutation yielding higher cell viability indicates driverness 

[66]. The MSK-IMPACT dataset is composed of mutations from approximately 10,000 tumors 

[98] on 414 cancer-related genes (MSK-IMPACT gene panel) labeled as positive class if annotated 

as ‘oncogenic’ or ‘likely oncogenic’ in OncoKB [99], or as negative class if not. The CGC-
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recurrent dataset consists of TCGA mutations annotated as positive class if recurrent in a set of 

curated likely driver genes from the Cancer Gene Census [100], or as negative class if not. 

Comparison to other methods. Performance was compared to 24 state-of-the-art methods 

that do not use network-based information, 4 cancer-focused methods: CHASM [67], ParsSNP 

[68], TransFIC [69], and CanDrA [70], and 20 population-based methods: VEST [71], SIFT [32], 

PolyPhen [33], CADD [34], ClinPred [72], DANN [73], DEOGEN2 [74], FATHMM (inherited-

disease version) [75], LIST-S2 [76], LRT [77], M-CAP [78], MPC [79], MVP [80], MetaLR and 

MetaSVM [81], MutPred [38], MutationAssessor [82], MutationTaster [83], PROVEAN [84] and 

REVEL [36]. We obtained prediction scores for the mutations in the 4 benchmark sets described 

above for 20 of the methods (VEST, SIFT, PolyPhen, CADD, ClinPred, DANN, DEOGEN2, 

FATHMM, LIST-S2, LRT, M-CAP, MPC, MVP, MetaLR, MetaSVM, MutPred, 

MutationAssessor, MutationTaster, PROVEAN and REVEL) from the dbNSFP database (version 

4.1a) [31] via the Ensembl Variant Effect Predictor (VEP) [101], and for 4 additional methods 

(CHASM, ParsSNP, CanDrA and TransFIC) from Tokheim et al. [52]. We also obtained scores 

on benchmark datasets for 2 additional methods that use network features: SuSPect [42] from 

(www.sbg.bio.ic.ac.uk/suspect) and CHASMplus from Tokheim et al. [52] (Figure S1.4). 

Classifier performance was compared using the area under the ROC (auROC) and PR 

curves (auPRC), accuracy, F1 score and the Matthews correlation coefficient (MCC). Only the 

mutations scored by all methods were considered for comparison. Significance of difference of 

auROC measures are evaluated by DeLong test. auROC and auPRC values were computed using 

the predicted scores; while accuracy, F1 score and MCC were estimated based on the predicted 

labels (positive vs. negative). For label assignments, we used the provided labels from dbNSFP 

for SIFT, PolyPhen, ClinPred, DEOGEN2, FATHMM, LIST-S2, LRT, M-CAP, MetaLR, 
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MetaSVM, MutationAssessor, MutationTaster and PROVEAN. Methods that did not provide 

labels directly typically provided a score between 0 and 1 (except CADD and MPC), and we 

ensured that a higher score indicated a more damaging mutation. Where specified we used 

recommended score cutoffs (0.1 for ParsSNP, 0.7 for MVP, and 50 for SuSPect) for label 

assignments when evaluating F1 score, accuracy and MCC results. When no threshold was 

suggested (or if the suggestion was 0.5), we used a cutoff of 0.5 (our classifier Network&AA, 

CHASM, VEST, CanDrA, TransFIC, CADD, DANN, MPC, MutPred, REVEL, and 

CHASMplus). It is important to note that while auROC and auPRC results are independent of the 

predicted class labels; accuracy, F1 score and MCC results are dependent on the labels and the 

threshold used for their assignment; therefore assuming a cutoff of 0.5 could underestimate 

accuracy, F1 and MCC for some methods. 

Statistical analysis. Distributions are compared using a Mann-Whitney U test. 

Correlations are evaluated using the Pearson correlation coefficient. Odds ratios are calculated 

using Fisher’s exact test. auROC scores are compared using the DeLong test. 
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1.7 Figures 

 

 
 
Figure 1.1. Overview of the method. (a) Constructing a structurally resolved PPI network. (b) 
Mapping mutations to perturbed network architectures. (c) Designing protein-level and residue-
level network-based features and using a machine learning framework to evaluate their potential 
for variant classification alone and in combination with classic non-network amino acid features. 
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Figure 1.2. Disease genes are central in PPI networks. Boxplots showing distributions of (a) 
degree, (b) betweenness, (c) closeness, and (d) eigenvector centralities of cancer driver, Mendelian 
disease and other genes (Mann-Whitney U test with Bonferroni correction; *p<1e-04). 
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Figure 1.3. Analysis of structural location of missense disease mutations. Odds ratios (OR) 
and 95% confidence intervals using Fisher’s exact test are shown (*p<0.05). (a-b) Comparison of 
somatic mutations in oncogenes (OG), tumor suppressor genes (TSG), and other genes located at 
(a) core vs. surface residues, (b) surface non-interface vs. surface interface residues. (c-d) 
Comparison of pathogenic and neutral variants located at (c) core vs. surface residues, (d) surface 
non-interface vs. surface interface residues. For (a) and (c), an OR>1 means more 
mutations/variants were found at the surface. For (b) and (d) an OR>1 means more 
mutations/variants were found at interfaces. 
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Figure 1.4. Distribution of network-based features. Distribution of network-based features for 
driver vs. passenger mutations and pathogenic vs. neutral variants in SRNet (Mann-Whitney U 
test; *p<1e-04). (a) Boxplots showing distribution of protein-level features (degree, betweenness, 
closeness, eigenvector, clustering coefficient, load and pagerank), (b) a stacked bar plot showing 
percent distribution of 3D locations (core, interface, surface) of mutations, and (c) boxplots 
showing distribution of residue-level network features (degree change, betweenness change, 
closeness change, eigenvector change, clustering coefficient change, load change, pagerank 
change and percent degree change). (d) Heatmap displaying Pearson correlation coefficients of 
network-based and classic non-network based amino acid features. Only features that have at least 
one correlation coefficient higher than 0.3 and only values above 0.1 are shown. Classic amino 
acid features are ordered based on hierarchical clustering of correlation values. 
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Figure 1.5. Classifier performance in identifying cancer mutations using SRNet vs. the 
extended network. ROC curves for identifying cancer mutations using (a-b-c) SRNet, and (d-e-
f) the extended network, with (a-d) protein-level network features (Prot), residue-level network 
features (Res), and all network features (Net = Prot + Res); with (b-e) all network features, amino 
acid features (AA), residue-level network and amino acid features (Res & AA), and all network 
and amino acid features (Net & AA). (c-f) ROC curves for identifying cancer mutations targeting 
interface residues only, using all above-mentioned features. ROC curves using Net & AA features 
are bold. Performance is measured using auROC scores. 
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Figure 1.6. Distribution of residue-level network features. Distribution of residue-level 
network features for correctly labeled driver and passenger mutations occurring in the same 
proteins (Mann-Whitney U test; *p<0.05). 
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Figure 1.7. Comparison of classifier performance on benchmark datasets relative to 
established methods. Bar plots depict (a) the area under the ROC (auROC) and (b) the area under 
the PR curve (auPRC) scores, (c) accuracy, (d) F1 score, and (e) the Matthews correlation 
coefficient (MCC) results for each method. Mean category displays the mean of scores of each 
method across datasets. Methods are ordered based on their mean scores. All panels use the same 
color scheme. 
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Figure 1.8. Classifier performances for predicting pathogenic vs. neutral variants using 
SRNet vs. the extended network (ExtNet). ROC curves for identifying variants with (a) protein-
level network features (Prot), residue-level network features (Res), and all network features (Net 
= Prot + Res); with (b) all network features, amino acid features (AA), residue-level network and 
amino acid features (Res & AA), and all network and amino acid (Net & AA) features. (c) ROC 
curves for identifying variants targeting interface residues only using all above-mentioned 
features. ROC curves using Net & AA features are bold. Performance is measured using auROC 
scores. 
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1.8 Supplemental Data, Tables, and Figures 

 

 
Figure S1.1. Study bias analysis. Correlation of node degree (the number of interacting partners) 
of proteins in SRNet with the number of PubMed publications they appear in (Pearson r=0.23, 
p=4.78e-54). 
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Figure S1.2. Random forest feature importances. The importance of a feature is computed as 
mean decrease in impurity (MDI), also known as the Gini importance. The network-based features 
and the amino acid features are colored red and black respectively. 
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Figure S1.3. Classifier performance using precision-recall in identifying cancer mutations 
using SRNet vs. the extended network. Precision-recall (PR) curves for identifying cancer 
mutations using (a-b-c) SRNet, and (d-e-f) the extended network, with (a-d) protein-level network 
features (Prot), residue-level network features (Res), and all network features (Net = Prot + Res); 
with (b-e) all network features, amino acid features (AA), residue-level network and amino acid 
features (Res & AA), and all network and amino acid features (Net & AA). (c-f) PR curves for 
identifying cancer mutations targeting interface residues only, using all above-mentioned features. 
PR curves using Net & AA features are bold. Performance is measured using area under the PR 
curves. 
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Figure S1.4. Comparison of classifier performance on benchmark datasets against existing 
methods that use network features. Bar plots depict the area under the ROC (auROC) and the 
area under the PR curve (auPRC) scores, accuracy, F1 score, and the Matthews correlation 
coefficient (MCC) results for each method. Mean category displays the mean of scores of each 
method across datasets. All panels use the same color scheme. A SuSpect cutoff of 50 (as 
recommended in Yates et al. [42]), and 0.5 for CHASMplus and the Network&AA classifier were 
used to assign labels for assessing accuracy, F1 score and MCC.  
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Figure S1.5. Classifier performance using precision-recall for predicting pathogenic vs. 
neutral variants using SRNet vs. the extended network (ExtNet). Precision-recall (PR) curves 
for identifying variants with (a) protein-level network features (Prot), residue-level network 
features (Res), and all network features (Net = Prot + Res); with (b) all network features, amino 
acid features (AA), residue-level network and amino acid features (Res & AA), and all network 
and amino acid (Net & AA) features. (c) PR curves for identifying variants targeting interface 
residues only using all above-mentioned features. PR curves using Net & AA features are bold. 
Performance is measured using area under the PR curves. 
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Figure S1.6. Exploring network topology as a determinant of gene-phenotype relationships. 
Nodes can be described with respect to particular characteristics in the network, including high 
degree hubs (red), nodes at the periphery (yellow) and nodes with the highest centrality according 
to four popular measures of centrality. 
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Figure S1.7. Mapping amino acid position to potential to interfere with protein interactions. 
Protein structures of FGF2 and FGFR1 are shown on the left and right respectively, and as a 
complex in the center (PDB: 1cvs). In the complex, residues are colored according to location in 
the protein core (purple and green), at the interface (pink and blue) or at the surface outside of the 
interface (transparent pink and blue) on the two proteins respectively. 
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CHAPTER 2: Investigating oncogenic selective signatures on networks: A case study of the 

B2M subnetwork 

2.1 Foreword 

The concept of edgetics has provided mechanistic insights for complex diseases including 

cancer. Proteins frequently have multiple functions via complex interaction dynamics with 

multiple partners, and targeting of different interactions can generate different phenotypes. Several 

studies have shown enrichment of somatic mutations at protein interaction interfaces in tumor 

genomes [1–4], suggesting that perturbations of protein interactions frequently contribute to tumor 

development. Indeed, my work described in Chapter 1, demonstrated that somatic mutations 

selectively target interfaces of cancer driver genes. 

While this holds true for most cancer genes, our systematic analysis of somatic mutations 

in relation to the underlying PPI networks revealed a distinct case in tumor suppressor beta-2-

microglobulin (B2M), where we observed an uncharacteristic enrichment of mutations at B2M 

interaction partner binding interfaces [1] (Figure S2.10A). Whereas for most cancer genes, 

mutations occur preferentially on the cancer gene itself (Figure S2.10B); genes encoding B2M 

binding partners showed almost as many somatic mutations as B2M (Figure S2.10A). We 

specifically observed recurring mutations targeting the interface regions of partners HLA-A and 

HLA-B, where they interact with B2M. This differential pattern of network architecture 

perturbation is suggestive of different selective oncogenic pressures being at play in the interaction 

of the tumor suppressor B2M with HLA-A and HLA-B proteins. 

B2M, together with the HLA-A, HLA-B, or HLA-C proteins, makes up the major 

histocompatibility complex class I (MHC-I) molecule, which is responsible for displaying 

intracellular peptides to T cells, allowing the immune system to recognize and destroy infected or 



64 
 

cancerous cells. Within the complex, a highly polymorphic HLA-encoded alpha chain binds the 

peptide, and B2M acts as a stabilizing scaffold, making it essential for MHC-I complex formation 

and peptide presentation. HLA mutations have been implicated as a mechanism of immune evasion 

during tumorigenesis, and B2M is a known tumor suppressor gene. However, the implications of 

somatic HLA and B2M mutations have not been fully explored in the context of antigen 

presentation via the MHC-I molecule during tumor development. 

My research in Chapter 2 aims to uncover the selective oncogenic pressures causing the 

distinct pattern of mutation accumulation in the B2M subnetwork via a mechanistic investigation 

of the B2M and HLA protein interaction. Given B2M’s role as a central component of MHC-I, we 

show that mutations affecting B2M’s interaction with HLA-A, HLA-B, and HLA-C could 

facilitate immune evasion by altering the availability of MHC-I molecules with distinct 

specificities, thus affecting presentation of specific peptides to the immune system. To gain a better 

understanding of the role of somatic mutations affecting B2M and its partners in immune evasion, 

we examine their effect on mutation burden, antigen binding affinity, immune infiltration, and 

cytotoxicity in tumors. Thus, my work in Chapter 2 indicates that differential patterns of network 

rewiring of mutations can uncover genes under distinct selective pressures in cancer, providing 

insight into their functional roles in carcinogenesis. 
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2.2 Abstract 

The major histocompatibility complex class I (MHC-I) molecule is a protein complex that 

displays intracellular peptides to T cells, allowing the immune system to recognize and destroy 

infected or cancerous cells. MHC-I is composed of a highly polymorphic HLA-encoded alpha 

chain that binds the peptide and a Beta-2-microglobulin (B2M) protein that acts as a stabilizing 

scaffold. HLA mutations have been implicated as a mechanism of immune evasion during 

tumorigenesis, and B2M is considered a tumor suppressor gene. However, the implications of 

somatic HLA and B2M mutations have not been fully explored in the context of antigen 

presentation via the MHC-I molecule during tumor development. To understand the effect that 

B2M and HLA MHC-I molecule mutations have on mutagenesis, we analyzed the accumulation 

of mutations in patients from The Cancer Genome Atlas according to their MHC-I molecule 

mutation status. Somatic B2M and HLA mutations in microsatellite stable tumors were associated 

with higher overall mutation burden and a larger fraction of HLA-binding neoantigens when 

compared to B2M and HLA wild type tumors.  B2M and HLA mutations were highly enriched in 

patients with microsatellite instability. B2M mutations tended to occur relatively early during 

patients’ respective tumor development, whereas HLA mutations were either early or late events. 

In addition, B2M and HLA mutated patients had higher levels of immune infiltration by natural 

killer and CD8+ T cells and higher levels of cytotoxicity. Our findings add to a growing body of 

evidence that somatic B2M and HLA mutations are a mechanism of immune evasion by 

demonstrating that such mutations are associated with a higher load of neoantigens that should be 

presented via MHC-I. 
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2.3 Introduction 

Immune evasion is one of the hallmark traits characteristic of cancer cells [5]. The near 

universal requirement for tumor cells to evade immune elimination implicates the immune system 

as a major selective force acting on developing tumors. When a tumor cell successfully evades the 

immune system, the mutations harbored within can persist and propagate as the cell divides. 

In humans, the HLA-A, HLA-B, and HLA-C genes encode major histocompatibility 

complex class I (MHC-I) molecules, which display intracellular peptides on the cell surface for 

inspection by CD8+ T cells. These T cells have the potential to recognize the MHC-I-peptide 

complex and become activated cytotoxic T cells (CTLs). Cancer immunotherapies that target CTL 

activation rely on clinical selection of appropriate neoantigens, mutated peptides specific to tumor 

cells, to stimulate a response [6]. Although these cancer immunotherapies are of high interest to 

patients and clinicians, they have not yet shown widespread clinical success [7]. 

