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ABSTRACT OF THE DISSERTATION

Design and applications of novel computational methods for the study of quantum

properties of emergent nanomaterials and biomolecules

by

Shivang Agarwal

Doctor of Philosophy in Electrical & Computer Engineering

University of California, Los Angeles, 2024

Professor Kang Lung Wang, Co-Chair

Professor Amartya Sankar Banerjee, Co-Chair

We discuss the formulation and use of computational first principles-based methods to study

the electronic structure and quantum properties of novel nanomaterials and biomolecules. A

helical symmetry-adapted spectral framework, HelicES, is developed for the electronic struc-

ture calculation of quasi-one-dimensional structures with imposed or intrinsic twists. Such

structures, including nanotubes and nanoribbons, have the potential to exhibit fascinating

electronic, optical, and transport properties. We explore the convergence properties of our

method, and assess its accuracy by comparison against reference finite difference, transfer

matrix method and plane-wave results. Next, we introduce a pseudo-spectral representation

of the Laplacian in helical coordinates, which lays down the path towards incorporating self

consistency within HelicES by enabling an efficient evaluation of the electrostatic potential.

Here too, we provide a comparison between our method and other conventional methods

used for the evaluation of this Newtonian potential, such as Ewald summations. Then, in

a slightly different line of work involving quantum properties of biomolecules, we present a

ii



detailed and comprehensive study on calcium phosphate clusters, most notably, the calcium

phosphate trimer (Posner molecule). First, we use ab initio methods to examine the struc-

tural ensemble of these clusters. This is essential to then calculate the phosphorus nuclear

spin state lifetimes in these molecules, in light of the claim that these spin states in pairs

of Posner molecules might be extremely long-lived. Our work, however, conclusively proves

that the Posner molecule does not maintain long-lived spin states. Lastly, realizing that

many of the frameworks developed and discussed in this work have poor (cubic) scaling with

respect to the system size, we also discuss the development of a generalised machine learning

framework to overcome this intrinsic limitation of density functional theory (DFT) calcula-

tions. We showcase the utility of the uncertainty quantification-enabled method to systems

beyond the reach of conventional DFT calculations, i.e. those with millions of atoms. We

end with a brief discussion on the ongoing and future applications of our work which may

find uses in the study and discovery of novel nanomaterials.
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CHAPTER 1

Introduction

Low dimensional materials have been intensely investigated in the past few decades due to

their remarkable electronic, optical, transport and mechanical characteristics [20, 21]. The

properties of these materials often provide sharp contrasts with the bulk phase, and have

led to various technological applications, including e.g., new kinds of sensors, actuators and

energy harvesting devices [22, 23, 24, 25, 26, 27]. Quasi-one-dimensional materials — which

include nanotubes, nanoribbons, nanowires, nanocoils, as well as miscellaneous structures

of biological origin [28, 29] — are particularly interesting in this regard. This is due to the

unique electronic properties that emerge as a result of the availability of a single extended

spatial dimension in these structures [30, 31, 32, 33], the possibility that they are associated

with ferromagnetism, ferroelectricity, and superconductivity [34, 35, 36, 37], and the fact

that the behavior of these materials may be readily modulated via imposition of mechanical

deformation modes such as torsion and/or stretching. [5, 38, 39]. Quasi-one-dimensional

materials have also been investigated as hardware components for computing platforms —

both conventional [40, 41] and quantum [42]. The applications of such materials in the latter

case are connected to anomalous transport (the Chiral Induced Spin Selectivity effect [43])

and exotic electronic states [44] that can be observed in such systems.

Given the importance of quasi-one-dimensional materials, it is highly desirable to have

available computational methods that can efficiently characterize the unique electronic prop-

erties of these systems. However, conventional electronic structure calculation methods —

based e.g. on plane-waves [45, 46] — are generally inadequate in handling them. This is
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a result of the non-periodic symmetries in the atomic arrangements of such materials. As

a result of these symmetries, the single particle Schrödinger equation associated with the

electronic structure problem exhibits special invariances [4, 47], which plane-waves, being in-

trinsically periodic, are unable to handle. For example, ground state plane-wave calculations

of a twisted nanoribbon (see Fig. 2.1a) will usually involve making the system artificially

periodic along the direction of the twist axis — thus resulting in a periodic supercell con-

taining a very large number of atoms, as well as the inclusion of a substantial amount of

vacuum padding in the directions orthogonal to the twist axis, so as to minimize interactions

between periodic images. Together, these conditions can make such calculations extremely

challenging even on high performance computing platforms, if not altogether impractical.

There have been a few attempts to treat quasi-one-dimensional materials using Linear Com-

bination of Atomic Orbitals (LCAO) based techniques [48, 49, 50, 51, 52, 53]. However, such

methods suffer from basis incompleteness and superposition errors [54, 55, 56], which can

make it difficult to obtain systematically convergent and improvable results.

In view of these limitations of conventional methods, a series of recent contributions has

explored the use of real space techniques to study quasi-one-dimensional materials and their

natural deformation modes [4, 5, 57, 58]. Specifically, this line of work incorporates the

helical interaction potentials present in such systems using helical Bloch waves and employs

higher order finite differences to discretize the single particle Schrödinger equation in helical

coordinates. While this technique shows systematic convergence, and has enabled the explo-

ration of various fascinating electromechanical properties, it also has a number of significant

drawbacks. First, due to the curvilinearity of helical coordinates, the discretized Hamiltonian

appearing in these calculations is necessarily non-Hermitian [59, 60]. This complicates the

process of numerical diagonalization and makes many of the standard iterative eigensolvers

[61] unusable. Second, the discretized equations have a coordinate singularity along the sys-

tem axis which restricts the use of the methods to tubular structures and prevents important

nanomaterials such as nanowires and nanoribbons from being studied. The presence of the
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singularity also tends to ill condition the discretized Hamiltonian, which further restricts the

applicability of the method to systems in which the atoms lie far enough away from the sys-

tem axis (e.g. larger diameter nanotubes). Finally, while the finite difference approach does

allow for the simulation of materials with twist (intrinsic or applied), the sparsity pattern

of the discretized Hamiltonian worsens upon inclusion of twist, making simulations of such

systems significantly more burdensome.

In this work we formulate and implement a novel computational technique that remedies

all of the above issues and allows one to carry out systematic numerical solutions of the

Schrödinger equation, as it applies to quasi-one-dimensional materials and structures. The

technique presented here can be thought of as an analog of the classical plane-wave method,

and is similar in spirit to the spectral scheme for clusters presented in [62]. Like the clas-

sical plane-wave method, a single parameter (the kinetic energy cutoff) dictates the overall

quality of solution of our numerical scheme. We present a derivation of the basis functions

of our method — called helical waves (or twisted waves) — as eigenfunctions of the Lapla-

cian under suitable boundary conditions. We describe how helical waves may be used to

discretize the symmetry adapted Schrödinger equation for quasi-one-dimensional materials,

and how matrix-free iterative techniques can be used for diagonalization. A key feature of

our technique is the handling of convolution sums through the use of fast basis transforms,

and we describe in detail how these transforms are formulated and implemented. We also

discuss various other computational aspects, including the choice of eigensolvers and pre-

conditioners, and the handling of oscillatory radial integrals that appear in our method. We

have implemented these techniques into a MATLAB [63] package called HelicES (Helical

Electronic Structure), which we use for carrying out demonstrative electronic structure cal-

culations of various quasi-one-dimensional materials. We also present results related to the

convergence, computational efficiency and accuracy properties of our method, while using

finite difference, transfer matrix and plane-wave methods for reference data.

We remark that our technique has connections with methods presented in earlier work
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concerning electronic structure calculations in cylindrical geometries [64, 65, 66, 67, 68], but

is more general in that the use of helical waves automatically allows both chiral (i.e., twisted)

and achiral (i.e., untwisted) structures to be naturally handled. Additionally, some of these

earlier studies have employed the strategy of setting up of the discretized Hamiltonian ex-

plicitly and then using direct diagonalization techniques, which scales in a significantly worse

way (both in memory and computational time) compared to the transform based matrix-free

strategies adopted by us. We also note in passing that the basis functions presented here ap-

pear to be scalar versions of twisted wave fields explored recently in the x-ray crystallography

[69, 70] and elastodynamics [71, 72] literature.

Often, at the heart of such methods is the problem of evaluation of Newtonian potentials,

that can be reformulated in terms of scalar Poisson equations [73]. We propose here a

mixed spectral – finite-difference based numerical method for solving the Poisson problem for

twisted geometries. Our computational method relies on expressing the governing equations

in helical coordinates, and then using fast Fourier transforms along two coordinate directions,

while incorporating finite differences along the third. The coordinate singularity at the origin

is handled using suitable pole conditions [74, 75, 76]. Radial boundary conditions consistent

with the decay of electrostatic potentials are naturally incorporated in our method, and

the technique can also take advantage of cyclic symmetries that may be present in the

problem. We demonstrate systematic convergence properties of the method and discuss

issues governing its overall accuracy. We also present performance comparisons between

our method and alternates based on helical Ewald sums [10] and analytical solutions (when

available), and demonstrate orders of magnitude gains. We showcase the utility of our

method in electronic structure calculations of one-dimensional nanomaterials, especially as

they are subjected to twisting deformations. This lays down much of the groundwork for

incorporating self consistency within the helical waves framework developed in our works.

In addition to the above, and in line with the theme of computational methods to study

emergent nanomaterials and biomolecules, we extend our efforts towards the study of Posner
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Molecules (PMs) [77]. The PM (calcium phosphate trimer, Ca9(PO4)6), was first hypoth-

esized to exist in the bone mineral hydroxyapatite [77], and has since been identified as

the structural unit of amorphous calcium phosphate [78]. Its aggregation is thought to

underpin bone growth [79, 80, 81, 82]. Although the Posner molecule is yet to be unam-

biguously experimentally observed in an isolated form, its biochemical relevance has long

been recognized. In recent years, Fisher and co-workers have suggested that pairs of iso-

lated Posner molecules could act as “neural qubits” by harboring long-lived entangled spin

states amongst the twelve 31P nuclei [11, 15, 83]. This has been hypothesized to facilitate

long-range quantum-correlated release of Ca2+ ions in pre-synaptic neurons and thus, to

potentially give rise to correlated post-synaptic neuron firing [15].

Central to the above-mentioned proposal is the supposed S6-symmetric arrangement of

the molecule, wherein a rotational axis of symmetry allows the binding and unbinding of

Posner molecules to act as a “pseudospin” entangler for the nuclear spin states [11, 15].

However, through an extensive series of first principles simulations, we demonstrate [14]

that the Posner molecule does not exhibit the required symmetry and instead exists as a

dynamical ensemble of predominantly low-symmetry clusters. Given that all prior works

[11, 16], until now, have considered the S6-symmetric structure of the Posner molecule to

make theoretical predictions on the entanglement times of the nuclear spin states and for

examining the viability of the molecule as a potential biomolecular qubit, here, we explore if,

and for how long, 31P nuclear spin coherences can be maintained for the multiple asymmetric

configurations found in our work.

While our studies above were fruitful, we were often limited on the size of the structures

that we could simulate and the accuracy of those simulations. This is due to the inherent

cubic scaling of KS-DFT with respect to the number of atoms in the simulation cell. Most ab

initio frameworks — which forms the bulk of the computational methodologies used in this

study — are subject to similar limitations. To address this challenge, a number of different

approaches, which vary in their computational expense and their range of applicability, have
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been proposed over the years. Such techniques generally avoid explicit diagonalization of

the Kohn-Sham Hamiltonian in favor of computing the single particle density matrix [84].

Many of these methods are able to scale linearly with respect to the system size when bulk

insulators or metals at high temperatures are considered [84, 85, 86, 87, 88], while others

exhibit sub-quadratic scaling when used for calculations of low-dimensional materials (i.e.,

nanostructures) [89, 90]. Contrary to these specialized approaches, there are only a handful

of first-principles electronic structure calculation techniques that operate universally across

bulk metallic, insulating, and semiconducting systems, while performing more favorably

than traditional cubic scaling methods (especially, close to room temperature). However,

existing techniques in this category, e.g. [91, 92], tend to face convergence issues due to

aggressive use of density matrix truncation, and in any case, have only been demonstrated

for systems containing at most a few thousand atoms, due to their overall computational

cost. Keeping these developments in mind, a separate thread of research has also explored

reducing computational wall times by lowering the prefactor associated with the cubic cost

of Hamiltonian diagonalization, while ensuring good parallel scalability of the methods on

large scale high-performance computing platforms [93, 94, 95, 96]. In spite of demonstrations

of these and related methods to study a few large example problems (e.g. [97, 98, 99]), their

routine application to complex condensed matter systems, using modest, everyday computing

resources appears infeasible.

An attractive alternative path to overcoming the cubic scaling bottleneck of KS-DFT —

one that has found much attention in recent years — is the use of Machine Learning (ML)

models as surrogates [100, 101]. Indeed, a significant amount of research has already been

devoted to the development of ML models that predict the energies and forces of atomic

configurations matching with KS-DFT calculations, thus spawning ML-based interatomic

potentials that can be used for molecular dynamics calculations with ab initio accuracy [102,

103, 104, 105, 106, 107]. Parallelly, researchers have also explored direct prediction of the

ground state electron density via ML models trained on the self-consistent electron density
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obtained from KS-DFT simulations [108, 109, 110, 111, 112, 113]. This latter approach is

particularly appealing, since, in principle, the ground state density is rich in information that

goes well beyond energies and atomic forces, and such details can often be extracted through

simple post-processing steps. Development of ML models of the electron density can also lead

to electronic-structure-aware potentials, which are likely to overcome limitations of existing

Machine Learning Interatomic Potentials, particularly in the context of reactive systems

[114, 115]. Having access to the electron density as an intermediate verifiable quantity is

generally found to also increase the quality of ML predictions of various material properties

[108, 116], and can allow training of additional ML models. Such models can use the density

as a descriptor to predict specific quantities, such as defect properties of complex alloys

[117, 118] and bonding information [119]. Two distinct approaches have been explored in

prior studies to predict electron density via Machine Learning, differing in how they represent

the density – the output of the machine learning model. One strategy involves representing

the density by expanding it as a sum of atom-centered basis functions [120, 121]. The other

involves predicting the electron density at each grid point in a simulation cell. Both strategies

aim to predict the electron density using only the atomic coordinates as inputs. While the

former strategy allows for a compact representation of the electron density, it requires the

determination of an optimized basis set that is tuned to specific chemical species. It has

been shown in [120] that the error in the density decomposition through this strategy can be

reduced to as low as 1%. In contrast, the latter strategy does not require such optimization

but poses a challenge in terms of inference - where the prediction for a single simulation cell

requires inference on thousands of grid points (even at the grid points in a vacuum region).

The former strategy has shown good results for molecules [120] while the latter has shown

great promise in density models for bulk materials especially metals [110, 122, 112].

In this work, we use the latter approach and propose a machine-learning model that

accurately predicts the ground state electron density of bulk materials at any scale, while

quantifying the associated uncertainties. Once trained, our model significantly outperforms

7



conventional KS-DFT-based computations in terms of speed. To address the high cost of

training data generation associated with KS-DFT simulations of larger systems — a key

challenge in developing effective ML surrogates of KS-DFT — we adopt a transfer learning

(TL) approach [123]. Thus, our model is first trained using a large quantity of cheaply

generated data from simulations of small systems, following which, a part of the model is

retrained using a small amount of data from simulations of a few large systems. This strategy

significantly lowers the training cost of the ML model, without compromising its accuracy.
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CHAPTER 2

HelicES: A symmetry-adapted spectral electronic

structure method

2.1 Formulation

In this section, we describe our formulation of our spectral electronic structure framework

for quasi-one-dimensional materials with arbitrary twists. We first lay out the notation used

in the rest of the paper. In what follows, eX, eY, eZ will denote the standard orthonormal

basis of R3. Position vectors will be typically denoted using boldface lower case letters (e.g.,

p) and rotation matrices using boldface uppercase (e.g., Q).The atomic unit system of me =

1, ℏ = 1, 1
4πϵ0

= 1 will be used throughout the paper, unless otherwise mentioned. Cartesian

and cylindrical coordinates will be typically denoted as (x, y, z) and (r, ϑ, z) respectively.

The × sign will be reserved for denoting dimensions of matrices (e.g. using M×N to denote

the dimensions of a matrix with M rows and N columns), while ∗ will be used to explicitly

denote multiplication by or in between scalars, vectors and matrices.

2.1.1 Description of physical system and computational problem

We consider a quasi-one-dimensional nanostructure of infinite extent aligned along eZ (see

Fig. 2.1). We assume the structure to be of limited extent along eX and eY. Let the atoms

of the structure have coordinates:

S = {p1,p2,p3, · · · : pi ∈ R3} . (2.1)
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Quasi-one-dimensional structures in their undeformed states, or while being subjected to

natural deformation modes such as extension, compression or torsion, can often be described

using helical (i.e., screw transformation) and cyclic symmetries [4, 5, 29, 47]. Accordingly,

we may identify a finite subset of atoms of the structure with coordinates:

P = {r1, r2, r3, . . . , rM : ri ∈ R3} , (2.2)

and a corresponding set of symmetry operations:

G =
{
Υζ,µ =

(
R(2πζα+µΘ)| ζτeZ) : ζ ∈ Z, µ = 0, 1, . . . ,N− 1

}
, (2.3)

such that:

S =
⋃
ζ∈Z

µ=0,1,...,N−1

M⋃
i=1

R(2πζα+µΘ)ri + ζτeZ . (2.4)

Here, the Υζ,µ are symmetry operations of the structure — specifically, each Υζ,µ is an

isometry whose action on an arbitrary point x ∈ R3 (denoted as Υζ,µ ◦ x) is to rotate it by

the angle 2πζα + µΘ about eZ, while simultaneously translating it by µτ about the same

axis. The natural number N is related to cyclic symmetries in the nanostructure about the

axis eZ, with Θ = 2π/N denoting the cyclic symmetry angle. The quantity τ is the pitch

of the screw transformation part of Υζ,µ, the parameter α takes values 0 ≤ α < 1, and

β = 2πα/τ captures the rate of twist (imposed or intrinsic) in the structure. The case α = 0

usually represents achiral or untwisted structures (see Fig. 2.1) .

The electronic properties of a quasi-one-dimensional material under study can be inves-

tigated by calculating the spectrum of the single particle Schrödinger operator:

H = −1

2
∆ + V (x) , (2.5)

associated with the system. Determination of the spectrum in an efficient manner, especially

for realistic quasi-one-dimensional nanomaterials serves as the primary computational prob-

lem of interest in this work. Here, V (x) represents the “effective potential” as perceived by
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(b) An armchair nanotube

Figure 2.1: Examples of the type of nanostructures that can be investigated using the com-

putational framework presented in this work. Helical and cyclic symmetry parameters asso-

ciated with the geometries of the structures are shown.

the electrons. The potential can be computed through self-consistent means (for example, as

part of Density Functional Theory calculations [4, 5]), or through the use of empirical pseu-

dopotentials [124, 125], as done here. Due to the presence of global structural symmetries,

the potential is expected to obey:

V (x) = V (Υζ,µ ◦ x) ,∀Υζ,µ ∈ G . (2.6)

As a consequence of the quasi-one-dimensional nature of the system, and the above symmetry

conditions, the eigenstates of the Hamiltonian can be characterized in terms of Helical Bloch
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waves [4, 47]. Specifically, solutions of the Schrödinger equation:

(
− 1

2
∆ + V (x)

)
ψ = λψ , (2.7)

can be labeled using band indices j ∈ N, and symmetry adapted quantum numbers η ∈[
−1

2
, 1
2

)
, ν ∈ {0, 1, 2, . . . ,N− 1}. Moreover, these solutions obey the following condition for

any symmetry operation Υζ,µ ∈ G:

ψj(Υζ,µ ◦ x; η, ν) = e−2πi
(
ζη+µν

N

)
ψj(x; η, ν) . (2.8)

The above relation can be used to reduce the computational problem of determining the

eigenstates of the Schrödinger operator over all of space, to a fundamental domain or

symmetry-adapted unit cell.

Since the structures considered here have limited spatial extent in the eX− eY plane, so

does the computational unit cell. We denote the maximum radial coordinate of the points in

the computational domain as R. Then, this region of space (see Fig. 2.3) can be parametrized

in cylindrical coordinates as:

D =
{
(r, ϑ, z) : 0 ≤ r ≤ R,

2παz

τ
≤ ϑ ≤ 2παz

τ
+Θ, 0 ≤ z ≤ τ

}
. (2.9)

Due to the decay of the wavefunctions in the radial direction [126, 127], it is often appropriate

to enforce Dirichlet boundary conditions on the surface r = R, as done here. In practice,

the value of R can be chosen so as to ensure a sufficient amount of vacuum exists between

the structure under study and this lateral boundary surface [4, 57].

2.1.2 The helical coordinate system and transformation of Schrödinger’s equa-

tion

For computational purposes, it is useful to utilize a coordinate system that describes the

computational domain D, and the quasi-one-dimensional system’s symmetries more natu-

rally. To this end, we employ helical coordinates [47, 128, 129] in this work (Fig. 2.2). For
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a point p ∈ R3 with Cartesian coordinates (xp, yp, zp), cylindrical coordinates (rp, ϑp, zp),

and helical coordinates (θ1 p, θ2 p, rp), the following relations hold:

rp =
√
x2p + y2p , θ1 p =

zp
τ
,

θ2 p =
1

2π
arctan 2 (yp, xp)− α

zp
τ

=
ϑp

2π
− αzp

τ
.

(2.10)

Regardless of the amount of twist or cyclic symmetries present in the system, the fundamental

domain D (eq. 2.9) can be conveniently expressed as a cuboid in helical coordinates, i.e.,

D =
{
(θ1, θ2, r) : 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤

1

N
, 0 ≤ r ≤ R

}
. (2.11)

Thus, it is easier to setup a computational mesh over the fundamental domain using helical

coordinates. Moreover, the action of the symmetry operations Υζ,µ ∈ G is to simply result

in translations of the helical coordinates: if p ∈ R3 has helical coordinates (θ1 p, θ2 p, rp),

then Υζ,µ ◦ p has helical coordinates
(
θ1 p + ζ, θ2 p + µ

N
, rp
)
. In particular, this implies that

θ2 = constant

θ1 = constant

r = constant

Figure 2.2: The helical coordinate system represented as constant surfaces of the parameters

r, θ1, θ2 (the twist parameter α is nonzero here).

a function that is group invariant may be represented over the computational domain by

means of periodic boundary conditions along the θ1 and θ2 directions.

Next, we formulate the governing equations, i.e., Helical-Bloch wave form of Schrodinger’s

equation over the fundamental domain using helical coordinates. To this end, we first note
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0 to R

0 to 1

0 to 1
N

Computational mesh and domain
in simulation space (helical coordinates)

Helical coordinate

transformation

τ

R

2π
N

Computational mesh and domain
in physical space (Cartesian coordinates)

Figure 2.3: The computational mesh represented in simulation space using helical coordinates

(left), and physical space using Cartesian coordinates (right). The slanted walls of the

fundamental domain D in physical space (right) arise due to possibly arbitrary values of

twist associated with the system.

that:

−1

2
∆ψj + V ψj = −

1

2

[(
ψj

)
rr
+

1

r

(
ψj

)
r
+

1

τ 2
(
ψj

)
θ1θ1
− 2α

τ 2
ψθ1θ2

+
1

4π2

(
1

r2
+

4π2α2

τ 2

)(
ψj

)
θ2θ2

]
+ V ψj = λjψj

(2.12)

Then, we recast eq. 2.8 to imply that the wavefunctions admit the following Helical Bloch

ansatz [5]:

ψj(θ1, θ2, r; η, ν) = e−i2π(ηθ1+νθ2)ϕj(θ1, θ2, r; η, ν) . (2.13)

Here, η ∈
[
−1

2
, 1
2

)
, ν ∈ {0, 1, 2, . . . ,N − 1}, and the auxiliary functions ϕj(θ1, θ2, r; η, ν) are

group invariant. In particular, this implies that these functions obey the conditions:

ϕj(θ1, θ2, r; η, ν) = ϕj(θ1 + 1, θ2, r; η, ν)

ϕj(θ1, θ2, r; η, ν) = ϕj(θ1, θ2 +
1

N
, r; η, ν) .

(2.14)

Substituting eq. 2.13 into the Schrödinger equation above (eq. 2.12) and after some algebra,

we arrive at:[
− 1

2
∆ϕj −

(
2π2

τ 2

{
να (2η − να)− η2

}
− ν2

2r2

)
ϕj −

2iπ

τ 2
(να− η)

(
ϕj

)
θ1

−2iπ
[ α
τ 2

(η − να)− ν

4π2r2

] (
ϕj

)
θ2
+ V ϕj

]
= λjϕj .

(2.15)
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This serves as the governing equation for the computational method in this work. It needs

to be discretized and solved over the fundamental domain along with the enforcement of

periodic boundary conditions in the θ1 and θ2 directions (eq. 2.14), and the imposition of

wavefunction decay in the radial direction, i.e.:

ϕj(θ1, θ2, r = R; η, ν) = 0 . (2.16)

Note that due to eq. 2.6, the effective potential in helical coordinates, V (θ1, θ2, r), also obeys

conditions of the form outlined in eq. 2.14, although it is generically not expected to obey

the decay conditions similar to eq. 2.16.

2.1.3 Basis set and discretization

We now discuss discretization of the governing equations using helical waves. First, we derive

the basis set that we use in this work. In analogy to the classical plane-wave method [45, 46],

the basis functions in our scheme are eigenfunctions of the Laplacian. However, instead

of periodic boundary conditions obeyed by planewaves, we consider boundary conditions

resulting from invariance under helical and cyclic symmetries. The calculation presented

below is based on similar results in [47], while a vector version of this calculation appears in

[69, 70] in the context of x-ray diffraction patterns of twisted nanomaterials.

Let F (θ1, θ2, r) be a basis function expressed in helical coordinates. Then, invariance

under helical and cyclic symmetries implies that this function must be periodic in θ1 with a

period of 1, and also periodic in θ2 with a period of 1
N

. Assuming F (θ1, θ2, r) is separable,

we characterize the dependence of the function on θ1 and θ2 through Fourier modes (i.e.,

complex exponentials), and write:

Fm,n,k(θ1, θ2, r) = ei2π(mθ1+nNθ2) ξ(r) . (2.17)

Here ξ(r) is a purely radial function that possibly depends on m,n, k, and incorporates
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normalization constants. The Laplacian of the above function in the helical coordinates is:

∆Fm,n,k = ξr e
i2π(mθ1+nNθ2) +

1

r
ξrr e

i2π(mθ1+nNθ2) − 4π2m2

τ 2
Fm,n,k

+
8απ2nmN

τ 2
Fm,n,k −

(
1

r2
+

4π2α2

τ 2

)
n2N2Fm,n,k ,

(2.18)

which can be rewritten as:

∆fm,n,k = ei2π(mθ1+nNθ2)

[
ξrr +

1

r
ξr

]
− Fm,n,k

[
n2N2

r2
+

4π2

τ 2
(m− αnN)2

]
. (2.19)

Now, imposing the condition that fm,n,k is an eigenfunction of the Laplacian, i.e.,

−∆Fm,n,k = λ0m,n,k Fm,n,k , (2.20)

we get:

−ei2π(mθ1+nNθ2)

[
ξrr +

1

r
ξr

]
+ ei2π(mθ1+nNθ2)

[
n2N2

r2
+

4π2

τ 2
(m− αnN)2

]
ξ

=λ0m,n,k e
i2π(mθ1+nNθ2)ξ ,

(2.21)

which simplifies to:

ξrr +
1

r
ξr − ξ

[
n2N2

r2
− λ0m,n,k +

4π2

τ 2
(m− αnN)2

]
= 0 . (2.22)

Denoting ξ2m,n = 4π2

τ2
(m− αnN)2 and performing the change of variables:

r̃ = r
√
λ0m,n,k − γ2m,n , ξ(r) = ξ̃(r̃) , (2.23)

we see that the above equation reduces to:

r̃2 ξ̃r̃r̃ + r̃ ξ̃r̃ + (r̃2 − n2N2)ξ̃ = 0 . (2.24)

This is simply Bessel’s equation [130, 131] in ξ̃(r̃). Since nN is real, the general solution of

this equation can be expressed in terms of ordinary Bessel functions of the first and second

kind as:

ξ̃(r̃) = AJnN(r̃) +B YnN(r̃) . (2.25)
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To evaluate the constants A and B, we need to invoke boundary and normalization condi-

tions. Since the wavefunctions are expected to be finite valued at the origin (r = 0), and

Bessel functions of the second kind approach infinity near 0, we conclude that B = 0. Fur-

thermore, since the wavefunctions obey Dirichlet boundary conditions on the lateral surface

of the computational domain (r = R), so should the basis functions used to discretize them.

Hence, we obtain:

ξ

(
R
√
λ0m,n,k − γ2m,n

)
= AJnN

(
R
√
λ0m,n,k − γ2m,n

)
= 0 . (2.26)

This implies that R
√
λ0m,n,k − γ2m,n must be a root of the the ordinary Bessel function of the

first kind. Denoting the kth root (k = 1, 2, . . .) of the Bessel function of order p, as bpk, we

see that:

bnNk = R
√
λ0m,n,k − γ2m,n , (2.27)

from which, it follows that:

λ0m,n,k =

(
bnNk
R

)2

+

[
2π

τ
(m− αnN)

]2
. (2.28)

Thus, we have:

ξ(r) = AJnN

(
bnNk
R
r

)
. (2.29)

Finally, to determine the constant A, we apply the orthonormality condition between two

distinct basis functions Fm,n,k and Fm′,n′,k′ :

⟨Fm,n,k, Fm′,n′,k′⟩L2(D) = δm,m′ δn,n′ δk,k′ . (2.30)

This requires that:

A2

∫ 1

0

ei2π(m−m′)θ1dθ1×
∫ 1

N

0

ei2πN(n−n′)θ2dθ2

×
∫ R

0

JnN

(
bnNk r

R

)
Jn′N

(
bn

′N
k′ r

R

)
2πτrdr = δm,m′ δn,n′ δk,k′ .

(2.31)
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Due to the properties of complex exponentials and Bessel functions, we note that this condi-

tion is readily satisfied for distinct basis functions (i.e., when any of the conditions m ̸= m′,

n ̸= n′, k ̸= k′ hold). For the case m = m′, n = n′, k = k′, we arrive at:

2πτA2

N

∫ R

0

J2
nN

(
bnNk r

R

)
rdr = 1 , (2.32)

i.e.,

2πτA2

N

R2

2
J2
nN+1

(
bnNk
)
= 1 . (2.33)

Thus it follows that the normalization constant:

A =

√
N

πτ

1

RJnN+1

(
bnNk
) , (2.34)

and that:

ξ(r) ≡ ξn,k(r) =

√
N

πτ

1

RJnN+1

(
bnNk
) JnN(bnNk

R
r

)
. (2.35)

Hence, the basis functions in our method have the form:

Fm,n,k (θ1, θ2, r) =

√
N

πτ

1

RJnN+1

(
bnNk
) ei2π(mθ1+nNθ2) JnN

(
bnNk r

R

)
. (2.36)

Note that if the computational domain were an annular cylinder (as employed in [4, 5]),

instead of the solid cylinder considered here, the boundary conditions on the radial part of

the wavefunction would be expected to change. For Dirichlet boundary conditions applied

to the inner and outer walls of such an annular cylinder — often employed in simulations of

large diameter nanotubes — Bessel functions of both kinds would be involved (i.e., A,B ̸= 0

in eq. 2.25) and the zeros of the cross products of Bessel functions [132] would be required.

With the knowledge of the above basis set, we can now discuss the strategy to dis-

cretize our governing equations. In what follows, we will usually suppress the dependence of

ϕj(θ1, θ2, r; η, ν) on the band index (j) for the sake of simplicity of notation. Denoting the
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basis functions as Fm,n,k (θ1, θ2, r) in helical coordinates, we write:

ϕ (θ1, θ2, r) =
∑

(m,n,k)∈Γ

ϕ̂m,n,k Fm,n,k (θ1, θ2, r)

=
∑

(m,n,k)∈Γ

ϕ̂m,n,k cm,n,k e
i2π(mθ1+nNθ2) JnN

(
bnNk r

R

)
. (2.37)

Here, ϕ̂m,n,k are the expansion coefficients, JnN(·) denotes Bessel functions of the first kind

of order nN, while bnNk denote the zeros of the Bessel functions. The basis function normal-

ization constants cm,n,k are:

cm,n,k =

√
N

πτ

1

RJnN+1

(
bnNk
) . (2.38)

The set Γ denotes triplets of integers (m,n, k) such thatm ∈ [−Mmax,Mmax], n ∈ [−Nmax, Nmax]

and k ∈ [1, Kmax]. The basis set size is L = (2Mmax + 1) ∗ (2Nmax + 1) ∗Kmax, i.e., it grows

as O(MmaxNmaxKmax) in terms of the discretization sizes along the θ1, θ2, r directions. By

design, the basis functions are orthonormal, i.e.:

⟨Fm,n,k, Fm′,n′,k′⟩L2(D) = δm,m′δn,n′δk,k′ , (2.39)

and they satisfy:

−∆Fm,n,k = λ0m,n,kFm,n,k , λ
0
m,n,k =

(
bnNk
R

)2

+

∣∣∣∣2πτ (m− αnN)

∣∣∣∣2 . (2.40)

The above condition implies that the kinetic energy part of the single particle Schrödinger

operator is diagonalized in this basis.

