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Peyvandi et al Congenital
Fetal brain growth and risk of postnatal white matter
injury in critical congenital heart disease
Shabnam Peyvandi, MD, MAS,a Jessie Mei Lim, BSc,b Davide Marini, MD,b Duan Xu, PhD,c

V.Mohan Reddy, MD,d A. James Barkovich,MD,c StevenMiller, MD,MAS,e PatrickMcQuillen,MD,a and
Mike Seed, MBBSb
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ABSTRACT

Objective: To test the hypothesis that delayed brain development in fetuses with
d-transposition of the great arteries or hypoplastic left heart syndrome heightens
their postnatal susceptibility to acquired white matter injury.

Methods: This is a cohort study across 3 sites. Subjects underwent fetal (third
trimester) and neonatal preoperative magnetic resonance imaging of the brain
to measure total brain volume as a measure of brain maturity and the presence
of acquired white matter injury after birth. White matter injury was categorized
as no-mild or moderate-severe based on validated grading criteria. Comparisons
were made between the injury groups.

Results: A total of 63 subjects were enrolled (d-transposition of the great arteries:
37; hypoplastic left heart syndrome: 26). White matter injury was present in 32.4%
(n ¼ 12) of d-transposition of the great arteries and 34.6% (n ¼ 8) of those with
hypoplastic left heart syndrome. Overall total brain volume (taking into account
fetal and neonatal scan) was significantly lower in those with postnatal
moderate-severe white matter injury compared with no-mild white matter injury
after adjusting for age at scan and site in d-transposition of the great arteries (co-
efficient: 14.8 mL, 95% confidence interval, �28.8 to �0.73, P ¼ .04). The rate of
change in total brain volume from fetal to postnatal life did not differ by injury
group. In hypoplastic left heart syndrome, no association was noted between overall
total brain volume and change in total brain volume with postnatal white matter
injury.

Conclusions: Lower total brain volume beginning in late gestation is associated
with increased risk of postnatal moderate-severe white matter injury in d-transpo-
sition of the great arteries but not hypoplastic left heart syndrome. Rate of brain
growth was not a risk factor for white matter injury. The underlying fetal and peri-
natal physiology has different implications for postnatal risk of white matter injury.
(J Thorac Cardiovasc Surg 2020;-:1-8)
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Fetal brain volumetry in a fetus with CHD. Segmen-
tation of a 3-dimensional, steady-state, free-pre-
cession acquisition was performed to measure
TBV. The image depicted is the final volumetric im-
age of the fetal brain.
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Smaller brain volume beginning in
utero is associated with clinically
significant acquired WMI after
birth among those with d-TGA.
PERSPECTIVE
Patients with CHD have delayed brain develop-
ment and are at risk for brain injury after birth.
In this longitudinal study from fetal to neonatal
life, we identify an association between brain
immaturity and acquired brain injury in d-TGA
but not HLHS, highlighting the importance of car-
diac physiology in our understanding of brain
health in CHD.
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Abbreviations and Acronyms
CHD ¼ congenital heart disease
CI ¼ confidence interval
d-TGA ¼ d-transposition of the great arteries
HLHS ¼ hypoplastic left heart syndrome
MRI ¼ magnetic resonance imaging
TBV ¼ total brain volume
UBC ¼ University of British Columbia
UCSF ¼ University of California San Francisco
UT ¼ University of Toronto
WMI ¼ white matter injury
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Brain injury in the form of white matter injury (WMI) and
stroke is common in the full-term neonate with critical
congenital heart disease (CHD),1 such as hypoplastic left
heart syndrome (HLHS) or d-transposition of the great ar-
teries (d-TGA). Studies have shown that approximately
one-third of newborns with critical CHD have evidence of
WMI even before the neonatal operation.2 Of note, moder-
ate to severe WMI in the newborn period is associated with
impairments in motor outcomes in late infancy.3 Brain mag-
netic resonance imaging (MRI) studies in the fetus and
neonate with CHD have revealed delays in global brain vol-
umes, microstructure, and metabolic brain development.4,5