The MHC-I molecule is composed of a highly polymorphic HLA encoded alpha chain and 

a beta-2-microglobulin (B2M) protein that acts as a stabilizing scaffold. B2M is essential for 

MHC-I complex formation and peptide presentation. B2M mutations and loss of heterozygosity 

(LOH) are linked to decreased MHC class I expression and decreased patient survival [8,9]. In 

addition to HLA-A, HLA-B, and HLA-C, B2M binds to other immune proteins including CD1, 

FCGRT, HFE, HLA-E, HLA-G LILRB, and MR1. Somatic mutations in HLA-A and HLA-B have 

also been shown to be under positive selection during tumorigenesis and are more frequent when 

tumor immune cell infiltration and cytotoxicity are high [10]. Importantly, MHC-I molecule 

presence on the cell surface can provide an inhibitory signal to natural killer (NK) cell mediated 

effector functions [11]. In addition to classical HLA molecules HLA-A, HLA-B, HLA-C, and 

HLA-G, nonclassical HLA-E acts as a ligand to inhibitory receptors on NK cells. Thus, both 
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presence and antigen presentation function of MHC-I molecules contribute to anti-tumor 

immunity. 

A recent study found that an individual’s HLA genotype can facilitate immune evasion and 

shape the landscape of a patient’s acquired mutations [12]. Somatic mutations generating peptides 

with low affinity for an individual’s respective HLA alleles were likely to evade immune detection 

and persist in the tumor. Somatic LOH in the human leukocyte antigen (HLA) locus is thought to 

impair immune surveillance and was reported to occur in 40% of non-small-cell lung cancers. The 

authors found that HLA LOH was significantly associated with a high mutational burden and 

cancer-specific neoantigens generated from these mutations were biased to bind to the lost HLA 

allele [13]. Thus, immune evasion may depend on an individual’s unique HLA genotype and the 

specificity of neoantigens for particular HLA alleles.  

We previously observed an uncharacteristic enrichment of somatic mutations at B2M 

interaction partner binding interfaces [1]. Whereas for most cancer genes, mutations occurred 

preferentially on the cancer gene itself, genes encoding B2M binding partners showed almost as 

many somatic mutations as B2M (Figure 2.1A). Given B2M’s role as a central component of 

MHC-I, we hypothesized that mutations affecting B2M’s interaction with HLA-A, HLA-B, and 

HLA-C could facilitate immune evasion by altering the availability of MHC-I molecules with 

distinct specificities, thus affecting presentation of specific peptides to the immune system (Figure 

2.1B). To gain a better understanding of the role of somatic mutations affecting B2M and its 

partners in immune evasion, we examined their effect on mutation burden, antigen binding affinity, 

immune infiltration, and cytotoxicity in tumors sequenced by The Cancer Genome Atlas (TCGA). 
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2.4 Results 

HLA and B2M mutations in TCGA. B2M mutation calls were obtained directly from the 

MAF files provided by TCGA. Because the HLA locus is highly polymorphic, mutation calls 

against the reference genome are unreliable. Instead, we ran Polysolver [10] to simultaneously call 

patient-specific HLA types and detect somatic mutations affecting a patient’s HLA alleles. Out of 

10,428 TCGA patients that had the necessary whole exome sequencing data, only 579 patients had 

an HLA mutation and 125 patients had B2M mutations. Most of these mutations were 

nonsynonymous (Figure 2.2A). To determine whether nonsynonymous mutations occurred at 

amino acid residues with the potential to interfere with formation of the MHC-I molecule, 

experimental 3D structures for the B2M-HLA complex were obtained from the Protein Data Bank 

[14] and used to annotate amino acid residue location at protein core, surface or at the physical 

interface between B2M and HLA encoded proteins (Methods).  

Mutations on HLA proteins, particularly HLA-A, showed a biased distribution with several 

recurrent hotspots (Figure 2.2B). Mutations were most concentrated in the α3 domain that mediates 

interaction with the T cell receptor (TCR) (206 mutations, 40.63% of total; OR=2.04, p < 2.58e-

09), and included multiple recurrent hotspots. Fifty-one mutations (10.06%) were observed in the 

transmembrane domain including additional hotspots. Although mutations were observed 

throughout the α1 and α2 domains that form the peptide binding groove, they tended to be less 

recurrent (88 mutations, 17.36% for both α1 and α2). This may reflect the much larger 

heterogeneity of this region across HLA alleles.   

Recurrent hotspot mutations often targeted interface and core regions on HLA-A, while 

they targeted core and surface regions on HLA-B, and surface regions on HLA-C (Figure 2.2B). 

Since there are many alleles for each HLA protein, we used the consensus of residue annotations 
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across different alleles to annotate each HLA protein (Figure S2.1). Even though the annotations 

for most frequently mutated residues were in agreement between different HLA alleles, there were 

some exceptions, including residue 231 on HLA-A. Although residue 231 (R231) on HLA-A was 

annotated as surface based on the consensus across HLA-A alleles, the residue is located very 

close to the interface region (Figure 2.2B) and in fact was predicted as an interface residue on 2 of 

the 6 HLA-A allele structures analyzed. Additionally, although residue 209 (R209) on HLA-A and 

HLA-B proteins was annotated as ambiguous due to its intermediate value of relative solvent 

accessible surface area (RSA) for most HLA-A/B structures analyzed, the average RSA across 

structures is close to the threshold for core annotation (7.17), and R209 was indeed annotated as 

core in some of them. Overall, the distribution of HLA mutations for the three proteins was 

consistent with the previous report by Shukla et al. [10], though the current analysis incorporates 

an overall larger number of samples. Mutations in B2M were largely loss of function (Figure 2.2A) 

and more broadly distributed (Figure 2.2C), as expected for a tumor suppressor gene, though 

several positions were also recurrently mutated. 

Expected effects of B2M versus HLA mutations on MHC-I composition. Since B2M 

is an essential component of all MHC-I molecules, loss of B2M should equally impact MHC-I 

molecules derived from different HLA alleles. The B2M interface with HLA alleles is shared 

across the different alleles (Figure S2.2), so mutations at this interface are also likely to affect all 

variants of an individual’s MHC-I molecule, although complexes involving B2M and binding 

partners that use alternative interfaces should not be affected. In contrast, loss of function or 

interface mutations affecting a specific HLA allele would only affect the MHC-I molecules derived 

from that allele. Thus, we speculate that B2M mutations are likely to reduce the total amount of 
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MHC-I molecules presenting antigens on the tumor cell surface, while HLA mutations would 

impact which mutations could be presented as neoantigens.  

Mutations in MHC-I proteins are associated with increased mutation burden. We 

hypothesized that both B2M and HLA mutations would affect MHC-I presentation of mutations. 

Mice with total lack of B2M express little if any cell surface MHC-I and lack cytotoxic CD8+ T 

cells [15,16]. In human lung cancers, an association was found between higher somatic mutation 

burden and HLA loss of heterozygosity [13]. If somatic mutations to HLA and B2M similarly 

impair antigen presentation, we would expect to see an increased mutation burden when comparing 

to unmutated patients.   

We first analyzed 9,055 TCGA patients across 31 solid tumor types that had both exome 

and RNA sequencing data (Figure 2.3A), removing patients that had synonymous B2M or HLA 

mutations. We then performed a cancer-specific analysis of 3,514 patients across 8 solid tumor 

types with at least 5 somatic B2M and HLA mutations (Figure 2.3B, Figure S2.3A). To determine 

whether somatic mutations to B2M and HLA were associated with an overall higher mutation 

burden, we compared the total number of expressed nonsynonymous mutations in patients with 

and without nonsynonymous somatic B2M or HLA mutations. Overall, we observed that both 

patients with a B2M and an HLA mutation had significantly higher tumor mutation burdens (Mann 

Whitney test, B2M p < 1.1e-20 and HLA p < 1.1e-30) than patients without (Figure 2.3A). Pan-

cancer, B2M mutated patients also had significantly higher mutation burdens than HLA mutated 

patients (Mann Whitney test, p < 0.0028). There were approximately equal numbers of early stage 

(I & II) and late stage (III & IV) tumors in these three groups (Figure S2.4). We repeated the pan-

cancer mutational burden analysis with Cancer Cell Line Encyclopedia (CCLE) data for 25 B2M-

mutated cell lines, 114 HLA cell lines, and 1,381 non-mutated cell lines, and observed the same 
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trend: cell lines with B2M and HLA mutations had significantly higher overall mutational burden 

than cell lines without (Figure S2.5). When we analyzed tumors by tissue type, we observed that 

certain cancers (stomach adenocarcinoma, endometrial cancer, colorectal cancer, lung 

adenocarcinoma, and cervical cancer) also had significantly higher mutational burden in mutated 

patients (Figure 2.3B). Stomach, uterine and colorectal cancers have documented high rates of 

microsatellite instability (MSI), thus we evaluated whether B2M and HLA mutations were biased 

to occur in high MSI tumors. Using MSI annotations available for 10,415 patients from Kautto et 

al. [17], we found a significant bias for B2M and HLA mutations to occur in patients with MSI 

(Fisher’s exact test; B2M OR=14.66, p < 8.7e-24; HLA OR=6.28, p < 2.0e-36). To rule out the 

possibility that MSI was solely driving our results, we reanalyzed the mutational burden between 

B2M and HLA mutated and unmutated patients, this time retaining only 8,668 microsatellite stable 

(MSS) patients. Interestingly, we found similar trends in elevated mutational burden associated 

with B2M and HLA mutation (Figure 2.3C, 2.3D, Figure S2.3B), and consequently focused on 

MSS patients only in the subsequent analyses. Thus, even in MSS tumors, B2M and HLA 

mutations are associated with an increased nonsynonymous mutational burden.  

Mutations in MHC-I proteins are associated with increased binding neoantigen 

counts. To obtain more evidence as to whether the elevated mutation counts observed in HLA and 

B2M mutated patients were a result of the mutation, or vice versa, we compared the fraction of 

mutations likely to generate neoantigens across MSS patients with and without B2M and HLA 

mutations. We speculated that if B2M and HLA mutations are an artifact of higher mutation rates, 

the proportion of mutations that generate neoantigens should not differ relative to patients without 

such mutations. However, if these mutations truly facilitate immune escape, neoantigens should 

be enriched among the observed mutations.  
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Using HLA allele genotypes called by Polysolver [10], we calculated patient-specific 

MHC-I presentation scores for all expressed mutations observed in each patient’s tumor [12,18]. 

We previously demonstrated that these affinity-based presentation scores, called PHBR-I scores, 

can distinguish peptides found in complex with MHC-I on the cell surface in mass spectrometry 

experiments from random peptides simulated from the human proteome, supporting that affinity 

is a reasonable proxy for cell surface presentation [12]. Indeed, when we looked at the fraction of 

expressed mutations considered to be neoantigens at various PHBR-I cutoffs, we found that at any 

given cutoff, a higher fraction of mutations represented neoantigens in both B2M and HLA 

mutated patients (Figures 2.4A, B). This corresponded to overall higher numbers of neoantigens 

in B2M and HLA mutant tumors (Figure S2.6). The higher overall proportion of neoantigens is 

consistent with both somatic B2M and HLA mutations impairing presentation of neoantigens for 

immune surveillance.  

Assessing bias in neoantigen affinities in patients with mutant HLA alleles. 

McGranahan et al. reported that in lung cancer, subclones that had lost a particular HLA allele 

tended to accumulate mutations with higher affinity for the lost allele, suggesting that such 

mutations were no longer subject to immunoediting [13]. We therefore sought to assess whether 

mutations accumulating in tumors with HLA mutations showed a bias in affinity toward the 

affected HLA allele. We first evaluated whether the number of mutant-allele specific mutations in 

these patients was higher than the average number of mutations specific to each of the other alleles 

(Figure 2.4C). We observed several patients for which the number of mutant-allele specific 

mutations was indeed higher (Figure 2.4C; red lines). We note that the current study design differs 

from the study by McGranahan et al. in that we do not have subclone-specific sequencing data, 

and thus can not determine which mutations occurred in the same cell population as the mutated 
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HLA allele. We also did not consider allele-specific deletion events, and thus the assumption that 

the other 5 HLA alleles are intact may be incorrect for some patients. 

Timing of somatic mutations in MHC-I proteins. To better understand B2M and HLA 

mutation timelines, we analyzed the tumor allelic fraction of expressed mutations for all patients. 

Early clonal mutations are present in a larger fraction of cancer cells than later subclonal mutations 

and are, therefore, expected to be present in a higher fraction of the reads generated from that site 

during tumor sequencing. Although this assumption can be complicated by sampling bias and 

genomic instability of tumors, we nonetheless expect that somatic point mutations with higher read 

support will in general have occurred at earlier time points than those with lower read support. 

Since each individual’s tumor is unique, we quantified B2M and HLA mutations in terms of their 

allelic fraction percentile relative to other mutations observed in the same tumor (Figure 2.4D). 

Interestingly, B2M mutations tended to be present at higher percentiles than most HLA mutations, 

suggesting that B2M mutations might occur earlier in tumor development and affect a higher 

proportion of tumor cells. Most HLA mutations had low percentiles, suggesting these were late, 

subclonal events, while a subset had high percentiles and likely occurred early during tumor 

development in those individuals. This observation agrees with the previous report by 

McGranahan et al. that found HLA loss in lung cancer to be predominantly subclonal with a few 

observations of clonal loss noted. Patients with MSI tended to have HLA mutations with higher 

variant allele fraction (VAF) (Fisher’s exact test, OR=73.3, p < 8.1e-16). These findings remained 

even when we considered only mutations in regions unaffected by copy number changes which 

can confound VAF estimates (Figure S2.7). Interestingly, we found that tumors with early HLA 

mutations had significantly higher levels of neoantigens predicted to specifically bind to the 

mutated allele than tumors with late HLA mutations (Figure 2.4E). When we evaluated the bias in 
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specificity of neoantigens for the mutated allele in patients with early HLA loss, we found a 

significant difference in the number of binding neoantigens between the mutated HLA allele and 

average of unmutated HLA alleles (Figure 2.4F). We conclude that somatic B2M and HLA 

mutations are associated with an overall higher burden of neoantigens, supporting the notion that 

these mutations facilitate tumor immune escape. 

Correlation of B2M versus HLA mutation with immune cell infiltration and 

cytotoxicity. Effective antigen presentation via MHC-I is associated with CD8+ T cell driven 

cytotoxicity. Furthermore, cell surface MHC-I molecules deliver an inhibitory signal to natural 

killer (NK) cells. Thus, changes to cell surface presentation of neoantigens by MHC-I due to 

mutations in B2M and HLA may be reflected in immune cell infiltration levels and levels of 

cytotoxicity. We quantified immune cell infiltration from tumor RNA sequencing data using 

Cibersort [19] and levels of cytotoxicity using the score proposed by Rooney et al. [20]. While 

Shukla et al. previously evaluated immune infiltrates and cytotoxicity in the context of somatic 

HLA mutations, to our knowledge B2M mutations have not previously been analyzed in this 

context [10]. 

CD8+ T cell levels were elevated in tumors with HLA mutations, both pan-cancer (Figure 

2.5A) and in several tumor types (Figure 2.5B, Figure S2.8A). A possible explanation is that CD8+ 

T cells are primed in secondary lymphoid organs and travel to the tumor where they accumulate 

due to the lack of the corresponding MHC-I molecule / peptide complex. NK cell levels were 

elevated in tumors with B2M mutations pan-cancer (Figure 2.5C), however the levels were not 

significantly different in any given tumor type (Figure 2.5D, Figure S2.8B). Loss of B2M resulting 

in reduced cell surface MHC-I molecules should reduce the ability of tumor cells to inhibit NK 

cell driven cytotoxicity, however it is unclear whether this would affect NK cell levels in the tumor. 
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Cytotoxicity was elevated in both HLA and B2M mutant tumors pan-cancer (Figure 2.5E) and in 

several tumor types (Figure 2.5F, Figure S2.8C). These trends are consistent with the idea that 

mutations are a mechanism of escape from immune surveillance, as previously suggested by 

Shukla et al. for HLA mutations [10]. 
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2.5 Discussion 

Many immunotherapies, such as immune checkpoint inhibitors, rely on the integrity of a 

patient's immune system to eliminate tumors. Tumors use a variety of strategies to evade the 

immune system, raising important questions about how different mechanisms of immune evasion 

could impact response to particular immunotherapies. We found that somatic point mutations in 

proteins comprising the MHC-I, B2M and HLA, showed signs of positive selection in tumors. This 

observation motivated our study of the effects of somatic B2M and HLA mutations on 

accumulation of putative neoantigens in tumors.   