Consistent with the literature, we will refer to the representation of a function in terms

of its expansion coefficients (i.e., ϕ̂m,n,k in the above) as its reciprocal space representation.

Furthermore, we will refer to the representation of the function in terms of its values on

a discrete set of grid points as its real space representation. If the basis functions are also

available on these same grid points, the real and reciprocal space representations of the

function can be connected via eq. 2.37.
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For common systems of interest, the number of basis functions required for discretizing

the governing equations can number in the tens or hundreds of thousands (See Section 3).

Thus, it can become infeasible to explicitly store the discretized Hamiltonian. This scenario

is also encountered in the classical plane-wave method for bulk systems [45, 46], and can

be addressed by working with the discretized Hamiltonian implicitly, and using iterative,

matrix-free diagonalization techniques to compute the eigenstates [61, 133]. For adopting

such strategies, we need to be able to compute action of the Hamiltonian on an arbitrary

vector, such as the wavefunction, as represented in our basis set. To this end, we consider a

vector ϕ ∈ Span
{
Fm,n,k : (m,n, k) ∈ Γ

}
, substitute eq. 2.37 into eq. 2.15, and use eq. 2.40,

to arrive at:(
−1

2
∆ + V

)
ϕ =

1

2

∑
Γ

ϕ̂m,n,kλ
0
m,n,kFm,n,k − a (α, τ, η, ν)ϕ− b (α, τ, η, ν)ϕθ1

−c (α, τ, η, ν)ϕθ2 +
ν2

2r2
ϕ+

iν

2πr2
ϕθ2 + V ϕ = λϕ , (2.41)

which further simplifies to:

1

2

∑
Γ

ϕ̂m,n,kλ
0
m,n,kFm,n,k − a (α, τ, η, ν)

∑
Γ

ϕ̂m,n,kfm,n,k

− b (α, τ, η, ν)
∑
Γ

ϕ̂m,n,k (i2πm)Fm,n,k − c (α, τ, η, ν)
∑
Γ

ϕ̂m,n,k (i2πnN)Fm,n,k

+
ν2

2

∑
Γ

ϕ̂m,n,k
Fm,n,k

r2
+
iν

2π

∑
Γ

ϕ̂m,n,k

(
i2πnN

r2

)
Fm,n,k + V (r, θ1, θ2)

∑
Γ

ϕ̂m,n,kFm,n,k

= λ
∑
Γ

ϕ̂m,n,kFm,n,k . (2.42)

The constants a, b, c in the above are as follows:

a (α, τ, η, ν) =
2π2

τ 2

{
να (2η − να)− η2

}
,

b (α, τ, η, ν) =
2iπ

τ 2
(να− η) , c (α, τ, η, ν) = 2iπα

τ 2
(η − να) .

(2.43)

The action of the Hamiltonian on the vector ϕ is simply the left hand side of eq. 2.42 above.

We observe that due to orthonormality of the basis set, the first four terms on the left hand

20



side are easily handled in reciprocal space. Specifically, the second term is simply a scaling of

the input vector ϕ with the factor a (α, τ, η, ν), while the other three terms can be evaluated

as element-wise product operations (Matlab operation .∗). Thus, these terms can all be

evaluated at a cost that scales linearly with the basis set size. The last term on the left hand

side is associated with action of the effective potential V (x) on the wavefunction vector. If

the expansion coefficients of the potential are available as:

V (θ1, θ2, r) =
∑

(m̃,ñ,k̃)∈Γ

V̂m̃,ñ,k̃ Fm̃,ñ,k̃(θ1, θ2, r) , (2.44)

then the expansion coefficients of V (x)ϕ(x) can be computed as:〈
V (θ1, θ2, r)ϕ(θ1, θ2, r) , Fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

=

〈(∑
Γ

V̂m̃,ñ,k̃Fm̃,ñ,k̃(θ1, θ2, r)

)(∑
Γ

ϕ̂m,n,kFm,n,k(θ1, θ2, r)

)
, Fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

=

〈(∑
Γ

∑
Γ

V̂m̃,ñ,k̃ ϕ̂m,n,k Fm̃,ñ,k̃(θ1, θ2, r)Fm,n,k(θ1, θ2, r)

)
, Fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

=
∑
Γ

∑
Γ

V̂m̃,ñ,k̃ ϕ̂m,n,k

〈
Fm̃,ñ,k̃ Fm,n,k , Fm′,n′,k′

〉
L2(D)

. (2.45)

There are two problems with the above evaluation strategy. First, the time complexity of the

procedure scales in a cubic manner with respect to the basis set size, i.e., O(M3
maxN

3
maxK

3
max).

Moreover, if the coupling coefficients:〈
Fm̃,ñ,k̃ Fm,n,k , Fm′,n′,k′

〉
L2(D)

= cm̃,ñ,k̃cm,n,kc
∗
m′,n′,k′

∫ 1

0

ei2π(m+m̃−m′)θ1 dθ1

×
∫ 1

N

0

ei2πN(n+ñ−n′)θ2 dθ2

∫ R

0

JnN

(
bnNk r

R

)
Jn′N

(
bn

′N
k′ r

R

)
JñN

(
bñN
k̃
r

R

)
2πτr dr , (2.46)

are to be calculated and stored ahead of time for easier evaluation of eq. 2.45, the memory

complexity of the procedure would also scale cubically with the basis set size. By making use

of the fact that the coupling coefficients are non-zero only for m+ m̃ = m′ and n+ ñ = n′,

their evaluation, storage and application to eq. 2.45, can be somewhat simplified. Despite

this, the overall complexity still continues to be cubic in the basis set size in both memory
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and time. Second, the potential V (x) is generally not expected to be equal to zero at r = R

and may be slowly decaying due to long range electrostatics effects. Hence, it is inappropriate

to express this quantity in terms of helical waves obeying Dirichlet boundary conditions.

Both of the above issues can be remedied by adopting a pseudospectral evaluation strat-

egy [62, 134, 135, 136, 137], as we now describe. This is related to the observation that if

V (x) and ϕ(x) are available in real space, as functions sampled at a common set of grid

points, the product χ(x) = V (x)ϕ(x) can be evaluated with a cost proportional to the size

of the grid. Thereafter, the function χ(x) can be directly expanded in terms of helical waves

to yield:

χ̂m′,n′,k′ =
〈
V (θ1, θ2, r)ϕ(θ1, θ2, r) , fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

. (2.47)

Since χ(x) obeys Dirichlet boundary conditions and inherits all symmetries of the group G,

its expansion using helical waves is appropriate. To put this strategy into practice however,

we need access to fast basis transforms so that functions expressed in reciprocal space (i.e., as

expansion coefficients) and real space (i.e., on the grid), may be readily interconverted. We

describe the formulation and implementation of such transform routines in Sections 2.2.4.1

and 2.2.4.2. The overall computational cost of this strategy is the sum total of the costs

of the forward and inverse transforms, and the cost of carrying out the real space product.

Theoretically, the transforms described here scale in a manner that is slightly worse than the

basis set size. However, as we show later, in practice they scale more favorably, in a sub-linear

manner (see Fig. 2.4). Furthermore, the real space grid size is usually a constant multiple

of the basis set size, leading to the overall cost of the pseudospectral method scaling in a

manner that is close to the first power of this quantity (= O(MmaxNmaxK
2
max)). The memory

complexity is also reduced and scales as the basis set size itself, i.e., O(MmaxNmaxKmax).

Finally, we discuss the evaluation of the fifth and the sixth terms on the left hand side

of eq. 2.42. The fifth term, i.e.,

ℓ(θ1, θ2, r) =
ν2

2

∑
Γ

ϕ̂m,n,k
Fm,n,k

r2
, (2.48)
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satisfies ℓ(θ1, θ2, r = R) = 0 and invariance under G, since it is a finite linear combination of

terms which individually obey these conditions. Thus, the expansion coefficients are:

ℓ̂m′,n′,k′ =
〈
ℓ(θ1, θ2, r) , Fm′,n′,k′(θ1, θ2, r)

〉
L2(D)

=
ν2

2

∑
Γ

ϕ̂m,n,k

∫ 1

0

∫ 1
N

0

∫ R

0

Fm,n,kF
∗
m′,n′,k′

r2
2πτr dr dθ2 dθ1

= ν2πτ
∑
Γ

ϕ̂m,n,kcm,n,kc
∗
m′,n′,k′

[∫ 1

0

ei2π(m−m′)θ1dθ1×

∫ 1
N

0

ei2πN(n−n′)θ2dθ2

∫ R

0

JnN

(
bnN
k r

R

)
Jn′N

(
bn

′N
k′ r

R

)
r2

rdr

]

=
ν2

R2

Kmax∑
k=1

ϕ̂m′,n′,k
1

Jn′N+1

(
bn

′N
k

)
Jn′N+1

(
bn

′N
k′

) ∫ R

0

Jn′N

(
bn

′N
k r

R

)
Jn′N

(
bn

′N
k′ r

R

)
r2

rdr . (2.49)

In the above, we have made use of the orthonormality of the complex exponentials in the θ1

and θ2 directions. We may rewrite eq. 2.49 as:

ℓ̂m′,n′,k′ =
ν2

R2

Kmax∑
k=1

ϕ̂m′,n′,k I(n′, k, k′) , (2.50)

with:

I(n′, k, k′) =
1

Jn′N+1

(
bn

′N
k

)
Jn′N+1

(
bn

′N
k′

) ∫ 1

0

Jn′N

(
bn

′N
k q

)
Jn′N

(
bn

′N
k′ q

)
q2

q dq . (2.51)

Thus, if the quantities I(n′, k, k′) are known ahead of time, the coefficients ℓm′,n′,k′ can be

readily evaluated at a cost of O(MmaxNmaxK
2
max), i.e., quite close to the overall basis set

size, and similar in computational complexity to the evaluation of the potential term. Since

I(n′, k, k′) is problem independent (e.g., it has no dependence on R, α, τ or the potential

V (x)), we may evaluate and store it as a table for a large range of values of n, k and k′.

During program execution, this table of values may be loaded into memory, and each ℓm′,n′,k′

can be evaluated as a vector dot product (eq. 2.50), after accessing the necessary values

of I(n′, k, k′). As for the evaluation of the I(n′, k, k′) values themselves, we may use the
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recurrence relation [130]:

2κ

q
Jκ(q) = Jκ−1(q) + Jκ+1(q) , (2.52)

to rid the integrand in eq. 2.51 of it’s denominator, and obtain a pair of oscillatory integrals.

We may then compute these by using Gauss-Jacobi quadrature as outlined in [138].

In an analogous manner, the sixth term on the left hand side of eq. 2.42, i.e.,

iν

2π

∑
Γ

ϕ̂m,n,k (i2πnN)

∫ 1

0

∫ 1
N

0

∫ R

0

Fm,n,kF
∗
m′,n′,k

r2
2πτr dr dθ2 dθ1 , (2.53)

can be simplified to:

=
iν

πR2

Kmax∑
k=1

(
ϕ̂m′,n′,k ∗ i2πn′N

)
I(n′, k, k′) . (2.54)

With the quantities I(n′, k, k′) available, the above can be evaluated in a manner similar

to the evaluation of the fifth term, at a computational cost of O(MmaxNmaxK
2
max). The key

difference is that instead of the vector {ϕ̂m,n,k}(m,n,k)∈Γ, we need to consider an alternate one

with entries {i2πn′Nϕ̂m,n,k}(m,n,k)∈Γ. However, this modified vector is already available as

part of evaluation of the fourth therm on the left hand side of eq. 2.42, and therefore, it can

be reused.

2.2 Numerical Implementation

We have implemented the above computational strategies into a MATLAB [63] package

called HelicES (Helical Electronic Structure). To ensure efficiency, our code heavily relies

on vectorization features of MATLAB. Various details of our implementation are as follows.

2.2.1 Wave function storage: reciprocal and real space considerations

For any quantity in reciprocal space, there are three indices m,n, k associated with each

expansion coefficient, making the collection of coefficients a three-dimensional object of di-

mensions (2Mmax + 1) × (2Nmax + 1) ×Kmax = L . However, it is easier for linear algebra
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operations to have these coefficients stacked up as vector in CL. To achieve this, we adopt

the following mapping between (m,n, k) ∈ Γ and the linear index i ∈ {1, 2, . . . ,L}:

i(m,n, k) = (m+Mmax) ∗ (2Nmax + 1) ∗Kmax + (n+Nmax) ∗Kmax + k . (2.55)

With this, a collection of Ns wavefunctions can be stored as a complex matrix of dimensions

L ×Ns.

For real space representation, the number of grid points to be chosen along each heli-

cal coordinate θ1, θ2 is dictated by the accuracy of the basis transforms (see Section 2.2.4).

We choose to work with Fourier nodes along the θ1 and θ2 directions and denote the cor-

responding number of grid points as Nθ1 and Nθ2 respectively. Along the radial direction,

we choose Nr Gauss-Jacobi nodes [139] over the interval [0, R]. This has the advantage that

the coordinate singularity at the origin is automatically avoided. In order to accommodate

non-linearities and to reduce aliasing errors [62, 140], we typically choose Nθ1 = 4∗Mmax+1,

Nθ2 = 4 ∗ Nmax + 1 and Nr = 4 ∗ Kmax. These choices generally allow transforms to be

evaluated accurately up to machine precision. With this setup, quantities such as the wave-

function are available in real space over a three-dimensional grid (i.e., the tensor product

grid resulting from the one-dimensional grids along the individual coordinate directions), and

each grid point is indexed via i ∈ {1, 2, . . . , Nθ1}, j ∈ {1, 2, . . . , Nθ2} and k ∈ {1, 2, . . . , Nr}.

For storage, we stack this three dimensional representation into a complex column vector of

size Nθ1 ∗Nθ2 ∗Nr, for which we use the following ordering:

j(i, j, k) = (i− 1) ∗Nr ∗Nθ2 + (j− 1) ∗Nr + k . (2.56)

Since the memory requirement for storage of each wavefunction in real space is much higher

than storing it in reciprocal space, we typically avoid storing real space versions of all Ns

wave functions simultaneously.
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2.2.2 Imposition of kinetic energy cutoff

In conventional plane-wave calculations, it is common to specify a kinetic energy cutoff, i.e.,

a limit on the H1 Sobolev norm of the plane-waves to be used for discretization [46, 141].

Once a suitable periodic unit cell has been identified, this criterion automatically provides

a recipe for calculating the number of planewaves along each of the Cartesian axes, and in

turn, the dimensions of the underlying real space grid to be used for Fast Fourier Transforms

(FFTs). In a similar vein, we may wish to retain only helical waves with kinetic energies

below a pre-specified cutoff in our calculation, since this has the advantage that the basis set

limits Mmax, Nmax, and Kmax get specified automatically in proportion to the computational

domain’s geometry parameters. At the gamma point (η = 0, ν = 0) for example, the kinetic

energy cutoff criterion requires that all helical waves fm,n,k, with m,n, k values satisfying:

1

2
λ0m,n,k =

1

2

[(
bnNk
R

)2

+

∣∣∣∣2πτ (m− αnN)

∣∣∣∣2 ] ≤ Ecut , (2.57)

be included in our calculations. In our implementation, we first determine the largest abso-

lute values of integers m,n and the largest natural number k consistent with with eq. 2.57.

We set the basis set limits Mmax, Nmax, and Kmax accordingly. The real space grids used for

carrying out fast transforms (described below) are chosen based on these quantities. Within

these (2Mmax + 1) ∗ (2Nmax + 1) ∗ Kmax helical waves, however, not every combination of

m,n, k would satisfy the kinetic energy criterion. To remedy this, we create a masking vec-

tor to exclusively retain helical waves which satisfy eq. 2.57, in various operations of interest

(such as the Hamiltonian times wavefunction products). Based on the linear ordering for

reciprocal space storage outlined in eq. 2.55, we may express the masking vector as:

Mi(m,n,k) = 1, for
1

2
λ0m,n,k ≤ Ecut

= 0, otherwise. (2.58)

Element-wise multiplication of a given vector with the masking vector results in only kinetic

energy limited helical waves being retained in the calculation. We implement the above
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strategy at each η, ν point (with the expression for the kinetic energy modified appropriately)

to impose the kinetic energy cutoff in HelicES.

2.2.3 η-space discretization and parallelization

As described earlier, to obtain the helical Bloch states (eq. 2.8), i.e., solutions to the single

electron problem with a symmetry adapted potential (eq. 2.6), the single electron Hamilto-

nian has to be diagonalized for every η ∈ [−1
2
, 1
2
) and ν ∈ {0, 1, 2, . . . ,N− 1}. To make this

calculation feasible, we sample η over a discrete set {ηb}Nη

b=1 ⊂ [−1
2
, 1
2
). The specific choice of

the values ηb is based on the Monkhorst-Pack scheme [142]. This procedure akin to “k-point

sampling” in conventional periodic codes [45]. With this choice, the Hamiltonian needs to

be diagonalized at NK = Nη×N points, and integrals in η can be calculated via quadrature:

∫ 1
2

− 1
2

p(η) dη ≈
Nη∑
b=1

wb p(ηb) . (2.59)

Here, {wb}Nη

b=1 are the Monkhorst-Pack quadrature weights and are uniformly equal to 1/Nη.

Integrals of the above kind appear, for example, while computing the electronic band energy,

or the electron density from helical Bloch states [4, 5].

If the single electron Hamiltonian does not include magnetic fields — as is the case here,

time reversal symmetry allows further reduction in the number of η, ν points at which the

Hamiltonian has to be diagonalized [57, 143]. Specifically, it holds that for any η ∈ [−1
2
, 1
2
)

the helical Bloch states and the associated electronic bands obey:

ψj(x; η, ν) = ψj(x;−η,N− ν)

λj(η, ν) = λj(−η,N− ν)

 for ν ∈ {0, 1, 2, . . . ,N− 1} , (2.60)

and:
ψj(x; η, 0) = ψj(x;−η, 0)

λj(η, 0) = λj(−η, 0)

 for ν = 0 . (2.61)

Overall, this reduces the number of discrete points in reciprocal space by a factor of 2.
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Since the diagonalization problem arising from distinct sets of η, ν values are independent

of one another, they can be dealt with in an embarrassingly parallel manner. In our im-

plementation, we have used MATLAB’s Parallel Computing Toolbox (specifically, the parfor

function) to carry out this parallelization.

2.2.4 Fast basis transforms

Since our strategy for carrying out Hamiltonian matrix-vector products involves fast basis

transforms, we now elaborate on various aspects of the implementation of such operations

within the HelicES code. To arrive at fast transforms, we exploit the separability of the

basis functions into radial and θ1, θ2 dependence. This allows us to make use of quadrature

along the radial direction, and subsequently, efficient two-dimensional fast Fourier trans-

forms (FFTs) along the θ1, θ2 directions for each radial grid point, or for each radial basis

function. Since the radial part of the basis functions consists of Bessel functions, we have

also investigated the use of Hankel and discrete Bessel transforms [144, 145, 146]. However,

we found that the quadrature approach adopted here resulted in better performance for the

basis set sizes considered, consistent with some earlier studies [147].

In what follows, OM×N is used to denote a zero matrix of size M ×N . The typical real

space grid point for sampling a function will be denoted as (θi
1, θ

j
2, r

k), with i ∈ {1, 2, . . . , Nθ1},

j ∈ {1, 2, . . . , Nθ2} and k ∈ {1, 2, . . . , Nr}. We will use the MATLAB commands ifft2 and

fft2 to denote two-dimensional fast inverse and forward Fourier Transforms respectively [63].

Additionally, we will use the MATLAB commands ifftshift and fftshift to denote rearrange-

ments of Fourier transform coefficients related to shifting of zero frequency components to

matrix center [63]. Finally, we will use the MATLAB ‘:’ (colon) operator notation to denote

array/matrix indices with regular increments. Thus, i : k : j will denote indices starting at

i, incremented by k and ending at j, i : j will denote the indices i, i+1, i+2, . . . , j− 1, j,

and simply ‘:’ will denote all indices along a particular matrix dimension.
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2.2.4.1 Fast Inverse Basis Transform

Given the expansion coefficients {ĝm,n,k}(m,n,k)∈Γ, a naive way of implementing the inverse

basis transform would be to calculate each basis function {Fm,n,k}(m,n,k)∈Γ at every grid point

(θi
1, θ

j
2, r

k), and to then evaluate the sum:

g(θi
1, θ

j
2, r

k) =
∑
Γ

ĝm,n,kFm,n,k(θ
i
1, θ

j
2, r

k) . (2.62)

The computational complexity of this “naive inverse transform” can be easily seen to be

O(MmaxNθ1NmaxNθ2KmaxNr), which simplifies to O(M2
maxN

2
maxK

2
max). The constant involved

in the latter estimate can be seen to be quite large based on the discussion in Section 2.2.1.

To remedy this situation, we express the basis functions as in 2.1.3, i.e., Fm,n,k(θ1, θ2, r) =

ei2π(mθ1+nNθ2) ξn,k(r) and also rewrite the eq. 2.62 as:

g(θi
1, θ

j
2, r

k) =
Mmax∑

m=−Mmax

Nmax∑
n=−Nmax

Kmax∑
k=1

ĝm,n,k e
i2π(mθi

1+nN θj
2) ξn,k(r

k)

=
Mmax∑

m=−Mmax

Nmax∑
n=−Nmax

ei2π(mθi
1+nN θj

2)

(Kmax∑
k=1

ĝm,n,k ξn,k(r
k)

)
. (2.63)

Since the quantity in parentheses is independent of the basis function index k, we may rewrite

the above as:

g(θi
1, θ

j
2, r

k) =
Mmax∑

m=−Mmax

Nmax∑
n=−Nmax

ei2π(mθi
1+nN θj

2) Gm,n(r
k)

with : Gm,n(r
k) =

Kmax∑
k=1

ĝm,n,k ξn,k(r
k) .

(2.64)

Thus, if the quantitiesGm,n(r
k) are known, calculation of the inverse basis transform amounts

to computing an inverse two-dimensional fast Fourier transform at each radial grid point rk.

Additionally, we observe that at each radial grid point rk, Gm,n(r
k) can be expressed as a vec-

tor dot product between two Kmax dimensional vectors, i.e., {ĝm,n,k}KMax
k=1 and {ξn,k(rk)}KMax

k=1 .

In fact, by grouping the evaluation of Gm,n(r
k) for different grid points together, the above

operation may be expressed as the product of a Nr × Kmax matrix with a Kmax dimen-

sional vector, which allows for the use of Level-2 BLAS [148] operations. If the radial part
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of the basis functions (i.e., ξn,k(rk)) are available ahead of time, the above steps provide a

convenient recipe of computing the inverse basis transforms with computational complex-

ity O (MmaxNmaxKmax (Kmax + log (Mmax) + log (Nmax))), a significant improvement over the

naive algorithm discussed earlier. We outline the overall steps of our implementation in Al-

gorithms 1 and 2 below, and also illustrate some key aspects through Fig. 2.5.

In Fig. 2.4 we compare the naive and fast inverse transforms as implemented in He-

licES. The starting vectors {ĝm,n,k}(m,n,k)∈Γ were randomly chosen for the tests. The results

from these two methods always agreed with each other to machine precision, guaranteeing

consistency of the implementations. However, consistent with the discussion above, the com-

putational time for the naive transforms is found to scale in a quadratic manner with the

basis set size, while for the fast transforms, it is close to being linear. The fact that the

observed scaling of our fast transform implementation is actually sublinear, is almost cer-

tainly related to our use of machine optimized linear algebra and Fourier transform routines

as available within MATLAB.
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Figure 2.4: Variation of the normalized time for basis transforms plotted against the basis

set size. Both axes are logarithmic. Straight lines were fit using the average of the forward

and inverse transform times in each case.
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Algorithm 1: Fast Inverse Basis Transform
Input: The vector of expansion coefficients {ĝm,n,k} ∈ CL

Prerequisite: The radial basis functions sampled on the grid {rk}Nr
k=1,

i.e., for each integer n ∈ [−Nmax, Nmax], the matrix:

Rn =


ξn,1(r

1) . . . ξn,Kmax(r
1)

... . . . ...

ξn,1(r
Nr) . . . ξn,Kmax(r

Nr)


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Initialize g = ONrNθ1
Nθ2

×1, G = O(2Mmax+1)(2Nmax+1)Nr×1

Initialize i, j, p = 1

for m,n ∈ Γ do
Calculate G(i : i+Nr − 1) = Rn ∗ ĝm,n,k(j : j +Kmax − 1)

i = i+Nr

j = j +Kmax

end

for p ≤ Nr do
Set v̂ = G(p : Nr : end)

g(p : Nr : end) = AngularInverseTransform(v̂)

end

Result: The inverse basis transform g (θ1, θ2, r) of the vector {ĝm,n,k}

Algorithm 2: AngularInverseTransform

(Fast Angular 2D Inverse Fourier Transform)
Input: Vector v̂ ∈ C(2Mmax+1)∗(2Nmax+1)

Initialize W = ONθ1
×Nθ2

//Note: Nθ1 = 4Mmax + 1, Nθ2 = 4Nmax + 1

Reshape v̂ into a matrix V ∈ C(2Nmax+1)×(2Mmax+1)

W(Nmax + 1 : 3Nmax + 1, Mmax + 1 : 3Mmax + 1) = V

U = ifft2(ifftshift(W)))

Scale U = U ∗ (Nθ1 ∗Nθ2)

Reshape U into a column vector v ∈ CNθ1
∗Nθ2

Result: The angular inverse Fourier transform v(θ1, θ2) of the vector v̂
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Figure 2.5: Pictorial representation of the workings of the fast angular 2D inverse Fourier

transform (Algorithm 2)

2.2.4.2 Fast Forward Basis Transform

We now discuss the implementation of forward basis transforms within HelicES. Given a

function g(θ1, θ2, r), the forward basis transform is defined as:

ĝm,n,k = ⟨g, Fm,n,k⟩L2(D) =

∫ 1

0

∫ 1
N

0

∫ R

0

g(θ1, θ2, r)F
∗
m,n,k(θ1, θ2, r) 2πτr dr dθ2 dθ1 . (2.65)
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With Fm,n,k and g both sampled on the real space grid, this can be approximated via quadra-

ture as:

ĝm,n,k ≈ 2πτ ∗
( Nθ1∑

i=1

Nθ2∑
j=1

Nr∑
k=1

g(θi
1, θ

j
2, r

k)e−i2π(mθi
1+nN θj

2) ξn,k(r
k)ωk

r ω
i
θ1
ωj
θ2

)
. (2.66)

Here, the quadrature weights along the θ1, θ2 directions are constants, i.e., ωi
θ1

= 1/Nθ1 and

ωj
θ2

= 1/(NNθ2), due to the use of Fourier nodes (i.e., trapezoidal rule). The radial weights

{ωk
r}Nr

k=1 correspond to Gauss-Jacobi quadrature. We can see that like the case of the inverse

transforms, a naive implementation of the above expression will lead to a computational

complexity of O(M2
maxN

2
maxK

2
max). Instead, we deal with the evaluation of this expression

along the θ1, θ2 directions simultaneously at each radial grid point using 2D FFTs, and then

perform quadrature in the radial direction. Thus, we compute:

Hm,n(r
k) =

1

Nθ1Nθ2

∗
( Nθ1∑

i=1

Nθ2∑
j=1

g(θi
1, θ

j
2, r

k)e−i2π(mθi
1+nN θj

2)

)
, (2.67)

followed by:

ĝm,n,k =
2πτ

N
∗
( Nr∑

k=1

Hm,n(r
k) ξn,k(r

k)ωk
r

)
. (2.68)

The radial quadratures in the above expression can be conveniently cast in terms of Level-2

BLAS [148] operations if the radial basis functions scaled by the corresponding quadrature

weights (i.e. {ωk
r ξn,k(r

k)}KMax
k=1 ) are available as a matrix ahead of time. We outline the steps

of our implementation in Algorithms 3 and 4 below, and illustrate key aspects in Figure 2.6.
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Algorithm 3: Fast Forward Basis Transform
Input: Real space representation of function {g(θi

1, θ
j
2, r

k)} ∈ CNrNθ1
Nθ2

Prerequisite: The radial basis functions sampled on the grid {rk}Nr
k=1, scaled by

the corresponding quadrature weights i.e., for each integer n ∈ [−Nmax, Nmax],

the following matrix:

On =


ω1
r ξn,1(r

1) . . . ωNr
r ξn,1(r

Nr)
... . . . ...

ω1
r ξn,Kmax(r

1) . . . ωNr
r ξn,Kmax(r

Nr)


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Initialize ĝ = OL×1, H = ONr×(2Mmax+1)(2Nmax+1)

Initialize i, j, p = 1

for p ≤ Nr do
Set u = g (p : Nr : end)

H(p, :) = AngularForwardTransform(u)

end

for m,n ∈ Γ do
Calculate ĝ(i : i+Kmax − 1) = On ∗H(:, j)

i = i+Kmax

j = j + 1

end

Scale ĝ = (2πτ/N) ∗ ĝ

Result: The forward basis transform {ĝm,n,k} of the function g (r, θ1, θ2)

Algorithm 4: AngularForwardTransform

(Fast Angular 2D Forward Fourier Transform)
Input: Vector containing real space representation of 2D angular function on

Fourier grid, i.e., {u(θi
1, θ

j
2)} ∈ CNθ1

Nθ2

Reshape u into a matrix W ∈ CNθ2
×Nθ1

V = fft2(W)

Scale V = ( 1
Nθ1

Nθ2
) ∗ V

U = fftshift(V)

û = U(Nmax + 1 : 3Nmax + 1, Mmax + 1 : 3Mmax + 1)

Result: The 2D angular Fourier transform {ûm,n} of the function u (θ1, θ2)

Referring to Fig. 2.4, we see that like the case of the fast inverse basis transforms, our

implementation of the fast forward basis transforms scale in a sublinear manner with respect
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Figure 2.6: Pictorial representation of the workings of the fast angular 2D forward Fourier

transform (Algorithm 4). ‘Scale’ indicates dividing the result of the 2D FFT by (Nθ1Nθ2)

to basis set size increase, although a somewhat worse performance is expected theoretically.

In contrast, a naive implementation of the forward transform scales in a quadratic manner

with respect to basis set size, although both implementations of the transforms always agree

with each other to machine precision.

In practice, the differences between the efficiencies of the fast and the naive transform

implementations (both forward and inverse transforms) are not only apparent in terms of

their respective scalings with respect to basis set size, but also the actual computational

wall times. Indeed, we found that the fast transform implementations can be orders of

magnitude faster as compared to the naive ones, even for relatively small basis set sizes. In
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Algorithm 5, we outline the steps of calculating the product of the Hamiltonian matrix with

a wavefunction vector block by use of the fast transforms, as implemented in HelicES.

Algorithm 5: Product of Hamiltonian Matrix with a block vector of wavefunctions
Input: Block of Ns wavefunctions expressed in reciprocal space, i.e., X̂ ∈ CL×Ns ,

real space representation of local potential V (θ1, θ2, r) as a vector V ∈ CNθ1
Nθ2

Nr ,

cyclic k-point ν and helical k-point η.

Prerequisites: Indexing function i : Γ→ {1, 2, . . . ,L} (eq. 2.55),

for each n ∈ [−Nmax, Nmax], the matrix In ∈ RKmax×Kmax with entries

given by In(k, k′) = I(n, k, k′) (eq. 2.51),

vector Λ ∈ RL with entries corresponding to eq. 2.40, i.e., Λ(i(m,n, k)) = λ0m,n,k,

vector M ∈ CL with entries M (i(m,n, k)) = i2πm,

and vector N ∈ CL with entries N (i(m,n, k)) = i2πNn.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Initialize a = 2π2

τ2

{
να (2η − να)− η2

}
, b = 2iπ

τ2
(να− η), c = 2iπα

τ2
(η − να)

Set Ŷ = OL×Ns //Result to be stored in this

for j ≤ Ns do
Ẑ = X̂(:, j) //Work on jth wavefunction.