The mechanism of postnatal WMI in the patient with
CHD is thought to be related to brain immaturity similar
to mechanisms observed in the premature population. In
particular, hypoxic and ischemic events are thought to affect
selectively vulnerable cell populations including preoligo-
dendrocytes leading to WMI. Although replenishment
occurs in this progenitor cell population, maturation is ar-
rested in preoligodendrocytes resulting in impaired myeli-
nation.6 The relationship between brain immaturity and
WMI in the CHD population has been difficult to elucidate
given the myriad of risk factors in the postnatal period that
are associated with neurologic outcomes.7-9

To design effective preventative strategies in this patient
population, understanding the causal pathway to acquired
neonatal brain injury is crucial. In this study, we sought to
determine the association between fetal and neonatal brain
size and growth as a measure of maturational state with the
risk of postnatal preoperative WMI using longitudinal MRI
from fetal to postnatal life. We chose moderate to severe
WMI as the primary outcome because of the clinically rele-
2 The Journal of Thoracic and Cardiovascular Surger
vant association with impaired motor outcomes in infancy
noted in prior studies.3 We studied 2 well-characterized
groups of patients (d-TGA and HLHS) to account for vary-
ing cardiac anatomy and physiology that can influence both
our primary predictor and outcome of interest.
MATERIALS AND METHODS
Between 2010 and 2018, pregnant mothers with a fetal diagnosis of crit-

ical CHD at 3 sites (University of California San Francisco [UCSF],

University of British Columbia [UBC], and University of Toronto [UT]

Hospital for Sick Children) were invited consecutively to participate in a

prospective protocol using MRI to study brain development and brain

injury in CHD. Fetuses with a suspected congenital infection, clinical ev-

idence of a congenital malformation or syndrome, or a suspected or

confirmed genetic or chromosomal anomaly were excluded. Once written

informed consent was received, subjects underwent a fetal brainMRI in the

third trimester of pregnancy followed by a postnatal brain MRI of the

neonate before cardiac surgery. The institutional committee on human

research approved the study protocol at each site.Written informed consent

was obtained from each pregnant mother and postnatal infant’s parents.

Subjects diagnosed as having d-TGA or HLHS with both a fetal and

neonatal brain MRI were included in this study. Ten subjects

(HLHS ¼ 5; d-TGA ¼ 5) had a fetal brain MRI but did not return for a

neonatal brain MRI and were not included in the study. There were no sig-

nificant differences between the subjects included in the study and the sub-

jects who did not have repeat imaging after birth. d-TGA was defined as

great vessel malposition with the aorta arising from the right ventricle

and pulmonary artery arising from the left ventricle with or without a ven-

tricular septal defect. HLHS was defined as the presence of 1 functioning

right ventricle with varying degrees of severe left heart hypoplasia

requiring a palliative surgical intervention for survival (stage I operation)

in the newborn period. In all subjects, the cardiac diagnosis was confirmed

with postnatal echocardiography.

Magnetic Resonance Imaging Study
A fetal brain MRI was performed in the third trimester (median,

35 weeks; interquartile range, 32.6-36). Similar imaging protocols were

used at each site. The fetal scans were performed on a 1.5-T (Siemens

Avanto, Erlangen, Germany, UBC and UT) or 3-T (GE Healthcare, Wauke-

sha,WI, UCSF)MRI system. A 3-dimensional steady-state free-precession

acquisition (UT, UBC) or T2-weighted images (UCSF) were used to mea-

sure fetal brain volume. Imaging parameters used at each site are detailed in

the Supplementary Methods. All scans were postprocessed at 1 site (UT).

Postprocessing of the acquisition to segment the fetal brain was performed

by use of a combination of threshold, cutting, and filling tools with a com-

mercial software package (Mimics, Materialize, Leuven, Belgium) as pre-

viously described10 (Figure 1).