Our analysis builds on work by Shukla et al. that first applied Polysolver to evaluate 

patterns of HLA mutation across tumors and showed that such mutations occurred preferentially 

in tumors with high mutation burden and under strong pressure by the immune system as evidenced 

by high levels of CD8+ T cell infiltration [10]. Here we further analyze patterns of mutation in 

tumors with HLA mutations, incorporating information about which mutations are likely to be 

presented by MHC-I molecules derived from patient-specific HLA alleles, and comparing to 

tumors with B2M mutations or with unaltered MHC-I. Our analysis supports a model where B2M 

mutations reduce the overall levels of cell surface MHC-I molecules while HLA mutations perturb 

the overall composition of the MHC-I complex landscape, both providing escape from immune 

surveillance. Our findings are consistent  with those of McGranahan et al. who reported that 

somatic loss of heterozygosity in the HLA locus was a common mechanism of immune evasion, 

and that loss of a specific HLA allele could render a subset of neoantigens within the tumor 

ineffective at generating an immune response upon checkpoint inhibition [13]. While both B2M 

and HLA mutated patients showed elevated mutation rates, we observed differences in how 
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neoantigens accumulated in these tumors, with B2M mutant tumors harboring the most 

neoantigens and tumors with intact MHC-I molecules harboring the least.  

Notably, B2M mutations were highly enriched in tumors with microsatellite instability, a 

phenomenon that has been previously observed in the context of colorectal cancer [21] and is now 

confirmed for other tumor types with high MSI. MSI tumors were associated with higher immune 

cell infiltration and robust immune responses in this disease [22]. Previous studies have also linked 

B2M mutations to increased levels of local immune cytolytic activity in uterine, stomach, 

colorectal and breast cancer [20]. It remains unclear to what extent high mutation burden precedes 

immune infiltration, cytotoxicity and escape via B2M or HLA mutation, or whether the rate and 

affinity characteristics of the mutations that occur after the event differ from those before. Grasso 

et al. [23] showed that MSI-H colorectal tumors disrupt B2M and HLA genes independent of 

mutational load with direct effect on T cell infiltration. We conclude that mutations to either 

component of MHC-I will provide effective escape in the setting of a robust anti-tumor immune 

response, however mutations to B2M may be more beneficial in settings such as MSI when the 

number of neoantigens generated is highest. 

We note that the current analysis has several limitations. First, our analysis only considered 

mutations in HLA alleles, whereas other types of variation, including loss of heterozygosity or 

lack of expression could confer similar effects. In the current analysis, patients with such effects 

would be grouped with non-mutated tumors, which would reduce the statistical power of the 

analyses that we performed. In addition, we did not have information about the subclonal 

membership of particular mutations within the tumor, and thus could not distinguish mutations 

occurring in the subset of tumor cells with HLA mutation from other mutations in the tumor. 

Knowledge of the subclonal architecture of the tumor would be helpful to fully investigate the 
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affinity bias of new mutations for the mutated HLA allele. Future studies should address these 

shortcomings.  

Here we show that somatic mutations affecting B2M and HLA genes interact with the 

accumulation of somatic mutations that generate neoantigens during tumor development. 

Mutations in both genes relieve pressure by the immune system, allowing the tumor to evade an 

active immune response. A better understanding of how these mutations differ in shaping the 

oncogenic landscape may provide insights as to how these factors could contribute to resistance to 

therapies that induce strong local anti-tumor immunity. 
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2.6 Materials and Methods 

Data. All available whole exome sequencing (WXS) data as of 5/3/2018 was downloaded 

from The Cancer Genome Atlas (TCGA) database via their Genomic Data Commons (GDC) 

client. Both .bam files and auxiliary .bai files were downloaded. All available somatic mutation 

data as of 5/21/2018 was downloaded from the TCGA database in the form of TCGA project 

mutation annotation files (MAF). Clinical data were also obtained from the GDC (downloaded on 

4/25/2017). 

Protein structure analysis. Experimental 3D X-ray protein structures for the B2M and 

HLA-A/B/C complexes were obtained from the Protein Data Bank (PDB) [14]. Amino acid 

residues of each PDB structure were annotated based on their 3D location in the protein as core 

and surface according to their relative solvent accessible surface area (RSA) calculated using 

Naccess [24]. Residues with RSA higher than 15 were annotated as surface and residues with RSA 

lower than 5 were annotated as core, while residues with RSA values between 5 and 15 were 

annotated as ambiguous. Residues involved in the physical interaction between B2M and HLA 

proteins are predicted using KFC2 [25] and annotated as interface. PDB residue positions were 

mapped onto the UniProt residue positions using the PDBSWS server [26]. UniProt residues are 

numbered based on their position in the protein sequence of the full-length protein, starting from 

1. If multiple PDB structures were available for the same protein, we took consensus as the final 

annotation; and in the case of a tie, the residue was labeled as ambiguous. The residues without 

known 3D structure are also labeled as ambiguous. We had structures for 6 alleles of HLA-A 

protein, 15 alleles of HLA-B protein, and 3 alleles of HLA-C protein. We took consensus of 

residue annotations of different HLA alleles to annotate each HLA protein. VMD [27] is used to 
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visualize protein 3D structures (Figure 2.2B). Exon information for HLA proteins is obtained from 

the IMGT/HLA database (v3.34; https://www.ebi.ac.uk/ipd/imgt/hla/) [28]. 

HLA typing and mutation calling. HLA genotyping and mutation calling was performed 

for HLA-A, HLA-B, and HLA-C genes, which encode the human MHC-I complex. We extracted 

scripts from the Broad Institute’s Polysolver Docker container 

(https://software.broadinstitute.org/cancer/cga/polysolver_run). We verified that the majority of 

Polysolver’s HLA calls were consistent with that of xHLA [29] (Figure S2.9) and therefore used 

all available Polysolver results. B2M mutations were taken directly from the TCGA MAF files. 

Patients with somatic B2M or HLA mutations were grouped for subsequent analysis and compared 

to patients that had neither. We found that only 13 patients had both B2M and HLA mutations. 

Microsatellite instability. Microsatellite instability scores for all TCGA patients were 

obtained from Kautto et al., 2017. Patient MANTIS scores from the paper were binarized to 

microsatellite instable (MSI-H) and stable (MSS) according to the recommended MANTIS score 

threshold of 0.4 [17]. 

Determining expressed mutations. We used the bam-readcount tool 

(https://github.com/genome/bam-readcount) to determine how many RNAseq reads covered a 

mutated position. To count a mutation as being expressed, we used a read count threshold of 5. 

Determining regions with CNVs. Regions affected by copy number variants were 

determined from TCGA affymetrix SNP6 data by using 0.1 thresholds as the cutoff in either 

direction. Thus, any region that has a log2 fold change larger than 0.1 or smaller than -0.1 is defined 

as a position with copy number variation [30]. For the Figure S2.7 we excluded any mutations that 

occurred in regions with copy number variation. 
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Mutation burden. Mutation counts were obtained from TCGA MAF files for all patients. 

To obtain nonsynonymous counts, we filtered out mutations outside of coding regions as well as 

silent mutations and tallied the remaining mutations for each patient. We retained only expressed 

mutations, and added a pseudocount of 1 for all patients, for all mutation burden analyses. For 

cancer-type-specific analysis, patients from TCGA tumor types COAD and READ were merged 

under the name CRC (colon and rectal cancer).  

Antigen affinity. We used the netMHCpan4.0 tool [18,31] to obtain mutation affinity 

scores for all patient HLA alleles. To determine whether a mutation would be effectively bound as 

a neoantigen to the MHC-I complex, we binarized affinity scores: mutations with scores <= 2 we 

considered binding, and mutations with scores > 2 we considered non-binding [12,18]. We then 

took the harmonic mean of the best ranking neoantigen to calculate the Patient Harmonic-mean 

Best Rank (PHBR) score [12]. To evaluate differences in fraction of binding neoantigens at various 

presentation score (PHBR-I score) cutoffs, we plotted the empirical cumulative distribution 

function (ECDF) using the median fraction of neoantigens generated from expressed mutations 

across patients. The Kolmogorov-Smirnov test was used to determine whether the distribution of 

neoantigen fractions was significantly different for each group (Figure 2.4A). To determine if the 

number of neoantigens was significantly different between mutated and control patients at a 

particular PHBR-I score threshold, we calculated p-values using an unpaired Mann Whitney test 

for pan-cancer comparisons (Figure 2.4B). To test the significance of the number of neoantigens 

between mutated and unmutated HLA alleles, we used a paired Wilcoxon test (Figures 2.4C, 2.4F). 

The Kolmogorov-Smirnov, Mann Whitney, and Wilcoxon tests implemented in the scipy.stats 

Python package were used for these analyses.  
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Allelic fraction analysis. For Polysolver-determined HLA mutations, we obtained the 

tumor allelic fraction (“tumor_f”) from the Mutect output files generated by Polysolver. For all 

other mutations we calculated tumor allelic fraction from tumor alternate allele reads 

(“t_alt_count”) and tumor read depth (“t_depth”) from TCGA MAF files. B2M and HLA 

mutations were further annotated according to their percentile within the ranked list of mutations 

in the tumor where they were observed. To determine if the distributions of patients with B2M and 

HLA mutations were significantly different than patients without these mutations, we used an 

unpaired Mann Whitney statistical test from the scipy.stats Python package. 

Immune infiltration and cytotoxicity. Immune cell infiltration levels for CD8+ T cells 

and natural killer cells were obtained by running Cibersort with default parameters and without 

quantile normalization, on log2 TPM values obtained by reprocessing the TCGA RNAseq data 

through Sailfish V0.7.6 [32]. Cytotoxicity was estimated as described in [20], by summing the z-

scored log2 TPM expression values of granzyme A (GZMA) and perforin (PRF1). For cancer-

type-specific analysis, patients from TCGA tumor types COAD and READ were merged under 

the name CRC (colon and rectal cancer). 

Other statistical considerations. Where appropriate, p-values were adjusted for multiple 

comparisons using the Benjamini-hochberg method [33]. 
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2.7 Figures 

 

Figure 2.1. Somatic mutations affecting components of the MHC-I molecule. (A) The total 
number of nonsynonymous mutations targeting the genes encoding the components of the MHC-
I complex, B2M and HLA-A, HLA-B or HLA-C proteins, across all TCGA patients. The HLA 
mutation counts were obtained via Polysolver. (B) Schematic representation of the effects of 
mutations that alter the cell surface composition of MHC-I. An HLA mutation will affect a specific 
MHC-I molecule, whereas a B2M mutation will affect all MHC-I molecules; both mutations can 
increase the mutation burden of the patient. In the case of an HLA mutation, the patient mutation 
burden should include more neoantigens with affinity for the mutated HLA allele. The MHC-I 
molecule displayed is composed of B2M (pink) and HLA-A (blue) proteins (PDB: 3bo8). 
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Figure 2.2. Mutational analysis of MHC-I complex. (A) Pie charts displaying percentages of 
types of mutation for the B2M protein; and for the combined HLA-A, HLA-B and HLA-C 
proteins, respectively, across all TCGA patients. (B) Distribution of nonsynonymous mutation 
counts, obtained from Polysolver, for HLA-A, HLA-B, and HLA-C proteins, across functional 
domains. The corresponding functional domains of HLA proteins are shown at the bottom. The 
UniProt sequential residue numbering scheme is used for residue numbering, which requires 
subtraction of the signal peptide (24 residues) for mapping to the IMGT/HLA residue numbering 
scheme. On the right, 3D crystal structures of MHC-I complex are displayed as B2M and HLA-A 
complex (PDB: 3bo8), as B2M and HLA-B complex (PDB: 3b3i), and as B2M and HLA-C 
complex (PDB: 4nt6). Purple ribbons indicate B2M protein, while blue ribbons indicate the HLA 
proteins. The highlighted purple and blue residues correspond to the interface regions of B2M and 
HLA proteins, respectively. Hotspot mutations for HLA proteins (frequency>3 for HLA-A, 
frequency>3 for HLA-B, and frequency>1 for HLA-C) are highlighted as green, red, tan and gray 
indicating interface, core, surface, and ambiguous residues, respectively. (C) Distribution of 
nonsynonymous mutation counts across the entire B2M protein. On the bottom of the plot, all 
amino acid residues of B2M protein are colored based on their 3D location: interface, core, surface, 
or ambiguous. 
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Figure 2.3. Increased mutational burden is related to mutations in MHC-I. (A) and (C) 
Boxplots showing the total number of expressed nonsynonymous mutations of TCGA patients 
who acquired a mutation in their B2M protein or in one of their HLA alleles versus patients who 
did not acquire any B2M or HLA mutation, (A) for all patients, and (C) for only MSS patients. 
Sample sizes for each patient group are written under their name. (B) and (D) Boxplots showing 
total number of expressed nonsynonymous mutations for TCGA patients with or without B2M or 
HLA mutations, (B) for all patients, and (D) for only MSS patients. Patients are divided by tumor 
type and only the tumor types with at least 5 mutated patients are shown. P-values are adjusted for 
multiple comparisons using the Benjamini–Hochberg procedure. Sample sizes for each patient 
group are written under the tissue name. 
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Figure 2.4. Analysis of binding neoantigens to patient HLA alleles. (A) Empirical cumulative 
distribution function showing the proportion of expressed missense and indel mutations labeled as 
binding neoantigens at different PHBR-I score cutoffs in MSS patients.  (B) Boxplots comparing 
the fraction of binding neoantigens in tumors with no B2M or HLA mutation (teal) versus patients 
with a B2M mutation (yellow) or HLA mutation (purple). A PHBR-I score cutoff of 2 was used 
to designate a binding neoantigen for this comparison. (C) Total number of neoantigens that bind 
to a patient’s mutated HLA allele versus the average number of neoantigens across the unmutated 
HLA alleles across all cancer types for MSS patients. A red line indicates that there are more 
neoantigens with binding affinity to the mutated HLA allele than the average across the unmutated 
HLA alleles; and a blue line depicts the opposite trend. (D) Allelic fraction percentile distribution 
for expressed mutations in MSS patients with B2M and HLA mutations. We used the Kolmogorov-
Smirnov statistic to determine whether the two distributions were significantly different. (E) 
Comparison of the number of expressed neoantigens with binding affinity to the patient-specific 
mutated allele between the low AF percentile (<40%) and the high AF percentile (>60%) HLA 
mutated patients. Patients with MSI and with mutations in both B2M and HLA genes were 
excluded. (F) Comparison of the total number of neoantigens that bind to a patient-specific 
mutated HLA allele versus the average number of neoantigens with binding affinity to the five 
unmutated HLA alleles in patients with high allelic fraction percentile HLA mutations. 
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Figure 2.5. Increased NK, CD8+ T-cell and cytotoxicity levels are associated with mutations 
in MHC-I. (A) and (C) and (E) Boxplots comparing MSS TCGA patients with or without B2M 
or HLA mutations, in terms of their (A) CD8+ T cell levels, (C) natural killer (NK) cell levels, and 
(E) cytotoxicity scores. Sample sizes for each patient group are written under their name. (B) and 
(D) and (F) Boxplots comparing MSS TCGA patients with or without B2M or HLA mutations, in 
terms of their (B) CD8+ T cell levels, (D) natural killer (NK) cell levels, and (F) cytotoxicity 
scores. Patients are divided by tumor type and only the tumor types with at least 5 mutated patients 
are shown. P-values are adjusted for multiple comparisons. Sample sizes for each patient group 
are written under the tissue name. 
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2.8 Supplemental Data, Tables, and Figures 

 