P̂ = M .∗ Ẑ

Q̂ = N .∗ Ẑ

Ŷ (:, j) = 1
2
∗ (Λ .∗ Ẑ)

Ŷ (:, j) = Ŷ (:, j)− a ∗ Ẑ − b ∗ P̂ − c ∗ Q̂

if ν ̸= 0 then
Initialize i = 1

for m,n ∈ Γ do
T = ν2

R2 ∗ Ẑ(i : i+Kmax − 1) + iν
πR2 ∗ Q̂(i : i+Kmax − 1)

Ŷ (i : i+Kmax − 1, j) = Ŷ (i : i+Kmax − 1, j) + In ∗ T

i = i+Kmax

end

end

Z = FastInverseBasisTransform(Ẑ) //Use Algorithm 1.

Ŷ (:, j) = Ŷ (:, j)+FastForwardBasisTransform(Z .∗ V ) //Use Algorithm 3.

end

Result: Ŷ ∈ CL×Ns , i.e., the product of the Hamiltonian with X̂ at the given values

of η, ν.
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2.2.5 Eigensolvers and preconditioning

As mentioned earlier, we make use of matrix-free iterative eigenvalue solvers for diagonal-

ization of the discretized Hamiltonian. Within HelicES, we have investigated two different

diagonalization strategies for this purpose. The first is based on the Krylov-Schur method as

implemented in the MATLAB Eigs function [149, 150, 151]. The second is based on a MAT-

LAB implementation [152] of the Locally Optimal Block Preconditioned Conjugate Gradient

(LOBPCG) scheme [2, 153, 154]. LOBPCG requires the use of a preconditioner, for which

we have adopted the Teter-Payne-Allan (TPA) recipe [1, 150, 151]. This preconditioner

was originally developed in the context of plane-wave calculations of bulk systems, but has

also been successfully applied to other spectral methods [62]. During LOBPCG iterations,

use of the TPA preconditioner requires the calculation and application of a diagonal matrix

K ∈ RL×L to the residual vector. The entries of the matrix are:

Ki,j =
27 + 18 gi + 12 g2i + 8 g3i

27 + 18 gi + 12 g2i + 8 g3i + 16 g4i
δi,j , (2.69)

with:

gi =
kinetic energy of basis function i

kinetic energy of the residual vector
. (2.70)

As shown in Fig. 2.7, the preconditioner can have quite a dramatic effect on the convergence

of the diagonalization procedure, especially as the basis set size (and therefore, the size of the

discretized Hamiltonian) is increased. Thus, the benefits of the preconditioner are likely to

become more apparent when larger systems and/or harder pseudopotentials are considered.

Additionally, this becomes especially important for cases where a very fine discretization of

the computational domain is required, such as for the calculation of the Hartree potential

within this framework, which will be discussed in later sections (See Chapter 4).
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Figure 2.7: Effect of the Teter-Payne-Allan preconditioner [1] on LOBPCG [2] iterations for

diagonalizing the discretized Hamiltonian in HelicES. An untwisted (6, 6) armchair carbon

nanotube (Mayer pseudopotentials [3]) has been used, and the residual associated with the

2nd eigenvalue for η = 0, ν = 0 as been monitored. For clarity, the residual for every 10th

iteration has been plotted. Without preconditioning, the number of iterations required to

reach a given convergence threshold tends to dramatically increase as the basis set grows

larger.

We found that use of LOBPCG along with the TPA preconditioner generally tends to

require longer diagonalization wall times as compared to Eigs along with an energy cutoff.

Therefore, the latter strategy is adopted for most of the the examples considered in the next

section. Implementation of more efficient eigensolvers in HelicES, particularly, ones that

work well within self consistent field iterations [94, 155, 156], is the scope of future work.
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CHAPTER 3

Application of HelicES to quasi-one-dimensional

nanostructures

We now present results obtained using HelicES and investigate the convergence and accuracy

properties of our implementation. All of our calculations have been carried out using smooth

empirical pseudopotentials [3, 6]. We have used the planewave code PETRA [7], as well as

two separate MATLAB based finite difference codes to generate reference data for comparison

purposes. Specifically, we have employed the helical symmetry adapted finite difference code

Helical DFT [4, 5] and the Cartesian grid finite difference code RSDFT [18]. The original

versions of these finite difference codes were designed for self consistent field calculations,

and were modified to work with the empirical pseudopotentials used in HelicES. We have

also carried out comparisons of results obtained from HelicES against data obtained from

the literature [3, 6]. We have used the WebPlotDigitizer tool [157] for extracting data from

published plots.

3.1 Simulations and Results

3.1.1 Computational platform

All simulations involving HelicES were carried out using dedicated desktop workstations

(Dell Precision 7920 Tower, iMac, and iMac Pro) or on single nodes of the Hoffman2 cluster

at UCLA’s Institute for Digital Research and Education (IDRE). The Dell Precision work-

station has an 18-core Intel Xeon Gold 5220 processor (24.75 L3 MB cache, 2.2 GHz clock
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speed), 256 GB of RAM and 1 TB of SATA Class 20 Solid State Drive (SSD) storage. The

iMac has an 8-core Apple M1 processor (12 MB L2 cache, 3.2 GHz clock speed), 16 GB

of RAM and a 2 TB Solid State Drive (SSD). The iMac Pro has an 18-core Intel Xeon W

processor (24.75 MB L3 cache, 2.3 GHz clock speed), 256 GB of RAM and a 2 TB SSD.

Every compute node of the Hoffman2 cluster has two 18-core Intel Xeon Gold 6140 proces-

sors (24.75 MB L3 cache, clock speed of 2.3 GHz), 192 GB of RAM and local SSD storage.

MATLAB version 9.7.0 (R2019b) was used for the simulations. Parallelization was achieved

by use of using MATLAB’s Parallel Computing Toolbox. Reference results generated using

Helical DFT [4], RSDFT [18] and PETRA [7] employed the above platforms as well.

3.1.2 Convergence studies

Using a twisted armchair carbon nanotube as an example system (Mayer pseudopotentials

[3]), we first investigate the convergence properties of HelicES. Considering first the case of

eigenvalues of the Hamiltonian at η = 0, ν = 0, we see in Fig. 3.1 that as the number of

basis functions in HelicES is increased, there is a rapid convergence to the reference values,

regardless of which eigenvalue is considered. Consistent with earlier results for electronic

structure calculations using spectral basis sets [62, 141], HelicES shows a curvature on a

log-log scale, indicative of super-polynomial convergence. In contrast, the finite difference

method, also shown on the same figure, shows slower, polynomial convergence. This is

consistent with earlier findings for finite difference electronic structure calculations using

curvilinear coordinates [5, 57]. Furthermore, when the energy cutoff criterion is engaged,

HelicES appears to employ noticeably fewer degrees of freedom than the finite difference

method (Helical DFT) in reaching the same levels of convergence.

The electronic features of quasi-one-dimensional systems can be characterized by one-

dimensional band diagrams [4, 5], and these can be readily calculated for systems of interest

using HelicES. As the next step in our studies, we checked the convergence behavior of the

code with regard to a few quantities that are associated with the overall features of the one-
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Figure 3.1: Convergence of the first three non-degenerate eigenvalues of an armchair (16, 16)

carbon nanotube with a twist parameter of α = 0.002 using HelicES (both with and without

the energy cutoff mask implemented) and a finite difference method (FDM), i.e., Helical

DFT [4, 5]. The mesh size of the FDM decreases from 0.7 Bohrs to 0.4 Bohrs (in steps of

0.05 Bohrs) as the full Hamiltonian size varies from 30, 744 to 157, 440. The sparsity factor

for the FDM Hamiltonian was 0.0055. The reference eigenvalues were taken to be the ones

using an energy cutoff of 40 Ha for HelicES and a mesh spacing of 0.10 Bohr for Helical

DFT. The η = 0, ν = 0 case (“gamma point”) is considered here. Note that the errors in

the eigenvalues, for different eigenvalues, differ by O(10−4) or less in the FDM case, which

makes them indistinguishable in the plot above.

dimensional band diagram of the aforementioned armchair carbon nanotube system. These

include the the electronic band energy — which for an insulating system is simply twice the

sum of all occupied state eigenvalues, the valence band maximum eigenvalue, the conduction

band minimum eigenvalue and the band gap. As shown in Fig. 3.2, we see that all these

quantities, except for the band gap, show monotonic convergence to reference values. We

also note that convergence of the band gap is nearly monotonic until the curve enters regions

of very high accuracy (O(10−6) in the figure) and this behavior is likely related to the fact

that the band gap is calculated as the difference of two quantities.

Within HelicES, the electronic properties of quasi-one-dimensional systems are also ex-
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respect to the energy cutoff, in the HelicES code. An armchair (16, 16) carbon nanotube

with a twist parameter of α = 0.002 has been investigated. The reference values were

generated using an energy cutoff of 40 Ha.
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Figure 3.3: Convergence of the band energy and electron density of a (16, 16) armchair

carbon nanotube with a twist parameter of α = 0.002. The reference value was taken to be

from a calculation with 45 η-points

pected to exhibit convergence with respect to the number of points used to discretize the η-

space (Section 2.2.3). In Fig. 3.3, we explore the convergence behavior of the electron density

(in terms of the L1 norm per electron) and the electronic band energy for the aforementioned
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carbon nanotube system, as the number of η points in the calculation is increased. We see

that both the above quantities show excellent convergence. We note that the electron density

can be calculated from the wavefunctions ϕj(θ1, θ2, r; η, ν), and the corresponding electronic

occupation numbers ςj(η, ν) as:

ρ(θ1, θ2, r) =
2

N

Ns∑
j=1

Nη∑
b=1

N−1∑
ν=0

wb ςj(ηb, ν)
∣∣ϕj(θ1, θ2, r; ηb, ν)

∣∣2 . (3.1)

This requires inverse basis transforms to be carried out on each wavefunction vector, at

the end of the diagonalization procedure. We also note from Figs. 3.2, 3.3 that for the

Mayer pseudopotential employed in the above calculations, an energy cutoff of 16 Ha and

15 η-points are more than sufficient to reach chemical accuracy.

3.1.3 Accuracy studies

While the discussion in Section 3.1.2 serves to illustrate the systematic convergence properties

of HelicES, it does not address the accuracy or correctness of the converged results produced

by the code. Therefore, we now carry out a series of systematic tests and compare the results

produced by HelicES against solutions produced by other methods, for a variety of systems.

Our first set of tests compares the results produced by HelicES against those computed

through the Finite Difference Method (FDM). For these studies, the Mayer pseudopotential

[3] was once again employed and the energy cutoff in HelicES was set at 16 Ha. Reference

results using the FDM codes were generated using a mesh spacing of 0.2 Bohr, this being the

finest mesh that could be uniformly employed for all systems of interest, within computa-

tional resource constraints. We first used the RSDFT code [18] for calculating the electronic

structure of a variety of finite (cluster-like) systems. The bound state eigenvalues for these

same systems, as calculated by HelicES are compared against RSDFT results in Table 3.1.

We see that for these discretization parameters, the agreement between the codes with re-

spect to individual eigenvalues is about 1.3 × 10−4 Ha or better, while the band energies

agree to within millihartree range, suggesting excellent accuracy.
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Next, we generated the electronic band diagram associated with a deformed quasi-one-

dimensional system, namely an armchair nanotube subjected to about β = 2.95◦ of twist

per nanometer. Reference calculations were carried out using the Helical DFT code. Both

Helical DFT and HelicES were made to use 21 η-points and the Eigs eigensolver in MATLAB.

As shown in Figure 3.4, the band diagrams produced by the two codes are virtually identical,

once again suggesting the excellent accuracy of HelicES. Overall, these findings illustrate that

HelicES adequately addresses many of the the computational bottlenecks in existing methods

for the study of electronic properties of quasi-one-dimensional systems, commensurate with

its design goals.

System (# atoms) Hamiltonian size

Maximum difference in the

eigenvalues (in Ha)

between HelicES and FDM

Difference in band energy

(in Ha/atom) between

HelicES and FDM

Carbon dimer (2 atoms)
HelicES without mask: 148625

HelicES with mask: 96353

FDM: 1030301

6.0698× 10−5 5.7475× 10−5

Carbon ring (6 atoms)
HelicES without mask: 148625

HelicES with mask: 96353

FDM: 8120601

3.8266× 10−5 3.7686× 10−5

Carbon disk (24 atoms)
HelicES without mask: 240096

HelicES with mask: 152556

FDM: 4173281

7.7064× 10−5 4.7145× 10−5

Carbon pillar (120 atoms)

HelicES without mask: 129591

HelicES with mask: 85741

FDM: 8120601

1.2604× 10−4 3.7118× 10−5

Table 3.1: Accuracy of the HelicES code while studying finite systems (green arrow denotes

the eZ axis). Reference data was generated using RSDFT [18], a finite difference method

(FDM) based MATLAB code. The last two columns show the maximum differences in the

eigenvalues and the band energy per atom computed using the two methods.
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Figure 3.4: Comparison of band diagrams for a twisted (16, 16) armchair carbon nanotube

(diameter = 2.726 nm) with twist parameter of α = 0.002, generated using HelicES and the

FDM based Helical DFT code [5, 4]. The green shaded region in the structure on the right

is the fundamental domain used in HelicES, while the green arrow denotes the eZ axis.

Due to inherent design limitations, the aforementioned FDM codes are unable to simulate

quasi-one-dimensional nanostructures which have atoms situated near or along the system

axis (e.g. nanoribbons, nanowires or small diameter nanotubes). However, these systems

can be conveniently dealt with by HelicES. To carry out accuracy tests for such systems

therefore, we compared the band structures calculated by HelicES against those generated

through alternate electronic structure calculation techniques. The first of these is based on

the transfer matrix method [158, 159, 160], often used in electromagnetics calculations. In

Figs. 3.5 and 3.6 we see that the band structure calculated by HelicES is in nearly perfect

agreement with results calculated using this technique in [3]. The systems considered here are

carbon nanotubes with radii about 0.3 to 0.4 nanometers. For the (5, 5) armchair nanotube,

the position of the Dirac cone is correctly predicted to be at η = ±1
3
. Additionally, the
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(10, 0) zigzag nanotube, the band gap calculated by HelicES is 1.05 eV which is very close

to the value of 1.04 eV obtained in [3].
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Figure 3.5: Comparison of band diagrams for a (5, 5) armchair carbon nanotube (diameter

= 0.851 nm) generated using HelicES and a transfer-matrix technique [3]. The dashed green

box in the plot represents the region of the band diagram over which the reference data

was available for comparison. The green shaded region in the structure on the right is the

fundamental domain used in HelicES and the green arrow denotes the eZ axis.

Next, we used the PETRA code for studying an armchair graphene nanoribbon, as well as

a silicon nanowire oriented along the ⟨100⟩ direction. Both these systems were treated using

the empirical pseudopotentials developed in [6] and feature hydrogen passivation. Figs. 3.7

and 3.8 show that the overall agreement between HelicES and PETRA is excellent, although

some minor variations at the edge of the highest energy band for the nanoribbon case may

be observed. This is possibly due to the different boundary conditions being employed by

PETRA and HelicES in the directions orthogonal to the ribbon axis. We also note that the

band gap for the silicon nanowire calculated by HelicES is 3.82 eV, which is very close to

the value of 3.84 eV reported in [6].
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Figure 3.6: Comparison of band diagrams for a (10, 0) zigzag carbon nanotube (diameter =

0.983 nm) generated using HelicES and a transfer-matrix technique [3]. The dashed green

box in the plot represents the region of the band diagram over which the reference data

was available for comparison. The green shaded region in the structure on the right is the

fundamental domain used in HelicES and the green arrow denotes the eZ axis.
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Figure 3.7: Comparison of band diagrams for a hydrogen passivated armchair graphene

nanoribbon generated using HelicES and a plane-wave technique [6, 7]. The green shaded

region in the structure on the right is the fundamental domain used in HelicES and the green

arrow denotes the eZ axis.
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Figure 3.8: Comparison of band diagrams for a hydrogen passivated, ⟨100⟩ oriented silicon

nanowire generated using HelicES and a plane-wave technique [6, 7]. The dashed green box

in the plot represents the region of the band diagram over which the reference data was

available for comparison. The green shaded region in the structure in the middle is the

fundamental domain used in HelicES, with the green arrow denoting the eZ axis. The right

image shows a top view of the structure (i.e., looking down along eZ).

3.1.4 Comments on computational efficiency and timing studies

We now discuss issues connected to the computational efficiency of HelicES. By design, the

code is meant to overcome the computational limitations of prior approaches in modeling

quasi-one-dimensional systems. We highlight this aspect of the code by providing timing

comparisons between HelicES and other existing methods, for a few systems of interest.

We have focused on the Plane-wave Electronic TRAnsport (PETRA) code [6, 7, 161] which

can model periodic systems, and Helical DFT [4, 5] which models quasi-one-dimensional

structures within a finite difference framework. For comparisons with PETRA, we chose

a twisted hydrogen-passivated graphene nanoribbon. Note that while realistic values of α

range from 0.0005 to 0.0025 (i.e., less than about 2.1◦ per nanometer), it is not feasible

to use these values in PETRA. This is because to simulate such a system in a typical
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plane-wave code like PETRA, we would require 1/α times the number of atoms needed for

untwisted geometries (for rational values of α). However, the number of atoms required in

the fundamental domain in HelicES is independent of the amount of twist. Thus, while a

realistic twisted nanoribbon can be studied using only 20 atoms in HelicES, PETRA would

require at least 10, 000 atoms in the fundamental domain for the same system. Keeping

this in mind, we use larger values of α = 0.25, 0.2, 0.1, and 0.05, so that the simulation

and timing data from PETRA could be obtained within reasonable wall times. For both

codes, we used the same diagonalization technique. The simulations were carried out on

dedicated workstations, or on a single node of the Hoffman2 cluster when larger memory

was needed. In our studies, we noted factors of 1.26, 1.84, 3.83, and 12.25 improvement in

the total diagonalization wall time of HelicES over PETRA, for α = 0.25, 0.2, 0.1, and 0.05

respectively. Based on the above discussion, we anticipate that the performance gap between

HelicES and PETRA, as well as the memory requirements of the latter, will only increase

when more realistic values of α or more complicated unit cells are considered.

Due to the fundamental limitations of plane-wave codes to efficiently represent helical

symmetries, it also makes sense to compare HelicES to Helical DFT, since the right symme-

tries are incorporated into both these codes, although the latter uses finite differences. For

this purpose, we studied a twisted (16, 16) armchair carbon nanotube with a diameter of

2.726 nm and a twist parameter of α = 0.002, and we used 21 η−points. As we showed ear-

lier (Section 3.1.3), while the two codes produce nearly identical results, the diagonalization

wall time for HelicES was about a factor of 27 lower, and the memory footprint was also

significantly less. These observations continue to be true when larger values of the energy

cutoff are used in HelicES, with the diagonalization wall time of the code being about a

factor of 8 lower than Helical DFT, even when an energy cutoff of 40 Ha is employed.

To finish this discussion on computational advantages of HelicES, we now present a system

that cannot be simulated in Helical DFT, and one that will require extensive computational

resources in typical periodic finite difference or plane-wave codes — an armchair graphene
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nanoribbon with a twist of α = 0.02. Note that this is still a relatively high value of α,

but was chosen here for a better visual representation of the system. The band diagram

of this system is presented in Fig. 3.9. Noticeably, in contrast to the untwisted, passivated

nanoribbon presented in Fig. 3.7, this system appears to have a vanishingly small band-gap,

indicative of metallic behavior.
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Figure 3.9: Band diagram for an armchair graphene nanoribbon with a twist parameter

of α = 0.02 (corresponding to a rate of twist β = 16.9◦ per nanometer) generated using

HelicES. The green shaded region in the structure on the right is the fundamental domain

used in HelicES. The green arrow denotes the eZ axis.

3.1.5 Application to the study of the electromechanical response of nanotubes

Finally, as a demonstration of the utility of the computational method developed here,

we study the the electromechanical response of a quasi-one-dimensional nanomaterial as

it undergoes deformations. Specifically, we consider a carbon nanotube with a radius of

about 1.0 nanometer (an armchair (16, 16) tube), and subject it to twisting. We start from

the untwisted structure and increase the rate of applied twist, considering up to about

β = 7.4◦ , in our simulations. Fig. 3.10 shows the variation of the band gap of the material

with applied twist. For comparison purposes, results from full self consistent Kohn-Sham
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DFT calculations using ab initio Troullier Martins pseudopotentials [162] and Local Density

Approximation based exchange correlation [163, 164], are also shown (obtained from [5]).

It is well known that upon twisting, armchair nanotubes — which are generally metallic in

untwisted form — show metal-to-semiconductor transitions, and that these changes manifest

themselves as oscillatory behavior in the band gap [5, 165, 166, 167]. We see from Fig. 3.10

that the results from HelicES do reproduce this qualitative behavior correctly, but the actual

response curve is quantitatively different from the first principles data. This is very likely

due to the lack of inclusion of atomic relaxation effects in HelicES, as well as the general

failure of the Mayer pseudopotential to model scenarios where the carbon atoms do not form

a perfect honeycomb lattice — a consequence of the shearing distortions that arise from the

applied twist in this case. Therefore, these results strongly suggest the need for building

in ab initio pseudopotentials and self consistent iterations into HelicES, which constitutes

ongoing work [168].
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Figure 3.10: Band gap trend as the twist parameter α is varied for a (16, 16) armchair carbon

nanotube. Results from HelicES (empirical pseudopotentials) and the Helical DFT code (self

consistent calculations with ab initio pseudopotentials and atomic relaxation effects included

[4, 5]) are both shown.
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3.2 Concluding remarks

In summary, we have presented a novel spectral method for efficiently solving the Schrödinger

equation for quasi-one-dimensional materials and structures. The basis functions in our

method — helical waves — are natural analogs of plane-waves, and allow systematically

convergent electronic structure calculations of materials such as nanowires, nanoribbons and

nanotubes to be carried out. We have discussed various mathematical, algorithmic and

implementation oriented issues of our technique. We have also used our method to carry out

a variety of demonstrative calculations and studied its accuracy, computational efficiency,

and convergence behaviors.

We anticipate that the method presented here will find utility in the discovery and charac-

terization of new forms of low dimensional matter. It is particularly well suited for coupling

with specialized machine learning techniques [116] and for the multiscale modeling of low

dimensional systems [169]. Building self-consistency into the method, so as to enable ab

initio calculations (e.g. using Hartree-Fock or Kohn-Sham Density Functional Theory [170])

remains the scope of ongoing and future work. An important first step in this direction is

the efficient solution of the associated electrostatics problem [10], which will be discussed in

detail in Chapter 4. Finally, the full power of some of the techniques described here can be

brought to bear upon complex materials problems, once a parallel, efficient, hardware opti-

mized version of HelicES is available. Development of such a code constitutes yet another

avenue of ongoing and future work.
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CHAPTER 4

The solution of the Poisson problem for twisted

geometries

The development of mathematical and computational frameworks for the study of matter

at the nanoscale has always been an area that has received much attention. Methods such

as Hartree-Fock (HF) [171], Density Functional Theory (DFT) [172], and post-HF methods

[173, 174, 175] have been instrumental in forming the basis over which some of the other

methods were built. One of the most well-established first principles computational methods

for electronic structure calculations is the Kohn-Sham Density Funcional Theory (KS-DFT)

framework [163, 172] which has enabled the prediction and calculation of fundamental ma-

terial properties with impressive accuracy [45, 176]. Increasingly vast amounts of resources

are being allocated for such first principles calculations, and more recently, the predictive

power of KS-DFT has been pushed forward further, by the integration of machine learning

techniques [116, 100, 101, 177]. KS-DFT owes its success due to striking an appealing bal-

ance between generality and computational efficiency, especially when compared to other ab

initio methods [170]. Because of the ab initio nature of this method, it has the ability to be

adapted specifically for special systems of interest, thereby increasing its efficiency further.

One particularly interesting family of materials with fascinating electronic, optical and

transport properties, that has received much attention recently, are quasi-one-dimensional

(1D) materials with intrinsic or applied twist [28, 29]. Consequently, a significant amount

of recent effort has been dedicated to study the electronic properties of chiral 1D systems

[178, 179, 180, 181, 182] as well as anomalous transport properties associated with such
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structures, such as the chiral-induced spin selectivity. Specifically, when studying chiral

systems with helical symmetries, it behooves to work in the helical coordinate system to

more naturally accommodate for such symmetries. To this effect, we have introduced a

spectral framework [138] to target quasi-one-dimensional systems with intrinsic or applied

twists, which was discussed in detail in Chapters 2 and 3.

An integral part of many of these calculations is the evaluation of a Newtonian potential

arising from a distribution of sources in a twisted geometry. For example, this appears in the

evaluation of the electrostatic potential in KS-DFT, as well as evaluation of the exact Hartree-

Fock exchange energy. Evaluation of such terms through direct pairwise computations based

on Coulomb sums attracts unmanageable computational costs because of the need to include

a sufficient number of images for every source point — an issue also present in periodic

electronic structure calculations. Moreover, the direct sum is conditionally convergent [183]

and has a slow convergence rate [184].

To address this issue in the case of periodic systems, a very well known approach is the

use of Ewald summation [185, 186] wherein the conditionally convergent series is split into

two independent series — a long range term and a short range term — each of which has a

much faster convergence than the original series. This method is exact in the limit of infinite

images and, thus, ensures convergence irrespective of the Ewald parameter used to split the

initial sum. The evaluation of the short range term is much faster and, as such, the Ewald

parameter is chosen to be so small that the short range term can be considered to be a

first-order approximation of the potential. However, with unconventional helical symmetries

(associated with twisted geometries), the computational efficiency may still suffer because of

the need to include more atoms in the fundamental domain. To address this issue, Dumitrica

et al. proposed an extension of the classical Ewald summation method to helical geometries

[10]. Regardless, the method does have a key limitation in that it scales quadratically with

respect to the number of charges in the symmetry-adapted unit cell. This makes it unsuitable

for charge distributions where the number of ‘discrete’ point charges can be in the millions —
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namely charge distributions associated with computational meshes. Given these challenges,

an alternative method is desirable, the most common of which is to obtain the electrostatic

Hartree potential by solving the associated Poisson equation [5, 73].

A prominent method that may be used for the solution of the Poisson equation is Finite

Differences (FD), wherein the computational real-space domain is discretized, and on which

the FD stencil is built. While this method has been successful, it too has inherent issues.

The Laplacian is often poorly conditioned and is non symmetric [59, 60]. Moreover, to deal

with core singularities, annular geometries befitting tubes have had to be employed. This

means that potentially interesting systems such as nanoribbons, nanowires, and nanoflakes

can’t necessarily be studied.

In this work, we confront the aforementioned issues and formulate a method that obeys

the structural symmetries and overcomes core singularities, while also keeping in mind the

possibly slow radial decay of the electrostatic potential by incorporating associated boundary

conditions (BCs). Furthermore, this method is readily applicable to solutions over meshes

and overcomes the difficulties associated with viewing charge distributions as a set of discrete

charges at each grid point, as is done in Ewald sums. We alleviate axial singularity issues by

using a shifted FD grid — in view of the fact that the singularity is not physical in nature

and is only an artifact of the choice of the mesh — and using appropriate pole conditions

[74, 75, 76]. Our method is motivated, in part, by recent developments in electronic structure

calculations in twisted geometries using helical waves [138], i.e., plane-wave like spectral

basis functions. These functions are, by design eigenfunctions of the Laplacian in twisted

geometries. However, their direct applications to the current work is not suitable because of

the long-ranged nature of the electrostatic potential. Helical waves, on the other hand, are

expected to have zero magnitudes everywhere at and beyond the radial boundary by design.

Thus, a spectral representation of the electrostatic potential using these helical waves would

violate the BCs. Owing to this, we instead use a suitable ansatz that, as we will show,

effectively reduces the formalism to the solution of a boundary value problem. While zero

55



Dirichlet BCs are commonly used [5, 187], these require significant padding and an extension

of the fundamental domain which is not desirable. To overcome this issue, here, we evaluate

appropriate boundary conditions using a helical Ewald kernel that may be set up only once

per simulation. Observing that the Ewald sum is only dependent on the distance between the

source and the target allows us to further optimize this calculation and drastically reduce the

computational walltime required. We show systematic convergence in the calculation of the

Hartree potential with respect to reference analytical solutions for different FD parameters,

and also present results pertaining to twisting energies. The evaluation of the electrostatic

potential with this method paves the way for incorporating self consistency within our prior

work, which could then further optimize the study of interesting systems such as twisted

multilayer graphene nanoflakes [188, 189, 190, 191, 192, 193] featuring exotic electronic flat

bands.

4.1 Theoretical background

In this section, we set up the helical coordinate system and the helical symmetries associated

with a quasi-one-dimensional structure. Further details can be found in Chapters 2 and 3.

Building on this helical framework, we then focus on the Hartree potential term that features

in the single particle Schrödinger equation, taking inspiration from the discussion from the

previous section. This will lead us into the mathematical framework in subsequent sections.

As mentioned previously, it is convenient to work in a coordinate system that describes

the symmetries of the system more naturally. Motivated by this, we make use of helical coor-

dinates in this work. For a point p ∈ R3 with Cartesian coordinates (xp, yp, zp), cylindrical

coordinates (rp, ϑp, zp), and helical coordinates (θ1 p, θ2 p, rp), the following relations hold:

rp =
√
x2p + y2p , θ1 p =

zp
τ
,

θ2 p =
1

2π
arctan 2 (yp, xp)− α

zp
τ

=
ϑp

2π
− αzp

τ
.

(4.1)
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The fundamental domain is then described as:

D =
{
(θ1, θ2, r) : 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤

1

N
, 0 ≤ r ≤ R

}
. (4.2)

where N denotes the cyclic symmetry of the system, and R denotes the radial boundary of

the fundamental domain. In this setup, the basis functions are given by:

Fm,n,k (θ1, θ2, r) =

√
N

πτ

1

RJnN+1

(
bnNk
) ei2π(mθ1+nNθ2) JnN

(
bnNk r

R

)
= cm,n,kRn,k(r)e

i2π(mθ1+nNθ2) .

(4.3)

where (m,n, k) are triplets of integers such that m ∈ [−Mmax,Mmax], n ∈ [−Nmax, Nmax] and

k ∈ [1, Kmax]. The full basis set size is then given by L = (2Mmax + 1) ∗ (2Nmax + 1) ∗Kmax,

i.e., it grows as O(MmaxNmaxKmax) in terms of the discretization sizes along the θ1, θ2, r

directions. The number of real space grid points in each direction is denoted by Nθ1 , Nθ2 , Nr

respectively.

The single particle Schrödinger equation, in its most general form, may be expressed as:[
−1

2
∆ + vH(x) + vxc(x) + vext(x)

]
ψi(x) = HKS ψi(x) = ϵiψi(x), (4.4)

vH(x) =
∫

g(y)
|x− y|

dy, vxc(x) =
δExc

δn(x)
, n(x) =

N∑
i=1

|ψi(x)|2 (4.5)

Here, ψi(x) are the Kohn-Sham orbitals, and g(x) is the charge density. A detailed method-

ology to simplify the above equation in the helical coordinate system using a spectral frame-

work may be found in our previous work. The focus of this work, however, is the Hartree

potential term, vH(x).

Assuming that quasi-one-dimensional nanostructures of interest are aligned along the eZ

direction, we may define a set of symmetry operations:

G =
{
Υζ,µ =

(
R(2πζα+µΘ)| ζτeZ) : ζ ∈ Z, µ = 0, 1, . . . ,N− 1

}
, (4.6)
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such that:

S =
⋃
ζ∈Z

µ=0,1,...,N−1

M⋃
i=1

R(2πζα+µΘ)ri + ζτeZ , (4.7)

where M is the total number of atoms in the helical unit cell, D. The Υζ,µ are symmetry

operations of the structure. Under such symmetries, we may rewrite the Hartree potential

as:

vH(x) =
∑
Υ∈G

∫
y∈D

g(Υ · y)
|x−Υ · y|

dy

g(x) = ρ(x) + b(x)

(4.8)

where the ζ, µ subscript has been dropped for simplicity. Here, ρ(x) is the electron charge

density and b(x) is the nuclear charge density at each grid point x. Note that in a charge

neutral system, g(x) must integrate to zero over D. The potential in Eq. 4.8 may now

be evaluated directly using pairwise Coulomb sums, but this procedure is computationally

inefficient due to the need for a large number of images (Υ), and fine discretization of D.