Postnatal MRI studies before cardiac surgery were performed as soon as

the baby could be safely transported to the MRI scanner as determined by

the clinical team. Imaging parameters at each site are detailed in the

Supplementary Methods. Brain volume was measured on the postnatal

scan as was done on the fetal scan (postprocessing of scans and measure-

ment of brain volumes were performed at a single site). A neuroradiologist

at each site reviewed each MRI for focal, multifocal, or global changes

blinded to clinical variables. For this study, brain injury in the form of

WMI was collected. WMI was further classified as mild (1 to 3 foci each

<2 mm), moderate (>3 foci or any foci >2 mm), or severe (>5% of

WM volume).2 We have previously demonstrated high inter-rater reli-

ability of the neuroradiology scores applied to grade the severity of brain

injury,11 as well as consistent findings when compared with quantitative

measures of WMI.3 Other forms of brain injury were also recorded
y c - 2020



FIGURE 1. Fetal brain volumetry in a fetus with CHD with segmentation of a 3-dimensional, steady-state, free-precession acquisition to measure TBV.

Three orthogonal planes are depicted with the final volumetric image of the fetal brain.
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including stroke, although all were small and not analyzed as part of the

present study.

Clinical Variables
Clinical data (including fetal, delivery, and postnatal variables) were

prospectively collected from the medical records by the study physicians

or a team of trained neonatal research nurses and reviewed by investigators

at each site blinded to all neuroimaging findings.

Statistical Analysis
Our primary outcomewas prospectively defined as the presence of mod-

erate to severe WMI on the postnatal preoperative MRI as defined earlier.

Baseline demographics were compared between those with and without

WMI within each cardiac group (d-TGA or HLHS). Our primary exposure

was total brain volume (TBV) on the fetal and neonatal MRI. We identified

a significant interaction with cardiac diagnostic group in the relationship

between our primary predictor and outcome; thus, the analysis was strati-

fied by cardiac diagnosis (HLHS and d-TGA). To take into account 2

imaging time points and within-subject correlation, we conducted a

repeated-measures analysis using generalized estimating equations to

assess the relationship between TBV at both the fetal and neonatal time

points with the prevalence of moderate to severeWMI after birth. The final
The Journal of Thoracic and C
model included an adjustment for both time at MRI (postmenstrual age at

scan) and site. All analyses were performed on Stata 14.0 software (Stata-

Corp, LP, College Station, Tex).
RESULTS
A total of 63 subjects were enrolled who had both fetal

and neonatal brain MRI scans (d-TGA ¼ 37,
HLHS ¼ 26). Baseline demographics are presented in
Table 1 by WMI severity. Gestational age at birth was on
average 1 week earlier for those with moderate-severe
WMI on the postnatal preoperative MRI, although not sta-
tistically significant (GA birth: d-TGA: 38.8 weeks, 95%
confidence interval [CI], 38.2-39.4 vs 39.1 weeks, 95%
CI, 38.7-39.5 weeks, P ¼ .5; HLHS: 38.1 weeks, 95%
CI, 37.6-38.5 vs 39.1 weeks, 95% CI, 38.5-39.9 weeks,
P ¼ .07). No other clinical or demographic factors were
different by WMI severity for either cardiac group.
Anatomic details are included in Table 1. Among the
d-TGA group, the percentage of patients with a ventricular
ardiovascular Surgery c Volume -, Number - 3



TABLE 1. Baseline demographics of study population by cardiac group and white matter injury severity (comparing those with no/mild white

matter injury with those with moderate/severe white matter injury)

d-TGA (n ¼ 37)

P value

HLHS (n ¼ 26)

P value

No/mild

WMI (n ¼ 33)

Moderate/severe

WMI (n ¼ 4)

No/mild

WMI (n ¼ 21)

Moderate/severe

WMI (n ¼ 5)

GA fetal scan Mean, 95% CI 35.1 (34.4-35.8) 34.5 (31.7-37.3) .58 34.7 (33.7-35.7) 32.8 (30.1-35.4) .07

Male 20 (60.6%) 4 (100%) .28 17 (81%) 3 (60%) .25

GA birth Mean, 95% CI 39.1 (38.7-39.5) 38.8 (38.2-39.4) .5 39.1 (38.5-39.7) 38.1 (37.6-38.5) .07