 
Figure S2.1. MHC-I complex 3D structure. 3D crystal structure of MHC-I complex is displayed 
as B2M/HLA-A complex (PDB: 3bo8). Interface (blue and violet) and core (green and orange) 
regions of B2M and HLA-A proteins are highlighted, respectively. Transparent blue and violet 
regions correspond to the surface regions of B2M and HLA-A proteins, respectively. 
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Figure S2.2. B2M interface residue positions for HLA alleles. Residues on B2M that interact 
with HLA-A, HLA-B, HLA-C proteins are highlighted black. 
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Figure S2.3. Increased mutation burden associated with mutations in HLA, related to Figure 
2.3. (A) and (B) Boxplots showing total number of nonsynonymous mutations for (A) MSI and 
MSS and (B) MSS only TCGA patients with or without HLA mutations for additional tissue types 
not shown in Figures 2.3B, or 2.3D. Patients are divided by tumor type. Only the tumor types 
containing at least 5 mutated patients and that have not been reported in Figure 2.3 are shown. P-
values are adjusted for multiple comparisons using the Benjamini–Hochberg procedure. 
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Figure S2.4. Tumor stage analysis for patients with B2M and HLA mutations. Percentage 
distribution of tumor stages for the patients with or without B2M and HLA mutations. 
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Figure S2.5. Mutation burden in CCLE, related to Figure 2.3. Boxplots showing the total 
number of nonsynonymous mutations for CCLE cell lines who acquired a B2M or HLA versus 
cell lines that did not acquire any B2M or HLA mutation. Sample sizes for each group are written 
under their name. 
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Figure S2.6. Total number of binding neoantigens to patient HLA alleles, related to Figure 
2.4. (A) Distribution of median total counts of binding neoantigens at different PHBR-I score 
cutoffs for MSS patients. (B) Boxplots comparing the number of neoantigens in MSS patients with 
no B2M or HLA mutation (teal) versus MSS patients with a B2M mutation (yellow) or an HLA 
mutation (purple). A PHBR-I score cutoff of 2 was used to designate a binding neoantigen for this 
comparison.  
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Figure S2.7. Allelic fraction percentile distribution for patients with B2M and HLA 
mutations accounting for aneuploidy, related to Figure 2.4. Allelic fraction percentile 
distribution for expressed mutations in MSS patients with B2M and HLA mutations, excluding all 
mutations occurring in regions affected by CNVs. Patients that have both B2M and HLA mutations 
are excluded. 
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Figure S2.8. NK, CD8+ T-cell and cytotoxicity levels of patients with mutations in HLA, 
related to Figure 2.5. (A-B-C) Boxplots comparing MSS TCGA patients with or without HLA 
mutations for additional tissue types not shown in Figure 2.5 (B-D-F), in terms of their (A) CD8+ 
T-cell levels, (B) NK cell levels, and (C) cytotoxicity scores. Patients are divided by tumor type 
and only the tumor types with at least 5 mutated patients and that have not been reported in Figure 
2.5 are shown. P-values are adjusted for multiple comparisons using the Benjamini–Hochberg 
procedure. 
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Figure S2.9. HLA allele call comparison between Polysolver and xHLA. Barplot showing 
matched Polysolver HLA calls and calls with major and minor subtype differences. 
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Figure S2.10. Mutational pattern of network architecture perturbation in cancer genes. (A) 
Mutated structurally resolved network of the tumor suppressor B2M (green circle), its interaction 
partners (blue circles) and their mutated interface residues (triangles). Green triangles represent 
mutated interface residues on B2M and blue triangles represent mutated residues on reciprocal 
interfaces of the associated interaction partner. The size of the triangle corresponds to mutation 
frequency. (B) Violin plots showing the distribution of the number of tumor samples with 
mutations at a given interface residue. 
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CHAPTER 3: Interface-guided phenotyping of coding variants of the transcription factor 

RUNX1 with SEUSS 

3.1 Foreword 

Understanding the consequences of single amino acid substitutions in driver genes remains 

an unmet need. High-throughput mutagenesis is emerging as a powerful tool to probe the varying 

consequences of different amino acid substitutions across the length of a protein or protein domain, 

however it is currently limited to specific functional readouts such as target protein abundance [1] 

or functional assays [2–4]. Studying the effects of genetic perturbations on cellular programs and 

fitness has been challenging using traditional pooled screens. Over the last few years, there has 

been a surge of interest in Perturb-seq [5] style assays to measure the transcriptional consequences 

of genetic perturbations ranging from whole gene knockout to amino acid substitutions in single 

cells [6]. While providing greater function insight, these sequencing-based methods are not yet 

scalable to exhaustive mutagenesis, necessitating selection of target mutations. 

Motivated by the improvement to variant effect interpretation by integration of protein 

structure and network information in Chapters 1 and 2, I hypothesized that examining the 

consequences of perturbing distinct protein interactions could provide a useful abstraction of the 

phenotypic space reachable by individual amino acid substitutions. To explore this hypothesis, in 

Chapter 3, I employed an interface-guided Perturb-seq style approach to generate mutations at 

physical interfaces of the transcription factor RUNX1, with the potential to perturb different 

interactions, and therefore produce transcriptional readouts implicating different aspects of the 

RUNX1 regulon. I analyzed these readouts to identify functionally distinct groups of RUNX1 

mutations, characterize their effects on cellular programs and study the implications for cancer 

mutations. 
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3.2 Abstract 

Understanding the consequences of single amino acid substitutions in driver genes remains 

an unmet need. Perturb-seq provides a tool to investigate the effects of individual mutations on 

cellular programs. Here we deploy SEUSS, a Perturb-seq like approach, to generate mutations at 

physical interfaces of the RUNX1 Runt domain with proteins and DNA. We measured the impact 

of more than 100 mutations on RNA profiles in single myelogenous leukemia cells and used the 

profiles to categorize mutations into three functionally distinct groups: WT-like, LOF-like and 

hypomorphic. The largest concentration functional mutations (non-WT-like) clustered at the DNA 

binding site and contained many of the more frequently observed mutations in human cancers. 

Hypomorphic variants shared characteristics with loss of function variants but had gene expression 

profiles indicative of a shift toward endothelial cell lineage and glutamate catabolism. DNA 

accessibility changes were enriched for RUNX1 binding motifs, particularly near differentially 

expressed genes. Our work demonstrates the potential of targeting protein interaction interfaces to 

better define the landscape of prospective phenotypes reachable by amino acid substitutions. 
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3.3 Introduction 

Cancer is a disease associated with progressive loss of cell identity and gain of signals 

promoting inappropriate survival and proliferation. It is now well established that somatic DNA 

mutations, particularly in oncogenes and tumor suppressors, can drive tumor development and 

progression [7–10]. It is also increasingly evident that different somatic mutations in the same gene 

can have different associations with prognosis and therapeutic response. For example, KRAS G13 

but not G12 mutant colorectal cancers are sensitive to treatment with cetuximab [11]. In lung 

cancer, the G13 mutation is associated with shorter overall survival than the G12 mutation [12]. 

In breast cancer, TP53 mutations within DNA binding motifs are associated with worse prognosis 

than those outside, but within DNA binding motifs, mutations at codon 179 and the R248W 

substitution are associated with significantly poorer prognosis than other substitutions [13]. This 

highlights the need to develop strategies for studying perturbations at a finer scale than gene knock-

out or knockdown.  

High-throughput mutagenesis is emerging as a powerful tool to probe the varying 

consequences of different amino acid substitutions across the length of a protein or protein domain, 

however it is currently limited to specific functional readouts, such as target protein abundance [1] 

or functional assays [2–4]. Studying the effects of genetic perturbations on cellular programs and 

fitness has been challenging using traditional pooled screens. Approaches such as ScalablE 

fUnctional Screening by Sequencing (SEUSS) [14] and Perturb-seq [5] measure the transcriptional 

consequences of perturbations ranging from whole gene knockout to amino acid substitutions [6] 

in single cells, the latter making it possible to gain insight into the differences that distinguish 

mutations at the level of cellular programs relevant to cancer progression. SEUSS has been used 

to study the consequences of functional domain deletions and hotspot mutations to MYC in human 
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pluripotent stem cells [14]. Perturb-seq applied to study driver mutations in KRAS and TP53 

revealed that these mutations span a continuum of function that is not necessarily predicted by 

mutation frequency in cancer cohorts [6]. While providing greater function insight, these 

sequencing-based methods are not yet scalable to exhaustive mutagenesis, necessitating selection 

of target mutations. 

Individual proteins often have multiple functions within cells, mediated through interaction 

with different binding partners. Somatic mutations in driver genes are overrepresented at 

interaction interfaces [15–19], suggesting that examining the consequences of perturbing distinct 

protein interfaces could provide a useful abstraction of the phenotypic space reachable by 

individual amino acid substitutions. To explore this hypothesis we sought to design a library of 

mutations perturbing distinct physical interfaces of RUNX1, a transcriptional master regulator of 

hematopoiesis implicated in multiple cancer types, then use the resulting transcriptional landscape 

to examine cancer-associated mutations.  

Runt-related transcription factor 1 (RUNX1) has been implicated in multiple tumor types 

such as acute myeloid leukemia and breast cancer [20,21]. The protein encoded by RUNX1 forms 

the heterodimeric complex core-binding factor (CBF) together with CBFB, and is thought to be 

involved in the development of normal hematopoiesis [22,23]. CBF binds to the core element of 

many enhancers and promoters through the Runt domain of RUNX1 [22,24]. Specifically, RUNX 

members (RUNX1–3) modulate the transcription of their target genes by recognizing the core 

consensus binding sequence 5-TGTGGT-3, or very rarely, 5-TGCGGT-3, within their regulatory 

regions via their Runt domain [25]; while CBFB, a non-DNA-binding regulatory subunit in the 

CBF complex, binds to the Runt domain and leads to increased DNA-binding affinity [26]. A 
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variety of transcriptional co-regulatory proteins bind RUNX1 via the Runt domain and modulate 

CBF activity [27].  

As RUNX1 is a pioneer transcription factor and master regulator, we hypothesized that 

mutations affecting its interactions with transcriptional cofactors would manifest as changes to the 

expression of multiple RUNX1 target genes and thus potentially result in functional diversity. We 

applied SEUSS to study perturbations to protein interaction interfaces of the RUNX1 Runt domain, 

which harbors the majority of recurrent cancer mutations. Prior work has estimated that in Perturb-

seq style assays, transcriptional profiles of 100-400 single cells should be sufficient to detect 

variant effects on gene expression, thus we planned for a library size of approximately 120 

variants, including wild type (WT) and loss of function (LOF) controls. Thus, we prioritized 

variants with the potential to perturb distinct interactions, and therefore generate distinct 

transcriptional readouts implicating different aspects of the RUNX1 regulon. We analyzed these 

readouts to identify functionally distinct groups of RUNX1 mutations, characterize their effects 

on cellular programs and study the implications for cancer mutations. 
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3.4 Results 

An interface-guided Perturb-seq assay for coding variant phenotyping of 

transcription factor RUNX1. We first determined which amino acid substitutions to study. While 

somatic mutations in RUNX1 span the entire gene, the most recurrent mutations cluster in the Runt 

domain that binds DNA and includes binding sites for multiple protein partners, including CBFB 

(Figure 3.1a). We used protein structures and template-based docking [28] to identify amino acid 

residues of the RUNX1 Runt domain involved in physical interactions with 33 protein partners 

with structural data (Figure 3.1b). Eighty-three residues within the Runt domain were identified to 

mediate at least one interaction. These were used to design an open reading frame (ORF) mutation 

library to assess the impact of perturbation of various RUNX1 interactions.  

For each of the 83 residues, we identified amino acid substitutions that would maximally 

perturb function based on VEST scores [29] and FoldX scores [30]. While VEST is trained to 

discriminate pathogenic from neutral amino acid substitutions, FoldX estimates the effect of an 

amino acid substitution on the free energy of a protein. Where possible we also prioritized 

substitutions observed in tumors from the COSMIC database for these positions [31]. To provide 

a frame of reference for functional impact, we included WT RUNX1 and LOF controls (RUNX1 

replaced with GFP), along with 17 negative controls (expected to be indistinguishable from WT) 

consisting of 10 silent and 7 predicted neutral (based on VEST scores) mutations, and 10 positive 

controls (expected to have similar impact to LOF) consisting of 5 truncating and 5 core mutations. 

In order to evaluate the impact of multiple mutations, we also included 5 mutation combinations, 

bringing the total to 117 library elements. 

We used ScalablE fUnctional Screening by Sequencing (SEUSS) [14] to express the 

mutant RUNX1 library in K562 cells [32], with and without doxycycline-inducible knockdown of 
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endogenous RUNX1. Our library was generated from a modified lentiviral vector to contain a 

hygromycin resistance enzyme gene downstream of the EF1a promoter, followed by a P2A peptide 

motif, the RUNX1 variant (WT, mutated, or GFP), and a 12 base pair barcode sequence unique to 

each variant for identification during single cell transcriptome sequencing. The cells were 

transduced with the pooled variant library at a MOI of ~0.3 to ensure that each cell received a 

single construct, and were grown with hygromycin to select for cells carrying constructs. At day 7 

post transduction, single cell RNA libraries were prepared and sequenced, with the remainder of 

cells being maintained until day 14 for fitness screening (Figure 3.1c). 

We obtained 38,104 cells from sequencing of which 56.3% contains detectable variant 

barcodes assigned to a single variant only. Four variants (G138V, S145I, P157R, T161I) were 

excluded due to low cell counts, and one negative control was removed (G143G) due to a frame 

shift artifact during the mutation library preparation. After additional quality control (QC) filtering, 

we recovered 20,878 high-quality cells with detectable variant barcodes assigned to a single 

variant only, covering 112 of 117 assayed variants for downstream analysis (Methods, Figure 

S3.1). 

We next analyzed variants according to their transcriptional profiles. We reasoned that 

variants with similar effects on RUNX1 targeting should cluster together, while those with distinct 

functional effects should cluster separately. To provide a frame of reference for functional impact, 

we compared expression profiles between cells harboring variants and cells carrying the WT or 

LOF control constructs. Variants were annotated as “wildtype-like” (WT-like) if the induced 

expression changes were indistinguishable from cells carrying the WT construct, and as “loss-of-

function-like” (LOF-like) if indistinguishable from cells with the LOF construct. Any variant that 

did not have a WT-like expression profile was considered “functional”. 



110 
 

Unsupervised clustering of cells and variants. Single cell gene expression profiles were 

used to perform unsupervised clustering, which supported 3 clusters of cells (Figure 3.2a). Cluster 

1 harbored the majority of cells with the WT construct or negative control mutations expected to 

be functionally WT (log(OR)=1.69, p<7.39e-19, and log(OR)=2.69, p<6.79e-301, respectively, 

Figure S3.2), whereas the LOF construct and positive control mutations were most enriched in 

clusters 2 and 3 (log(OR)=0.28, p<0.01 for LOF, and log(OR)=0.34, p<9.68e-15 for positive 

controls for cluster 2; and log(OR)=0.87, p<2.22e-15 for LOF, and log(OR)=0.88, p<2.54e-86 for 

positive controls for cluster 3) (Figure 3.2b, Figure S3.2). Though cells sharing certain variants 

showed bias toward one side or the other of the UMAP, they did not occupy discrete regions. Thus 

in order to better quantify differences between variants, we compared their average gene 

expression profiles. 

For each variant, we averaged the expression of each of the top 2000 variable genes across 

all cells corresponding to the variant. We performed unsupervised clustering of variants based on 

these profiles, and visualized them in UMAP space, where unsupervised clustering again 

suggested three groups (Figure 3.2c). Group I included the WT construct and all negative control 

variants. Group III contained the LOF construct and the majority of positive control variants (8 of 

10) expected to result in a truncated or unstable protein (Figure 3.2d). Most of the tested variants 

also fell into these groups, reflecting expression profiles similar to WT or LOF variants, whereas 

the separate assignment of 14 variants to cluster II suggested some partial loss of RUNX1 function, 

distinct from LOF or WT activity. Accordingly, we labeled variants in these groups as WT-like, 

hypomorphic and LOF-like (Figure 3.2e). 

Revisiting the single cell visualization with these labels, cells carrying hypomorphic 

variants were most prevalent near the boundary between clusters 1 and 2 (Figure 3.2f) and were 
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most enriched in cluster 2 (log(OR)=0.74, p<9.92e-89) (Figure 3.2g). Cell cluster 1 was highly 

enriched for cells harboring WT-like variants (log(OR)=3.07, p<2.22e-308), while cells harboring 

LOF-like variants were enriched both in clusters 2 (log(OR)=0.85, p<5.75e-172) and 3 

(log(OR)=2.22, p<2.22e-308) (Figure 3.2g).  