While symmetry-adapted helical Ewald sums do provide a better alternative, they too are

prohibitively slow due to the presence of Nθ1Nθ2Nr discrete charges. This number can often

run into the millions. Although exact in the limit of a sufficiently large number of images,

the helical Ewald method scales quadratically with respect to the number of grid points,

making this method unsuitable for charge distributions in this work. While we may use

Eq. 4.8 in some cases — for instance, for calculating the boundary conditions — the direct

evaluation of the Hartree potential over D using Eq. 4.8 should be avoided.

An alternate method, as mentioned earlier, is to modify the problem by evaluating the

Hartree potential as the solution of the following equivalent Poisson equation:

△vH(x) = −
∑
Υ∈G

∑
y∈D

4πg(Υ · y) (4.9)

While the equation above can be solved using appropriate FD methods (details of which will

be discussed later), we note here that the task at hand is a boundary value problem and that
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we still need to evaluate an equation similar to Eq. 4.8 to get said boundary conditions. We

have already mentioned why Dirichlet BCs will fail in this case, unless the radial boundary of

the fundamental domain is expanded sufficiently such that the electrostatic Hartree potential

decays to zero at the boundary. Thus, to make the method computationally efficient and

avoid an unnecessary increase in the size ofD, we must resort to evaluating the BCs explicitly.

Evidently, we may now use helical Ewald summations with the benefit that these only need to

be calculated at the boundary points instead of the entire fundamental domain. Note that

this significantly reduces the number of grid points over which to calculate helical Ewald

sums. As will be shown in the following section, due to a suitable choice of an ansatz for the

Hartee potential, this could reduce the computational complexity by a scale of 1002.

Twist 
parameter 𝛼

τ

R

2π
N

Radial boundary

conditions

Cyclic

symmetry

Pole conditions

Helical symmetry

Figure 4.1: The figure on the left represents a few layers of a twisted (10,10) armchair

carbon nanotube with the fundamental domain shown (N = 10). The fundamental domain,

over which the Hartree potential is to be computed, is represented in physical space using

Cartesian coordinates on the right. The slanted walls of the fundamental domain D in

physical space arise due to possibly arbitrary values of twist associated with the system. For

the points beyond r = R, we include boundary conditions into our framework via helical

Ewald sums. The red shaded area represents the points where we apply pole conditions in

our FD stencil to accommodate r < 0.
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4.2 Formulation

In this section, we derive, in detail, the method used in this study for the evaluation of

the Hartree potential as the solution of Eq. 4.9. We first simplify the Poisson equation to

an effective one-dimensional radial Ordinary Differential Equation (ODE) and discuss the

framework to solve it. This is followed by a discussion of the set up of the charge neutral

distribution as a sum of the electronic and nuclear charge distributions, and finally, a discus-

sion on the evaluation of the boundary conditions wherein we also mention computational

complexity and scalability.

4.2.1 The radial Poisson ODE

We assume a separable ansatz for the Hartree potential as follows:

vH(θ1, θ2, r) =
∑
m,n

Pm,n(r)e
i2π(mθ1+nNθ2) (4.10)

Note again that the separable ansatz cannot be represented in terms of our helical basis

functions because the latter are designed to drop to zero at the boundary (r = R), which

may not necessarily be true for the electrostatic potential. This key observation leads to the

inability of our framework to be completely spectral in nature. The total charge density,

g (θ1, θ2, r), on the other hand, can be represented in our basis set as follows:

g (θ1, θ2, r) =
∑
m,n,k

ĝm,n,kcm,n,kRn,k(r)e
i2π(mθ1+nNθ2) (4.11)

Note here that the total charge density must be computed with a sufficient number of helical

images taken into consideration via the symmetry operator, Υ. Additionally, we observe

that (θ1, θ2, r) and (θ1, θ2 +
1
2
,−r) represent the same physical grid point, and so, from Eq.
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4.10, we have:

vH(θ1, θ2 +
1

2
,−r) =

∑
m,n

Pm,n(−r)ei2π(mθ1+nNθ2+
nN
2

)

= (−1)nN
∑
m,n

Pm,n(−r)ei2π(mθ1+nNθ2)

Pm,n(r) = (−1)nNPm,n(−r)

(4.12)

This is what gives rise to the pole boundary conditions on the left-hand side of the FD

stencil, i.e., for r < 0, as represented in Fig. 4.1. With the above expressions, and with the

knowledge that the Laplacian in helical coordinates can be written as [4, 47]:

∆P = Prr +
1

r
Pr +

1

τ 2
Pθ1θ1 −

2α

τ 2
Pθ1θ2 +

1

4π2

(
1

r2
+

4π2α2

τ 2

)
Pθ2θ2 (4.13)

where any angular derivatives, i.e. with respect to θ1 and θ2, will equate to zero due to the

purely radial dependence of Pm,n(r), we can now rewrite Eq. 4.9 as:

∆vH = ei2π(mθ1+nNθ2)

[
Prr +

1

r
Pr

]
− vH

[
n2N2

r2
+

4π2

τ 2
(m− αnN)2

]
= ei2π(mθ1+nNθ2)

[
Prr +

1

r
Pr

]
− ei2π(mθ1+nNθ2)P

[
n2N2

r2
+

4π2

τ 2
(m− αnN)2

] (4.14)

for a particular ordered pair (m,n). The subscript m,n from Pm,n(r) has been dropped for

simplicity. Thus, we have:

ei2π(mθ1+nNθ2)

[
Prr +

1

r
Pr

]
− ei2π(mθ1+nNθ2)P

[
n2N2

r2
+

4π2

τ 2
(m− αnN)2

]
=

−4π
∑
m,n,k

ĝm,n,kcm,n,kRn,k(r)e
i2π(mθ1+nNθ2)

(4.15)

Taking the inner product of the above with ei2π(m′θ1+n′Nθ2) yields:[
Prr +

1

r
Pr

]
− P

[
n′2N2

r2
+

4π2

τ 2
(m′ − αn′N)

2

]
= −4π

∑
k

ĝm′,n′,kcm′,n′,kRn′,k(r) (4.16)

which can be further simplified to:

Pm′,n′
rr
+

1

r
Pm′,n′

r
−
[
4π2

τ 2
(m′ − αn′N)

2
+

(n′N)2

r2

]
Pm′,n′ = −4πGm′,n′(r) (4.17)
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Note that this equation needs to be solved for every combination of (m′, n′). It is evident

that Eq. 4.17 has a singularity at r = 0. However, as mentioned previously, this can be taken

care of by shifting the radial grid such that the point of singularity does not feature as a grid

point at all. Thus, we use FD grid such that the ith radial node is at ri =
(
i− 1

2

)
∆r, where

∆r is the FD mesh spacing. As a result, the first radial node occurs at ∆r
2

. For an ODE of

order n0, we have:

δ2f(ri)

δr2
=

n0∑
p=0

ωsecond
p,r (f(ri+p) + f(ri−p))

δf(ri)

δr
=

n0∑
p=1

ωfirst
p,r (f(ri+p)− f(ri−p))

ωfirst
p,r =

(−1)p+1

∆r p

(n0!)
2

(n0 − p)!(n0 + p)!
=

(−1)p+1(2nr − 1)

2Rp

(n0!)
2

(n0 − p)!(n0 + p)!

ωsecond
p,r =

2(−1)p+1

(∆r p)2
(n0!)

2

(n0 − p)!(n0 + p)!
=

(−1)p+1(2nr − 1)2

2R2p

(n0!)
2

(n0 − p)!(n0 + p)!

ωsecond
0,r = − 1

∆r2

n0∑
q=1

1

q2
=

(2nr − 1)2

4R2

n0∑
q=1

1

q2

(4.18)

Thus, from Eq. 4.17, we have:
n0∑
p=0

ωsecond
p,r (Pm′,n′(ri+p) + Pm′,n′(ri−p)) +

1

ri

n0∑
p=1

ωfirst
p,r (Pm′,n′(ri+p)− Pm′,n′(ri−p))

− 1

r2i
Pm′,n′(ri)

[
n′2N2 +

4π2r2i
τ 2

(m′ − αn′N)
2

]
= −4π

∑
k

Gm′,n′,k(ri)

(4.19)

At this point, it is worthwhile to note the following. The FD problem is solved on an

equispaced grid (∆r
2
≤ ri < R) consisting of nr points. However, the computational radial

grid in helical space is setup using Nr Gaussian nodes that are not equispaced. Thus, the

evaluated Hartree potential from Eq. 4.19 needs to transferred from the FD grid to the radial

helical grid by interpolation. Similarly, Gm′,n′(r) will also need to be transferred from the

helical radial grid on which it is originally evaluated to the FD grid for Eq. 4.19. To avoid

interpolation errors for the above, we limit nr to within a range dictated by the number of

helical radial nodes. Thus, for most cases (unless otherwise mentioned), we use the constraint
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0.5Nr ≤ nr ≤ 2Nr. This means that increasing Kmax not only increases the number of radial

nodes but also increases the number of FD grid points, and subsequently, the accuracy of the

FD solver. Unless otherwise specified, we use nr = 2Nr. Additionally, because of the radial

nature of the ODE and the fact that it needs to be solved for every combination of (m′, n′)

which span the Fourier space of θ1, θ2 respectively, there exists the need to perform forward

and inverse angular 2D Fourier transforms intermittently. An overview of this can be seen

in Fig. 4.2. Details on the numerical implementation of these fast Fourier transforms can

be found in our previous work [138].

4.2.2 Charge distribution setup

Our method relies on not just an accurate solution of the ODE, but also on an accurate

representation of the RHS in Eq. 4.17. While the electron density, ρ (θ1, θ2, r), is a natural

solution of a self-consistent field (SCF) calculation, one still needs an accurate expression for

b (θ1, θ2, r), i.e., the nuclear charge density, such that the system is charge neutral. In this

work, without loss of generality, we setup the neutral 3-D charge distribution by placing a

nuclear pseudocharge b (θ1, θ2, r) at each nuclear site, and by placing an equivalent electronic

pseudocharge, i.e., compensating charge, of −b (θ1, θ2, r) at a grid point near the respective

nuclear sites. Although this represents an unphysical charge distribution, it is sufficient to

test and validate our method as long as charge neutrality is maintained. However, it is vital

to avoid overlapping pseudocharge distributions as that can lead to an inaccuracies [8]. An

example of such a setup of the charge distribution for a carbon nanotube system can be seen

in Fig. 4.3. The above strategy, however, limits the softness of the charge distribution, as

will be explained in detail in the following paragraphs.

We implement and test our method on two spherically symmetric pseudocharge distri-
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Figure 4.2: A flowchart of the mixed spectral – finite-difference based numerical method

developed in this study. The (neutral) charge density, g (θ1, θ2, r), is first transformed into

2D reciprocal space along the angular directions. The resultant field, Gm,n(r), acts as the

RHS of the ODE. The boundary conditions, v (θ1, θ2, r), are obtained from the evaluation of

the potential exerted by g (θ1, θ2, r) at the boundary points. This too is then transformed

into the 2D reciprocal space. The ODE solver outputs the Hartree potential, Pm,n(r), in the

2D reciprocal space. The complete potential, VH (θ1, θ2, r) over D is then obtained via an

angular 2D inverse Fourier transform.
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(a) Top view (b) Perspective view

Figure 4.3: Setting up the compensating pseudocharges for a (6,6) armchair carbon nanotube.

Only a slice of the nanotube has been depicted for ease of visualization. Here, the blue

spheres represent the carbon atoms, and the translucent blue sphere encompassing each

atom is the nuclear pseudocharge density. The red translucent spheres represent the artificial

compensating electronic charge density. Note how none of the charge densities overlap — a

necessary condition as outlined in [8].

butions [8, 9]:

ρ1(rs) =
z

π3/2R3
c

e
− r2s

R2
c

ρ2(rs) =


−21z(rs −Rc)

3 (6r2s + 3Rcrs +R2
c) /5πR

8
c , rs ≤ Rc

0, rs > Rc

(4.20)

where z is the nuclear charge and Rc is the cutoff radius of the pseudocharge distribution.

Note that rs represents the radial distance in the spherical coordinate system, unlike r, which

represents the axial distance in helical coordinates. The first expression, ρ1(rs), is a Gaussian

distribution and has a relatively long tail. The second expression, ρ2(rs), on the other hand,

is relatively hard and local by design. We note that for ρ1(rs), the magnitude of the charge

drops to zero within machine precision at rs = 6Rc. We use this fact to avoid overlapping

charge distributions. For instance, if the shortest bond length in the system is L Bohrs, we
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are limited to 6Rc < 0.5L for ρ1(rs), and Rc < 0.5L for ρ2(rs). A notable advantage of using

the above pseudocharge distributions is that their respective pseudopotentials are readily

available as follows [8, 9]:

V1(rs) =
z

rs
erf
(
rs
Rc

)

V2(rs) =


z (9r7s − 30Rcr

6
s + 28R2

cr
5
s − 14R5

cr
2
s + 12R7

c) /5R
8
c , rs ≤ Rc

z/rs, rs > Rc

(4.21)

where erf denotes the error function [194]. This allows us to generate reference analyt-

ical answers that serve as the ground truth. Thus, in following sections, we compare the

Hartree potential calculated using our pseudo-spectral method using the charge distributions

as explained above against the potential as computed using Eq. 4.21.

4.2.3 Evaluating boundary conditions

As mentioned earlier, Eq. 4.9 is a boundary value problem, i.e., we need to explicitly calculate

the Hartree potential for points outside the fundamental domain, D. Note that while the

ODE is being solved in one dimension, we require a one-dimensional solution across a 2D

reciprocal space spanned by (m′, n′). Thus, the number of points for which these boundary

conditions must be evaluated is (n0

2
) × Nθ2 × Nθ1 . Figuratively, this can be seen from Fig.

4.5. While this can be done analytically using the expressions in Eq. 4.21, for a general self

consistent calculation, it is not possible to express the potential or the charge distribution

in analytical terms. Thus, we resort to computing the potential as expressed in Eq. 4.8 by

making use of helical Ewald sums. However, as the computational grid becomes finer, helical

Ewald sums — which scale quadratically with respect to the number of grid points — become

very expensive to calculate. Thus, there is a pressing need to optimize this calculation.

We tackle this situation by making the following observation. First, we split the Hartree

potential into a product of the Ewald kernel
(∑

1
|x−y|

)
and the charge density. Let x

(≡ (θ′1, θ
′
2, r

′)) and y (≡ (θ01, θ
0
2, r

0)) be the target and source locations in helical coordinates
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respectively. Then, instead of evaluating the Ewald kernel for every pair of x and y in a

6D space, (θ′1, θ
′
2, r

′, θ01, θ
0
2, r

0), we can reduce the evaluation to a 4D space with the help

of simple coordinate translations by assuming that, without loss of generalizability, each

x takes the form (0, 0, r′). Accordingly, the helical coordinates for each y are modified as

(θ01 − θ′1, θ02 − θ′2, r0). This works because the Ewald kernel is only dependent on the distance

between x and y, which is invariant under linear coordinate transformations, and can be

rigorously shown as follows. We first convert helical coordinates into cylindrical coordinates.

Following Eq. 4.1, we have:

ϑ0 = 2π(αθ01 + θ02), ϑ′ = 2π(αθ′1 + θ′2), z0 = θ01τ, z′ = θ′1τ (4.22)

Translating the coordinate system in the z direction by −z′ and rotating it by −ϑ′, we get:

ϑ′ ←− ϑ′ − ϑ′ = 0

z′ ←− z′ − z′ = 0

ϑ0 ←− ϑ0 − ϑ′ = 2π(α(θ01 − θ′1) + θ02 − θ′2)

z0 ←− z0 − z′ = (θ01 − θ′1)τ

(4.23)

Reverting back to helical coordinates gives us our new source coordinates in helical system as

(θ01 − θ′1, θ02 − θ′2, r0) and the new target coordinates as (0, 0, r′). This simple trick eventually

reduces the calculation of the helical Ewald kernel from (n0

2
)×Nθ1×Nθ2 target points to just

n0

2
points. This further elucidates the massive reduction in computational time in working

with the Poisson equation rather than evaluating the Hartree potential over D in real space.

We have reduced the number Ewald sum calculations by a factor of 2Nr/n0, which is typically

around 100. Given the quadratic scaling of Ewald sums, this is an improvement of O(1002).

We may now setup a look-up table for the Ewald kernel covering all possible combinations

of source and target pairs in 4D space. This can be done at the start of a self-consistent

calculation, i.e., only once for any given simulation. Calculating the Ewald potential for

every self-consistent iteration is then simply a matter of accessing the look-up table for a
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given grid of shifted source and target locations, and multiplying it by the charge density at

that location.

4.3 Reduction in computational complexity and algorithms

In this section, we elucidate on the reduced computational complexity of our pseudo-spectral

method. First, we briefly discuss the computational complexity of our method, and compare

it with a ‘naive’ calculation of the Hartree potential over the fundamental domain. This is

followed by a detailed runtime comparison between different methods.

As such, a direct pairwise calculation using the helical Ewald method detailed in this

section will have largely a computational complexity of O (K2
max) owing to the quadratic

scaling of the Ewald method. The coordinate shifting as described in the previous section

will add a further O (M2
maxN

2
maxK

2
max) to the above, albeit with a small prefactor. In con-

trast, the framework developed in this study uses a combination of FD and fast Fourier

transforms, with the helical Ewald method only being called upon for the boundary condi-

tions. The FD part is O(Kmax), and the fast Fourier transforms combined have a scaling

of O (MmaxNmaxKmax(Kmax + log(Mmax) + log(Nmax))) [138]. The only additional cost is for

the evaluation of the boundary conditions, which amounts to O(n2
0)+O (M2

maxN
2
maxn

2
0), both

with small prefactors.

Next, we present a direct comparison in the time taken by different methods to compute

the same Hartree potential over D (see Fig. 4.4). In the analytical method, the potential

over D is evaluated using analytical expressions as given in Eq. 4.21. In the method titled

‘helical Ewald’, the potential over D is calculated using helical Ewald sums by using the

Ewald kernel. In the ‘Spectral-FD’ technique, both the methods above are used to calculate

the boundary conditions only, and the potential over D is then obtained via the ODE solver.

We reiterate here that the computation of the Ewald kernel, which is used to evaluate helical

Ewald sums, need only be done once per simulation. As such, once precomputed, the wall
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time of methods using the kernel can be significantly reduced further, as elucidated in Fig.

4.4.

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6
101

102

103

104

105

106

107

T
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e 
(in

 s
ec

on
ds

)

Analytical Computation
Using the Ewald kernel
(Algorithm 4)
Evaluating the Ewald kernel
(Algorithm 1)
ODE Solver

(a) Timing comparison for different methods

Method Description

Method 1 Analytical over D

Method 2 Helical Ewald over D

Method 3
Helical Ewald over D

(precomputed kernel)

Method 4
Spectral-FD with

analytical BCs

Method 5
Spectral-FD with

helical Ewald BCs

Method 6

Spectral-FD with

helical Ewald BCs

(precomputed kernel)

(b) Methods legend

Figure 4.4: The time taken to calculate the full Hartree potential over D using different

methods for a (6, 6) CNT with α = 0.004, N = 6. An energy cutoff of 120 Ha was used,

and the FD order used was 12. All times are in seconds. Note that the bar plots have

been stacked in reverse chronological order for ease of visualization (i.e., for instance, for the

Spectral-FD case, the actual chronological order is the evaluation of the Ewald kernel, its

usage, and then the ODE solver).

It is clear that our novel spectral-FD solver using helical Ewald boundary conditions is

almost two orders of magnitude faster for realistic simulation parameters, while maintaining

low errors, as is shown in the following section. The wall time can be further reduced for

lower order of FD because this reduces the number of boundary points in the framework. For

instance, and as displayed in Fig. 4.9, we see acceptable values of errors using fourth order

FD. Thus, we may be able to reduce the time taken to compute the boundary conditions by

a factor of three in Fig. 4.4 by using a lower FD order.

69



Now, we discuss the mathematical implementation of our framework. In what follows,

OM×N is used to denote a zero matrix of size M ×N , and IM×N is used to denote a matrix

of all ones of size M ×N . Additionally, the notation {rk}Nr
k=1 is used to represent a vector of

size Nr × 1 with entries rk, where k ∈ [1, Nr].

Algorithm 6: Generating the helical Ewald sum kernel
Input: The helical Ewald sum parameters η, ζ, lmax, kmax, p

Prerequisites: The equispaced radial target grid, {rj
t}nr

j=1 and the source coordinates,(
{rk}Nr

k=1, {θn
2}

Nθ2
n=1, {θm

1 }
Nθ1
m=1

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Initialize E = Onr×Nr×Nθ2
×Nθ1

Calculate p Gauss-Jacobi radial weights and nodes between 0 and η as [tn, tw]

for i ≤ nr do
Initialize VL, VS = ONr×Nθ2

×Nθ1

for n ≤ N− 1 do

{θn
2}

Nθ2
n=1 = {θn

2}
Nθ2
n=1 + n/N //Points skipped due to cyclic symmetries

Create G3D ∈ RNr×Nθ2
×Nθ1 , a 3D grid from the vectors

{rk}Nr
k=1, {θm

1 }
Nθ1
m=1, {θn

2}
Nθ2
n=1

VL = VL + Long range helical Ewald potential between (0, 0, rit) and G3D

VS = VS + Short range helical Ewald potential between (0, 0, rit) and G3D

if i = 1 then
VL(end, 1, 1) = VL(end, 1, 1)− 2

√
η
π

//x ≡ y

VS(end, 1, 1) = 0 //x ≡ y

end

end

E(i, :, :, :) = VL + VS

end

Result: The helical Ewald kernel, E ∈ Rnr×Nr×Nθ2
×Nθ1 , computed for every target(

0, 0, {rj
t}nr

j=1

)
and source

(
{rk}Nr

k=1, {θn
2}

Nθ2
n=1, {θm

1 }
Nθ1
m=1

)
combination

Note that Algorithm 6 sets up the helical Ewald kernel for a general radial grid, and,

without loss of generality, keeps the θ1 and θ2 coordinates as 0. When using the algorithm to

prepare the kernel for computing boundary conditions, the radial grid is set up as {rj
t}0.5n0

j=1 ∈[
R,R + n0

2
∆r
]
. Similarly, when generating the kernel for computing the potential directly
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over D, the grid is set up as {rj
t}Nr

j=1 ∈ [0, R]. However, the grid points must be equispaced

to comply with the FD stencil. Details on the helical Ewald algorithms for the short range

and long terms can be found in Algorithms 7 and 8.

Algorithm 7: Short range helical Ewald potential
Input: The target point (θ′1, θ

′
2, rt), the source grid G3D, and the helical Ewald sum

parameters η, ζ

Unpack G3D as individual vectors {θm
1 }

Nθ1
m=1, {θn

2}
Nθ2
n=1, and {rk}Nr

k=1

{θm
1 }

Nθ1
m=1 = {θm

1 }
Nθ1
m=1 + λ ∀ λ ∈ [ζ, ζ] //Periodic helical images of y

Recreate G3D ∈ RNr×Nθ2
×(2ζ+1)Nθ1

Convert G3D into a 3D Cartesian grid, GCart
3D

Convert helical coordinates (θ′1, θ
′
2, rt) into Cartesian coordinates (x′, y′, z′)

Store distances between (x′, y′, z′) and GCart
3D in D

Remove zero values from D //x ≡ y

VS = 1√
πD

. ∗ Γ(1
2
, η ∗D2)

Reshape VS into a NrNθ2Nθ1 × (2ζ + 1) vector and sum across the columns

Reshape VS into a Nr ×Nθ2 ×Nθ1 vector

Result: Short range helical Ewald potential, VS ∈ RNr×Nθ2
×Nθ1 , between (θ′1, θ

′
2, rt)

and G3D

71



Algorithm 8: Long range helical Ewald potential
Input: The target point (θ′1, θ

′
2, rt), the source grid G3D, the Gauss-Jacobi radial

weights (tw) and nodes (tn), and the helical Ewald sum parameters lmax, kmax

Unpack G3D as individual vectors θgrid
1 = {θm

1 }
Nθ1
m=1, θ

grid
2 = {θn

2}
Nθ2
n=1, and

rgrid = {rk}Nr
k=1

Reshape θgrid
1 into a 4D tensor θ4D

1 ∈ R1×1×1×Nθ1

Reshape θgrid
2 into a 4D tensor θ4D

2 ∈ R1×1×Nθ2
×1

Initialize I l ̸=0 = O(2lmax+1)(2kmax+1)×Nr , Ik ̸=0 = O(2lmax+1)(2kmax+1)×Nr

InitializeMl ̸=0 = O(2lmax+1)(2kmax+1)×1×Nθ2
×Nθ1

,Mk ̸=0 = O(2lmax+1)(2kmax+1)×1×Nθ2
×Nθ1

Initialize c1, c2 = 0, and set E = exp
(
−(r2t + r2grid) . ∗ tn

)
Set A1 = INr×Nθ2

×Nθ1
. ∗
[
1
τ

∑
p twp . ∗ exp

(
(tnp ∗ r2t ) ./ t2np

)]
Set A2 =

1
τ
∗
∑

p
1
t2np

. ∗ besseli(0, 2rt ∗ rgrid ∗ tnp) . ∗ exp
(
−tnp(r

2
t + r2grid)

)
. ∗ twp

Reshape A2 as A2 = I1×Nθ2
×Nθ1

. ∗ A2

for l ∈ [−lmax : lmax] , l ̸= 0 do
Set fl = 1

t2n
. ∗ besseli (l, 2rt ∗ rgrid ∗ tn) . ∗ E

Set hl = exp
(
−2iπl((θ4D

2 − θ′2) + α(θ4D
1 − θ′1))

)
. ∗ exp

(
−2iπlα(θ′1 − θ4D

1 )
)

for k ∈ [−kmax : kmax] do
Increment c1 by unity

Set f = fl . ∗ exp
(
− 1

tn
. ∗
(

π(lα+k)
τ

)2)
I l ̸=0(c1, :) =

∑
p f . ∗ twp

Ml ̸=0(c1, :, :, :) = hl . ∗ exp
(
−2iπk(θ′1 − θ4D

1 )
)

end

end

Set A3 as sum across all rows of 1
τ
∗
(
I l ̸=0 . ∗Ml ̸=0

)
Set fl = 1

t2n
. ∗ besseli (0, 2rt ∗ rgrid ∗ tn) . ∗ E

for k ∈ [−kmax : kmax] , k ̸= 0 do
Increment c2 by unity

f = fl . ∗ exp
(
− 1

tn
. ∗
(
πk
τ

)2)
Ik ̸=0(c2, :) =

∑
p f . ∗ twp

Mk ̸=0(c2, :, :, :) = INθ2×Nθ2
. ∗ exp

(
−2iπk(θ′1 − θ4D

1 )
)

end

Set A4 as sum across all rows of 1
τ
∗
(
Ik ̸=0 . ∗Mk ̸=0

)
VL = A1 − A2 + A3 + A4 after removing dimensions of unit length from each

Result: Long range helical Ewald potential, VL ∈ RNr×Nθ2
×Nθ1 , between (θ′1, θ

′
2, rt)

and G3D
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Algorithm 9: Helical Ewald sums for boundary points

Input: The source points, {rk}Nr
k=1, {θm

1 }
Nθ1
m=1, {θn

2}
Nθ2
n=1, and the target points,

{rj
t}0.5n0

j=1 , {θm
1 }

Nθ1
m=1, {θn

2}
Nθ2
n=1

Prerequisites: The helical Ewald kernel, E , evaluated in Algorithm 6, and the charge

density, g ∈ R1×Nr×Nθ2
×Nθ1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Set N = 0.5n0Nθ1Nθ2

Initialize VH = ON×1

Replicate each θm
1 for 0.5n0 ×Nθ2 instances to get θmesh

1 ∈ RN×1

Replicate each θn
2 for 0.5n0 instances to get θtemp

2 ∈ R0.5n0Nθ2
×1

Replicate the whole of θtemp
2 for Nθ1 instances to get θmesh

2 ∈ RN×1

for i ≤ N do

θs1 = {θm
1 }

Nθ1
m=1 − θmesh

1 (i) //Coordinate transformation (see subsection 4.2.3)

θs2 = {θn
2}

Nθ2
n=1 − θmesh

2 (i) //Coordinate transformation (see subsection 4.2.3)

Map θs1, θs2 back into D, if needed

rindex = i mod 0.5n0

if rindex = 0 then
rindex = 0.5n0

end

Find indexing vectors θindex
1 , θindex

2 such that {θm
1 }

Nθ1
m=1

(
θindex
1

)
= θs1, and

{θn
2}

Nθ2
n=1

(
θindex
2

)
= θs2

VH(i) = sum
(
E
(
rindex, :, θindex

2 , θindex
1

)
. ∗ g, all

)
Reshape VH into R0.5n0×Nθ2

×Nθ1

end

Result: The Hartree potential, VH ∈ R0.5n0×Nθ2
×Nθ1 , computed for every boundary

point
(
{θm

1 }
Nθ1
m=1, {θn

2}
Nθ2
n=1, {r

j
t}0.5n0

j=1

)

After having set up the helical Ewald kernel in the form of a look-up table in Algorithm 6,

the potential at a point (θ′1, θ′2, r′) due to the charge at the point (θ01, θ02, r0) is given by using

the linear coordinate transformation detailed in section 4.2.3, accessing the look-up table,

and multiplying the value by the charge at the point (θ01, θ
0
2, r

0). This process can easily

be vectorized, as elucidated in Algorithm 9. In fact, each algorithm has been vectorized in

the source coordinate space, allowing the calculation of the potential at a particular target
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location due to all source locations in one go.

Algorithm 10: Poisson ODE
Input: The FD order, n0, and the number of FD grid points, nr

Prerequisites: The FD radial grid, rFD, the 2D angular transform of the charge

density, gm,n(r), over D, and the 2D angular transform of boundary conditions,

V BC
m,n(r), evaluated using helical Ewald sums

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Initialize VH = Onr×(2Mmax+1)(2Nmax+1)

for m′ ∈ [−Mmax :Mmax] do

for n′ ∈ [−Nmax : Nmax] do

Set c1 = (−1)n′N, c2 = (n′N)2, h = 0.5 ∗ n0, β =
[
2π
τ
(m′ − αn′N)

]2
Set up spline to interpolate gm′,n′(r) to the FD radial grid, gm′,n′(rFD)

R = −4πgm′,n′(rFD) ∈ Rnr×1, and set U,L = Onr×h

Set up ωsecond
0,r ∈ R, ωsecond

r ∈ Rh×1, and ωfirst
r ∈ Rh×1 using Eq. 4.18

Initialize a diagonal matrix Mnr×nr with diagonal
(
2 ∗ ωsecond

0,r − β − c2
r2FD

)
for i ≤ nr do

U(i, :) = ωsecond
r + ωfirst

r

r
(i)
FD

// Entries above the diagonal

L(i, :) = flip
(
ωsecond
r − ωfirst

r

r
(i)
FD

)
// Entries below the diagonal

end

for ii ≤ nr do
Add entries above and below the diagonal (see Fig. 4.5)

if ii ≤ h then // r<0
Implement pole conditions (see Fig. 4.5)

end

end

Incorporate boundary conditions, V BC
m′,n′(r), into the FD stencil M

Solve matrix multiplication equation MVm′,n′(rFD) = R to get Vm′,n′(rFD)

VH(:, (m
′ +Mmax)(2Nmax + 1) + (n′ +Nmax + 1)) = Vm′,n′(rFD)

end

end

Set up a spline to interpolate VH from rFD to the computational radial grid, {rk}Nr
k=1

Obtain the Hartree potential by performing the 2D inverse angular transform on all

rows of VH and reshaping the matrix to VH (θ2, θ1, r) ∈ RNθ2
Nθ1

Nr×1

Result: The Hartree potential, VH (θ2, θ1, r) over D
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Figure 4.5: Pictorial representation of generating the FD stencil for an order of n0 = 8, as

outlined in Algorithm 10. The variables h, nr, and c1 are taken from Algorithm 10 as well.

The term d(i) represents the ith diagonal term in the stencil. The entries above the diagonal

(in dark blue) are cut off at the end (shaded area) due to boundary conditions, whereas the

entries below the diagonal (in purple) are cut off at the start due to pole conditions.

Having evaluated the Hartree potential at the boundary using Algorithm 9, the potential

over D is the calculated via Algorithm 10 by essentially solving the boundary value problem

set up in section 4.2.1.