Birth weight, kg Mean, 95% CI 3.4 (3.2-3.5) 3.3 (2.8-3.9) .86 3.2 (3.0-3.5) 3.0 (2.6-3.3) .34

Birth HC, cm Mean, 95% CI 34.2 (33.8-34.7) 34 (31.7-36.2) .72 34.1 (33.2-34.9) 33.7 (33.1-34.2) .65

pH on first arterial blood

gas Mean, 95% CI

7.29 (7.26-7.33) 7.29 (7.21-7.38) .98 7.30 (7.25-7.35) 7.33 (7.24-7.41) .58

Lowest preoperative oxygen

saturation

69.1 (61.6-76.5) 64.5 (34.5-94.5) .68 80.5 (73.0-87.9) 85.4 (80.1-90.7) .48

Preoperative cardiac arrest, N (%) 1 (3.0%) 0 1.0 1 (4.8%) 0 1.0

BAS, N (%) 26 (78.8%) 2 (50%) .28 3 (14.3%) 0 1.0

VSD, N (%) 11 (33.3%) 3 (75%) .13

Aortic atresia, N (%) 10 (47.6%) 5 (100%) .05

Retrograde flow in aortic arch, N (%) 14 (66.7%) 5 (100%) .29

GA postnatal scan, Mean, 95% CI 39.6 (39.2-40.0) 39.3 (38.4-40.2) .62 39.8 (39.3-40.4) 38.5 (37.9-39.1) .02

Site .42 .46

UCSF 4 (12.1%) 1 (25%) 10 (47.6%) 4 (80%)

UBC 6 (18.2%) 1 (16.7%) 1 (4.8%) 0

Toronto 23 (69.7%) 2 (50%) 10 (47.6%) 1 (20%)

D-TGA, D-transposition of the great arteries; HLHS, hypoplastic left heart syndrome; WMI, white matter injury; GA, gestational age; CI, confidence interval; HC, head circum-

ference; BAS, balloon atrial septostomy; VSD, ventricular septal defect; UCSF, University of California San Francisco; UBC, University of British Columbia.
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septal defect was similar in those with no/mild WMI
compared with those with moderate-severe WMI. In addi-
tion, 4 subjects had an associated coarctation of the aorta,
one of which had moderate-severe WMI. Among the
HLHS group, a significantly higher percentage of patients
had aortic atresia in the moderate/severe WMI group. The
prevalence and severity of preoperative neonatal brain
injury are presented in Table 2. In the d-TGA group, 12 sub-
jects (32.4%) had WMI, of whom 4 (10.8%) had moderate
to severeWMI. In the HLHS group, 8 (34.6%) hadWMI, of
whom 5 (19.2%) had moderate to severe WMI. A small
number of patients had evidence of stroke on the neonatal
MRI (d-TGA: n ¼ 3, 8.1%; HLHS: n ¼ 2, 7.7%), all of
which were small.
TABLE 2. Prevalence and severity of preoperative brain injury by

cardiac group

d-TGA (n ¼ 37) HLHS (n ¼ 26)

Total WMI, N (%) 12 (32.4%) 8 (34.6%)

Mild WMI 8 (18.9%) 3 (11.5%)

Moderate-severe WMI 4 (10.8%) 5 (19.2%)

Stroke, N (%) 3 (8.1%) 2 (7.7%)

d-TGA, D-transposition of the great arteries; HLHS, hypoplastic left heart syndrome;

WMI, white matter injury.