To understand whether hypomorphic variants represent partial function, falling between 

normal and complete loss of function, versus gain of new activity, we further investigated 

similarity to WT and LOF constructs. We quantified the differences in expression profiles with 

Hotelling’s two-sample T-squared (T2) test, a multivariate generalization of Student’s t-test [33] 

using lower dimensional representation of cells in the principal component space (Methods).  

Higher scores indicate a higher deviation from the variant being compared, WT or LOF. This 

statistical analysis revealed that all WT-like variants are indistinguishable from the WT construct 

via small T2 scores relative to WT (T2WT), but high T2 scores relative to the LOF control 

(T2LOF) (p<0.05, Figure 3.2h). Similarly, all LOF-like variants are indistinguishable from the 

LOF construct via small T2LOF scores, but have high T2WT scores (p<0.05, Figure 3.2h). 

Hypomorphic variants are significantly different from both the WT and LOF controls (p<0.05, 

Figure 3.2h) suggesting that these variants result in transcriptional changes that are not simply an 

intermediate between LOF and WT. This result is supported by differential gene expression 

analysis where 48 of 141 genes that are differentially expressed between hypomorphic variants 

versus the WT control, are not differentially expressed between LOF versus WT and 107 of 232 

genes that are differentially expressed between hypomorphic variants versus the LOF control, are 

also unique, suggesting gain of new activity. 

Our single cell data were derived from the pooling of two biological replicates, each of 

which was evaluated for cell fitness at day 14 (Methods). Fitness measurements were highly 
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concordant between replicates (Pearson correlation; r=0.94, p<5.32e-55) (Figure 3.2i), were 

positively correlated with variant T2WT scores (Pearson correlation; r=0.85, p<1.25e-32), and 

negatively correlated with T2LOF scores (Pearson correlation; r=-0.77, p<8.40e-24). In general, 

LOF-like variants tended to associate with increased fitness, consistent with RUNX1 previous 

reports that reduction or loss of RUNX1 activates cell proliferation [34,35]. 

Gene expression programs distinguishing RUNX1 variants. We next performed 

hierarchical clustering of the top 2000 variable genes across 112 RUNX1 Runt domain variants to 

study transcriptional similarities and differences (Figure 3.3a). The resulting dendrogram once 

again separated WT-like, LOF-like and hypomorphic variants, and highlighted groups of genes 

that showed similar expression patterns across groups. While all the dendrograms for all three 

groups showed additional substructure, we were particularly interested in the hypomorphic 

variants which appeared to separate into 3 groups, which we referred to as hypomorphic-I, -II and 

-III, to reflect the progression of gene expression changes observed across the variants (Figure 

3.3a). 

To better understand how gene expression patterns distinguished these groups, we 

evaluated functional enrichment of gene clusters associated with each. The top 3 gene clusters 

showed generally higher expression in LOF-like variants relative to WT, while cluster 4 showed 

the opposite trend, and clusters 5-10 were more variable (Figure 3.3a, Figure S3.3, Table S3.1). In 

the hypomorphic group clusters 7 and 9 had lower and higher aggregated mean expression across 

genes respectively relative to WT and LOF like variant groups. Cluster 4 genes were enriched for 

immune related functions such as T helper cell lineage commitment and immune cell activation 

(Figure S3.4), consistent with RUNX1’s role in hematopoietic lineage commitment and 

differentiation [36–38]. LOF variants promoted gene expression programs associated with 
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hemoglobin levels [36,39], vasculogenesis and ECM regulation in clusters 1-3 respectively. 

Clusters 5 and 6 were enriched for genes related to the cell cycle. Cluster 8 was enriched for 

epithelial cell migration, whereas cluster 10, which was highest in WT cells, was enriched for 

negative regulation of meiotic cell cycle and ER stress, and cluster 7 was enriched for genes 

involved in secretion, synaptic plasticity and axon guidance (Figure S3.4). Overall, these results 

suggest that loss of RUNX1 activity resulted in failure to promote differentiation toward immune 

cell identity and reactivation of developmental programs and shifts in metabolism related to 

oxidative phosphorylation and hemoglobin [40–42]. 

The majority of variance in gene expression fell along the WT-like to LOF-like axis (PC1, 

31.6% variance explained), both visually (Figure 3.3b), and statistically as it positively correlates 

with T2WT scores (r=0.90, p<2.2e-16), and fitness scores (r=0.93, p<2.2e-16). On the other hand, 

PCs 2, 3 and 4 (3.4%, 3.1%, and 2.6% variance explained, respectively) seem to correspond to 

transcriptomic effects more specific to the hypomorphic variants (Figure 3.3b). The most 

influential genes based on PC loadings were enriched for endothelial cell development and 

morphogenesis, glutamate catabolism, MAP kinase signaling, cell cycle and mitotic related 

activities, suggesting these functions most distinguish hypomorphic variants from WT and LOF 

variants. 

Though a non-linear mapping, the first two UMAP dimensions were strongly inversely 

correlated with PC1 (Figure 3.3b,c). T2WT, T2LOF (Figure 3.3d) and fitness scores (Figure 3.3e) 

largely agreed with the hierarchical clustering, though variants in hypomorphic II appeared to have 

both more distinct transcriptional profiles from T2WT and T2LOF as well as higher fitness scores 

than the the other hypomorphic variants.  
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LOF-like variants tended to have higher FoldX scores and VEST scores (Figure 3.3f,g). 

VEST scores were more strongly correlated with T2WT scores and fitness scores than FoldX 

scores (T2WT: r=0.42, p<4.88e-06 vs r=0.38, p<6.31e-05; fitness r=0.43, p<3.23e-06 vs r=0.27, 

p<4.06e-03) suggesting that amino acid characteristics associated with pathogenicity are more 

likely to cause larger deviations from WT gene expression programs.   

Kernel density estimates of single cell UMAP embeddings for variant groups demonstrate 

that the majority of cells belonging to each assigned phenotype (WT-like, hypomorphic-I, -II, -III, 

and LOF-like) occupy discrete regions in UMAP, though hypomorphic distributions seemed to 

harbor cells that also overlapped more closely with regions dominated by WT-like and LOF-like 

cells (Figure 3.3h). This could potentially be due to small differences in expression of mutant 

construct, stochasticity in measurement of gene expression, or could represent variable penetrance 

at the cellular level due to buffering built into cellular systems, such as stress response pathways. 

LOF-like variants significantly target RUNX1-DNA binding. We first investigated the 

impact of mutations at the interface of protein-nucleotide interactions of RUNX1. We identified 

11 amino acid residues of RUNX1 (R80, R135, R139, R142, G143, K167, T169, V170, D171, 

R174, R177) as involved in DNA binding based on the 3D crystal structure of the interaction, 

among which 8 residues are perturbed in our mutation library (R80G, R135G, R139Q, R142S, 

G143R, T169I, V170M, R174Q) (Figure 3.4a). These 8 mutations were significantly enriched for 

LOF-like impact vs. WT-like (Fisher’s exact test; OR=13.33, p<0.0084) and for functional (LOF-

like or hypomorphic) vs. WT-like impact (Fisher’s exact test; OR=9.03,  p<0.025, Figure 3.4b), 

suggesting that interruption of DNA-binding is very damaging to the RUNX1 function and the 

impact can be deduced from the transcriptional profiles of the mutations. 
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In comparison, for the 19 residues identified as involved in the interaction with CBFB 

(Figure 3.4a), severity of phenotypic impact of mutations was not highly enriched compared to 

direct DNA binding. 10 of the mutations had LOF-like or hypomorphic impact while 9 had WT-

like consequences (Fisher’s exact test; OR=1.27, p<0.79, Figure 3.4b). We saw that functional 

(LOF-like or hypomorphic) mutations generally had higher VEST and FoldX scores, though not 

statistically significant (Mann Whitney-U test; VEST: p<0.96; FoldX: p<0.17), which could 

suggest that mutations resulting in WT-like phenotypes were not as damaging to the protein 

complex, possibly due to amino acid residues surrounding them that are involved in the interaction 

are able to maintain enough of the binding. 

Comparing coding variant Perturb-seq with recurrence in cancer. In principle, 

positions with functional variants that improve fitness would be under higher positive selective 

pressure in tumors and would thus be more frequently mutated across patients. Thus, we tested 

whether expression-based phenotyping was associated with mutation frequency in cancer 

(COSMIC [31]). Frequency was weakly positively correlated with fitness (Pearson correlation; 

r=0.312, p<1.21e-03), but not with T2WT scores (Pearson correlation, r=0.136, p<0.16, Figure 

3.4c). We observed a significant enrichment of cancer mutations (frequency>0) (Figure 3.4d) with 

LOF-like vs. WT-like impact (Fisher’s exact test; OR=4.34, p<0.0084, Figure 3.4e), and functional 

vs. WT-like impact (Fisher’s exact test; OR=3.01, p<0.021, Figure 3.4e), meaning that cancer 

mutations are more likely to be damaging/impactful. This impact is even more significant for 

cancer mutations with higher prevalence (frequency>2) (Fisher’s exact test; OR=15.47, p<0.0035, 

and OR=12.19, p<0.0059, respectively, Figure 3.4e). Among the 5 most frequently observed 

mutations (Figure 3.4c), four of them (R174Q, R139Q, R135G and P173S) target amino acid 
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residues involved in DNA binding and display LOF-like impact; while the remaining one (S114L) 

targets a residue involved in CBFB binding and is hypomorphic (Figure 3.4d). 

Of the RUNX1 mutations shared between our assay and the COSMIC database, the 

majority of occurrences were in hematopoietic malignancies (n=104), followed by breast cancer 

(n=10), the urinary tract (n=5) and the large intestine (n=4). Across these four tumor types, 

approximately 79.6% of observed variants were LOF-like and 14.6% were hypomorphic (Figure 

3.4f).  

Variant impact on the RUNX1 regulon. Next, we sought to validate the hypomorphic 

effects variants with bulk RNA sequencing, and investigate whether the variants altered RUNX1 

binding and consequently DNA accessibility for regulatory elements associated with differentially 

expressed genes. We selected 12 variants to study, including the WT and LOF control variants and 

9 hypomorphic variants from all three sub-categories: two hypomorphic-I (N82I, P156R), six 

hypomorphic-II (L62P, G95R, V97D, G100V, V137D, I166S) and one hypomorphic-III (R118G). 

We also included one LOF-like variant (V159D) predicted to be involved in RUNX1-CBFB 

binding to further investigate the effects of interruption of this interaction (Table 3.1). Two of the 

hypomorphic variants (G95R and R118G) were observed in human tumors previously (Figure 

3.5a, Table 3.1). 

We performed bulk RNA- and ATAC-seq screens for each variant separately in K562 cells 

grown in doxycycline to induce repression of the endogenous RUNX1, and hygromycin to select 

for transduced cells. The screen was conducted in three biological replicates for each mutation 

with greater than 1 million cells in each replicate. At day 7 post transduction, the cells were split 

into two groups: ~1 million cells to be sequenced to a depth of 30 million reads/sample for bulk 
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RNA-seq, and 100,000 cells to be sequenced to a depth of 75 million reads/sample for bulk ATAC-

seq (Figure 3.1c). 

From bulk RNA-seq, we obtained an 18,646 gene by sample expression matrix after QC 

filtering (Methods). After normalizing the raw counts with respect to library size and removing 

batch effects between replicates, we averaged gene expression across replicates for each sample. 

Using the top 2000 variable genes from the scRNAseq analysis, we perform PCA and hierarchical 

clustering of samples. PC1 once again correlated with the progression of phenotypic effects (WT-

like, hypomorphic-I, -II, -III, and LOF-like) (Figure 3.5b), which was also reflected in the gene 

expression-based hierarchical clustering of the variants (Figure 3.5c) that essentially reproduced 

the earlier scRNA-seq analysis results (Figure 3.2a). PC2 separated hypomorphic variants from 

WT- and LOF-like ones (Figure 3.5b), with more specific distinctions obtained by PCs 3 and 4 

(Figure 3.5d). We saw similar results when replicates were analyzed separately (Figure S3.5). The 

similarity between bulk and single cell analysis supports that single cell transcriptomic analysis 

can reliably identify hypomorphic variants.  

From bulk ATAC-seq, we obtained a 101,433 peak by sample count matrix after QC 

filtering (Methods). 9176 peaks were mapped to promoter regions ((-1 kb, +100 bp) of 

transcription start sites), among which 2722 had RUNX1 binding motifs, referred to hereafter as 

RUNX1 promoter peaks. Of these, 207 were found to be differentially accessible between LOF-

like samples and WT; while 191 RUNX1 promoter peaks are differentially accessible between 

hypomorphic samples and WT (Figure 3.5e). Among genes with differentially accessible RUNX1 

promoter peaks for LOF-like or hypomorphic variants, increased or decreased accessibility led to 

an increase or decrease in gene expression for 101 and 70 genes, respectively, in the bulk RNA-

seq dataset. There was also significant correlation in the magnitude of change (LOF-like vs. WT: 
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Pearson correlation r=0.65, p<1.05e-13; and hypomorphic vs. WT: Pearson correlation r=0.52, 

p<1.89e-06). These genes were generally found to be overrepresented in gene sets that are relevant 

to RUNX1 activity (e.g. heme Metabolism, reactive oxygen species pathway, oxidative 

phosphorylation [36,39]), with differentially accessible genes for hypomorphic variants showing 

enrichment in terms of effects on MYC to the LOF-like variants (e.g. Myc targets V1 and V2) 

(Figure 3.5f). Tracks of two example genes among these groups, ABT1 [25] for LOF-like and 

ENSA [25] for hypomorphic variants, are visualized (Figure 3.5g). 
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3.5 Discussion 

In this work we used information about physical contacts between proteins to design a 

library of amino acid substitutions and profiled their transcriptional consequences at the single cell 

level using SEUSS. We selected RUNX1 as our target protein for its well-defined role in cancer 

and its activity as a master regulator of hematopoiesis, reasoning that point mutations in this gene 

could result in large detectable differences in gene expression. We focused our analysis on the 

Runt domain which is most enriched for recurrent cancer mutations. We designed mutations based 

on in silico prediction of occurrence at physical interfaces and potential to perturb protein function. 

Analysis of the resulting single cell transcriptomic profiles revealed that the majority of mutations 

we selected had effects similar to loss of function or wild type conditions. Nonetheless, we detected 

15 variants that generated unexpected changes to gene expression. Further analysis found that 

these variants activate MYC signaling and trigger an unfolded protein response.  

Intersecting protein interaction-perturbing variants with cancer mutations, we found that 

the majority of recurrent cancer variants tested resulted in a more general loss of function variant, 

most likely by preventing RUNX1 from binding DNA altogether. However, the R118G and G95R 

hypomorphic alleles were also observed in tumors. Loss of RUNX1 DNA binding was associated 

with higher fitness scores, suggesting that RUNX1 acts as a tumor suppressor in K562 cells.  

The role of RUNX1 as an oncogene versus tumor suppressor is still not entirely clear, and 

may depend on the type of malignancy as well as the other mutations present. Loss of RUNX1 

leads to increased susceptibility to AML; point mutations affecting RUNX1 are associated with 

shorter time to progression from MDS to AML and worse prognosis in AML and CML [43,44]. 

However, in disease with RUNX1 translocations, a survival dependency on WT RUNX1 has been 

reported [45]. On the K562 background, loss of function appears to be associated with higher 
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fitness, suggesting a more tumor suppressive role in this setting (CML with blast crisis), though it 

is important to note that K562 cells represent disease that developed with WT RUNX1.  

Bulk sequencing corroborated the effects found based on single cell sequencing, supporting 

that our study design was sufficiently powered to detect differences between variants. In UMAP 

plots, individual mutations were difficult to distinguish without mapping to densities. Even then, 

it was apparent that individual cells could coincide with WT or LOF mutation regions. It was 

unclear whether this reflected stochastic differences in construct expression or knockdown of 

endogenous RUNX1, cell-to-cell differences in read coverage, or bonafide variable penetrance of 

the variant effect on the phenotype of individual cells.  

Limitations of our study include that it was performed exclusively in K562 cells. It is 

unclear how well the effects will generalize to other leukemic cell lines or non-hematopoietic 

tumor types. In addition, we focused only on the Runt domain, whereas other domains are also 

important for RUNX1 interaction with cofactors. Thus, we may not have fully captured the space 

of possible phenotypes that can be generated by single amino acid substitutions in RUNX1. 