4.4 Results

4.4.1 Computational platform

All simulations in this study were carried out using dedicated desktop workstations (Dell

Precision 7920 Tower) or on single nodes of the Hoffman2 cluster at UCLA’s Institute for

Digital Research and Education (IDRE). The Dell Precision workstation has an 18-core Intel

Xeon Gold 5220 processor (24.75 L3 MB cache, 2.2 GHz clock speed), 256 GB of RAM and 1

TB of SATA Class 20 Solid State Drive (SSD) storage. Every compute node of the Hoffman2

cluster has two 18-core Intel Xeon Gold 6140 processors (24.75 MB L3 cache, clock speed
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of 2.3 GHz), 192 GB of RAM and local SSD storage. MATLAB version 9.7.0 (R2019b) was

used for the simulations. Parallelization, wherever possible, was achieved using MATLAB’s

Parallel Computing Toolbox.

4.4.2 Convergence and accuracy studies

Before discussing the convergence of the calculated Hartree potential using our method with

respect to different simulation parameters, we first showcase the expected behaviour of the

Laplacian operator set up in Algorithm 10. We do this by noting that the basis functions are

eigenfunctions of the Laplacian operator in helical coordinates [138]. Thus, the eigenvalue

equation must be satisfied. This can be represented as:

−∆Fm,n,k = λ0m,n,k Fm,n,k , (4.24)

where λm,n,k is the eigenvalue corresponding to a particular (m,n, k) harmonic of the eigen-

function Fm,n,k. In Fig. 4.6, we plot the error between the left hand side and the right hand

side of Eq. 4.24. For a rigorous analysis, we perform this test for three different harmon-

ics and observe that the while the errors in the vectors are low, they increase for higher

harmonics. This is to be expected given that the computational grid has been fixed and

because aliasing errors may be seen. An additional technique to check the validity of the

above equation is to check the ratio of the left hand side to the right hand side. Ideally, one

would expect that ratio to be constant, and equal to 1, throughout. We verify that that is

indeed the case here, except at zeroes of the eigenfunction, which is to be expected. Thus,

we conclude that the FD-based helical Laplacian operator behaves as expected.

With the basis set size, L, being defined by three quantities (Mmax, Nmax, Kmax), it

behooves to show systematic convergence of the Hartree potential, as evaluated by our

pseudo-spectral method, with respect to each of the three basis set maxes. We demonstrate

convergence using both the Gaussian charge distribution [9] as well as the charge distribution

developed in [8]. For the Gaussian charge distribution, we consider a (6, 6) carbon nanotube
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Figure 4.6: The difference in left hand side and the right hand side of the eigenvalue equation

(Eq. 4.24) for different harmonics of the eigenfunction. The plot on the bottom right shows

the ratio of the left hand side to the right hand side for values of r where the eigenfunction

is non-zero. The spikes occur in the immediate vicinity of the zeroes of the eigenfunction.

In each case, the basis set maxima were set to Mmax = 20, Nmax = 50, Kmax = 300 which are

high enough to avoid any errors creeping in due to coarseness of the mesh. A FD order of 4

was used, with nr = 2Nr (consistent with the results in Fig. 4.9).

(CNT) with α = 0.005, whereas for the charge density introduced in [8], we use a (6, 6)

silicon nanotube with α = 0.002. In both cases, N = 6.

We observe systematic and monotonic convergence with respect to each of the 3 basis

set maxes, as depicted in Fig. 4.7 for a (6,6) armchair carbon nanotube using a Gaussian

pseudocharge distribution, and in Fig. 4.8 for an equivalent (6,6) silicon nanotube using

the relatively harder pseudocharge distribution introduced in [8]. However, it is interesting

to note the slight difference in the convergence trend for the two pseudocharge (and pseu-

dopotential) distributions used in this work. For the Gaussian pseudocharge distribution,

the errors are typically higher than the other harder pseudocharge distribution for the same

basis set size. However, the trend is reversed at higher values of the basis set size because

the convergence in Fig. 4.8 eventually saturates.
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Figure 4.7: Convergence in the L2 norm per electron, calculated as 1
Ne
×√∫

D (V − Vref)
2 2πτrdrdθ1dθ2, and L1 norm per electron, calculated as 1

Ne
×∫

D|V − Vref|2πτrdrdθ1dθ2, with respect to different basis set maxes for the Gaussian pseu-

docharge distribution [9]. Here Ne is the number of electrons in D. In each case, the other

two basis set maxima were held constant at Mmax = 30, Nmax = 75, Kmax = 300. The

method was tested on a 6,6 carbon nanotube with α = 0.004, N = 6. The reference, Vref,

was calculated using the analytical expression in Eq. 4.21 with a basis set size corresponding

to Mmax = 30, Nmax = 75, Kmax = 300.

At this point, we could like to note that while our pseudo-spectral method requires

relatively high values of the basis set maxes to achieve low errors, we don’t necessarily have

to use these values for the actual calculation of the electron density. We envision using two

sets of basis set maxes — a coarser grid for the computation of the electron density and a

much finer grid for the computation of the Hartree potential. Transferring fields from one

grid to another is a simple matter of interpolation. This negates the need to use a fine mesh

where it may not be required.

Finally, we also perform convergence testing with respect to the FD order, and for mul-

tiple values of the number of FD grid points, nr. This can be seen in Fig. 4.9 below. It

is apparent that the errors saturate irrespective of the size of the basis set, but the level
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Figure 4.8: Convergence in the L2 norm per electron, calculated as 1
Ne
×√∫

D (V − Vref)
2 2πτrdrdθ1dθ2, and L1 norm per electron, calculated as 1

Ne
×∫

D|V − Vref|2πτrdrdθ1dθ2, with respect to different basis set maxes for the pseudocharge

distribution introduced in [8]. Here Ne is the number of electrons in D. In each case, the

other two basis set maxima were held constant at Mmax = 30, Nmax = 75, Kmax = 300. The

method was tested on a 6,6 carbon nanotube with α = 0.004, N = 6. The reference, Vref,

was calculated using the analytical expression in Eq. 4.21 with a basis set size corresponding

to Mmax = 30, Nmax = 75, Kmax = 300.

at which they saturate is very much dependent on the basis set size. This, along with the

observations from Fig. 4.7 and Fig. 4.8 leads us to conclude that the errors are largely

controlled by the basis set maxima and are relatively insensitive to the FD order.

4.4.3 Calculation of the electrostatic interaction energy

Having validated and rigorously tested our method, we now demonstrate its utility for real-

istic use cases by calculating the energy arising from electrostatic interactions in a system.

Here too, two opportunities present themselves. We can calculate the electrostatic interac-

tion energy — obtained as the integral, over D, of the Hartree potential and the neutral
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Figure 4.9: Convergence in the L2 norm per electron, calculated as 1
Ne
×√∫

D (V − Vref)
2 2πτrdrdθ1dθ2, between the Hartree potential as evaluated analytically (from

Eq. 4.21) and as evaluated by our psuedo-spectral method with respect to the finite differ-

ence order for a (6,6) armchair carbon nanotube with a twist of α = 0.004, and N = 6. We

show convergence across 3 different values of nr, and for 3 different sizes of the basis set.

charge density — by using the unphysical setup used in subsection 4.2.2. This results in a

parabolic curve wherein the electrostatic interaction energy of the system increases with the

twist parameter (α), as displayed in Fig. 4.10. Alternatively, the electronic charge density

can be computed using an electronic structure code, while the nuclear charge density can

be derived from Eq. 4.20. In both cases, once the neutral charge density is obtained, the

evaluation of the Hartree potential is done via the method presented in this study. For the

latter, we see an inverse parabolic relation with respect to α. We argue that this may be

because the empirical pseudopotential used for the calculation of the electron density [6, 161]

may not be compatible with the local pseudopotentials described in Eq. 4.21.
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Figure 4.10: The behaviour of the electrostatic interaction energy as a function of the twist

parameter, α, for a (6, 6) carbon nanotube, N = 6. The basis set size chosen was Mmax =

15, Nmax = 30, Kmax = 125. The FD order was 4, with nr = Nr, consistent with the

observations from Fig. 4.9. We see an expected quadratic behaviour, consistent with prior

works [10].

4.5 Concluding remarks

The above framework for the calculation of the Newtonian potential that features within

the KS-DFT equations paves the way to incorporating self consistency within HelicES. The

combination of these works is expected to eventually enable full DFT calculations of quasi-

one-dimensional materials of interest. A couple of avenues that could be explored include

the study of electronic flat bands in twisted graphene nanoflakes, as well as the study of

anomalous spin transport phenomenon such as the chiral-induced spin selectivity (CISS)

effect. At this point, it is also interesting to note that, since the framework described above

is essentially a representation of the Laplacian in helical space, it has the ability to be applied

directly for the solution of the one particle Schrödinger equation as an alternate method to

what has been discussed in Chapters 2 and 3. Specifically, the Laplacian is expressed pseudo-

spectrally wherein we use fast Fourier transforms (FFTs) for the two-dimensional angular
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domain but use finite differences in the radial direction. Thus, if the wavefunction too can

be expressed in a similar way — i.e., in a 2D reciprocal space for angular dependence, and in

a 1D real space for radial dependence — then we could use a variant of Eq. 4.17 (without the

RHS) and perform a direct diagonalization preceded by FFTs to compute the wavefunction.

A notable advantage of this method over a direct diagonalization of the Laplacian applied

to the wavefunction in a fully spectral framework is that the computational cost associated

with a one-dimensional numerical quadrature in the radial direction is removed.
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CHAPTER 5

The Posner molecule: Importance and structural

ambiguity

5.1 Background and the claim of a biological neural qubit

The calcium phosphate trimer, Ca9(PO4)6, is of special biological interest. First discovered in

the bone mineral hydroxyapatite in 1975 by Betts and Posner [77], and henceforth coined as

the Posner molecule (PM), it is thought to form the structural building block of amorphous

calcium phosphate [78]. Its presence in simulated body fluids was confirmed by Onuma and

Ito [195], and its aggregation has been hypothesized to underpin bone growth [79, 80, 81, 82].

More recently, it has been proposed that the 31P nuclear spins within PMs can maintain

long-lived entanglement, and that this could play an important role in nervous excitation

via synaptic Ca2+ ion release [11, 15, 83]. These and other studies [16] have subsequently

explored PMs as potential “neural qubits”, drawing upon the fact that nuclear spin coherence

times associated with these systems have been found to be exceptionally large per theoretical

estimates. Such studies have suggested or assumed that the prototypical structure for the PM

is one with an S6 molecular point group symmetry, at least on the average [11]. Furthermore,

in the presence of a well-defined rotation axis of the cluster (such as the three-fold C3

rotational symmetry of the supposed S6 symmetric cluster), the binding and unbinding of

PMs could arguably act as a “pseudospin" entangler of the nuclear spin states of multiple

PMs, which is a necessary precondition for the “quantum brain" concept, as suggested in

[11].
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In the context of the aforementioned mechanism, molecular point group symmetries for

PMs are important, because they dictate the form of the spin-spin coupling network. The

number of independent components in this network is directly related to the point group

symmetry of the structure [196]. Certain molecular symmetries can render the six 31P

nuclei magnetically equivalent (e.g., S6), resulting in a small number of unique scalar (J)

couplings (e.g., three unique coupling constants for S6) [16]. Understandably, other molecular

symmetries could treat groups of 31P nuclei as distinct, thus, resulting in a larger number

of pertinent scalar couplings [197]. As the ability of the system to sustain long-lived spin

coherences is starkly related to the asymmetry in the coupling network [198, 199, 200, 201,

202], the spin physics of PMs is inherently linked to the molecule’s point group symmetries.

Further, the presence of an inversion center in the PM, as found for S6, would render the

intra-cluster dipolar coupling block-diagonal in a basis of well-defined parity under exchange

of two 31P nuclei related by inversion. As a consequence, the inclusion of a singlet-polarized

diphosphate molecule in such a cluster could generate long-lived spin population differences,

spared from fast spin relaxation by the dipolar coupling within the PM.

The structure of the isolated PM is unknown. However, a series of studies [11, 16, 78, 203]

suggest a high degree of symmetry, e.g. S6 and beyond, which was later exploited [11] in

deriving the molecule’s hypothetical entanglement-driven interaction mechanisms. [16, 204].

That the symmetry of the cluster might in fact be lower, has, on the other hand, been pointed

out as early as 2003 in the work of Yin et al. [79], and then later in [204] and [16]. Based

on studies of the PM so far, two possibilities ought to be addressed: a) could the molecule

exist as a stable entity, i.e. corresponding to a minimum on the Potential Energy Surface

(PES), of high symmetry that is dominantly populated at physiological temperatures, as

motivated by [78, 203], or b) could thermal fluctuations average the molecule’s geometry to

an effective structure of high symmetry, i.e. of an overall S6 symmetry, despite the ensemble

comprising predominantly low symmetry states, as advocated in [11] ? Ref. [11] reports

the energy difference between S6 and C1 to be 0.06 eV = 1.53 meV/atom = 2.33 kBT ,
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while [203] suggests an alternate value of 0.13 eV = 3.33 meV/atom = 5.06 kBT between

S6 and C2, suggesting that these structures are thermally accessible, thereby highlighting

the importance of probing hypothesis b) by studying the dynamical ensemble properties.

Indeed, Swift et al. [11], while utilizing the S6-symmetry in deriving the specifics of the

quantum brain hypothesis, acknowledge the existence of multiple more stable structures

of lower symmetries. Moreover, it was understood that they considered non-equilibrated

structures, assumed to exist in the average, for their calculations [205]. Naturally, considering

a more symmetric yet less stable molecular structure has important implications on its spin

properties, and prior works [78, 203, 206] could have suffered from the use of poor basis sets

available at the time and the use of molecular force fields rather than ab initio methods.

Molecular dynamics-based studies [207] using improved force-fields [208, 209] suggest the

less symmetric point group C3 for the molecule as well. Thus, given the conflicting state of

the literature on the one the hand, and the importance of the existence of highly symmetric

Posner clusters in support of recent quantum biological hypotheses on the other hand, we

were prompted to conclusively re-examine the structure of the PM.

Our work [14] conclusively proved that the PM exists as a dynamic ensemble of structures

which is largely asymmetric, as will be detailed in later sections (See Section 5.3). However,

given that all prior works [11, 16], until now, have considered the S6-symmetric structure of

the Posner molecule to make theoretical predictions on the entanglement times of the nuclear

spin states and for examining the viability of the molecule as a potential biomolecular qubit,

here [210], we explore if, and for how long, 31P nuclear spin coherences can be maintained

for the multiple asymmetric configurations found in our work.

5.2 Computational methodology

For structural relaxation in our study, we used Quantum ESPRESSO and Q-Chem. Within

Quantum ESPRESSO, we used the Standard Solid-State Pseudopotentials library [211, 212]
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and the Perdew - Burke - Ernzerhof (PBE) exchange correlation functional. The Broy-

den – Fletcher – Goldfarb – Shanno (BFGS) algorithm was used for optimization of the

structure. A unit cell of more than twice the size of the initial structure was used, and its

geometry was subsequently relaxed. The Polarizable Continuum Model (PCM) for solvation

was also used to undertsand the effects of solvation, if any, on structural relaxation of the

Posner molecule. We used the conductor-like PCM [213, 214] for solvation with the Switch-

ing/Gaussian method. [215]. It was observed that solvation effects do not result in highly

symmetric structures either. While working with Q-Chem for ab inito molecular dynam-

ics (AIMD) calculations, both PBE and B3LYP exchange-correlation functionals were used,

along with a basis set of 6-311G(d,p) for the atomic orbitals, which uses polarized basis

functions. Canonical NVT sampling was done using AIMD with the Langevin thermostat.

Noting that semi-local density functionals do not capture dispersion interactions properly,

we also used dispersion-corrected functionals (the DFT-D3(0) dispersion correction from

Grimme et. al. [216]) for some of our simulations. Different self-consistent field (SCF) it-

eration algorithms, such as Direct Inversion in the Iterative Subspace (DIIS) [217, 218] and

Geometric Direct Minimization (GDM) [219] were used. Additionally, Pseudo-Fractional Oc-

cupation Number Method (pFON) was used, which is akin to introducing a finite electronic

temperature, or smearing, in the system. For completeness, the symmetries were analyzed

using two different toolkits, namely VMD and WebMO [220]. No difference in the results

was observed.

5.3 The structural ensemble of calcium phosphate clusters

Since the PM is a calcium phosphate trimer, we performed initial simulations on the monomer

Ca3(PO4)2 and dimer Ca6(PO4)4 configurations to validate our simulation setup. As detailed

below, the symmetry of the optimized monomer structure agreed with previous studies [203,

206]. For the dimer, the work of Kanzaki et al. [206] was followed closely and many of
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their structures were replicated. These results gave us confidence to pursue the structural

symmetry of the PM.

5.3.1 Calcium phosphate monomers

A rough structure of a calcium phosphate monomer was first generated by hand. Once the

monomer’s structure was optimized using DL POLY [221], Quantum ESPRESSO, and Q-

Chem, it always resulted in a structure with a molecular point group symmetry of D3h as

shown in Fig. 5.1. This is in agreement with other studies [203, 206] that have reported the

geometry of a stable monomer structure.

Figure 5.1: A calcium phosphate monomer exhibiting the expected D3h molecular point

group symmetry. The result was obtained using DL POLY, Quantum ESPRESSO, and Q-

Chem, and is consistent with previous studies. The blue, purple, and red spheres represent

Ca, P, and O atoms respectively.

5.3.2 Calcium phosphate dimers

When working with the dimer, which has a slightly more complicated structure than the

monomer, some interesting features were observed. Earlier studies [206] have reported mul-

tiple possible geometries for the calcium phosphate dimer. To cover all possible geometries
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(a) Td molecular symmetry (b) C2v molecular symmetry (c) Cs molecular symmetry

(d) C2 molecular symmetry (e) S4 molecular symmetry (f) C2 molecular symmetry

Figure 5.2: Some calcium phosphate dimer relaxed geometries obtained in our study. The

methodology to obtain these strctures was based on the results of Kanzaki et al.

and starting configurations, we created over 100 initial geometries that were then subjected

to structural relaxation. The basic outline of our simulation setup was as follows. We first

arrange the atoms in one out of several initial configurations. Based on suggestions in the

work by Kanzaki et al. [206], the most common of these was to arrange the calcium atoms

and the phosphate groups symmetrically around a cube of appropriate dimensions. The

length of the diagonal of this cube effectively describes the approximate diameter of the

molecule and thus, the dimensions were chosen accordingly. A large number of starting con-

figurations were then obtained by independently rotating each phosphate group about the
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phosphorus atom in steps of 30° while keeping the positions of the phosphorus and calcium

atoms fixed. Another route to generating an initial configuration is to arrange the atoms

in such a way that it has a structure similar to earlier findings, and to then perturb the

structure. Subsequent to structural relaxation, we were able to obtain 6 of the 11 structures

that have been reported before [206], with Cs, C2, Td, C2v, and D2h point group symmetries,

as shown in Fig. 5.2. However, Kanzaki et al. reported additional dimer structures that

were not found using our methods. This could be because of an incomplete consideration

of the structure space of the molecule, as well as the crudeness in the angle of rotation for

the phosphate groups. Different starting configurations often led to different optimized final

geometries — an artifact that was also later observed when studying the Posner molecule.

Thus, we argue that a singular optimal structure does not exist, and that the calcium phos-

phate dimer possibly exists in a variety of symmetries. At this stage, it is also important to

note that the relative energy differences between the structures obtained by us was not the

same as have been reported by Kanzaki et al. For instance, even though the Td point group

symmetry (in agreement with Kanzaki et al.) was found to be the most stable symmetry,

the relative energies between that structure and other symmetries differed by about 0.023

eV/atom on average.

5.3.3 Calcium phosphate trimers (Posner molecule)

Since the PM is hypothesized to exist in a variety of molecular symmetries [11, 203, 206], we

set out to identify symmetric minima on the PES of the molecule. To cover an appreciable

portion of the PES of the PM, we used various techniques to set up the initial atomic

positions, and different analysis techniques to extract the relevant data, as detailed below.

Firstly, a wide variety of possible structures were created by modifying some of the

techniques used in previous studies [206]. A schematic representation of the method can be

seen in Fig. 5.3a. All atoms constituting the PM were arranged on a cube of appropriate

dimensions. The nine Ca atoms were placed in a body-centred cubic arrangement and

89



the six PO4 groups in a face-centred cubic arrangement. The size of the cube was chosen

such that the length of the diagonal was close to 9Å, which is the approximate diameter

of the PM [11, 16, 222]. Countless configurations of the cluster can be realized by rotating

each PO4 group around its center. In order to extensively sample the configuration space,

the phosphate groups were rotated in steps of 30° in 3 dimensions to create over 2, 800

structures. Additionally, the coordinates of the calcium atoms and the PO4 groups were

scaled with reference to the central Ca atom to account for the possibility of some previously

built structures being over-strained. This resulted in over 10, 000 viable structures. In all

cases, once the molecular structure was optimized using ab initio structural relaxation, the

resultant configuration had low symmetry, i.e., either Cs, Ci, or no symmetry (C1). Fig. 5.3b

shows the distribution of the observed symmetries of the relaxed structures obtained by the

described strategy. It is evident that the PES of the PM is dominated by low symmetry

structures.

Secondly, the atoms were arranged in relatively high symmetry configurations “by hand”

without giving any consideration to the existence and initial stability of the structure, or

to the forces on the individual atoms. The rationale was that since none of the previous

structures resulted in one of the high-symmetry structures reported in earlier studies, the

molecule might instead transition into one of these high-symmetry structures if the starting

configuration was constrained in symmetry. Structures with symmetries such as S6, Th,

C3v, and D3d were constructed. The molecular structures were perturbed slightly from their

original sysmetiries and optimized. However, for all the four above-mentioned symmetries,

when subjected to structural relaxation, the molecule failed to retain or increase the point-

group symmetry and, instead, tumbled down to a low-symmetry structure – Ci or Cs – as was

also the case in our previous approach. Structural relaxation with solvent effects included via

a Polarizable Continuum Model (PCM) [213, 214] did not result in high-symmetry structures

either. Finally, to verify that our results were not an artifact of the particular basis set,

exchange correlation functional or simulation software in use, we repeated our calculations
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Figure 5.3: (a) The scheme used for creating over 10, 000 structures by rotating the phosphate

units and scaling all the coordinates with respect to central atom The blue, purple, and red

spheres represent Ca, P, and O atoms respectively. (b) Percentage occurrence of each point

group symmetry after ab initio structural relaxation of over 10, 000 initial structures (DFT

with B3LYP hybrid functional and 6-311G(d,p) basis set).

using a semi-local exchange correlation functional and a plane-wave DFT code, and obtained

very similar results.

Next, noting that the S6 symmetry has been so widely discussed and accepted, an S6

symmetric structure was built using an alternative technique. The phosphate units were

considered as rigid tetrahedrals. The force field developed by Demichelis et al. [209] was

used to model the atomic interactions. Imposing the S6 symmetry enables the parameteri-

zation of the structure in terms of 10 parameters. Following a symmetry constrained global

minimization of the system’s energy based on the above parameters, a unique structure was

obtained. Using DFT with the B3LYP hybrid functional and a 6-311G(d,p) basis, it was

identified as a transition state structure, and subjected to further geometrical relaxation.

The optimized structure exhibited a Ci symmetry – starkly lower in symmetry than the
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initial S6 symmetry. When performed under constrained symmetry, the same ab initio ge-

ometrical relaxation calculation failed to reach self-consistency. Thus, the optimization of

symmetric structures modeled on existing force fields also failed to produce stable structures

with low symmetries.

As our exhaustive search using structural relaxation failed to identify symmetric species,

we then studied the dynamical properties of eight semi-stable Posner structures by ab ini-

tio molecular dynamics (AIMD). Starting structures were obtained from the supposedly

minimum energy structures in [203], resymmetrized and subjected to ab initio structural op-

timisation (using DFT with the B3LYP hybrid functional and the BP86/Def2TZVPP/W06

basis set). At the end of the relaxation procedure, they had low forces on the atoms (of the

order of 10−4 eV/Å). However, these structures did not correspond to energy minima, but

were transition states of higher order instead. Distorting these structures along the normal

modes associated with imaginary frequencies followed by further optimization of these struc-

tures resulted in the molecule tumbling to lower symmetries, as did the formation of these

structures without the symmetry constraints. We considered the 8 unique molecular struc-

tures derived through the above procedure. These, along with the corresponding molecular

point group symmetries, as obtained by the Visual Molecular Dynamics (VMD) software

[223] are displayed in Fig. 5.4.

We also performed vibrational spectrum calculations on these eight transition state struc-

tures, and compared them with an existing spectrum [11] reported in a study that considered

the S6 symmetric structure to be the prototypical structure for the Posner molecule. The

results can be seen in Fig. 5.5. The two spectra match closely up to a constant value of shift

on the frequency axis. This shows that the structures considered in our study and in the

Swift et al. study are quite similar in nature, up to the extent of bond stretching and rota-

tion. However, the replication of the IR spectrum was only found in two cases. Moreover,

the similarity in IR spectra is not necessarily translated to a similarity in the spin properties

of the corresponding structures.
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A B C D

E F G H

Figure 5.4: The eight different structures that were used as starting geometries for dynamical

simulations of the PM. The labels (A–H) used in the manuscript are stated.
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Figure 5.5: Comparison between the IR spectra of the structural configuration E and G

used in this study, and of that obtained by Swift et al. [11].
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The eight transition state structures were then studied by AIMD using the same basis set

and DFT functional as above, at two different temperatures, 298K (room temperature) and

315K (at the higher end of human metabolic temperatures), to see if they maintain their

high symmetry or give rise to high-symmetry species in the time average. The molecules were

allowed to evolve for a total time of about 24 ps, in which the first 1.2 ps – or the first 5% of

the total time – were considered to be the equilibration phase of the molecule, and were not

considered for subsequent analyses. Given that the lowest non-zero vibrational frequency

mode in Fig. 5.5 (equal to 100 cm−1) corresponds to a frequency of 3 THz — or a time scale

of 0.334 ps — the above duration of the AIMD simulations were thought to be sufficiently

long to allow for adequate for structural averaging. The molecule is expected to go through

its vibrational relaxation pathways within the time duration considered for our ab-initio

molecular dynamics simulations. Note further that the energy differences suggested for S6–

Ci, S6–C2 and S6–C1 transitions from Refs. [11, 78, 203] are comparable to the thermal energy.

Thus, the transition process is not expected to be a rare event, but is likely to proceed on the

timescale of vibrations. Within these assumptions, the studied timescale is certainly sufficient

to accommodate the envisaged structural reorganizations. A practical constraint that has

to be noted is the balance between accessible simulation timescales and the computational

resources consumed, due to the expensive nature of the ab initio calculations.

At the end of each of the eight dynamical runs, and at both the above-mentioned temper-

atures, the PM exhibited either a Cs or a Ci point group symmetry. Thus, it was understood

that, even if the molecule is forced to exist in a relatively higher symmetry state, as im-

posed by our method, it will naturally tumble down to one of the lower symmetry states

within picoseconds, as is also evident from Table 5.1. This leads us to argue that any stable

configuration of the PM is likely to exhibit lower symmetries at room temperature.

Time averages and temporal variations in the molecule’s symmetry were then studied as
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Transition

structure

index

Symmetry prior

to the creation

of transition

structure

Transition

structure

point group

symmetry

Formation

energy (in eV )

of the

transition

structure

Resultant symmetries

over dynamical runs

A Cs Cs -271.660 C1,C2,Cs,D2h

B C3v C3v -269.555 C1,C2,Cs,C2h,C3v,D2h

C D3d D3d -264.997 C1,Cs,Ci,T,C2h,D2h,D3d

D D3d C2h -269.551 C1,Cs,Ci,T,C2v,C2h,D2h

E S6 Ci -271.552 C1,Cs,Ci,C2,T,C2h,D2h

F S6 Ci -271.540 C1,Cs,Ci,T,C2h,D2h

G S6 D2h -271.239 C1,Cs,Ci,T,C2h,D2h,Oh

H Th D2h -269.531 C1,Cs,Ci,C2,C2v,C2h,D2h

Table 5.1: The point group symmetries for each of the structures in Fig. 5.4, their formation

energies, as well as the point group symmetries displayed by each configuration during a

dynamical simulation/evolution over 22.8 ps. In comparison, the formation energy for a

monomer calcium phosphate was calculated to be −84.244 eV. The listed formation energies

of all trimer configurations are lower than three times this value.

it appeared plausible that the molecule might exhibit a symmetric structure in the temporal

average. Specifically, we studied the point group symmetries and energies of the N = 9, 500

structures generated during each AIMD run. This allowed us to infer time persistence of

the molecule’s symmetry, if present. We observed that the molecule does indeed exhibit

a variety of symmetries within the time frame considered, as visualized in Fig. 5.6a and

Fig. 5.6b. However, the higher symmetries were observed only fleetingly, i.e. on time scales

of the order of 100 fs — too short to be significant, both as an independent species, or to

markedly determine the average structure. This supports our claim that the PM prefers to

exist in low molecular symmetries. Moreover, as exemplified by Fig. 5.6, we can say that the

behavior described above of low symmetry configurations throughout the dynamic evolution
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is consistent among all the eight unique structures in Fig. 5.4. For brevity, only details on

two of the eight structures has been shown here, but similar results on all the eight structures

can be found in [14].
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Figure 5.6: Time persistence of symmetries and the associated frequency of occurrence of

each symmetry for two different starting configurations over a dynamical run. In the above

figure, (a) and (c) represent the data for configuration C, whereas (b) and (d) represent data

for configuration H. Note that (a) and (b) represent the data at T = 298K, and thus some

additional symmetries which were observed at T = 315K are not present in these plots.

Even if the PM exhibits higher symmetries only fleetingly, it may appear as a more

symmetric structure in the time average. To test this possibility, time-averaged structures
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for entire dynamical runs were created and studied. To this end, the translational and

rotational motion of the molecule was eliminated via a rigid-body realignment procedure,

and the aligned N structures averaged. A single point calculation was realized for these

time-averaged structures and their energies were compared. In addition to averaging all

the N structures, an average structure was also obtained for subsets of potentially higher

symmetry structures in the dynamic runs, which we define as the most symmetric molecular

point group observed in a single dynamical run – e.g., D2h for the cases of Fig. 5.6a and

Fig. 5.6b. Specifically, the subset of structures chosen for averaging from the entire range of

these high-symmetry phases of structures were the longest consecutively occuring group of

structures. For instance, in Fig. 5.6b, this would correspond to the group of D2h structures

located just after the 1000th time index. Note that we refrained from obtaining an average

structure for all of the high-symmetry structures because different high-symmetry structures

might have emerged thoughout the AIMD runs. Fig. 4 provides a representation of of

the energy distributions over the AIMD runs together with a comparison of single-point

energies and point group symmetries of the time-averaged structures. It can be seen that

the energy spread between all averaged structures is relatively small – about 1.36 eV on

average. Whenever the N intermediate structures were averaged, regardless of the initial

configuration of the molecule, the point group symmetry of the averaged structure was either

C1, Ci, or Cs, which, for the purposes of this study, have been considered as “low symmetries”.

Their energies are shown as blue dots. This further reinforces the hypothesis that the PM

prefers to exist in lower point group symmetries at any time as well as on average, at

biologically relevant temperatures. Additionally, when looking at the energies of only the

temporary high-symmetry phases of the PM which, in Fig. 5.7, have been represented by

the semi-transparent violin plots overlayed on top of the opaque plots which represent the

energies of the entire dynamical run, one can see that the energy of the structures with a

higher symmetry is higher than the average energy which agrees with our claim. However,

seemingly in contrast to the above observation, we observe that the time-average structure
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of the higher symmetry phase can have a lower energy than the time-average structure of the

entire dynamical run. This, however, can be explained by the fact that in every studied case,

the time-averaging of even a high-symmetry phase yielded a structure with low (Ci or Cs)

symmetry. Thus, the lower energy individual structures always possess low symmetries and

the data do not invalidate the claim that lower symmetries are preferred. We also mention

in passing that we have carried out our point group symmetry analysis using more than one

software package (VMD and WebMO [220]) and using different symmetry thresholds as well.

However, we obtain similar results. For brevity, these results have not been presented here

but can be found in our complete work [14].

Based on the above analyses, we identify the most stable structure of the PM to be the

overall time-average structure of the configuration A, which can be seen as a blue dot in

Fig. 5.7. Notably, the point group symmetry for this structure is C1, i.e., no symmetry.

At the same time, we reiterate that the PMs possibly exists in an ensemble of structures,

and that identifying a singular structure as the dominant PM structure is incorrect. More

information about configuration A and its atomic coordinates can be found in [14].