4 The Journal of Thoracic and Cardiovascular Surger
The average TBVon the fetal MRI and neonatal MRI are
listed in Table 3 by cardiac group and WMI severity. The
trajectory of TBV from the fetal to neonatal time period
by WMI severity is depicted in Figure 2, A and B. In sub-
jects with d-TGA, overall TBV was significantly lower in
the group with acquired neonatal moderate to severe WMI
after adjusting for postmenstrual age at scan and site (over-
all TBVwas 14.8 mL (95%CI,�28.8 to�0.73) lower each
week from fetal to neonatal life in those with moderate to
severe WMI compared with those with no/mild WMI,
P ¼ .04) (Table 4). However, the rate of change in TBV
(ie, rate of growth) did not differ by injury group. TBV
increased at a rate of 15.5 mL/week (95% CI, 11.8-19.1)
in the subjects with no/mild WMI, whereas it increased at
a rate of 13.8 mL/week (95% CI, 7.9-19.5) in those with
moderate-severeWMI (P¼ .74). To account for differences
in anatomy, a sensitivity analysis was performed removing
the 4 d-TGA subjects with associated coarctation of the
aorta. We observed a similar trend of a lower TBV among
those with acquired neonatal moderate/severe WMI after
adjusting for age at scan and site (overall TBV was
14.7 mL (95%CI,�31.7 to 2.2) lower each week from fetal
to neonatal life in those with moderate-severe WMI
compared with those with no/mild WMI, P ¼ .08). In
y c - 2020



TABLE 3. Fetal and neonatal total brain volume by white matter injury severity on the preoperative neonatal magnetic resonance imaging in each

cardiac group

d-TGA (n ¼ 37) HLHS (n ¼ 26)

No/mild

WMI N ¼ 33

Moderate-severe

WMI N ¼ 4

No/mild

WMI N ¼ 21

Moderate-severe

WMI N ¼ 5

Fetal TBV, mL Mean, 95% CI 267.6 (254.1-281.1) 244.1 (176.2-311.9) 250.0 (231.3-268.7) 225.1 (162.2-288.0)

Neonatal TBV, mL Mean, 95% CI 336.6 (323.7-349.6) 312.0 (292.6-331.4) 330.1 (311.9-358.3) 325.8 (276.4-375.1)

d-TGA, D-transposition of the great arteries; HLHS, hypoplastic left heart syndrome; WMI, white matter injury; TBV, total brain volume; CI, confidence interval.
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subjects with HLHS, no significant difference was noted in
overall TBV between those with no/mild WMI and those
with moderate-severe WMI (coefficient 14.8, 95% CI,
�14.4 to 44.1, P ¼ .32), and there was no difference noted
in rate of change in TBV between the groups (15.1 mL/
week, 95% CI, 11.9-18.4 in no/mild WMI vs 19.1 mL/
week, 95%CI, 9.7-28.5 in moderate-severeWMI, P¼ .27).

Finally, we noted no difference in the rate of growth from
fetal to neonatal life by cardiac diagnosis. TBVincreased by
15.3 mL/week in d-TGA and 15.9 mL/week in HLHS. The
difference in slopes per 1 week increase in postmenstrual
age was minimal at 1.6 mL, 95% CI, �0.61 to 3.8,
P ¼ .16 (Figure 3).

DISCUSSION
In this prospective longitudinal study across 3 sites, we

demonstrate that lower TBVas a measure of brain maturity
beginning in the third trimester of fetal life is associated
with increased risk of acquired moderate to severe WMI
in the neonatal preoperative period in patients with
d-TGA, but not in HLHS. The rate of perinatal brain
growth, although similar between d-TGA and HLHS, was
not a risk factor for injury in either group. Our results iden-
tify important differences between HLHS and d-TGAwith
regard to acquired postnatal brain injury that brings to light
several physiologic considerations that are unique to the
fetus with complex CHD.