Furthermore, our epigenetic profiling was limited to DNA accessibility, whereas ChIP-seq would 

more directly reveal mutation-associated changes to RUNX1 localization. These questions will be 

the topics of future studies to better understand the role perturb-seq can play in providing 

exploitable mechanistic insights in cancer. 

Understanding the consequences of single amino acid substitutions in driver genes remains 

an unmet need. New technologies are making it possible to place such variants into the context of 

cellular programs and fitness. Our study demonstrates the potential of targeting protein interactions 

to define the space of cellular phenotypes reachable by single amino acid substitutions. 
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3.6 Materials and Methods 

Building of RUNX1 variant library. The gene overexpression vector was generated from 

a modified lentiviral vector (Addgene #120426). The vector was modified by removal of the 

mCherry transgene and the hygromycin resistance enzyme gene. The hygromycin resistance 

enzyme gene was then re-cloned to be immediately downstream of the EF1a promoter, followed 

by a P2A peptide motif and a NheI restriction site used to clone in the library elements. A 12 base 

pair barcode sequence was then introduced downstream of the cloning site to identify variants 

during single cell transcriptome sequencing. To insert the barcode, the backbone was digested with 

NheI (New England BioLabs), and a pool of 12 base pair long barcodes with flanking sequences 

compatible with the NheI site was cloned using Gibson assembly. To clone the library elements, 

the expression vector was digested with NheI  for 3 hours at 37 °C. The linearized vector was then 

purified using a QIAquick PCR Purification Kit (Qiagen). 

DNA fragments coding for the library elements were ordered from Twist Bioscience as a 

site saturation variant library in an arrayed format as linear dsDNA. A fraction of each 

oligonucleotide was then combined, and the pool was amplified via PCR using KAPA-Hifi (Kapa 

Biosystems) in 50 mL reactions containing 10 ng of pooled template and 2.5 mL of primers 

RX1_01 and RX1_02 (10 mM), which include ~30 bp of DNA homologous to the overexpression 

vector for Gibson assembly cloning. A thermal cycler was used to heat the sample to 95 °C for 3 

minutes, then 16 cycles of 98 °C for 20 seconds, 68 °C for 15 seconds, and 72 °C for 45 seconds, 

followed by a final 5 minute extension at 72 °C. The PCR products were then purified using 

Agencourt AMPure XP Beads (New England BioLabs) beads at a 0.8:1 bead:PCR reaction ratio. 

See Table S3.2 for primer sequences. 
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Gibson assembly was then used to clone the pooled library elements into the vector. For 

the reaction, 50 ng of the digested vector and 30 ng of the insert were mixed with 5 mL of Gibson 

Reaction Master Mix (New England BioLabs) in a reaction volume of 10 mL. The Gibson 

reactions were incubated at 50 ºC for 1 hour and transformed via heat shock into 50 mL of One 

Shot Stbl3 chemically competent cells (Invitrogen). This was done by incubating the cells with the 

Gibson on ice for 30 minutes, followed by a 45 second heat shock at 42 °C then 2 minutes on ice, 

then the addition of 250 mL of SOC media (Thermo Fisher Scientific). The cells were allowed to 

recover shaking at 37 °C for 1 hour and were then plated on LB-carbenicillin plates. Individual 

bacterial colonies were picked off of the plate and grown in LB-carbenicillin culture media shaking 

for 16 hours at 37 °C. After growth, plasmid DNA was isolated via a Qiagen Plasmid Mini Kit. 

Each colony was Sanger sequenced using the primer RX1_03 to identify the variant, then by the 

primer RX1_04 to capture the associated barcode. One overexpression vector was created for each 

variant, each with a single unique barcode associated. After ~30% of the library was cloned, the 

oligonucleotides for remaining elements were re-pooled and cloned using the above protocol, until 

the full library was assembled. To generate the combination mutations, the first mutation was 

created as described above. Subsequent mutations were generated with overlap extension PCR 

with primers containing the desired mutations.  

  Lentivirus production. Replication deficient lentiviral particles were produced 

individually in an arrayed format for each element of the library in HEK293FT cells (Invitrogen) 

via transient transfection. The HEK293FT cells were grown in DMEM media (Gibco) 

supplemented with 10% FBS (Gibco) and 1% antibiotic-antimycotic (Thermo Fisher Scientific). 

One day prior to transfection, HEK293FT were plated in 12 well plates, with one well per element 

of the library, at ~35% confluency. The day of transfection, the culture medium was removed and 
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replaced with fresh DMEM plus 10% FBS. Meanwhile, the transfection mix was prepared by 

mixing 125 mL of Optimem reduced serum media (Life Technologies) with 1.5 mL of 

lipofectamine 2000 (Life Technologies), 125 ng of pMD2.G plasmid (Addgene #12259), 500 ng 

of pCMV delta R8.2 plasmid (Addgene #12263), and 375 ng of each plasmid overexpression 

vector for each library element. The transfection mix was incubated for 30 minutes, then added 

dropwise to the HEK293FT cells. The viral particles in the supernatant were harvested at 48 and 

72 hours post transfection, and the virus for each library element were pooled and filtered with a 

0.45 mm filter (Steriflip, Millipore), then concentrated to 1.5 mL using Amicon Ultra-15 

centrifugal filters with a cutoff 100,000 NMWL (Millipore). The virus was then mixed, aliquoted 

and frozen at -80 ºC. For the validation screen, the transfection was performed in 15 cm dishes, 

one for each of the selected validation mutations, and frozen separately.  

  Generation of clonal inducible RUNX1 repression cell line. To repress the endogenous 

RUNX1, the repression vector was generated from a PiggyBac inducible dCas9 construct 

(Addgene #63800). The vector was modified by removing the inducible transgene, the sequence 

for the KRAB-dCas9 fusion (Addgene #60954) followed by a P2A sequence then GFP was 

inserted in its place. The vector was then modified through the insertion of a U6 promoter followed 

by SaII and AflII cloning sites for insertion of guide RNA sequences, then a guide RNA scaffold. 

Guides for CRISPRi targeting RUNX1 were chosen from the Dolcetto library set A [46] and 

ordered via oligonucleotide from IDT. The guides were then cloned into the repression vector after 

digestion with SaII (New England BioLabs) and AflII (New England BioLabs). 

K562 cells (ATCC) were cultured in RPMI 1640 media (Gibco) supplemented with 10% 

FBS and 1% antibiotic-antimycotic. One day prior to electroporation, the K562 cells were 

maintained at a concentration of 1 million cells per mL. The day of the electroporation, the cells 
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were spun down and resuspended at a concentration of 10 million cells per mL. A total of 2 mg of 

DNA was added to 100 mL of cells containing a 1:2.5 molar ratio of the all-in-one RUNX1 

targeting repression vector to the PiggyBac transposase vector (Transposagen). The DNA was then 

electroporated into the K562 cells using the Ingenio Electroporation Kit (Mirus Bio) and a 4D 

Nucleofector (Lonza) per the manufacturer's protocol. The cells were recovered for 3 days, then 

selected for those that received integration by the addition of 1 mg/mL puromycin (Gibco) into the 

culture media. After 4 days of selection, the cells were split across a 96-well plate into single 

colonies by serial dilution. Individual colonies were then assessed for their degree of inducible 

RUNX1 repression, and the clone with the highest repression was selected for use in the screen. 

Quantification of RUNX1 expression. To measure RUNX1 repression in the single 

colonies, each colony was split into two groups and grown in RPMI media supplemented with 

10% FBS and 1% antibiotic-antimycotic and 1 mg/mL puromycin. In one of the groups, 1 mg/mL 

doxycycline (Thermo Fisher Scientific) was added to the media to induce expression of the dCas9-

KRAB transgene. Both sets of cells were maintained at 200,000 cells/mL over the course of 3 days 

after the addition of the doxycycline. On day 3 the cells were pelleted, and RNA was extracted 

using a Qiagen RNeasy Mini Kit. Complementary DNA (cDNA) was synthesized from the RNA 

using the Protoscript II First Strand cDNA Synthesis Kit (New England BioLabs) per the 

manufacturer's protocol, then diluted 1:4 with water. To quantify expression, qPCR was performed 

on the cDNA using a CFX Connect Real Time PCR Detection System (Bio-Rad). For each sample, 

two sets of primers were used; a set used to quantify RUNX1 expression (Table S3.2) which was 

compared to the housekeeping gene GAPDH . The qPCR was carried out in a total volume of 10 

mL containing 5 mL of iTaq Universal Sybr Green Master Mix (Bio-Rad), 2 mL of each primer 

(10 mM), and 1 mL of diluted cDNA. Thermal cycling conditions were 95 °C for 2.5 minutes, 
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followed by 40 cycles of 95 °C for 10 seconds, then 60 °C for 30 seconds. All samples were run 

in triplicate, and the RUNX1 expression was determined using the 2-delta delta CT method, by 

comparing to the GAPDH expression. 

  Sequencing screening. The K562 clonal cell line previously generated for repression of 

the endogenous RUNX1 protein was cultured in RPMI media supplemented with 10% FBS and 

1% antibiotic-antimycotic. For the single cell RNA sequencing screen, the cells were transduced 

with the pooled variant library at an MOI of ~0.3 to ensure that each cell received a single 

construct. The viral transduction was performed by mixing the virus with media containing 8 

mg/mL polybrene (Millipore). The cells were suspended in this media at a concentration of 2 

million cells per mL and spun at 1000 G for 2 hours at 33 °C in a 12-well plate. The cells were 

then pelleted and resuspended in fresh media at a concentration of 400,000 cells/mL. 24 hours 

after transduction, the media was again changed, and the cells were resuspended at 400,000 

cells/mL. 48 hours after transduction, the cell culture media was changed to media containing 1 

mg/mL puromycin and 200 mg/mL hygromycin (Invitrogen) to select for transduced cells. At that 

time the cells were also split into two groups, and to one of the groups doxycycline was added 

daily at a concentration of 1 mg/mL to induce repression of the endogenous RUNX1. Throughout 

the duration of the screen, the media was changed each day, and the cells were maintained at a 

concentration of 400,000 cells/mL. The screening was conducted with two biological replicates 

with greater than 1 million cells in each condition to ensure greater than 1000-fold coverage of the 

library. At day 7 post transduction, the cells were processed with 10X, with the remainder of cells 

being maintained until day 14 for fitness screening. 

For the bulk RNA sequencing and bulk ATAC sequencing screen, the cells were 

transduced with the twelve validation mutations separately. 48 hours after transduction, 200 
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mg/mL hygromycin was used to select for transduced cells and 1 mg/mL doxycycline was used to 

induce repression of the endogenous RUNX1. The screen was conducted with three biological 

replicates with greater than 1 million cells in each condition. At day 7 post transduction, the cells 

were split into two groups, 1 million cells for bulk RNA-seq and 100,000 cells for bulk ATAC-

seq. 

  Single cell RNA sequencing library preparation. scRNA-seq experiments were 

performed with two replicates per condition (cells with and without doxycycline). Cells were first 

washed with a solution of PBS (Gibco) with 0.04% BSA (Gibco) by centrifuging the cells for 5 

minutes at 300 G then resuspending them in the solution. After the wash, the cells were again 

centrifuged and resuspended in the same solution. The cells were filtered using a 0.40 mM cell 

strainer (VWR), and the concentration was determined using a manual hemacytometer (Thermo 

Fisher Scientific). The cells were then subjected to scRNA seq (10X genomics, chromium single 

cell 3’ v3, with two reactions per replicate) aiming for a target cell recovery of 10,000 cells per 

library. The single-cell libraries were generated according to manufacturer’s protocols with the 

following conditions: 11 PCR cycles run during cDNA amplification and 10 PCR cycles run 

during library generation. The libraries were sequenced using Illumina NovaSeq platform. To 

genotype the cells with the variant, the barcode sequences were amplified off of the cDNA pool 

generated in the scRNA seq protocol. The barcodes were amplified via PCR using OneTaq 2X 

Master Mix (New England BioLabs) in 100 mL reactions, each split across 5 PCR tubes (20 mL 

per tube). For each sample the reactions contained 5 mL of primers RX1_07 and the NEBNext 

Universal PCR Primer for Illumina (New England BioLabs) (10 mM), 6 mL of cDNA, 50 mL of 

OneTaq, and the rest filled with water. A thermal cycler was used to heat the sample to 95 °C for 

3 minutes, then 20 cycles of 98 °C for 20 seconds, 65 °C for 15 seconds, and 68 °C for 45 seconds, 
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followed by a final 5 minute extension at 68 °C. The PCR products were purified using AMPure 

XP Beads beads at a 0.8:1 bead:PCR reaction ratio. The second step of PCR was performed. 

Subsequently, a NEBNext Ultra RNA Library Prep Kit (New England BioLabs) was used to 

generate Illumina compatible sequencing libraries; this was done in a 50 mL reaction split across 

5 PCR tubes (10 mL per tube) with 20 ng of the first step purified PCR product. 

Library fitness screening. A fitness screen was also performed concurrently with the 

single cell RNA sequencing screen. At days 2, 7, and 14 post-transfection, ~1 million cells were 

collected, and their genomic DNA was isolated via a Qiagen DNeasy Blood and Tissue Kit. 

Barcodes corresponding to each library element at each timepoint, and replicate were then 

amplified from the genomic DNA using OneTaq 2X Master Mix. The sequencing libraries were 

amplified in 50 mL reactions, each split across 5 PCR tubes (10 mL per tube). For each sample, 

the reactions contained 2.5 mL of primers A and B (10 mM), 6 mg of gDNA, 25 mL of OneTaq, 

with the rest filled with water. The thermal cycler was used to heat the sample to 95 ºC for 3 

minutes, then 27 cycles of 98 °C for 20 seconds, 65 °C for 15 seconds, and 72 °C for 45 seconds, 

followed by a final 5 minute extension at 72 °C. The PCR products were purified using AMPure 

beads at 0.8:1 bead:PCR reaction ratio. NEBNext Multiplexed Oligos for Illumina (New England 

BioLabs) were then used to index the samples, and the samples were sequenced on an Illumina 

NovaSeq platform to a depth of 2.5 million reads/sample. 

Freezing for bulk RNA-seq. Cells for bulk RNA-seq were pelleted and the media 

aspirated. They were flash-frozen in liquid nitrogen and stored at -80 ºC. 

Freezing for bulk ATAC-seq. Cells for bulk RNA-seq were pelleted in a centrifuge at 

1000 G for 5 minutes at 4 ºC, resuspended in cold PBS, and pelleted again. ATAC lysis buffer was 

made by mixing 100 uL 1M Tris-HCl pH 7.4, 20 uL 5 M NaCl, 30 uL 1M MgCl2, 100 uL 10% 
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IGEPAL CA-630, and 9.75 mL water. The cells were lysed with the cold ATAC lysis buffer using 

100 uL buffer per 100,000 cells and centrifuged at 1000 G for 10 minutes at 4 ºC. The supernatant 

was removed, and the cells were flash-frozen in liquid nitrogen and stored at -80 ºC. 

Bulk RNA sequencing library preparation. Bulk RNA-seq experiments were performed 

with three replicates per condition. RNA was isolated from the cells using a Qiagen RNeasy Mini 

Kit according to the manufacturer’s protocols. Samples were prepared for bulk RNA-seq using the 

NEBNext Ultra II RNA Library Prep with Sample Purification Beads Kit (New England Biolabs) 

according to manufacturer’s protocols with the following conditions: 1 ug input RNA, library 

insert size = 200 nt. The bulk RNA-seq library was sequenced on an Illumina NovaSeq platform 

to a depth of 30 million reads/sample. 

Bulk ATAC sequencing library preparation. Bulk ATAC-seq experiments were 

performed with three replicates per condition. Tagmentation buffer was prepared with 12.5 uL 

buffer, 9.75 uL H2O, 0.25 uL digitonin, and 2.5 uL Tn5 enzyme (Illumina) per sample. Each frozen 

cell pellet sample was resuspended in the tagmentation buffer and incubated at 37 ºC for 45 

minutes. 1x volume 40mM EDTA was added to each sample. The tagmented samples were 

purified using AMPure XP Beads at a 2:1 bead:tagmentation reaction ratio. The samples were 

incubated with the beads at room temperature for 15 minutes, then placed on a magnetic rack to 

separate the beads from the supernatant, which was discarded. The beads were washed twice with 

cold 80% ethanol, and the purified DNA was eluted from the beads using Buffer EB (Qiagen). 