With our calculations unable to convincingly point us towards a PM structure with high

symmetry, we performed PCA on the data from the dynamical runs. It was expected that,

if the molecule exhibits any kind of high symmetry that might have been overlooked in our

symmetry analysis methodology, the associated high symmetry structure would show up as

one of the dominant eigenmodes of the PCA. However, none of the dominant eigenmodes

displayed any kind of high symmetry. In fact, in all cases, the eigenmodes had either a Ci or

a Cs point group symmetry. Moreover, as can be seen in Fig. 5.8a, Fig. 5.8c, and Fig. 5.8e,

each configuration yielded one predominant eigenmode. Similar plots and figures for all

dynamical runs can be found in [14]. While the maximum displacement of an atom in this

mode from its corresponding position in the time-average structure over the entire dynamical

run was small – less than 0.3Å– this mode, instead, reflected a more appreciable displacement

of the phosphates due to their rotation. Structures corresponding to the first three dominant
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Figure 5.7: The energy spread of the dynamical runs for each of the starting configurations

listed in Fig. 5.4 represented by kernel density estimations in the form of vertical violin plots.

The blue dots represent the energy of the time-average structure over the entire dynamical

run, and the red dot represents the energy of the time-average structure of that subset of the

high symmetry phase that is present for the longest continuous duration. The point-group

symmetry of the averages is indicated next to the symbols. The semi-transparent overlays

on each of the violin plots represent the energy distribution for the entire high symmetry

phase. The most stable high symmetry phase for each of the cases were D2h, D2h, C2h, D2h,

C2h, D2h, D2h, and D2h, respectively. Dots missing from the graph were found at energies

higher than the scale of the figure. The plot also shows the mean and standard deviation

of the energy spread within the representations of probability density functions in the form

of white boxes. The energies reported are within the numerical accuracy of the method and

basis set used. [12, 13]

modes did not give way to higher symmetries. The small observed fluctuations, as visualized

in Fig. 5.8b, Fig. 5.8d, and Fig. 5.8f as arrows that have been multiplied threefold for clarity,

further emphasize that considering an average structure over our dynamical data set was
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appropriate. A detailed PCA analysis for all other considered structures is provided in [14].

Lastly, we resorted to another powerful data analysis technique, namely k-means cluster-

ing, to identify hidden patterns in the data generated from our dynamical runs that might

not have been revealed by our earlier attempts. It was found that, for each of the eight

starting configurations, the ideal number of clusters describing our data sets was 2, and that

the associated mean structure for each cluster had low point group symmetry – C1 or Ci.

This further agrees with the data and analyses that have already been presented above, and

with our assessment that the PM mostly exists as an ensemble of low-symmetry structures.

Our extensive analysis of the dynamical and structural properties of the Posner molecule

suggests that it predominantly exists in low symmetry molecular structures such as Cs, Ci

and C1 at room temperature, as opposed to the results of previous studies suggesting a

prototypical S6 symmetric structure. Moreover, the initial configuration of the molecule

often dictates the geometric configurations through which the molecule transitions during

a dynamical run. Most of these transition structures exhibit low molecular point group

symmetries; the high symmetry phases are found to be present only fleetingly and have thus

been assumed to be unimportant. Average structures were also found to be of low symmetry.

Our results indicate that that the molecule does not naturally exhibit a three-fold axis of

rotation, such as present in S6, in vacuum or in a homogenous solvent. We follow this with

the calculation of spin-spin coupling constants and spin coherence times for the structures

explored by us above in [210] in the following sections.

Lastly, we suggest the possibility of experimental verifications of our results. It may

well be possible to establish the existence of Posner molecules in simulated body fluids by

introducing the constituents at stoichiometric ratios. Imaging techniques such as Dynamic

Light Scattering or Transmission Electron Microscopy and NMR spectroscopy could then be

applied to observe/study the basic properties of these molecules [15]. However, we believe

that more sophisticated techniques, possibly following established quantum optics protocols

and using microfluidics, might be needed to assess the possibility of the Posner molecule
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Figure 5.8: (a), (c), (e) Eigenvalues resulting from PCA over a single dynamical run for

configurations E, D, and B respectively. (b), (d), (f) Difference between the most dominant

eigenmode and the time-average structure of the corresponding dynamical run.
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sustaining 31P qubit states.
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CHAPTER 6

Nuclear spin coherence lifetimes in calcium phosphate

clusters

With an exhaustive set of structures for the PM, we now turn our attention to if, and how,

the asymmetrical nature of the dynamical ensemble of the PM affects nuclear spin coherence

lifetimes in pairs of molecules. Keeping Fisher’s original proposal in mind [11, 15], and closely

following the work by Player et al. [16], one of the simplest measures to assess the pertinent

spin coherences in pairs of PMs or calcium phosphate clusters is the temporal evolution

of the (maximally entangled) singlet state for a pair of 31P nuclei in identical, spatially-

separated Posner molecules, with the remaining ten uncorrelated nuclear spins serving as

background (see Fig. 6.1). In this arrangement, the evolution of the singlet probability

over time serves as a measure of conservation of quantum correlation among the Posner

molecules, and can be calculated for a variety of structural configurations of the molecule.

Eventually, for the thermalized spin system, the singlet probability will settle down to 1/4

— the value expected for a maximally mixed state. A value of the singlet probability

greater than 1/2 indicates that entanglement is maintained (i.e., a mixed state of singlets

and unpolarized triplet states in which more than 50% of the spins are in a singlet state, is

entangled) [16]. Additionally, the two-qubit concurrence [16, 224] between the 31P nuclear

spin pairs serves as a direct measure of entanglement. A value of one indicates a maximally

entangled state; a value of zero indicates total loss of entanglement. A priori, we expect

that the absence of symmetry in the Posner molecule will increase the number of unique

scalar spin-spin couplings (J-couplings) in the coupling network [196, 197] which, as we
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explain later, dominate the coherent spin dynamics for this system. A large number of

unique coupling constants implies a large number of unique frequencies that characterize

the coherent evolution of the singlet probability. In turn, this is expected to accelerate the

decay of the singlet probability through destructive interference in our model [16, 198, 199].

Here, we address if this accelerated decay of spin correlation is realized for all structures

of the ensemble, and if this is detrimental to the Fisher’s proposal of calcium phosphate-

mediated quantum information processing in neurons. Note that our detailed discussion

on the link between the symmetry of the Posner molecule and the longevity of the singlet

state is motivated by the importance given to the former as a key ingredient for the theory

of Posner-mediated neural processing [11, 15]. However, as we show later, our calculations

on the tricalcium biphosphate dimers and subsequent analysis shown in additional sections

(See Sections 6.7 and 6.5) suggest that while the symmetry of the molecule and its coupling

constant values are certainly relevant, the longevity of the singlet state is primarily dictated

by the number of coupled nuclear spins, i.e., the number of 31P atoms.
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Figure 6.1: A pair of 31P nuclei, namely the pair labeled (0, 0), entangled and initialized in

the singlet state in two separate but identical Posner molecules. The separation between the

molecules, although arbitrary, is large enough for intermolecular interactions between the
31P nuclear spins to be negligible. The entanglement between the nuclear spins has been

depicted by a dotted line.

Using an S6 molecular point group symmetry for the Posner molecule, which renders
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the six 31P nuclei magnetically equivalent, a singlet relaxation time of 37 minutes has been

calculated previously by Player et al. [16]. The authors of that work, while refining the

original estimate of 21 days for the entanglement lifetime of nuclear spin states [11, 15],

acknowledge that the singlet state may relax even faster due to various interactions present

in realistic scenarios. Here, we calculate the singlet probability for a pair of 31P nuclear

spins due to their coherent evolution in the presence of dominant relaxation mechanisms.

Our approach closely follows the above reference [16], but is extended to explicitly include

spin relaxation in the calculation. Unlike the above work, however, which analyzed only

a couple of symmetric structures, while using coupling constants from Ref. [11] (calculated

for a different S6-symmetric structure), we aim to explore the full ensemble of symmetric

and asymmetric structures. To this end, and because the J-coupling constants are expected

to be different for each structural configuration of the molecule, we estimate the coupling

constants for all investigated structures through first principles calculations. We contend

that our calculations and findings are more directly relevant to investigations of the viability

of Fisher’s proposal, than earlier studies.

Lastly, given that the structures of the calcium phosphate monomer, Ca3(PO4)2, and

the dimer, Ca6(PO4)4, are more conclusively known [14, 206], we also performed similar

calculations on these structures and found extremely long-lived singlet states, irrespective of

the symmetry of the molecule, for the case of the dimer. Their presence in vivo has not yet

been considered, but is something that invites thorough future investigation.

6.1 Computational methodology

The calculation of the coupling constants between the 31P nuclei is a critical part of the

study, and was done using the ORCA program [225]. More specifically, we used the B3LYP

exchange-correlation functional, along with basis sets specifically built for the calculation

of NMR coupling constants. For the P and O atoms, we used the pcJ-2 basis set [226]
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(the largest such basis set that we could afford within computational constraint limitations),

whereas the pcseg-2 basis set [227] was used for the Ca atoms, because the pcJ-n basis sets

are not supported for atoms beyond Ar. Both these basis sets are polarization consistent.

The chemical shielding tensors needed for including the chemical shift anisotropy effect were

calculated using Gaussian [228] using the cc-pV5Z basis set. Following the calculation of the

scalar coupling constants and the chemical shielding tensors, we simulated the spin dynamics

of the 31P nuclear pairs, and calculated the singlet probabilities and the concurrences. The

matrix representations of the various operators needed for this calculation were constructed

using the QuTiP [229] library. A singlet state consisting of corresponding 31P nuclei in sepa-

rate but identical Posner molecules was evolved through time, much like in Ref. [16]. For the

molecular dynamics (MD) simulations, we used the LAMMPS software [230]. Following the

work of Demichelis et al. [209], we placed the Posner molecule in a box of length 56 Å , with

∼ 4000 water molecules. The force fields introduced in Ref. [209] were used. The canonical

NVT ensemble was utilized at a temperature of 300 K, with a timestep of 0.1 fs. The atoms

were initially given a Gaussian-distributed velocity corresponding to a temperature of 300 K,

and the initial linear momentum of the Posner molecule was set to zero. Following the MD

simulation that proceeded for a total of 340790000 timesteps (equivalent to 34.07 ns), the

trajectory was analyzed to calculate the rotational correlation constant, τc, and the transla-

tional diffusion constant of the molecule. The Visual Molecular Dynamics (VMD) software

[223] was used for calculating the point group symmetries of relevant molecular structures.

6.2 Setting up the spin Hamiltonian

We consider the coherent evolution of the six 31P nuclear spins in each Posner molecule

subject to the spin Hamiltonian Ĥ0, where:

Ĥ0 = ω0

∑
k

Îk,z + 2π
∑
j<k

∑
k

JjkÎj · Îk . (6.1)
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Here, ω0 = −γk (1− σ)B is the Larmor frequency of the 31P nucleus; σ is the isotropic

chemical shielding constant; Îk is the spin angular momentum operator for nucleus k; Îk,z

is the z-component of the spin angular momentum operator; and Jjk is the scalar coupling

constant between nuclear spins indexed j and k. The first term accounts for the Zeeman

interactions, whereby differences in the chemical shielding will be assumed to be negligible

in the low magnetic field considered. The second term corresponds to the intramolecular

scalar spin-spin coupling interactions, characterized by the coupling constants Jjk. Since the

evolution of the singlet probability and entanglement of pairs of spins are strongly dependent

on the scalar coupling constants, it is critical to obtain accurate values of Jjk. Moreover,

the coupling constants differ for each molecular structure. Here, the Jjk values have been

derived from DFT calculations for every molecular geometry using the pcJ-n basis set [226],

built specifically for the calculation of these interaction constants, for P and O atoms. The

pcseg-n basis [227] set, optimized for the calculation of nuclear magnetic shielding, was used

for the Ca atoms. We remark that the values obtained by us are appreciably different from

those reported, and used, in earlier studies [11, 16]. Our use of an optimized method and of

a more accurate and specialized basis set for each atom gives us confidence in the preciseness

of constants employed for the calculations reported here.

Molecular motion modulates the spin Hamiltonian, which induces spin relaxation. Here,

we discuss possible relaxation pathways such as intra- and intermolecular dipole-dipole in-

teractions, chemical shielding anisotropy (CSA), dipolar coupling with the solvent, and

spin-rotation relaxation. The first of these (i.e. intramolecular dipole-dipole interactions)

is expected to be the dominant relaxation pathway for rapidly and independently rotating

dilute Posner molecules in the geomagnetic field (∼ 50 µT). Based on a simple estimate of

spin-lattice relaxation times due to the modulation of the dipolar coupling by translational

and rotational diffusion, the (concentration-dependent) intermolecular dipolar relaxation is

expected to be slower than the intramolecular relaxation for concentrations of up to 7 mol/L

(!). The CSA contribution is generally relevant in strong magnetic fields and can be consid-
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ered negligible in the geomagnetic field, as is the case here (our estimates suggest a marked

influence of CSA relaxation only for fields larger than 1 T). Any dipolar coupling with the

solvent is expected to average out to zero in the presence of rapid, independent tumbling mo-

tion of the molecule. Finally, spin-rotation relaxation, which is thought to be the dominant

relaxation mechanism for pyrophosphates [231, 232], is neglected here under the assumption

that the standard deviation in the angular velocity is expected to be much smaller for the

larger Posner molecule. Of all these pathways then, the intermolecular contribution is clearly

negligible at reasonable concentrations, and the dominant relaxation is induced by the 15

pair-wise intramolecular dipolar nuclear spin couplings, the detailed form of which can be

found in the following section.

6.2.1 Intramolecular dipole-dipole interactions between 31P nuclear spins

The dominant relaxation mechanism considered here is the intramolecular dipole-dipole in-

teractions. As highlighted in the main text, the intermolecular dipole-dipole interactions,

dipolar coupling with the solvent, and spin-rotation relaxation have all been considered

to be negligible and not included in our calculations. The chemical shielding anisotropy

(CSA) contribution, although negligible in the geomagnetic field, has been included. The

intramolecular dipole-dipole interactions for the 15 31P pairs is given by:

ĤiDD(t) = −
∑
j<k

∑
k

µ0γjγkℏ
4π|rjk|3

(
Îj · Îk −

3

|rjk|2
(
Îj · rjk

)(
Îk · rjk

))
(6.2)

where θ is the angle made by the vector rjk joining the two nuclear spins with the z -axis.

Here, γk is the gyromagnetic ratio of the 31P nucleus, Îk is the spin angular momentum

operator for nucleus k, and Îk,z is the z-component of the spin angular momentum operator.
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6.3 Calculation and evolution of the singlet state

We calculate and evolve the singlet state as follows. Indexing the 31P nuclear spins in two

separate Posner molecules, A and B, from 0(A,B) through 5(A,B), we assume that, without

loss of generality, the system is initialized in a state with spins 0A and 0B in the maximally

entangled singlet state, while the ten other spins are uncorrelated. We represent this singlet

state as |S0A,0B⟩ = 1√
2
(|α0Aβ0B⟩ − |β0Aα0B⟩), where |α⟩ is the spin-up state, and |β⟩ is

the spin-down state. Thus, the initial state density operator is proportional to the singlet

projection operator, given as:

P̂0A,0B =
∑

γ ̸=(0A,0B)

|S0A,0B ; γ⟩⟨S0A,0B ; γ|

= |S0A,0B⟩⟨S0A,0B | ⊗ 1 .

(6.3)

Here |S0A,0B ; γ⟩ = 1√
2
(|α0Aβ0B⟩ − |β0Aα0B⟩) ⊗ |γ⟩, and |γ⟩ is any of a set of states such

that
∑

γ ̸=(0A,0B) |γ⟩⟨γ| = 1, i.e., it assembles the maximally mixed spin state of the other

10 nuclear spins. The singlet probability p0A,0B(t) is given by Tr
[
ρ̂(t)P̂0A,0B

]
with ρ̂(0) =

P̂0A,0B/Tr(P̂0A,0B). To obtain the evolution of p0A,0B(t) through time, we solve the Liouville-

von Neumann equation [233]:

dρ̂(t)

dt
= −i ˆ̂Lρ̂(t) , (6.4)

where the Liouvillian superoperator ˆ̂
L is given by ˆ̂

H0 + i
ˆ̂
Γ, with the relaxation superop-

erator ˆ̂
Γ given, in the extreme narrowing limit applicable to fast rotational motion, by

−⟨ ˆ̂H1(t)
ˆ̂
H1(t)⟩τc [16]. Here, double hats denote the commutator superoperator of the oper-

ators in question, and τc is the rotational correlation constant of the molecule.

To validate the form of the relaxation superoperator, we have calculated the rotational

correlation constant of the molecule from molecular dynamics (MD) simulations. Closely

following the work by Demichelis et al. [209], we simulated the Posner molecule in a box

of water molecules and followed its trajectory over 34 ns (i.e., at the simulation limits of

computational resources available), using LAMMPS [230]. Details about the simulation have
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been provided earlier (See Section 6.1). A value of τc ∼ 177 ps was obtained by analyzing the

rotational correlation function in 3 dimensions. Thus, we find a slower rotational dynamics

(by roughly a factor of 3) compared to the previous estimate by Player et al. [16], which uses

the approximate Stokes-Einstein-Debye relation. The value derived here is still well within

the extreme narrowing limit, thus justifying the form of ˆ̂Γ. Details about the calculation of

the two-qubit concurrence [16, 224], C0A,0B , can be found in the following section.

6.3.1 Calculation of concurrence

In addition to the evolution of the singlet state between pairs of 31P nuclear spins, we also

study the evolution of the two-qubit concurrence for a given pair. This acts as a measure of

entanglement, and is calculated as [16, 224]:

C0A,0B = max (0, λ1 − λ2 − λ3 − λ4) (6.5)

where λi are the eigenvalues of the matrix ρ̂(t) (σy ⊗ σy) ρ̂(t) (σy ⊗ σy) in decreasing order,

with σy being the second Pauli matrix. ρ̂(t) is already know after having solved the Liouville-

von Neumann equation (Eq. 6.4).

6.4 Application of the framework to the Posner molecule

With the above computational framework for spin relaxation calculations in hand, we build

upon our previous work [14] detailed in Chapter 5, wherein we demonstrated that the Posner

molecule exists as an asymmetric dynamic ensemble. Ab initio molecular dynamics (AIMD)

simulations of eight transition state structures of the molecule formed the core of that pre-

vious contribution. Here, we examine the singlet probability and concurrence for not only

the above transition state structures, but also for the time-averaged structures of each of the

eight AIMD simulations. Additionally, to cover a wider range of possibly relevant structures,

we also calculate here the singlet probability for the energetically most favorable structures
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from each simulation, and the time-averaged configurations for structures associated with

high-symmetries, as shown in Fig. 6.2. Lastly, we also use k -means clustering to further

generate statistically relevant structures — both for the entire simulation and for the high-

symmetry cases only — and calculate the singlet probabilities and concurrence for all of

them. This thorough examination gives us over 100 unique structures to analyze.
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Time-averaged structure for 
the entire simulation

The energetically most 
favorable structure

Figure 6.2: Illustration of the methodology for obtaining different configurations for spin

dynamics calculations, starting from the AIMD structures presented in Ref. [14]. Here, we

only show the type of structures obtained from one AIMD simulation (out of the eight that

were performed). Overall, our approach gave us 102 unique structures. The graph on the

left shows the evolution of the molecular point-group symmetry during a dynamic simulation

of a transition-state structure of the Posner molecule.

We show the time evolution of the singlet probability and concurrence for two representa-

tive cases in Fig. 6.3 — namely the longest-lived singlet state (Figs. 6.3a and 6.3d), and the

energetically most stable structure as per our dynamical analysis [14] (Figs. 6.3b and 6.3e).

Given that the Posner molecule is expected to exist as a dynamic ensemble, we also show the

singlet probability and the concurrence averaged over all 102 cases described above (Figs.

6.3c and 6.3f). We immediately observe that, in general, the singlet probabilities decay at a
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rate much faster than what may be necessary for neural processing [11, 15], and fall below

the 1/2 entanglement threshold within a second. Correspondingly, the concurrence plots also

suggest that the system loses entanglement within a second. Note that the plots presented

in this study are for a model incorporating spin relaxation (in contrast with those presented

in Player et al.’s work [16]), although spin relaxation is a minor contributor to the decay of

the singlet probability on the timescales shown. For a majority of the cases, as shown in

Fig. 6.4, the trend of Fig. 6.3b is followed. Overall, it is important to emphasize that the

singlet probability rapidly decays below the 1/2 threshold within a second, regardless of the

symmetry of the Posner molecule. Moreover, in cases where the singlet state is longer-lived,

it is not entangled throughout, i.e., the singlet probability decays quickly and then refocuses

sporadically. This has major implications on the viability of the molecule as a quantum

information processor, because any information processing will have to be done only at the

instances when the system is entangled, i.e., when the singlet probability is greater than

1/2. In other words, the molecule may only act as a biological qubit for a very short periods

of time, or only at specific time instances.

The longest time for which a singlet state was sustained in the presence of relaxation

was a recurrence at 119 seconds (Fig. 6.3a), observed in one of the structures obtained using

k-means clustering of the high-symmetry phase of a dynamic simulation (D2h point group

symmetry). Note that this time is defined as the last instance when the singlet probability

was above the threshold of 1/2, and that it does not correspond to the the singlet lifetime.

A comprehensive overview of the relevant singlet probability parameters for the structures

examined in this study is provided in Fig. 6.4. It is clear that, for 95% of the cases, the singlet

state loses entanglement in less than a second. While a few structures do show recurrence

of entanglement at time scales of tens of seconds, we reiterate that the molecule may act as

a biological qubit at only the instances when the probability breaches the 1/2 — threshold,

and not throughout.

Additionally, we also consider the transfer of entanglement from one pair of 31P nuclear
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(a) The longest-lived singlet

state occurs for a k -means

structure of high symmetry.
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(b) The singlet probability for

the energetically most stable

structure. [14]

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

S
in
gl
et

P
ro
ba
bi
lit
y

0 50 100 150
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time (s)

S
in
gl
et

P
ro
ba
bi
lit
y

(c) Averaged singlet probabil-

ity for all 102 cases considered

in the study.
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(d) Concurrence values for

even the longest-lived singlet

state are extremely low.
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(e) Concurrence for the ener-

getically most favorable struc-

ture.
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(f) Averaged concurrence for

all 102 cases considered in the

study.

Figure 6.3: The short-lived nature of the singlet probability and concurrence for the Posner

molecule, shown for three representative structures. Insets show zoomed in regions of the

plots. (a) and (d) correspond to the structure with the longest-lived singlet state — a k -

means structure with D2h symmetry; (b) and (e) correspond to the energetically most stable

structure with no symmetry in our dynamical study [14]; (c) and (f) are the average singlet

probability and concurrence for all 102 structures considered. Contrary to previous studies

[11, 15, 16], the plots above suggest that the system is not suitable for quantum information

processing at biologically relevant time scales.
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Figure 6.4: The first and last instances of the singlet probability crossing the threshold of

1/2. The number of structures for each case, with different scales, has been represented on

the x -axis. Note that the y-axes have different scales. A total of 102 structures have been

considered, obtained from methods depicted in Fig. 6.2. The 50% quantile line has been

shown in each case, and confirms that a majority of the structures are unable to maintain

the singlet state for more than a second.

spins to another, owing to their interactions via the J−coupling constants. We show here

the results for the configuration of the molecule that has the longest-lived singlet state in

our study (see Fig. 6.5). Due to the large number of nuclear spin pairs between two Posner

molecules, we only show the data for a few representative 31P nuclear spin pairs. The notation

ij corresponds to spin pair comprising of the ith spin in the first Posner molecule, and the jth

spin in the second Posner molecule. Each row represents the spin pair that was initialized

in the singlet state (all other spins were left uncorrelated). The columns represent the spin

pair for which the singlet probability is being calculated. The y axis (limits from 0.2 to

1) in each plot represents the singlet probability, and the x axis denotes time (a period of

1000 seconds is covered). Unsurprisingly, we observe that there is no marked transfer of the
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singlet probability, and no transfer of entanglement in any case. The singlet probabilities

remain low (∼ 0.25) throughout, except for when the same nuclear spin pair is considered

that was initialized in the singlet state. Note that this represents the best-case scenario

because the structure considered had the longest-lived singlet state. We argue that for any

other structural configuration of the Posner molecule considered in this study, the transfer of

coherence between nuclear spin pairs will only be poorer. This further reinforces our claim

that the Posner molecule, in any of its diverse structural configurations, fails to maintain

long-lived entanglement amongst its 31P nuclear spins.

The above analysis suggests that the Posner molecule might not maintain long-lived sin-

glet states for more than a second. However, Fig. 6.3a suggests that in a hypothetical high

symmetry configuration, the molecule may sustain the nuclear singlet state for a longer dura-

tion, albeit only at specific instances when the singlet probability refocuses. Thus, to better

understand the effect of symmetry on the longevity of the nuclear spin singlet state in the

Posner molecule, we plotted the first and last instances when the singlet probability crosses

the 1/2 threshold against the point group symmetry of the molecule or, more specifically,

the number of symmetry operations associated with the point group. This has been depicted

in Fig. 6.6.

Contrary to the expectation that the entanglement lifetime would be longer for structures

that have higher symmetry, we find that the singlet state in the Posner molecule is, on

average, short-lived (up to a few seconds at best) irrespective of the symmetry. We would

also like to mention in passing that in addition to the 102 structures described above arising

out of our AIMD simulations and subsequent analyses, we considered the two specific Posner

molecule configurations explored in Ref. [11] and Ref. [16]. These configurations were not

found to be energetically or structurally relevant in our dynamical simulations [14]. However,

for these structures too, we found that the singlet probability falls below the 1/2 threshold

within a second, and without any refocusing. On the other hand, if we make use of the J -

coupling constants as suggested in Ref. [11] for one of these structures, our calculation broadly
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Figure 6.5: Transfer of entanglement between nuclear spin pairs in a Posner molecule. The

6 nuclear spins in each Posner are indexed from 0 through 5.
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(a) First instances of the singlet probability

dropping below 1/2 versus the number of sym-

metry operations in molecular point group.
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(b) Last instances of the singlet probability be-

ing above 1/2 versus the number of symmetry

operations in the molecular point group.

Figure 6.6: The symmetry of the molecule does not seem to play a major role in maintain-

ing entanglement in the system, and Posner molecules generally have short entanglement

lifetimes (< 1 s) irrespective of their point-group symmetry. The marker size in each plot

is proportional to the number of data points at the location, whereas darker areas represent

overlapping of markers.

reproduces the results from Ref. [16], albeit with minor differences due to slightly different

values of the chemical shielding tensor and the rotational correlation time. A comparison

of the singlet probabilities in the above cases has been depicted in Fig. 6.7. Note that

this comparison has only been done for two specific molecular configurations of the Posner

molecule, and the results should not be generalized to other structures. Our observation

above is consistent with the fact that, on average, symmetric molecules are expected to have

a better entanglement yield. However, the values of the J -coupling constants matter in the

sense that it is possible for a molecular configuration to have a wide range of entanglement

yields, depending on the calculated values of those constants. Therefore, it is important to

be able to calculate these constants accurately.

117



0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

Si
ng

le
t

P
ro

ba
bi

lit
y

Structure A, using J-coupling values

reported in Ref. [11]
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calculated in our study
Structure B, using J-coupling values

calculated in our study

Figure 6.7: A comparison of the singlet probabilities for two S6 structures — A, taken from

Ref. [16], and B, taken from Ref. [11] — with coupling constants as reported in Ref. [11]

and as calculated in our study.

Overall, we observe that the singlet state between a pair of 31P nuclear spins in separate

Posner molecules generally loses entanglement within a second. Only certain hypothetical

or energetically unfavorable configurations of the molecule are found to preserve the state

for more than a second. This is significantly shorter than previously suggested [11, 15, 16].

Commensurate with these findings, the concurrence values are also observed to drop rapidly

within the same period of time. Notably, these findings do not preclude the molecule from

being relevant for biological processes taking place at time scales for which the nuclear

spin coherences are indeed maintained. However, due to the small diffusion constant of the

molecule, it is unable to traverse neuronally relevant length-scales within its short entan-

glement lifetime, and so it might not be suitable for entanglement mediated neural signal

processing, as previously suggested [15]. Specifically, we estimated the translational diffusion

properties of the molecule by analyzing its trajectory in a hydrated environment (details in

Section 6.1) and found the diffusion constant to be ∼ 1.01×10−9 m2/ s. This implies that it

would take the Posner molecule approximately 14 hours to traverse the length of a neuronal
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cell axon (∼ 1 cm), much longer than the aforementioned entanglement lifetimes. We also

note that the above estimated speeds are markedly slower than the average speed of nerve

impulses [234].

6.5 Exploratory calculations on calcium phosphate dimers

Surprisingly, exploratory calculations on the tricalcium biphosphate dimer, Ca6(PO4)4, re-

vealed that the singlet state in the dimer is exceedingly long-lived, irrespective of its struc-

ture. As reported in earlier studies [14, 206], although the dimer also exists in multiple

configurations, its energetically favorable structures are known more conclusively. We were

able to identify six stable structures for the dimer [14], although many more may exist.

Again, as for the Posner molecules, we initialized a pair of 31P nuclei in two identical, spa-

tially separated dimers in a singlet state, and then evaluated the singlet probability over time.

Remarkably, even in the presence of relaxation, the singlet state in tricalcium biphosphate

dimers is extremely long-lived (of the order of 103 seconds, and with significant refocusing)

regardless of the symmetry of the molecule. This has been depicted in Fig. 6.8. The coupling

constants used for these calculations have been shown in Table 6.1.
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(a) Singlet probability for a dimer structure

with a C2 symmetry
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(b) Singlet probability for a dimer structure

with a S4 symmetry
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(c) Singlet probability for a dimer structure

with a C2 symmetry
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(d) Singlet probability for a dimer structure

with a Cs symmetry
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(e) Singlet probability for a dimer structure

with a C2v symmetry
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(f) Singlet probability for a dimer structure

with a Td symmetry

Figure 6.8: Singlet probabilities for the six stable dimer structures explored in our previous

study [14]. Long-lived singlet states are observed irrespective of the symmetry of the dimer,

unlike the Posner molecule, potentially making it more suitable for quantum information

processing. For clarity, the plots (a) through (f) have been arranged in decreasing order of

the stability of the dimer structure
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Coupling

constants

(in Hz)

Structure

corre-

sponding

to Fig.

6.8a

Structure

corre-

sponding

to Fig.

6.8b

Structure

corre-

sponding

to Fig.

6.8c

Structure

corre-

sponding

to Fig.

6.8d

Structure

corre-

sponding

to Fig.

6.8e

Structure

corre-

sponding

to Fig.

6.8f

Jab -0.394 -0.193 -0.200 0.142 -0.163 0.147

Jac -0.415 -0.139 -0.209 0.147 -0.161 0.154

Jad -0.163 -0.136 -0.267 0.152 -0.374 0.135

Jbc -0.046 -0.143 -0.404 0.140 0.042 0.144

Jbd -0.082 -0.142 -0.218 0.124 -0.162 0.150

Jcd 0.221 -0.189 -0.065 0.148 -0.161 0.142

Table 6.1: The J -coupling constants for each of the 6 dimer structures considered in this

study. All values are in Hz. The coordinates of the 31P atoms corresponding to subscripts

a, b, c, d are shown in Table 6.2.

Figure corre-

sponding to

the structure

Coordinates

(in Å) of 31P

atom a

Coordinates

(in Å) of 31P

atom b

Coordinates

(in Å) of 31P

atom c

Coordinates

(in Å) of 31P

atom d

Fig. 6.8a [-2.82, 0.51, 0.06] [0.47, 1.25, -3.39] [0.44, 0.54, 3.21] [1.98, -2.20, -0.01]

Fig. 6.8b [1.34, -1.75, 2.03] [-1.31, 1.69, 2.11] [-1.74, -1.29, -2.09] [1.71, 1.36, -2.08]

Fig. 6.8c [-0.97, -0.24, 2.92] [0.99, -2.86, -1.96] [-2.69, 1.36, -1.58] [2.77, 1.87, 0.30]

Fig. 6.8d [2.95, -1.15, 1.05] [-2.48, -1.75, 1.46] [-0.28, 3.24, 0.81] [-0.20, -0.34, -3.35]

Fig. 6.8e [-3.42, -0.27, 0.06] [0.88, 1.60, -2.80] [0.99, 1.67, 2.73] [1.51, -3.08, 0.01]

Fig. 6.8f [-2.57, 0.28, 2.14] [0.25, 2.80, -1.83] [2.84, -0.47, 1.73] [-0.52, -2.62, -2.04]

Table 6.2: The coordinates of the 31P atoms corresponding to each figure in Fig. 6.8
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It is also interesting to study whether coherence is transferred from one 31P nuclear spin

pair to another as the singlet state evolves over time. Below, we show this for all nuclear

spin pairs for the dimer structure with a C2 point-group symmetry (see Fig. 6.9). Each row

represents the spin pair that was initialized in the singlet state (all other spins were left

uncorrelated). The columns represent the spin pair for which the singlet probability is being

calculated. The y axis (limits from 0.2 to 1) in each plot represents the singlet probability,

and the x axis denotes time (a period of 1000 seconds is covered). Even though the singlet

state is long-lived for each individual pair of 31P nuclear spins, we see that, in some cases,

coherence is indeed transferred to other spins pairs, suggesting that more than one nuclear

spin pair might have long entanglement lifetimes. We expect a similar behavior for all other

dimer structures. We provide an explanation for the exceptional longevity of the singlet state

in the dimer, over the Posner molecule, in the following section (see Section 6.6). Despite

these fascinating observations, we remark that the tricalcium biphosphate dimer does not

appear to have been observed experimentally.