The overall model that informed our study design is the
concept that fetuses with CHD and restricted oxygen/
nutrient delivery have delayed brain development4,10 that
heightens their postnatal susceptibility to WMI via insta-
bility during the perinatal transitional period. The mecha-
nism of acquired WMI in term neonates with complex
CHD is thought to be secondary to hypoxic-ischemic injury
to susceptible immature premyelinating oligodendrocytes
similar to the mechanism seen in premature infants.6 As
in prior studies, we did not identify WMI on fetal MRI;
thus, we designed our study to determine whether brain
immaturity beginning in the fetal time period is associated
with postnatal acquired brain injury. Given the myriad of
risk factors associated withWMI in the CHD population af-
ter birth,7-9 isolating the relationship between brain
maturity and WMI has been challenging with varying
The Journal of Thoracic and C
results in the literature. Semiquantitative techniques have
suggested that brain immaturity is a risk factor for
WMI,12,13 whereas other studies using quantitative diffu-
sion weighted imaging have not found similar results.8 As
a crude measure of brain immaturity, relative prematurity
(ie, early term birth) has been associated with increased
risk of preoperative WMI in patients with CHD,14,15 which
was a trend observed in our study. In the present study, we
found that in subjects with d-TGA, fetal TBV is lower and
continues to remain low after birth among those who go on
to acquire postnatal moderate to severe WMI compared
with those who do not.
A piglet CHD model demonstrates that hypoxia impairs

the generation and migration of neural progenitors destined
to become forebrain interneurons and reduces overall
cortical growth.16 It is possible, that within the d-TGA
group, there are varying degrees of impaired oxygen and
nutrient delivery to the brain such that a certain subset of pa-
tients have a greater decline in cortical growth, overall brain
volumes, and maturation. Those with the most brain imma-
turity may be particularly vulnerable to hemodynamic
instability that occurs after placental separation and is often
difficult to predict prenatally17 leading to significant WMI.
Preoperative brain injury is more common in d-TGA
compared with new postoperative brain injury,18 suggesting
that fetal, perinatal, and neonatal risk factors play an impor-
tant role in the development of acquired injury.
Perinatal brain ischemia may be a significant contributor

to risk of WMI in the setting of brain immaturity. Animal
models support a role for cerebral ischemia in acquired
WMI in addition to hypoxemia. In particular, systemic hy-
potension and cerebral hypoperfusion resulting from umbil-
ical cord occlusion in the fetal lamb model result in
periventricular WMI and injury to the cerebral cortex.19,20

In the normal newborn, the transitional circulation results
in a 3- to 5-fold increase in left ventricular output due to
the decline in pulmonary vascular resistance and increase
in pulmonary blood flow. This is mirrored by dramatic re-
ductions in output from the right ventricle with removal
of the umbilical circulation.21,22 In contrast to the normal
fetus, in d-TGA, cerebral circulation is largely driven by
output from the right ventricle and is thus more dependent
on systemic venous return. These hemodynamic aberrations
ardiovascular Surgery c Volume -, Number - 5
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FIGURE 2. Rate of change in TBV from fetal to postnatal life in subjects

with d-TGA (A) and HLHS (B) by WMI severity. The plots include fetal

and neonatal brain MRI measures with a line connecting the fetal to

neonatal measurement for each subject (light orange and light red) and a

best-fitted line. The orange and light orange lines represent those with

moderate to severe WMI, and the red and light red lines represent those

with no or mild WMI. The x-axis represents gestational age at the time

of MRI and the y-axis represents TBV in milliliters. A, Among subjects

with d-TGA, overall TBV is significantly lower among those with acquired

neonatal moderate to severeWMI after adjusting for gestational age at scan

and site (P ¼ .04) with no difference noted in rate of growth between the 2

time points by injury status (P¼ .27). B, Among subjects with HLHS, there

was no significant difference in overall TBVor rate of growth by injury sta-

tus. MRI, Magnetic resonance imaging; WMI, white matter injury.

TABLE 4. Results from the repeated-measures analysis assessing the

relationship between total brain volume on both the fetal and

neonatal scans with white matter injury severity on the postnatal

scan in each cardiac group

WMI severity

d-TGA HLHS

Coefficient

(95% CI)* P value

Coefficient

(95% CI)* P value

No-mild Ref Ref

Moderate-

severe

�14.8 (�28.8

to �0.73)

.04 14.8 (�14.4

to 44.1)