The tagmented DNA was dual indexed using i5 and i7 barcodes, giving each sample a 

unique barcode combination. The DNA and barcodes were added to NEB Hi Fidelity 2x PCR Mix 

(New England BioLabs) and amplified using the following PCR cycle: 72 ºC for 7 minutes; 98 ºC 

for 30 seconds; then 10 cycles of 98 ºC for 10 seconds, 63 ºC for 30 seconds, and 72 ºC for 1 
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minute; and cooling back down to 4 ºC. Double size selection was performed using AMPure XP 

Beads to select for the size of the final library. First, 0.55x volume AMPure Beads was added to 

each PCR reaction and incubated at room temperature for 15 minutes. The samples were placed 

on a magnetic rack and the supernatant transferred to new tubes, to which another 0.65x volume 

AMPure Beads were added (for a total of 1.2x volume PEG). The samples were incubated at room 

temperature for 15 minutes, the supernatant was discarded, and the beads were washed twice with 

cold 80% ethanol. DNA was eluted from the beads using Buffer EB and pooled together to make 

the final library for sequencing. The bulk ATAC-seq library was sequenced on an Illumina 

NovaSeq platform to a depth of 75 million reads/sample. 

Protein 3D structure analysis. We obtained 61 experimentally verified undirected protein 

interactions of RUNX1 with a confidence score higher than 0.4 from STRING v9.1 [47]. 

Experimental 3D co-crystal protein structures for RUNX1-CBFB interaction (PDB: 1ljm, 1e50, 

1h9d) were obtained from the Protein Data Bank (PDB) [48], and used to predict amino acid 

residues of RUNX1 in direct physical contact with CBFB as described in our previous work [49]. 

The remaining interactions did not have co-crystal structures. Instead, we used in silico template 

based protein docking on single protein structures with PRISM [28] to identify contact residues. 

PRISM returned predictions for 32 RUNX1 interaction partners (Figure 3.1b). 

Amino acid residues of RUNX1 involved in DNA binding (PDB: 1h9d) were determined 

using the distance between two non-hydrogen atoms of amino acids and nucleotides, one from the 

protein and one from the DNA. If the distance was less than 3.5A, we designated those residues 

as interface residues [17]. Amino acid residues were annotated as core, surface, or intermediate 

based on their relative solvent accessible surface areas as described in our previous work [49]. 

VMD [50] was used to visualize protein 3D structures (Figures 3.1a and 3.4a,d). 
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Selection of variants for library construction. The ORF mutation library consists of 117 

elements: 83 single amino acid substitutions at protein interaction interfaces in the RUNX1 Runt 

domain, 1 WT construct, 1 LOF construct, 17 negative, and 10 positive control mutations, and 5 

combinations of two or more interface mutations (Figure 3.3c). Variant effect prediction scores 

for all possible missense mutations targeting each residue were obtained from VEST [29] and 

FoldX [30]. Variant frequency in human tumors was determined from the COSMIC database 

(obtained on 11/7/2022) [31]. For each residue, the most damaging amino acid substitution 

possible from a single base substitution (the highest VEST or FoldX scored mutation) was chosen 

to be included in the ORF mutation library, prioritizing cancer mutations where possible, to 

maximize the possibility of perturbing physical protein interactions. 30 of 83 mutations tested are 

cancer mutations.  

The WT construct consists of WT RUNX1; while the LOF construct contains a green 

fluorescent protein (GFP) in place of RUNX1. 17 negative control mutations consist of 10 silent 

and 7 neutral (predicted based on VEST scores) mutations, and are expected to be functionally 

indistinguishable from the WT construct. 10 positive controls consist of 5 truncating and 5 core 

mutations, and are expected to have similar impact to the LOF construct. 5 perturbation mutation 

combinations consists of two or three combinations of perturbation mutations already in the 

library. 

scRNA-seq analysis. The single cell RNA sequencing screen was performed for two 

conditions: one treated with doxycycline to induce repression of the endogenous RUNX1 (named 

‘dox’ group), and the other not treated (named ‘nodox’ group). The screening was conducted with 

two biological replicates for each condition, and single cell RNA sequencing was performed with 

two reactions per replicate, making a total of eight libraries: four containing cells treated with 
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doxycycline (dox) and four not (nodox). Sequencing was run with a target cell recovery of 10,000 

cells per library. 

Sequencing reads in FASTQ format were aligned using the 10X Genomics Cell Ranger 

pipeline (version 3.1.0) [51], to the human transcriptome GRCh38 (version GRCh38-3.0.0), 

resulting in a gene by cell matrix of UMI counts for each library. To assign one or more genotypes 

to each cell, the plasmid barcode reads were aligned to GRCh38 using BWA, and labeled with its 

corresponding cell and UMI tags as described in the SEUSS pipeline [14] 

(https://github.com/yanwu2014/genotyping-matrices). 

The UMI count matrices were processed using Seurat (version 4.1.0) [52]. Four dox 

libraries were merged resulting in 38,104 cells and 20,389 genes, after removal of genes expressed 

in fewer than 3 cells. 16,653 cells not containing a genotype barcode, or containing more than one, 

were removed. To filter out low quality cells, we removed cells expressing fewer than 200 genes 

or more than 5000 genes. We also discarded cells that have over 20% of reads aligned to 

mitochondrial genes, resulting in 20,878 cells. Four perturbation variants (G138V, S145I, P157R, 

T161I) were excluded due to low cell counts (less than 10 cells), and one negative control was 

removed (G143G) due to a frame shift artifact during the mutation library preparation, resulting in 

112 remaining variants. 

The count matrix was log-normalized with the default scale factor of 10,000 and the top 

2000 variable genes were identified to be used for downstream analyses. Mitochondrial or 

ribosomal genes were not included in the top 2000 variable gene list. We then applied a linear 

transformation on the count matrix to scale and center expression of each gene. We assigned cell 

cycle scores to each cell based on its expression of G2/M and S phase markers and applied a linear 

model to regress out effects of cell cycle heterogeneity. 



132 
 

Unsupervised clustering of single cells. We performed linear dimensionality reduction 

(PCA) on the scaled data using the top 2000 variable genes. Keeping the first 20 principal 

components, we clustered cells by first determining the nearest neighbors of each cell in the PCA 

space, and then by applying a modularity optimization algorithm that iteratively groups cells 

together with a resolution parameter of 0.3. We used UMAP, a non-linear dimensionality reduction 

technique (Becht et al., 2018), to visualize the three predicted unsupervised clusters where similar 

cells are placed together in low-dimensional space (Figure 3.2a,b,f). 

We applied Fisher’s exact test to evaluate the enrichment or depletion of assigned 

phenotypes (Figure 3.2g), variant classes, or cell cycle phases (Figure S3.2) in each cluster. A log 

odds ratio (log(OR))>0 indicates enrichment, while a log(OR)<0 indicates depletion. 

Unsupervised clustering of variants. To cluster variants into discrete classes, we used 

mean expression profiles of each variant. For each variant, we computed the mean expression (log-

normalized) of each of the top 2000 variable genes across all cells corresponding to the variant, 

resulting in an expression vector of size 2000 for each variant, representing its mean expression 

profile. This generated a count matrix of 112 variants by 2000 genes. 

We performed PCA on the resulting count matrix, and keeping the first 20 principal 

components, we clustered variants by first determining the nearest neighbors of each variant in the 

PCA space, and then by applying a modularity optimization algorithm that iteratively groups 

variants together with a resolution parameter of 0.8. We used UMAP to visualize the three 

predicted unsupervised clusters where similar variants are placed together in low-dimensional 

space (Figure 3.2c-e). We performed differential expression analysis between clusters using 

DESeq2 [53]. 
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T2 scores. In order to quantify the extent to which expression profile of a variant deviates 

from the WT or the LOF variant, we used the Hotelling's two-sample T-squared statistic (T2), a 

generalization of Student’s t-statistic that is used in a two-sample multivariate hypothesis testing 

[33]. For this comparison, we employed the principal component space, and by considering the 

top 20 principal components (PC), we compared matrices of cells by 20 PCs for each variant. We 

used the hotellings2 function from the spm1d python package to compute the test statistics, named 

here as T2 scores. For each variant, first we compared against cells overexpressing the WT variant 

(T2 scores (vs. WT)), then we compared against cells overexpressing the LOF variant (T2 scores 

(vs. LOF)). Higher scores indicate a higher deviation from the variant being compared. 

Fitness analysis. To calculate fitness effects from genomic DNA reads, we first aligned 

reads to mutation barcodes (MagECK [54]) and counted the number of reads corresponding to 

each mutation for each replicate at each timepoint (days 2, 7 and 14 post transduction), resulting 

in a mutation by samples read counts matrix. We normalized read counts for each sample by 

dividing each column by its sum. We then divided read counts of each sample by the counts at day 

2 post transduction, and log2 transformed it to obtain a measurement to represent fitness effects 

for each mutation and sample. We averaged fitness measurements from the two biological 

replicates taken at day 14 to compute mean fitness scores (Figure 3.3i). 

Hierarchical variant clustering. We also hierarchically clustered variants based on 

Pearson correlation of their mean gene expression profiles. We ordered the leaves of the resulting 

dendrogram by increasing T2 scores obtained from comparison to the WT variant. To obtain 

discrete cluster assignments, we cut the hierarchy based on visual inspection, obtaining three main 

variant clusters that largely agree with WT-like, hypomorphic and LOF-like annotations (only 1 

variant difference for the hypomorphic/LOF-like separation). We further cut the hierarchy of the 
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middle cluster, representing hypomorphic variants, into three sub-clusters: named as 

hypomorphic-1, hypomorphic-2 and hypomorphic-3. 

Hierarchical gene clustering. To determine genes whose expression is impacted by 

variants, we hierarchically clustered genes based on Manhattan distance between them using mean 

gene expression profiles of variants, resulting in gene groups with various expression profiles 

across variant clusters. 

Bulk RNA-seq analysis. Sequencing reads in FASTQ format were aligned to the human 

transcriptome GRCh38 (Gencode v30 - GRCh38.p12) using STAR (version 2.7.1a) [55]. RSEM 

(version 1.3.1) is used to calculate read counts for each sample and replicate (‘rsem-calculate-

expression’ command), and to generate a gene by sample matrix (‘rsem_generate_data_matrix’ 

command) of the raw counts (‘expected_count’ column). Starting with 57,535 gene features, we 

removed genes with less than 10 reads in total across all the samples, along with mitochondrial 

and ribosomal genes, resulting in 18,646 remaining genes. 

We first normalized raw counts using the variance stabilizing transformation, which 

transforms counts on the log2 scale and normalizes with respect to library size [53]. We removed 

two outlier samples (18B and 60B: replicates B of samples with N82I and V137D mutations, 

respectively) identified based on expression profiles of top 2000 variable genes (Figure S3.6), and 

removed batch effects between replicates using the limma package [56]. For visualization 

purposes, we averaged gene expression across replicates for each sample. In order to validate 

variant clustering results obtained from scRNA-seq here in the bulk setting, we used top 2000 

variable genes obtained from the scRNA-seq analysis, to perform PCA and hierarchical clustering 

of samples and genes based on Manhattan distance. We ordered the leaves of the resulting sample 

dendrogram by increasing T2 scores obtained from the scRNA-seq analysis by comparison to the 
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WT variant. Same analysis is also performed using all replicates instead of their means (Figure 

S3.5). Differential expression analysis between samples is performed with DESeq2 [53].   

Bulk ATAC-seq analysis. Sequencing reads in FASTQ format were aligned to the human 

transcriptome GRCh38 and processed using the nf-core/atacseq pipeline (version 1.2.2) [57], built 

using Nextflow (version 22.04.0), in conjunction with Singularity. The command used is ‘nextflow 

run nf-core/atacseq -r master -name "run/name" -profile "singularity" -work-dir 

"work/directory/path" -params-file "params/file/path" --genome GRCh38’, with default 

parameters. First, fastq files from two ATAC-seq runs were merged with “cat” command for each 

read (reads 1 and 2 for paired-end data) of each replicate (three biological replicates) of each 

sample (12 samples); and the pipeline was run on the merged FASTQ files. 

Briefly, the pipeline performs adapter trimming using Trim Galore! 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), read alignment with BWA 

[58], filtering with SAMtools [59] (e.g. removal of mitochondrial reads), BEDTools [60], 

BamTools [61], Pysam (https://github.com/pysam-developers/pysam), and picard 

(https://broadinstitute.github.io/picard/), normalized coverage track generation with BEDTools 

and bedGraphToBigWig [62], genome-wide enrichment with deepTools [63], peak calling with 

MACS2 [64] (broad peaks by default), genomic features peak annotation with HOMER [65], 

consensus peak set creation with BEDTools, counting reads in consensus peaks with featureCounts 

[66], and quality control and statistics reporting with MultiQC [67]. During the consensus peak set 

creation, a peak was included only if present in at least two of the three biological replicates for 

each sample. 

Using HOMER [65], we found enriched motifs in the consensus peak set 

(findMotifsGenome function), and selected the enriched Runt domain motifs (5 motifs total) to 
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represent RUNX1 DNA binding sites. Then we identified the genomic locations of these motifs 

on the human transcriptome GRCh38 (scanMotifGenomeWide function). Using the genomic 

feature annotations (annotatePeaks function) of the peaks in the consensus set, we identified peaks 

as promoters if located within 1 kbp downstream and 100 bp upstream of the transcription start 

sites (TSS) of associated genes. We selected promoter peaks also containing RUNX1 motifs, to 

study genes regulated by RUNX1. 

Based on QC results (Figure S3.7), we selected two highest-quality ATAC-seq replicates 

of each sample for downstream analysis. Using the consensus peak set, we performed differential 

peak analysis between LOF-like, or hypomorphic samples, versus WT condition with DESeq2 

[53]. We selected RUNX1 promoter peaks that are differentially accessible (p<0.05) between 

conditions, and for the corresponding genes, we compared accessibility change to gene expression 

change by bulk RNA-seq. The coverage tracks are visualized using the IGV genome browser [68]. 

Gene set overrepresentation analysis. Gene set overrepresentation analysis is performed 

using the Gene Ontology (GO) biological process terms (2021) or the MSigDB hallmark gene sets 

(2020), with the EnrichR package [69]. 

Statistical analysis. Correlations are evaluated using the Pearson correlation coefficient. 

Odds ratios are calculated using Fisher’s exact test. Distributions are compared using a Mann–

Whitney U test. Multiple testing correction is applied where applicable. 

Data and code availability. Data will be made available via the SRA and code will be 

shared via Github. 
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3.7 Figures 

 

 
Figure 3.1. An interface-guided Perturb-seq assay for coding variant phenotyping of 
RUNX1. (a) 3D crystal structure of transcription factor CBF, consisting of RUNX1 Runt domain 
(purple) and CBFB (blue), interacting with DNA (yellow and pink strands) (PDB: 1h9d). (b) 
Amino acid residue map of the RUNX1 Runt domain. Columns represent amino acid residues, 
while rows represent interaction partners of RUNX1. At each row, interface residues involved in 
interaction to the partner are highlighted black. Rows are hierarchically clustered. On top: 3D 
location annotations of each residue (C: core, I: intermediate, S: surface), followed by VEST and 
FoldX scores of most damaging mutations targeting the residue. The darker the color, the more 
damaging (VEST) or destabilizing (FoldX) the mutation is. (c) Experimental and computational 
overview: ORF mutation library design, transduction, single cell RNA-sequencing of all 117 
library elements, bulk RNA and ATAC-sequencing of 12 selected library elements, and 
computational analysis. 
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Figure 3.2. Unsupervised analysis of RUNX1 variant transcriptional effects informs WT-
like, LOF-like and hypomorphic variants. (a-b) UMAP embedding of single cells colored by 
(a) unsupervised clusters, or (b) variant classes, obtained using the top 2000 variable genes. Cell 
cycle effects are regressed out. (c-d-e) UMAP embedding of variants constructed from mean gene 
expression vectors of the top 2000 variable genes for each variant, colored by (c) unsupervised 
clusters, (d) variant classes, or, (e) variant functional designations of WT-like, LOF-like, and 
hypomorphic for unsupervised clusters in c. (f) UMAP embedding of single cells colored by 
variant functional designations of WT-like, LOF-like, and hypomorphic obtained from 
unsupervised cluster designations in e. Cell cycle effects are regressed out. (g) Cluster enrichment 
of single cells (unsupervised clusters from a) for assigned phenotypes (from f) based on log of 
odds ratios obtained using Fisher’s exact test. Positive values indicate enrichment, while negative 
values indicate depletion. (h) T2 scores of each variant when compared to the WT (x-axis) or LOF 
(y-axis) control, colored by assigned phenotypes. (i) Fitness scores of variants computed from two 
biological replicates, colored by assigned phenotypes (R1: replicate 1, R2: replicate 2). 
 