In view of the dimers’ ability to maintain coherences for exceptionally long times, it

is interesting to compare the formation energies per monomer unit of the trimer (Posner

molecule) and the dimer. For the dimer configurations studied, the formation energy per

monomer unit ranged from −88.700 eV to −89.2007 eV. For the trimer, the value ranges

from −88.332 eV to −90.517 eV. In comparison, thermal energy at room temperature is

0.026 eV. Thus, the dimer appears to be roughly as stable as the Posner molecule and is

expected to exist as an independent, stable entity without coalescing into Posner molecules.

These observations suggests that the nuclear spin entanglement in tricalcium biphosphate

dimers could be worth exploring both theoretically and experimentally.
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Figure 6.9: Transfer of entanglement between nuclear spin pairs in a tricalcium biphosphate

dimer with a C2 point-group symmetry. The 4 nuclear spins in each dimer are indexed from

0 through 3. The notation ij corresponds to spin pair comprising of the ith spin in the first

dimer molecule, and the jth spin in the second dimer molecule.
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6.6 The effect of the number of coupled nuclear spins on the spin

dynamics of a system

In general, we expect a spin system with a lesser number of coupled nuclear spins, such as

the tricalcium biphosphate dimer, to be more favorable for maintaining long-lived singlet

states than a spin system with a larger number of coupled nuclear spins, such as the Posner

molecule. This conclusion can derived from the following line of reasoning. Let there be n

distinct spin energy levels in a molecule. Then, n = 2nP in a molecule with no symmetry,

with nP being the number of 31P atoms in the molecule. To get the total number of unique,

positive frequencies contributing to coherences in one molecule, we count the number of pairs

of energy levels, i.e.
∑n−1

i=1 i =
n(n−1)

2
= N .

Every frequency that could contribute to disentanglement of the singlet state by de-

structive interference in the singlet probability oscillations, is a result of a unique pair of

frequencies from the above N frequencies across both molecules. Adding them up, we get:

z =
1

2
(N(N − 1)) +N +N .

Here, z is the total number of oscillation frequencies potentially contributing to the dis-

entanglement of the spin singlet state. The first term on the right-hand side corresponds

to combinations of unique pairs of different frequencies from the two molecules, the second

term corresponds to oscillations within each molecule independent of the other, i.e. , pairing

up frequencies in one molecule to zero frequencies in the other molecule, and the last term

corresponds to the combination of identical frequencies from both molecules. While sym-

metry and accidental degeneracies associated with specific choices of coupling constants will

inevitably introduce redundant frequencies close to one another, and some others close to

zero, z provides an upper limit to the number of oscillation frequencies. Written in terms of

the number of distinct spin energy levels n, we have

z =
1

8
(n4 − 2n3 + 7n2 − 6n) .
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Figure 6.10: The entanglement yield monotonically decreases with the number of coupled

nuclear spins. Note that the error bars and the data on the S4 and S6 – symmetric dimer and

Posner structures respectively show that for individual structures, a different set of coupling

constants result in different yields for a given number of 31P atoms.

In Fig. 6.10, we plot the entanglement yield for systems with different numbers of 31P

atoms. The entanglement yield has been calculated as k
∫ T

0
max(ps(t)− 0.5, 0)e−ktdt. Here,

k = 1/300 s−1 is related to the sampling duration, T = 1000s is the total duration over

which ps(t) was evaluated, and ps(t) is the singlet probability over time. Note that these

have been calculated in the absence of spin relaxation. Including spin relaxation would have

required the structural information for each system, but we do not anticipate the trend to

change appreciably even after its inclusion. We performed 50 simulations for each system

size, and the J -coupling constants for each of the above simulation were chosen randomly

from a normal distribution such that
√∑nP

i=1 J
2
ij = 1 Hz, where nP is the number of 31P

atoms.

Clearly, we see that a system with lesser number of coupled nuclear spins is much more

adept at maintaining long-lived singlet states than a system with a larger number of coupled

nuclear spins. This is in line with our results and our argument above. We reiterate that the

accurate calculation of J -coupling constants remains crucial because the above discussion

only suggests that a smaller coupled nuclear spin system would be better at maintaining long-
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lived singlet states. To calculate the longevity of the singlet state, we still need accurate

values of the coupling constants for a given structural configuration of the molecule.

Additionally, from Fig. 6.10, it is also evident that, on average, symmetric configurations

(represented as blue dots on the plot) are expected to have better entanglement yields.

For the same structure, it is possible to move across the error bar by simply altering the

coupling constants. Since the values of the coupling constants are linked to the symmetry of

the molecule, the above observation confirms the importance of these features when studying

the spin dynamics of a given system with a dynamic ensemble of structures.

From the above discussion, and considering systems composed from dimers – with no

symmetry (16 distinct energy levels per cluster) and with S4 symmetry (13 energy levels) –

and from Posner molecules – with no symmetry (64 energy levels) and with S6 symmetry

(44 energy levels) – the number of unique positive frequencies contributing to the coherent

evolution of the singlet probability are 7380, 3159, 2035152, and 448877, respectively. While

some of these might be close to degenerate or zero or not significantly contribute to the singlet

probability, these numbers illustrate that destructive interference of coherent contributions

will be vastly more likely in larger spin systems, regardless of cluster symmetry. This is in

line with our results. We confirm the above argument by evaluating the entanglement yield,

in the absence of spin relaxation, for randomly coupled systems with different number of
31P atoms and obtain the same trend. These calculations corroborate the insight that the

preservation or recurrence of entangled states is primarily related to the number of coupled

nuclei, and only secondarily influenced by the symmetry of the molecule and the actual J -

coupling constants, which impact the evolution through exact and accidental degeneracies

of energy levels. Regardless of these observations, we maintain that accurate calculations to

determine the J -coupling constants for every molecular configuration are critical to evaluate

the longevity of the spin singlet state of molecules in comparison to other structures of the

same family, i.e. with the same number of coupled nuclear spins, and to assess effects of spin

relaxation.
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6.7 Calculations on the calcium phosphate monomer

Given the structure of the calcium phosphate monomer, Ca3(PO4)2, [14, 203, 206] we can

calculate the singlet probability for a pair of 31P nuclei in two spatially-separated calcium

phosphate monomers (with the remaining uncorrelated nuclear spins serving as background).

Unsurprisingly, and as can be seen in Fig. 6.11, the singlet probability is very well-behaved,

i.e., it decays extremely slowly and has well-defined oscillations at a single frequency. How-

ever, this is to be expected since the monomer only has one unique scalar coupling constant,

which suggests that the singlet probability — which is dominated by J-coupling constants

— will recur at a single frequency. This is unlike the Posner molecule wherein the singlet

probability recurs at multiple frequencies as determined by the various J-coupling constants,

leading to destructive interference and a significantly faster relaxation of the singlet state

[16].

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

S
in
gl
et

P
ro
ba
bi
lit
y

Figure 6.11: Singlet probability for the calcium phosphate monomer

However, these findings related to the entanglement behavior of the monomers is not

expected to be of practical relevance due to energetic considerations. For the monomer,

the formation energy was calculated to be −84.244 eV, whereas the formation energy of the

Posner molecule per monomer unit ranged from −88.332 eV to −90.517 eV. Clearly, the
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Posner molecule is much more energetically stable, suggesting that two monomers would

very likely coalesce to form a lumped, aggregate molecule, which may or may not result in

the formation of calcium phosphate dimers and trimers (Posner molecules).

6.8 Concluding remarks

Our comprehensive study on the spin dynamics of the singlet state in pairs of Posner

molecules, performed without any assumptions on the structure or the coupling constants

of the molecule, shows that the singlet state is short-lived (< 1 second) irrespective of the

structural symmetry of the molecule. This also indicates that accurate calculation of the

J -coupling constants, instead, are crucial to the study of spin dynamics pertaining to the

Posner molecule. Our results suggest that the Posner molecule might be unsuitable as a

biological quantum information processor since entanglement between 31P nuclei in pairs of

Posner molecules is not expected to last for more than a second. It may be possible that co-

herence is transferred from one pair of 31P nuclei to the other, but as shown in earlier studies

[16] and, to a greater extent, in our SI, this does not increase the singlet probability yield over

time in any way. Moreover, recent findings on 31P-31P singlet lifetimes in common organic

phosphorus compounds of interest (e.g., adenosine diphosphate [235], nicotinamide adenine

dinucleotide [235], tetrabenzyle pyrophosphate [231], pyrophosphate [232]), show that the

singlet lifetime ranges from less than half a second in large diphosphates and pyrophosphates

to few tens of seconds in small, highly symmetric pyrophosphates. Additionally, the latter

study suggests that singlet lifetimes may be reduced further in a more realistic biological

environment, and identifies spin-rotation relaxation as the dominant relaxation pathway

[232]. While our model neglects spin-rotation relaxation (due to the larger size of the Posner

molecule), it will be interesting to see how our results differ after its inclusion. The singlet

lifetimes reported in the above studies are of the same order as that of the Posner molecule

in the current study and suggest that, without conclusive evidence of the presence of isolated
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Posner molecules in vivo, the longevity of the singlet state reported in this study is compa-

rable to that found in other phosphorus compounds in vitro. Additionally, while the current

study assumed a weak net external magnetic field, it would be interesting to observe the sin-

glet probability in the presence of stronger magnetic fields, and to see whether that has any

effect on increasing the singlet longevity. Finally, we observe long-lived (∼ 102–103 seconds)

singlet states for the tricalcium biphosphate dimer, regardless of the structural symmetry of

the molecule. This fascinating result is explained on the basis of the fact that any system

with a smaller number of coupled nuclear spins is expected to better maintain entanglement

within the singlet state, than a system with a larger number of coupled nuclear spins. This

leads us to the conclusion that while the symmetry of the molecule and its coupling constants

are critical for evaluating the longevity of the singlet state given a molecule, the behavior

of the coherent oscillations is largely dictated by the system size. The fact that the dimers

appear to be as energetically stable as the Posner molecule might suggest that the dimer

could be a better candidate for a naturally occurring quantum information processor than

the Posner molecule. However, confirmation of its presence in vivo is necessary.
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CHAPTER 7

Electronic structure prediction of multi-million atom

systems

7.1 Introduction

Over the past several decades, Density Functional Theory (DFT) calculations based on the

Kohn-Sham formulation [163, 172] have emerged as a fundamental tool in the prediction of

electronic structure. Today, they stand as the de facto workhorse of computational materials

simulations [236, 237, 238, 239], offering broad applicability and versatility. Although formu-

lated in terms of orbitals, the fundamental unknown in Kohn Sham Density Functional The-

ory (KS-DFT) is the electron density, from which many ground state material properties —

including structural parameters, elastic constants, magnetic properties, phonons/vibrational

spectra, etc., may be inferred. The ground state electron density is also the starting point

for calculations of excited state phenomena, including those related to optical and transport

properties [240, 241].

The importance of being able to routinely predict the electronic structure of generic

bulk materials, especially, metallic and semiconducting systems with a large number of rep-

resentative atoms within the simulation cell, cannot be overemphasized. Computational

techniques that can perform such calculations accurately and efficiently have the potential

to unlock insights into a variety of material phenomena and can lead to the guided design of

new materials with optimized properties. Examples of materials problems where such com-

putational techniques can push the state-of-the-art include elucidating the core structure
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of defects at realistic concentrations, the electronic and magnetic properties of disordered

alloys and quasicrystals [242, 243, 244, 245], and the mechanical strength and failure char-

acteristics of modern, compositionally complex refractory materials [246, 247]. Moreover,

such techniques are also likely to carry over to the study of low dimensional matter and

help unlock the complex electronic features of emergent materials such as van-der-Waals

heterostructures [248] and moiré superlattices [249]. Notably, a separate direction of work

has also explored improving Density Functional Theory predictions themselves, by trying

to learn the Hohenberg-Kohn functional or exchange correlation potentials [113, 250, 251].

This direction of work will not have much bearing on the discussion that follows below.

For physical reasons, the predicted electron density is expected to obey transformations

consistent with overall rotation and translation of the material system. Moreover, it should

remain invariant under permutation of atomic indices. To ensure such properties, several au-

thors have employed equivariant-neural networks [109, 252, 253, 254, 255]. An alternative to

such approaches, which is sufficient for scalar valued quantities such as electron density, is to

employ invariant descriptors [110, 111, 252, 253]. We adopt this latter approach in this work

and show through numerical examples that using invariant features and predicting electron

density as a scalar valued variable indeed preserves the desired transformation properties.

A key challenge in building surrogate models of the ground state electron density from KS-

DFT calculations is the process of data generation itself, which can incur significant offline

cost [256]. In recent work [116], we have demonstrated how this issue can be addressed for

chiral nanomaterials [42]. For such forms of matter, the presence of underlying structural

symmetries allows for significant dimensionality reduction of the predicted fields, and the use

of specialized algorithms for ground state KS-DFT calculations [4, 5, 138]. However, such

strategies cannot be adopted for bulk materials with complex unit cells, as considered here.

For generic bulk systems, due to the confining effects of periodic boundary conditions, small

unit-cell simulations alone cannot represent a wide variety of configurations. To obtain ML

models that can work equally well across scales and for a variety of configurations (e.g. defects
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[257, 258]), data from large systems is also essential. However, due to the aforementioned

cubic scaling of KS-DFT calculations, it is relatively inexpensive to generate a lot of training

data using small sized systems (say, a few tens of atoms), while larger systems (a few hundred

atoms) are far more burdensome, stymieing the data generation process. Previous work

on electron density prediction [111, 112] has been made possible by using data from large

systems exclusively. However, this strategy is likely to fail when complex systems such as

multi-principal element alloys are dealt with, due to the large computational cells required

for such systems. This is especially true while studying compositional variations in such

systems since such calculations are expected to increase the overall computational expense

of the process significantly.

In this work, we propose a machine-learning model that accurately predicts the ground

state electron density of bulk materials at any scale, while quantifying the associated un-

certainties. Once trained, our model significantly outperforms conventional KS-DFT-based

computations in terms of speed. To address the high cost of training data generation asso-

ciated with KS-DFT simulations of larger systems — a key challenge in developing effective

ML surrogates of KS-DFT — we adopt a transfer learning (TL) approach [123]. Thus, our

model is first trained using a large quantity of cheaply generated data from simulations of

small systems, following which, a part of the model is retrained using a small amount of

data from simulations of a few large systems. This strategy significantly lowers the training

cost of the ML model, without compromising its accuracy. Along with the predicted elec-

tron density fields, our model also produces a detailed spatial map of the uncertainty, that

enables us to assess the confidence in our predictions for very large scale systems (thousands

of atoms and beyond), for which direct validation via comparison against KS-DFT simu-

lations data is not possible. The uncertainty quantification (UQ) properties of our models

are achieved through the use of Bayesian Neural Networks (BNNs), which systematically

obtain the variance in prediction through their stochastic parameters, and tend to regularize

better than alternative approaches [259, 260, 261]. They allow us to systematically judge the
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generalizability of our ML model, and open the door to Active Learning approaches [262]

that can be used to further reduce the work of data generation in the future.

To predict the electron density at a given point, the ML model encodes the local atomic

neighborhood information in the form of descriptors, that are then fed as inputs to the BNN.

Our neighborhood descriptors are rather simple: they include distance and angle informa-

tion from nearby atoms in the form of scalar products and avoid choosing the basis set and

“handcrafted” descriptors adopted by other workers [103, 263, 264, 265, 266]. Additionally,

we have carried out a systematic algorithmic procedure to select the optimal set of descrip-

tors, thus effectively addressing the challenge associated with the high dimensionality of the

descriptor-space. To sample this descriptor space effectively, we have employed thermaliza-

tion, i.e., ab initio molecular dynamics (AIMD) simulations at various temperatures, which

has allowed us to carry out accurate predictions for systems far from training. Overall, our

ML model reduces the use of heuristics adopted by previous workers in notable ways, making

the process of ML based prediction of electronic structure much more systematic. Notably,

the point-wise prediction of the electronic fields via the trained ML model, make this calcu-

lation scale linearly with respect to the system size, enabling a wide variety of calculations

across scales.

7.2 Computational Framework

7.2.1 Ab Initio Molecular Dynamics

To generate training data for the model, Ab Initio Molecular Dynamics (AIMD) simulations

were performed using the finite-difference based SPARC code [267, 268, 269]. We used

the GGA PBE exchange-correlation functional [270] and ONCV pseudopotentials [271]. For

aluminum, a mesh spacing of 0.25 Bohrs was used while for SiGe, a mesh spacing of 0.4 Bohrs

was used. These parameters are more than sufficient to produce accurate energies and forces

for the pseudopotentials chosen, as was determined through convergence tests. A tolerance
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of 10−6 was used for self-consistent field (SCF) convergence and the Periodic-Pulay [272]

scheme was deployed for convergence acceleration. These parameters and pseudopotential

choices were seen to produce the correct lattice parameters and bulk modulus values for the

systems considered here, giving us confidence that the DFT data being produced is well

rooted in the materials physics.

For AIMD runs, a standard NVT-Nosé Hoover thermostat [273] was used, and Fermi-

Dirac smearing at an electronic temperature of 631.554 K was applied. The time step between

successive AIMD steps was 1 femtosecond. The atomic configuration and the electron density

of the system were captured at regular intervals, with sufficient temporal spacing between

snapshots to avoid the collection of data from correlated atomic arrangements. To sample

a larger subspace of realistic atomic configurations, we performed AIMD simulations at

temperatures ranging from 315 K to about twice the melting point of the system, i.e. 1866 K

for Al and 2600 K for SiGe. Bulk disordered SiGe alloy systems were generated by assigning

atoms randomly to each species, consistent with the composition.

We also generate DFT data for systems with defects and systems under strain, in order

to demonstrate the ability of our ML model to predict unseen configurations. To this end,

we tested the ML model on monovacancies and divacancies, edge and screw dislocations,

and grain boundaries. For vacancy defects, we generated monovacancies by removing an

atom from a random location, and divacancies by removing two random neighboring atoms

before running AIMD simulations. Edge and screw dislocations for aluminum systems were

generated using Atomsk [274]. Further details can be found in Fig. 7.6. Grain boundary

configurations were obtained based on geometric considerations of the tilt angle — so that an

overall periodic supercell could be obtained, and by removing extra atoms at the interface.

For aluminum, we also tested an isotropic lattice compression and expansion of up to 5%;

these systems were generated by scaling the lattice vectors accordingly (while holding the

fractional atomic coordinates fixed).
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7.2.2 Machine learning map for charge density prediction

Our ML model maps the coordinates {RI}Na
I=1 and species (with atomic numbers {ZI}Na

I=1)

of the atoms, and a set of grid points {ri}
Ngrid
i=1 in a computational domain, to the electron

density values at those grid points. Here, Na and Ngrid refer to the number of atoms and

the number of grid points, within the computational domain, respectively. We compute the

aforementioned map in two steps. First, given the atomic coordinates and species informa-

tion, we calculate atomic neighborhood descriptors for each grid point. Second, a neural

network is used to map the descriptors to the electron density at each grid point. These two

steps are discussed in more detail subsequently.

7.2.3 Atomic neighborhood descriptors

In this work, we use a set of scalar product-based descriptors to encode the local atomic

environment. The scalar product-based descriptors for the grid point at ri consist of distance

between the grid point and the atoms at RI ; and the cosine of angle at the grid point ri

made by the pair of atoms at RI and RJ . Here i = 1, . . . , Ngrid and I, J = 1, . . . , Na. We

refer to the collections of distances i.e., ||ri−RI || as set I descriptors, and the collections of

the cosines of the angles i.e., (ri−RI)·(ri−RJ )
||ri−RI || ||ri−RJ ||

are referred to as set II descriptors.

Higher order scalar products such as the scalar triple product, and the scalar quadruple

product which involve more than two atoms at a time can also be considered. However,

these additional scalar products are not included in the descriptor set in this work since they

do not appear to increase the accuracy of predictions.

Since the predicted electron density is a scalar valued variable, invariance of the input

features is sufficient to ensure equivariance of the predicted electron density under rotation,

translation, and permutation of atomic indices (as mentioned in [252, 253]). Since the

features of our ML model are scalar products and are sorted, they are invariant with respect

to rotation, translation, and permutation of atomic indices. Details on the proof that our
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descriptor space is indeed equivariant can be found in [177].

7.2.4 Selection of optimal set of descriptors

As has been pointed out by previous work on ML prediction of electronic structure [110, 111],

the nearsightedness principle [275, 276] and screening effects [277] indicate that the electron

density at a grid point has little influence from atoms sufficiently far away. This suggests that

only descriptors arising from atoms close enough to a grid point need to be considered in the

ML model, a fact which is commensurate with our findings in Fig. 7.1. Using an excessive

number of descriptors can increase the time required for descriptor-calculation, training,

and inference, is susceptible to curse of dimensionality, and affect prediction performance

[278, 279]. On the other hand, utilizing an insufficient number of descriptors can result in an

inadequate representation of the atomic environments and lead to an inaccurate ML model.

Based on this rationale, we propose a procedure to select an optimal set of descriptors for

a given atomic system. We select a set of M (M ≤ Na) nearest atoms from the grid point

to compute the descriptors and perform a convergence analysis to strike a balance between

the aforementioned conditions to determine the optimal value of M . It is noteworthy that

the selection of optimal descriptors has been explored in previous works, in connection with

Behler-Parinello symmetry functions such as [280] and [281]. These systematic procedures

for descriptor selection eliminate trial-and-error operations typically involved in finalizing

a descriptor set. In [281], the authors have demonstrated for Behler-Parinello symmetry

functions that using an optimal set of descriptors enhances the efficiency of machine learning

models.

For M nearest atoms, we will have Nset I distance descriptors, and Nset II angle descriptors,

with Nset I =M and Nset II ≤ MC2. The total number of descriptors is Ndesc = Nset I+Nset II.

To optimize Ndesc, we first optimize Nset I, till the error converges as shown in Fig. 7.1.

Subsequently, we optimize Nset II. To do this, we consider a nearer subset of atoms of size

Ma ≤ M , and for each of these Ma atoms, we consider the angle subtended at the grid
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point, by the atoms and their k nearest neighbors. This results in Nset II = Ma × k, angle

based descriptors, with Ma and k varied to yield the best results, as shown in Fig. 7.1. The

pseudo-code for this process, as well as further details on feature convergence analysis are

provided in [177].

Figure 7.1: Convergence of error with respect to the number of descriptors, shown for alu-

minum. The blue line shows the convergence with respect to Nset I, while the other three

lines show convergence with respect to Nset II. The optimal Nset I and Nset II are obtained

where their test RMSE values converge.

7.2.5 Bayesian Neural Network

Bayesian Neural Networks (BNNs) have stochastic parameters in contrast to deterministic

parameters used in conventional neural networks. They provide a mathematically rigorous

and efficient way to quantify uncertainties in their prediction.

We use a Bayesian neural network to estimate the probability P (ρ|x,D) of the output elec-

tron density ρ for a given input descriptor x ∈ RNdesc and training data set D = {xi, ρi}Nd
i=1.
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The probability is evaluated as:

P (ρ|x,D) =
∫
Ωw

P (ρ|x,w)P (w|D)dw . (7.1)

Here w ∈ Ωw is the set of parameters of the network and Nd is the size of the training data

set. Through this marginalization over parameters, a BNN provides a route to overcome

modeling biases via averaging over an ensemble of networks. Given a prior distribution

P (w) on the parameters, the posterior distribution of the parameters P (w|D) are learned

via the Bayes’ rule as P (w|D) = P (D|w)P (w)/P (D), where P (D|w) is the likelihood of the

data.

This posterior distribution of parameters P (w|D) is intractable since it involves the nor-

malizing factor P (D), which in turn is obtained via marginalization of the likelihood through

a high dimensional integral. Therefore, it is approximated through techniques such as varia-

tional inference [259, 282, 283] or Markov Chain Monte Carlo methods [284]. In variational

inference, as adopted here, a tractable distribution q(w|θ) called the “variational posterior”

is considered, which has parameters θ. For instance, if the variational posterior is a Gaussian

distribution the corresponding parameters are its mean and standard deviation, θ = (µθ,σθ).

The optimal value of parameters θ is obtained by minimizing the statistical dissimilarity be-

tween the true and variational posterior distributions. The dissimilarity is measured through

the KL divergence KL [q(w|θ) || P (w|D)]. This yields the following optimization problem:

θ∗ = argmin
θ

KL [q(w|θ) || P (w|D)]

= argmin
θ

∫
q(w|θ) log

[
q(w|θ)

P (w)P (D|w)
P (D)

]
dw .

(7.2)

This leads to the following loss function for BNN that has to be minimized:

FKL(D,θ) = KL [q(w|θ) || P (w)]− Eq(w|θ)[logP (D|w)] . (7.3)

This loss function balances the simplicity of the prior and the complexity of the data through

its first and second terms respectively, yielding regularization [259, 260].
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Once the parameters θ are learned, the BNNs can predict the charge density at any new

input descriptor x. In this work, the mean of the parameters (µθ) are used to make point

estimate predictions of the BNN.

7.2.6 Uncertainty quantification

The variance in the output distribution P (ρ|x,D) in Eq. 7.1 is the measure of uncertainty in

the BNN’s prediction. Samples from this output distribution can be drawn in three steps: In

the first step, a jth sample of the set of parameters, ŵj=1,...,Ns , is drawn from the variational

posterior q(w|θ) which approximates the posterior distribution of parameters P (w|D). Here,

Ns is the number of samples drawn from the variational posterior of parameters. In the

second step, the sampled parameters are used to perform inference of the BNN (fN) to

obtain the jth prediction ρ̂j = f
ŵj

N (x). In the third step, the likelihood is assumed to be

a Gaussian distribution: P (ρ|x, ŵj) = N (ρ̂j, σ(x)), whose mean is given by the BNN’s

prediction, ρ̂j, and standard deviation by a heterogenous observation noise, σ(x). A sample

is drawn from this Gaussian distribution N (ρ̂j, σ(x)) that approximates a sample from the

distribution P (ρ|x,D). The total variance of such samples can be expressed as:

var(ρ) = σ2(x) +

[
1

Ns

Ns∑
j=1

(ρ̂j)
2 − (E(ρ̂j))2

]
. (7.4)

Here, E(ρ̂j) = 1
Ns

∑Ns

j=1 f
ŵj

N (x). The first term, σ2(x), in Eq. 7.4 is the aleatoric uncertainty

that represents the inherent noise in the data and is considered irreducible. The second term

(in the square brackets) in Eq. 7.4 is the epistemic uncertainty, that quantifies the modeling

uncertainty.

In this work, the aleatoric uncertainty is learned via the BNN model along with the

charge densities ρ. Therefore, for each input x, the BNN learns two outputs: fw
N (x) and

σ(x). For a Gaussian likelihood, the noise σ is learned through the likelihood term of the
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loss function Eq. 7.3 following [285] as:

logP (D|w) =

Nd∑
i=1

−1

2
log σ2

i −
1

2σ2
i

(fw
N (xi)− ρi)2 . (7.5)

Here, Nd is the size of the training data set. The aleatoric uncertainty, σ, enables the loss to

adapt to the data. The network learns to reduce the effect of erroneous labels by learning a

higher value for σ2, which makes the network more robust or less susceptible to noise. On

the other hand, the model is penalized for predicting high uncertainties for all points through

the log σ2 term.

The epistemic uncertainty is computed by evaluating the second term of Eq. 7.4, via

sampling ŵj from the variational posterior.

7.2.7 Transfer Learning using multi-scale data

Conventional DFT simulations for smaller systems are considerably cheaper than those for

larger systems, as the computational cost scales cubically with the number of atoms present

in the simulation cell. However, the ML models cannot be trained using simulation data

from small systems alone. This is because, smaller systems are far more constrained in the

number of atomic configurations they can adopt, thus limiting their utility in simulating a

wide variety of materials phenomena. Additionally, the electron density from simulations of

smaller systems differs from that of larger systems, due to the effects of periodic boundary

conditions.

To predict accurately across all length scales while reducing the cost of training data

generation via DFT simulations, we use a transfer learning approach here. Transfer learning

is a machine learning technique where a network, initially trained on a substantial amount

of data, is later fine-tuned on a smaller dataset for a different task, with only the last

few layers being updated while the earlier layers remain unaltered [123]. The initial layers

(called “frozen layers”) capture salient features of the inputs from the large dataset, while

the re-trained layers act as decision-makers and adapt to the new problem.
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Figure 7.2: Comparison of (a) error and (b) training data generation time between models

with and without transfer learning for aluminium (left) and SiGe (right) systems.

Transfer learning has been used in training neural network potentials, first on Density

Functional Theory (DFT) data, and subsequently using datasets generated using more ac-

curate, but expensive quantum chemistry models [286]. In contrast, in this work, transfer

learning is employed to leverage the multi-scale aspects of the problem. Specifically, the

present transfer learning approach leverages the statistical dissimilarity in data distributions

between various systems and the largest system. This process is employed to systematically

select the training data, ultimately reducing reliance on heuristics. This can be seen in Fig.

7.2 which depicts a comparison between a transfer learned (TL) model and various other

models. This approach allows us to make electron density predictions across scales and

system configurations, while significantly reducing the cost of training data generation.

In the case of aluminum, at first, we train the model using a large amount of data from

DFT simulations of (smaller) 32-atom systems. Subsequently, we freeze the initial one-third

layers of the model and re-train the remaining layers of the model using a smaller amount

(40%) of data from simulations of (larger) 108-atom systems. Further training using data

from larger bulk systems was not performed, since the procedure described above already

provides good accuracy (Figs. 7.8, 7.16), which we attribute to the statistical similarity of

the electron density of 108 atom systems and those with more atoms. A similar transfer

learning procedure is used for the SiGe model, where we initially train with data from 64-
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atom systems and subsequently retrain using data from 216-atom systems. Overall, due to

the non-linear data generation cost using DFT simulations, the transfer learning approach

reduces training data generation time by over 50%.

7.2.8 Postprocessing of ML predicted electron density

One way to test the accuracy of the ML models is to compute quantities of interest (such

as the total ground state energy, exchange-correlation energy, and Fermi level) using the

predicted electron density, ρML. Although information about the total charge in the system

is included in the prediction, it is generally good practice to first re-scale the electron density

before postprocessing [119, 116], as follows:

ρscaled (r) = ρML(r)
Ne∫

Ω

ρML(r)dr
. (7.6)

Here, Ω is the periodic supercell used in the calculations, and Ne is the number of electrons

in the system. Using this scaled density, the Kohn-Sham Hamiltonian is set up within the

SPARC code framework, which was also used for data generation via AIMD simulations

[267, 268, 269]. A single step of diagonalization is then performed, and the energy of the

system is computed using the Harris-Foulkes formula [287, 288]. The errors in predicting

ρML(r), and the ground state energy thus calculated, can be seen in Fig. 7.8. More detailed

error values can be found in [177].

7.3 Machine learning predictions

In this section, we present electron density predictions by the proposed machine learn-

ing (ML) model for two types of bulk materials — pure aluminum and alloys of silicon-

germanium. These serve as prototypical examples of metallic and covalently bonded semi-

conducting systems, respectively. These materials were chosen for their technological im-
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portance and because the nature of their electronic fields is quite distinct, thus presenting

distinct challenges to the ML model. Additionally, being metallic, the aluminum systems do

not show simple localized electronic features often observed in insulators [276, 289], further

complicating electron density prediction.