.32

WMI, White matter injury; d-TGA, d-transposition of the great arteries; HLHS, hypo-

plastic left heart syndrome; CI, confidence interval. *The coefficient represents the

difference in overall TBV between those with moderate to severe WMI and those

with no or mild white matter injury after accounting for gestational age at scan

and site.
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FIGURE 3. Rate of change in TBV from fetal to postnatal life by cardiac

diagnosis group: d-TGA or HLHS. The plots include fetal and neonatal

brain MRI measures with a line connecting the fetal to neonatal measure-

ment for each subject (light blue and light green) and a best-fitted line. The

blue and light blue lines represent thosewith d-TGA and the green and light

green lines represent those with HLHS. The x-axis represents gestational

age at the time of MRI, and the y-axis represents TBV in milliliters. No dif-

ference was noted in overall TBV or the rate of change from fetal to

neonatal life between the 2 cardiac groups (P ¼ .16). MRI, Magnetic

resonance imaging; d-TGA, d-transposition of the great arteries; HLHS,

hypoplastic left heart syndrome.
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unique to the fetus with d-TGAmay lead to varying degrees
of cerebral ischemia during the transitional period from
fetal to neonatal life further contributing to acquired peri-
natal WMI. In addition, lower partial pressure of oxygen
levels before corrective cardiac surgery has been associated
6 The Journal of Thoracic and Cardiovascular Surger
with WMI in d-TGA.9 In the setting of an immature brain,
these patients may be even more sensitive to relatively low
partial pressure of oxygen levels supporting timely inter-
ventions for those with a restrictive atrial communication
or earlier corrective surgery.18 Given that all of the subjects
in this cohort were prenatally diagnosed, this cohort is
likely generally healthier with regard to perinatal clinical
characteristics and brain health compared with postnatally
diagnosed patients.23,24 Despite this advantage, a significant
percentage of subjects with d-TGA in our cohort had evi-
dence of postnatal WMI before surgery, highlighting the
y c - 2020
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potential significance of the transitional circulation as it per-
tains to perinatal/delivery room and preoperative manage-
ment to protect cerebral blood flow and minimize
ischemia. Our findings potentially provide a mechanism
to prenatally identify d-TGA subjects who are the most
vulnerable to ischemia and thus at highest risk of acquired
WMI after birth to allow for clinical care that provides
the highest degree of neuroprotection.

Perinatal brain growth from the fetal to postnatal time
period did not differ by cardiac group, similar to a prior
study.25 Oxygen and nutrient delivery to the fetal brain
are thought to be similar between HLHS and d-TGA as
seen by lower oxygen saturation levels in the ascending
aorta by fetal cardiac MRI. In addition, both subgroups
demonstrate trends toward decreased cerebral oxygen de-
livery and significantly lower cerebral oxygen consumption
compared with controls.10 Despite the similarity in peri-
natal brain growth, the 2 groups diverged in the association
between brain immaturity and acquired postnatal WMI. No
significant association was identified between brain imma-
turity and acquired postnatal WMI in HLHS suggesting that
the underlying fetal and perinatal physiology has different
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implications for postnatal risk of WMI in this group
compared with d-TGA. In particular, anatomic factors
within the HLHS group may contribute more to susceptibil-
ity to WMI during the perinatal transitional period. As
described earlier, changes during transitional circulation
such as a decline in pulmonary vascular resistance and in-
crease in pulmonary blood flow lead to a significant in-
crease in left ventricular output with a decline in right
ventricular output in the normal neonate. In the setting of
HLHS with varying degrees of left heart hypoplasia, cere-
bral blood flow and risk of ischemia might be more variable
in the transitional period depending on the presence or
absence of antegrade flow across the aorta. Thus, those at
the extreme end of the spectrum with aortic atresia and
lack of any antegrade flow to the brain are likely at highest
risk of ischemia and acquiring WMI during the transitional
period. In fact, all 5 subjects with HLHS with moderate to
severe WMI had aortic atresia in our cohort. Postnatal
studies have demonstrated an association between aortic
atresia and smaller ascending aorta size with impairments
in white matter microstructure both at birth26 and later in
life.27 Our findings for both d-TGA and HLHS suggest
B
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that future studies should focus on the transitional circula-
tion and its impact on cerebral blood flow and risk of
WMI including incorporation of anatomic details to tailor
possible interventions.