139 
 

Figure 3.3. Mapping the phenotypic consequences of RUNX1 interface variants with 
transcriptomic analysis. (a) Heatmap showing mean expression profiles of all variable genes 
(rows) in each variant (columns). Genes and variants are hierarchically clustered into ten (row 
colors) and five clusters (column colors: green: WT-like, blue: hypomorphic-I, pink: 
hypomorphic-II, brown: hypomorphic-III, and purple: LOF-like), respectively. The leaves of the 
variant dendrogram are ordered by increasing T2WT scores. Gene expression values are z-scored. 
(b) Top 5 PC, and (c) UMAP embeddings of each variant based on their mean gene expression 
profiles. Rows are scaled to have a mean of zero and unit variance. (d) T2 scores of each variant 
when compared to the WT (circle) or LOF (cross) control, colored by phenotypes. Dotted line 
highlights value 178.79, the median of T2WT scores of all WT-like and LOF-like variants. (e) Mean 
fitness scores of variants, colored by phenotypes. (f) FoldX, and (g) VEST scores of each variant. 
Variants that could not be scored (combination of perturbation mutations, and/or WT and LOF 
variants) are grayed out and marked with an X. (h) Kernel density estimate plots comparing UMAP 
embedding distributions of single cells belonging to each assigned phenotype (WT-like (green 
line), hypomorphic-I (blue line), hypomorphic-II (pink line), hypomorphic-III (brown line), and 
LOF-like (purple line)), to the cells overexpressing the WT (green shade) or LOF variant (purple 
shade). 
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Figure 3.4. Mapping oncogenic variants into the RUNX1 regulatory landscape. (a) 3D crystal 
structure of transcription factor CBF, consisting of RUNX1 Runt domain (gray) and CBFB (blue), 
interacting with DNA (yellow and pink strands). Amino acid residues involved in interaction with 
DNA and CBFB are colored red and purple, respectively (PDB: 1h9d). (b) Odds ratios (OR) and 
95% confidence intervals using Fisher’s exact test. Enrichment or depletion of WT-like vs. 
functional (LOF-like or hypomorphic) impact variants for DNA or CBFB binding residues of 
RUNX1. OR>1 means enrichment for functional variants, while OR<1 means depletion. (c) 
Scatter plot of mutations present in cancer in terms of T2WT scores vs. mutation frequency. 
Variants are colored based on their phenotypic annotations. (d) 3D crystal structure of transcription 
factor CBF, consisting of RUNX1 Runt domain (gray) and CBFB (blue), interacting with DNA 
(yellow and pink strands). Amino acid residues mutated in cancer are colored based on their 
phenotypic effects (green: WT-like, orange: hypomorphic, purple:LOF-like). 5 most frequent 
cancer mutations are annotated (PDB: 1h9d). (e) Odds ratios and 95% confidence intervals using 
Fisher’s exact test. Enrichment or depletion of WT-like vs. functional impact variants for cancer 
mutations based on frequency. OR>1 means enrichment for functional variants, while OR<1 
means depletion. (f) A stacked bar plot showing percent distribution of phenotypic annotations of 
variants (WT-like, hypomorphic, and LOF-like) across cancers observed in different primary 
tissues. Sample size (n) for each tissue is displayed on the right. 
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Figure 3.5. Bulk RNA- and ATAC-seq analysis of 12 validation mutations. (a) Overview of 
12 validation mutations in terms of T2WT and fitness scores (obtained from the scRNAseq 
analysis), and mutation frequency in cancer. Cancer mutations are annotated. (b) PCA plot of 12 
validation mutations, in the bulk RNA-seq setting, using top 2000 variable genes from scRNA-
seq. Gene expression is averaged across replicates. (c) Hierarchical clustering of samples (rows) 
and genes (columns) in the bulk RNA-seq setting, using top 2000 genes obtained from scRNA-
seq. Gene expression is averaged across replicates. The leaves of the variant dendrogram are 
ordered by increasing T2WT scores. Gene expression values are z-scored. (d) Top 5 PC embeddings 
of each sample based on mean gene expression across replicates. Rows are scaled to have a mean 
of zero and unit variance. (e) Comparison of accessibility change to gene expression change for 
RUNX1 promoter peaks that are differentially accessible between LOF-like vs. WT, or 
hypomorphic vs. WT samples. Rows are hierarchically clustered. (f) Gene set overrepresentation 
(mSigDb hallmark gene set) of overlapping differentially accessible RUNX1 regulated promoters 
and differentially expressed genes. Top 5 gene sets are displayed. (g) Tracks of two example genes: 
ABT1, differentially accessible in the LOF variant versus WT, and ENSA, differentially accessible 
in the hypomorphic variants versus WT are visualized using the IGV genome browser. Tracks for 
each comparison are set at the same range. 
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3.8 Tables 

Table 3.1. 12 validation mutations selected for bulk RNA- and ATAC-sequencing. 
Variants Class Phenotype Cancer 

L62P perturbation Hypomorphic-2 0 

N82I perturbation Hypomorphic-1 0 

G95R perturbation Hypomorphic-2 1 

V97D perturbation Hypomorphic-2 0 

G100V perturbation Hypomorphic-2 0 

R118G perturbation Hypomorphic-3 2 

V137D perturbation Hypomorphic-2 0 

P156R perturbation Hypomorphic-1 0 

V159D perturbation LOF-like 0 

I166S positive Hypomorphic-2 0 

LOF LOF LOF-like 0 

WT WT WT-like 0 
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3.9 Supplemental Data, Tables, and Figures 

 

 
Figure S3.1. Violin plots displaying unique and total gene counts, and percentage of 
mitochondrial or ribosomal genes. In single cells, (a) before, and (b) after QC filtering. 
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Figure S3.2. Cluster enrichment of single cells for unsupervised clusters from Figure 3.2a. 
For (a) variant classes (Figure 3.2b), and (b) cell cycle phases, based on log of odds ratios obtained 
using Fisher’s exact test. Positive values indicate enrichment, while negative values indicate 
depletion. 
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Figure S3.3. Aggregated mean expression of genes for each gene group (Figure 33.a) across 
cells for each variant. 
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Figure S3.4. Gene set overrepresentation analysis results for GO Biological Process terms 
for each gene group (Figure 3.3a) displaying top 10 terms. 
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Figure S3.5. Heatmap of gene expression for bulk RNA-seq. (a) Hierarchical clustering of 
samples (rows) and genes (columns) in the bulk RNA-seq setting, using top 2000 genes obtained 
from scRNA-seq. All sample replicates are present. The leaves of the variant dendrogram are 
ordered by increasing T2WT scores. Gene expression values are z-scored. (b) Top 5 PC embeddings 
of each sample based on mean gene expression across replicates. Rows are scaled to have a mean 
of zero and unit variance. 
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Figure S3.6. Hierarchical clustering of samples identifying two outlier bulk RNA-seq 
samples. Identifying outlier samples 18B and 60B, before batch effect removal between replicates. 
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Figure S3.7. ATAC-seq plots. For number of unique reads, aligned reads after filtering (e.g. 
removal of mitochondrial reads), and number of peaks for each sample across replicates. 
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Table S3.1. Gene group (Figure 3.3a) scores for each phenotype cluster. 
 Group 

1 
Group 
2 

Group 
3 

Group 
4 

Group 
5 

Group 
6 

Group 
7 

Group 
8 

Group 
9 

Group 
10 

WT-like 0.2210 0.0318 -0.0003 0.1756 -0.0459 -0.0233 -0.0162 -0.0158 -0.0094 -0.0152 

Hypomorphic 0.3075 0.0568 0.0474 0.1038 -0.0362 -0.0262 -0.0248 -0.0100 0.0085 -0.0362 

LOF-like 0.4028 0.0563 0.0633 0.0346 -0.0401 -0.0566 -0.0098 -0.0112 -0.0151 -0.0307 
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Table S3.2. Primers. 
Name Description Sequence 

RX1_01 Used to amplify the 
dsDNA oligo pool of 
library variants for cloning 

GCCGGAGATGTCGAAGAGAATCCTGG 
ACCGATGCGTATCCCCGTAGATGC 
  

RX1_02 Used to amplify the 
dsDNA oligo pool of 
library variants for cloning 

ACAGCCAGGAAATAGTTCTAACTTAGCT 
AGTCAGTAGGGCCTCCACACG 
  

RX1_03 Used in sanger sequencing 
to identify mutation in the 
RUNX1 gene to determine 
variant in library 

CTGTGTAGAAGTACTCGCCGATAGTG 

RX1_04 Used in sanger sequencing 
to capture barcode 
associated with each 
variant 

TCTTGTCTTCGTTGGGAGTG 

RX1_05 Used in qPCR to quantify 
RUNX1 expression 

CCACCTACCACAGAGCCATCAA 
  

RX1_06 Used in qPCR to quantify 
RUNX1 expression. 

TTCACTGAGCCGCTCGGAAAAG 
  

RX1_07 Used to amplify the 
barcodes from cDNA 

GACTGGAGTTCAGACGTGTGCTCTTCC 
GATCTAGAACTATTTCCTGGCTGTTACGCG 
  

GAPDH_F Used for qPCR of 
overexpressed peptides. 

ACAGTCAGCCGCATCTTCTT 

GAPDH_R Used for qPCR of 
overexpressed peptides. 

ACGACCAAATCCGTTGATC 
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CONCLUSION 
 
 

Identifying cancer driver mutations among large numbers of passenger mutations is a major 

challenge in cancer genomics, and a variety of tools have been developed for this task. Typically, 

these tools rely on protein structure and sequence information to predict variant effects at the 

protein-level, but biological function happens through interactions among proteins and molecules 

within cells, creating a need for systems-level information to be incorporated into variant 

interpretation studies. 

There is a growing body of work that points to perturbation of the interactome as a major 

determinant of pathogenicity [1–18]. Such studies of variant distribution in biological systems 

have provided insights as to how molecular interaction networks evolve to ensure robustness or 

vulnerability to genetic variation [19]. It is increasingly apparent that the role of proteins within 

molecular networks is a key determinant of the potential of variants to exert deleterious effects 

[10,14,20]. Motivated by these studies, in this dissertation, I aimed to integrate network 

architecture information to predict variant effects in cancer. First, I designed network-based variant 

features by combining protein structure and network architecture, and showed that they add new 

information that is not already present in classical amino acid sequence or structure-based features, 

and that they can improve variant classification. Next, I demonstrated that distinct patterns of 

network rewiring of mutations can be indicative of different selective oncogenic pressures, with a 

case study of B2M and its protein partners HLA-A, HLA-B, and HLA-C, which I found evidence 

to be under immune evasion type pressures. Finally, I examined transcriptomic effects of distinct 

protein interaction perturbations as a way to better define the landscape of prospective phenotypes 

reachable by individual amino acid substitutions, by using an interface-guided Perturb-seq style 

approach on the transcription factor RUNX1, which is a master regulator of cellular programs and 
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identity. Overall, this dissertation demonstrates that variant effect interpretation can be 

significantly improved by incorporating information about the role of proteins and their molecular 

interactions within biological systems. 

One key insight gained through this work is that there was less gain in discriminatory 

potential for germline variants versus somatic variants, suggesting that network perturbing 

mutations may not be well tolerated in the germline. This highlights that interface mutations can 

have large effects on function. In cancer, it was apparent from patterns of enrichment of location 

of mutations at particular interfaces that positive and purifying selection manifests as patterns on 

the network. With the rapid growth of human variation databases, it may be possible to study 

analogous patterns of variation in the germline case, where more purifying selection appears to 

occur, which could potentially highlight network regions that are important for disease risk in 

human populations. Somatic variants found in normal tissues may provide additional insights. 

Finally, the RUNX1 study demonstrated that while most missense variants generated WT-like or 

non-functional protein, there was some limited potential for interface variants to generate new 

functions. It is interesting to speculate that the opportunity for new function might be relatively 

limited for a given protein. Does this generalize, or is there more constraint on neomorphic variants 

for essential genes than more peripheral genes?  

It is also important to consider that my approach relies on a structurally resolved PPI 

network that allows variants to be characterized according to their potential to affect network 

architecture by mapping them to their location on protein structures and protein-interaction 

interfaces. These mappings are used to capture the potential of variant positions to perturb 

information flow through the network. While use of protein structures and interface information 

allow analysis of variants by their distinct network perturbation patterns and improve variant effect 
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interpretation, it also limits availability of training set mutations due to the requirement for 

structure and interface information to estimate network feature values. It also constrains the 

coverage of mutations that can be classified. 

Additionally, data availability and quality are important considerations for network 

analyses. PPI networks remain incomplete and may contain many false positive connections. 

Furthermore, networks assembled from various published experiments may exhibit literature bias; 

proteins associated with certain phenotypes may be more studied and as a result, may appear more 

connected in the network, giving the illusion that higher degree nodes are associated with 

phenotypes of interest [21–23]. Choice of network may thus influence the biological conclusions 

drawn from network analysis. Indeed, Huang et al. [24] showed that network performance at 

recovering known disease genes varied according to the disease, and no single network performed 

best for all diseases. To partially address this issue, several methods for selecting high-quality PPI 

datasets and score the reliability of an interaction have been developed [25]. 

Structure is not available for many human proteins, limiting the investigation of variants 

affecting protein interactions. The extent to which networks themselves are complete also remains 

poorly understood. Many conclusions have been drawn based on the architecture of the human 

interactome, however some estimates suggest that at most 20% of interactions have been 

experimentally measured [26]. In addition, gene expression patterns differ widely across cell types, 

suggesting that for accurate inference, network architectures need to be cell-type specific. Indeed, 

disease network modules tend to include genes that are co-expressed in specific tissues [27], and 

several groups have now constructed tissue-specific networks to study disease variation [28,29], 

which opens future directions for variant analyses discussed in this work to be revisited in a tissue- 

or cell-type specific setting. An immediate opportunity would be to integrate tissue specific 
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expression information to generate tissue-specific network modules, though this will provide only 

a limited representation. Exhaustively experimentally determining cell-type specific interactions 

which may change under different stress conditions will be challenging, but possibly a mix of 

computational modeling and informed experiments could help guide improvements to tissue 

specific networks. This is indeed the goal of the Impact of Genomic Variants on Function 

Consortium recently established by the National Human Genome Research Institute 

(https://igvf.org/). 

Finally, network representations are usually static, whereas the biological networks that 

they represent are dynamic and conditional. Protein interactions often require particular 

localization or posttranslational modification. Novel technologies such as APEX, a proximity 

labeling technique recently developed to enable spatially resolved analysis of protein interaction 

networks [30], may provide a solution to further resolve cell-type specific interactions and 

subcellular location thereof. Distinguishing between constitutive and transient interactions, and 

cell-state specific interactions may be important for further understanding the potential of variants 

to generate relevant phenotypes [31]. 

New technologies are emerging that can accelerate the pace of interaction profiling and 

that will create more complete networks and new opportunities for analysis. Next generation 

sequencing-based interaction screening technologies allow higher throughput screening for binary 

interactions. Combining such technologies with deep mutational scanning techniques [32] could 

allow more systematic profiling of the edgetic effects of variants. Indeed, in this work, I employed 

a Perturb-seq style approach for high-throughput profiling of distinct protein interaction 

perturbation effects on single cell transcriptional profiles, to better define the landscape of 

prospective phenotypes reachable by individual amino acid substitutions in a specific cellular 
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context. This proof of concept sets the stage for future efforts to integrate the transcriptional 

consequences of variants with context specific networks to further improve predictive modeling, 

potentially implicating functional effects in specific cell-types or tissues, and provides new insight 

for both the potential importance of context and approaches to effectively explore this space. 
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