The overview of the present ML model is given in Fig. 7.3. The models are trained

using a transfer learning approach, with thermalization used to sample a variety of system

configurations. In the case of aluminum (Al), the model is trained initially on a 32-atom

and subsequently on a 108-atom system. Corresponding system sizes for silicon germanium

(SiGe) are 64 and 216 atoms respectively. Details of the ML model were provided in sec-

tion 7.2.
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Figure 7.3: Overview of the present Machine Learning (ML) model. The first step is the

training data generation via ab initio simulations shown by the arrow at the top. The

second step is to generate atomic neighborhood descriptors x(i) for each grid point, i, in

the training configurations. The third step is to create a probabilistic map (Bayesian Neural

Network with DenseNet like blocks consisting of skip connections) from atomic neighborhood

descriptors x(i) to the charge density at the corresponding grid point ρ(i). The trained model

is then used for inference which includes (i) descriptor generation for all grid points in the

query configuration, (ii) forward propagation through the Bayesian Neural Network, and (iii)

aggregation of the point-wise charge density ρ(i) to obtain the charge density field ρ.

We evaluate the performance of the ML models for a wide variety of test systems, which

are by choice, well beyond the training data. This is ensured by choosing system sizes

far beyond training, strained systems, systems containing defects, or alloy compositions
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not included in the training. We assess the accuracy of the ML models by comparing

predicted electron density fields and ground state energies against DFT simulations. In

addition, we quantify the uncertainty in the model’s predictions. We decompose the total

uncertainty into two parts: “aleatoric” and “epistemic”. The first is a result of inherent

variability in the data, while the second is a result of insufficient knowledge about the model

parameters due to limited training data. The inherent variability in the data might arise

due to approximations and round-off errors incurred in the DFT simulations and calculation

of the ML model descriptors. On the other hand, the modeling uncertainty arises due to the

lack of or incompleteness in the data. This lack of data is inevitable since it is impossible to

exhaustively sample all possible atomic configurations during the data generation process.

Decomposing the total uncertainty into these two parts helps distinguish the contributions of

inherent randomness and incompleteness in the data to the total uncertainty. In the present

work, a “heteroscedastic” noise model is used to compute the aleatoric uncertainty, which

captures the spatial variation of the noise/variance in the data.

7.3.1 Error Estimation

To evaluate the accuracy of the model, we calculated the Root Mean Squared Error (RMSE)

for the entire test dataset, including systems of the same size as the training data as well as

sizes bigger than training data. For aluminum, the RMSE was determined to be 4.1× 10−4,

while for SiGe, it was 7.1 × 10−4, which shows an improvement over RMSE values for Al

available in [111]. The L1 norm per electron for Aluminuum is 2.63× 10−2 and for SiGe it is

1.94× 10−2 for the test dataset. Additionally, the normalized RMSE is obtained by dividing

the RMSE value by the range of respective ρ values for aluminum and SiGe. The normalized

RMSE for aluminum and SiGe test dataset was found to be 7.9 × 10−3 for both materials.

Details of training and test dataset can be found in [177]. However, briefly, the amount of

data used in training for the two systems is as follows:

144



• Al: 127 snaps from 32 atom data and in addition 25 snaps from 108 atom data. The

108 atom data has 90× 90× 90 grid points, while the 32 atom system has 60× 60× 60

grid points.

• SiGe: 160 snaps of 64 atom data and in addition 30 snaps of 216 atom data. The 64

atom system has 53× 53× 53 grid points, while the 216 atom system has 79× 79× 79

grid points.

To assess the generalizability of the model, we evaluate the accuracy of the ML model using

systems much larger than those used in training, but accessible to DFT. We consider two

prototypical systems, an Aluminium system having 1372 atoms (Fig. 7.4) and a Silicon

Germanium (Si0.5 Ge0.5) system having 512 atoms (Fig. 7.5). The model shows remarkable

accuracy for both of these large systems. The RMSE is 3.8 × 10−4 and 7.1 × 10−4 for

aluminum and SiGe respectively, which confirms the high accuracy of the model for system

sizes beyond those used in training.

We now evaluate the performance of the ML model for systems containing extended and

localized defects, although such systems were not used in training. We consider the following

defects: mono-vacancies, di-vacancies, grain boundaries, edge, and screw dislocations for Al,

and mono-vacancies and di-vacancies for SiGe. The electron density fields predicted by the

ML models match with the DFT calculations extremely well, as shown in Figs. 7.6 and 7.7.

The error magnitudes (measured as the L1 norm of the difference in electron density fields,

per electron) are about 2× 10−2 (see Fig. 7.8). The corresponding NRMSE is 7.14× 10−3 .

We show in Section 7.3.2, that the model errors and uncertainty can be both brought down

significantly, by including a single snapshot with defects, during training.

Another stringent test of the generalizability of the ML models is performed by inves-

tigating Six Ge1−x alloys, for x ̸= 0.5. Although only equi-atomic alloy compositions (i.e.,

x = 0.5) were used for training, the error in prediction (measured as the L1 norm of the

difference in electron density fields, per electron) is lower than 3× 10−2 (see Fig. 7.8). The
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Figure 7.4: 1372 atom aluminum simulation cell at 631 K. Electron densities (a) calculated

by DFT and (b) predicted by ML. The two-dimensional slice of (b) that has the highest

mean squared error, as calculated by (c) DFT and predicted by (d) ML. (e) Corresponding

absolute error in ML with respect to DFT. (f) - (h) Magnified view of the rectangular areas in

(c) - (e) respectively. The unit for electron density is e Bohr−3, where e denotes the electronic

charge.
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Figure 7.5: 512 atoms Si0.5Ge0.5 simulation cell at 2300 K. Electron densities (a) calculated

by DFT and (b) predicted by ML. The two-dimensional slice of (b) that has the highest

mean squared error, as calculated by (c) DFT and predicted by (d) ML. (e) Corresponding

absolute error in ML with respect to DFT.The unit for electron density is e Bohr−3, where

e denotes the electronic charge.

corresponding RMSE is 8.04 × 10−4 and NRMSE is 7.32 × 10−3 . We would like to make

a note that we observed good accuracy in the immediate neighborhood (x = 0.4 to 0.6) of
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c

d

Figure 7.6: Electron density contours for aluminum systems with localized and extended

defects — Left: calculated by DFT, Right: predicted by ML. (a) (Top) Mono-vacancy in

256 atom aluminum system, (Bottom) Di-Vacancy in 108 atom aluminum system, (b) (1 1

0) plane of a perfect screw dislocation in aluminum with Burgers vector a0
2
[110], and line

direction along [110]. The coordinate system was aligned along [11̄2]–[1̄11]–[110], (c) (Top)

(0 1 0) plane, (bottom) (0 0 1) plane of a [001] symmetric tilt grain boundary (0◦ inclination

angle) in aluminum, (d) Edge dislocation in aluminum with Burgers vector a0
2
[110]. The

coordinate system was aligned along [110]–[1̄11]–[11̄2] and the dislocation was created by

removing a half-plane of atoms below the glide plane. The unit for electron density is

e Bohr−3, where e denotes the electronic charge.

the training data (x = 0.5). Prediction for x = 0.4 is shown in Fig. 6(ii). The prediction

accuracy however decreases as we move far away from the training data composition. This

generalization performance far away from the training data is expected. We have also carried

out tests with aluminum systems subjected to volumetric strains, for which the results were

similarly good.
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Figure 7.7: Electron density contours and absolute error in ML for SiGe systems with (a-c)

Si double vacancy defect in 512 atom system (d-f) Ge single vacancy defect in 216 atom

system. Densities (a,d) calculated by DFT, (b,e) predicted by ML, and (c,f) error in ML

predictions. Note that the training data for the above systems did not include any defects.

The unit for electron density is e Bohr−3, where e denotes the electronic charge.

Our electron density errors are somewhat lower than compared to the earlier works [110,

111], At the same time, thanks to the sampling and transfer learning techniques adopted

by us, the amount of time spent on DFT calculations used for producing the training data

is also smaller. To further put into context the errors in the electron density, we evaluate

the ground state energies from the charge densities predicted by the ML model through a

postprocessing step and compare these with the true ground state energies computed via

DFT. Details on the methodology for postprocessing have been discussed in section 7.2.8,

and a summary of our postprocessing results can be seen in Fig. 7.8. On average, the errors

are well within chemical accuracy for all test systems considered and are generally O(10−4)

Ha atom−1, as seen in Fig. 7.8. Further details can regarding the energies can be seen in

Tables 7.1 and 7.2.

Furthermore, not only are the energies accurate, but the derivatives of the energies, e.g.,

with respect to the supercell lattice parameter, are found to be quite accurate as well (see

Fig. 7.9 and Table 7.3). This enables us to utilize the ML model to predict the optimum

lattice parameter — which is related to the first derivative of the energy curve, and the

bulk modulus — which is related to the second derivative of the energy curve, accurately.

We observe that the lattice parameter is predicted accurately to a fraction of a percent,
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Figure 7.8: A comparison of the accuracy in the prediction of the charge density (in terms

of the L1 norm per electron between ρDFT and ρscaled), and the error (in Ha/atom) in the

ground state total energy computed using ρDFT and ρscaled, for Al (left), and SiGe (right)

systems. ρscaled is the scaled ML predicted electron density as given in Eq. 7.6. We observe

that the errors are far better than chemical accuracy, i.e., errors below 1 kcal mol−1 or 1.6

milli-Hartree atom−1, for both systems, even while considering various types of defects and

compositional variations. Note that for SixGe1-x, we chose x = 0.4, 0.45, 0.55, 0.6.

and the bulk modulus is predicted to within 1% of the DFT value (which itself is close to

experimental values [17]). This demonstrates the utility of the ML models to predict not

only the electron density but also other relevant physical properties.

Overall, the generalizability of our models is strongly suggestive that our use of thermal-

ization to sample the space of atomic configurations, and the use of transfer-learning to limit

training data generation of large systems are both very effective. We discuss uncertainties

arising from the use of these strategies and due to the neural network model, in addition to

the noise in the data, in the following sections.

149



Case

Accuracy of Ground-state Exch. Corr. Fermi Max error in

electron density energy energy level eigenvalue

(L1 norm per electron) (Ha/atom) (Ha/atom) (Ha) (Ha)

Entire test data set 2.62× 10−2 2.33× 10−4 4.36× 10−4 4.61× 10−4 4.58× 10−3

Al (32 atoms) 2.27× 10−2 1.30× 10−4 1.07× 10−3 9.80× 10−4 4.10× 10−3

Al (108 atoms) 1.67× 10−2 9.33× 10−5 9.82× 10−5 1.13× 10−4 1.87× 10−3

Al (256 atoms) 3.93× 10−2 5.60× 10−4 4.18× 10−4 2.03× 10−4 6.67× 10−3

Al (500 atoms) 3.96× 10−2 4.11× 10−4 2.41× 10−4 5.04× 10−4 8.52× 10−3

Al vacancy defects 1.92× 10−2 9.80× 10−5 1.42× 10−4 2.98× 10−4 3.85× 10−3

Strain imposed Al 2.54× 10−2 1.75× 10−4 8.91× 10−4 6.64× 10−4 3.11× 10−3

Table 7.1: Accuracy of the ML predicted electron density in terms of the L1 norm per

electron, calculated as 1
Ne
×
∫
Ω

∣∣ρscaled(r)− ρDFT(r)
∣∣ dr, for various test cases for an FCC

aluminum bulk system (Ne is the number of electrons in the system). Also shown in the

table are errors in the different energies as computed from ρscaled. The test data set for post-

processing was chosen such that it covered examples from all system sizes, configurations, and

temperatures. For calculating the relevant energies, ρscaled was used as the initial guess for

the electron density, and a single Hamiltonian diagonalization step was performed. Energies

were then computed.

7.3.2 Uncertainty quantification

The present work uses a Bayesian Neural Network (BNN) which provides a systematic route

to uncertainty quantification (UQ) through its stochastic parameters as opposed to other

methods for UQ, for instance ensemble averaging [290]. Estimates of epistemic and aleatoric

uncertainties for the following systems are shown: a defect-free Al system with 1372 atoms

(Fig. 7.10), a 256-atom Al system with a mono-vacancy (Fig. 7.12(a-d)), and a Si0.4Ge0.6

alloy (Fig. 7.11). Note, for the results in Fig. 7.12(a-d) the training data does not contain

any systems having defects, and for the results in Fig. 7.11 the training data contains only

50− 50 composition.
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Case

Accuracy of Ground-state Exch. Corr. Fermi Max error in

electron density energy energy level eigenvalue

(L1 norm per electron) (Ha/atom) (Ha/atom) (Ha) (Ha)

Entire test data set 1.93× 10−2 1.47× 10−4 9.34× 10−4 1.43× 10−3 7.29× 10−3

Si0.5Ge0.5 (64 atoms) 1.51× 10−2 8.08× 10−5 1.40× 10−3 8.71× 10−4 5.07× 10−3

Si0.5Ge0.5 (216 atoms) 1.90× 10−2 1.18× 10−4 2.50× 10−4 3.08× 10−4 4.99× 10−3

Si0.5Ge0.5 (512 atoms) 2.50× 10−2 2.57× 10−4 3.70× 10−4 1.32× 10−3 1.27× 10−2

Si0.5Ge0.5 vacancy defects 1.70× 10−2 9.68× 10−5 2.36× 10−4 2.82× 10−3 6.85× 10−3

SixGe1-x (x ̸= 0.5) 2.39× 10−2 2.54× 10−4 2.41× 10−3 1.25× 10−3 9.36× 10−3

Table 7.2: Accuracy of the ML predicted electron density in terms of L1 norm per electron,

calculated as 1
Ne
×
∫
Ω

∣∣ρscaled(r)− ρDFT(r)
∣∣ dr, for various test cases for Si0.5Ge0.5 (Ne is the

number of electrons in the system). Also shown in the table are errors in the different

energies as computed from ρscaled. The test data set for post-processing was chosen such

that it covered examples from all system sizes and temperatures. For calculating the relevant

energies, ρscaled was used as the initial guess for the electron density, and a single Hamiltonian

diagonalization step was performed. Energies were then computed. For SixGe1-x, we used

x = 0.40, 0.45, 0.55, 0.60.

Material property 2× 2× 2 supercell 3× 3× 3 supercell

Lattice parameter (Bohr) 7.4294 (7.4281) 7.5208 (7.5188)

Bulk modulus (GPa) 92.2774 (92.7708) 75.7977 (76.3893)

Table 7.3: A comparison between the calculated lattice parameter and the bulk modulus for

aluminum using ρML and ρDFT (DFT values in parentheses). We observe that the predicted

lattice parameter closely matches the value given by DFT calculations. The “true” opti-

mized lattice parameter for Al, using a fine k-space mesh, is found to be 7.5098 Bohr while

experimental values are about 7.6 Bohr [19]). The ML predicted value of the bulk modulus

matches the DFT value very closely, which itself is very close to the experimental value of

approximately 76 GPa [17], at room temperature.
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Figure 7.9: The energy curve with respect to different lattice parameters for a 2 × 2 × 2

(left) and 3×3×3 (right) supercell of aluminum atoms. Overall, we see excellent agreement

in the energies (well within chemical accuracy). The lattice parameter (related to the first

derivative of the energy plot) calculated in each case agrees with the DFT-calculated lattice

parameter to O(10−2) Bohr or better (i.e., it is accurate to a fraction of a percent). The bulk

modulus calculated (related to the second derivative of the energy plot) from DFT data and

ML predictions agree to within 1%. For the 3× 3× 3 supercell, the bulk modulus calculated

via DFT calculations is 76.39 GPa, close to the experimental value of about 76 GPa [17].

The value calculated from ML predictions is 75.80 GPa.

In these systems, the aleatoric uncertainty has the same order of magnitude as the epis-

temic uncertainty. This implies that the uncertainty due to the inherent randomness in the

data is of a similar order as the modeling uncertainty. The aleatoric uncertainty is signif-

icantly higher near the nuclei (Fig. 7.10 and Fig. 7.11) and also higher near the vacancy

(Fig 7.12). This indicates that the training data has high variability at those locations. The

epistemic uncertainty is high near the nucleus (Fig. 7.10 and Fig. 7.11) since only a small

fraction of grid points are adjacent to nuclei, resulting in the scarcity of training data for

such points. For the system with vacancy, the aleatoric uncertainty is higher in most regions,

as shown in Fig. 7.12(c). However, the epistemic uncertainty is significantly higher only at
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Figure 7.10: Uncertainty quantification for 1372 atom aluminum system. (a) ML prediction

of the electron density, (b) Epistemic Uncertainty (c) Aleatoric Uncertainty (d) Total Uncer-

tainty shown along the dotted line from the ML prediction slice. The uncertainty represents

the bound ±3σtotal, where, σtotal is the total uncertainty. The unit for electron density is

e Bohr−3, where e denotes the electronic charge.
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Figure 7.11: Uncertainty quantification for Si0.4Ge0.6 system. (a) ML prediction of the

electron density, (b) Epistemic Uncertainty (c) Aleatoric Uncertainty (d) Total Uncertainty

shown along the dotted line from the ML prediction slice. The uncertainty represents the

bound±3σtotal, where, σtotal is the total uncertainty. The unit for electron density is e Bohr−3,

where e denotes the electronic charge.

the vacancy (Fig. 7.12(b)), which might be attributed to the complete absence of data from

systems with defects in the training.

To investigate the effect of adding data from systems with defects in the training, we

added a single snapshot of 108 atom aluminum simulation with mono vacancy defect to the

training data. This reduces the error at the defect site significantly and also reduces the

uncertainty (Fig. 7.12(e)). However, the uncertainty is still quite higher at the defect site
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Figure 7.12: Uncertainty quantification for a 256 atom aluminum system with a mono va-

cancy defect. (a) ML prediction of the electron density shown on the defect plane, (b))

Epistemic uncertainty (c) Aleatoric uncertainty d) Uncertainty shown along the black dot-

ted line from the ML prediction slice. The uncertainty represents the bound ±3σtotal, where,

σtotal is the total uncertainty. Note that the model used to make the predictions in (a-d) is

not trained on the defect data, as opposed to the model used for (e), where defect data from

the 108 atom aluminum system was used to train the model. The uncertainty and error at

the location of the defect reduce with the addition of defect data in the training, as evident

from (d) and (e). The unit for electron density is e Bohr−3, where e denotes the electronic

charge.

because the data is biased against the defect site. That is, the amount of training data

available at the defect site is much less than the data away from it. Thus, this analysis

distinguishes uncertainty from inaccuracy.
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To investigate the effect of adding data from larger systems in training, we compare

two models. The first model is trained with data from the 32-atom system. The second

model uses a transfer learning approach where it is initially trained using the data from the

32-atom system and then a part of the model is retrained using data from the 108-atom

system. We observe a significant reduction in the error and in the epistemic uncertainty for

the transfer learned model as compared to the one without transfer learning. The RMSE

on the test system (256 atom) decreases by 50% when the model is transfer learned using

108 atom data. The addition of the 108-atom system’s data to the training data decreases

epistemic uncertainty as well since the 108-atom system is less restricted by periodic bound-

ary conditions than the 32-atom system. Further, it is also statistically more similar to the

larger systems used for testing [177]. These findings demonstrate the effectiveness of the

Bayesian Neural Network in pinpointing atomic arrangements or physical sites where more

data is essential for enhancing the ML model’s performance. Additionally, they highlight its

ability to measure biases in the training dataset. The total uncertainty in the predictions

provides a confidence interval for the ML prediction. This analysis provides an upper bound

of uncertainty arising out of two key heuristic strategies adopted in our ML model: data

generation through thermalization of the systems and transfer learning.

7.3.3 Computational efficiency gains and confident prediction for very large

system sizes

Conventional KS-DFT calculations scale as O(Na
3) with respect to the number of atoms Na,

whereas, our ML model scales linearly (i.e., O(Na)), as shown in Fig. 7.13. This provides

computational advantage for ML model over KS-DFT with increasing number of atoms.

For example, even with 500 atoms, the calculation wall times for ML model is 2 orders of

magnitude lower than KS-DFT. The linear scaling behavior of the ML model with respect

to the number of atoms can be understood as follows. As the number of atoms within the

simulation domain increases, so does the total simulation domain size, leading to a linear
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increase in the total number of grid points (keeping the mesh size constant, to maintain

calculation accuracy). Since the machine learning inference is performed for each grid point,

while using information from a fixed number of atoms in the local neighborhood of the grid

point, the inference time is constant for each grid point. Thus the total ML prediction time

scales linearly with the total number of grid points, and hence the number of atoms in the

system.
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Figure 7.13: Computational time comparison between DFT calculations and prediction via

trained ML model. (Top) Aluminum, (Bottom) SiGe. The DFT calculations scale O(Na
3)

with respect to the system size (number of atoms Na), whereas, the present ML model scales

linearly (i.e., O(Na)). The time calculations were performed using the same number of CPU

cores and on the same system (Perlmutter CPU).

Taking advantage of this trend, the ML model can be used to predict the electronic struc-

ture for system sizes far beyond the reach of conventional calculation techniques, including

systems containing millions of atoms, as demonstrated next. We anticipate that with suit-

able parallel programming strategies (the ML prediction process is embarrassingly parallel)

and computational infrastructure, the present strategy can be used to predict the electronic

structure of systems with hundreds of millions or even billions of atoms. Recently, there have

been attempts at electronic structure predictions at million atom scales. In [291], a machine

learning based potential is developed for germanium–antimony–tellurium alloys, effectively
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working for device scale systems containing over half a million atoms. Another contribution

comes from Fiedler et al. [112], where they present a model predicting electronic structure

for systems containing over 100,000 atoms.

We show the electron densities, as calculated by our ML model, for a four million atom

system of Al and a one million atom system of SiGe, in Figs. 7.14 and 7.15 respectively. In

addition to predicting electron densities, we also quantify uncertainties for these systems.

We found that the ML model predicts larger systems with equally high certainty as smaller

systems [177]. The confidence interval obtained by the total uncertainty provides a route

to assessing the reliability of predictions for these million atom systems for which KS-DFT

calculations are simply not feasible. A direct comparison of ML obtained electron density

with DFT for large systems is not done till date, mainly because simulating such systems

with DFT is impractical. However, recent advancements in DFT techniques hold promise

for simulating large-scale systems [96, 292, 293]. In future, it will be worthwhile to compare

ML predicted electron density for large systems and the electron density obtained through

DFT, utilizing these recently introduced DFT techniques.

79 396 
16 

Figure 7.14: Prediction of electronic structure for aluminum system containing ≈ 4.1 million

atoms. The unit for electron density is e Bohr−3, where e denotes the electronic charge.
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Figure 7.15: Prediction of electronic structure for Si0.5Ge0.5 system containing ≈ 1.4 million

atoms. The unit for electron density is e Bohr−3, where e denotes the electronic charge.

7.3.4 Reduction of training data generation cost via transfer learning

One of the key challenges in developing an accurate ML model for electronic structure pre-

diction is the high computational cost associated with the generation of the training data

through KS-DFT, especially for predicting the electron density for systems across length-

scales. A straightforward approach would involve data generation using sufficiently large

systems wherein the electron density obtained from DFT is unaffected by the boundary con-

straints. However, simulations of larger bulk systems are significantly more expensive than

smaller systems. To address the computational burden of simulating large systems, strate-

gies such as “fragmentation" have been used in electronic structure calculations [294, 295].

Further, certain recent studies on Machine Learning Interatomic Potentials suggest utilizing

portions of a larger system for training the models [296, 297]. To the best of our knowledge,

there is no corresponding work that utilizes fragmentation in ML modeling of the electron

density. In this work, to address the issue, we employed a transfer learning (TL) approach.

We first trained the ML model on smaller systems and subsequently trained a part of the

neural network using data from larger systems. This strategy allows us to obtain an effi-

cient ML model that requires fewer simulations of expensive large-scale systems compared to

what would have been otherwise required without the TL approach. The effectiveness of the
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TL approach stems from its ability to retain information from a large quantity of cheaper,

smaller scale simulation data. We would like to note however, that the transfer learning

approach is inherently bound by the practical constraints associated with simulating the

largest feasible system size.

As an illustration of the above principles, we show in Fig. 7.16, the RMSE obtained on

256 atom data (system larger than what was used in the training data) using the TL model

and the non-TL model. We also show the time required to generate the training data for

both models. For the Al systems, we trained the TL model with 32-atom data first and then

108-atom data. In contrast, the non-TL model was trained only on the 108-atom data.
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Figure 7.16: Models with Transfer Learning (TL) and without Transfer Learning (Non-TL)

for aluminium (left) and SiGe (right): (a) Root mean square error (RMSE) on the test

dataset and (b) Computational time to generate the training data. In the case of aluminum,

the TL model is trained using 32 and 108 atom data. For SiGe, the TL model was trained

using 64 and 216 atom data. In the case of aluminum, the non-TL model is trained using

108 atom data. Whereas, in the case of SiGe, the non-TL model is trained using 216 atom

data.

The non-TL model requires significantly more 108-atom data than the TL model to

achieve a comparable RMSE on the 256-atom dataset. Moreover, the TL model’s training

data generation time is approximately 55% less than that of the non-TL model. This repre-
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sents a substantial computational saving in developing the ML model for electronic structure

prediction, making the transfer learning approach a valuable tool to expedite such model

development. Similar savings in training data generation time were observed for SiGe as

shown in Fig. 7.16. In the case of SiGe, the TL model was first trained using 64 atom data

and then transfer learned using 216 atom data.

7.4 Discussions

We have developed an uncertainty quantification (UQ) enabled machine learning (ML) model

that creates a map from the descriptors of atomic configurations to the electron densities.

We use simple scalar product-based descriptors to represent the atomic neighborhood of

a point in space. These descriptors, while being easy to compute, satisfy translational,

rotational, and permutational invariances. In addition, they avoid any handcrafting. We

systematically identify the optimal set of descriptors for a given dataset. Once trained, our

model enables predictions across multiple length scales and supports embarrassingly parallel

implementation. As far as we can tell, our work is the first attempt to systematically

quantify uncertainties in ML predicted electron densities across different scales relevant to

materials physics. To alleviate the high cost of training data generation via KS-DFT, we

propose a two-pronged strategy: i) we use thermalization to comprehensively sample system

configurations, leading to a highly transferable ML model; and ii) we employ transfer learning

to train the model using a large amount of inexpensively generated data from small systems

while retraining a part of the model using a small amount of data from more expensive

calculations of larger systems. The transfer learning procedure is systematically guided

by the probability distributions of the data. This approach enables us to determine the

maximum size of the training system, reducing dependence on heuristic selection. As a result

of these strategies, the cost of training data generation is reduced by more than 50%, while

the models continue to be highly transferable across a large variety of material configurations.
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Our use of Bayesian Neural Networks (BNNs) allows the uncertainty associated with these

aforementioned strategies to be accurately assessed, thus enabling confident predictions in

scenarios involving millions of atoms, for which ground-truth data from conventional KS-

DFT calculations is infeasible to obtain. Overall, our ML model significantly decreases

the reliance on heuristics used by prior researchers, streamlining the process of ML-based

electronic structure prediction and making it more systematic.

We demonstrate the versatility of the proposed machine learning models by accurately

predicting electron densities for multiple materials and configurations. We focus on bulk alu-

minum and Silicon-Germanium alloy systems. The ML model shows remarkable accuracy

when compared with DFT calculations, even for systems containing thousands of atoms. In

the future, a similar model can be developed to test the applicability of the present descriptors

and ML framework for molecules across structural and chemical space [298, 299, 300, 301].

As mentioned above, the ML model also has excellent generalization capabilities, as it can

predict electron densities for systems with localized and extended defects, and varying alloy

compositions, even when the data from such systems were not included in the training. It is

likely that the ensemble averaging over model parameters in the BNNs, along with compre-

hensive sampling of the descriptor space via system thermalization together contribute to the

model generalization capabilities. Our findings also show a strong agreement between phys-

ical parameters calculated from the DFT and ML electron densities (e.g. lattice constants

and bulk moduli).

To rigorously quantify uncertainties in the predicted electron density, we adopt a Bayesian

approach. Uncertainty quantification by a Bayesian neural network (BNN) is mathemati-

cally well-founded and offers a more reliable measure of uncertainty in comparison to non-

Bayesian approaches such as the method of ensemble averaging. Further, we can decompose

the total uncertainty into aleatoric and epistemic parts. This decomposition allows us to dis-

tinguish and analyze the contributions to the uncertainty arising from (i) inherent noise in

the training data (i.e. aleatoric uncertainty) and (ii) insufficient knowledge about the model
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parameters due to the lack of information in the training data (i.e. epistemic uncertainty).

The aleatoric uncertainty or the noise in the data is considered irreducible, whereas the epis-

temic uncertainty can be reduced by collecting more training data. As mentioned earlier,

the UQ capability of the model allows us to establish an upper bound on the uncertainty

caused by two key heuristic strategies present in our ML model, namely, data generation via

the thermalization of systems and transfer learning.

The reliability of the ML models is apparent from the low uncertainty of its prediction

for systems across various length-scales and configurations. Furthermore, the magnitude of

uncertainty for the million-atom systems is similar to that of smaller systems for which the

accuracy of the ML model has been established. This allows us to have confidence in the

ML predictions of systems involving multi-million atoms, which are far beyond the reach of

conventional DFT calculations.

The ML model can achieve a remarkable speed-up of more than two orders of magnitude

over DFT calculations, even for systems involving a few hundred atoms. As shown here,

these computational efficiency gains by the ML model can be further pushed to regimes

involving multi-million atoms, not accessible via conventional KS-DFT calculations.

In the future, we intend to leverage the uncertainty quantification aspects of this model

to implement an active learning framework. This framework will enable us to selectively

generate training data, reducing the necessity of extensive datasets and significantly lower-

ing the computational cost associated with data generation. Moreover, we anticipate that

the computational efficiencies offered via the transfer learning approach, are likely to be

even more dramatic while considering more complex materials systems, e.g. compositionally

complex alloys [302, 303].
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CHAPTER 8

Conclusion and future directions

In summary, in Chapters 2 and 3, we have presented a novel spectral method, HelicES, for ef-

ficiently solving the Schrödinger equation for quasi-one-dimensional materials and structures.

The basis functions in our method — helical waves — are natural analogs of plane-waves,

and allow systematically convergent electronic structure calculations of materials such as

nanowires, nanoribbons and nanotubes to be carried out. We have discussed various mathe-

matical, algorithmic and implementation oriented issues of our technique. We have also used

our method to carry out a variety of demonstrative calculations and studied its accuracy,

computational efficiency, and convergence behaviors.

We anticipate that the method presented here will find utility in the discovery and charac-

terization of new forms of low dimensional matter. It is particularly well suited for coupling

with specialized machine learning techniques [116] and for the multiscale modeling of low

dimensional systems [169]. Building self-consistency into the method, so as to enable ab

initio calculations (e.g. using Hartree-Fock or Kohn-Sham Density Functional Theory [170])

remains the scope of ongoing and future work. An important first step in this direction

is efficient solution of the associated electrostatics problem [10], towards which we have

been making recent progress [168, 304], the details of which were elucidated in Chapter 4.

Specifically, we developed a novel pseudo-spectral method to solve for the Hartree electro-

static potential and note that our framework may be used in other settings too, such as

the Navier-Stokes equation in fluid dynamics, and the Cahn-Hilliard [305] and Allen-Cahn

[306, 307] equations for phase separation in helical geometries. We showcase orders of mag-
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nitude reduction in wall times using our framework which, in conjunction with HelicES,

paves the way for a highly efficient self consistent density functional theory package. The

full power of some of the techniques described in Chapters 2, 3, and 4 can be brought to bear

upon complex materials problems, once a parallel, efficient, hardware optimized version of

HelicES is available. Development of such a code constitutes yet another avenue of ongoing

and future work.

Additionally, in Chapters 5 and 6, we comprehensively examine the structure and 31P

nuclear spin entanglement lifetimes of calcium phosphate monomer, dimers, and trimers

using ab initio methods. Our conclusion on the asymmetrical nature of the Posner molecule

and its short-lived singlet state sheds new light on its viability as a biological quantum

information processor. Moreover, our exploration into the space of calcium phosphate dimers

— the first of its kind as far as we know — potentially opens up an entirely new field of

research. However, we would like to note here again that experimental validation on the

presence of these molecules in vivo remains of utmost importance.

Lastly, in Chapter 7, we conclude our set of studies by realizing the inherent limitations

of density functional theory calculations with respect to the system size, and by developing a

novel machine learning framework for the prediction of the electron density of multi-million

atom systems. The use of transfer learning to drastically reduce training data requirement

and, thus, alleviate a major bottleneck in this line of work was demonstrated. We also detail

how uncertainty quantification can be utilized to explore systems inaccessible to conventional

density functional theory calculations. Expanding this work to ternary and quaternary alloy

systems constitutes a rich avenue of future work, while the descriptor and learning frame-

work used here may be applicable to isolated systems as well — with the latter remaining

unexplored for now.
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