Study Strengths and Limitations
Our study was strengthened by the prospective design

with longitudinal fetal and neonatal MRI scans. In addition,
our study reports findings within homogeneous groups of
patients with HLHS or d-TGA allowing for analysis by car-
diac physiology. However, our findings are limited by the
relatively small sample size, making it challenging to deter-
mine causality in the relationship between brain maturity
and injury. The multicenter nature of this study may lead
to unmeasured confounders that can influence the relation-
ship between brain maturity and WMI; however, this was
addressed by adjusting for site in our analysis.

CONCLUSIONS
Perinatal brain development appears to be related to the

risk of clinically significant acquired postnatalWMI, partic-
ularly in patients with d-TGA (Figure 4). Given the associ-
ation between moderate to severe WMI and poor motor
outcomes in infancy,3 these findings aid in identifying im-
aging markers before birth to predict neurologic outcomes.
In addition, our results can help inform clinical trials on
perinatal interventions aimed at optimizing brain develop-
ment and minimizing clinically significant brain injury in
the CHD population.
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APPENDIX E1. SUPPLEMENTARY METHODS
Fetal Magnetic Resonance Imaging Parameters

UT: The following imaging parameters were acquired
during a single maternal breath hold: echo time, 1.74 ms;
repetition time, 3.99 ms; slice thickness, 2 mm; matrix
size, 256 3 205 3 80; field of view, 400 mm; signal
average, 1; parallel imaging factor, 2; and average scan
time, 13 seconds.

UCSF: T2-weighted anatomic images of the fetal brain
were acquired using SSFSE with the real-time platform:
TE ¼ 100 ms, TR ¼ 4 s, slice thickness ¼ 3 mm,
256 3 192 with a field of view of 28-32 cm depending on
the orientation and lipid artifacts in the field of view.

UBC: T2-weighted anatomic images of the fetal brain
were acquired using SSFSE: TE ¼ 94 ms, TR ¼ 1000 ms,
slice thickness ¼ 4 mm, flip angle ¼ 165, voxel size:
0.6348 3 0.6348 3 3.0094 mm̂3.

Neonatal Magnetic Resonance Imaging Parameters
UCSF: Studies were performed with pharmacologic

sedation, as needed, on a 3T GE MR750 system (GE
Healthcare, Waukesha, WI) and included 3D isotropic
1 mm T1-weighted IR-SPGR (TE/TR 3.5/8.7 ms, TI
450 ms), 2-mm thickness T2-weighted fast spin echo (TE/

TR 120/2000 ms) with 2 mm in-plane resolution. Addi-
tional 3D 1 mm isotropic T2 (TE/TR 93/3000 ms) scans
were also acquired when conditions permitted.
UBC: Studies were carried out without pharmacologic

sedation on a Siemens 1.5 Tesla Avanto (Siemens AG,
Healthcare Sector, Erlange, Germany) using a VB 13A
software (Siemens AG, Healthcare Sector) and included
3-dimensional coronal volumetric T1-weighted images
(TR, 36 msec; TE, 9.2 msec; field of view, 200 mm; slice
thickness, 1 mm; section gap, 0) and axial fast spin-echo
T2-weighted images (TR, 4610 msec; TE, 107 msec; field
of view 160 mm; slice thickness, 4 mm; section gap,
0.2 mm).
UT: Studies were carried out without pharmacologic

sedation on a Siemens 1.5 Tesla Avanto (Siemens AG,
Healthcare Sector, Erlange, Germany) and included volu-
metric 3D T1-weighted imaging (TE/TR of 3/1920ms, field
of view of 200 3 200 3 200 mm, matrix size of
256 3 256 mm, slice thickness of 0.8 mm), and axial T2-
weighted imaging (TE/TR of 210/9970 ms, field of view
of 140 3 140 3 114 mm, matrix size of 218 3 320 mm,
slice thickness of 4 mm).
Image acquisitions were optimized at each site with a

consistent scanning protocol for the duration of the study.
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Smaller brain volume beginning in utero is associated with clinically significant acquired WMI

after birth among those with d-TGA.
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